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Abstract

This manual describes how to install and configure MySQL Connector/C++ 1.1, which provides a C++ interface for
communicating with MySQL servers, and how to use Connector/C++ to develop database applications.

Connector/C++ 8.0 is highly recommended for use with MySQL Server 8.0 and 5.7. Please upgrade from
Connector/C++ 1.1 to Connector/C++ 8.0.

For notes detailing the changes in each release of Connector/C++, see MySQL Connector/C++ Release Notes.

For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other
MySQL users.

Licensing information.  This product may include third-party software, used under license. If you are using
a Commercial release of MySQL Connector/C++, see the MySQL Connector/C++ Commercial Release License
Information User Manual for licensing information, including licensing information relating to third-party software
that may be included in this Commercial release. If you are using a Community release of MySQL Connector/C+
+, see the MySQL Connector/C++ Community Release License Information User Manual for licensing information,
including licensing information relating to third-party software that may be included in this Community release.
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Preface and Legal Notices
This manual describes how to install and configure MySQL Connector/C++ 1.1, and how to use it to
develop database applications.

Legal Notices
Copyright © 2008, 2022, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly
permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone
licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed or activated on delivered hardware, and modifications of
such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by
U.S. Government end users are "commercial computer software" or "commercial computer software
documentation" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure,
modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any
operating system, integrated software, any programs embedded, installed or activated on delivered
hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other
Oracle data, is subject to the rights and limitations specified in the license contained in the applicable
contract. The terms governing the U.S. Government's use of Oracle cloud services are defined by the
applicable contract for such services. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible
for and expressly disclaim all warranties of any kind with respect to third-party content, products,
and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:
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Documentation Accessibility

You may create a printed copy of this documentation solely for your own personal use. Conversion
to other formats is allowed as long as the actual content is not altered or edited in any way. You shall
not publish or distribute this documentation in any form or on any media, except if you distribute the
documentation in a manner similar to how Oracle disseminates it (that is, electronically for download
on a Web site with the software) or on a CD-ROM or similar medium, provided however that the
documentation is disseminated together with the software on the same medium. Any other use, such
as any dissemination of printed copies or use of this documentation, in whole or in part, in another
publication, requires the prior written consent from an authorized representative of Oracle. Oracle and/
or its affiliates reserve any and all rights to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at
https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab.
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Chapter 1 Introduction to Connector/C++
MySQL Connector/C++ 1.1 is a MySQL database connector for C++ applications that connect to
MySQL servers. Connector/C++ enables development of C++ applications that use the JDBC-based
API.

For more detailed requirements about required MySQL versions for Connector/C++ applications, see
Platform Support and Prerequisites.

For notes detailing the changes in each release of Connector/C++, see MySQL Connector/C++
Release Notes.

• Connector/C++ Benefits

• Connector/C++ and JDBC Compatibility

• Platform Support and Prerequisites

Connector/C++ Benefits
MySQL Connector/C++ offers the following benefits for C++ users compared to the MySQL C API
provided by the MySQL client library:

• Convenience of pure C++.

• Supports a JDBC 4.0-based API.

• Supports the object-oriented programming paradigm.

• Reduces development time.

• Licensed under the GPL with the FLOSS License Exception.

• Available under a commercial license upon request.

Connector/C++ and JDBC Compatibility
Connector/C++ is compatible with the JDBC 4.0 API. Connector/C++ does not implement the entire
JDBC 4.0 API, but does feature these classes: Connection, DatabaseMetaData, Driver,
PreparedStatement, ResultSet, ResultSetMetaData, Savepoint, Statement.

The JDBC 4.0 API defines approximately 450 methods for the classes just mentioned. Connector/C++
implements approximately 80% of these.

Platform Support and Prerequisites
To see which platforms are supported, visit the Connector/C++ downloads page.

For Connector/C++ 1.1.11 and higher, Commercial and Community distributions require the Visual
C++ Redistributable for Visual Studio 2015 to work on Windows platforms. Up through Connector/
C++ 1.1.10, Community (not Commercial) distributions require the Visual C++ Redistributable for
Visual Studio 2013. The Redistributable is available at the Microsoft Download Center; install it before
installing Connector/C++.

These requirements apply to building and running Connector/C++ applications, and to building
Connector/C++ itself if you build it from source:

• To build Connector/C++ applications:

• The MySQL version does not apply.
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Platform Support and Prerequisites

• On Windows, Microsoft Visual Studio 2015 is required.

• To run Connector/C++ applications, a server from MySQL 5.6 or higher is required.

• To build Connector/C++ from source:

• Building Connector/C++ requires the client library from MySQL 5.7 (5.7.9 or higher) or MySQL 8.0
(8.0.11 or higher).

• On Windows, Microsoft Visual Studio 2015 is required.
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Chapter 2 Obtaining Connector/C++
Connector/C++ binary and source distributions are available, in platform-specific packaging formats.
To obtain a distribution, visit the Connector/C++ downloads page. It is also possible to clone the
Connector/C++ Git source repository.

• Connector/C++ binary distributions are available for Microsoft Windows, and for Unix and Unix-like
platforms. See Chapter 3, Installing Connector/C++ from a Binary Distribution.

• Connector/C++ source distributions are available as compressed tar files or Zip archives and can
be used on any supported platform. See Chapter 4, Installing Connector/C++ from Source.

• The Connector/C++ source code repository uses Git and is available at GitHub. See Chapter 4,
Installing Connector/C++ from Source.
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Chapter 3 Installing Connector/C++ from a Binary Distribution
To obtain a Connector/C++ binary distribution, visit the Connector/C++ downloads page.

Installation on Windows

Important

For Connector/C++ 1.1.11 and higher, Commercial and Community distributions
require the Visual C++ Redistributable for Visual Studio 2015 to work on
Windows platforms. Up through Connector/C++ 1.1.10, Community (not
Commercial) distributions require the Visual C++ Redistributable for Visual
Studio 2013.

The Redistributable is available at the Microsoft Download Center; install it
before installing any version of Connector/C++ that requires it.

These binary-distribution installation methods are available on Windows:

• MySQL Installer.  The simplest and recommended method for installing Connector/C++ on
Windows platforms is to download MySQL Installer and let it install and configure all the MySQL
products on your system. For details, see MySQL Installer for Windows.

• Windows MSI installer.  To use the MSI Installer (.msi file), launch it and follow the prompts in
the screens it presents to install Connector/C++ in the location of your choosing.

The MSI Installer requires administrative privileges. It begins by presenting a welcome screen that
enables you to continue the installation or cancel it. If you continue the installation, the MSI Installer
overview screen enables you to select the type of installation to perform:

• The Typical installation consists of all required header files and the Release libraries.

• The Custom installation enables you to install additional Debug versions of the connector libraries.
If you select this installation type, the MSI Installer presents a Custom Setup screen that enables
you to select which features to install and where to install them.

• The Complete installation installs everything in the distribution.

• Zip archive package without installer.  To install from a Zip archive package (.zip file), use
WinZip or another tool that can read .zip files to unpack the file into the location of your choosing.

Post-Installation Setup

If you plan to use a dynamically linked version of Connector/C++, the libmysqlclient MySQL client
library must be registered with the dynamic linker so that it can be found at runtime. Make sure that
your system can reference the MySQL client library that Connector/C++ is linked against and thus
requires. Consult your operating system documentation on how to modify and expand the search
path for libraries. Many Unix and Unix-like systems enable configuring dynamic library locations using
LD_LIBRARY_PATH environment variable. For example, if you install Connector/C++ under /usr/
local/lib, try this:

export LD_LIBRARY_PATH=/usr/local/lib

On macOS, try this:

export DYLD_LIBRARY_PATH=/usr/local/lib

It may also be necessary to run ldconfig or equivalent utility.

If you cannot modify the library search path, it may help to copy your application, the Connector/C++
library and the MySQL client library into the same directory. Most systems search for libraries in the
current directory.

5

https://dev.mysql.com/downloads/connector/cpp/
http://www.microsoft.com/en-us/download/default.aspx
https://dev.mysql.com/doc/refman/8.0/en/mysql-installer.html


6



Chapter 4 Installing Connector/C++ from Source

Table of Contents
4.1 Source Installation System Prerequisites .................................................................................. 7
4.2 Obtaining and Unpacking a Connector/C++ Source Distribution ................................................. 7
4.3 Installing Connector/C++ from Source on Unix and Unix-Like Systems ...................................... 8
4.4 Installing Connector/C++ from Source on Windows .................................................................. 9
4.5 Dynamically Linking Connector/C++ Against the MySQL Client Library ..................................... 11
4.6 Connector/C++ Source-Configuration Options ......................................................................... 11

This chapter describes how to install Connector/C++ using a source distribution or a copy of the Git
source repository.

4.1 Source Installation System Prerequisites
To install Connector/C++ from source, the following system requirements must be satisfied:

• Build Tools

• MySQL Client Library

• Boost C++ Libraries

Build Tools

You must have the cross-platform build tool CMake (2.8.12 or higher is recommended; older versions
may work).

You must have a C++ compiler that supports C++11.

MySQL Client Library

Building Connector/C++ from source requires the client library from MySQL 5.7 (5.7.9 or higher) or
MySQL 8.0 (8.0.11 or higher).

Typically, the MySQL client library is installed when MySQL is installed. However, check your operating
system documentation for other installation options.

To specify where to find the client library, set the MYSQL_DIR CMake option appropriately at
configuration time as necessary (see Section 4.6, “Connector/C++ Source-Configuration Options”).

Boost C++ Libraries

To compile Connector/C++, the Boost C++ libraries are always needed. Boost 1.59.0 or newer must be
installed. To obtain Boost and its installation instructions, visit the official Boost site.

After Boost is installed, use the BOOST_ROOT CMake option to indicate where the Boost files are
located (see Section 4.6, “Connector/C++ Source-Configuration Options”):

cmake [other_options] -DBOOST_ROOT=/usr/local/boost_1_59_0

Adjust the path as necessary to match your installation.

4.2 Obtaining and Unpacking a Connector/C++ Source
Distribution

To obtain a Connector/C++ source distribution, visit the Connector/C++ downloads page. Alternatively,
clone the Connector/C++ Git source repository.

7
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Installing Connector/C++ from Source on Unix and Unix-Like Systems

A Connector/C++ source distribution is packaged as a compressed tar file or Zip archive, denoted
here as PACKAGE.tar.gz or PACKAGE.zip. A source distribution in tar file or Zip archive format can
be used on any supported platform.

To unpack a compressed tar file, use this command in the intended installation directory:

tar zxvf PACKAGE.tar.gz

After unpacking the distribution, build it using the appropriate instructions for your platform later in this
chapter.

To install from a Zip archive package (.zip file), use WinZip or another tool that can read .zip files
to unpack the file into the location of your choosing. After unpacking the distribution, build it using the
appropriate instructions for your platform later in this chapter.

To clone the Connector/C++ code from the source code repository located on GitHub at https://
github.com/mysql/mysql-connector-cpp, use this command:

git clone https://github.com/mysql/mysql-connector-cpp.git

That command should create a mysql-connector-cpp directory containing a copy of the entire
Connector/C++ source tree.

The git clone command sets the sources to the master branch, which is the branch that contains
the latest sources. Released code is in the 8.0 and 1.1 branches (the 8.0 branch contains the same
sources as the master branch). If necessary, use git checkout in the source directory to select the
desired branch. For example, to build Connector/C++ 8.0:

cd mysql-connector-cpp
git checkout 8.0

Or to build Connector/C++ 1.1:

cd mysql-connector-cpp
git checkout 1.1

After cloning the repository, build it using the appropriate instructions for your platform later in this
chapter.

After the initial checkout operation to get the source tree, run git pull periodically to update your
source to the latest version.

4.3 Installing Connector/C++ from Source on Unix and Unix-Like
Systems

To install Connector/C++ from source, verify that your system satisfies the requirements outlined in
Section 4.1, “Source Installation System Prerequisites”.

1. Change location to the top-level directory of your Connector/C++ source distribution, then run
CMake to build a Makefile:

cmake .

