
MySQL Connector/C++ Release Notes
Abstract

This document contains release notes for the changes in each release of MySQL Connector/C++.

For additional MySQL Connector/C++ documentation, see MySQL Connector/C++ 8.4 Developer Guide, and
MySQL Connector/C++ 1.1 Developer Guide.

Updates to these notes occur as new product features are added, so that everybody can follow the development
process. If a recent version is listed here that you cannot find on the download page (https://dev.mysql.com/
downloads/), the version has not yet been released.

The documentation included in source and binary distributions may not be fully up to date with respect to release
note entries because integration of the documentation occurs at release build time. For the most up-to-date
release notes, please refer to the online documentation instead.

For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other
MySQL users.

Document generated on: 2024-06-05 (revision: 28450)

Table of Contents
Preface and Legal Notices .. 2
Changes in MySQL Connector/C++ 9 .. 4

Changes in MySQL Connector/C++ 9.0.0 (Not yet released, General Availability) 4
Changes in MySQL Connector/C++ 8 .. 4

Changes in MySQL Connector/C++ 8.4.0 (2024-04-30, General Availability) 4
Changes in MySQL Connector/C++ 8.3.0 (2024-01-16, General Availability) 5
Changes in MySQL Connector/C++ 8.2.0 (2023-10-25, General Availability) 5
Changes in MySQL Connector/C++ 8.1.0 (2023-07-18, General Availability) 5
Changes in MySQL Connector/C++ 8.0.33 (2023-04-18, General Availability) 6
Changes in MySQL Connector/C++ 8.0.32 (2023-01-17, General Availability) 8
Changes in MySQL Connector/C++ 8.0.31 (2022-10-11, General Availability) 8
Changes in MySQL Connector/C++ 8.0.30 (2022-07-26, General Availability) 10
Changes in MySQL Connector/C++ 8.0.29 (2022-04-26, General Availability) 11
Changes in MySQL Connector/C++ 8.0.28 (2022-01-18, General Availability) 14
Changes in MySQL Connector/C++ 8.0.27 (2021-10-19, General Availability) 14
Changes in MySQL Connector/C++ 8.0.26 (2021-07-20, General Availability) 15
Changes in MySQL Connector/C++ 8.0.25 (2021-05-11, General Availability) 17
Changes in MySQL Connector/C++ 8.0.24 (2021-04-20, General Availability) 17
Changes in MySQL Connector/C++ 8.0.23 (2021-01-18, General Availability) 18
Changes in MySQL Connector/C++ 8.0.22 (2020-10-19, General Availability) 19
Changes in MySQL Connector/C++ 8.0.21 (2020-07-13, General Availability) 22
Changes in MySQL Connector/C++ 8.0.20 (2020-04-27, General Availability) 24
Changes in MySQL Connector/C++ 8.0.19 (2020-01-13, General Availability) 25
Changes in MySQL Connector/C++ 8.0.18 (2019-10-14, General Availability) 29
Changes in MySQL Connector/C++ 8.0.17 (2019-07-22, General Availability) 29
Changes in MySQL Connector/C++ 8.0.16 (2019-04-25, General Availability) 31
Changes in MySQL Connector/C++ 8.0.15 (2019-02-01, General Availability) 35
Changes in MySQL Connector/C++ 8.0.14 (2019-01-21, General Availability) 35
Changes in MySQL Connector/C++ 8.0.13 (2018-10-22, General Availability) 36
Changes in MySQL Connector/C++ 8.0.12 (2018-07-27, General Availability) 38
Changes in MySQL Connector/C++ 8.0.11 (2018-04-19, General Availability) 39
Changes in MySQL Connector/C++ 8.0.8 - 8.0.10 (Skipped version numbers) 40
Changes in MySQL Connector/C++ 8.0.7 (2018-02-26, Release Candidate) 40

1

https://dev.mysql.com/doc/connector-cpp/8.4/en/
https://dev.mysql.com/doc/connector-cpp/1.1/en/
https://dev.mysql.com/downloads/
https://dev.mysql.com/downloads/
http://forums.mysql.com

MySQL Connector/C++ Release Notes

Changes in MySQL Connector/C++ 8.0.6 (2017-09-28, Development Milestone) 43
Changes in MySQL Connector/C++ 8.0.5 (2017-07-10, Development Milestone) 45

Changes in MySQL Connector/C++ 2.0 ... 47
Changes in MySQL Connector/C++ 2.0.4 (2017-03-21, Development Milestone) 47
Changes in MySQL Connector/C++ 2.0.3 (2016-10-19, Development Milestone) 48
Changes in MySQL Connector/C++ 2.0.2 (Not released, Development Milestone) 49
Changes in MySQL Connector/C++ 2.0.1 (Not released, Development Milestone) 49

Changes in MySQL Connector/C++ 1.1 ... 49
Changes in MySQL Connector/C++ 1.1.13 (2019-10-25, General Availability) 49
Changes in MySQL Connector/C++ 1.1.12 (2019-01-28, General Availability) 49
Changes in MySQL Connector/C++ 1.1.11 (2018-04-30, General Availability) 50
Changes in MySQL Connector/C++ 1.1.10 (2017-07-21, General Availability) 50
Changes in MySQL Connector/C++ 1.1.9 (2017-05-16, General Availability) 51
Changes in MySQL Connector/C++ 1.1.8 (2016-12-16, General Availability) 51
Changes in MySQL Connector/C++ 1.1.7 (2016-01-20, General Availability) 52
Changes in MySQL Connector/C++ 1.1.6 (2015-06-10, General Availability) 53
Changes in MySQL Connector/C++ 1.1.5 (2014-11-26, General Availability) 54
Changes in MySQL Connector/C++ 1.1.4 (2014-07-31, General Availability) 55
Changes in MySQL Connector/C++ 1.1.3 (2013-03-08, General Availability) 56
Changes in MySQL Connector/C++ 1.1.2 (2013-02-05, General Availability) 57
Changes in MySQL Connector/C++ 1.1.1 (2012-08-07, General Availability) 57
Changes in MySQL Connector/C++ 1.1.0 (2010-09-13, General Availability) 58

Changes in MySQL Connector/C++ 1.0 ... 59
Changes in MySQL Connector/C++ 1.0.5 (2009-04-21, General Availability) 59
Changes in MySQL Connector/C++ 1.0.4 (2009-03-31, Beta) .. 60
Changes in MySQL Connector/C++ 1.0.3 (2009-03-02, Alpha) .. 60
Changes in MySQL Connector/C++ 1.0.2 (2008-12-19, Alpha) .. 62
Changes in MySQL Connector/C++ 1.0.1 (2008-12-01, Alpha) .. 63

Index .. 64

Preface and Legal Notices
This document contains release notes for the changes in each release of MySQL Connector/C++.

Legal Notices

Copyright © 1997, 2024, Oracle and/or its affiliates.

License Restrictions

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly
permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or
related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the
U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications

2

MySQL Connector/C++ Release Notes

of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed
by U.S. Government end users are "commercial computer software," "commercial computer software
documentation," or "limited rights data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs
(including any operating system, integrated software, any programs embedded, installed, or activated
on delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/
or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in
the applicable contract. The terms governing the U.S. Government's use of Oracle cloud services
are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Trademark Notice

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other
names may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible
for and expressly disclaim all warranties of any kind with respect to third-party content, products,
and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

Use of This Documentation

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion
to other formats is allowed as long as the actual content is not altered or edited in any way. You shall
not publish or distribute this documentation in any form or on any media, except if you distribute the
documentation in a manner similar to how Oracle disseminates it (that is, electronically for download
on a Web site with the software) or on a CD-ROM or similar medium, provided however that the
documentation is disseminated together with the software on the same medium. Any other use, such
as any dissemination of printed copies or use of this documentation, in whole or in part, in another
publication, requires the prior written consent from an authorized representative of Oracle. Oracle and/
or its affiliates reserve any and all rights to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

3

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

MySQL Connector/C++ Release Notes

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Changes in MySQL Connector/C++ 9

Changes in MySQL Connector/C++ 9.0.0 (Not yet released, General
Availability)

Version 9.0.0 has no release notes, or they have not been published because the product version has
not been released.

Changes in MySQL Connector/C++ 8

Changes in MySQL Connector/C++ 8.4.0 (2024-04-30, General Availability)

• Security Notes

• Functionality Added or Changed

• Bugs Fixed

Security Notes

• For platforms on which OpenSSL libraries are bundled, the linked OpenSSL library for Connector/
C++ has been updated to version 3.0.13. Issues fixed in OpenSSL version 3.0.13 are described at
https://www.openssl.org/news/cl30.txt. . (Bug #36278302)

Functionality Added or Changed

• Expanded the Windows file attributes for packaged executable and DLL files. (WL #16156)

• Removed support for the deprecated authentication_fido authentication plugin. Instead, use
authentication_webauthn. For backward-compatibility, the Fido_Callback callback argument
remains but invokes WebAuthn authentication. (WL #16154)

• Setting query attributes for executed queries now supports prepared statements. (WL #15968)

• Known limitation of this release: because the mysql_native_password authentication plugin is
disabled by default as of MySQL Server 8.4.0, some unit tests may generate errors unless the plugin
is enabled.

Bugs Fixed

• A failed connection from an unreachable host would always reference "localhost" in the error
message, but now shows the configured host name and port number. (Bug #36383472)

• Building JDBC Connector/C++ from the source in combination with an older version of the
MySQL client library that supports reconnect functionality (MySQL 8.3.0 and earlier) now allows
OPT_RECONNECT to function. Otherwise, the option is ignored.

Note that MySQL Server 8.4.0 removes reconnect functionality, but to preserve backward
compatibility this connector can still set OPT_RECONNECT and read its value as before but it has no
effect on connection behavior with MySQL Server 8.4.0. (Bug #36316146)

• On Windows using Visual Studio 2022, the connector would not build with the -DBUILD_STATIC=1
configuration option. (Bug #36250741)

4

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://www.openssl.org/news/cl30.txt

MySQL Connector/C++ Release Notes

• The build system now uses CMake's FindOpenSSL rather than a custom FindSSL module to better
function with LibreSSL, and to better handle upcoming OpenSSL versions. The custom FindSSL
module is still utilized with CMake 3.8 and earlier. This fix is based on a patch from Sam James,
thank you for the contribution. (Bug #110784, Bug #35584977)

Changes in MySQL Connector/C++ 8.3.0 (2024-01-16, General Availability)

Functionality Added or Changed

• Connector/C++ 8.3.0 binary distributions from Oracle are built with the 8.3.0 version of the MySQL
client library. MySQL Server 8.3.0 removed auto-reconnect support after deprecating it in versions
8.0.34 and 8.1.0. The related OPT_RECONNECT connection option continues to be recognized by the
connector, but enabling the option now has no effect on the connection. Applications that use the
legacy JDBC API and also enable OPT_RECONNECT can:

• Implement reconnect logic in the application code.

• Build JDBC Connector/C++ from sources in combination with an older version of the MySQL client
library. However, enabling the OPT_RECONNECT option does guarantee a successful automatic
reconnection to the server if the connection is found to have been lost.

(WL #15979)

• Improved OpenTelemetry support to propagate context when executing prepared statements. (WL
#15959)

• Improved support to import Connector/C++ into CMake projects by allowing
find_package(mysql-concpp) to enable consuming it. This defines import targets such as
mysql::concpp that can be linked to executables used by the connector. (WL #15952)

Changes in MySQL Connector/C++ 8.2.0 (2023-10-25, General Availability)

• Packaging Notes

• Functionality Added or Changed

Packaging Notes

• The MSI package definition files have been updated to work with the Windows Installer XML Toolset
(WiX) version 4.0.1. Note that the files can no longer be used with previous version 3 of the toolset.
(WL #15846)

Functionality Added or Changed

• Improved OpenTelemetry support. This includes adding spans for preparing and executing prepared
statements, and adding connection span attributes such as db.user. (WL #15808)

• Connector/C++ now supports WebAuthn authentication for client applications using the legacy
JBDC API (that is, applications not using X DevAPI or X DevAPI for C). WebAuthn authentication
enables users to authenticate to MySQL Server using WebAuthn-aware devices based on either the
FIDO or FIDO2 standard. For an overview of the supported client-side authentication plugins and
authentication methods, see Authentication Support. (WL #15239)

Changes in MySQL Connector/C++ 8.1.0 (2023-07-18, General Availability)

MySQL Connector/C++ 8.1.0 is a new GA release version that supersedes the 8.0 series; it's
recommended for use on production systems. This release can be used against MySQL Server version
5.7 and higher.

• Packaging Notes

• Functionality Added or Changed

5

https://dev.mysql.com/doc/connector-cpp/8.4/en/connector-cpp-opentelemetry.html
https://dev.mysql.com/doc/connector-cpp/8.4/en/connector-cpp-opentelemetry.html
https://dev.mysql.com/doc/connector-cpp/8.4/en/connector-cpp-authentication.html

MySQL Connector/C++ Release Notes

Packaging Notes

• ZSTD sources bundled in the Connector/C++ source tree are upgraded to ZSTD 1.5.5. (Bug
#35360566)

• The Connector/C++ static library is most effective when the installed package is specific to the
platform on which the final application is built. Accordingly, the following static connector libraries are
no longer included in the generic Linux packages:

• lib64/libmysqlcppconn-static.a

• lib64/libmysqlcppconn8-static.a

(WL #15650)

Functionality Added or Changed

• Important Change: 32-bit binaries are no longer built as of MySQL 8.1.0.

• For applications that use the legacy JDBC API (that is, not X DevAPI or X DevAPI for C) on Linux
systems and use OpenTelemetry instrumentation, the connector adds query and connection spans
to the trace generated by application code and forwards the current OpenTelemetry context to the
server. By default, the connector generates spans only when an instrumented application links with
the required OpenTelemetry SDK libraries and configures the trace exporter to send trace data to
some destination. If the application code does not use instrumentation, then the legacy connector
does not use it either.

Connector/C++ supports a new connection property option, OPT_OPENTELEMETRY, which has these
values:

• OTEL_DISABLED

• OTEL_PREFERRED (default)

The OPT_OPENTELEMETRY option also accepts a Boolean value in which false corresponds to
OTEL_DISABLED. false is the only accepted Boolean value for this option; setting it to true has no
meaning and emits an error. (WL #15625)

Changes in MySQL Connector/C++ 8.0.33 (2023-04-18, General Availability)

• Compilation Notes

• Packaging Notes

• Pluggable Authentication

• Functionality Added or Changed

• Bugs Fixed

Compilation Notes

• To simplify building the legacy JDBC connector with Linux distributions that do not ship static
libraries, the MYSQLCLIENT_STATIC_LINKING default now is OFF (use dynamic linking to the client
library). Previously, the default setting was ON and the binary distributions from Oracle are still built
with static linking. (WL #15466)

• Binary distributions from Oracle are built in C++17 mode. When building Connector/C++ from
sources, the compilation now fails if the compiler used does not support C++17. To compile
Connector/C++ applications that use X DevAPI (or if the code uses C++17), enable C++17 support in
the compiler using the -std=c++17 option. (WL #15429)

• Connector/C++ now compiles cleanly using Clang on Windows. (WL #15290)

6

https://dev.mysql.com/doc/connector-cpp/8.4/en/connector-cpp-source-configuration-options.html#option_cmake_mysqlclient_static_linking

MySQL Connector/C++ Release Notes

Packaging Notes

• ZSTD sources bundled in the Connector/C++ source tree are upgraded to ZSTD 1.5.0. (Bug
#34983529)

• LZ4 sources bundled in the Connector/C++ source tree are upgraded to LZ4 1.9.4. (Bug #34983380)

• ZLIB sources bundled in the Connector/C++ source tree are upgraded to ZLIB 1.2.13 to match the
server. (Bug #34888141)

• RapidJSON sources bundled in the Connector/C++ source tree are upgraded to RapidJSON 1.1.0 to
match the server. (Bug #34842662)

Pluggable Authentication

• The Connector/C++ implementation of the authentication_oci_client plugin (together
with libmysqlclient) now enables using a security-token file to support ephemeral key-pair
authentication when integration with an external identity provider is needed for classic MySQL
protocol connections. The Oracle Cloud Infrastructure CLI generates the ephemeral key pair and
security token.

In addition, applications that use the legacy JDBC API now can set the new
OPT_OCI_CLIENT_CONFIG_PROFILE connection option to specify which profile in the configuration
file to use for authentication. It defaults to the [DEFAULT] profile. (WL #15481)

Functionality Added or Changed

• The Connector/C++ legacy JDBC connector now identifies itself through the following new
connection attributes (in addition to the connection attributes obtained from the libmysql client
library by default):

• _connector_version to indicate the connector version (for example, 8.0.33).

• _connector_license to indicate the license type of the connector, either GPL-2.0 or
Commercial.

• _connector_name with a constant value of mysql-connector-cpp.

The new attributes are not configurable by applications. Instead, the connector sets all of the
attribute values, which it determines automatically after connecting to the server. If the libmysql
client library or MySQL Server version being used lack support for query attributes, then returning
related connection-attribute errors is not possible.

For general information about connection attributes, see Performance Schema Connection Attribute
Tables. (WL #15425)

Bugs Fixed

• X DevAPI: Operations attempting to modify an entire document, for example,

coll.modify("_id = 1").set("$", R"({ "name": "bar" })").execute();

emitted a server error rather than modifying the document. An error is expected when passing in a
string. To modify an entire document, the caller should pass in a DbDoc() document. For example:

coll.modify("_id = 1").set("$", DbDoc(R"({ "name": "bar" })")).execute();

(Bug #35046616)

• X DevAPI: When a connection was made to MySQL Router, rather than directly to the server,
closing a session using mysqlx_session_close was not possible. Now, the connector no longer
waits for a reply to the call before closing the session. (Bug #107693, Bug #34338937)

7

https://dev.mysql.com/doc/connector-cpp/8.4/en/connector-cpp-authentication.html#connector-cpp-authentication-oci
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-connection-attribute-tables.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-connection-attribute-tables.html

MySQL Connector/C++ Release Notes

• Minimum CMake version required was changed to 3.12 from the previous version, which was
deprecated and produced warnings. (Bug #20422957)

Changes in MySQL Connector/C++ 8.0.32 (2023-01-17, General Availability)

• Packaging Notes

• Pluggable Authentication

• Security Notes

• Functionality Added or Changed

• Bugs Fixed

Packaging Notes

• Protobuf sources bundled in the Connector/C++ source tree are upgraded to Protobuf 3.19.6 (to
reduce compilation time, only the parts needed for Connector/C++ are included.) (WL #15414)

• Connector/C++ now provides generic Linux packages for ARM architecture (64 bit), in addition to the
generic Linux packages for Intel architecture (both 32 and 64 bits). All generic Linux packages are
built using the GNU C Library version 2.28. (WL #15258)

Pluggable Authentication

• Connector/C++ 8.0.27 implemented support for the SSPI Kerberos library on Windows, which
was not capable of acquiring cached credentials previously generated by using kinit command.
Connector/C++ 8.0.32 also supports GSSAPI through the MIT Kerberos library to add that capability
using the authentication_kerberos_client authentication plugin for classic MySQL
protocol connections on Windows. The OPT_AUTHENTICATION_KERBEROS_CLIENT_MODE
connection option can be set to either SSPI (default) or GSSAPI. For more information, see Kerberos
Authentication. (WL #15346)

Security Notes

• This release of Connector/C++ upgrades Cyrus SASL to version 2.1.28, which has been publicly
reported as not vulnerable to CVE-2022-24407. (Bug #34680980)

Functionality Added or Changed

• For applications that use the legacy JDBC API (that is, not X DevAPI or X DevAPI for C), setting the
OPT_METADATA_INFO_SCHEMA (metadataUseInfoSchema) connection option was essential to
the performance of Information_Schema in the older versions of MySQL Server. The option is no
longer needed for performance. Now, setting OPT_METADATA_INFO_SCHEMA has no affect on the
behavior of the connector and the option is ignored. (WL #15322)

Bugs Fixed

• X DevAPI: A call to close a session while other Session objects are in use could return a busy
error. (Bug #34704048)

• X DevAPI: An attempt to execute a long SQL statement emitted an error when the connection was
established using mysqlx_get_session_from_options() to connect to MySQL Router and with
compression enabled on the connection. (Bug #107694, Bug #34338921)

• A local object move in a return statement could prevent copy elision (or copy omission). Our thanks
to Octavio Valle for the patch. (Bug #108652, Bug #34654192)

Changes in MySQL Connector/C++ 8.0.31 (2022-10-11, General Availability)

• Compilation Notes

8

https://dev.mysql.com/doc/connector-cpp/8.4/en/connector-cpp-authentication.html#connector-cpp-authentication-kerberos
https://dev.mysql.com/doc/connector-cpp/8.4/en/connector-cpp-authentication.html#connector-cpp-authentication-kerberos

MySQL Connector/C++ Release Notes

• Configuration Notes

• Security Notes

• Functionality Added or Changed

• Bugs Fixed

Compilation Notes

• Connector/C++ now compiles cleanly using Clang for Linux and Solaris. (WL #15065)

Configuration Notes

• Several CMake options have been added or updated to enable using external sources (or builds) of
third-party components, like compression libraries and the Protobuf compiler, on which Connector/
C++ depends. These options permit substituting external source locations at configuration time if
required.

Supported options are:

• WITH_BOOST: The Boost source directory.

• WITH_LZ4: The LZ4 source directory.

• WITH_MYSQL: The MySQL Server source directory.

• WITH_PROTOBUF: The Protobuf source directory.

• WITH_SSL: The SSL source directory.

• WITH_ZLIB: The ZLIB source directory.

• WITH_ZSTD: The ZSTD source directory.

Currently, bundled third-party libraries used by connector are linked statically to it. Externally sourced
libraries are linked dynamically. Long-standing issues, such as applications that link to the static
connector library (libmysqlcppconn8-static.a) not being able to also link to a Protobuf
library at the same time, now are resolved by building from sources a variant that links Protobuf
dynamically.

