MySQL Connector/J Developer Guide

Abstract

This manual describes how to install, configure, and develop database applications using MySQL Connector/J 8.4, a
JDBC and X DeVvAPI driver for communicating with MySQL servers.

MySQL Connector/J 8.4 supersedes the 8.3 series and is recommended for use on production systems. It is for use
with MySQL Server 8.0 and up. Please upgrade to MySQL Connector/J 8.4.

For notes detailing the changes in each release of Connector/J, see MySQL Connector/J Release Notes.
For legal information, including licensing information, see the Preface and Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other MySQL
users.

Document generated on: 2024-05-21 (revision: 78675)

https://dev.mysql.com/doc/relnotes/connector-j/en/
http://forums.mysql.com

Table of Contents

Preface and Legal NOTICESccouuiiiiiiiiieiiii ettt ettt e et e e et et e e e e et e e e ee bt e e e eebaaeeees v
1 Overview Of MYSQL CONNECIONTiiiii ittt ettt et ettt eb e e e e e e enees 1
2 Compatibility with MySQL and JaVa VEISIONScieuuiieiiiiiieteiii e ettt e et e e e e e 3
3 What's NeW in CONNECIOIT B.47 ...ttt et e e e e eneans 5
4 ConNECOr/J INSTAIALION ... it ettt e e e e e e 7
4.1 Installing Connector/J from a Binary DiStributioncooieiiiiiiiii e 7

4.2 Installing ConNector/J USING MAVENcoouuiiiiiiiiie et 9

4.3 INSTAlliNG frOM SOUICE ..ot ettt e e e e 9

4.4 Upgrading from an Older VEISIONuuiiiiiiiiiii et 12
4.4.1 Upgrading to MySQL Connector/J 8.4 from Connector/J 5.1cccoeeiiiiiiieiiiiinieiiiinnnen. 12

4.5 TeStNG CONNECTIONT ittt ettt ettt e e et e e et et e et et b reeeest e e e enbnaeeeens 17

5 CONNECIOINI EXAMPIES ...ooiiiiiiiiii ittt ettt e et e et et e et e e et et e e e e eaa s 19
6 CONNECIONT RETEIEICE ...t ittt e et ettt e e e e e 21
6.1 Driver/Datasource Class NAIMEccoouuiiiiiiii et 22

6.2 CONNECLION URL SYNEAX ...eiitiiiiiiiiieieiit ettt ettt ettt e e et e e e et e e e eet e e e ert e e e entaaeaees 22

6.3 CoNfigUuIration PrOPEITIESiiiiiii ettt et e e e et e e e aaa e eens 25
6.3.1 AULNENTICATION ...\ttt e et e e et e e e e e 33

(S 2 0] o] o [=Tot 1 o] I PP PP TR PPPPTI 35

B.3.3 SESSION ...ttt et eaaas 37

6.3.4 INEIWOTKING ...ceeetieeeeet ettt e e et e e et e e e et e e e 38

B.3.5 SBCUIMY eetneetiit ettt ettt ettt e 41

6.3.6 STALEMENTS ..oouiiiiiiiii et 45

6.3.7 Prepared STAatEMENTS ittt e e e e e e 46

B.3.8 RESUIL SIS ...oiitiiiiiiiii ettt ettt et e 48

B.3.9 IMEBLTAGALAvueieiti ettt 50

6.3.10 BLOB/CLOB PrOCESSINGueeeertuaeittieetetia ettt e et e e et e ettt e et e e e et e e enaa s 50

6.3.11 Datetime tYPES PrOCESSINGcceuuuieierineeeiii et e e et ettt e e et e e e e et e e e s 52

6.3.12 High Availability and CIUSIEINGuiiiiiiieiiiii e 54

6.3.13 Performance EXIENSIONSuuiiiiiiiiiiiiii ettt et 59

6.3.14 Debugging/ProfiliNgcoouuiiiiii e 64

6.3.15 EXCEPLONS/WAIMINGS ...cevtiiiiiitieeieit ettt e ettt e e ettt e e et e e e e ab e e e et e e eeneaaaees 67

6.3.16 Tunes for integration with other productsccoooiiiiiiiii s 68

6.3.17 JDBC COMPIIBINCEuniieiiii ettt et e e e e e e 68

6.3.18 X Protocol and X DEVAPI ...t 69

6.4 JDBC API IMpPIementation NOTEScoouuiiiiiiiieiiii e 73

6.5 Java, JDBC, and MYSQL TYPES ..cuuuiitiieii ittt e e e e e et e e et e e e et e e ea e eeaeaeens 75

6.6 Handling of Date-Time VAIUESuuiiiiiiiiiiiiii ettt 78
6.6.1 Preserving TiMe INSTANTScoouuuiiiiiii ittt e et e e e e e e eeni e eees 78