To use configuration values different from the defaults, use the options described at Section 4.6,
“Connector/C++ Source-Configuration Options”. For example, to specify the installation location
explicitly, use the CMAKE_INSTALL_PREFIX option:

-DCMAKE_INSTALL_PREFIX=path_name

CMake checks to see whether the MYSQL_CONFIG_EXECUTABLE CMake option is set. If not,
CMake tries to locate mysql_config in the default locations.

2. Use make to build Connector/C++. First make sure you have a clean build, then build the
connector:

8

https://github.com/mysql/mysql-connector-cpp
https://github.com/mysql/mysql-connector-cpp


Installing Connector/C++ from Source on Windows

make clean
make

If all goes well, you will find the Connector/C++ library in the driver directory.

3. Install the header and library files:

make install

Unless you have changed the installation location in the configuration step by specifying the
CMAKE_INSTALL_PREFIX CMake option, make install copies the header files to the directory
/usr/local/include. The mysql_connection.h and mysql_driver.h header files are
copied.

Again, unless you have specified otherwise, make install copies the library files to /usr/
local/lib. The files copied are the dynamic library libmysqlcppconn.so, and the static library
libmysqlcppconn-static.a. The dynamic library file name extension might differ on your
system (for example, .dylib on macOS).

After installing Connector/C++, you can carry out a quick test to check the installation. To do this,
compile and run one of the example programs, such as examples/standalone_example.cpp.
This example is discussed in more detail later, but for now, you can use it to test whether the connector
has been correctly installed. This procedure assumes availability of a working MySQL server to which
you can connect. It also assumes header and library locations of /usr/local/include and /usr/
local/lib, respectively; adjust these as necessary for your system.

1. Compile the example program. To do this, change location to the examples directory and enter
this command:

g++ -o test_install \
  -I/usr/local/include -I/usr/local/include/cppconn \
  -Wl,-Bdynamic standalone_example.cpp -lmysqlcppconn

2. Make sure the dynamic library which is used in this case can be found at runtime:

export LD_LIBRARY_PATH=/usr/local/lib

On macOS, try this:

export DYLD_LIBRARY_PATH=/usr/local/lib

It may also be necessary to run ldconfig or equivalent utility.

3. Now run the program to test your installation, substituting the appropriate host, user, password, and
database arguments for your system:

./test_install localhost root password database

You should see output similar to the following:

Connector/C++ standalone program example...

... running 'SELECT 'Welcome to Connector/C++' AS _message'

... MySQL replies: Welcome to Connector/C++

... say it again, MySQL

....MySQL replies: Welcome to Connector/C++

... find more at http://www.mysql.com

4.4 Installing Connector/C++ from Source on Windows

To install Connector/C++ from source, verify that your system satisfies the requirements outlined in
Section 4.1, “Source Installation System Prerequisites”.
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Installing Connector/C++ from Source on Windows

Note

On Windows, mysql_config is not present, so CMake attempts to retrieve
the location of MySQL from the environment variable $ENV{MYSQL_DIR}. If
MYSQL_DIR is not set, CMake checks for MySQL in the following locations:
$ENV{ProgramFiles}/MySQL/*/include and $ENV{SystemDrive}/
MySQL/*/include.

Consult the CMake manual or check cmake --help to find out which build systems are supported by
your CMake version:

cmake --help

It is likely that your version of CMake supports more compilers, known by CMake as generators,
than can actually be used to build Connector/C++. We have built Connector/C++ using the following
generators:

• Microsoft Visual Studio 2013

• NMake

CMake makes it easy for you to try other compilers. However, you may experience compilation
warnings or errors, or linking issues not detected by Visual Studio.

Use these steps to build Connector/C++:

1. Change location to the top-level directory of your Connector/C++ source distribution, then run
CMake to generate build files for your generator.

For Visual Studio:

cmake -G "Visual Studio 12 2013"

For NMake:

cmake -G "NMake Makefiles"

To use configuration values different from the defaults, use the options described at Section 4.6,
“Connector/C++ Source-Configuration Options”.

2. Use your compiler to build Connector/C++.

For Visual Studio:

Open the newly generated project files in the Visual Studio GUI or use a Visual Studio command
line to build the driver. The project files contain a variety of different configurations, debug and
nondebug versions among them.

For example, to use the command line, execute commands like these to build the distribution and
create a Zip package:

devenv MYSQLCPPCONN.sln /build RelWithDebInfo
cpack -G ZIP --config CPackConfig.cmake -C RelWithDebInfo

For NMake:

nmake

10



Dynamically Linking Connector/C++ Against the MySQL Client Library

4.5 Dynamically Linking Connector/C++ Against the MySQL Client
Library

Note

This section refers to dynamic linking of Connector/C++ to the client library,
not dynamic linking of applications to Connector/C++. Precompiled binaries of
Connector/C++ use static binding with the client library by default.

An application that uses Connector/C++ can be linked either statically or dynamically to the Connector/
C++ libraries. Connector/C++ is usually linked statically to the underlying MySQL client library.

It is also possible to link dynamically to the underlying MySQL client library, although this
capability is not enabled by default. To link Connector/C++ dynamically to the client library, disable
MYSQLCLIENT_STATIC_LINKING when building Connector/C++ from source:

rm CMakeCache.txt
cmake . -DMYSQLCLIENT_STATIC_LINKING=0
make clean
make
make install

Now, when creating a connection in your application, Connector/C++ selects and loads a client
library at runtime. It chooses the client library by searching defined locations and environment
variables depending on the host operating system. It is also possible when creating a connection in an
application to define an absolute path to the client library to load at runtime. This can be convenient
if you have defined a standard location from which you want the client library to be loaded. This is
sometimes done to circumvent possible conflicts with other versions of the client library that may be
located on the system.

If MYSQLCLIENT_STATIC_LINKING is disabled to enable dynamic linking to the MySQL client library,
MYSQLCLIENT_STATIC_BINDING determines whether to link to the shared MySQL client library.
By default, MYSQLCLIENT_STATIC_BINDING is enabled. If MYSQLCLIENT_STATIC_BINDING is
disabled, Connector/C++ is not linked to the shared MySQL client library. Instead, that library is loaded
and mapped at runtime.

4.6 Connector/C++ Source-Configuration Options

Connector/C++ recognizes the CMake options described in this section.

Table 4.1 Connector/C++ Source-Configuration Option Reference

Formats Description Default Introduced

BOOST_ROOT The Boost source
directory

BUNDLE_DEPENDENCIESWhether to bundle
external dependency
libraries with the
connector

OFF 1.1.11

CMAKE_BUILD_TYPE Type of build to produce Debug

CMAKE_ENABLE_C++11 Whether to enable C+
+11 support

OFF 1.1.6

CMAKE_INSTALL_PREFIXInstallation base
directory

/usr/local

MYSQLCLIENT_NO_THREADSWhether to link against
single-threaded MySQL
client library

OFF
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Connector/C++ Source-Configuration Options

Formats Description Default Introduced

MYSQLCLIENT_STATIC_BINDINGWhether to link to the
shared MySQL client
library

ON

MYSQLCLIENT_STATIC_LINKINGWhether to statically
link to the MySQL client
library

ON

MYSQLCPPCONN_GCOV_ENABLEWhether to enable gcov
support

OFF

MYSQLCPPCONN_TRACE_ENABLEWhether to enable
tracing functionality

OFF

MYSQL_CFLAGS C compiler flags

MYSQL_CONFIG_EXECUTABLEPath to the mysql_config
program

${MYSQL_DIR}/bin/
mysql_config

MYSQL_CXXFLAGS C++ compiler flags

MYSQL_CXX_LINKAGE Whether MySQL client
library needs C++
linking

ON

MYSQL_DIR MySQL Server
installation directory

MYSQL_EXTRA_LIBRARIESExtra link libraries

MYSQL_INCLUDE_DIR The MySQL header file
directory

${MYSQL_DIR}/
include

MYSQL_LIB_DIR The MySQL client library
directory

${MYSQL_DIR}/lib

MYSQL_LINK_FLAGS Extra link flags

USE_SERVER_CXXFLAGSUse MySQL Server
CXXFLAGS value rather
than system default

OFF 1.1.7

• -DBOOST_ROOT=dir_name

The directory where the Boost sources are installed.

• -DBUNDLE_DEPENDENCIES=bool

This is an internal option used for creating Connector/C++ distribution packages.

• -DCMAKE_BUILD_TYPE=type

The type of build to produce:

• Debug: Disable optimizations and generate debugging information. This is the default.

• Release: Enable optimizations.

• RelWithDebInfo: Enable optimizations and generate debugging information.

• -DCMAKE_ENABLE_C++11=bool

Whether to enable C++11 support. The default is OFF.

• -DCMAKE_INSTALL_PREFIX=dir_name

The installation base directory (where to install Connector/C++).

12



Connector/C++ Source-Configuration Options

• -DMYSQLCLIENT_NO_THREADS=bool

Whether to link against a single-threaded libmysqlclient MySQL client library.

This option is obsolete; libmysqlclient is always multithreaded.

• -DMYSQLCLIENT_STATIC_BINDING=bool

Whether to link to the shared MySQL client library. This option is used only if
MYSQLCLIENT_STATIC_LINKING is disabled. disabled to enable dynamic linking to the MySQL
client library. In that case, if MYSQLCLIENT_STATIC_BINDING is enabled (the default), Connector/C
++ is linked to the shared MySQL client library. Otherwise, the shared MySQL client library is loaded
and mapped at runtime. For more information, see Section 4.5, “Dynamically Linking Connector/C++
Against the MySQL Client Library”.

• -DMYSQLCLIENT_STATIC_LINKING=bool

Whether to link statically to the MySQL client library. The default is ON (use static linking to the client
library). Disabling this option enables dynamic linking to the client library. For more information, see
Section 4.5, “Dynamically Linking Connector/C++ Against the MySQL Client Library”.

• -DMYSQLCPPCONN_GCOV_ENABLE=bool

Whether to enable gcov support.

• -DMYSQLCPPCONN_TRACE_ENABLE=VALUE_TYPE

Whether to enable tracing functionality. For information about tracing, see Chapter 8, Connector/C++
Debug Tracing.

• -DMYSQL_CFLAGS=flags

C compiler flags.

• -DMYSQL_CONFIG_EXECUTABLE=file_name

The path to the mysql_config program.

On non-Windows systems, CMake checks to see whether MYSQL_CONFIG_EXECUTABLE is set. If
not, CMake tries to locate mysql_config in the default locations.

• -DMYSQL_CXXFLAGS=flags

C++ compiler flags.

• -DMYSQL_CXX_LINKAGE=bool

Whether the MySQL client library needs C++ linking.

• -DMYSQL_DIR=dir_name

The directory where MySQL is installed.

• -DMYSQL_EXTRA_LIBRARIES=flags

Any required additional link libraries.

• -DMYSQL_INCLUDE_DIR=dir_name

The directory where the MySQL header files are installed.

• -DMYSQL_LIB_DIR=dir_name

The directory where the MySQL client library is installed.
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• -DMYSQL_LINK_FLAGS=flags

Any required additional link flags.

• -DUSE_SERVER_CXXFLAGS=bool

Use MySQL CXXFLAGS values rather than the system default value.

14



Chapter 5 Building Connector/C++ Applications
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This chapter provides guidance on building Connector/C++ applications:

• Prerequisites that must be satisfied to build Connector/C++ applications successfully. See
Section 5.1, “Building Connector/C++ Applications: General Considerations”.

• Building applications for Connector/C++ on Windows using Visual Studio. See Section 5.2, “Building
Connector/C++ Applications on Windows with Microsoft Visual Studio”.

• Building applications for Connector/C++ on Linux using NetBeans. See Section 5.3, “Building
Connector/C++ 1.1 Applications on Linux with NetBeans”.

For discussion of which programming interfaces are available in Connector/C++, see Chapter 1,
Introduction to Connector/C++.