For more information, see Specifying External Dependencies. (Bug #32117299, WL #15064)

Security Notes

• For platforms on which OpenSSL libraries are bundled, the linked OpenSSL library for Connector/C
++ has been updated to version 1.1.1q. Issues fixed in the new OpenSSL version are described at
https://www.openssl.org/news/cl111.txt and https://www.openssl.org/news/vulnerabilities.html. (Bug
#34414692)

Functionality Added or Changed

• If building the legacy JDBC connector from source, using an additional git command to perform
submodule initialization is no longer necessary. (WL #15182)

Bugs Fixed

• X DevAPI: If an application program called mysqlx_session_close after disconnecting from the
Internet, an exception from Connector/C++ could cause the application to halt unexpectedly. (Bug
#107692, Bug #34338950)

9

https://dev.mysql.com/doc/connector-cpp/8.4/en/connector-cpp-source-configuration-options.html#option_cmake_with_boost
https://dev.mysql.com/doc/connector-cpp/8.4/en/connector-cpp-source-configuration-options.html#option_cmake_with_lz4
https://dev.mysql.com/doc/connector-cpp/8.4/en/connector-cpp-source-configuration-options.html#option_cmake_with_mysql
https://dev.mysql.com/doc/connector-cpp/8.4/en/connector-cpp-source-configuration-options.html#option_cmake_with_protobuf
https://dev.mysql.com/doc/connector-cpp/8.4/en/connector-cpp-source-configuration-options.html#option_cmake_with_ssl
https://dev.mysql.com/doc/connector-cpp/8.4/en/connector-cpp-source-configuration-options.html#option_cmake_with_zlib
https://dev.mysql.com/doc/connector-cpp/8.4/en/connector-cpp-source-configuration-options.html#option_cmake_with_zstd
https://dev.mysql.com/doc/connector-cpp/8.4/en/connector-cpp-installation-source-cpp.html#connector-cpp-installation-source-external-dependencies
https://www.openssl.org/news/cl111.txt
https://www.openssl.org/news/vulnerabilities.html

MySQL Connector/C++ Release Notes

• On Windows, compiler difficulties were encountered because unistd.h was used to call getcwd
rather than using various Windows alternatives. Our thanks to Luis Pinto for the patch. (Bug
#108355, Bug #34553226)

• The libcrypto library, which libssl attempted to link to, was installed in an unexpected directory
by the Connector/C++ binary distribution for macOS. This fix ensures that both bundled libraries are
installed in the same directory. (Bug #107947, Bug #34417381)

Changes in MySQL Connector/C++ 8.0.30 (2022-07-26, General Availability)

• Character Set Support

• Packaging Notes

• Functionality Added or Changed

• Bugs Fixed

Character Set Support

• The renaming of the utf8 character set to utf8mb3 in MySQL 8.0.30—together with new utf8mb4
collations—generated errors related to collation names. To support the character-set name change
and the new collations, several API changes now are implemented.

For applications using X DevAPI or X DevAPI for C (breaking changes):

• The CharacterSet::utf8 enumeration constant was renamed to CharacterSet::utf8mb3,
but the constant value (21) did not change. Compiling an existing application against the new
connector produces errors if code refers to the CharacterSet::utf8 enumeration constant.

Note

Code that uses CharacterSet::utf8mb3 without also using the new
utf8mb4 collations can be expected to work with the old connector library,
but only after it has been compiled using the new connector header files.

• The name returned by the characterSetName() function for the value of
CharacterSet::utf8/utfmb3 constant (21) changed from "utf8" to "utf8mb3".

• Collation names returned by the CollationInfo::getName() method for
CollationInfo members in Collation<21> have changed. For example,
Collation<21>::general_ci.getName() now returns “utf8mb3_general_ci” instead of
“utf8_general_ci”.

• Although not a breaking change, all of the new CollationInfo members,
such as utf8mb4_bg_0900_ai_ci, have been added (for example,
Collation<CharacterSet::utf8mb4>::bg_0900_ai_ci).

For applications using the legacy JDBC API (breaking changes):

• The character-set name returned by the
MySQL_PreparedResultSetMetaData::getColumnCharset() and
MySQL_ResultSetMetaData::getColumnCharset() methods for the character set utf8/
utf8mb3 has changed from "utf8" to "utf8mb3".

• Collation names returned by the
MySQL_PreparedResultSetMetaData::getColumnCollation() and
MySQL_ResultSetMetaData::getColumnCollation() methods for utf8/utf8mb3
have changed. For example, the previous collation "utf8_general_ci" is now replaced with
"utf8mb3_general_ci".

10

MySQL Connector/C++ Release Notes

Existing applications that contain logic for checking the utf8 character-set name, or one of its
collations, can expect errors when used with the new connector. If an application must be compiled
with a pre-8.0.30 connector, then all of the character-set and collation comparisons should be
guarded with the MYSQL_CONCPP_VERSION_NUMBER macro. For usage examples, see Connector/C
++ Version Macros.

Each related ABI remains backward compatible, which means that an application built against old
connector sources can link correctly to the new connector library. However, the new library now
reports different character-set and collation names for utf8 and this difference might break the
code's logic. (Bug #34149700)

Packaging Notes

• Generic Linux packages now are built using the GNU C Library version 2.27 and the new C++ ABI
(_GLIBCXX_USE_CXX11_ABI=1). For additional information about this change, see Generic Linux
Notes. (Bug #33983351)

Functionality Added or Changed

• Connector/C++ now provides the MYSQL_CONCPP_VERSION_NUMBER macro in public header files
to indicate the current version of the connector. The format of MYSQL_CONCPP_VERSION_NUMBER is
XYYZZZZ, in which:

• X is the major version number (8)

• YY is the minor version number (00)

• ZZZZ is the micro version number (0030)

With this macro, code that depends on one or more features that were introduced in a specific
version (such as 8.0.32) can perform a conditional test in the compilation of portion of a source file.
For example:

#if MYSQL_CONCPP_VERSION_NUMBER > 8000032
 // use some 8.0.32+ feature
#endif

This type of conditional-compilation directive also works when the
MYSQL_CONCPP_VERSION_NUMBER macro is not defined (with pre-8.0.30 header files), in which
case, it is treated as 0. However, using the macro to check against versions earlier than 8.0.30 is
unreliable and should be avoided.

For additional usage examples, see Connector/C++ Version Macros. (WL #15081)

• It is now possible to compile Connector/C++ using OpenSSL 3.0. (WL #14819)

• The Protobuf sources bundled with Connector/C++ were updated to Protobuf 3.19.4. To reduce
compilation time, this update includes only the parts needed for Connector/C++. (WL #15084)

Bugs Fixed

• A valid query emitted an error when one or more fields were of spatial data type GEOMETRY and it
was executed using a prepared statement. (Bug #19192707)

Changes in MySQL Connector/C++ 8.0.29 (2022-04-26, General Availability)

• Pluggable Authentication

• Security Notes

• X DevAPI Notes

11

https://dev.mysql.com/doc/connector-cpp/8.4/en/connector-cpp-apps-general-considerations.html#connector-cpp-apps-version-macros
https://dev.mysql.com/doc/connector-cpp/8.4/en/connector-cpp-apps-general-considerations.html#connector-cpp-apps-version-macros
https://dev.mysql.com/doc/connector-cpp/8.4/en/connector-cpp-apps-generic-linux-notes.html
https://dev.mysql.com/doc/connector-cpp/8.4/en/connector-cpp-apps-generic-linux-notes.html
https://dev.mysql.com/doc/connector-cpp/8.4/en/connector-cpp-apps-general-considerations.html#connector-cpp-apps-version-macros
https://dev.mysql.com/doc/refman/8.0/en/spatial-type-overview.html

MySQL Connector/C++ Release Notes

• Functionality Added or Changed

• Bugs Fixed

Pluggable Authentication

• Connector/C++ now supports authentication to MySQL Server using devices such as smart cards,
security keys, and biometric readers. This authentication method is based on the Fast Identity
Online (FIDO) standard. To ensure client applications using the legacy JBDC API are notified
when a user is expected to interact with the FIDO device, Connector/C++ implements the new
setCallback() method in the MySQL_Driver class that accepts a single callback argument
named Fido_Callback.

class Fido_Callback
{
public:

 Fido_Callback(std::function<void(SQLString)>);

 /**
 * Override this message to receive Fido Action Requests
 */
 virtual void FidoActionRequested(sql::SQLString msg);

};

Any connection created by the driver can use the callback, if needed. However, if an application does
not set the callback explicitly, libmysqlclient determines the behavior by default, which involves
printing a message to standard output.

Note

On Windows, the client application must run as administrator. The
is a requirement of the fido2.dll library, which is used by the
authentication_fido plugin.

A client application has two options for obtaining a callback from the connector:

• By passing a function or lambda to Fido_Callback.

driver->setCallBack(Fido_Callback([](SQLString msg) {...}));

• By implementing the virtual method FidoActionRequested.

class MyWindow : public Fido_Callback
{
 void FidoActionRequested(sql::SQLString msg) override;
};

MyWindow window;
driver->setCallBack(window);

Setting a new callback always removes the previous callback. To disable the active callback and
restore the default behavior, pass nullptr as a function callback. Example:

driver->setCallBack(Fido_Callback(nullptr));

For more information about FIDO authentication, see FIDO Pluggable Authentication. (WL #14878)

Security Notes

• For platforms on which OpenSSL libraries are bundled, the linked OpenSSL library for Connector/C
++ has been updated to version 1.1.1n. Issues fixed in the new OpenSSL version are described at
https://www.openssl.org/news/cl111.txt and https://www.openssl.org/news/vulnerabilities.html. (Bug
#33987637)

12

https://dev.mysql.com/doc/refman/8.0/en/fido-pluggable-authentication.html
https://www.openssl.org/news/cl111.txt
https://www.openssl.org/news/vulnerabilities.html

MySQL Connector/C++ Release Notes

X DevAPI Notes

• The Connector/C++ X DevAPI Reference documentation, available at https://dev.mysql.com/doc/
index-connectors.html, updated its usage instructions for the Collection.modify().unset()
operation. The argument to unset() is a string to be interpreted as a document path expression
(similar to "$.foo.'bar'"), rather than a literal field name. If the argument contains special
characters (spaces, '.', '$', and so on), then it is necessary to enclose the field name in quotation
marks. For example:

Collection.modify(~~).unset(""field name with spaces"")

(Bug #33795881)

Functionality Added or Changed

• Connector/C++ supports new aliases for existing TLS/SSL connection options to deliver better
alignment among X DevAPI, X DevAPI for C, and the legacy JDBC-based API. This alignment effort
ensures that option naming, functionality, and behavior are implemented consistently while also
retaining compatibility with the existing options. For example, Connector/C++ now ensures that
setting TLS/SSL connection options, along with ssl-mode=DISABLED, does not return an error if
a client application provides incompatible options, or if the same option is repeated in a connection
string or with properties.

Changes that apply to X DevAPI and X DevAPI for C are:

• tls-version is added as an alias to the existing tls-versions connection option.

• ssl-capath, ssl-crl, and ssl-crlpath options are now implemented with the same
functionality as the legacy JDBC API.

• If the same option is repeated, the last option value prevails.

The new aliases for the legacy JDBC API are:

• ssl-mode (for the existing OPT_SSLMODE option): Preferred security state of a connection to
server.

• ssl-ca (for the existing sslCA option): File that contains a list of trusted SSL Certificate
Authorities.

• ssl-capath (for the existing sslCAPath option): Directory that contains trusted SSL Certificate
Authority certificate files.

• ssl-cert (for the existing sslCert option): File that contains X.509 certificate.

• ssl-cipher (for the existing sslCipher option): Permissible ciphers for connection encryption.

• ssl-key (for the existing sslKey option): File that contains X.509 key.

• ssl-crl (for the existing sslCRL option): File that contains certificate revocation lists.

• ssl-crlpath (for the existing sslCRLPath option): Directory that contains certificate revocation-
list files.

• tls-version (for the existing OPT_TLS_VERSION option): Permissible TLS protocols for
encrypted connections.

When using the legacy JDBC API, the effect of setting an option twice is determined by the client
library. In addition, TLS/SSL options are not supported in URI-like strings when using the legacy
JDBC API. (WL #14846)

13

https://dev.mysql.com/doc/index-connectors.html
https://dev.mysql.com/doc/index-connectors.html

MySQL Connector/C++ Release Notes

Bugs Fixed

• Bit-value types in aggregate functions could return unexpected values for an application that uses
the legacy JDBC API. (Bug #33748725)

• The Connector/C++ classic driver was unable to find authentication plugins unless the
OPT_PLUGIN_DIR connection option was set explicitly. The driver now uses its shared library to
determine the plugin location as a relative path. (Bug #33721056)

• On Windows, when an application using the legacy JDBC API attempted to authenticate a user with
a plugin that was unable to find a required library, the process halted rather than emitting an error
message. (Bug #33701997)

Changes in MySQL Connector/C++ 8.0.28 (2022-01-18, General Availability)

• Deprecation and Removal Notes

• Pluggable Authentication

• Security Notes

• Bugs Fixed

Deprecation and Removal Notes

• The TLSv1 and TLSv1.1 connection protocols were deprecated in Connector/C++ 8.0.26 and now
are removed in this release. The removed values are considered invalid for use with connection
options and session settings. Connections can be made using the more-secure TLSv1.2 and
TLSv1.3 protocols. TLSv1.3 requires that both the server and Connector/C++ be compiled with
OpenSSL 1.1.1 or higher. (WL #14816, WL #14818)

Pluggable Authentication

• Applications that use the legacy JDBC API now can establish connections using multifactor
authentication, such that up to three passwords can be specified at connect time. The new
OPT_PASSWORD1, OPT_PASSWORD2, and OPT_PASSWORD3 connection options are available
for specifying the first, second, and third multifactor authentication passwords, respectively.
OPT_PASSWORD1 is an alias for the existing OPT_PASSWORD option; if both are given,
OPT_PASSWORD is ignored. (WL #14658)

Security Notes

• For platforms on which OpenSSL libraries are bundled, the linked OpenSSL library for Connector/
C++ has been updated to version 1.1.1l. Issues fixed in the new OpenSSL version are described at
https://www.openssl.org/news/cl111.txt and https://www.openssl.org/news/vulnerabilities.html. (Bug
#33309902)

Bugs Fixed

• For connections made using X Protocol, getting BIT(1) column data by calling getRawBytes()
returned an empty buffer. BIT is treated as an unsigned integer (uint64_t), which means
applications can get or set the value by using such a type. (Bug #33335148)

Changes in MySQL Connector/C++ 8.0.27 (2021-10-19, General Availability)

• Pluggable Authentication

• Bugs Fixed

Pluggable Authentication

• Applications that use the legacy JDBC API now can establish connections without passwords for
accounts that use the authentication_oci server-side authentication plugin, provided that the

14

https://www.openssl.org/news/cl111.txt
https://www.openssl.org/news/vulnerabilities.html

MySQL Connector/C++ Release Notes

correct configuration entries are available to map to one unique user in a specific Oracle Cloud
Infrastructure tenancy. This functionality is not supported for X Protocol connections.

To ensure correct account mapping, the client-side Oracle Cloud Infrastructure configuration must
contain a fingerprint of the API key to use for authentication (fingerprint entry) and the location
of a PEM file with the private part of the API key (key_file entry). Both entries should be specified
in the [DEFAULT] profile of the configuration file.

Unless an alternative path to the configuration file is specified with the OPT_OCI_CONFIG_FILE
connection option, the following default locations are used:

• ~/.oci/config on Linux or Posix host types

• %HOMEDRIVE%%HOMEPATH%/.oci/config on Windows host types

If the MySQL user name is not provided as a connection option, then the operating system
user name is substituted. Specifically, if the private key and correct Oracle Cloud Infrastructure
configuration are present on the client side, then a connection can be made without giving any
options. (WL #14711)

• In Connector/C++ 8.0.26, the capability was introduced for applications that use the legacy JDBC
API to establish connections for accounts that use the authentication_kerberos server-side
authentication plugin, provided that the correct Kerberos tickets are available or can be obtained
from Kerberos. That capability was available on client hosts running Linux only. It is now available on
client hosts running Windows.

For more information about Kerberos authentication, see Kerberos Pluggable Authentication. (WL
#14682)

Bugs Fixed

• When linking to the static Connector/C++ library on Windows, builds failed unless Dnsapi.DLL was
added to the linker invocation line explicitly. (Bug #33190431)

Changes in MySQL Connector/C++ 8.0.26 (2021-07-20, General Availability)

• Deprecation and Removal Notes

• Pluggable Authentication

• Functionality Added or Changed

• Bugs Fixed

Deprecation and Removal Notes

• The TLSv1 and TLSv1.1 connection protocols now are deprecated and support for them is subject
to removal in a future Connector/C++ version. (For background, refer to the IETF memo Deprecating
TLSv1.0 and TLSv1.1.) It is recommended that connections be made using the more-secure
TLSv1.2 and TLSv1.3 protocols. TLSv1.3 requires that both the server and Connector/C++ be
compiled with OpenSSL 1.1.1 or higher. (WL #14584)

Pluggable Authentication

• Applications that use the legacy JDBC API now can establish connections for accounts that use the
authentication_kerberos server-side authentication plugin, provided that the correct Kerberos
tickets are available or can be obtained from Kerberos. This capability is available on client hosts
running Linux only.

It is possible to connect to Kerberos-authenticated accounts without giving a user name under these
conditions:

15

https://dev.mysql.com/doc/refman/8.0/en/kerberos-pluggable-authentication.html
https://tools.ietf.org/id/draft-ietf-tls-oldversions-deprecate-02.html
https://tools.ietf.org/id/draft-ietf-tls-oldversions-deprecate-02.html

MySQL Connector/C++ Release Notes

• The user has a Kerberos principal name assigned, a MySQL Kerberos account for that principal
name exists, and the user has the required tickets.

• The default authentication method must be set to the authentication_kerberos_client
client-side authentication plugin using the OPT_DEFAULT_AUTH connection option.

It is possible to connect without giving a password, provided that the user has the required tickets in
the Kerberos cache (for example, created by kinit or a similar command).

If the required tickets are not present in the Kerberos cache and a password was given, Connector/
C++ obtains the tickets from Kerberos using that password. If the required tickets are found in the
cache, any password given is ignored and the connection might succeed even if the password is
incorrect.

For more information about Kerberos authentication, see Kerberos Pluggable Authentication. (WL
#14439)

Functionality Added or Changed

• Applications that use the legacy JDBC API now can define query attribute metadata on a per-query
basis. without the use of workarounds such as specially formatted comments included in query
strings. This capability is implemented using type-specific methods for the sql::Statement class:

int Statement::setQueryAttrInt(attr_name, int_value);
int Statement::setQueryAttrString(attr_name, str_value);
int Statement::setQueryAttrBoolean(attr_name, bool_value);

Each method takes a string-valued attribute name and an attribute value of the appropriate type. The
return value is the attribute number, or 0 if the server does not support query attributes.

Similar methods are implemented for the sql::PreparedStatement class but do nothing because
the MySQL client library does not yet support query attributes for prepared statements.

Attributes defined using the set-attribute methods apply to the next SQL statement sent to the
server for execution. If an attribute with a given name is defined multiple times, the last definition
applies. Attributes are cleared after the statement executes, or may be cleared explicitly using the
clearAttributes() method.

The mysql_query_attribute_string() function returns the current value for a given attribute,
except that the value of an attribute with an empty name cannot be retrieved.

Example:

std::unique_ptr<sql::Statement> stmt(con->createStatement());

// Set three query attributes for a query without parameters ("SELECT 1"),
// where the attribute types are int, string, and bool:

stmt->setQueryAttrInt("attr1", 200);
stmt->setQueryAttrString("attr2", "string value");
stmt->setQueryAttrBoolean("attr3", true);

// To retrieve the attributes within a query, use the
// mysql_query_attribute_string() function:

stmt->execute("SELECT 1,
 mysql_query_attribute_string('attr1'),
 mysql_query_attribute_string('attr2'),
 mysql_query_attribute_string('attr3')");

// Change an attribute value:

stmt->setQueryAttrInt("attr1", 100);

16

https://dev.mysql.com/doc/refman/8.0/en/kerberos-pluggable-authentication.html

MySQL Connector/C++ Release Notes

// Executing the statement here and fetching the result should show the
// changed attribute value.

// Clear the attributes:

stmt->clearAttributes();

// Executing the statement here and fetching the result should show the
// the attributes are no longer present.

For the query-attribute capability to work within Connector/C++ applications, server-side support for
query attributes must be enabled. For instructions, and for more information about query-attribute
support in general, see Query Attributes. (WL #14216)

Bugs Fixed

• Builds failed when the -DMYSQLCLIENT_STATIC_BINDING=0 and -
DMYSQLCLIENT_STATIC_LINKING=0 configuration options were used. (Bug #32882344)

• For connection attempts that specified a list of servers to try, the connection timeout value could be
twice the correct duration. (Bug #32781963)

• Connector/C++ returned error 0 for connection failures rather than a nonzero error code. (Bug
#32695580)

• sql::Connection:commit() threw no error if the connection had been dropped. (Bug
#23235968)

Changes in MySQL Connector/C++ 8.0.25 (2021-05-11, General Availability)

This release contains no functional changes and is published to align the version number with the
MySQL Server 8.0.25 release.

Changes in MySQL Connector/C++ 8.0.24 (2021-04-20, General Availability)

• Connection Management Notes

• Packaging Notes

• Security Notes

• Bugs Fixed

Connection Management Notes

• Previously, for client applications that use the legacy JDBC API (that is, not X DevAPI or X DevAPI
for C), if the connection to the server was not used within the period specified by the wait_timeout
system variable and the server closed the connection, the client received no notification of the
reason. Typically, the client would see Lost connection to MySQL server during query
(CR_SERVER_LOST) or MySQL server has gone away (CR_SERVER_GONE_ERROR).

In such cases, the server now writes the reason to the connection before closing it, and client
receives a more informative error message, The client was disconnected by the server
because of inactivity. See wait_timeout and interactive_timeout for
configuring this behavior. (ER_CLIENT_INTERACTION_TIMEOUT).