6.6.2 Fractional SECONTUSuuiiiiiiiiei et e e e et e e eere e eeee 83

6.6.3 Handling of YEAR VAIUESooiiiiiiiiiiii et e 83

6.7 Using Character Sets and UNICOUEuiiiiiiiiiiiiiiiee e 84

6.8 USiNg QUErY ALIHIULES ...ttt 86

6.9 Connecting Securely USING SSLcoouuiiiiiiiie e e et 88
6.9.1 Setting up Server AUTNENTICALIONcuuuiiiiiii e 90

6.9.2 Setting up Client AUTNENTICALIONcoouuiiiiiii e 92

6.9.3 Setting up 2-Way AUthentiCatioNcooiiiiiiiiiii e 93

6.9.4 JSSE N FIPS MOGEoiiiiiiiiiii ettt e e e e e 93

6.9.5 Debugging an SSL CONNECHIONuuiiiiiiiieiiiiie ettt eeeees 94

6.10 Connecting Using Unix DOMAIN SOCKELSocciiiiiiiiiiiiieeiei e 94

6.11 Connecting USINg NamMed PIPESc.uuiiiiiiiiieiii et 94

6.12 Connecting Using Various Authentication Methodscccooviiiiiiiiiiiii e 95

MySQL Connector/J Developer Guide

6.12.1 Connecting Using PAM AuthentiCationcocouiiiiiiiiiii e 95

6.12.2 Connecting UsSINg KEIDEIOScoovniiii e 96

6.12.3 Connecting Using Multifactor Authenticationccoovviiieiii i, 97

6.12.4 Connecting Using Web Authentication (WebAuthn) Authentication 98

6.13 Using Source/Replica Replication with ReplicationConnectionc.ccceveviiieiiiiievieeennnn. 102

6.14 Support for DNS SRV RECOISuiiiiiiiiiieiii et e e e e e e e e e e e eanaeeas 103

6.15 Client SESSION StAte TIACKETiiiiiiii ettt e et e e e e e eas 104

6.16 Mapping MySQL Error Numbers to JDBC SQLState Codescoevvvveviiieiiiiiiiiieeiieeeieenn 105
A3] =1 O o] s [ol=T o | £ PSPPI 113
7.1 Connecting to MySQL Using the JDBC Dr i ver Manager Interfacecc.ccooeeviiiiiiiinennnnenn. 113

7.2 Using JDBC St at enent Objects to EXeCute SQLcovuiiiiiiiiieii e, 114

7.3 Using JDBC Cal | abl eSt at enent s to Execute Stored Proceduresccooevvvevevinneennnnnnn. 116

7.4 Retrieving AUTO | NCREMENT Column Values through JDBCccccoiviviiiiiiiiiciieeceeeiiees 118

8 Connection Pooling With CONNECIOIiiiii e e 123
9 MUILI-HOSE CONMNECHIONS ...ttt e e e e e ettt e e e et e e e eata e e e e eabn e e e eeatn e eeeantnaaaaees 127
9.1 Configuring Server Failover for Connections Using JDBCccoooviviiiiiiiiieceece e, 127

9.2 Configuring Server Failover for Connections Using X DeVAPIcoooiiiiiiiiiiiiiciiiecieees 130

9.3 Configuring Load Balancing with CONNECLOIIccouiiiiiieii e 131

9.4 Configuring Source/Replica Replication with ConNNEector/Jccoveviiiiiiiiiiii e 133

9.5 Advanced Load-balancing and Failover Configurationccccoevviiiiiiiiiii e, 137

10 Using the X DeVvAPI with Connector/J: Special TOPICSccvvuiiiiieii i e 139
10.1 Connection Compression UsSINg X DEVAPI ...t 139

10.2 Schema ValIdationoouuiiiiiii e e e e e e 140

11 Using the Connector/J INterCePLOr CIASSESciuuiiiiiiiiii ettt e e e aanas 143
12 Using Logging Frameworks With SLFAJc..iiiiiiii e 145
13 Using Connector/J With OPeNTEIEMELTYcouuiiiiici e e 147
14 Using Connector/J With TOMCALuiiiiiii e e e e e e e e e e e e e eanas 149
15 Using Connector/J With SPriNGcoeuniiiiiei e e e e e e e e e e e e e e eaaeees 151
ST U T o Vo I o o ot =Y a0 = = P 152