5.1 Building Connector/C++ Applications: General Considerations

Keep these general considerations in mind for building Connector/C++ applications:

• Build Tools and Configuration Settings

• Boost Header Files

• Runtime Libraries

Build Tools and Configuration Settings

It is important that the tools you use to build your Connector/C++ applications are compatible with the
tools used to build Connector/C++ itself. Ideally, build your applications with the same tools that were
used to build the Connector/C++ binaries.

To avoid issues, ensure that these factors are the same for your applications and Connector/C++ itself:

• Compiler version.

• Runtime library.

• Runtime linker configuration settings.

To avoid potential crashes, the build configuration of Connector/C++ should match the build
configuration of the application using it. For example, do not use a release build of Connector/C++ with
a debug build of the client application.

To use a different compiler version, release configuration, or runtime library, first build Connector/C++
from source using your desired settings (see Chapter 4, Installing Connector/C++ from Source), then
build your applications using those same settings.

Connector/C++ binary distribution packages include a BUILDINFO.txt file that describes the
environment and configuration options used to build the distribution. If you installed Connector/C++
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from a binary distribution and experience build-related issues on a platform, it may help to check the
settings that were used to build the distribution on that platform.

Boost Header Files

To compile applications that use Connector/C++, the Boost header files are always needed. Boost
1.59.0 or newer must be installed, and the location of the headers must be added to the include path.
To obtain Boost and its installation instructions, visit the official Boost site.

Runtime Libraries

If an application is built using dynamic link libraries, those libraries must be present not just on the build
host, but on target hosts where the application runs. The libraries and their runtime dependencies must
be found by the dynamic linker. The dynamic linker must be properly configured to find Connector/C++
libraries and their dependencies.

On Windows, target hosts running the client application must have the Visual C++ Redistributable for
Visual Studio installed. The required version is VC++ Redistributable 2015.

5.2 Building Connector/C++ Applications on Windows with
Microsoft Visual Studio

This section describes how to build Connector/C++ applications for Windows using Microsoft Visual
Studio. For general application-building information, see Section 5.1, “Building Connector/C++
Applications: General Considerations”.

Developers using Microsoft Windows must satisfy the following requirements:

• Microsoft Visual Studio 2015 is required to build Connector/C++ applications.

• Your applications should use the same linker configuration as Connector/C++. For example, use one
of /MD, /MDd, /MT, or /MTd.

Linking Connector/C++ to Applications

Connector/C++ is available as a dynamic or static library to use with your application. This section
describes how to link the library to your application.

Linking the Dynamic Library

To use a dynamic library file (.dll extension), link your application with a .lib import library. At
runtime, the application must have access to the .dll library.

The following table indicates which import library and dynamic library files to use for Connector/C++.
LIB denotes the Connector/C++ installation library path name.

Table 5.1 Connector/C++ Import Library and Dynamic Library Names

Import Library Dynamic Library

LIB/mysqlcppconn.lib LIB/mysqlcppconn.dll

Linking the Static Library

To use a static library file (.lib extension), link your application with the library.

The static library name is LIB/mysqlcppconn-static.lib, where LIB denotes the Connector/C++
installation library path name.
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Building Connector/C++ Applications with Microsoft Visual Studio

The initial steps for building an application to use either the dynamic or static library are the same.
Some additional steps vary, depend on whether you are building your application to use the dynamic or
static library.

1. Start a new Visual C++ project in Visual Studio.

2. In the drop-down list for build configuration on the toolbar, change the configuration from the default
option of Debug to Release.

Connector/C++ and Application Build Configuration Must Match

Because the application build configuration must match that of the
Connector/C++ it uses, Release is required when using an Oracle-built
Connector/C++, which is built in the release configuration. When linking
dynamically, it is possible to build your code in debug mode even if the
connector libraries are built in release mode. However, in that case, it will
not be possible to step inside connector code during a debug session. To
be able to do that, or to build in debug mode while linking statically to the
connector, you must build Connector/C++ from source yourself using the
Debug configuration.

3. From the main menu select Project, Properties. This can also be accessed using the hot key ALT
+ F7.

4. Under Configuration Properties, open the tree view.

5. Select C/C++, General in the tree view.

6. In the Additional Include Directories text field, add the include/ directory of Connector/C++
(it should be located within the Connector/C++ installation directory). Also add the Boost library's
root directory, if Boost is required to build the application (see Section 5.1, “Building Connector/C++
Applications: General Considerations”).

7. In the tree view, open Linker, General, Additional Library Directories.

8. In the Additional Library Directories text field, add the Connector/C++ library directory (it should
be located within the Connector/C++ installation directory). The library directory name ends with
lib64 (for 64-bit builds) or lib (for 32-bit builds).

The remaining steps depend on whether you are building an application to use the Connector/C++
dynamic or static library.

Dynamic Build

If you are building an application to use the Connector/C++ dynamic library, follow these steps:

1. Open Linker, Input in the Property Pages dialog.

2. Add the appropriate import library name into the Additional Dependencies text field (see Linking
Connector/C++ to Applications).

3. Choose the C++ Runtime Library to link to. In the Property Pages dialog, open C++, Code
Generation in the tree view, and then select the appropriate option for Runtime Library following
these rules:

• For version 1.1.9 and later: Link to the dynamic version of the C++ Runtime Library by selecting
the /MD compiler option. Also, target hosts running the client application must have the Visual C
++ Redistributable for Visual Studio installed. The required version is VC++ Redistributable 2015

17

https://www.microsoft.com/en-us/download/developer-tools.aspx
https://www.microsoft.com/en-us/download/developer-tools.aspx


Static Build

for Connector/C++ 1.1.11 and higher (Commercial and Community builds), VC++ Redistributable
2013 for Connector/C++ versions prior to 1.1.11 (Community builds only).

• For version 1.1.8 and before: Link to the dynamic version of the C++ Runtime Library by selecting
the /MD compiler option.

Do not use the /MTd or /MDd option if you are using an Oracle-built Connector/C++. For an
explanation, see this discussion: Connector/C++ and Application Build Configuration Must Match.

4. Copy the appropriate dynamic library to the same directory as the application executable (see
Linking Connector/C++ to Applications). Alternatively, extend the PATH environment variable using
SET PATH=%PATH%;C:\path\to\cpp, or copy the dynamic library to the Windows installation
directory, typically C:\windows.

The dynamic library must be in the same directory as the application executable, or somewhere on
the system's path, so that the application can access the Connector/C++ dynamic library at runtime.

Static Build

If you are building your application to use the static library, follow these steps:

1. Open Linker, Input in the Property Pages dialog.

2. Add the appropriate static library name into the Additional Dependencies text field (see Linking
Connector/C++ to Applications).

3. To compile code that is linked statically with the connector library, define a macro that adjusts API
declarations in the header files for usage with the static library. By default, the macro is defined to
declare functions to be compatible with an application that calls a DLL.

In the Project, Properties tree view, under C++, Preprocessor, enter the appropriate macro
into the Preprocessor Definitions text field: Define the CPPCONN_PUBLIC_FUNC macro
as an empty string. To ensure this, define the macro as CPPCONN_PUBLIC_FUNC=, not as
CPPCONN_PUBLIC_FUNC.

4. Choose the C++ Runtime Library to link to. In the Property Pages dialog, open C++, Code
Generation in the tree view, and then select the appropriate option for Runtime Library following
these rules:

• For version 1.1.9 and later: Link to the dynamic version of the C++ Runtime Library by selecting
the /MD compiler option. Also, target hosts running the client application must have the Visual C
++ Redistributable for Visual Studio installed. The required version is VC++ Redistributable 2015
for Connector/C++ 1.1.11 and higher (Commercial and Community builds), VC++ Redistributable
2013 for Connector/C++ versions prior to 1.1.11 (Community builds only).

• For version 1.1.8 and before: Link to the dynamic version of the C++ Runtime Library by selecting
the /MD compiler option.

Do not use the /MTd or /MDd option if you are using an Oracle-built Connector/C++. For an
explanation, see this discussion: Connector/C++ and Application Build Configuration Must Match.

5.3 Building Connector/C++ 1.1 Applications on Linux with
NetBeans

This section describes how to build Connector/C++ 1.1 applications for Linux using the NetBeans IDE.
For general application-building information, see Section 5.1, “Building Connector/C++ Applications:
General Considerations”. (These instructions have not been tested for Connector/C++ 8.0.)

1. Create a new project. Select File, New Project. Choose a C/C++ Application and click Next.
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2. Give the project a name and click Finish. A new project is created.

3. In the Projects tab, right-click Source Files and select New, then Main C++ File....

4. Change the filename, or simply select the defaults and click Finish to add the new file to the
project.

5. Now add some working code to your main source file. Explore your Connector/C++ installation and
navigate to the examples directory.

6. Select a suitable example, such as standalone_example_docs1.cpp. Copy all the code in this
file, and use it to replace the code in your existing main source file. Amend the code to reflect the
connection properties required for your test database. You now have a working example that will
access a MySQL database using Connector/C++.

7. At this point, NetBeans shows some errors in the source code. Direct NetBeans to the necessary
header files to include. Select File, Project Properties from the main menu.

8. In the Categories: tree view panel, navigate to Build, C++ Compiler.

9. In the General panel, select Include Directories.

10. Click the ... button.

11. Click Add, then navigate to the directory where the Connector/C++ header files are located. This
is /usr/local/include unless you have installed the files to a different location. Click Select.
Click OK.

12. Click OK again to close the Project Properties dialog.

At this point, you have created a NetBeans project containing a single C++ source file. You have also
ensured that the necessary include files are accessible. Before continuing, decide whether your project
is to use the Connector/C++ dynamic or static library. The project settings are slightly different in each
case, because you link against a different library.

Using the Dynamic Library

To use the Connector/C++ dynamic library, link your project with a single library file,
libmysqlcppconn.so. The location of this file depends on how you configured your installation of
Connector/C++, but typically is /usr/local/lib.

1. Set the project to link the necessary library file. Select File, Project Properties from the main
menu.

2. In the Categories: tree view, navigate to Linker.

3. In the General panel, select Additional Library Directories. Click the ... button.

4. Select and add the /usr/local/lib directories.

5. In the same panel, add the library file required for static linking as discussed earlier.

6. Click OK to close the Project Properties dialog.

After configuring your project, build it by selecting Run, Build Main Project from the main menu. You
then run the project using Run, Run Main Project.

On running the application, you should see a screen that displays information like this:

Running 'SELECT 'Hello World!' AS _message' ...
        ... MySQL replies: Hello World!
        ... MySQL says it again: Hello World!
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[Press Enter to close window]

Note

The preceding settings and procedures were carried out for the default Debug
configuration. To create a Release configuration, select that configuration
before setting the Project Properties.

Using the Static Library

To use the Connector/C++ static library, link against two library files, libmysqlcppconn-static.a
and libmysqlclient.a. The locations of the files depend on your setup, but typically the former
are in /usr/local/lib and the latter in /usr/lib. The file libmysqlclient.a is not part of
Connector/C++, but is the MySQL client library file distributed with MySQL. (Remember, the MySQL
client library is an optional component as part of the MySQL installation process.)

1. Set the project to link the necessary library files. Select File, Project Properties from the main
menu.

2. In the Categories: tree view, navigate to Linker.

3. In the General panel, select Additional Library Directories. Click the ... button.

4. Select and add the /usr/lib and /usr/local/lib directories.

5. In the same panel, add the two library files required for static linking as discussed earlier.

6. Click OK to close the Project Properties dialog.
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Source distributions of Connector/C++ include an examples directory that contains usage examples
that explain how to use the following classes:

• Connection

• Driver

• PreparedStatement

• ResultSet

• ResultSetMetaData

• Statement

The examples cover:

• Using the Driver class to connect to MySQL

• Creating tables, inserting rows, fetching rows using (simple) statements

• Creating tables, inserting rows, fetching rows using prepared statements

• Hints for working around prepared statement limitations

• Accessing result set metadata

Several examples in this document are only code snippets, not complete programs. These snippets
provide a brief overview on the API. For complete programs, check the examples directory of your
Connector/C++ installation Please also read the README file in that directory. To test the example
code, edit the examples.h file in the examples directory to add your connection information, then
rebuild the code by issuing a make command.