The previous behavior still applies for client connections to older servers and connections to the
server by older clients. (WL #14425)

• For connections made using X Plugin, if client with a connection to a server remains idle (not sending
to the server) for longer than the relevant X Plugin timeout setting (read, write, or wait timeout), X
Plugin closes the connection. If any of these timeouts occur, the plugin returns a warning notice with
the error code ER_IO_READ_ERROR to the client application.

17

https://dev.mysql.com/doc/refman/8.0/en/query-attributes.html
https://dev.mysql.com/doc/connector-cpp/8.4/en/connector-cpp-source-configuration-options.html#option_cmake_mysqlclient_static_binding
https://dev.mysql.com/doc/connector-cpp/8.4/en/connector-cpp-source-configuration-options.html#option_cmake_mysqlclient_static_linking
https://dev.mysql.com/doc/connector-cpp/8.4/en/connector-cpp-source-configuration-options.html#option_cmake_mysqlclient_static_linking
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_wait_timeout
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_client_interaction_timeout

MySQL Connector/C++ Release Notes

For such connections, X Plugin now also sends a warning notice if a connection is actively closed
due to a server shutdown, or by the connection being killed from another client session. In the case
of a server shutdown, the warning notice is sent to all authenticated X Protocol clients with open
connections, with the ER_SERVER_SHUTDOWN error code. In the case of a killed connection, the
warning notice is sent to the relevant client with the ER_SESSION_WAS_KILLED error code, unless
the connection was killed during SQL execution, in which case a fatal error is returned with the
ER_QUERY_INTERRUPTED error code.

If connection pooling is used and a connection close notice is received in a session as a result of a
server shutdown, all other idle sessions that are connected to the same endpoint are removed from
the pool.

Client applications can use the warning notices to display to users, or to analyze the reason for
disconnection and decide whether to attempt reconnection to the same server, or to a different
server. (WL #13946)

Packaging Notes

• Connector/C++ packages now include sasl2 modules due to connection failures for accounts that
use the authentication_ldap_sasl authentication plugin. (Bug #32175836)

Security Notes

• For platforms on which OpenSSL libraries are bundled, the linked OpenSSL library for Connector/C
++ has been updated to version 1.1.1k. Issues fixed in the new OpenSSL version are described at
https://www.openssl.org/news/cl111.txt and https://www.openssl.org/news/vulnerabilities.html. (Bug
#32719727)

References: See also: Bug #32680637.

Bugs Fixed

• Upon connecting to the server, Connector/C++ executed a number of SHOW [SESSION]
VARIABLES statements to retrieve system variable values. Such statements involve locking in the
server, so they are now avoided in favor of SELECT @@var_name statements.

Additionally, Connector/C++ was trying to fetch the value of the max_statement_time system
variable, which has been renamed to max_execution_time. Connector/C++ now uses the correct
variable name, with the result that getQueryTimeout() and setQueryTimeout() now work
properly for both Statement and Prepared Statement objects. (Bug #28928712, Bug #93201)

• DatabaseMetaData.getProcedures() failed when the metadataUseInfoSchema connection
option was false. (Bug #24371558)

Changes in MySQL Connector/C++ 8.0.23 (2021-01-18, General Availability)

• Legacy (JDBC API) Notes

• Functionality Added or Changed

• Bugs Fixed

Legacy (JDBC API) Notes

• Previously, to build or run applications that use the legacy JDBC API, it was necessary to have Boost
installed. Boost is no longer required for such applications. The API has not changed, so no code
changes are required to build applications. However, in consequence of this change, the ABI version
has increased from 7 to 9. To run applications, a version of Connector/C++ built with the same ABI
must be installed:

18

https://www.openssl.org/news/cl111.txt
https://www.openssl.org/news/vulnerabilities.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_execution_time

MySQL Connector/C++ Release Notes

• Applications built using the new ABI require a version of Connector/C++ also built using the new
ABI.

• Applications built using the old ABI require a version of Connector/C++ also built using the old ABI.

To build the legacy connector itself from source, it is still necessary to have Boost installed. (WL
#13983)

Functionality Added or Changed

• All calls that allow a column name, such as findColumn(), getString(), and getInt(), are
now case-sensitive. (Bug #30126457, Bug #96398)

• The developer documentation was improved regarding how to decode the bytes received by
mysqlx_get_bytes(). Thanks to Daniël van Eeden for pointing at the missing documentation.
(Bug #29115299, Bug #93641)

• Thanks to Daniël van Eeden, who contributed various corrections to the developer documentation.
(Bug #29038157, Bug #93549)

• A dependency on the mysql-client-plugins package was removed. This package now is
required only on hosts where Connector/C++ applications make connections using commercial
MySQL server accounts with LDAP authentication. In that case, additional libraries must also be
installed: cyrus-sasl-scram for installations that use RPM packages and libsasl2-modules-
gssapi-mit for installations that use Debian packages. These SASL packages provide the support
required to use the SCRAM-SHA-256 and GSSAPI/Kerberos authentication methods for LDAP.

If Connector/C++ applications do not use LDAP authentication, no additional packages are required.
(WL #13881, WL #14250)

Bugs Fixed

• Connector/C++ 8.0 RPM packages could not be installed on a system where MySQL 5.7 RPM
packages were installed. (Bug #32142148)

• Establishing a connection using a ConnectOptionsMap object could fail due to differences in
std::string implementations. (Bug #32039929)

• Commercial Connector/C++ RPM packages were missing provides information. (Bug #31775733)

Changes in MySQL Connector/C++ 8.0.22 (2020-10-19, General Availability)

• Compilation Notes

• Connection Management Notes

• Legacy (JDBC API) Notes

• Bugs Fixed

Compilation Notes

• Connector/C++ now can be compiled using MinGW on Windows. Thanks to Eric Beuque for the
contribution. Note that this enables building on MinGW but does not make MinGW an officially
supported platform for Connector/C++. (Bug #31636723, Bug #100248)

Connection Management Notes

• For connections made using X Plugin, Connector/C++ now enables specifying the compression
algorithms to be used for connections that use compression. Connection URIs and
SessionSettings objects permit explicitly specifying the preferred algorithms:

19

MySQL Connector/C++ Release Notes

• URI strings permit a compression-algorithms option. The value is an algorithm name, or a list
of one or more comma-separated algorithms specified as an array. Examples:

mysqlx://user:password@host:port/db?compression-algorithms=lz4
mysqlx://user:password@host:port/db?compression-algorithms=[lz4,zstd_stream]

• SessionSettings objects permit a SessionOption::COMPRESSION_ALGORITHMS option.
The value is a list of one or more comma-separated algorithms. Examples:

mysqlx::Session sess(SessionOption::USER, "user_name",
 SessionOption::PWD, "password",
 SessionOption::COMPRESSION_ALGORITHMS, "lz4");
mysqlx::Session sess(SessionOption::USER, "user_name",
 SessionOption::PWD, "password",
 SessionOption::COMPRESSION_ALGORITHMS, "lz4,zstd_stream");

Alternatively, the algorithms value can be given as a container:

std::list<std::string> algorithms = {"lz4","zstd_stream"};
mysqlx::Session sess(SessionOption::USER, "user_name",
 SessionOption::PWD, "password",
 SessionOption::COMPRESSION_ALGORITHMS, algorithms);

• For X DevAPI for C, there is a new MYSQLX_OPT_COMPRESSION_ALGORITHMS option and
corresponding OPT_COMPRESSION_ALGORITHMS helper macro.

URI mode follows X DevAPI URI mode:

mysqlx_session_t *sess = mysqlx_get_session_from_url(
 "mysqlx://user:password@host:port/db?compression-algorithms=[lz4,zstd_stream]",
 &error);

Option mode follows the string format used for SessionOption:

mysqlx_session_option_set(opt,
 OPT_HOST("host_name"),
 OPT_USER("user"),
 OPT_PWD("password"),
 OPT_COMPRESSION_ALGORITHMS("lz4,zstd_stream"),
 PARAM_END));

These rules apply:

• Permitted algorithm names are zstd_stream, lz4_message, and deflate_stream, and their
aliases zstd, lz4, and deflate. Names are case-insensitive. Unknown names are ignored.

• Compression algorithms options permit multiple algorithms, which should be listed in priority order.
Options that specify multiple algorithms can mix full algorithm names and aliases.

• If no compression algorithms option is specified, the default is
zstd_stream,lz4_message,deflate_stream.

20

MySQL Connector/C++ Release Notes

• The actual algorithm used is the first of those listed in the compression algorithms option that is
also permitted on the server side. However, the option for compression algorithms is subject to the
compression mode:

• If the compression mode is disabled, the compression algorithms option is ignored.

• If the compression mode is preferred but no listed algorithm is permitted on the server side,
the connection is uncompressed.

• If the compression mode is required but no listed algorithm is permitted on the server side, an
error occurs.

See also Connection Compression with X Plugin. (WL #13908, WL #13947)

Legacy (JDBC API) Notes

• For applications that use the legacy JDBC API (that is, not X DevAPI or X DevAPI for C), Connector/
C++ binary distributions now include the libraries that provide the client-side LDAP authentication
plugins, as well as any dependent libraries required by the plugins. This enables Connector/C+
+ application programs to connect to MySQL servers using simple LDAP authentication, or SASL
LDAP authentication using the SCRAM-SHA-1 authentication method.

Note

LDAP authentication requires use of a server from a MySQL Enterprise
Edition distribution. For more information about the LDAP authentication
plugins, see LDAP Pluggable Authentication.

If Connector/C++ was installed from a compressed tar file or Zip archive, the application program
will need to set the OPT_PLUGIN_DIR connection option to the appropriate directory so that the
bundled plugin library can be found. (Alternatively, copy the required plugin library to the default
directory expected by the client library.)

Example:

sql::ConnectOptionsMap connection_properties;

// To use simple LDAP authentication ...

connection_properties["userName"] = "simple_ldap_user_name";
connection_properties["password"] = "simple_ldap_password";
connection_properties[OPT_ENABLE_CLEARTEXT_PLUGIN]=true;

// To use SASL LDAP authentication using SCRAM-SHA-1 ...

connection_properties["userName"] = "sasl_ldap_user_name";
connection_properties["password"] = "sasl_ldap_scram_password";

// Needed if Connector/C++ was installed from tar file or Zip archive ...

connection_properties[OPT_PLUGIN_DIR] = "${INSTALL_DIR}/lib{64}/plugin";

auto *driver = get_driver_instance();
auto *con = driver->connect(connection_properties);

// Execute statements ...

con->close();

(WL #14113)

• For applications that use the legacy JDBC API (that is, not X DevAPI or X DevAPI for C), LOCAL
data loading capability for the LOAD DATA statement previously could be controlled on the client
side only by enabling it for all files accessible to the client, or by disabling it altogether. The new

21

https://dev.mysql.com/doc/refman/8.0/en/x-plugin-connection-compression.html
https://dev.mysql.com/doc/refman/8.0/en/ldap-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html

MySQL Connector/C++ Release Notes

OPT_LOAD_DATA_LOCAL_DIR option enables restricting LOCAL data loading to files located in a
designated directory. For example, to set the value at connect time:

sql::ConnectOptionsMap opt;
opt[OPT_HOSTNAME] = "localhost";
opt[OPT_LOAD_DATA_LOCAL_DIR] = "/tmp";

sql::Connection *conn = driver->connect(opt);

OPT_LOAD_DATA_LOCAL_DIR can also be set after connect time:

sql::ConnectOptionsMap opt;
opt[OPT_HOSTNAME] = "localhost";

sql::Connection *conn = driver->connect(opt);

//.... some queries / inserts / updates

std::string path= "/tmp";
conn->setClientOption(OPT_LOAD_DATA_LOCAL_DIR, path);

// LOAD LOCAL DATA DIR
...

//Disable LOCAL INFILE by setting to null
conn->setClientOption(OPT_LOAD_DATA_LOCAL_DIR, nullptr);

The OPT_LOAD_DATA_LOCAL_DIR option maps onto the MYSQL_OPT_LOAD_DATA_LOCAL_DIR
option for the mysql_options() C API function. For more information, see Security Considerations
for LOAD DATA LOCAL. (WL #13884)

Bugs Fixed

• String decoding failed for utf-8 strings that began with a \xEF byte-order mark. (Bug #31656092,
Bug #100292)

• With the CLIENT_MULTI_FLAG option enabled, executing multiple statements in a batch caused the
next query to fail with a Commands out of sync error. (Bug #31399362)

• For connections made using X Plugin, connections over Unix socket files did not work. (Bug
#31329938)

• For connections made using X Plugin, the default compression mode was DISABLED rather than
PREFERRED. (Bug #31173447)

Changes in MySQL Connector/C++ 8.0.21 (2020-07-13, General Availability)

• Configuration Notes

• JSON Notes

• Security Notes

• X DevAPI Notes

• Functionality Added or Changed

• Bugs Fixed

Configuration Notes

• The CMake configuration files were revised to work better when Connector/C++ is used as a
subproject of application projects. Thanks to Lou Shuai for the contribution.

This revision does not change the fact that the intended (and supported) usage scenario is to build
the connector in a separate project, install it somewhere and then use it in application projects

22

https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html
https://dev.mysql.com/doc/refman/8.0/en/load-data-local-security.html
https://dev.mysql.com/doc/refman/8.0/en/load-data-local-security.html

MySQL Connector/C++ Release Notes

from that installed location (for example, by defining the imported library target in CMake). (Bug
#31095993, Bug #99093)

JSON Notes

• The rapidjson library included with Connector/C++ has been upgraded to the GitHub snapshot of
16 January 2020. (WL #13877)

Security Notes

• For platforms on which OpenSSL libraries are bundled, the linked OpenSSL library for Connector/C
++ has been updated to version 1.1.1g. Issues fixed in the new OpenSSL version are described at
https://www.openssl.org/news/cl111.txt and https://www.openssl.org/news/vulnerabilities.html. (Bug
#31296689)

X DevAPI Notes

• For X DevAPI or X DevAPI for C applications, methods and functions that create or modify
collections now accept options to enable validation of a JSON schema that documents must adhere
to before they are permitted to be inserted or updated. Schema validation is performed by the server,
which returns an error message if a document in a collection does not match the schema definition or
if the server does not support validation.

These new classes are implemented to support validation options:

• CollectionOptions: The base class that has all options. Contains an Option enumeration
with constants REUSE and VALIDATION.

• CollectionValidation: Handles only subkey validation. Contains a Level enumeration with
constants STRICT and OFF, and an Option enumeration with constants SCHEMA and LEVEL.

X DevAPI now has these signatures for createCollection() (and modifyCollection()):

// Accepts the full document
createCollection("name", "JSON_Document");

// DbDoc usage is also permitted
createCollection("name", DbDoc("validation", DbDoc("level","off",...)));

// List of pairs with Option enum constant and value
createCollection(CollectionOptions::REUSE, true,
 CollectionOptions::VALIDATION, CollectionValidation(...));

// Old REUSE way is also acceptable
createCollection("name", true);

createCollection("name", CollectionValidation(...));

// createCollection also allows a list of pairs of
// CollectionValidation Option enum constant and value
createCollection("name", CollectionOptions::VALIDATION,
 CollectionValidation::OFF,
 CollectionValidation::SCHEMA,
 "Object");

X DevAPI for C examples:

These are the possible options for mysqlx_collection_options_set():

OPT_COLLECTION_VALIDATION_LEVEL(VALIDATION_OFF)
OPT_COLLECTION_VALIDATION_SCHEMA("Object")
OPT_COLLECTION_REUSE(true)

Perform option operations like this:

mysqlx_collection_options_t

23

https://www.openssl.org/news/cl111.txt
https://www.openssl.org/news/vulnerabilities.html

MySQL Connector/C++ Release Notes

*options = mysqlx_collection_options_new() //creates collection options object
mysqlx_free(options) //frees collection options
mysqlx_collection_options_set(options,...);

Creation and modification functions have these signatures:

mysqlx_collection_create_with_options(mysqlx_schema_t *schema,
 mysqlx_collection_options_t *options);

mysqlx_collection_create_with_json_options(mysqlx_schema_t *schema,
 const char* json_options);

mysqlx_collection_modify_with_options(mysqlx_schema_t *schema,
 mysqlx_collection_options_t *options);

mysqlx_collection_modify_with_json_options(mysqlx_schema_t *schema,
 const char* json_options);

For modifications, the REUSE option is not supported and an error occurs if it is used. (WL #13061)

Functionality Added or Changed

• The MySQL_Connection_Options enumeration is no longer sensitive to the order in which the
underlying options are declared in the C API source. (Bug #30799197)

• Connector/C++ now implements blocking of failed connection-pool endpoints to prevent them
from being reused until a timeout period has elapsed. This should reduce average wait time for
applications to obtain a connection from the pool in the event that endpoints become temporarily
unavailable. (WL #13701)

Bugs Fixed

• For applications that use the legacy JDBC API (that is, not X DevAPI or X DevAPI for C) on a system
that does not have OpenSSL libraries installed, the libraries that are bundled with Connector/C++
could not be found when resolving run-time dependencies of the application. (Bug #31007317)

• For a reply with multiple result sets (such as the result from a stored procedure that executed
multiple queries), an error in reply processing logic could incorrectly deregister the reply object
after reading the first result set while more result sets from the server were pending, resulting in an
application error. (Bug #30989042)

Changes in MySQL Connector/C++ 8.0.20 (2020-04-27, General Availability)

• Connection Management Notes

• Packaging Notes

• Bugs Fixed

Connection Management Notes

• For connections made using X Plugin, Connector/C++ now provides control over the use of
compression to minimize the number of bytes sent over connections to the server. Connection URIs
and SessionSettings objects permit explicitly specifying a compression option:

• URI strings permit a compression option with permitted values of DISABLED, PREFERRED, and
REQUIRED (not case-sensitive). Examples:

mysqlx://user:password@host:port/db?compression=DISABLED
mysqlx://user:password@host:port/db?compression=PREFERRED
mysqlx://user:password@host:port/db?compression=REQUIRED

• SessionSettings objects permit a SessionOption::COMPRESSION option with permitted
values of CompressionMode::DISABLED, CompressionMode::PREFERRED, and
CompressionMode::REQUIRED. Example:

24

MySQL Connector/C++ Release Notes

mysqlx::Session sess(SessionOption::USER, "user_name",
 SessionOption::PWD, "password",
 SessionOption::COMPRESSION, CompressionMode::PREFERRED);

These rules apply:

• If compression is disabled, the connection is uncompressed.

• If compression is preferred, Connector/C++ and the server negotiate to find a compression
algorithm they both permit. If no common algorithm is available, the connection is uncompressed.
This is the default mode if not specified explicitly.

• If compression is required, compression algorithm negotiation occurs as for preferred mode, but if
no common algorithm is available, the connection request terminates with an error.

To avoid CPU inefficiency, data packets are not compressed even when compression is enabled
unless they exceed a threshold size (currently 1000 bytes; this is subject to change).

See also Connection Compression with X Plugin. (WL #12150)

Packaging Notes

• Previously, Connector/C++ binary distributions were compatible with projects built using MSVC 2019
(using either dynamic or static connector libraries) or MSVC 2017 (using dynamic connector libraries
only). Binary distributions now are also compatible with MSVC 2017 using the static X DevAPI
connector library. This means that binary distributions are fully compatible with MSVC 2019, and fully
compatible with MSVC 2017 with the exception of the static legacy (JDBC) connector library. (WL
#13729)

Bugs Fixed

• For connections made using X Plugin, the last byte was removed from DATETIME values fetched as
raw bytes. (Bug #30838230)

• In X DevAPI expressions, Connector/C++ treated the JSON ->> operator the same as ->, rather
than applying an additional JSON_UNQUOTE() operation. (Bug #29870832)

• Comparison of JSON values from query results failed due to an extra \0 character erroneously being
added to the end of such values. (Bug #29847865)

• For connections made using X Plugin, warnings sent following result sets were not captured, and
were thus unavailable to getWarnings(). (Bug #28047970)

Changes in MySQL Connector/C++ 8.0.19 (2020-01-13, General Availability)

• Error Handling

• Legacy (JDBC API) Notes

• Packaging Notes

• X DevAPI Notes

• Functionality Added or Changed

• Bugs Fixed

Error Handling

• If an application tries to obtain a result set from a statement that does not produce one, an exception
occurs. For applications that do not catch such exceptions, Connector/C++ now produces a more
informative error message to indicate why the exception occurred. (Bug #28591814, Bug #92263)

25

https://dev.mysql.com/doc/refman/8.0/en/x-plugin-connection-compression.html
https://dev.mysql.com/doc/refman/8.0/en/json-search-functions.html#operator_json-column-path
https://dev.mysql.com/doc/refman/8.0/en/json-search-functions.html#operator_json-inline-path
https://dev.mysql.com/doc/refman/8.0/en/json-modification-functions.html#function_json-unquote

MySQL Connector/C++ Release Notes

Legacy (JDBC API) Notes

• For applications that use the legacy JDBC API (that is, not X DevAPI or X DevAPI for C), it is
now possible when creating a new session to specify multiple hosts to be tried until a successful
connection is established. A list of hosts can be given in the session creation options.

The new OPT_MULTI_HOST option is disabled by default for backward compatibility, but if enabled
in the ConnectionOptionsMap parameter passed to connect() calls, it permits other map
parameters to specify multiple hosts. Examples:

sql::ConnectOptionsMap opts;
opts["hostName"]="host1,host2:13001,localhost:13000";
opts["schema"]="test";
opts["OPT_MULTI_HOST"] = true;
opts["userName"]="user";
opts["password"]="password";
driver->connect(opts);

sql::ConnectOptionsMap opts;
opts["hostName"]="tcp://host1,host2:13001,localhost:13000/test";
opts["OPT_MULTI_HOST"] = true;
opts["userName"]="user";
opts["password"]="password";
driver->connect(opts);

sql::ConnectOptionsMap opts;
opts["hostName"]="mysql://host1,host2:13001,localhost:13000/test";
opts["OPT_MULTI_HOST"] = true;
opts["userName"]="user";
opts["password"]="password";
driver->connect(opts);

Port values are host specific. If a host is specified without a port number, the default port is used.