15.2 TranSactioNal JDBC ACCESSuueiiiiinieeiiiiie e et e e et e e e et e e ettt e e e et e e e et eeeettn e e e eaen s 153

15.3 Connection Pooling With SPINGooueiiiiii e e e e e e 155

16 Troubleshooting Connector/J APPLICAtIONSoiiuniiiii e e eeans 157
17 Known 1SSUES and LIMItALIONSuiiiiiiiiieeiii e et e et e e et s e e ettt e e e eat s e e e eatn e e e e eatnaeeeentnaaaaes 165
S @do]] aT=Tod (o) 7 A RS U] o] o] o (P 167
18.1 Connector/J COMMUNILY SUPPOIT ..oevuuiiii it e e e e e e e e e e e e e e et e e et e e eanaeeees 167

18.2 How to Report Connector/J Bugs Or Problemsc.oviiiiiiiiiiiiie e 167
0 = PR 169

Preface and Legal Notices

This manual describes how to install, configure, and develop database applications using MySQL
Connector/J, the JIDBC driver for communicating with MySQL servers.

Licensing information. This product may include third-party software, used under license. If you are
using a Commercial release of MySQL Connector/J 8.4, see the MySQL Connector/J 8.4 Commercial
License Information User Manual for licensing information, including licensing information relating to third-
party software that may be included in this Commercial release. If you are using a Community release of
MySQL Connector/J 8.4, see the MySQL Connector/J 8.4 Community License Information User Manual for
licensing information, including licensing information relating to third-party software that may be included in
this Community release.

Legal Notices

Copyright © 1998, 2024, Oracle and/or its affiliates.
License Restrictions

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted

in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free.
If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or
related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications

of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed

by U.S. Government end users are "commercial computer software," "commercial computer software
documentation,” or "limited rights data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including
any operating system, integrated software, any programs embedded, installed, or activated on delivered
hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract.
The terms governing the U.S. Government's use of Oracle cloud services are defined by the applicable
contract for such services. No other rights are granted to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous

https://downloads.mysql.com/docs/licenses/connector-j-8.4-com-en.pdf
https://downloads.mysql.com/docs/licenses/connector-j-8.4-com-en.pdf
https://downloads.mysql.com/docs/licenses/connector-j-8.4-gpl-en.pdf

Documentation Accessibility

applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Trademark Notice

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a
registered trademark of The Open Group.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

Use of This Documentation

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion to other
formats is allowed as long as the actual content is not altered or edited in any way. You shall not publish

or distribute this documentation in any form or on any media, except if you distribute the documentation in
a manner similar to how Oracle disseminates it (that is, electronically for download on a Web site with the
software) or on a CD-ROM or similar medium, provided however that the documentation is disseminated
together with the software on the same medium. Any other use, such as any dissemination of printed
copies or use of this documentation, in whole or in part, in another publication, requires the prior written
consent from an authorized representative of Oracle. Oracle and/or its affiliates reserve any and all rights
to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website
at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit ht t p: / / www. or acl e. cont pl s/ t opi c/
| ookup?ct x=acc&i d=t r s if you are hearing impaired.

Vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Chapter 1 Overview of MySQL Connector/J

MySQL provides connectivity for client applications developed in the Java programming language with
MySQL Connector/J. Connector/J implements the Java Database Connectivity (JDBC) API, as well as a
number of value-adding extensions of it. It also supports the new X DevAPI.

MySQL Connector/J is a JDBC Type 4 driver, implementing the JDBC 4.2 specification. The Type 4
designation means that the driver is a pure Java implementation of the MySQL protocol and does not
rely on the MySQL client libraries. See Chapter 2, Compatibility with MySQL and Java Versions for
compatibility information.

Connector/J 8.4 provides ease of development features including auto-registration with the Driver
Manager, standardized validity checks, categorized SQLEXxceptions, support for large update counts,
support for local and offset date-time variants from the j ava. t i me package, support for JDBC-4.x
XML processing, support for per connection client information, and support for the NCHAR, NVARCHAR
and NCLOB data types. See Chapter 2, Compatibility with MySQL and Java Versions for compatibility
information.