The example programs in the examples directory include:

• connect.cpp:

How to create a connection, insert data, and handle exceptions.

• connection_meta_schemaobj.cpp:

How to obtain metadata associated with a connection object, such as a list of tables or databases,
the MySQL version, or the connector version.

• debug_output.cpp:

How to activate and deactivate the Connector/C++ debug protocol.

• exceptions.cpp:
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A closer look at the exceptions thrown by the connector and how to fetch error information.

• prepared_statements.cpp:

How to execute Prepared Statements, including an example showing how to handle SQL statements
that cannot be prepared by the MySQL server.

• resultset.cpp:

How to use a cursor to fetch data and iterate over a result set.

• resultset_meta.cpp:

How to obtain metadata associated with a result set, such as the number of columns and column
types.

• resultset_types.cpp:

Result sets returned from metadata methods. (This is more a test than an example.)

• standalone_example.cpp:

Simple standalone program not integrated into regular CMake builds.

• statements.cpp:

How to execute SQL statements without using Prepared Statements.

• cpp_trace_analyzer.cpp:

This example shows how to filter the output of the debug trace. Please see the inline comments for
further documentation. This script is unsupported.

6.1 Connecting to MySQL
To establish a connection to the MySQL server, retrieve an instance of sql::Connection from
a sql::mysql::MySQL_Driver object. A sql::mysql::MySQL_Driver object is returned by
sql::mysql::get_mysql_driver_instance().

sql::mysql::MySQL_Driver *driver;
sql::Connection *con;

driver = sql::mysql::get_mysql_driver_instance();
con = driver->connect("tcp://127.0.0.1:3306", "user", "password");

delete con;

Make sure that you free con, the sql::Connection object, as soon as you do not need it any more.
But do not explicitly free driver, the connector object. Connector/C++ takes care of freeing that.

Note

get_mysql_driver_instance() calls get_driver_instance(), which
is not thread-safe. Either avoid invoking these methods from within multiple
threads at once, or surround the calls with a mutex to prevent simultaneous
execution in multiple threads.

These methods can be used to check the connection state or reconnect:

• sql::Connection::isValid() checks whether the connection is alive

• sql::Connection::reconnect() reconnects if the connection has gone down

For more information about connection options, see Chapter 10, Connector/C++ Connection Options.
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6.2 Running a Simple Query
To run simple queries, you can use the sql::Statement::execute(),
sql::Statement::executeQuery(), and sql::Statement::executeUpdate() methods. Use
the method sql::Statement::execute() if your query does not return a result set or if your query
returns more than one result set. See the examples directory for more information.

sql::mysql::MySQL_Driver *driver;
sql::Connection *con;
sql::Statement *stmt;

driver = sql::mysql::get_mysql_driver_instance();
con = driver->connect("tcp://127.0.0.1:3306", "user", "password");

stmt = con->createStatement();
stmt->execute("USE " EXAMPLE_DB);
stmt->execute("DROP TABLE IF EXISTS test");
stmt->execute("CREATE TABLE test(id INT, label CHAR(1))");
stmt->execute("INSERT INTO test(id, label) VALUES (1, 'a')");

delete stmt;
delete con;

Note

You must free the sql::Statement and sql::Connection objects explicitly
using delete.

6.3 Fetching Results
The API for fetching result sets is identical for (simple) statements and prepared statements.
If your query returns one result set, use sql::Statement::executeQuery() or
sql::PreparedStatement::executeQuery() to run your query. Both methods return
sql::ResultSet objects. By default, Connector/C++ buffers all result sets on the client to support
cursors.

// ...
sql::Connection *con;
sql::Statement *stmt;
sql::ResultSet  *res;
// ...
stmt = con->createStatement();
// ...

res = stmt->executeQuery("SELECT id, label FROM test ORDER BY id ASC");
while (res->next()) {
  // You can use either numeric offsets...
  cout << "id = " << res->getInt(1); // getInt(1) returns the first column
  // ... or column names for accessing results.
  // The latter is recommended.
  cout << ", label = '" << res->getString("label") << "'" << endl;
}

delete res;
delete stmt;
delete con;

Note

In the preceding code snippet, column indexing starts from 1.

Note

You must free the sql::Statement, sql::Connection, and
sql::ResultSet objects explicitly using delete.
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Cursor usage is demonstrated in the examples contained in the download package.

6.4 Using Prepared Statements
If you are not familiar with Prepared Statements in MySQL, take a look at the source code comments
and explanations in the file examples/prepared_statement.cpp.

sql::PreparedStatement is created by passing an SQL query to
sql::Connection::prepareStatement(). As sql::PreparedStatement is derived from
sql::Statement, you will feel familiar with the API once you have learned how to use (simple)
statements (sql::Statement). For example, the syntax for fetching results is identical.

// ...
sql::Connection *con;
sql::PreparedStatement  *prep_stmt
// ...

prep_stmt = con->prepareStatement("INSERT INTO test(id, label) VALUES (?, ?)");

prep_stmt->setInt(1, 1);
prep_stmt->setString(2, "a");
prep_stmt->execute();

prep_stmt->setInt(1, 2);
prep_stmt->setString(2, "b");
prep_stmt->execute();

delete prep_stmt;
delete con;

Note

You must free the sql::PreparedStatement and sql::Connection
objects explicitly using delete.

6.5 Complete Example 1
The following code shows a complete example of how to use Connector/C++.

/* Copyright 2008, 2010, Oracle and/or its affiliates.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.

There are special exceptions to the terms and conditions of the GPL
as it is applied to this software. View the full text of the
exception in file EXCEPTIONS-CONNECTOR-C++ in the directory of this
software distribution.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/

/* Standard C++ includes */
#include <stdlib.h>
#include <iostream>

/*
  Include directly the different
  headers from cppconn/ and mysql_driver.h + mysql_util.h
  (and mysql_connection.h). This will reduce your build time!
*/
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#include "mysql_connection.h"

#include <cppconn/driver.h>
#include <cppconn/exception.h>
#include <cppconn/resultset.h>
#include <cppconn/statement.h>

using namespace std;

int main(void)
{
cout << endl;
cout << "Running 'SELECT 'Hello World!' »
   AS _message'..." << endl;

try {
  sql::Driver *driver;
  sql::Connection *con;
  sql::Statement *stmt;
  sql::ResultSet *res;

  /* Create a connection */
  driver = get_driver_instance();
  con = driver->connect("tcp://127.0.0.1:3306", "root", "root");
  /* Connect to the MySQL test database */
  con->setSchema("test");

  stmt = con->createStatement();
  res = stmt->executeQuery("SELECT 'Hello World!' AS _message");
  while (res->next()) {
    cout << "\t... MySQL replies: ";
    /* Access column data by alias or column name */
    cout << res->getString("_message") << endl;
    cout << "\t... MySQL says it again: ";
    /* Access column data by numeric offset, 1 is the first column */
    cout << res->getString(1) << endl;
  }
  delete res;
  delete stmt;
  delete con;

} catch (sql::SQLException &e) {
  cout << "# ERR: SQLException in " << __FILE__;
  cout << "(" << __FUNCTION__ << ") on line " »
     << __LINE__ << endl;
  cout << "# ERR: " << e.what();
  cout << " (MySQL error code: " << e.getErrorCode();
  cout << ", SQLState: " << e.getSQLState() << " )" << endl;
}

cout << endl;

return EXIT_SUCCESS;
}

6.6 Complete Example 2

The following code shows a complete example of how to use Connector/C++.

/* Copyright 2008, 2010, Oracle and/or its affiliates.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.

There are special exceptions to the terms and conditions of the GPL
as it is applied to this software. View the full text of the
exception in file EXCEPTIONS-CONNECTOR-C++ in the directory of this
software distribution.

This program is distributed in the hope that it will be useful,
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but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/

/* Standard C++ includes */
#include <stdlib.h>
#include <iostream>

/*
  Include directly the different
  headers from cppconn/ and mysql_driver.h + mysql_util.h
  (and mysql_connection.h). This will reduce your build time!
*/
#include "mysql_connection.h"

#include <cppconn/driver.h>
#include <cppconn/exception.h>
#include <cppconn/resultset.h>
#include <cppconn/statement.h>
#include <cppconn/prepared_statement.h>

using namespace std;

int main(void)
{
cout << endl;
cout << "Let's have MySQL count from 10 to 1..." << endl;

try {
  sql::Driver *driver;
  sql::Connection *con;
  sql::Statement *stmt;
  sql::ResultSet *res;
  sql::PreparedStatement *pstmt;

  /* Create a connection */
  driver = get_driver_instance();
  con = driver->connect("tcp://127.0.0.1:3306", "root", "root");
  /* Connect to the MySQL test database */
  con->setSchema("test");

  stmt = con->createStatement();
  stmt->execute("DROP TABLE IF EXISTS test");
  stmt->execute("CREATE TABLE test(id INT)");
  delete stmt;

  /* '?' is the supported placeholder syntax */
  pstmt = con->prepareStatement("INSERT INTO test(id) VALUES (?)");
  for (int i = 1; i <= 10; i++) {
    pstmt->setInt(1, i);
    pstmt->executeUpdate();
  }
  delete pstmt;

  /* Select in ascending order */
  pstmt = con->prepareStatement("SELECT id FROM test ORDER BY id ASC");
  res = pstmt->executeQuery();

  /* Fetch in reverse = descending order! */
  res->afterLast();
  while (res->previous())
    cout << "\t... MySQL counts: " << res->getInt("id") << endl;
  delete res;

  delete pstmt;
  delete con;
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} catch (sql::SQLException &e) {
  cout << "# ERR: SQLException in " << __FILE__;
  cout << "(" << __FUNCTION__ << ") on line " »
     << __LINE__ << endl;
  cout << "# ERR: " << e.what();
  cout << " (MySQL error code: " << e.getErrorCode();
  cout << ", SQLState: " << e.getSQLState() << »
     " )" << endl;
}

cout << endl;

return EXIT_SUCCESS;
}

6.7 Connecting to an Account with an Expired Password

MySQL supports password expiration capability, as described in Password Management. If a client
application connects to the MySQL user using an account with an expired password, client capabilities
are limited until it resets the account password; for more information, see Server Handling of Expired
Passwords.

A Connector/C++ application can reset an expired password using the
OPT_CAN_HANDLE_EXPIRED_PASSWORDS and preInit connection options described in Chapter 10,
Connector/C++ Connection Options. Enable the OPT_CAN_HANDLE_EXPIRED_PASSWORDS option,
and supply an ALTER USER statement that sets the password as the value of the preInit option:

opts["OPT_CAN_HANDLE_EXPIRED_PASSWORDS"]= true;
opts["preInit"]= sql::SQLString("ALTER USER 'user' IDENTIFIED BY 'new-pwd';");

The ALTER USER statement sets a new password as the first thing after connecting. After connecting
with these options, the new password should be established and it should be possible to use
the session as usual. Any new sessions must use the new password, but they do not need the
OPT_CAN_HANDLE_EXPIRED_PASSWORDS or preInit options.
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Chapter 7 Connector/C++ Tutorials
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The following tutorials illustrate various aspects of using MySQL Connector/C++. Also consult the
examples in Chapter 6, Connector/C++: Usage Examples.

7.1 Prerequisites and Background Information

This section describes the prerequisites that must be satisifed before you work through the remaining
tutorial sections, and shows how to set up the framework code that serves as the basis for the tutorial
applications.

These tutorials refer to tables and sample data from the world database, which you can download
from the “Example Databases” section of the MySQL Documentation page.

Each tutorial application uses a framework consisting of the following code. The examples vary at the
line that says /* INSERT TUTORIAL CODE HERE! */ within the try block, which is replaced for
each application with the application-specific code.