These rules apply:

• If OPT_MULTI_HOST is disabled and multiple hosts are specified, an error occurs.

• If OPT_MULTI_HOST is disabled and a single host that resolves to multiple hosts is specified, the
first host is used for backward compatibility.

• If OPT_MULTI_HOST is enabled and multiple hosts are specified, one of them is randomly chosen
as the connection target. If the target fails, another host is randomly chosen from those that
remain. If all targets fail, an error occurs.

• The hostName parameter can accept a URI that contains a list of comma-separated hosts. The
URI scheme can be mysql://, which works like tcp://. The URI scheme can also be omitted,
so the parameter can be a list of comma-separated hosts.

• The connect() syntax that takes URI, user, and password parameters does not permit multiple
hosts because in that case OPT_MULTI_HOST is disabled.

(WL #13322)

Packaging Notes

• Connector/C++ now is compatible with MSVC 2019, while retaining compatibility with MSVC 2017:

• Previously, Connector/C++ binary distributions were compatible with projects built using MSVC
2017 or 2015. Binary distributions now are compatible with projects built using MSVC 2019 (using
either dynamic or static connector libraries) or MSVC 2017 (using dynamic connector libraries).
Building using MSVC 2015 might work, but is not supported.

26

MySQL Connector/C++ Release Notes

• Previously, Connector/C++ source distributions could be built using MSVC 2017 or 2015. Source
distributions now can be built using MSVC 2019 or 2017. Building using MSVC 2015 might work,
but is not supported.

• Previously, the MSI installer accepted the Visual C++ Redistributable for Visual Studio 2017 or
2015. The MSI installer now accepts the Visual C++ Redistributable for Visual Studio 2019 or
2017.

(WL #13563)

X DevAPI Notes

• For X DevAPI or X DevAPI for C applications, Connector/C++ now provides options that enable
specifying the permitted TLS protocols and ciphersuites for TLS connection negotiation:

• TLS protocols must be chosen from this list: TLSv1, TLSv1.1, TLSv1.2, TLSv1.3. (TLSv1.3
requires that both the server and Connector/C++ be compiled with OpenSSL 1.1.1 or higher.)

• Ciphersuite values must be IANA ciphersuite names.

TLS protocols and ciphersuites now may be specified in these contexts:

• Connection strings permit tls-versions and tls-ciphersuites options. The tls-
versions value is a list of one or more comma-separated TLS protocol versions. The tls-
ciphersuites value is a list of one or more comma-separated ciphersuite names. Examples:

...?tls-versions=[TLSv1.3]&...

...?tls-versions=[TLSv1.2,TLSv1.3]&...

...?tls-ciphersuites=[
 TLS_DHE_PSK_WITH_AES_128_GCM_SHA256,
 TLS_CHACHA20_POLY1305_SHA256
]&...

• SessionSettings objects permit TLS_VERSIONS and TLS_CIPHERSUITES options. Each
value is either a string containing one or more comma-separated items or a container with strings
(that is, any type that can be iterated with a loop that yields string values).

Example of single string values:

Session s(...,
 TLS_VERSIONS, "TLSv1.2,TLSv1.3",
 TLS_CIPHERSUITES,
 "TLS_DHE_PSK_WITH_AES_128_GCM_SHA256,TLS_CHACHA20_POLY1305_SHA256",
...);

Example of string container values:

std::list<std::string> tls_versions = {
 "TLSv1.2",
 "TLSv1.3"
};

std::list<std::string> ciphers = {
 "TLS_DHE_PSK_WITH_AES_128_GCM_SHA256",
 "TLS_CHACHA20_POLY1305_SHA256"
};

Session s(...,
 TLS_VERSIONS, tls_versions
 TLS_CIPHERSUITES, ciphers,
...);

Session s(...,
 TLS_VERSIONS, std::vector{"TLSv1.2","TLSv1.3"},
 TLS_CIPHERSUITES, std::vector{"TLS_DHE_PSK_WITH_AES_128_GCM_SHA256", "TLS_CHACHA20_POLY1305_SHA256"},

27

MySQL Connector/C++ Release Notes

...);

• mysqlx_session_option_set() and friends permit MYSQLX_OPT_TLS_VERSIONS
and MYSQLX_OPT_TLS_CIPHERSUITES session option constants, together with the
corresponding OPT_TLS_VERSIONS() and OPT_TLS_CIPHERSUITES() macros.
MYSQLX_OPT_TLS_VERSIONS and MYSQLX_OPT_TLS_CIPHERSUITES accept a string
containing one or more comma-separated items. Examples:

mysqlx_session_option_set(opts, ...,
 OPT_TLS_VERSIONS("TLSv1.2,TLSv1.3"),
 OPT_TLS_CIPHERSUITES(
 "TLS_DHE_PSK_WITH_AES_128_GCM_SHA256,TLS_CHACHA20_POLY1305_SHA256"
),
...)

For more information about TLS protocols and ciphersuites in MySQL, see Encrypted Connection
TLS Protocols and Ciphers. (Bug #28964583, Bug #93299, WL #12755)

• For X DevAPI or X DevAPI for C applications, when creating a new connection (given by a
connection string or other means), if the connection data contains several target hosts that have no
explicit priority assigned, the behavior of the failover logic now is the same as if all those target hosts
have the same priority. That is, the next candidate for making a connection is chosen randomly from
the remaining available hosts.

This is a change from previous behavior, where hosts with no explicit priority were assigned implicit
decreasing priorities and tried in the same order as listed in the connection data. (WL #13497)

Functionality Added or Changed

• Connector/C++ now supports the use of DNS SRV records to specify multiple hosts:

• Session and session-pool creation accepts a URI scheme of mysqlx+srv:// that enables the
DNS SRV feature in connect strings. Example:

mysqlx+srv://_mysql._tcp.host1.example.com/db?options

• For X DevAPI, mysqlx::Session objects permit a SessionOption::DNS_SRV entry to enable
use of a DNS SRV record to specify available services. Example:

mysqlx::Session sess(
 SessionOption::HOST, "_mysql._tcp.host1.example.com",
 SessionOption::DNS_SRV, true,
 SessionOption::USER, "user",
 SessionOption::PWD, "password");

Similarly, for X DevAPI for C, the mysqlx_session_option_set() function permits an
OPT_DNS_SRV() option in the argument list. Example:

mysqlx_session_option_set(opt,
 OPT_HOST("_mysql._tcp.host1.example.com"),
 OPT_DNS_SRV(true)
 OPT_USER("user"),
 OPT_PWD("password"),
 PARAM_END));

• For applications that use the legacy JDBC API (that is, not X DevAPI or X DevAPI for C),
connection maps permit an OPT_DNS_SRV element. A map should specify the host for SRV lookup
as a full lookup name and without a port. Example:

sql::ConnectOptionsMap opts;
opts["hostName"] = "_mysql._tcp.host1.example.com";
opts["OPT_DNS_SRV"] = true;
opts["userName"] = "user";
opts["password"] = "password";
driver->connect(opts);

28

https://dev.mysql.com/doc/refman/8.0/en/encrypted-connection-protocols-ciphers.html
https://dev.mysql.com/doc/refman/8.0/en/encrypted-connection-protocols-ciphers.html

MySQL Connector/C++ Release Notes

In legacy applications, DNS SRV resolution cannot be enabled in URI connect strings because
parameters are not supported in such strings.

(WL #13344, WL #13402)

Bugs Fixed

• Connector/C++ failed to compile using Clang on Linux. (Bug #30450484)

• Connector/C++ set the transaction isolation level to REPEATABLE READ at connect time, regardless
of the current server setting. (Bug #22038313, Bug #78852, Bug #30294415)

Changes in MySQL Connector/C++ 8.0.18 (2019-10-14, General Availability)

Compilation Notes

• It is now possible to compile Connector/C++ using OpenSSL 1.1. (WL #13162)

• Connector/C++ no longer supports using wolfSSL as an alternative to OpenSSL. All Connector/C++
builds now use OpenSSL. (WL #13343)

Changes in MySQL Connector/C++ 8.0.17 (2019-07-22, General Availability)

• Character Set Support

• Compilation Notes

• Configuration Notes

• Function and Operator Notes

• X DevAPI Notes

• Functionality Added or Changed

• Bugs Fixed

Character Set Support

• Connector/C++ now supports the utf8mb4_0900_bin collation added for the utf8mb4 Unicode
character set in MySQL 8.0.17. For more information about this collation, see Unicode Character
Sets. (WL #13094, WL #13502)

Compilation Notes

• Connector/C++ now compiles cleanly using the C++14 compiler. This includes MSVC 2017. Binary
distributions from Oracle are still built in C++11 mode using MSVC 2015 for compatibility reasons.
(WL #13133)

Configuration Notes

• The maximum permitted length of host names throughout Connector/C++ has been raised to 255
ASCII characters, up from the previous limit of 60 characters. Applications that expect host names to
be a maximum of 60 characters should be adjusted to account for this change. (WL #13092)

Function and Operator Notes

• Connector/C++ now supports the OVERLAPS and NOT OVERLAPS operators for expressions on
JSON arrays or objects:

expr OVERLAPS expr

29

https://dev.mysql.com/doc/refman/8.0/en/charset-unicode-sets.html
https://dev.mysql.com/doc/refman/8.0/en/charset-unicode-sets.html

MySQL Connector/C++ Release Notes

expr NOT OVERLAPS expr

Suppose that a collection has these contents:

[{
 "_id": "1",
 "list": [1, 4]
 }, {
 "_id": "2",
 "list": [4, 7]
}]

This operation:

auto res = collection.find("[1, 2, 3] OVERLAPS $.list").fields("_id").execute();
res.fetchAll();

Should return:

[{ "_id": "1" }]

This operation:

auto res = collection.find("$.list OVERLAPS [4]").fields("_id").execute();
res.fetchAll();

Should return:

[{ "_id": "1" }, { "_id": "2" }]

An error occurs if an application uses either operator and the server does not support it. (WL
#12721)

X DevAPI Notes

• For index specifications passed to the Collection::createIndex() method (for X DevAPI
applications) or the mysqlx_collection_create_index() function (for X DevAPI for C
applications), Connector/C++ now supports indexing array fields. A single index field description can
contain a new member name array that takes a Boolean value. If set to true, the field is assumed
to contain arrays of elements of the given type. For example:

coll.createIndex("idx",
 R"({ "fields": [{ "field": "foo", "type": "INT", "array": true }] })"
);

In addition, the set of possible index field data types (used as values of member type in index field
descriptions) is extended with type CHAR(N), where the length N is mandatory. For example:

coll.createIndex("idx",
 R"({ "fields": [{ "field": "foo", "type": "CHAR(10)" }] })"
);

(WL #12151)

Functionality Added or Changed

• Previously, Connector/C++ reported INT in result set metadata for all integer result set columns,
which required applications to check column lengths to determine particular integer types. The
metadata now reports the more-specific TINYINT, SMALLINT, MEDIUMINT, INT, and or BIGINT
types for integer columns. (Bug #29525077)

Bugs Fixed

• Calling a method such as .fields() or .sort() on existing objects did not overwrite the effects of
any previous call. (Bug #29402358)

30

MySQL Connector/C++ Release Notes

• When Connector/C++ applications reported connection attributes to the server upon establishing
a new connection, some attributes were taken from the host on which Connector/C++ was built,
not the host on which the application was being run. Now application host attributes are sent. (Bug
#29394723)

• Assignments of the following form on CollectionFind objects invoked a copy assignment
operator, which was nonoptimal and prevented potential re-execution of statements using prepared
statements:

find = find.limit(1);

(Bug #29390170)

• Legal constructs of this form failed to compile:

for (string id : res.getGeneratedIds()) { ... }

(Bug #29355100)

• During build configuration, CMake could report an incorrect OpenSSL version. (Bug #29282948)

Changes in MySQL Connector/C++ 8.0.16 (2019-04-25, General Availability)

• Character Set Support

• Compilation Notes

• Configuration Notes

• Packaging Notes

• Prepared Statement Notes

• X DevAPI Notes

• X DevAPI for C Notes

• Functionality Added or Changed

• Bugs Fixed

Character Set Support

• Connector/C++ supports all Unicode character sets for connections to servers for MySQL 8.0.14 and
higher, but previously had Unicode support limited to the utf8 character set for servers older than
MySQL 8.0.14. Connector/C++ now supports all Unicode character sets for older servers, including
utf8mb4, utf16, utf16le, utf32, and ucs2. (Bug #28966038, WL #12196)

Compilation Notes

• Thanks to Daniël van Eeden, who contributed a code change to use the stdbool.h header file
rather than a bool typedef. (Bug #29167120, Bug #93803)

• Thanks to Daniël van Eeden, who contributed a code change to use lib instead of lib64 on 64-bit
FreeBSD. (Bug #29167098, Bug #93801)

• Previously, for Connector/C++ applications that used the legacy JDBC API, source files had to use
this set of #include directives:

#include <jdbc/mysql_driver.h>
#include <jdbc/mysql_connection.h>
#include <jdbc/cppconn/*.h>

Now a single #include directive suffices:

31

MySQL Connector/C++ Release Notes

#include <mysql/jdbc.h>

(WL #12786)

Configuration Notes

• Thanks to Daniël van Eeden, who contributed a code change to build the documentation as part of
the all target if Connector/C++ is configured with -DWITH_DOC=ON. (Bug #29167107, Bug #93802)

• Previously, for Connector/C++ 8.0 applications that use the legacy JDBC connector, only static
linking to the MySQL client library was supported. The MYSQLCLIENT_STATIC_LINKING and
MYSQLCLIENT_STATIC_BINDING CMake options are now available to permit dynamic linking.
By default, MYSQLCLIENT_STATIC_LINKING is enabled, to use static linking to the client library.
Disable this option to use dynamic linking. If MYSQLCLIENT_STATIC_LINKING is enabled,
MYSQLCLIENT_STATIC_BINDING may also be used. If MYSQLCLIENT_STATIC_BINDING is
enabled (the default), Connector/C++ is linked to the shared MySQL client library. Otherwise, the
shared MySQL client library is loaded and mapped at runtime. (WL #12730)

• Connector/C++ 8.0 configuration now requires a minimum CMake version of 3.0. (WL #12753)

Packaging Notes

• Connector/C++ debug packages are now available for Linux and Windows. The packages enable
symbolic debugging using tools such as gdb on Linux and windbg on Windows, as well as obtaining
symbolic information about connector code locations from application crash dumps. Use of the
debug packages requires that you have installed and configured the Connector/C++ sources. (Bug
#29117059, Bug #93645, Bug #26128420, Bug #86415, WL #12263)

• For improved GitHub friendliness, Community Connector/C++ source distributions now include a
CONTRIBUTING.md markdown file that contains guidelines intended to be helpful to contributors.
(WL #12791)

• The Protobuf sources bundled in the Connector/C++ source tree were updated to Protobuf 3.6.1.
(Only the parts needed for Connector/C++ are included, to reduce compilation time.) (WL #12889)

Prepared Statement Notes

• For X DevAPI and X DevAPI for C, performance for statements that are executed repeatedly (two or
more times) is improved by using server-side prepared statements for the second and subsequent
executions. This happens internally; applications need take no action and API behavior should be the
same as previously. For statements that change, repreparation occurs as needed. Providing different
data values or different OFFSET or LIMIT clause values does not count as a change. Instead, the
new values are passed to a new invocation of the previously prepared statement. (WL #12149)

X DevAPI Notes

• For X DevAPI and X DevAPI for C applications, Connector/C++ now supports the ability to send
connection attributes (key-value pairs that application programs can pass to the server at connect
time). Connector/C++ defines a default set of attributes, which can be disabled or enabled. In
addition, applications can specify attributes to be passed in addition to the default attributes. The
default behavior is to send the default attribute set.

• For X DevAPI applications, specify connection attributes as a connection-attributes
parameter in a connection string, or by using a SessionOption::CONNECTION_ATTRIBUTES
option for the SessionSettings constructor.

The connection-attributes parameter value must be empty (the same as specifying true),
a Boolean value (true or false to enable or disable the default attribute set), or a list or zero or
more key=value specifiers separated by commas (to be sent in addition to the default attribute
set). Within a list, a missing key value evaluates as an empty string. Examples:

32

https://dev.mysql.com/doc/connector-cpp/8.4/en/connector-cpp-source-configuration-options.html#option_cmake_mysqlclient_static_linking
https://dev.mysql.com/doc/connector-cpp/8.4/en/connector-cpp-source-configuration-options.html#option_cmake_mysqlclient_static_binding
https://dev.mysql.com/doc/connector-cpp/8.4/en/connector-cpp-source-configuration-options.html#option_cmake_mysqlclient_static_linking
https://dev.mysql.com/doc/connector-cpp/8.4/en/connector-cpp-source-configuration-options.html#option_cmake_mysqlclient_static_linking
https://dev.mysql.com/doc/connector-cpp/8.4/en/connector-cpp-source-configuration-options.html#option_cmake_mysqlclient_static_binding
https://dev.mysql.com/doc/connector-cpp/8.4/en/connector-cpp-source-configuration-options.html#option_cmake_mysqlclient_static_binding

MySQL Connector/C++ Release Notes

"mysqlx://user@host?connection-attributes"
"mysqlx://user@host?connection-attributes=true"
"mysqlx://user@host?connection-attributes=false"
"mysqlx://user@host?connection-attributes=[attr1=val1,attr2,attr3=]"
"mysqlx://user@host?connection-attributes=[]"

The SessionOption::CONNECTION_ATTRIBUTES option value must be a Boolean value
(true or false to enable or disable the default attribute set), or a DbDoc or JSON string (to be
sent in addition to the default attribute set). Examples:

 Session sess(..., SessionOption::CONNECTION_ATTRIBUTES, false);
 Session sess(..., SessionOption::CONNECTION_ATTRIBUTES, attr_doc);
 Session sess(..., SessionOption::CONNECTION_ATTRIBUTES,
 R"({ "attr1": "val1", "attr2" : "val2" })"
);

• For X DevAPI for C applications, specify connection attributes using the
OPT_CONNECTION_ATTRIBUTES() macro for the mysqlx_session_option_set() function.
The option value must be null (to disable the default attribute set) or a JSON string (to be sent in
addition to the default attribute set). Examples:

mysqlx_session_option_set(opts, OPT_CONNECTION_ATTRIBUTES(nullptr));
mysqlx_session_option_set(opts,
 OPT_CONNECTION_ATTRIBUTES("{ \"attr1\": \"val1\", \"attr2\" : \"val2\" }")
);

Application-defined attribute names cannot begin with _ because such names are reserved for
internal attributes.

If connection attributes are not specified in a valid way, an error occurs and the connection attempt
fails.

For general information about connection attributes, see Performance Schema Connection Attribute
Tables. (WL #12495)

X DevAPI for C Notes

• The signatures for several X DevAPI for C functions have been changed to enable better error
information to be returned to applications by means of a mysqlx_error_t handle. These functions
are affected:

mysqlx_client_t*
mysqlx_get_client_from_url(
 const char *conn_string,
 const char *client_opts,
 mysqlx_error_t **error
)

mysqlx_client_t*
mysqlx_get_client_from_options(
 mysqlx_session_options_t *opt,
 mysqlx_error_t **error
)

mysqlx_session_t*
mysqlx_get_session(
 const char *host, int port,
 const char *user, const char *password,
 const char *database,
 mysqlx_error_t **error
)

mysqlx_session_t*
mysqlx_get_session_from_url(
 const char *conn_string,
 mysqlx_error_t **error
)

33

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-connection-attribute-tables.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-connection-attribute-tables.html

MySQL Connector/C++ Release Notes

mysqlx_session_t*
mysqlx_get_session_from_options(
 mysqlx_session_options_t *opt,
 mysqlx_error_t **error
)

mysqlx_session_t *
mysqlx_get_session_from_client(
 mysqlx_client_t *cli,
 mysqlx_error_t **error
)

The final argument in each case is a mysqlx_error_t handle into which Connector/C++ stores
error information. If the argument is a null pointer, Connector/C++ ignores it. The application is
responsible to free non-null handles by passing them to mysqlx_free().

The signature for mysqlx_free() has also been changed to accept a void * argument so
that it can accept a handle of any type. Consequently, other type-specific free functions, such as
mysqlx_free_options(), are no longer needed and are deprecated.

The preceding modifications change the Connector/C++ API, which has these implications:

• The modifications change the ABI, so the ABI version is changed from 1 to 2. This changes the
connector library names.

• X DevAPI for C applications to be compiled against the new API must be modified to use the new
function signatures. (X DevAPI applications should build without change.)

• Applications built against the old ABI will not run with the new connector library.

• The API change and ABI version change do not affect the legacy JDBC interface, so library names
for the legacy JDBC connector library do not change and legacy application need not be changed.

• It is possible to install both the old and new libraries. However, installers may remove the old
libraries, so they may need to be re-added manually after installing the new libraries.

(WL #11654, WL #12751)

Functionality Added or Changed

• Thanks to Daniël van Eeden, who contributed documentation for the
mysqlx_column_get_collation() function and various corrections to the developer
documentation. (Bug #29123114, Bug #93665, Bug #29115285, Bug #93640, Bug #29122490, Bug
#93663)

• Connector/C++ now has improved support for resetting sessions in connection pools. Returning
a session to the pool drops session-related objects such as temporary tables, session variables,
and transactions, but the connection remains open and authenticated so that reauthentication is not
required when the session is reused. (WL #12497)

Bugs Fixed

• Previously, for the SSL_MODE_VERIFY_IDENTITY connection option, Connector/C++ checked
whether the host name that it used for connecting matched the Common Name value in the
certificate but not the Subject Alternative Name value. Now, if used with OpenSSL 1.0.2 or higher,
Connector/C++ checks whether the host name matches either the Subject Alternative Name value or
the Common Name value in the server certificate. (Bug #28964313, Bug #93301)

• After repeated calls, mysqlx_get_session_from_client() could hang. (Bug #28587287)

• The SessionSettings/ClientSettings iterator implementation was incomplete. (Bug
#28502574)

34

MySQL Connector/C++ Release Notes

Changes in MySQL Connector/C++ 8.0.15 (2019-02-01, General Availability)

This release contains no functional changes and is published to align version number with the MySQL
Server 8.0.15 release.