For large-scale programs that use common design patterns of data access, consider using one of the
popular persistence frameworks such as Hibernate, Spring's JDBC templates or MyBatis SQL Maps to
reduce the amount of JDBC code for you to debug, tune, secure, and maintain.

Key Topics
 For installation instructions for Connector/J, see Chapter 4, Connector/J Installation.

» For help with connection strings, connection options, and setting up your connection through JDBC, see
Chapter 6, Connector/J Reference.

» For information on connection pooling, see Chapter 8, Connection Pooling with Connector/J.
 For information on multi-host connections, see Chapter 9, Multi-Host Connections.

» For information on using the X DevAPI with Connector/J, see Chapter 10, Using the X DevAPI with
Connector/J: Special Topics.

http://www.oracle.com/technetwork/java/javase/jdbc/index.html
http://docs.oracle.com/javase/6/docs/technotes/guides/jdbc/
https://dev.mysql.com/doc/refman/8.4/en/char.html
https://dev.mysql.com/doc/refman/8.4/en/char.html
http://www.hibernate.org/
http://www.springframework.org/
http://www.mybatis.org/

Chapter 2 Compatibility with MySQL and Java Versions

Here is some compatibility information for Connector/J 8.4:

» JDBC versions: Connector/J 8.4 implements JDBC 4.2. While Connector/J 8.4 works with libraries of
higher JDBC versions, it returns a SQLFeat ur eNot Support edExcept i on for any calls of methods
supported only by JDBC 4.3 and higher.

* MySQL Server versions: Connector/J 8.4 supports MySQL 8.0 and up.
* JRE versions: Connector/J 8.4 supports JRE 8 or higher.

» JDK Required for Compilation: JDK 8.0 or higher is required for compiling Connector/J 8.4. Also, a
customized JSSE provider might be required to use some later TLS versions and cipher suites when
connecting to MySQL servers. For example, because Oracle's Java 8 releases before 8u261 were
shipped with JSSE implementations that support TLS up to version 1.2 only, you need a customized
JSSE implementation to use TLSv1.3 on those Java 8 platforms. Oracle Java 8u261 and above do
support TLSv1.3, so no customized JSSE implementation is needed.

Chapter 3 What's New in Connector/J 8.47

Version 8.4.0 is a new GA release version of the MySQL Connector/J. MySQL Connector/J 8.4.0
supersedes the 8.3 series and is recommended for use on production systems. This release can be used

against MySQL Server version 8.0 and up. It supports the Java Database Connectivity (JDBC) 4.2 API,
and implements the X DevAPI.

For notes detailling the changes in Connector/J 8.4, see MySQL Connector/J Release Notes

https://dev.mysql.com/doc/relnotes/connector-j/en/

Chapter 4 Connector/J Installation

Table of Contents

4.1 Installing Connector/J from a Binary DiStribUtion ..o 7
4.2 Installing ConNeCctor/J USING MAVENcouuiiiiiiiiiee ettt et e e et e e 9
4.3 INSAllING fTOM SOUICE ..ottt ettt e et e et eeeeaa s 9
4.4 Upgrading from an Older VEISIONuiiiiiiiiiiiiii ettt e e e e 12

4.4.1 Upgrading to MySQL Connector/J 8.4 from Connector/J 5.1ccc.coiieiiiiiiiiiiiiinieiiiiieeeennnn, 12
4.5 TeStNG CONNECIOIieeit ettt e ettt e et ettt e et et r e et et neeeetbaeeeeraaeeeen 17

You can install the Connector/J package using either a binary or source distribution. While the binary
distribution provides the easiest method for installation, the source distribution lets you customize your
installation. Both types of distributions are available from the Connector/J Download page. The source
code for Connector/J is also available on GitHub at https://github.com/mysql/mysql-connector-j.

Connector/J is also available as a Maven artifact in the Central Repository. See Section 4.2, “Installing
Connector/J Using Maven” for details.

If you are upgrading from a previous version, read the upgrade information in Section 4.4, “Upgrading from
an Older Version” before continuing.

Important

Third-party Libraries: According to how you use Connector/J 8.4, you may also
need to install the following third-party libraries on your system for it to work:

« Protocol Buffers (pr ot obuf - | ava) 3.25.1 is required for using X DevAPI

¢ Oracle Cloud Infrastructure SDK for Java (oci -] ava- sdk) 3.29.0 is required to
support OCI AIM authentication

« Simple Logging Facade API (sl f 4j - api) 2.0.9 is required for using
the logging capabilities provided by the default implementation of
org. sl f4j.Logger. Sl f4JLogger by Connector/J

These and other third-party libraries are required for building Connector/J from
source—see the section for more information.