#include <stdlib.h>
#include <iostream>
#include <sstream>
#include <stdexcept>
/* uncomment for applications that use vectors */
/*#include <vector>*/

#include "mysql_connection.h"

#include <cppconn/driver.h>
#include <cppconn/exception.h>
#include <cppconn/resultset.h>
#include <cppconn/statement.h>
#include <cppconn/prepared_statement.h>

#define EXAMPLE_HOST "localhost"
#define EXAMPLE_USER "worlduser"
#define EXAMPLE_PASS "worldpass"
#define EXAMPLE_DB "world"

using namespace std;

int main(int argc, const char **argv)
{
  string url(argc >= 2 ? argv[1] : EXAMPLE_HOST);
  const string user(argc >= 3 ? argv[2] : EXAMPLE_USER);
  const string pass(argc >= 4 ? argv[3] : EXAMPLE_PASS);
  const string database(argc >= 5 ? argv[4] : EXAMPLE_DB);
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Calling Stored Procedures with Statement Objects

  cout << "Connector/C++ tutorial framework..." << endl;
  cout << endl;

  try {

    /* INSERT TUTORIAL CODE HERE! */

  } catch (sql::SQLException &e) {
    /*
      MySQL Connector/C++ throws three different exceptions:

      - sql::MethodNotImplementedException (derived from sql::SQLException)
      - sql::InvalidArgumentException (derived from sql::SQLException)
      - sql::SQLException (derived from std::runtime_error)
    */
    cout << "# ERR: SQLException in " << __FILE__;
    cout << "(" << __FUNCTION__ << ") on line " << __LINE__ << endl;
    /* what() (derived from std::runtime_error) fetches error message */
    cout << "# ERR: " << e.what();
    cout << " (MySQL error code: " << e.getErrorCode();
    cout << ", SQLState: " << e.getSQLState() << " )" << endl;

    return EXIT_FAILURE;
  }

  cout << "Done." << endl;
  return EXIT_SUCCESS;
}

To try the framework code as a standalone program, use this procedure:

1. Copy and paste the framework code to a file such as framework.cpp. Edit the #define
statements to reflect your connection parameters (server, user, password, database). Also,
because the file contains those parameters, set its access mode to be readable only to yourself.

2. Compile the framework. For example, on macOS, the command might look like this (enter the
command on one line):

$> g++ -o framework
  -I/usr/local/include -I/usr/local/include/cppconn
  framework.cpp -lmysqlcppconn

Adapt the command as necessary for your system. A similar command is needed for the tutorial
applications that follow.

3. To run the framework, enter the following:

$> ./framework

You will see a simple message:

Connector/C++ tutorial framework...

Done.

You are now ready to continue to the tutorials.

7.2 Calling Stored Procedures with Statement Objects

A stored procedure can be called using a Statement or PreparedStatement object.
This section shows how to call stored procedures using Statement objects. To see how
to use PreparedStatement objects, see Section 7.3, “Calling Stored Procedures with
PreparedStatement Objects”.

The following list describes different types of stored procedures that you can construct and call, along
with example stored procedures that illustrate each type:
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Using a Statement for a Stored Procedure That Returns No Result

1. A stored procedure that returns no result. For example, such a stored procedure can log non-critical
information, or change database data in a straightforward way.

The following procedure adds a country to the world database, but does not return a result:

CREATE PROCEDURE add_country (IN country_code CHAR(3),
                              IN country_name CHAR(52),
                              IN continent_name CHAR(30))
BEGIN
  INSERT INTO Country(Code, Name, Continent)
    VALUES (country_code, country_name, continent_name);
END;

2. A stored procedure that returns one or more values using output parameters. For example, such a
procedure can indicate success or failure, or retrieve and return data items.

The following procedures use an output parameter to return the population of a specified country or
continent, or the entire world:

CREATE PROCEDURE get_pop (IN country_name CHAR(52),
                          OUT country_pop BIGINT)
BEGIN
  SELECT Population INTO country_pop FROM Country
    WHERE Name = country_name;
END;

CREATE PROCEDURE get_pop_continent (IN continent_name CHAR(30),
                                    OUT continent_pop BIGINT)
BEGIN
  SELECT SUM(Population) INTO continent_pop FROM Country
    WHERE Continent = continent_name;
END;

CREATE PROCEDURE get_pop_world (OUT world_pop BIGINT)
BEGIN
  SELECT SUM(Population) INTO world_pop FROM Country;
END;

3. A stored procedure that returns one or more result sets. The procedure can execute one or more
queries, each of which returns an arbitrary number of rows. Your application loops through each
result set to display, transform, or otherwise process each row in it.

This procedure returns several result sets:

CREATE PROCEDURE get_data ()
BEGIN
  SELECT Code, Name, Population, Continent FROM Country
    WHERE Continent = 'Oceania' AND Population < 10000;
  SELECT Code, Name, Population, Continent FROM Country
    WHERE Continent = 'Europe' AND Population < 10000;
  SELECT Code, Name, Population, Continent FROM Country
    WHERE Continent = 'North America' AND Population < 10000;
END;

Enter and test the stored procedures manually to ensure that they will be available to your C++
applications. (Select world as the default database before you create them.) You are now ready to
start writing applications using Connector/C++ that call stored procedures.

7.2.1 Using a Statement for a Stored Procedure That Returns No Result

This example shows how to call a stored procedure that returns no result set.

1. Make a copy of the tutorial framework code:

$> cp framework.cpp sp_scenario1.cpp
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Using a Statement for a Stored Procedure That Returns an Output Parameter

2. Add the following code to the try block of the tutorial framework:

sql::Driver* driver = get_driver_instance();
std::auto_ptr<sql::Connection> con(driver->connect(url, user, pass));
con->setSchema(database);
std::auto_ptr<sql::Statement> stmt(con->createStatement());

// We need not check the return value explicitly. If it indicates
// an error, Connector/C++ generates an exception.
stmt->execute("CALL add_country('ATL', 'Atlantis', 'North America')");

3. Compile the program as described in Section 7.1, “Prerequisites and Background Information”.

4. Run the program:

$> ./sp_scenario1

5. Using the mysql command-line client or other suitable program, check the world database to
determine that it has been updated correctly. You can use this query:

mysql> SELECT Code, Name, Continent FROM Country WHERE Code='ATL';
+------+----------+---------------+
| Code | Name     | Continent     |
+------+----------+---------------+
| ATL  | Atlantis | North America |
+------+----------+---------------+

The code in this application simply invokes the execute method, passing to it a statement that calls
the stored procedure. The procedure itself returns no value, although it is important to note there is
always a return value from the CALL statement; this is the execute status. Connector/C++ handles
this status for you, so you need not handle it explicitly. If the execute call fails for some reason, it
raises an exception that the catch block handles.

7.2.2 Using a Statement for a Stored Procedure That Returns an Output
Parameter

This example shows how to handle a stored procedure that returns an output parameter.

1. Make a copy of the tutorial framework code:

$> cp framework.cpp sp_scenario2.cpp

2. Add the following code to the try block of the tutorial framework:

sql::Driver* driver = get_driver_instance();
std::auto_ptr<sql::Connection> con(driver->connect(url, user, pass));
con->setSchema(database);
std::auto_ptr<sql::Statement> stmt(con->createStatement());

stmt->execute("CALL get_pop('Uganda', @pop)");

std::auto_ptr<sql::ResultSet> res(stmt->executeQuery("SELECT @pop AS _reply"));
while (res->next())
  cout << "Population of Uganda: " << res->getString("_reply") << endl;

stmt->execute("CALL get_pop_continent('Asia', @pop)");

res.reset(stmt->executeQuery("SELECT @pop AS _reply"));
while (res->next())
  cout << "Population of Asia: " << res->getString("_reply") << endl;

stmt->execute("CALL get_pop_world(@pop)");

res.reset(stmt->executeQuery("SELECT @pop AS _reply"));
while (res->next())
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Using a Statement for a Stored Procedure That Returns a Result Set

  cout << "Population of World: " << res->getString("_reply") << endl;

3. Compile the program as described in Section 7.1, “Prerequisites and Background Information”.

4. Run the program:

$> ./sp_scenario2
Connector/C++ tutorial framework...

Population of Uganda: 21778000
Population of Asia: 3705025700
Population of World: 6078749450
Done.

In this scenario, each stored procedure sets the value of an output parameter. This is not returned
directly to the execute method, but needs to be obtained using a subsequent query. If you were
executing the SQL statements directly, you might use statements similar to these:

CALL get_pop('Uganda', @pop);
SELECT @pop;
CALL get_pop_continent('Asia', @pop);
SELECT @pop;
CALL get_pop_world(@pop);
SELECT @pop;

In the C++ code, a similar sequence is carried out for each procedure call:

1. Execute the CALL statement.

2. Obtain the output parameter by executing an additional query. The query produces a ResultSet
object.

3. Retrieve the data using a while loop. The simplest way to do this is to use a getString method
on the ResultSet, passing the name of the variable to access. In this example _reply is used as
a placeholder for the variable and therefore is used as the key to access the correct element of the
result dictionary.

Although the query used to obtain the output parameter returns only a single row, it is important to
use the while loop to catch more than one row, to avoid the possibility of the connection becoming
unstable.

7.2.3 Using a Statement for a Stored Procedure That Returns a Result Set

This example shows how to handle result sets produced by a stored procedure.

1. Make a copy of the tutorial framework code:

$> cp framework.cpp sp_scenario3.cpp

2. Add the following code to the try block of the tutorial framework:

sql::Driver* driver = get_driver_instance();
std::auto_ptr<sql::Connection> con(driver->connect(url, user, pass));
con->setSchema(database);
std::auto_ptr<sql::Statement> stmt(con->createStatement());

stmt->execute("CALL get_data()");
std::auto_ptr< sql::ResultSet > res;
do {
  res.reset(stmt->getResultSet());
  while (res->next()) {
    cout << "Name: " << res->getString("Name")
         << " Population: " << res->getInt("Population")
         << endl;
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  }
} while (stmt->getMoreResults());

3. Compile the program as described in Section 7.1, “Prerequisites and Background Information”.

4. Run the program:

$> ./sp_scenario3
Connector/C++ tutorial framework...

Name: Cocos (Keeling) Islands Population: 600
Name: Christmas Island Population: 2500
Name: Norfolk Island Population: 2000
Name: Niue Population: 2000
Name: Pitcairn Population: 50
Name: Tokelau Population: 2000
Name: United States Minor Outlying Islands Population: 0
Name: Svalbard and Jan Mayen Population: 3200
Name: Holy See (Vatican City State) Population: 1000
Name: Anguilla Population: 8000
Name: Atlantis Population: 0
Name: Saint Pierre and Miquelon Population: 7000
Done.

The code is similar to the examples shown previously. The code of particular interest here is:

do {
  res.reset(stmt->getResultSet());
  while (res->next()) {
    cout << "Name: " << res->getString("Name")
         << " Population: " << res->getInt("Population")
         << endl;
  }
} while (stmt->getMoreResults());

The CALL is executed as before, but this time the results are returned into multiple ResultSet objects
because the stored procedure executes multiple SELECT statements. In this example, the output
shows that three result sets are processed, because there are three SELECT statements in the stored
procedure. Each result set returns more than one row.

The results are processed using this code pattern:

do {
  Get Result Set
  while (Get Result) {
    Process Result
  }
} while (Get More Result Sets);

Note

Use this pattern even if the stored procedure executes only a single SELECT
and produces only one result set. This is a requirement of the underlying
protocol.

7.3 Calling Stored Procedures with PreparedStatement Objects

This section shows how to call stored procedures using prepared statements. It is recommended
that, before working through it, you first work through the previous tutorial Section 7.2, “Calling Stored
Procedures with Statement Objects”. That section shows the stored procedures required by the
applications in this section.
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7.3.1 Using a PreparedStatement for a Stored Procedure That Returns No
Result

This example shows how to call a stored procedure that returns no result set.