Changes in MySQL Connector/C++ 8.0.14 (2019-01-21, General Availability)

• Configuration Notes

• Packaging Notes

• X DevAPI Notes

Configuration Notes

• These CMake options have been added to enable more fine-grained specification of installation
directories. All are relative to CMAKE_INSTALL_PREFIX:

• CMAKE_INSTALL_LIBDIR: Library installation directory.

• CMAKE_INSTALL_INCLUDEDIR: Header file installation directory.

• CMAKE_INSTALL_DOCDIR: Documentation installation directory.

(Bug #28045358)

Packaging Notes

• Previously, Connector/C++ binary distributions included a BUILDINFO.txt file that contained
information about the build environment used to produce the distribution. Binary distributions now
include a file named INFO_BIN that provides similar information, and an INFO_SRC file that provides
information about the product version and the source repository from which the distribution was
produced. Source distributions include the INFO_SRC file only. (WL #12293)

• Connector/C++ now is compatible with MSVC 2017, while retaining compatibility with MSVC 2015:

• Previously, Connector/C++ binary distributions were compatible with projects built using MSVC
2015. Binary distributions now are compatible with projects built using MSVC 2017 or 2015. DLLs
have a -vs14 suffix in their names to reflect that they are compatible with MSVC 2015, but can
also be used in MSVC 2017 projects.

• Previously, Connector/C++ source distributions could be built using MSVC 2015. Source
distributions now can be built using MSVC 2017 or 2015.

• Previously, the MSI installer accepted the Visual C++ Redistributable for Visual Studio 2015. The
MSI installer now accepts the Visual C++ Redistributable for Visual Studio 2017 or 2015.

(WL #12611)

• Installers for Connector/C++ are now available as Debian packages. See Installing Connector/C++
from a Binary Distribution. (WL #12101)

X DevAPI Notes

• Connector/C++ now provides collection counting methods for applications that use X DevAPI for C:

• mysqlx_collection_count(): The number of documents in a collection without filtering.

mysqlx_collection_t *c1 = mysqlx_get_collection(schema, "c1", 1);
ulong64_t documents;
mysqlx_collection_count(c1, &documents);

• mysqlx_table_count(): The number of rows in a table without filtering.

35

https://dev.mysql.com/doc/connector-cpp/8.4/en/connector-cpp-source-configuration-options.html#option_cmake_cmake_install_prefix
https://dev.mysql.com/doc/connector-cpp/8.4/en/connector-cpp-source-configuration-options.html#option_cmake_cmake_install_libdir
https://dev.mysql.com/doc/connector-cpp/8.4/en/connector-cpp-source-configuration-options.html#option_cmake_cmake_install_includedir
https://dev.mysql.com/doc/connector-cpp/8.4/en/connector-cpp-source-configuration-options.html#option_cmake_cmake_install_docdir
https://dev.mysql.com/doc/connector-cpp/8.4/en/connector-cpp-installation-binary.html
https://dev.mysql.com/doc/connector-cpp/8.4/en/connector-cpp-installation-binary.html

MySQL Connector/C++ Release Notes

mysqlx_table_t *t1 = mysqlx_get_table(schema, "t1", 1);
ulong64_t rows;
mysqlx_table_count(t1, &rows);

• mysqlx_get_count(): The number of remaining cached rows held at the moment. After a row is
consumed by a fetch function, the number of cached rows decreases.

mysqlx_stmt_t *stmt = mysqlx_sql_new(session, query, strlen(query));
mysqlx_result_t *res = mysqlx_execute(stmt);

ulong64_t row_count;
mysqlx_get_count(res, &row_count);

mysqlx_get_count() is similar in all respects to mysqlx_store_result() except that the
behavior differs after fetching rows when reaching zero number of rows in the cache:

• mysqlx_get_count() returns zero through the parameter and finishes with RESULT_OK.

• mysqlx_store_result() does not return anything through the parameter (which remains
unchanged) and finishes with RESULT_ERROR.

(WL #12496)

Changes in MySQL Connector/C++ 8.0.13 (2018-10-22, General Availability)

• Legacy (JDBC API) Notes

• Packaging Notes

• X DevAPI Notes

• Functionality Added or Changed

• Bugs Fixed

Legacy (JDBC API) Notes

• For connections to the server made using the legacy JDBC API (that is, not made using X DevAPI
or X DevAPI for C), the default connection character set is now utf8mb4 rather than utf8.
Connections to the server made using X DevAPI or X DevAPI for C continue to use the connection
character set determined by the server. (Bug #28204677)

Packaging Notes

• Connector/C++ 32-bit MSI packages are now available for Windows. These 32-bit builds enable use
of the legacy JDBC connector. (WL #12262)

• Connector/C++ compressed tar file packages are now available for Solaris.

It is also possible to build Connector/C++ from source on Solaris. For platform-specific build notes,
see Building Connector/C++ Applications: Platform-Specific Considerations. (WL #11655)

X DevAPI Notes

• Connector/C++ now provides connection pooling for applications using X Protocol. This capability
is based on client objects, a new type of X DevAPI object. A client can be used to create sessions,
which take connections from a pool managed by that client. For a complete description, see
Connecting to a Single MySQL Server Using Connection Pooling.

X DevAPI example:

using namespace mysqlx;

Client cli("user:password@host_name/db_name", ClientOption::POOL_MAX_SIZE, 7);

36

https://dev.mysql.com/doc/connector-cpp/8.4/en/connector-cpp-apps-platform-considerations.html
https://dev.mysql.com/doc/x-devapi-userguide/en/connecting-connection-pool.html

MySQL Connector/C++ Release Notes

Session sess = cli.getSession();

// use sess as before

cli.close(); // close session sess

X DevAPI for C example:

char error_buf[255];
int error_code;

mysqlx_client_t *cli
 = mysqlx_get_client_from_url(
 "user:password@host_name/db_name", "{ \"maxSize\": 7 }", error_buf, &error_code
);
mysqlx_session_t *sess = mysqlx_get_session_from_client(cli);

// use sess as before

mysqlx_close_client(cli); // close session sess

(WL #11929)

• For X DevAPI, a new connect-timeout option can be specified in connection strings or URIs to
indicate a connection timeout in milliseconds. The SessionSettings::Options object supports a
new CONNECT_TIMEOUT option.

For X DevAPI for C, the mysqlx_opt_type_t constant is MYSQLX_OPT_CONNECT_TIMEOUT
together with the OPT_CONNECT_TIMEOUT() macro.

If no timeout option is specified, the default is 10000 (10 seconds). A value of 0 disables the timeout.
The following examples set the connection timeout to 10 milliseconds:

X DevAPI examples:

Session sess("user@host/db?connect-timoeut=10");

Session sess(..., SessionOption::CONNECT_TIMEOUT, 10, ...);

Session sess(
 ...,
 SessionOption::CONNECT_TIMEOUT, std::chrono::milliseconds(10),
 ...
);

X DevAPI for C example:

mysqlx_session_options_t *opt = mysqlx_session_options_new();
mysqlx_session_option_set(opt, ..., OPT_CONNECT_TIMEOUT(10), ...);

(WL #12148)

Functionality Added or Changed

• JSON: Connector/C++ now uses RapidJSON for improved performance of operations that involve
parsing JSON strings. There are no user-visible API changes for X DevAPI or X DevAPI for C. (WL
#12292)

Bugs Fixed

• On SLES 15, Connector/C++ installation failed if libmysqlcppcon7 was already installed. (Bug
#28658120)

• Applications that were statically linked to the legacy JDBC connector could encounter a read access
violation at exit time due to nondeterministic global destruction order. (Bug #28525266, Bug #91820)

• Configuring with -DCMAKE_BUILD_TYPE=Release did not work on Linux. (Bug #28045274)

37

https://dev.mysql.com/doc/connector-cpp/8.4/en/connector-cpp-source-configuration-options.html#option_cmake_cmake_build_type

MySQL Connector/C++ Release Notes

• Field references in .having() expressions could be interpreted incorrectly and produce errors.
(Bug #26310713)

Changes in MySQL Connector/C++ 8.0.12 (2018-07-27, General Availability)

• Installation Notes

• Packaging Notes

• Security Notes

• X DevAPI Notes

• Bugs Fixed

Installation Notes

• Because the Microsoft Visual C++ 2017 Redistributable installer deletes the Microsoft Visual C++
2015 Redistributable registry keys that identify its installation, standalone MySQL MSIs may fail to
detect the Microsoft Visual C++ 2015 Redistributable if both it and the Microsoft Visual C++ 2017
Redistributable are installed. The solution is to repair the Microsoft Visual C++ 2017 Redistributable
via the Windows Control Panel to recreate the registry keys needed for the runtime detection. Unlike
the standalone MSIs, MySQL Installer for Windows contains a workaround for the detection problem.
(Bug #28345281, Bug #91542)

Packaging Notes

• An RPM package for installing ARM 64-bit (aarch64) binaries of Connector/C++ on Oracle Linux 7 is
now available in the MySQL Yum Repository and for direct download.

Known Limitation for this ARM release: You must enable the Oracle Linux 7 Software Collections
Repository (ol7_software_collections) to install this package, and must also adjust the libstdc++7
path. See Yum's Platform Specific Notes for additional details.

• Installers for Connector/C++ are now available in these formats: MSI packages (Windows);
RPM packages (Linux); DMG packages (macOS). See Installing Connector/C++ from a Binary
Distribution. (WL #11670, WL #11671, WL #11672)

Security Notes

• yaSSL is no longer included in Connector/C++ source distributions. wolfSSL may be used as a
functionally equivalent alternative that has a GPLv2-compatible license. In addition, wolfSSL (like
OpenSSL) supports the TLSv1.2 protocol, which yaSSL does not.

To build Connector/C++ using wolfSSL, use the -DWITH_SSL=path_name CMake option, where
path_name indicates the location of the wolfSSL sources. For more information, see Source
Installation System Prerequisites, and Connector/C++ Source-Configuration Options. (WL #11683)

X DevAPI Notes

• Connector/C++ now supports NOWAIT and SKIP LOCKED lock contention modes to be used with
lockExclusive() and lockShared() clauses of CRUD find/select operations (see Locking Read
Concurrency with NOWAIT and SKIP LOCKED), and a default lock contention mode. The following
list names the permitted constants. For each item, the first and second constants apply to X DevAPI
and X DevAPI for C, respectively.

• LockContention::DEFAULT, LOCK_CONTENTION_DEFAULT: Block the query until existing row
locks are released.

• LockContention::NOWAIT, LOCK_CONTENTION_NOWAIT: Return an error if the lock cannot be
obtained immediately.

38

https://dev.mysql.com/doc/refman/8.0/en/linux-installation-yum-repo.html#yum-install-platform-specifics
https://dev.mysql.com/doc/connector-cpp/8.4/en/connector-cpp-installation-binary.html
https://dev.mysql.com/doc/connector-cpp/8.4/en/connector-cpp-installation-binary.html
https://dev.mysql.com/doc/connector-cpp/8.4/en/connector-cpp-source-configuration-options.html#option_cmake_with_ssl
https://dev.mysql.com/doc/connector-cpp/8.4/en/connector-cpp-installation-source-prerequisites.html
https://dev.mysql.com/doc/connector-cpp/8.4/en/connector-cpp-installation-source-prerequisites.html
https://dev.mysql.com/doc/connector-cpp/8.4/en/connector-cpp-source-configuration-options.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-locking-reads.html#innodb-locking-reads-nowait-skip-locked
https://dev.mysql.com/doc/refman/8.0/en/innodb-locking-reads.html#innodb-locking-reads-nowait-skip-locked

MySQL Connector/C++ Release Notes

• LockContention::SKIP_LOCKED, LOCK_CONTENTION_SKIP_LOCKED: Execute the query
immediately, excluding from the query items that are locked.

For X DevAPI and X DevAPI for C applications, lock mode methods accept these lock contention
constants as a parameter. For X DevAPI applications, lock mode methods can be called without this
parameter, as before; this is equivalent to passing a lock mode of DEFAULT.

For more information, see Working with Locking. (WL #11374)

• Connector/C++ now supports the SHA256_MEMORY authentication mechanism for connections
using the X Protocol. For X DevAPI applications, SessionOption::AUTH supports the new
value AuthMethod::SHA256_MEMORY. For X DevAPI for C applications, the session option
MYSQLX_OPT_AUTH supports the new value MYSQLX_AUTH_SHA256_MEMORY. These new values
request using the sha256_memory authentication mechanism when creating a session. (WL
#11685)

• To increase compliance with the X DevAPI, these Connector/C++ changes were made:

• getAffectedItemsCount() was moved from Result to Result_common.

• Collection.modify(condition).arrayDelete() was removed.

• getAffectedRowsCount() was removed. Use getAffectedItemsCount() instead.

• getWarningCount() was renamed to getWarningsCount().

Bugs Fixed

• utf8mb4 character data was handled incorrectly. (Bug #28240202)

• Session creation had a memory leak. (Bug #27917942)

• When configuring to build Connector/C++ with the legacy connector, CMake did not account for the
MYSQL_CONFIG_EXECUTABLE option. (Bug #27874173, Bug #90389)

• Improper error handling for unknown hosts when creating a session could result in unexpected
application exit. (Bug #27868302)

• The mysqlx_row_fetch_one() X DevAPI for C function could fail to return for large result set
exceeding the maximum packet size. Now such result sets produce an error. (Bug #27732224)

Changes in MySQL Connector/C++ 8.0.11 (2018-04-19, General Availability)

For MySQL Connector/C++ 8.0.11 and higher, Commercial and Community distributions require the
Visual C++ Redistributable for Visual Studio 2015 to work on Windows platforms. The Redistributable
is available at the Microsoft Download Center; install it before installing Connector/C++.

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• Incompatible Change: When documents without an _id attribute are added to a collection, the
server now automatically generates IDs for them. The server determines the ID format, which should
be considered opaque from the API perspective (they are no longer UUID-based). As before, no _id
attribute is generated if a document already contains one. User-provided document IDs must not
conflict with IDs of other documents in the collection.

This capability requires a MySQL 8.0 GA server. If the server does not support document ID
generation, the document-add operation returns an error indicating that document IDs were missing.

39

https://dev.mysql.com/doc/x-devapi-userguide/en/working-with-locking.html
https://dev.mysql.com/doc/connector-cpp/8.4/en/connector-cpp-source-configuration-options.html#option_cmake_mysql_config_executable
http://www.microsoft.com/en-us/download/default.aspx

MySQL Connector/C++ Release Notes

For X DevAPI, the generated IDs resulting from a document-add operation can be obtained using
the new Result.getGeneratedIds() method, which returns a list. For X DevAPI for C, the
generated IDs can be obtained using the new mysqlx_fetch_generated_id() function, which
returns IDs one by one for successive calls, until it returns NULL to indicate no more generated IDs
are available. For both X DevAPI and X DevAPI for C, document IDs specified explicitly in added
documents are not returned.

Incompatibility: The getGeneratedIds() method replaces getDocumentId() and
getDocumentIds(), which are now removed. The mysqlx_fetch_generated_id() function
replaces mysqlx_fetch_doc_id(), which is now removed.

For more information, see Working with Document IDs. (WL #11450)

• A patch operation has been implemented that enables specifying a JSON-like object that describes
the changes to apply to documents in a collection.

For X DevAPI, the CollectionModify operation supports a new patch()
clause for patching documents. For X DevAPI for C, there are two new functions:
mysqlx_collection_modify_patch() directly executes patching on documents in a collection
that satisfy given criteria. mysqlx_set_modify_patch() adds a patch operation to a modify
statement created with the mysql_collection_modify_new() function. (WL #11205)

• For connections to the server made using the legacy JDBC API (that is, not made using X DevAPI or
X DevAPI for C), Connector/C++ 8.0 now supports an OPT_GET_SERVER_PUBLIC_KEY connection
option that enables requesting the RSA public key from the server. For accounts that use the
caching_sha2_password or sha256_password authentication plugin, this key can be used
during the connection process for RSA key-pair based password exchange with TLS disabled. This
capability requires a MySQL 8.0 GA server, and is supported only for Connector/C++ built using
OpenSSL. (WL #11719)

Bugs Fixed

• Single-document methods such as Collection.replaceOne() did not accept expr() as the
document specification, but instead treated it as a plain JSON string. (Bug #27677910)

• Compiling X DevAPI and X DevAPI for C test programs failed with an error. (Bug #27610760)

• Connecting with an incorrect SSL_CA value could result in a memory leak. (Bug #27434254)

• For debug builds, specifying a document as _id raised an assertion rather than producing an error.
(Bug #27433969)

Changes in MySQL Connector/C++ 8.0.8 - 8.0.10 (Skipped version numbers)

There are no release notes for these skipped version numbers.

Changes in MySQL Connector/C++ 8.0.7 (2018-02-26, Release Candidate)

In addition to the new APIs introduced in MySQL Connector/C++ 8.0 (X DevAPI and X DevAPI for
C), Connector/C++ now also supports the legacy API based on JDBC4. Applications written against
the JDBC4-based API of Connector/C++ 1.1 can be also compiled with Connector/C++ 8.0, which
is backward compatible with the earlier version. Such code does not require the X Plugin and can
communicate with older versions of the MySQL Server using the legacy protocol. This contrasts with X
DevAPI and X DevAPI for C applications, which expect MySQL Server 8.0.

The legacy API is implemented as a separate library with base name `mysqlcppconn` as opposed to
`mysqlcppconn8` library implementing the new APIs. To build the legacy library, you must configure
Connector/C++ using the -DWITH_JDBC=ON CMake option. For information about using the legacy

40

https://dev.mysql.com/doc/x-devapi-userguide/en/working-with-document-ids.html
https://dev.mysql.com/doc/connector-cpp/8.4/en/connector-cpp-source-configuration-options.html#option_cmake_with_jdbc

MySQL Connector/C++ Release Notes

API, refer to the documentation at https://dev.mysql.com/doc/connector-cpp/en/connector-cpp-getting-
started-examples.html.

• Deprecation and Removal Notes

• Security Notes

• X DevAPI Notes

• Functionality Added or Changed

• Bugs Fixed

Deprecation and Removal Notes

• View and table DDL methods have been removed. It is preferable that SQL statements be used for
such operations.

Removed X DevAPI methods:

Schema.createView()
Schema.alterView()
Schema.dropView()
Schema.dropTable()

Removed X DevAPI data types:

Algorithm
CheckOption
SQLSecurity

Removed X DevAPI for C functions:

mysqlx_view_create
mysqlx_view_create_new
mysqlx_view_modify
mysqlx_view_modify_new
mysqlx_view_replace
mysqlx_view_replace_new
mysqlx_view_drop
mysqlx_table_drop
mysqlx_set_view_algorithm
mysqlx_set_view_security
mysqlx_set_view_definer
mysqlx_set_view_check_option
mysqlx_set_view_columns

Removed X DevAPI for C enumerations:

mysqlx_view_algorithm_t
mysqlx_view_security_t
mysqlx_view_check_option_t

Removed X DevAPI for C macros:

VIEW_ALGORITHM()
VIEW_SECURITY()
VIEW_DEFINER()
VIEW_CHECK_OPTION()
VIEW_COLUMNS()
VIEW_OPTION_XXX

(WL #11375)

Security Notes

• Connector/C++ now supports the caching_sha2_password authentication plugin introduced in
MySQL 8.0 (see Caching SHA-2 Pluggable Authentication), with these limitations:

41

https://dev.mysql.com/doc/connector-cpp/en/connector-cpp-getting-started-examples.html
https://dev.mysql.com/doc/connector-cpp/en/connector-cpp-getting-started-examples.html
https://dev.mysql.com/doc/refman/8.0/en/caching-sha2-pluggable-authentication.html

MySQL Connector/C++ Release Notes

• For X DevAPI or X DevAPI for C applications, only encrypted (SSL) connections can be used to
connect to cached_sha2_password accounts. For non-SSL connections, it is not possible to use
cached_sha2_password accounts.

• For applications that use the legacy JDBC API (that is, not X DevAPI or X DevAPI for C), it is
possible to make connections to cached_sha2_password accounts in the following scenario:

• The connection is unencrypted (OPT_SSL_MODE is set to SSL_MODE_DISABLED).

• The server public key is given using the "rsaKey" option and no RSA key exchange is used
(OPT_GET_SERVER_PUBLIC_KEY is set to false).

If RSA key exchange is enabled, the connection works.

(WL #11415)

X DevAPI Notes

• It is now possible to use the Collection interface to create and drop indexes on document
collections.

X DevAPI example:

coll.createIndex("idx",
 R"({
 "fields": [
 { "field": "$.zip", "type": "TEXT(10)" },
 { "field": "$.count", "type": "INT UNSIGNED" }
]
 })"
);

coll.createIndex("loc",
 R"({
 "type": "SPATIAL",
 "fields": [{ "field": "$.coords", "type": "GEOJSON", "srid": 31287 }]
 })"
);

coll.dropIndex("idx");

X DevAPI for C example:

ret = mysqlx_collection_create_index(coll, "idx",
 R"({
 "fields": [
 { "field": "$.zip", "type": "TEXT(10)" },
 { "field": "$.count", "type": "INT UNSIGNED" }
]
 })"
)

ret = mysqlx_collecton_create_index(coll, "loc",
 R"({
 "type": "SPATIAL",
 "fields": [{ "field": "$.coords", "type": "GEOJSON", "srid": 31287 }]
 })"
);

mysqlx_collection_drop_index(coll, "idx");

(WL #11231)

• It is now possible to use the Session interface to create savepoints inside transactions and roll
back a transaction to a given savepoint. This interface supports the operations provided by the
SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT statements. For more

42

https://dev.mysql.com/doc/refman/8.0/en/savepoint.html
https://dev.mysql.com/doc/refman/8.0/en/savepoint.html
https://dev.mysql.com/doc/refman/8.0/en/savepoint.html

MySQL Connector/C++ Release Notes

information about these statements, see SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE
SAVEPOINT Statements.