4.1 Installing Connector/J from a Binary Distribution

Obtaining and Using the Binary Distribution Packages

Different types of binary distribution packages for Connector/J are available from the Connector/J
Download page. The following explains how to use each type of the packages to install Connector/J.

Using Platform-independent Archives: .t ar. gz or. zi p archives are available for installing Connector/
J on any platform. Using the appropriate graphical or command-line utility (for example, t ar for the

. tar. gz archive and W nZi p for the .zip archive), extract the JAR archive fromthe . tar. gz or. zi p
archive to a suitable location.

https://dev.mysql.com/downloads/connector/j/
https://github.com/mysql/mysql-connector-j
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/

Configuring the CLASSPATH

Note

Because there are potentially long file names in the distribution, the Connector/J
archives use the GNU Tar archive format. Use GNU Tar or a compatible application
to unpack the . t ar . gz variant of the distribution.

Using Packages for Software Package Management Systems on Linux Platforms: RPM and Debian
packages are available for installing Connector/J on a number of Linux distributions like Oracle Linux,
Debian, Ubuntu, SUSE, and so on. Install these packages using your system's software package
management system.

On Windows Platforms: You cannot install Connector/J on Windows platforms using the MySQL Installer
for Windows. Notice that there are also no stand-alone Windows installer files (.msi) for installing
Connector/J. Use the platform-independent archives instead for installations on Windows platforms.

Configuring the CLASSPATH

Once nysql - connect or - j - versi on. j ar has been extracted from the binary distribution package

to the right place, finish installing the driver by placing the JAR archive in your Java classpath, either by
adding its full file path to your CLASSPATH environment variable, or by directly specifying the file path with
the command line switch - cp when starting the JVM.

For example, on Linux platforms, add the Connector/J driver to your CLASSPATH using one of the following
forms, depending on your command shell:

Bour ne-conpati bl e shell (sh, ksh, bash, zsh):
$> export CLASSPATH=/ pat h/ nysql - connector-j-ver.jar: $CLASSPATH

C shell (csh, tcsh):
$> setenv CLASSPATH / pat h/ nysql - connector-j -ver.j ar: $CLASSPATH

You can also set the CLASSPATH environment variable in a profile file, either locally for a user within the
user's. profile,. |l ogin, orother login file, or globally by editing the global / et c/ profi | e file.

For Windows platforms, you set the environment variable through the System Control Panel.
Important

Remember to also add the locations of the third-party libraries required for using
Connector/J to CLASSPATH.

Configuring Connector/J for Application Servers

To use MySQL Connector/J with an application server such as GlassFish or Tomcat, read your vendor's
documentation for information on how to configure third-party class libraries, as most application servers
ignore the CLASSPATH environment variable. For configuration examples for some J2EE application
servers, see Chapter 8, Connection Pooling with Connector/J, Section 9.3, “Configuring Load Balancing
with Connector/J”, and Section 9.5, “Advanced Load-balancing and Failover Configuration”. However, the
authoritative source for JDBC connection pool configuration information is the documentation for your own
application server.

If you are developing servlets or JSPs and your application server is J2EE-compliant, you can put

the driver's . j ar file in the ViEB- | NF/ | i b subdirectory of your web application, as this is a standard
location for third-party class libraries in J2EE web applications. You can also use the Mysql Dat aSour ce
or Mysgl Connect i onPool Dat aSour ce classes in the com nysql . cj . j dbc package, if your

J2EE application server supports or requires them. The j avax. sql . XADat aSour ce interface is

https://dev.mysql.com/doc/refman/8.0/en/mysql-installer.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-installer.html

Installing Connector/J Using Maven

implemented using the com nysql . cj . j dbc. Mysql XADat aSour ce class, which supports XA
distributed transactions. The various Mysql Dat aSour ce classes support the following parameters
(through standard set mutators):

e user
* password

e server Nane

» dat abaseNane

s port

4.2 Installing Connector/J Using Maven

You can also use Maven dependencies manager to install and configure the Connector/J library in your
project. Connector/J is published in The Maven Central Repository with the following groupld and artifactid:

» groupld: com mnysq|l
« artifactld: mysql - connect or -

You can link the Connector/J library to your project by adding the following dependency in your pom xmi
file:

<dependency>
<gr oupl d>com nysql </ gr oupl d>
<artifact!|d>nysql-connector-j</artifactld>
<ver si on>x.y. z</versi on>

</ dependency>

Notice that if you use Maven to manage your project dependencies, you do not need to explicitly refer to
the library pr ot obuf - j ava as it is resolved by dependency transitivity. However, if you do not want to use
the X DevAPI features, you may also want to add a dependency exclusion to avoid linking the unneeded
sub-library. For example:

<dependency>
<gr oupl d>com nysgql </ gr oupl d>
<artifact!ld>nysql -connector-j</artifactld>
<versi on>x.y. z</ ver si on>
<excl usi ons>
<excl usi on>
<gr oupl d>com googl e. pr ot obuf </ gr oupl d>
<artifact!d>protobuf-java</artifactld>
</ excl usi on>
</ excl usi ons>
</ dependency>

4.3 Installing from Source

Caution

You need to install Connector/J from source only if you want to build a customized
version of Connector/J or if you are interested in helping us test our new code. To
just get MySQL Connector/J up and running on your system, install Connector/J
using a standard binary release distribution; see Section 4.1, “Installing Connector/J
from a Binary Distribution” for instructions.

https://central.sonatype.com/artifact/com.mysql/mysql-connector-j

Installing from Source

To install MySQL Connector/J from source, make sure that you have the following software on your
system:

Tip

It is suggested that the latest versions available for the following software be used
for compiling Connector/J; otherwise, some features might not be available.

« A Git client, if you want to check out the sources from our GitHub repository (available from http://git-
scm.com/downloads).

» Apache Ant version 1.10.6 or newer (available from http://ant.apache.org/).

« JDK 1.8.x (available from https://www.oracle.com/technetwork/java/javase/downloads/jdk8-
downloads-2133151.html).

» The following third-party libraries:

JUnit 5.10 (see installation and download information in the JUnit 5 User Guide). The following JAR
files are required:

e junit-jupiter-api-5.10.1.]jar (available from, for example, https://central.sonatype.com/
artifact/org.junit.jupiter/junit-jupiter-api/5.10.1/jar).

e junit-jupiter-engine-5.10.1.]ar (available from, for example, https://
central.sonatype.com/artifact/org.junit.jupiter/junit-jupiter-engine/5.10.1/jar).

e junit-platformcomobns-1.10. 1. ar (available from, for example, https://
central.sonatype.com/artifact/org.junit.platform/junit-platform-commons/1.10.1/jar).

e junit-platformengine-1.10.1.jar (available from, for example, https://
central.sonatype.com/artifact/org.junit.platform/junit-platform-engine/1.10.1/jar).

e junit-platform | auncher-1.10. 1.] ar (available from, for example, https://
central.sonatype.com/artifact/org.junit.platform/junit-platform-launcher/1.10.1/jar).

» These additional JAR files, which JUnit 5 depends on:

e api guardi an-api -1. 1. 2. ar (available from, for example, https://central.sonatype.com/
artifact/org.apiguardian/apiguardian-api/1.1.2/jar).

e opentest4j-1.3.0.]jar (available from, for example, https://central.sonatype.com/artifact/
org.opentestdj/opentest4j/1.3.0/jar).

Javassist 3.29.2 (j avassi st - 3. 29. 2- GA. | ar, available from, for example, https://
central.sonatype.com/artifact/org.javassist/javassist/3.29.2-GA/bundle).

Protocol Buffers Java API 3.25.1 (pr ot obuf - j ava- 3. 25. 1. j ar, available from, for example,
https://central.sonatype.com/artifact/com.google.protobuf/protobuf-java/3.25.1/bundle).

C3P0 0.9.5.5 or newer (c3p0- 0. 9. 5. 5. j ar, available from, for example, https://
central.sonatype.com/artifact/com.mchange/c3p0/0.9.5.5/jar).

Simple Logging Facade APl 2.0.9 or newer (sl f 4j - api - 2. 0. 9. | ar, available from, for example,
https://central.sonatype.com/artifact/org.slf4j/slf4j-api/2.0.9/jar).

Java Hamcrest 2.2 or newer (hantrest - 2. 2. j ar, available from, for example, https://
central.sonatype.com/artifact/org.hamcrest/hamcrest/2.2/jar).