1. Make a copy of the tutorial framework code:

$> cp framework.cpp ps_scenario1.cpp

2. Add the following code to the try block of the tutorial framework:

vector<string> code_vector;
code_vector.push_back("SLD");
code_vector.push_back("DSN");
code_vector.push_back("ATL");

vector<string> name_vector;
name_vector.push_back("Sealand");
name_vector.push_back("Disneyland");
name_vector.push_back("Atlantis");

vector<string> cont_vector;
cont_vector.push_back("Europe");
cont_vector.push_back("North America");
cont_vector.push_back("Oceania");

sql::Driver * driver = get_driver_instance();

std::auto_ptr< sql::Connection > con(driver->connect(url, user, pass));
con->setSchema(database);

std::auto_ptr< sql::PreparedStatement >  pstmt;

pstmt.reset(con->prepareStatement("CALL add_country(?,?,?)"));
for (int i=0; i<3; i++)
{
  pstmt->setString(1,code_vector[i]);
  pstmt->setString(2,name_vector[i]);
  pstmt->setString(3,cont_vector[i]);

  pstmt->execute();
}

Also, uncomment #include <vector> near the top of the code, because vectors are used to
store sample data.

3. Compile the program as described in Section 7.1, “Prerequisites and Background Information”.

4. Run the program:

$> ./ps_scenario1

5. You can check whether the database has been updated correctly by using this query:

mysql> SELECT Code, Name, Continent FROM Country
    -> WHERE Code IN('DSN','ATL','SLD');
+------+------------+---------------+
| Code | Name       | Continent     |
+------+------------+---------------+
| ATL  | Atlantis   | Oceania       |
| DSN  | Disneyland | North America |
| SLD  | Sealand    | Europe        |
+------+------------+---------------+

The code is relatively simple, as no processing is required to handle result sets. The procedure call,
CALL add_country(?,?,?), is made using placeholders for input parameters denoted by '?'.
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Using a PreparedStatement for a Stored Procedure That Returns an Output Parameter

These placeholders are replaced by the appropriate data values using the PreparedStatement
object's setString method. The for loop is set up to iterate 3 times, as there are three data sets in
this example. The same PreparedStatement is executed three times, each time with different input
parameters.

7.3.2 Using a PreparedStatement for a Stored Procedure That Returns an
Output Parameter

This example shows how to handle a stored procedure that returns an output parameter.

1. Make a copy of the tutorial framework code:

$> cp framework.cpp ps_scenario2.cpp

2. Add the following code to the try block of the tutorial framework:

vector<string> cont_vector;
cont_vector.push_back("Europe");
cont_vector.push_back("North America");
cont_vector.push_back("Oceania");

sql::Driver * driver = get_driver_instance();

std::auto_ptr< sql::Connection > con(driver->connect(url, user, pass));
con->setSchema(database);

std::auto_ptr< sql::Statement > stmt(con->createStatement());
std::auto_ptr< sql::PreparedStatement >  pstmt;
std::auto_ptr< sql::ResultSet > res;

pstmt.reset(con->prepareStatement("CALL get_pop_continent(?,@pop)"));

for (int i=0; i<3; i++)
{
  pstmt->setString(1,cont_vector[i]);
  pstmt->execute();
  res.reset(pstmt->executeQuery("SELECT @pop AS _population"));
  while (res->next())
    cout << "Population of "
         << cont_vector[i]
         << " is "
         << res->getString("_population") << endl;
}

Also, uncomment #include <vector> near the top of the code, because vectors are used to
store sample data.

3. Compile the program as described in Section 7.1, “Prerequisites and Background Information”.

4. Run the program:

$> ./ps_scenario2
Connector/C++ tutorial framework...

Population of Europe is 730074600
Population of North America is 482993000
Population of Oceania is 30401150
Done.

In this scenario a PreparedStatement object is created that calls the get_pop_continent stored
procedure. This procedure takes an input parameter, and also returns an output parameter. The
approach used is to create another statement that can be used to fetch the output parameter using a
SELECT query. Note that when the PreparedStatement is created, the input parameter to the stored
procedure is denoted by '?'. Prior to execution of the prepared statement, it is necessary to replace this
placeholder by an actual value. This is done using the setString method:

36



Using a PreparedStatement for a Stored Procedure That Returns a Result Set

pstmt->setString(1,cont_vector[i]);

Although the query used to obtain the output parameter returns only a single row, it is important to
use the while loop to catch more than one row, to avoid the possibility of the connection becoming
unstable.

7.3.3 Using a PreparedStatement for a Stored Procedure That Returns a
Result Set

This example shows how to handle result sets produced by a stored procedure.

1. Make a copy of the tutorial framework code:

$> cp framework.cpp ps_scenario3.cpp

2. Add the following code to the try block of the tutorial framework:

sql::Driver * driver = get_driver_instance();

std::auto_ptr< sql::Connection > con(driver->connect(url, user, pass));
con->setSchema(database);

std::auto_ptr< sql::PreparedStatement >  pstmt;
std::auto_ptr< sql::ResultSet > res;

pstmt.reset(con->prepareStatement("CALL get_data()"));
res.reset(pstmt->executeQuery());

for(;;)
{
  while (res->next()) {
    cout << "Name: " << res->getString("Name")
         << " Population: " << res->getInt("Population")
         << endl;
  }
  if (pstmt->getMoreResults())
  {
    res.reset(pstmt->getResultSet());
    continue;
  }
  break;
}

3. Compile the program as described in Section 7.1, “Prerequisites and Background Information”.

4. Run the program:

$> ./ps_scenario3

5. Make a note of the output generated.

The code executes the stored procedure using a PreparedStatement object. The standard
do/while construct is used to ensure that all result sets are fetched. The returned values are fetched
from the result sets using the getInt and getString methods.
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Chapter 8 Connector/C++ Debug Tracing
Although a debugger can be used to debug a specific instance of your application, you may find it
beneficial to enable the debug traces of the connector. Some problems happen randomly which makes
them difficult to debug using a debugger. In such cases, debug traces and protocol files are more
useful because they allow you to trace the activities of all instances of your program.

Connector/C++ can write two trace files:

1. A trace file generated by the MySQL client library

2. A trace file generated internally by Connector/C++

The first trace file can be generated by the underlying MySQL client library (libmysqlclient). To
enable this trace, the connector calls the mysql_debug() C API function internally. Because only
debug versions of the MySQL client library are capable of writing a trace file, compile Connector/C++
against a debug version of the library to use this trace. The trace shows the internal function calls and
the addresses of internal objects as shown here:

>mysql_stmt_init
| >_mymalloc
| | enter: Size: 816
| | exit: ptr: 0x68e7b8
| <_mymalloc | >init_alloc_root
| | enter: root: 0x68e7b8
| | >_mymalloc
| | | enter: Size: 2064
| | | exit: ptr: 0x68eb28
[...]

The second trace is the Connector/C++ internal trace. It is available with debug and nondebug builds
of the connector as long as you have enabled the tracing module at compile time. By default, tracing
functionality is not available and calls to trace functions are removed by the preprocessor. To enable
the tracing module, configure Connector/C++ with the -DMYSQLCPPCONN_TRACE_ENABLE=1 CMake
option.

Compiling the connector with tracing functionality enabled causes two additional tracing function calls
per each connector function call. For example:

|  INF: Tracing enabled
<MySQL_Connection::setClientOption
>MySQL_Prepared_Statement::setInt
|  INF: this=0x69a2e0
|  >MySQL_Prepared_Statement::checkClosed
|  <MySQL_Prepared_Statement::checkClosed
| <MySQL_Prepared_Statement::setInt
[...]

Run your own benchmark to find out how much this will impact the performance of your application.

A simple test using a loop running 30,000 INSERT SQL statements showed no significant real-time
impact. The two variants of this application using a trace enabled and trace disabled version of the
connector performed equally well. The runtime measured in real time was not significantly impacted as
long as writing a debug trace was not enabled. However, there will be a difference in the time spent in
the application. When writing a debug trace, the I/O subsystem may become a bottleneck.

In summary, use connector builds with tracing enabled carefully. Trace-enabled versions may cause
higher CPU usage even if the overall runtime of your application is not impacted significantly.

The example from examples/debug_output.cpp demonstrates how to activate the debug traces
in your program. Currently they can only be activated through API calls. The traces are controlled on
a per-connection basis. You can use the setClientOption() method of a connection object to
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activate and deactivate trace generation. The MySQL client library trace always writes its trace to a file,
whereas the connector writes protocol messages to the standard output.

sql::Driver *driver;
int on_off = 1;

/* Using the Driver to create a connection */
driver = get_driver_instance();
std::auto_ptr< sql::Connection > con(driver->connect(host, user, pass));

/*
Activate debug trace of the MySQL client library (C API)
Only available with a debug build of the MySQL client library!
*/
con->setClientOption("libmysql_debug", "d:t:O,client.trace");

/*
Connector/C++ tracing is available if you have compiled the
driver using cmake -DMYSQLCPPCONN_TRACE_ENABLE:BOOL=1
*/
con->setClientOption("clientTrace", &on_off);

40



Chapter 9 Connector/C++ Usage Notes
Connector/C++ is compatible with the JDBC 4.0 API. See the JDBC overview for information on JDBC
4.0. Please also check the examples directory of the download package.

• The Connector/C++ sql::DataType class defines the following JDBC standard data types:
UNKNOWN, BIT, TINYINT, SMALLINT, MEDIUMINT, INTEGER, BIGINT, REAL, DOUBLE, DECIMAL,
NUMERIC, CHAR, BINARY, VARCHAR, VARBINARY, LONGVARCHAR, LONGVARBINARY, TIMESTAMP,
DATE, TIME, GEOMETRY, ENUM, SET, SQLNULL.

Connector/C++ does not support the following JDBC standard data types: ARRAY, BLOB, CLOB,
DISTINCT, FLOAT, OTHER, REF, STRUCT.

• DatabaseMetaData::supportsBatchUpdates() returns true because MySQL supports batch
updates in general. However, the Connector/C++ API provides no API calls for batch updates.

• Two non-JDBC methods let you fetch and set unsigned integers: getUInt64() and getUInt().
These are available for ResultSet and Prepared_Statement:

• ResultSet::getUInt64()

• ResultSet::getUInt()

• Prepared_Statement::setUInt64()

• Prepared_Statement::setUInt()

• The DatabaseMetaData::getColumns() method has 23 columns in its result set, rather than the
22 columns defined by JDBC. The first 22 columns are as described in the JDBC documentation, but
column 23 is new:

23. IS_AUTOINCREMENT: A string which is “YES” if the column is an auto-increment column, “NO”
otherwise.

• Connector/C++ may return different metadata for the same column, depending on the method you
call.

Suppose that you have a column that accepts a character set and a collation in its specification and
you specify a binary collation, such as:

VARCHAR(20) CHARACTER SET utf8 COLLATE utf8_bin

The server sets the BINARY flag in the result set metadata of this column. The
ResultSetMetaData::getColumnTypeName() method uses the metadata and reports, due to
the BINARY flag, that the column type name is BINARY, as illustrated here:

mysql> CREATE TABLE varbin (a VARCHAR(20) CHARACTER SET utf8 COLLATE utf8_bin);
Query OK, 0 rows affected (0.00 sec)

mysql> select * from varbin;
Field   1:  `a`
Catalog:    `def`
Database:   `test`
Table:      `varbin`
Org_table:  `varbin`
Type:       VAR_STRING
Collation:  latin1_swedish_ci (8)
Length:     20
Max_length: 0
Decimals:   0
Flags:      BINARY

0 rows in set (0.00 sec)

mysql> SELECT * FROM INFORMATION_SCHEMA.COLUMNS WHERE TABLE_NAME='varbin'\G
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*************************** 1. row ***************************
           TABLE_CATALOG: NULL
            TABLE_SCHEMA: test
              TABLE_NAME: varbin
             COLUMN_NAME: a
        ORDINAL_POSITION: 1
          COLUMN_DEFAULT: NULL
             IS_NULLABLE: YES
               DATA_TYPE: varchar
CHARACTER_MAXIMUM_LENGTH: 20
  CHARACTER_OCTET_LENGTH: 60
       NUMERIC_PRECISION: NULL
           NUMERIC_SCALE: NULL
      CHARACTER_SET_NAME: utf8
          COLLATION_NAME: utf8_bin
             COLUMN_TYPE: varchar(20)
              COLUMN_KEY:
                   EXTRA:
              PRIVILEGES: select,insert,update,references
          COLUMN_COMMENT:
1 row in set (0.01 sec)

However, INFORMATION_SCHEMA gives no hint in its COLUMNS table that metadata will contain the
BINARY flag. DatabaseMetaData::getColumns() uses INFORMATION_SCHEMA and will report
the type name VARCHAR for the same column. It also returns a different type code.