X DevAPI example:

sess.startTransaction();
string point1 = sess.setSavepoint();
sess.setSavepoint("point2");
sess.rollbackTo(point1); // this also removes savepoint "point2"
string point3 = sess.setSavepoint();
sess.releaseSavepoint(point3); // explicitly remove savepoint
sess.commitTransaction();

X DevAPI for C example:

mysqlx_trasaction_begin(sess);
const char *point1 = mysqlx_savepoint_set(sess,NULL);
mysqlx_savepoint_set(sess,"point2");
mysqlx_rollback_to(sess,point1);
const char *point3 = mysqlx_savepoint_set(sess,NULL);
mysqlx_sevepoint_release(sess,point3);
mysqlx_transaction_commit(sess);

For more information, see Working with Savepoints. (WL #11229)

Functionality Added or Changed

• Connector/C++ now implements TLS connections using the OpenSSL library. It is possible to build
Connector/C++ with OpenSSL or the bundled yaSSL implementation of TLS. This is controlled by
the WITH_SSL CMake option, which takes these values: bundled (build using bundled yaSSL code);
system (build using system OpenSSL library, with the location as detected by CMake); path_name
(build using OpenSSL library installed at the named location). For more information, see “How to
build code that uses Connector/C++” in the Connector/C++ X DevAPI Reference, available at https://
dev.mysql.com/doc/index-connectors.html. (WL #11376)

Bugs Fixed

• replaceOne() and similar methods did not correctly detect document ID mismatches. (Bug
#27246854)

• Calling bind() twice on the same parameter for complex types resulted in empty values. (Bug
#26962725)

Changes in MySQL Connector/C++ 8.0.6 (2017-09-28, Development
Milestone)

• X DevAPI Notes

• Functionality Added or Changed

• Bugs Fixed

X DevAPI Notes

• A session now can acquire a lock for documents or rows returned by find or select statements, to
prevent the returned values from being changed from other sessions while the lock is held (provided
that appropriate isolation levels are used). Locks can be requested several times for a given find or
select statement. Only the final request is acted upon. An acquired lock is held until the end of the
current transaction.

For X DevAPI, CollectionFind and TableSelect implement .lockExclusive() and
.lockShared() methods, which request exclusive or shared locks, respectively, on returned
documents or rows. These methods can be called after .bind() and before the final .execute().

43

https://dev.mysql.com/doc/refman/8.0/en/savepoint.html
https://dev.mysql.com/doc/refman/8.0/en/savepoint.html
https://dev.mysql.com/doc/x-devapi-userguide/en/working-with-savepoints.html
https://dev.mysql.com/doc/connector-cpp/8.4/en/connector-cpp-source-configuration-options.html#option_cmake_with_ssl
https://dev.mysql.com/doc/index-connectors.html
https://dev.mysql.com/doc/index-connectors.html

MySQL Connector/C++ Release Notes

For X DevAPI for C, the new mysqlx_set_locking(stmt, lock) function can be called to
request exclusive or shared locks on returned documents or rows, or to release locks. The lock
parameter can be ROW_LOCK_EXCLUSIVE, ROW_LOCK_SHARED, or ROW_LOCK_NONE. The first two
values specify a type of lock to be acquired. ROW_LOCK_NONE removes any row locking request from
the statement. (WL #10980)

• For X DevAPI, a new auth option can be specified in connection strings or URIs to indicate the
authentication mechanism. Permitted values are PLAIN and MYSQL41. The option name and
value are not case sensitive. The SessionSettings::Options object supports a new AUTH
enumeration, with the same permitted values.

For X DevAPI for C, a new auth setting can be specified in connection strings or URIs to
indicate the authentication mechanism. Permitted values are PLAIN and MYSQL41. The option
name and value are not case sensitive. A new MYSQLX_OPT_AUTH constant is recognized
by the mysqlx_options_set() function, with permitted values MYSQLX_AUTH_PLAIN and
MYSQLX_AUTH_MYSQL41.

If the authentication mechanism is not specified, it defaults to PLAIN for secure (TLS) connections,
or MYSQL41 for insecure connections. For Unix socket connections, the default is PLAIN. (WL
#10718)

• Boolean expressions used in queries and statements now support a variant of the IN operator for
which the right hand side operand is any expression that evaluates to an array or document.

X DevAPI example:

coll.find("'car' IN $.toys").execute();

X DevAPI for C example:

res = mysqlx_collection_find(coll, "'car' IN $.toys");

In this form, the IN operator is equivalent to the JSON_CONTAINS() SQL function. (WL #10979)

• On Unix and Unix-like systems, Unix domain socket files are now supported as a connection
transport for X DevAPI or X DevAPI for C connections. The socket file can be given in a connection
string or in the session creation options.

X DevAPI examples:

XSession sess("mysqlx://user:password@(/path/to/mysql.sock)/schema");

XSession sess({ SessionSettings::USER, "user",
SessionSettings::PWD, "password,
SessionSettings::SOCKET, "/path/to/mysql.sock"
SessionSettings::DB, "schema" });

X DevAPI for C examples:

mysqlx_session_t *sess = mysqlx_get_session_from_url(
 "mysqlx://user:password@(/path/to/mysql.sock)/schema",
 err_buf, &err_code
);

mysqlx_opt_type_t *sess_opt = mysqlx_session_option_new();
mysqlx_session_option_set(sess_opt,
 MYSQLX_OPT_SOCKET, "/path/to/mysql.sock",
 MYSQLX_OPT_USER, "user",
 MYSQLX_OPT_PWD, "password",
 MYSQLX_OPT_DB, "schema");

mysqlx_session_t *sess = mysqlx_get_session_from_options(
 sess_opt, err_buf, &err_code

44

https://dev.mysql.com/doc/refman/8.0/en/json-search-functions.html#function_json-contains

MySQL Connector/C++ Release Notes

);

(WL #9953)

Functionality Added or Changed

• These drop API changes were made:

• Session::dropTable(schema, table) and Session::dropCollection(schema,
coll) were replaced by Schema::dropTable(table) and
Schema::dropCollection(coll), respectively.

• Schema::dropView() is now a direct-execute method returning void rather than Executable.

• All dropXXX() methods succeed if the dropped objects do not exist.

(WL #10787)

• The following Collection methods were added: addOrReplaceOne(), getOne(),
replaceOne(), and removeOne().

The addOrReplaceOne() and replaceOne() methods work only with MySQL 8.0.3 and higher
servers. For older servers, they report an error. (WL #10981)

Bugs Fixed

• Creating a TLS session with only the ssl-ca option specified could succeed, although it should fail
if ssl-mode is not also specified. (Bug #26226502)

• mysqlx_get_node_session_from_options() could succeed even when a preceding
mysqlx_session_option_set() failed. (Bug #26188740)

Changes in MySQL Connector/C++ 8.0.5 (2017-07-10, Development
Milestone)

MySQL Connectors and other MySQL client tools and applications now synchronize the first digit of
their version number with the (highest) MySQL server version they support. For example, MySQL
Connector/C++ 8.0.12 would be designed to support all features of MySQL server version 8 (or lower).
This change makes it easy and intuitive to decide which client version to use for which server version.

Connector/C++ 8.0.5 is the first release to use the new numbering. It is the successor to Connector/C+
+ 2.0.4.

• Character Set Support

• Deprecation and Removal Notes

• X DevAPI Notes

• Functionality Added or Changed

• Bugs Fixed

Character Set Support

• Connector/C++ now supports MySQL servers configured to use utf8mb4 as the default character
set.

Currently, Connector/C++ works only with UTF-8 and ASCII default character sets (utf8, utf8mb4,
and ascii). If a user creates a table with text columns that use a non-UTF-8 character set, and this
column holds a string with non-ASCII characters, errors will occur for attempts to access that string
(for example, in a query result). On the other hand, if strings consist only of ASCII characters, correct

45

MySQL Connector/C++ Release Notes

result are obtained regardless of the character set. Also, it is always possible to obtain the raw bytes
of the column value, for any character set. (WL #10769)

Deprecation and Removal Notes

• The NodeSession class has been renamed to Session, and the XSession class has been
removed. (WL #10785)

X DevAPI Notes

• For X DevAPI or X DevAPI for C applications, when creating a new session, multiple hosts can be
tried until a successful connection is established. A list of hosts can be given in a connection string or
in the session creation options, with or without priorities.

X DevAPI examples:

Session sess(
 "mysqlx://user:password@["
 "server.example.com,"
 "192.0.2.11:33060,"
 "[2001:db8:85a3:8d3:1319:8a2e:370:7348]:1"
 "]/database"
);

Session sess({ SessionSettings::USER, "user",
 SessionSettings::PWD, "password,
 SessionSettings::HOST, "server.example.com",
 SessionSettings::HOST, "192.0.2.11",
 SessionSettings::PORT, 33060,
 SessionSettings::HOST, "[2001:db8:85a3:8d3:1319:8a2e:370:7348]",
 SessionSettings::PORT, 1,
 SessionSettings::DB, "database" });

X DevAPI for C examples:

sess = mysqlx_get_session_from_url(
 "mysqlx://user:password@["
 "(address=127.0.0.1,priority=2),"
 "(address=example.com:1300,priority=100)"
 "]/database",
 err_msg, &err_code);

mysqlx_opt_type_t *sess_opt = mysqlx_session_option_new();
mysqlx_session_option_set(sess_opt,
 MYSQLX_OPT_USER, "user",
 MYSQLX_OPT_PWD, "password",
 MYSQLX_OPT_HOST, "127.0.0.1",
 MYSQLX_OPT_PRIORITY, 2,
 MYSQLX_OPT_HOST, "example.com",
 MYSQLX_OPT_PORT, 1300,
 MYSQLX_OPT_PRIORITY, 100,
 MYSQLX_OPT_DB, "database");

mysqlx_session_t *sess = mysqlx_get_session_from_options(
 sess_opt, err_buf, &err_code
);

(WL #9978)

Functionality Added or Changed

• The SqlResult class now implements the getAffectedRowsCount() and
getAutoIncrementValue() X DevAPI methods. (Bug #25643081)

• To avoid unintentional changes to all items in a collection, the Collection::modify() and
Collection::remove() methods now require a nonempty selection expression as argument. (WL
#10786)

46

MySQL Connector/C++ Release Notes

• Connections created using Session objects now are encrypted by default. Also, the ssl-enabled
connection option has been replaced by ssl-mode. Permitted ssl-mode values are disabled,
required (the default), verify_ca and verify_identity. (WL #10442)

• Option names within connection strings are now treated as case insensitive. Option values are still
case sensitive by default. (WL #10717)

Bugs Fixed

• It is now possible to call stmt.execute() multiple times. Calling methods that modify statement
parameters should modify the statement sent with execute(). This is also true for binding new
values to named parameters. (Bug #25858159)

• Compiler errors occurred when creating a SessionSettings object due to ambiguity in constructor
resolution. (Bug #25603191)

• collection.add() failed to compile if called with two STL container arguments. (Bug #25510080)

• These expression syntaxes are now supported:

CHARSET(CHAR(X'65'))
'abc' NOT LIKE 'ABC1'
'a' RLIKE '^[a-d]'
'a' REGEXP '^[a-d]'
POSITION('bar' IN 'foobarbar')

These expression syntaxes are not supported but a better error message is provided when they are
used:

CHARSET(CHAR(X'65' USING utf8))
TRIM(BOTH 'x' FROM 'xxxbarxxx')
TRIM(LEADING 'x' FROM 'xxxbarxxx')
TRIM(TRAILING 'xyz' FROM 'barxxyz')
'Heoko' SOUNDS LIKE 'h1aso'

(Bug #25505482)

Changes in MySQL Connector/C++ 2.0

Changes in MySQL Connector/C++ 2.0.4 (2017-03-21, Development
Milestone)

• X DevAPI Notes

• Functionality Added or Changed

• Bugs Fixed

X DevAPI Notes

• Support was added for encrypted sessions over TLS connections. An encrypted session can be
requested either via the ssl-enable and ssl-ca options of a connection string, or using explicit
session creation options. For X DevAPI or X DevAPI for C session settings, see the Connector/C
++ X DevAPI Reference, available at https://dev.mysql.com/doc/index-connectors.html (check the
documentation for enum mysqlx_opt_type_t). (WL #9970)

• The X DevAPI Schema object now supports methods for view manipulation: createView(),
alterView(), and dropView().

X DevAPI for C now contains functions that implement similar functionality:
mysqlx_view_create(), mysqlx_view_replace(), mysqlx_view_modify(), and
(implemented previously) mysqlx_view_drop().

47

https://dev.mysql.com/doc/index-connectors.html

MySQL Connector/C++ Release Notes

As with other X DevAPI for C operations, there are functions that create a statement handle
without executing it: mysqlx_view_create_new(), mysqlx_view_replace_new(), and
mysqlx_view_modify_new().

These X DevAPI for C functions modify view DDL statements before execution:
mysqlx_set_view_algorithm(), mysqlx_set_view_security(),
mysqlx_set_view_check_option(), mysqlx_set_view_definer(), and
mysqlx_set_view_columns(). (WL #10037)

Functionality Added or Changed

• The format of document ID values generated when adding documents to a collection has changed. It
is still a string of 32 hexadecimal digits based on UUID, but the order of digits was changed to match
the requirement of a stable ID prefix. (WL #10008)

• Connector/C++ now supports IPv6 target hosts in connection strings and when creating sessions
using other methods. (WL #10077)

Bugs Fixed

• When rList is an empty list, table.insert().rows(rList) caused a segmentation fault. (Bug
#25515964)

Changes in MySQL Connector/C++ 2.0.3 (2016-10-19, Development
Milestone)

MySQL Connector/C++ 2.0.3 is the next development milestone of the MySQL Connector/C++ 2.0
series, and the first public release. Apart from covering more X DevAPI features, it adds a new, plain C
API, called X DevAPI for C, that offers functionality similar to X DevAPI to applications written in plain
C. Thus, not only can MySQL Connector/C++ be used to write C++ applications, as before. Now, using
the X DevAPI for C, MySQL Connector/C++ can be used to write plain C applications to access MySQL
Database implementing a document store as well as execute traditional plain SQL statements. For
more information about X DevAPI for C, refer to the documentation at https://dev.mysql.com/doc/dev/
connector-cpp/xapi_ref.html.

Note

The X DevAPI requires at least MySQL Server version 5.7.12 or higher with the
X Plugin enabled. For general documentation about how to get started using
MySQL as a document store, see Using MySQL as a Document Store.

X DevAPI Notes

• New X DevAPI features added in this Connector/C++ release:

• Methods for starting and controlling transactions

• Using an X DevAPI URI or connection string to specify new session parameters

• Capability of binding a session to the default shard and execute SQL statements there (using
XSession.bindToDefaultShard())

• Methods for counting elements in a table or collection

• Access to multiple result sets if present in a query result

• Methods to count items in a result set and fetch a complete result set at once (using
fetchAll()), instead of accessing items one by one (using fetchOne())

• Access to warnings reported when processing a statement (getWarnings())

48

https://dev.mysql.com/doc/dev/connector-cpp/xapi_ref.html
https://dev.mysql.com/doc/dev/connector-cpp/xapi_ref.html
https://dev.mysql.com/doc/refman/8.0/en/document-store.html

MySQL Connector/C++ Release Notes

• Access to information about affected rows, generated auto-increment values, and identifiers of
documents added to a collection

Changes in MySQL Connector/C++ 2.0.2 (Not released, Development
Milestone)

MySQL Connector/C++ 2.0.2 is the next development milestone of the MySQL Connector/C++ 2.0
series. This series implements the new X DevAPI. The X DevAPI enables application developers to
write code that combines the strengths of the relational and document models using a modern, NoSQL-
like syntax that does not assume previous experience writing traditional SQL. It also allows working
in a traditional way, using SQL queries, and thus provides functionality similar to the API used in the
previous versions of the connector.

To learn more about how to write applications using the X DevAPI, see X DevAPI User Guide. For
more information about how to use Connector/C++ 2.0 and how the X DevAPI is implemented in it, see
https://dev.mysql.com/doc/dev/connector-cpp/.

Note

The X DevAPI requires at least MySQL Server version 5.7.12 or higher with the
X Plugin enabled. For general documentation about how to get started using
MySQL as a document store, see Using MySQL as a Document Store.

Changes in MySQL Connector/C++ 2.0.1 (Not released, Development
Milestone)

MySQL Connector/C++ 2.0.1 is the first development milestone of the MySQL Connector/C++ 2.0
series.

Changes in MySQL Connector/C++ 1.1

Changes in MySQL Connector/C++ 1.1.13 (2019-10-25, General Availability)

• Character Set Support

• Bugs Fixed

Character Set Support

• Connector/C++ now supports the utf8mb4_0900_bin collation added for the utf8mb4 Unicode
character set in MySQL 8.0.17. For more information about this collation, see Unicode Character
Sets. (WL #13094, WL #13502)

Bugs Fixed

• Connector/C++ set the transaction isolation level to REPEATABLE READ at connect time, regardless
of the current server setting. (Bug #22038313, Bug #78852, Bug #30294415)

Changes in MySQL Connector/C++ 1.1.12 (2019-01-28, General Availability)

• Compilation Notes

• Security Notes

• Bugs Fixed

Compilation Notes

• Connector/C++ now compiles against MySQL 5.5 and 5.6. Thanks to Marco Busemann for the patch.
(Bug #28280066, Bug #91529)

49

https://dev.mysql.com/doc/x-devapi-userguide/en/
https://dev.mysql.com/doc/dev/connector-cpp/
https://dev.mysql.com/doc/refman/8.0/en/document-store.html
https://dev.mysql.com/doc/refman/8.0/en/charset-unicode-sets.html
https://dev.mysql.com/doc/refman/8.0/en/charset-unicode-sets.html

MySQL Connector/C++ Release Notes

Security Notes

• Connector/C++ now supports the improvements to named-pipe access control implemented for
MySQL Server and controlled by the named_pipe_full_access_group system variable. (WL
#12725)

Bugs Fixed

• Compiling Connector/C++ from source using dynamic linking resulted in link errors for the
mysql_sys and mysql_strings libraries. (Bug #27961505, Bug #90727)

Changes in MySQL Connector/C++ 1.1.11 (2018-04-30, General Availability)

For MySQL Connector/C++ 1.1.11 and higher, Commercial and Community distributions require the
Visual C++ Redistributable for Visual Studio 2015 to work on Windows platforms. This is a change
from previous versions, which required Visual C++ Redistributable for Visual Studio 2013, and only
for Community (but not Commercial) distributions. The Redistributable is available at the Microsoft
Download Center; install it before installing Connector/C++.

• Packaging Notes

• Functionality Added or Changed

Packaging Notes

• Connector/C++ binary distributions now include a BUILDINFO.txt file that contains information
about the build environment used to produce the distribution. (Bug #23556661)

Functionality Added or Changed

• Connector/C++ 1.1 now works with both MySQL 5.7 GA and MySQL 8.0 GA servers.

• Applications can connect to MySQL 8.0 servers using accounts that authenticate using the
caching_sha2_password authentication plugin.

• Applications can connect to MySQL 8.0 servers using unencrypted connections by using the
OPT_GET_SERVER_PUBLIC_KEY connection option with a value of true.

• Connector/C++ 1.1 can be built from source against either MySQL 5.7 and MySQL 8.0 server
installations.

• A new BUNDLE_DEPENDENCIES CMake option is available. If enabled, the external libraries on
which Connector/C++ depends at runtime (such as OpenSSL), are packaged together with the
connector.

(WL #11098)

• Connector/C++ 1.1 now supports an OPT_GET_SERVER_PUBLIC_KEY connection option
that enables requesting the RSA public key from the server. For accounts that use the
caching_sha2_password or sha256_password authentication plugin, this key can be used
during the connection process for RSA key-pair based password exchange with TLS disabled. This
capability requires a MySQL 8.0 GA server, and is supported only for Connector/C++ built using
OpenSSL. (WL #11719)

Changes in MySQL Connector/C++ 1.1.10 (2017-07-21, General Availability)

For this release of MySQL Connector/C++, only Commercial packages are available. No Community
packages are available.

50

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_named_pipe_full_access_group
http://www.microsoft.com/en-us/download/default.aspx
http://www.microsoft.com/en-us/download/default.aspx
https://dev.mysql.com/doc/connector-cpp/8.4/en/connector-cpp-source-configuration-options.html#option_cmake_bundle_dependencies

MySQL Connector/C++ Release Notes

Security Notes

• The linked OpenSSL library for Connector/C++ 1.1 Commercial has been updated to version 1.0.2l.
For a description of issues fixed in this version, see http://www.openssl.org/news/vulnerabilities.html.
(Bug #26321027)

Changes in MySQL Connector/C++ 1.1.9 (2017-05-16, General Availability)

• Compilation Notes

• Security Notes

• Bugs Fixed

Compilation Notes

• The Windows version of Connector/C++ Community is now built using the dynamic C++ runtime
library (that is, with the /MD compiler option), with the following implications for users:

• Target hosts running Windows applications that use Connector/C++ Community now need the
Visual C++ Redistributable for Visual Studio 2013 installed on them.

• Client applications on Windows that use Connector/C++ Community should be compiled with the /
MD compiler option.

Security Notes

• The linked OpenSSL library for Connector/C++ 1.1.9 Commercial has been updated to version
1.0.2k. For a description of issues fixed in this version, see http://www.openssl.org/news/
vulnerabilities.html.

This change does not affect the Oracle-produced MySQL Community build of Connector/C++, which
uses the yaSSL library instead.

Bugs Fixed

• Values returned by getDouble() from DOUBLE table columns were truncated (decimal part
missing) if the locale was set to fr_CA, which uses comma as the decimal separator. (Bug
#17227390, Bug #69719)

• Connections to localhost failed if the local server was bound only to its IPv6 interface. (Bug
#17050354, Bug #69663)

Changes in MySQL Connector/C++ 1.1.8 (2016-12-16, General Availability)

• Security Notes

• Functionality Added or Changed

• Bugs Fixed

Security Notes

• OpenSSL is ending support for version 1.0.1 in December 2016; see https://www.openssl.org/
policies/releasestrat.html. Consequently, Connector/C++ Commercial builds now use version 1.0.2
rather than version 1.0.1, and the linked OpenSSL library for the Connector/C++ Commercial has
been updated from version 1.0.1 to version 1.0.2j. For a description of issues fixed in this version,
see https://www.openssl.org/news/vulnerabilities.html.