• When inserting or updating BLOB or TEXT columns, Connector/C++ developers are advised not to
use setString(). Instead, use the dedicated setBlob() API function.

The use of setString() can cause a Packet too large error message. The error occurs if the
length of the string passed to the connector using setString() exceeds max_allowed_packet
(minus a few bytes reserved in the protocol for control purposes). This situation is not handled in
Connector/C++, because it could lead to security issues, such as extremely large memory allocation
requests due to malevolently long strings.

If setBlob() is used, this problem does not arise because setBlob() takes a streaming
approach based on std::istream. When sending the data from the stream to the MySQL
server, Connector/C++ splits the stream into chunks appropriate for the server using the current
max_allowed_packet setting.

Caution

When using setString(), it is not possible to set max_allowed_packet
to a value large enough for the string prior to passing it to Connector/C++.
That configuration option cannot be changed within a session.

This difference from the JDBC specification ensures that Connector/C++ is not vulnerable to memory
flooding attacks.

• In general, Connector/C++ works with MySQL 5.0, but it is not completely supported. Some methods
may not be available when connecting to MySQL 5.0. This is because the Information Schema is
used to obtain the requested information. There are no plans to improve the support for 5.0 because
the current GA version of MySQL is 5.6. Connector/C++ is primarily targeted at the MySQL GA
version that is available on its release.

The following methods throw a sql::MethodNotImplemented exception when you connect to a
MySQL server earlier than 5.1:

• DatabaseMetaData::getCrossReference()

• DatabaseMetaData::getExportedKeys()
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• Connector/C++ includes a Connection::getClientOption() method that is not included in the
JDBC API specification. The prototype is:

void getClientOption(const std::string & optionName, void * optionValue)

The method can be used to check the value of connection properties set when establishing a
database connection. The values are returned through the optionValue argument passed to the
method with the type void *.

Currently, getClientOption() supports fetching the optionValue of the following options:

• metadataUseInfoSchema

• defaultStatementResultType

• defaultPreparedStatementResultType
The metadataUseInfoSchema connection option controls whether to use the
Information_Schemata for returning the metadata of SHOW statements:

• For metadataUseInfoSchema, interpret the optionValue argument as a boolean upon return.

• For defaultStatementResultType and defaultPreparedStatementResultType,
interpret the optionValue argument as an integer upon return.

The connection property can be set either when establishing the connection through the connection
property map, or using void Connection::setClientOption(const std::string &
optionName, const void * optionValue) where optionName is assigned the value
metadataUseInfoSchema.

Some examples:

bool isInfoSchemaUsed;
conn->getClientOption("metadataUseInfoSchema", (void *) &isInfoSchemaUsed);

int defaultStmtResType;
int defaultPStmtResType;
conn->getClientOption("defaultStatementResultType", (void *) &defaultStmtResType);
conn->getClientOption("defaultPreparedStatementResultType", (void *) &defaultPStmtResType);

• To get and set MySQL session variables, Connector/C++ supports the following
MySQL_Connection methods, which are not found in the JDBC API standard:

std::string MySQL_Connection::getSessionVariable(const std::string & varname)

void MySQL_Connection::setSessionVariable(const std::string & varname, const std::string & value)

getSessionVariable() is equivalent to executing the following and fetching the first return value:

SHOW SESSION VARIABLES LIKE 'var_name'

You can use the % and _ SQL pattern characters in var_name.

setSessionVariable() is equivalent to executing:

SET SESSION var_name = value

• Fetching the value of a column can sometimes return different values depending on whether the call
is made from a Statement or Prepared Statement. This is because the protocol used to communicate
with the server differs depending on whether a Statement or Prepared Statement is used.

To illustrate this, consider the case where a column has been defined as type BIGINT. The most
negative BIGINT value is then inserted into the column. If a Statement and Prepared Statement

43



are created that perform a getUInt64() call, then the results will be different in each case. The
Statement returns the maximum positive value for BIGINT. The Prepared Statement returns 0.

The difference results from the fact that Statements use a text protocol, and Prepared Statements
use a binary protocol. With the binary protocol in this case, a binary value is returned from the
server that can be interpreted as an int64. In the preceding scenario, a very large negative value
is fetched with getUInt64(), which fetches unsigned integers. Because the large negative value
cannot be sensibly converted to an unsigned value, 0 is returned.

In the case of the Statement, which uses the text protocol, values are returned from the server
as strings, and then converted as required. When a string value is returned from the server in the
preceding scenario, the large negative value must be converted by the runtime library function
strtoul(), which getUInt64() calls. The behavior of strtoul() is dependent upon the specific
runtime and host operating system, so the results can be platform dependent. In the case, given a
large positive value was actually returned.

Although it is very rare, there are some cases where Statements and Prepared Statements can
return different values unexpectedly, but this usually only happens in extreme cases such as the one
mentioned.

• The JDBC documentation lists many fields for the DatabaseMetaData class. JDBC also appears
to define certain values for those fields. However, Connector/C++ does not define certain values for
those fields. Internally enumerations are used and the compiler determines the values to assign to a
field.

To compare a value with the field, use code such as the following, rather than making assumptions
about specific values for the attribute:

// dbmeta is an instance of DatabaseMetaData
if (myvalue == dbmeta->attributeNoNulls) {
    ...
}

Usually myvalue will be a column from a result set holding metadata information. Connector/C++
does not guarantee that attributeNoNulls is 0. It can be any value.

• When programming stored procedures, JDBC has available an extra class, an extra abstraction layer
for callable statements, the CallableStatement class. As this class is not present in Connector/
C++, use the methods from the Statement and PreparedStatement classes to execute a stored
procedure using CALL.

44

http://docs.oracle.com/javase/7/docs/api/java/sql/DatabaseMetaData.html
http://docs.oracle.com/javase/7/docs/api/java/sql/DatabaseMetaData.html#attributeNoNulls
https://dev.mysql.com/doc/refman/8.0/en/call.html


Chapter 10 Connector/C++ Connection Options

To connect to a MySQL server from Connector/C++ applications, use the connect() method of the
MySQL_Driver class. The connect() method has two calling sequences:

• One calling sequence takes arguments indicating how to connect to the MySQL server, and the user
name and password of the MySQL account to use:

sql::Connection * MySQL_Driver::connect(const sql::SQLString& hostName,
                                        const sql::SQLString& userName,
                                        const sql::SQLString& password)

Example:

sql::mysql::MySQL_Driver *driver;
sql::Connection *con;

driver = sql::mysql::MySQL_Driver::get_mysql_driver_instance();
con = driver->connect("tcp://127.0.0.1:3306", "root", "rootpass");

This syntax is convenient for simple connections.

• The other syntax takes an option map that contains the connection properties to use for establishing
the connection:

sql::Connection * MySQL_Driver::connect(sql::ConnectOptionsMap & properties)

This syntax is useful for connections that require specifying options other than the three permitted by
the first syntax. To use an option map, initialize it with the required connection properties, then pass
the map to the connect() call.

Example:

sql::mysql::MySQL_Driver *driver;
sql::Connection *con;
sql::ConnectOptionsMap connection_properties;

connection_properties["hostName"] = hostName;
connection_properties["userName"] = userName;
connection_properties["password"] = password;
connection_properties["schema"] = "information_schema";
connection_properties["port"] = 13306;
connection_properties["OPT_RECONNECT"] = true;

driver = sql::mysql::MySQL_Driver::get_mysql_driver_instance();
con = driver->connect(connection_properties);

The hostName parameter can be a host name, IP address, or URL.

For a hostName value specified as a URL, the format begins with a transport protocol and the protocol
determines the syntax of the remaining part of the URL:

• tcp://...

This URL format establishes a TCP/IP connection and is usable on all platforms. The format permits
specification of host hame or IP address, TCP/IP port number, and default database. The syntax for
a URL that includes all those items looks like this:

tcp://host:port/db

The :port and /db parts of the URL are optional. The host part may be enclosed within [ and ]
characters, which is useful for specifying IPv6 addresses such as ::1 that contain the : character
that otherwise would be interpreted as beginning a :port specifier.
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This URL connects to the local host using the default port number and without selecting a default
database:

tcp://127.0.0.1

This URL connects to the named host on port 13306 and selects employees as the default
database:

tcp://host1.example.com:13306/employees

This URL connects to port 3307 on the local host, using the ::1 IPv6 address. The URL uses [ and
] around the address to disambiguate the : characters in the host and port parts of the URL:

tcp://[::1]:3307

• pipe://pipe_name

This URL format enables use of named pipes for connections to the local host on Windows systems.
The pipe_name value is the named pipe name, just as for the --socket option of MySQL clients
such as mysql and mysqladmin running on Windows (see Connecting to the MySQL Server Using
Command Options).

• unix://path_name

This URL format enables use of Unix domain socket files for connections to the local host on Unix
and Unix-like systems. The path_name value is the socket file path name, just as for the --socket
option of MySQL clients such as mysql and mysqladmin running on Unix (see Connecting to the
MySQL Server Using Command Options).

For the connect() syntax that takes an option map argument, Connector/C++ supports the
connection properties described in the following list.

Note

Many of these properties correspond to arguments for the mysql_options(),
mysql_options4(), or mysql_real_connect(), C API function. For such
properties, the descriptions here are brief. For more information, refer to the
descriptions for those functions. See mysql_options(), mysql_options4(), and
mysql_real_connect().

• characterSetResults

This option sets the character_set_results system variable for the session. The value is a
string.

• charsetDir

The path name to the directory that contains character set definition files. This option corresponds
to the MYSQL_SET_CHARSET_DIR option for the mysql_options() C API function. The value is a
string.

This option was added in Connector/C++ 1.1.5.

• CLIENT_COMPRESS

Whether to use compression in the client/server protocol. This option corresponds to the flag of the
same name for the client_flag argument of the mysql_real_connect() C API function. The
value is a boolean.

• CLIENT_FOUND_ROWS
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Whether to return the number of found (matched) rows, not the number of changed rows.
This option corresponds to the flag of the same name for the client_flag argument of the
mysql_real_connect() C API function. The value is a boolean.

• CLIENT_IGNORE_SIGPIPE

Whether to prevent the libmysqlclient client library from installing a SIGPIPE signal handler.
This option corresponds to the flag of the same name for the client_flag argument of the
mysql_real_connect() C API function. The value is a boolean.

• CLIENT_IGNORE_SPACE

Whether to permit spaces after function names. This option corresponds to the flag of the same
name for the client_flag argument of the mysql_real_connect() C API function. The value is
a boolean.

• CLIENT_INTERACTIVE

Whether to permit interactive_timeout seconds of inactivity (rather than wait_timeout
seconds) before closing the connection. This option corresponds to the flag of the same name for the
client_flag argument of the mysql_real_connect() C API function. The value is a boolean.

• CLIENT_LOCAL_FILES

Whether to enable LOAD DATA LOCAL INFILE handling. This option corresponds to the flag of the
same name for the client_flag argument of the mysql_real_connect() C API function. The
value is a boolean.

• CLIENT_MULTI_STATEMENTS

Whether the client may send multiple statements in a single string (separated by ; characters).
This option corresponds to the flag of the same name for the client_flag argument of the
mysql_real_connect() C API function. The value is a boolean.

Note

There is no CLIENT_MULTI_RESULTS connection option. Connector/C++
enables that flag for all connections.

• CLIENT_NO_SCHEMA

Whether to prohibit db_name.tbl_name.col_name syntax. This option corresponds to the flag of
the same name for the client_flag argument of the mysql_real_connect() C API function.
The value is a boolean.

• defaultAuth

The name of the authentication plugin to use. This option corresponds to the
MYSQL_DEFAULT_AUTH option for the mysql_options() C API function. The value is a string.

This option was added in Connector/C++ 1.1.5.