This change does not affect Oracle-produced MySQL Community builds of Connector/C++, which
use the yaSSL library instead.

51

http://www.openssl.org/news/vulnerabilities.html
https://www.microsoft.com/en-us/download/details.aspx?id=40784
http://www.openssl.org/news/vulnerabilities.html
http://www.openssl.org/news/vulnerabilities.html
https://www.openssl.org/policies/releasestrat.html
https://www.openssl.org/policies/releasestrat.html
https://www.openssl.org/news/vulnerabilities.html

MySQL Connector/C++ Release Notes

Functionality Added or Changed

• Connector/C++ now supports a OPT_TLS_VERSION connection option for specifying the protocols
permitted for encrypted connections. The option value is string containing a comma-separated list of
one or more protocol versions. Example:

connection_properties["OPT_TLS_VERSION"] = sql::SQLString("TLSv1.1,TLSv1.2");

The permitted values depend on the SSL library used to compile MySQL: TLSv1, TLSv1.1,
TLSv1.2 if OpenSSL was used; TLSv1 and TLSv1.1 if yaSSL was used. The default is to permit all
available protocols.

For more information about TLS protocols in MySQL, see Encrypted Connection TLS Protocols and
Ciphers. (Bug #23496967)

• Connector/C++ now supports a OPT_SSL_MODE connection option for specifying the security
state of the connection to the server. Permitted option values are SSL_MODE_PREFERRED
(the default), SSL_MODE_DISABLED, SSL_MODE_REQUIRED, SSL_MODE_VERIFY_CA, and
SSL_MODE_VERIFY_IDENTITY. These values correspond to the values of the --ssl-mode option
supported by MySQL client programs; see Command Options for Encrypted Connections. For
example, this setting specifies that the connection should be unencrypted:

connection_properties["OPT_SSL_MODE"] = sql::SSL_MODE_DISABLED;

The OPT_SSL_MODE option comprises the capabilities of the sslEnforce and sslVerify
connection options. Consequently, both of those options are now deprecated. (Bug #23496952)

• Connector/C++ now supports OPT_MAX_ALLOWED_PACKET and OPT_NET_BUFFER_LENGTH
connection options. Each option takes a numeric value. They correspond to the
MYSQL_OPT_MAX_ALLOWED_PACKET and MYSQL_OPT_NET_BUFFER_LENGTH options for the
mysql_options() C API function.

• Issues compiling Connector/C++ under Visual Studio 2015 were corrected.

Bugs Fixed

• A segmentation fault could occur for attempts to insert a large string using a prepared statement.
(Bug #23212333, Bug #81213)

• The certification verification checks that are enabled by the verifySSL connection option were not
performed properly. (Bug #22931974)

• Connector/C++ failed to compile against a version of the MySQL C API older than 5.7. (Bug
#22838573, Bug #80539, Bug #25201287)

Changes in MySQL Connector/C++ 1.1.7 (2016-01-20, General Availability)

• Configuration Notes

• Security Notes

• Spatial Data Support

• Bugs Fixed

Configuration Notes

• Binary distributions for this release of Connector/C++ were linked against libmysqlclient from
MySQL 5.7.10, except for OS X 10.8/10.9, for which distributions were linked against MySQL 5.7.9.
This enables Connector/C++ to take advantage of features present in recent client library versions.
Some examples:

52

https://dev.mysql.com/doc/refman/8.0/en/encrypted-connection-protocols-ciphers.html
https://dev.mysql.com/doc/refman/8.0/en/encrypted-connection-protocols-ciphers.html
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#encrypted-connection-options
https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html

MySQL Connector/C++ Release Notes

• Support for the MySQL JSON data type is available. Current versions of MySQL Workbench
require JSON support, so to build MySQL Workbench 6.3.5 or higher from source, it is necessary
to use a version of Connector/C++ at least as recent as 1.1.7.

• Applications attempt to connect using encryption by default if the server support encrypted
connections, falling back to an unencrypted connection if an encrypted connection cannot be
established. (This is as described at Configuring MySQL to Use Encrypted Connections.) To
enforce an encrypted connection, such that an error occurs if encrypted connections are not
available, applications can enable the sslEnforce connection option.

To build Connector/C++ from source, you must use either a General Availability version of MySQL
5.7 (5.7.9 or higher). Set the MYSQL_DIR CMake option appropriately at configuration time as
necessary. (Bug #22351273)

Security Notes

• The linked OpenSSL library for Connector/C++ Commercial has been updated to version
1.0.1q. Issues fixed in the new OpenSSL version are described at http://www.openssl.org/news/
vulnerabilities.html.

This change does not affect Oracle-produced MySQL Community builds of Connector/C++, which
use the yaSSL library instead.

Spatial Data Support

• The required version of the Boost library for Connector/C++ builds has been raised to 1.56.0.

Bugs Fixed

• MySQL_Prepared_ResultSet::relative() failed to fetch the record due to a missing proxy-
>fetch() call. (Bug #21152054)

• During Connector/C++ builds, the MySQL Server CXXFLAGS and CFLAGS values were used rather
than the system default values. To specify explicitly to use the server values, enable the new
USE_SERVER_CXXFLAGS CMake option. (Bug #77655, Bug #21391025)

Changes in MySQL Connector/C++ 1.1.6 (2015-06-10, General Availability)

• Security Notes

• Functionality Added or Changed

• Bugs Fixed

Security Notes

• Connector/C++ 1.1.6 Commercial upgrades the linked OpenSSL library to version 1.0.1m which has
been publicly reported as not vulnerable to CVE-2015-0286.

Functionality Added or Changed

• The std::auto_ptr class template is deprecated in C++11, and its usage has been replaced with
boost::scoped_ptr/shared_ptr.

The CMAKE_ENABLE_C++11 CMake option has been added to permit enabling C++11 support. (Bug
#75251)

• Connector/C++ now provides macros to indicate the versions of libraries against which it was built:
MYCPPCONN_STATIC_MYSQL_VERSION and MYCPPCONN_STATIC_MYSQL_VERSION_ID (MySQL

53

https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/using-encrypted-connections.html
http://www.openssl.org/news/vulnerabilities.html
http://www.openssl.org/news/vulnerabilities.html
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0286

MySQL Connector/C++ Release Notes

client library version, string and numeric), and MYCPPCONN_BOOST_VERSION (Boost library version,
numeric). (Bug #75250)

Bugs Fixed

• With defaultStatementResultType=FORWARD_ONLY and a row position after the last row,
using getter methods such as getInt() or getString() resulted in a segmentation fault. (Bug
#20085944)

• For prepared statements, calling wasNull() before fetching data resulted in an assertion failure.
(Bug #19938873)

• Result sets from prepared statements were not freed. (Bug #18135088)

• Connector/C++ failed to build against Boost-devel-1.41.0-25 on OLE6. (Bug #75063, Bug
#20125824)

• Configuration failed if the MYSQL_CONFIG_EXECUTABLE option was specified and the MySQL
installation path contained the characters -m. Installation failed if the build directory was not in the top
source directory. (Bug #73502, Bug #19447498)

• For prepared statements, getString() did not return the fractional seconds part from temporal
columns that had a fractional sections part. (Bug #68523, Bug #17218692)

• For queries of the form SELECT MAX(bit_col) FROM table_with_bit_col, getString()
returned an incorrect result. (Bug #66235, Bug #14520822)

• For Connector/C++ builds from source, make install failed if only the static library had been built
without the dynamic library. (Bug #52281, Bug #11759926)

Changes in MySQL Connector/C++ 1.1.5 (2014-11-26, General Availability)

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• MySQL_Prepared_Statement::getMoreResults() functionality has been implemented, so
multiple result sets now can be fetched using a prepared statement. (Bug #19147677)

• Connector/C++ now supports the defaultAuth, OPT_CONNECT_ATTR_DELETE,
OPT_CONNECT_ATTR_RESET, OPT_LOCAL_INFILE, pluginDir, readDefaultFile,
readDefaultGroup, and charsetDir connection options, which correspond
to the MYSQL_DEFAULT_AUTH, MYSQL_OPT_CONNECT_ATTR_DELETE,
MYSQL_OPT_CONNECT_ATTR_RESET, MYSQL_OPT_LOCAL_INFILE, MYSQL_PLUGIN_DIR,
MYSQL_READ_DEFAULT_FILE, MYSQL_READ_DEFAULT_GROUP, and MYSQL_SET_CHARSET_DIR
options for the mysql_options() C API function.

It is also possible to get and set the statement execution-time limit using the
MySQL_Statement::getQueryTimeout() and MySQL_Statement::setQueryTimeout()
methods. (Bug #73665, Bug #19479950)

• These methods were added: Connection::isValid() checks whether the connection is alive,
and Connection::reconnect() reconnects if the connection has gone down. (Bug #65640, Bug
#14207722)

• The Boost dependency was removed from the Connector/C++ API headers. These headers were
using the boost::variant type, making it impossible to use Connector/C++ binaries without
having Boost installed. (WL #7030)

54

https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html

MySQL Connector/C++ Release Notes

Bugs Fixed

• For installation from MSI packages, variant.h and version_info.h were missing from the
include/cppconn folder. (Bug #19973637)

• For several valid client options, getClientOption() did not return a value. (Bug #19940314)

• A memory leak occurred when adding the OPT_CONNECT_ATTR_ADD parameter to the options list.
(Bug #19938970)

• getClientOption() raised an assertion if the specified option was not set at connect time. (Bug
#19938922)

• Several metadata flaws were corrected:

• getTables() did not return a correct result when TableType=VIEW and
metadataUseInfoSchema=false.

• getColumns() did not return column inforomation when metadataUseInfoSchema=TRUE.

• getColumnName() returned the display name instead of the actual column name.

• getProcedures() returned a syntax error when metadataUseInfoSchema=false.

(Bug #19505348, Bug #19147897, Bug #19244736, Bug #19505421)

• The LOCALHOST global variable was referenced at two places in Connector/C++ code, which could
result in a double-free corruption error. (Bug #74616, Bug #19910311)

• driver/version_info.h (containing version macros) was not included in the installed header
files. (Bug #73795, Bug #19553971)

• Several CMake issues were corrected:

• CMake could misconfigure the link flags.

• CMake did not pick up the libmysqlclient path from the MYSQL_LIB_DIR option.

• For test suite compilation, CMake did not pick up libmysqlclient from the user-specified path,
even if MYSQL_LIB_DIR and DYNLOAD_MYSQL_LIB were given.

(Bug #73427, Bug #19315635, Bug #19370844, Bug #19940663)

• Connector/C++ issued a ping command every time isClosed() was called in a Connection,
rather than just checking whether close() had been called earlier or when a fatal error occurred in
an earlier operation. (Bug #69785, Bug #17186530)

• With the result set type set to TYPE_FORWARD_ONLY, Statement::executeQuery()
returns almost immediately, but MySQL_ResultSet::next() and
MySQL_Prepared_ResultSet::next() returned false if the connection was lost rather than
throwing an exception, making it impossible to distinguish loss of connection from normal end of the
result set. MySQL_ResultSet::next() and MySQL_Prepared_ResultSet::next() now throw
an exception when the connection is lost. (Bug #69031, Bug #18886278)

• Connection objects shared internal state with Statement objects they spawned, preventing a
connection close unless the Statement objects were destroyed first. A connection to the server
now is closed by calling Connection::close() and invoking the Connection object destructor,
without explicitly destroying the statement object. (WL #7028)

Changes in MySQL Connector/C++ 1.1.4 (2014-07-31, General Availability)

• Compilation Notes

55

MySQL Connector/C++ Release Notes

• Functionality Added or Changed

• Bugs Fixed

Compilation Notes

• Binary distributions of this Connector/C++ release were compiled using Boost 1.54.0. If you compile
this Connector/C++ release from source, you must also use that Boost version.

Functionality Added or Changed

• Connector/C++ now supports the following connection options: sslVerify
(boolean), sslCRL (string), and sslCRLPath (string). These correspond to
the MYSQL_OPT_SSL_VERIFY_SERVER_CERT, MYSQL_OPT_SSL_CRL, and
MYSQL_OPT_SSL_CRLPATH options for the mysql_options() C API function. (Bug #18461451)

• Connector/C++ has new methods to provide schema, table, and column character set and collation
metadata for result sets:

• ResultSet * DatabaseMetaData::getSchemaCollation(const sql::SQLString&
catalog, const sql::SQLString& schemaPattern)

• ResultSet * DatabaseMetaData::getSchemaCharset(const sql::SQLString&
catalog, const sql::SQLString& schemaPattern)

• ResultSet * DatabaseMetaData::getTableCollation(const sql::SQLString&
catalog, const sql::SQLString& schemaPattern, const sql::SQLString&
tableNamePattern)

• ResultSet * DatabaseMetaData::getTableCharset(const sql::SQLString&
catalog, const sql::SQLString& schemaPattern, const sql::SQLString&
tableNamePattern)

• SQLString ResultSetMetaData::getColumnCollation(unsigned int
columnIndex)

• SQLString ResultSetMetaData::getColumnCharset(unsigned int columnIndex)

(Bug #72698, Bug #18803345)

• Connector/C++ now supports the OPT_CONNECT_ATTR_ADD option, which accepts an std::map
argument. This option corresponds to the MYSQL_OPT_CONNECT_ATTR_ADD option for
mysql_options4(). (Bug #72697, Bug #18803313)

• Connector/C++ now supports a useLegacyAuth connection option, which corresponds to the
MYSQL_SECURE_AUTH option for the mysql_options() C API function, except that the sense is
the logical negation. For example, to disable secure authentication, pass a useLegacyAuth value of
true. (Bug #69492, Bug #16970753)

Bugs Fixed

• MySQL_ResultSetMetaData::getColumnTypeName() returned UNKNOWN for LONG_BLOB
fields. (Bug #72700, Bug #18803414)

• Definitions for character sets and collations were added (utf8mb4 in particular). (Bug #71606, Bug
#18193771)

• Connector/C++ version-information methods have been revised to return the correct values. (Bug
#66975, Bug #14680878)

Changes in MySQL Connector/C++ 1.1.3 (2013-03-08, General Availability)

56

https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-options4.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html

MySQL Connector/C++ Release Notes

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• Connector/C++ now supports an OPT_ENABLE_CLEARTEXT_PLUGIN connection option. If true, it
enables the client-side cleartext authentication plugin. This client-side plugin is required, for example,
for accounts that use the PAM server-side authentication plugin. (Bug #16520952)

Bugs Fixed

• MySQL_ConnectionMetaData::getBestRowIdentifier() considered only PRIMARY KEY
columns usable for row identifiers. It now also considers UNIQUE NOT NULL columns suitable for
the same purpose. (Bug #16277170)

Changes in MySQL Connector/C++ 1.1.2 (2013-02-05, General Availability)

Functionality Added or Changed

• Connector/C++ applications now can handle connecting to the server using an account for which the
password had expired. Connector/C++ now supports three new connection options:

• OPT_CAN_HANDLE_EXPIRED_PASSWORDS: If true, this indicates to the driver that the application
can handle expired passwords.

If the application specifies OPT_CAN_HANDLE_EXPIRED_PASSWORDS but the
underlying libmysqlclient library does not support it, the driver returns
sql::mysql:deCLIENT_DOESNT_SUPPORT_FEATURE(820).

• preInit: A string containing statements to run before driver initialization.

• postInit: A string containing statements to run after driver initialization.

A new file driver/mysql_error.h is being added to the MSI package. This file defines an enum
DRIVER_ERROR, which contains the definition of deCL_CANT_HANDLE_EXP_PWD.

In addition to the preceding changes, these problems with Statement::executeUpdate were
fixed:

• If Statement::executeUpdate executed multiple statements, the connection became
unusable.

• There was no exception if one of statements returned a result set. Now executeUpdate returns
and update count for the last executed query.

For example code showing how to use the new options, see the file test/unit/bugs/bugs.cpp
in the Connector/C++ distribution. (Bug #67325, Bug #15936764)

Changes in MySQL Connector/C++ 1.1.1 (2012-08-07, General Availability)

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• Connector/C++ is now built against libmysqlclient from MySQL 5.5.27, enabling support of
authentification plugins and IPv6.

57

MySQL Connector/C++ Release Notes

• URI format has been extended to better fit IPv6 addresses. You can now use [] to separate the host
part of the URI.

• Added new method ResultSetMetaData::isNumeric() and implemented it in all classes that
subclass from it.

• Added MySQL_Connection::getLastStatementInfo() which returns back the value of the
mysql_info() function of the MySQL Client Library (libmysqlclient).

Bugs Fixed

• Compiling with Visual Studio 2010 could fail with compilation errors if the source contained a
#include <stdint.h> line. The errors were typically of the form cannot convert from
'type1' to 'type2'. (Bug #14113387, Bug #60307)

• Fixed stores(Lower|Mixed)Case(Quoted)Identifiers methods.

• A statement that did not raise any warning could return warnings from a previously executed
statement.

• DatabaseMetaData::getSQLKeywords() updated to match MySQL 5.5. Note that Connector/C
++, just like Connector/J, returns the same list for every MySQL database version.

Changes in MySQL Connector/C++ 1.1.0 (2010-09-13, General Availability)

This fixes bugs since the first GA release 1.0.5 and introduces new features.

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• Incompatible Change: API incompatible change: ConnectPropertyVal is no longer a struct by
a typedef that uses boost::variant. Code such as:

sql::ConnectPropertyVal tmp;
tmp.str.val=passwd.c_str();
tmp.str.len=passwd.length();
connection_properties["password"] = tmp;

Should be changed to:

connection_properties["password"] = sql::ConnectPropertyVal(passwd);

• Instances of std::auto_ptr have been changed to boost::scoped_ptr. Scoped array
instances now use boost::scoped_array. Further, boost::shared_ptr and boost::weak_ptr
are now used for guarding access around result sets.

• LDFLAGS, CXXFLAGS and CPPFLAGS are now checked from the environment for every binary
generated.

• The connection map property OPT_RECONNECT was changed to be of type boolean from long
long.

• get_driver_instance() is now only available in dynamic library builds; static builds do not have
this symbol. This was done to accommodate loading the DLL with LoadLibrary or dlopen. If you
do not use CMake for building the source code you will need to define mysqlcppconn_EXPORTS if
you are loading dynamically and want to use the get_driver_instance() entry point.

• Connection::getClientOption(const sql::SQLString & optionName, void
* optionValue) now accepts the optionName values metadataUseInfoSchema,
defaultStatementResultType, defaultPreparedStatementResultType, and

58

MySQL Connector/C++ Release Notes

characterSetResults. In the previous version only metadataUseInfoSchema was permitted.
The same options are available for Connection::setClientOption().

Bugs Fixed

• Certain header files were incorrectly present in the source distribution. The fix excludes dynamically
generated and platform specific header files from source packages generated using CPack. (Bug
#45846)

• CMake generated an error if configuring an out of source build, that is, when CMake was not called
from the source root directory. (Bug #45843)

• Using Prepared Statements caused corruption of the heap. (Bug #45048)

• Missing includes when using GCC 4.4. Note that GCC 4.4 is not yet in use for any official Connector/
C++ builds. (Bug #44931)

• A bug was fixed in Prepared Statements. The bug occurred when a stored procedure was prepared
without any parameters. This led to an exception. (Bug #44931)

• Fixed a Prepared Statements performance issue. Reading large result sets was slow.

• Fixed bug in ResultSetMetaData for statements and prepared statements, getScale and
getPrecision returned incorrect results.

Changes in MySQL Connector/C++ 1.0

Changes in MySQL Connector/C++ 1.0.5 (2009-04-21, General Availability)

This is the first General Availability (GA) release.

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• The interface of sql::ConnectionMetaData, sql::ResultSetMetaData and
sql::ParameterMetaData was modified to have a protected destructor. As a result the client
code has no need to destruct the metadata objects returned by the connector. Connector/C++
handles the required destruction. This enables statements such as:

connection->getMetaData->getSchema();

This avoids potential memory leaks that could occur as a result of losing the pointer returned by
getMetaData().

• Improved memory management. Handling of potential memory leak situations is more robust.

• Changed the interface of sql::Driver and sql::Connection so they accept the options map by
alias instead of by value.

• Changed the return type of sql::SQLException::getSQLState() from std::string to
const char * to be consistent with std::exception::what().

• Implemented getResultSetType() and setResultSetType() for Statement. Uses
TYPE_FORWARD_ONLY, which means unbuffered result set and TYPE_SCROLL_INSENSITIVE,
which means buffered result set.

• Implemented getResultSetType() for PreparedStatement. The setter is not implemented
because currently PreparedStatement cannot do refetching. Storing the result means the bind
buffers will be correct.

59

MySQL Connector/C++ Release Notes

• Added the option defaultStatementResultType to
MySQL_Connection::setClientOption(). Also, the method now returns sql::Connection
*.

• Added Result::getType(). Implemented for the three result set classes.

• Enabled tracing functionality when building with Microsoft Visual C++ 8 and later, which corresponds
to Microsoft Visual Studio 2005 and later.

• Added better support for named pipes, on Windows. Use pipe:// and add the path to the pipe.
Shared memory connections are currently not supported.

Bugs Fixed

• A bug was fixed in MySQL_Connection::setSessionVariable(), which had been causing
exceptions to be thrown.

Changes in MySQL Connector/C++ 1.0.4 (2009-03-31, Beta)

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• An installer was added for the Windows operating system.

• Minimum CMake version required was changed from 2.4.2 to 2.6.2. The latest version is required for
building on Windows.

• metadataUseInfoSchema was added to the connection property map, which enables control of
the INFORMATION_SCHEMA for metadata.

• Implemented MySQL_ConnectionMetaData::supportsConvert(from, to).

• Introduced ResultSetMetaData::isZerofill(), which is not in the JDBC specification.