• defaultPreparedStatementResultType

The result set type for statements executed using MySQL_Connection::prepareStatement()
to define whether result sets are scrollable. Permitted values are
sql::ResultSet::TYPE_FORWARD_ONLY and
sql::ResultSet::TYPE_SCROLL_INSENSITIVE. The
sql::ResultSet::TYPE_SCROLL_SENSITIVE type is not supported.

• defaultStatementResultType
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The result set type for statements executed using MySQL_Connection::createStatement()
to define whether result sets are scrollable. Permitted values are
sql::ResultSet::TYPE_FORWARD_ONLY and
sql::ResultSet::TYPE_SCROLL_INSENSITIVE. The
sql::ResultSet::TYPE_SCROLL_SENSITIVE type is not supported.

• hostName

This has the same meaning and syntax as for the three-argument connect() syntax. The value can
be a host name, IP address, or URL, as described earlier in this section.

• OPT_CAN_HANDLE_EXPIRED_PASSWORDS

Whether the client can handle expired passwords. This option corresponds to the
MYSQL_OPT_CAN_HANDLE_EXPIRED_PASSWORDS option for the mysql_options() C API
function. The value is a boolean.

For a usage example, see Section 6.7, “Connecting to an Account with an Expired Password”.

This option was added in Connector/C++ 1.1.2.

• OPT_CHARSET_NAME

The name of the character set to use as the default character set. This option corresponds to the
MYSQL_SET_CHARSET_NAME option for the mysql_options() C API function. The value is a
string.

• OPT_CONNECT_ATTR_ADD

Key-value pairs to add to the current set of connection attributes to pass to the server at
connect time. This option corresponds to the MYSQL_OPT_CONNECT_ATTR_ADD option for
the mysql_options4() C API function. The value is a std::map< sql::SQLString,
sql::SQLString > value.

This option was added in Connector/C++ 1.1.4.

• OPT_CONNECT_ATTR_DELETE

Key names for key-value pairs to delete from the current set of connection attributes to pass to the
server at connect time. This option corresponds to the MYSQL_OPT_CONNECT_ATTR_DELETE option
for the mysql_options() C API function. The value is a std::list< sql::SQLString >
value.

This option was added in Connector/C++ 1.1.5.

• OPT_CONNECT_ATTR_RESET

Resets (clears) the current set of connection attributes to pass to the server at connect time. This
option corresponds to the MYSQL_OPT_CONNECT_ATTR_RESET option for the mysql_options()
C API function.

This option was added in Connector/C++ 1.1.5.

• OPT_CONNECT_TIMEOUT

The connect timeout in seconds. This option corresponds to the MYSQL_OPT_CONNECT_TIMEOUT
option for the mysql_options() C API function. The value is an unsigned integer.
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• OPT_ENABLE_CLEARTEXT_PLUGIN

Enable the mysql_clear_password cleartext authentication plugin. This option corresponds to the
MYSQL_ENABLE_CLEARTEXT_PLUGIN option for the mysql_options() C API function. The value
is a boolean.

This option was added in Connector/C++ 1.1.3.

• OPT_GET_SERVER_PUBLIC_KEY

For connections to the server made using the legacy protocol (that is, not made using X DevAPI
or X DevAPI for C), Connector/C++, request the RSA public key from the server. For accounts
that use the caching_sha2_password or sha256_password authentication plugin, this key
can be used during the connection process for RSA key-pair based password exchange with TLS
disabled. This option corresponds to the MYSQL_OPT_GET_SERVER_PUBLIC_KEY option for the
mysql_options() C API function. The value is a boolean.

This capability requires a MySQL 8.0 GA server, and is supported only for Connector/C++ built using
OpenSSL.

This option was added in Connector/C++ 1.1.11.

• OPT_LOCAL_INFILE

Whether to enable the LOAD DATA LOCAL INFILE statement. This option corresponds to the
MYSQL_OPT_LOCAL_INFILE option for the mysql_options() C API function. The value is an
unsigned integer.

This option was added in Connector/C++ 1.1.5.

• OPT_NAMED_PIPE

Use a named pipe to connect to the MySQL server on Windows, if the server permits named-
pipe connections. This option corresponds to the MYSQL_OPT_NAMED_PIPE option for the
mysql_options() C API function. The value is unused.

• OPT_READ_TIMEOUT

The timeout in seconds for each attempt to read from the server. This option corresponds to the
MYSQL_OPT_READ_TIMEOUT option for the mysql_options() C API function. The value is an
unsigned integer.

• OPT_RECONNECT

Enable or disable automatic reconnection to the server if the connection is found to have been lost.
This option corresponds to the MYSQL_OPT_RECONNECT option for the mysql_options() C API
function. The value is a boolean. The default is false.

• OPT_REPORT_DATA_TRUNCATION

Enable or disable reporting of data truncation errors for prepared statements using
the error member of MYSQL_BIND structures. This option corresponds to the
MYSQL_REPORT_DATA_TRUNCATION option for the mysql_options() C API function. The value
is a boolean.
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• OPT_TLS_VERSION

Specify the protocols permitted for encrypted connections. The option value is string containing a
comma-separated list of one or more protocol names. Example:

connection_properties["OPT_TLS_VERSION"] = sql::SQLString("TLSv1.1,TLSv1.2");

The permitted values depend on the SSL library used to compile MySQL: TLSv1, TLSv1.1,
TLSv1.2 if OpenSSL was used; TLSv1 and TLSv1.1 if yaSSL was used. The default is to permit all
available protocols.

For more information about encryption protocols in MySQL, see Encrypted Connection TLS
Protocols and Ciphers.

This option was added in Connector/C++ 1.1.8.

• OPT_WRITE_TIMEOUT

The timeout in seconds for each attempt to write to the server. This option corresponds to the
MYSQL_OPT_WRITE_TIMEOUT option for the mysql_options() C API function. The value is an
unsigned integer.

• password

The password for the client MySQL account. This option corresponds to the passwd argument of the
mysql_real_connect() C API function. The value is a string.

• pipe

The name of the named pipe for a named-pipe connection to the local host on Windows systems.
The value is a string.

• pluginDir

The directory in which to look for client plugins. This option corresponds to the MYSQL_PLUGIN_DIR
option for the mysql_options() C API function. The value is a string.

This option was added in Connector/C++ 1.1.5.

• port

The port number for TCP/IP connections. This option corresponds to the port argument of the
mysql_real_connect() C API function. The value is an unsigned integer.

• postInit

This option is similar to preInit, but the statements are executed after driver initialization. The
value is a string.

This option was added in Connector/C++ 1.1.2.

• preInit

A string containing statements to execute before driver initialization. This option corresponds to the
MYSQL_INIT_COMMAND option for the mysql_options() C API function. The value is a string.

For an example showing the use of this option to reset an expired password, see Section 6.7,
“Connecting to an Account with an Expired Password”.

This option was added in Connector/C++ 1.1.2.
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• readDefaultFile

Read options from the named option file instead of from my.cnf. This option corresponds to the
MYSQL_READ_DEFAULT_FILE option for the mysql_options() C API function. The value is a
string.

This option was added in Connector/C++ 1.1.5.

• readDefaultGroup

Read options from the named group from my.cnf or the file specified with readDefaultFile. This
option corresponds to the MYSQL_READ_DEFAULT_GROUP option for the mysql_options() C API
function. The value is a string.

This option was added in Connector/C++ 1.1.5.

• rsaKey

The path name to a file containing the server RSA public key. This option corresponds to the
MYSQL_SERVER_PUBLIC_KEY option for the mysql_options() C API function. The value is a
string.

• schema

The default database name. This option corresponds to the db argument of the
mysql_real_connect() C API function. The value is a string.

• socket

The name of a Unix domain socket file for a socket-file connection to the local host on Unix and Unix-
like systems. This option corresponds to the socket argument of the mysql_real_connect() C
API function. The value is a string.

• sslCA

The path to a file in PEM format that contains a list of trusted SSL CAs. This option corresponds to
the MYSQL_OPT_SSL_CA option for the mysql_options() C API function. The value is a string.

• sslCAPath

The path to a directory that contains trusted SSL CA certificates in PEM format. This option
corresponds to the MYSQL_OPT_SSL_CAPATH option for the mysql_options() C API function.
The value is a string.

• sslCert

The name of an SSL certificate file in PEM format to use for establishing a secure connection. This
option corresponds to the MYSQL_OPT_SSL_CERT option for the mysql_options() C API function.
The value is a string.

• sslCipher

The list of permissible ciphers for SSL encryption. This option corresponds to the
MYSQL_OPT_SSL_CIPHER option for the mysql_options() C API function. The value is a string.

• sslCRL

The path to a file containing certificate revocation lists in PEM format. This option corresponds to the
MYSQL_OPT_SSL_CRL option for the mysql_options() C API function. The value is a string.

This option was added in Connector/C++ 1.1.4.

• sslCRLPath
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The path to a directory that contains files containing certificate revocation lists in PEM format. This
option corresponds to the MYSQL_OPT_SSL_CRLPATH option for the mysql_options() C API
function. The value is a string.

This option was added in Connector/C++ 1.1.4.

• sslEnforce

Whether to require the connection to use SSL. This option corresponds to the
MYSQL_OPT_SSL_ENFORCE option for the mysql_options() C API function. The value is a
boolean.

• sslKey

The name of an SSL key file in PEM format to use for establishing a secure connection. This option
corresponds to the MYSQL_OPT_SSL_KEY option for the mysql_options() C API function. The
value is a string.

• sslVerify

Enable or disable verification of the server's Common Name value in its certificate against
the host name used when connecting to the server. This option corresponds to the
MYSQL_OPT_SSL_VERIFY_SERVER_CERT option for the mysql_options() C API function. The
value is a boolean.

This option was added in Connector/C++ 1.1.4.

• useLegacyAuth

Whether to permit connections to a server that does not support the password hashing used
in MySQL 4.1.1 and later. This option corresponds to the MYSQL_SECURE_AUTH option for
the mysql_options() C API function, except that the sense of useLegacyAuth is logically
opposite that of MYSQL_SECURE_AUTH. For example, to disable secure authentication, pass a
useLegacyAuth value of true. The value is a boolean.

This option was added in Connector/C++ 1.1.4.

• userName

The user name for the MySQL account to use. This option corresponds to the user argument of the
mysql_real_connect() C API function. The value is a string.
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Chapter 11 Connector/C++ Known Issues
To report bugs, use the MySQL Bug System. See How to Report Bugs or Problems.

For notes detailing the changes in each release of Connector/C++, see MySQL Connector/C++
Release Notes.

• When linking against a static library for 1.0.3 on Windows, define CPPDBC_PUBLIC_FUNC either in
the compiler options (preferable) or with /D "CPPCONN_PUBLIC_FUNC=". You can also explicitly
define it in your code by placing #define CPPCONN_PUBLIC_FUNC before the header inclusions.

• Generally speaking, C++ library binaries are less portable than C library binaries. Issues can be
caused by name mangling, different Standard Template Library (STL) versions, and using different
compilers and linkers for linking against the libraries than were used for building the library itself.

Even a small change in the compiler version can cause problems. If you obtain error messages that
you suspect are related to binary incompatibilities, build Connector/C++ from source, using the same
compiler and linker that you use to build and link your application.

Due to variations between Linux distributions, compiler versions, linker versions, and STL versions,
it is not possible to provide binaries for every possible configuration. However, Connector/C++
binary distribution packages include a BUILDINFO.txt file that describes the environment and
configuration options used to build the binary versions of the connector libraries. (Prior to Connector/
C++ 1.1.11, check the README file instead.)

• To avoid potential crashes, the build configuration of Connector/C++ should match the build
configuration of the application using it. For example, do not use a release build of Connector/C++
with a debug build of the client application.
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Chapter 12 Connector/C++ Support
For general discussion of Connector/C++, please use the Connector/C++ community forum.

To report bugs, use the MySQL Bug System. See How to Report Bugs or Problems.

For notes detailing the changes in each release of Connector/C++, see MySQL Connector/C++
Release Notes.

For Licensing questions, and to purchase MySQL Products and Services, please see http://
www.mysql.com/buy-mysql/.
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