Bugs Fixed

• A bug was fixed in all implementations of ResultSet::relative() which was giving a wrong
return value although positioning was working correctly.

• A leak was fixed in MySQL_PreparedResultSet, which occurred when the result contained a
BLOB column.

Changes in MySQL Connector/C++ 1.0.3 (2009-03-02, Alpha)

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• Added new tests in test/unit/classes. Those tests are mostly about code coverage. Most of the
actual functionality of the driver is tested by the tests found in test/CJUnitPort.

• New data types added to the list returned by DatabaseMetaData::getTypeInfo() are FLOAT
UNSIGNED, DECIMAL UNSIGNED, DOUBLE UNSIGNED. Those tests may not be in the JDBC
specification. However, due to the change you should be able to look up every type and type name
returned by, for example, ResultSetMetaData::getColumnTypeName().

60

MySQL Connector/C++ Release Notes

• MySQL_Driver::getPatchVersion introduced.

• Major performance improvements due to new buffered ResultSet implementation.

• Addition of test/unit/README with instructions for writing bug and regression tests.

• Experimental support for STLPort. This feature may be removed again at any time later without prior
warning! Type cmake -L for configuration instructions.

• Added properties enabled methods for connecting, which add many connect options. This uses
a dictionary (map) of key value pairs. Methods added are Driver::connect(map), and
Connection::Connection(map).

• New BLOB implementation. sql::Blob was removed in favor of std::istream. C++'s IOStream
library is very powerful, similar to PHP's streams. It makes no sense to reinvent the wheel. For
example, you can pass a std::istringstream object to setBlob() if the data is in memory,
or just open a file std::fstream and let it stream to the DB, or write its own stream. This is
also true for getBlob() where you can just copy data (if a buffered result set), or stream data (if
implemented).

• Implemented ResultSet::getBlob() which returns std::stream.

• Fixed MySQL_DatabaseMetaData::getTablePrivileges(). Test cases were added in the first
unit testing framework.

• Implemented MySQL_Connection::setSessionVariable() for setting system variables such
as sql_mode.

• Implemented MySQL_DatabaseMetaData::getColumnPrivileges().

• cppconn/datatype.h has changed and is now used again. Reimplemented the type subsystem to
be more usable - more types for binary and nonbinary strings.

• Implementation for MySQL_DatabaseMetaData::getImportedKeys() for MySQL versions
before 5.1.16 using SHOW, and above using INFORMATION_SCHEMA.

• Implemented MySQL_ConnectionMetaData::getProcedureColumns().

• make package_source now packs with bzip2.

• Re-added getTypeInfo() with information about all types supported by MySQL and the
sql::DataType.

• Changed the implementation of MySQL_ConstructedResultSet to use the more efficient O(1)
access method. This should improve the speed with which the metadata result sets are used.
Also, there is less copying during the construction of the result set, which means that all result sets
returned from the metadata functions will be faster.

• Introduced, internally, sql::mysql::MyVal which has implicit constructors. Used in
mysql_metadata.cpp to create result sets with native data instead of always string (varchar).

• Renamed ResultSet::getLong() to ResultSet::getInt64(). resultset.h includes
typdefs for Windows to be able to use int64_t.

• Introduced ResultSet::getUInt() and ResultSet::getUInt64().

• Improved the implementation for ResultSetMetaData::isReadOnly(). Values generated from
views are read only. These generated values don't have db in MYSQL_FIELD set, while all normal
columns do have.

• Implemented MySQL_DatabaseMetaData::getExportedKeys().

• Implemented MySQL_DatabaseMetaData::getCrossReference().

61

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_sql_mode

MySQL Connector/C++ Release Notes

Bugs Fixed

• Bug fixed in MySQL_PreparedResultSet::getString(). Returned string that had real data but
the length was random. Now, the string is initialized with the correct length and thus is binary safe.

• Corrected handling of unsigned server types to return correct values.

• Fixed handling of numeric columns in ResultSetMetaData::isCaseSensitive to return
false.

Changes in MySQL Connector/C++ 1.0.2 (2008-12-19, Alpha)

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• Implemented getScale(), getPrecision() and getColumnDisplaySize() for
MySQL_ResultSetMetaData and MySQL_Prepared_ResultSetMetaData.

• Changed ResultSetMetaData methods getColumnDisplaySize(), getPrecision(),
getScale() to return unsigned int instead of signed int.

• DATE, DATETIME and TIME are now being handled when calling the MySQL_PreparedResultSet
methods getString(), getDouble(), getInt(), getLong(), getBoolean().

• Reverted implementation of MySQL_DatabaseMetaData::getTypeInfo(). Now unimplemented.
In addition, removed cppconn/datatype.h for now, until a more robust implementation of the
types can be developed.

• Implemented MySQL_PreparedStatement::setNull().

• Implemented MySQL_PreparedStatement::clearParameters().

• Added PHP script examples/cpp_trace_analyzer.php to filter the output of the debug trace.
Please see the inline comments for documentation. This script is unsupported.

• Implemented MySQL_ResultSetMetaData::getPrecision() and
MySQL_Prepared_ResultSetMetaData::getPrecision(), updating example.

• Added new unit test framework for JDBC compliance and regression testing.

• Added test/unit as a basis for general unit tests using the new test framework, see test/unit/
example for basic usage examples.

Bugs Fixed

• Fixed MySQL_PreparedStatementResultSet::getDouble() to return the correct value when
the underlying type is MYSQL_TYPE_FLOAT.

• Fixed bug in MySQL_ConnectionMetaData::getIndexInfo(). The method did not work
because the schema name wasn't included in the query sent to the server.

• Fixed a bug in MySQL_ConnectionMetaData::getColumns() which was performing a cartesian
product of the columns in the table times the columns matching columnNamePattern. The
example example/connection_meta_schemaobj.cpp was extended to cover the function.

• Fixed bugs in MySQL_DatabaseMetaData. All supportsCatalogXXXXX methods were
incorrectly returning true and all supportsSchemaXXXX methods were incorrectly returning
false. Now supportsCatalogXXXXX returns false and supportsSchemaXXXXX returns true.

62

MySQL Connector/C++ Release Notes

• Fixed bugs in the MySQL_PreparedStatements methods setBigInt() and setDatetime().
They decremented the internal column index before forwarding the request. This resulted in a
double-decrement and therefore the wrong internal column index. The error message generated
was:

setString() ... invalid "parameterIndex"

• Fixed a bug in getString(). getString() is now binary safe. A new example was also added.

• Fixed bug in FLOAT handling.

• Fixed MySQL_PreparedStatement::setBlob(). In the tests there is a simple example of a class
implementing sql::Blob.

Changes in MySQL Connector/C++ 1.0.1 (2008-12-01, Alpha)

• Deprecation and Removal Notes

• Functionality Added or Changed

Deprecation and Removal Notes

• sql::mysql::MySQL_SQLException was removed. The distinction between server and client
(connector) errors, based on the type of the exception, has been removed. However, the error code
can still be checked to evaluate the error type.

• Driver Manager was removed.

Functionality Added or Changed

• Support for (n)make install was added. You can change the default installation path. Carefully read
the messages displayed after executing cmake. The following are installed:

• Static and the dynamic version of the library, libmysqlcppconn.

• Generic interface, cppconn.

• Two MySQL specific headers:

mysql_driver.h, use this if you want to get your connections from the driver instead of
instantiating a MySQL_Connection object. This makes your code portable when using the
common interface.

mysql_connection.h, use this if you intend to link directly to the MySQL_Connection class
and use its specifics not found in sql::Connection.

However, you can make your application fully abstract by using the generic interface rather than
these two headers.

• Added ConnectionMetaData::getSchemas() and Connection::setSchema().

• ConnectionMetaData::getCatalogTerm() returns not applicable, there is no counterpart to
catalog in Connector/C++.

• Added experimental GCov support, cmake -DMYSQLCPPCONN_GCOV_ENABLE:BOOL=1

• All examples can be given optional connection parameters on the command line, for example:

examples/connect tcp://host:port user pass database

or

examples/connect unix:///path/to/mysql.sock user pass database

63

MySQL Connector/C++ Release Notes

• Renamed ConnectionMetaData::getTables: TABLE_COMMENT to REMARKS.

• Renamed ConnectionMetaData::getProcedures: PROCEDURE_SCHEMA to
PROCEDURE_SCHEM.

• Renamed ConnectionMetaData::getPrimaryKeys(): COLUMN to COLUMN_NAME, SEQUENCE
to KEY_SEQ, and INDEX_NAME to PK_NAME.

• Renamed ConnectionMetaData::getImportedKeys(): PKTABLE_CATALOG to
PKTABLE_CAT, PKTABLE_SCHEMA to PKTABLE_SCHEM, FKTABLE_CATALOG to FKTABLE_CAT,
FKTABLE_SCHEMA to FKTABLE_SCHEM.

• Changed metadata column name TABLE_CATALOG to TABLE_CAT and TABLE_SCHEMA to
TABLE_SCHEM to ensure JDBC compliance.

• Introduced experimental CPack support, see make help.

• All tests changed to create TAP compliant output.

• Renamed sql::DbcMethodNotImplemented to sql::MethodNotImplementedException

• Renamed sql::DbcInvalidArgument to sql::InvalidArgumentException

• Changed sql::DbcException to implement the interface of JDBC's SQLException. Renamed to
sql::SQLException.

• Converted Connector/J tests were added.

• MySQL Workbench 5.1 changed to use Connector/C++ for its database connectivity.

• New directory layout.

Index

Symbols
_connector_license attribute, 6
_connector_name attribute, 6
_connector_version attribute, 6

A
arrayDelete(), 38
auth, 43
authentication, 38
authentication plugins, 6, 8, 11, 14, 14, 15, 17, 19, 41
authentication_fido authentication plugin, 11
authentication_kerberos authentication plugin, 14, 15
authentication_ldap_sasl authentication plugin, 17

B
bind(), 41
BUNDLE_DEPENDENCIES, 50

C
caching_sha2_password, 41
character sets, 36, 38, 45
charsetDir, 54
clang, 6, 8
CMAKE_BUILD_TYPE, 36
CMAKE_INSTALL_DOCDIR, 35
CMAKE_INSTALL_INCLUDEDIR, 35

64

MySQL Connector/C++ Release Notes

CMAKE_INSTALL_LIBDIR, 35
collection.add(), 45
compilation, 51
compiling, 6, 8, 8, 10, 17, 18, 19, 22, 24, 25, 29, 29, 31, 35, 36,
49, 50, 52, 55
compression, 19, 24
configuration, 6, 8, 22, 29, 31, 35, 36, 38, 53
connection attributes, 6, 29, 31
connection management, 19
connection pool, 22, 31, 36
CONNECT_TIMEOUT, 36
createIndex(), 29, 41
CRUD, 6

D
data types, 29
DATETIME, 24
debugging, 31
deprecation, 14, 15, 31, 51
DNS SRV, 25
dropIndex(), 41

E
encryption, 4, 8, 11, 14, 15, 17, 22, 25, 29, 38, 50, 51, 51
error, 15
errors, 17, 24, 25, 31

F
FREAK, 53

G
generic packages, 5
getAffectedItemsCount(), 38
getAffectedRowsCount(), 38, 45
getAutoIncrementValue(), 45
getDocumentId(), 39
getDocumentIds(), 39
getGeneratedIds(), 39
getWarningCount(), 38
getWarningsCount(), 38
GIS, 52

H
host name maximum length, 29

I
Important Change, 5
Incompatible Change, 39, 58
installation, 36, 53
isolation level, 25, 49

J
JSON, 24, 36

L
LDAP, 17, 19

65

MySQL Connector/C++ Release Notes

LOAD DATA LOCAL, 19
locking, 38
LZ4, 6

M
metadataUseInfoSchema connection option, 8
mingw, 19
modify(), 6
multifactor authentication, 14
MYSQLCLIENT_STATIC_BINDING, 31
MYSQLCLIENT_STATIC_LINKING, 31
mysqlx_collection_create_index(), 29, 41
mysqlx_collection_drop_index(), 41
mysqlx_fetch_doc_id(), 39
mysqlx_fetch_generated_id(), 39
mysqlx_free(), 31
mysqlx_get_client_from_options(), 31
mysqlx_get_client_from_url(), 31
mysqlx_get_node_session_from_options(), 43
mysqlx_get_session(), 31
mysqlx_get_session_from_client(), 31
mysqlx_get_session_from_options(), 31
mysqlx_get_session_from_url(), 31
MYSQLX_OPT_CONNECT_TIMEOUT, 36
MYSQLX_OPT_TLS_CIPHERSUITES, 25
MYSQLX_OPT_TLS_VERSIONS, 25
mysqlx_rollback_to(), 41
mysqlx_row_fetch_one(), 38
mysqlx_savepoint_release(), 41
mysqlx_savepoint_set(), 41
mysqlx_session_close, 6
mysqlx_session_option_set(), 25, 43
MYSQL_CONCPP_VERSION_NUMBER, 10
MYSQL_CONFIG_EXECUTABLE., 38
mysql_native_password, 4
mysql_options(), 19
MYSQL_OPT_LOAD_DATA_LOCAL_DIR, 19
MYSQL_OPT_LOCAL_INFILE, 19
mysql_strings, 49
mysql_sys, 49

N
named pipes, 49
named_pipe_full_access_group, 49
NOWAIT, 38

O
OpenSSL, 4, 8, 11, 14, 17, 22, 29, 41, 50, 51, 51, 52, 53
operators, 29
OPT_CAN_HANDLE_EXPIRED_PASSWORDS, 57
OPT_CONNECT_ATTR_ADD, 54, 55
OPT_CONNECT_ATTR_DELETE, 54
OPT_CONNECT_ATTR_RESET, 54
OPT_CONNECT_TIMEOUT(), 36
OPT_ENABLE_CLEARTEXT_PLUGIN, 56
OPT_GET_SERVER_PUBLIC_KEY, 39, 50
OPT_LOAD_DATA_LOCAL_DIR, 19

66

MySQL Connector/C++ Release Notes

OPT_LOCAL_INFILE, 54
OPT_MAX_ALLOWED_PACKET, 51
OPT_METADATA_INFO_SCHEMA, 8
OPT_NET_BUFFER_LENGTH, 51
OPT_PASSWORD1 connection option, 14
OPT_PASSWORD2 connection option, 14
OPT_PASSWORD3 connection option, 14
OPT_RECONNECT, 58
OPT_SSLMODE, 11
OPT_SSL_MODE, 51
OPT_TLS_CIPHERSUITES(), 25
OPT_TLS_VERSION, 11, 51
OPT_TLS_VERSIONS(), 25
OVERLAPS, 29

P
packaging, 5, 5, 6, 8, 10, 17, 18, 19, 22, 24, 25, 31, 35, 50
parser, 45
pluggable authentication, 41, 57
pluginDir, 54
plugins, 6, 8, 11, 14, 14, 15, 17, 19, 41
Protobuf, 8, 10, 31

Q
query attributes, 15

R
RapidJSON, 6, 36
rapidjson, 22
readDefaultFile, 54
readDefaultGroup, 54
RELEASE SAVEPOINT, 41
releaseSavepoint(), 41
replaceOne(), 41
ROLLBACK TO SAVEPOINT, 41
rollbackTo(), 41

S
SAVEPOINT, 41
setSavepoint(), 41
SHA256_MEMORY, 38
SKIP_LOCKED, 38
SSL, 4, 8, 11, 14, 15, 17, 22, 25, 29, 38, 41, 43, 47, 51, 55
ssl-ca, 11, 43
ssl-capath, 11
ssl-cert, 11
ssl-cipher, 11
ssl-crlpath, 11
ssl-key, 11
ssl-mode, 11, 43
sslCA, 11
sslCAPath, 11
sslCert, 11
sslCipher, 11
sslCRL, 55
sslCRLPath, 11, 55
sslKey, 11

67

MySQL Connector/C++ Release Notes

sslVerify, 55
static libraries, 5

T
TLS, 11, 14, 15, 25, 41, 43, 51
tls-ciphersuites, 25
tls-version, 11
tls-versions, 11, 25
TLSv1, 14, 15
TLSv1.1, 14, 15
TLS_CIPHERSUITES, 25
TLS_VERSIONS, 25
transactions, 25, 49

U
utf8, 10
utf8mb3, 10
utf8mb4, 36, 38

V
Visual C++ runtime, 51

W
WITH_BOOST, 8
WITH_LZ4, 8
WITH_MYSQL, 8
WITH_PROTOBUF, 8
WITH_SSL, 8, 41
WITH_ZLIB, 8
WITH_ZSTD, 8
wolfSSL, 29, 38

X
X DevAPI, 6, 8, 8
X Protocol, 17
xplugin, 6

Y
yaSSL, 38

Z
ZLIB, 6
ZSTD, 5, 6

68

	MySQL Connector/C++ Release Notes
	Table of Contents
	Preface and Legal Notices
	Changes in MySQL Connector/C++ 9
	Changes in MySQL Connector/C++ 9.0.0 (Not yet released, General Availability)

	Changes in MySQL Connector/C++ 8
	Changes in MySQL Connector/C++ 8.4.0 (2024-04-30, General Availability)
	Changes in MySQL Connector/C++ 8.3.0 (2024-01-16, General Availability)
	Changes in MySQL Connector/C++ 8.2.0 (2023-10-25, General Availability)
	Changes in MySQL Connector/C++ 8.1.0 (2023-07-18, General Availability)
	Changes in MySQL Connector/C++ 8.0.33 (2023-04-18, General Availability)
	Changes in MySQL Connector/C++ 8.0.32 (2023-01-17, General Availability)
	Changes in MySQL Connector/C++ 8.0.31 (2022-10-11, General Availability)
	Changes in MySQL Connector/C++ 8.0.30 (2022-07-26, General Availability)
	Changes in MySQL Connector/C++ 8.0.29 (2022-04-26, General Availability)
	Changes in MySQL Connector/C++ 8.0.28 (2022-01-18, General Availability)
	Changes in MySQL Connector/C++ 8.0.27 (2021-10-19, General Availability)
	Changes in MySQL Connector/C++ 8.0.26 (2021-07-20, General Availability)
	Changes in MySQL Connector/C++ 8.0.25 (2021-05-11, General Availability)
	Changes in MySQL Connector/C++ 8.0.24 (2021-04-20, General Availability)
	Changes in MySQL Connector/C++ 8.0.23 (2021-01-18, General Availability)
	Changes in MySQL Connector/C++ 8.0.22 (2020-10-19, General Availability)
	Changes in MySQL Connector/C++ 8.0.21 (2020-07-13, General Availability)
	Changes in MySQL Connector/C++ 8.0.20 (2020-04-27, General Availability)
	Changes in MySQL Connector/C++ 8.0.19 (2020-01-13, General Availability)
	Changes in MySQL Connector/C++ 8.0.18 (2019-10-14, General Availability)
	Changes in MySQL Connector/C++ 8.0.17 (2019-07-22, General Availability)
	Changes in MySQL Connector/C++ 8.0.16 (2019-04-25, General Availability)
	Changes in MySQL Connector/C++ 8.0.15 (2019-02-01, General Availability)
	Changes in MySQL Connector/C++ 8.0.14 (2019-01-21, General Availability)
	Changes in MySQL Connector/C++ 8.0.13 (2018-10-22, General Availability)
	Changes in MySQL Connector/C++ 8.0.12 (2018-07-27, General Availability)
	Changes in MySQL Connector/C++ 8.0.11 (2018-04-19, General Availability)
	Changes in MySQL Connector/C++ 8.0.8 - 8.0.10 (Skipped version numbers)
	Changes in MySQL Connector/C++ 8.0.7 (2018-02-26, Release Candidate)
	Changes in MySQL Connector/C++ 8.0.6 (2017-09-28, Development Milestone)
	Changes in MySQL Connector/C++ 8.0.5 (2017-07-10, Development Milestone)

	Changes in MySQL Connector/C++ 2.0
	Changes in MySQL Connector/C++ 2.0.4 (2017-03-21, Development Milestone)
	Changes in MySQL Connector/C++ 2.0.3 (2016-10-19, Development Milestone)
	Changes in MySQL Connector/C++ 2.0.2 (Not released, Development Milestone)
	Changes in MySQL Connector/C++ 2.0.1 (Not released, Development Milestone)

	Changes in MySQL Connector/C++ 1.1
	Changes in MySQL Connector/C++ 1.1.13 (2019-10-25, General Availability)
	Changes in MySQL Connector/C++ 1.1.12 (2019-01-28, General Availability)
	Changes in MySQL Connector/C++ 1.1.11 (2018-04-30, General Availability)
	Changes in MySQL Connector/C++ 1.1.10 (2017-07-21, General Availability)
	Changes in MySQL Connector/C++ 1.1.9 (2017-05-16, General Availability)
	Changes in MySQL Connector/C++ 1.1.8 (2016-12-16, General Availability)
	Changes in MySQL Connector/C++ 1.1.7 (2016-01-20, General Availability)
	Changes in MySQL Connector/C++ 1.1.6 (2015-06-10, General Availability)
	Changes in MySQL Connector/C++ 1.1.5 (2014-11-26, General Availability)
	Changes in MySQL Connector/C++ 1.1.4 (2014-07-31, General Availability)
	Changes in MySQL Connector/C++ 1.1.3 (2013-03-08, General Availability)
	Changes in MySQL Connector/C++ 1.1.2 (2013-02-05, General Availability)
	Changes in MySQL Connector/C++ 1.1.1 (2012-08-07, General Availability)
	Changes in MySQL Connector/C++ 1.1.0 (2010-09-13, General Availability)

	Changes in MySQL Connector/C++ 1.0
	Changes in MySQL Connector/C++ 1.0.5 (2009-04-21, General Availability)
	Changes in MySQL Connector/C++ 1.0.4 (2009-03-31, Beta)
	Changes in MySQL Connector/C++ 1.0.3 (2009-03-02, Alpha)
	Changes in MySQL Connector/C++ 1.0.2 (2008-12-19, Alpha)
	Changes in MySQL Connector/C++ 1.0.1 (2008-12-01, Alpha)

	Index