10

http://git-scm.com/downloads
http://git-scm.com/downloads
http://ant.apache.org/
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://junit.org/junit5/docs/current/user-guide/
https://central.sonatype.com/artifact/org.junit.jupiter/junit-jupiter-api/5.10.1/jar
https://central.sonatype.com/artifact/org.junit.jupiter/junit-jupiter-api/5.10.1/jar
https://central.sonatype.com/artifact/org.junit.jupiter/junit-jupiter-engine/5.10.1/jar
https://central.sonatype.com/artifact/org.junit.jupiter/junit-jupiter-engine/5.10.1/jar
https://central.sonatype.com/artifact/org.junit.platform/junit-platform-commons/1.10.1/jar
https://central.sonatype.com/artifact/org.junit.platform/junit-platform-commons/1.10.1/jar
https://central.sonatype.com/artifact/org.junit.platform/junit-platform-engine/1.10.1/jar
https://central.sonatype.com/artifact/org.junit.platform/junit-platform-engine/1.10.1/jar
https://central.sonatype.com/artifact/org.junit.platform/junit-platform-launcher/1.10.1/jar
https://central.sonatype.com/artifact/org.junit.platform/junit-platform-launcher/1.10.1/jar
https://central.sonatype.com/artifact/org.apiguardian/apiguardian-api/1.1.2/jar
https://central.sonatype.com/artifact/org.apiguardian/apiguardian-api/1.1.2/jar
https://central.sonatype.com/artifact/org.opentest4j/opentest4j/1.3.0/jar
https://central.sonatype.com/artifact/org.opentest4j/opentest4j/1.3.0/jar
https://central.sonatype.com/artifact/org.javassist/javassist/3.29.2-GA/bundle
https://central.sonatype.com/artifact/org.javassist/javassist/3.29.2-GA/bundle
https://central.sonatype.com/artifact/com.google.protobuf/protobuf-java/3.25.1/bundle
https://central.sonatype.com/artifact/org.slf4j/slf4j-api/2.0.9/jar
https://central.sonatype.com/artifact/org.hamcrest/hamcrest/2.2/jar
https://central.sonatype.com/artifact/org.hamcrest/hamcrest/2.2/jar

Installing from Source

Oracle Cloud Infrastructure SDK for Java (oci - | ava- sdk- conmon- 3. 29. 0. j ar, available from, for
example, https://central.sonatype.com/artifact/com.oracle.oci.sdk/oci-java-sdk-common/3.29.0/jar).

OpenTelemetry API (opent el enet ry-api - 1. 35. 0. | ar, available from, for example, https://
central.sonatype.com/artifact/io.opentelemetry/opentelemetry-api/1.35.0).

OpenTelemetry Context (opent el enet ry-cont ext - 1. 35. 0. j ar, available from, for example,
https://central.sonatype.com/artifact/io.opentelemetry/opentelemetry-context/1.35.0).

Open Test Alliance for the JVM (opent est 4j - 1. 3. 0. j ar, available from, for example, https://
central.sonatype.com/artifact/org.opentest4j/opentest4j/1.3.0).

To build MySQL Connector/J from source, follow these steps:

1.
2.

Make sure that you have JDK 1.8.x installed.
Obtain the sources for Connector/J by one of the following means:

« Download the platform independent distribution archive (in . t ar. gz or . zi p format) for Connector/
J, which contains the sources, from the Connector/J Download page. Extract contents of the archive
into a folder named, for example, nysql - connect or-j .

» Download a source RPM package for Connector/J from Connector/J Download page and install it.

¢ Check out the code from the source code repository for MySQL Connector/J located on GitHub at
https://github.com/mysqgl/mysgl-connector-j. The latest release of the Connector/J 8.4 series is on the
r el ease/ 8. 4 branch; use the following command to check it out:

$> git clone --branch release/8.4 https://github.conm nysql/nysql-connector-j.git

Under the current directory, the command creates a nysql - connect or - j subdirectory , which
contains the code you want.

Place all the required third-party libraries in a the directory called | i b at the root of the source tree (that
is, in nysqgl - connect or-j /i b, if you have followed the steps above), or put them elsewhere and
supply the location to Ant later (see Step 5 below).

Change your current working directory to the nysql - connect or - | directory created in step 2 above.

In the directory, create a file named bui | d. pr operti es to indicate to Ant the location of the

root directory for your JDK 1.8.x installation with the property com nysql . cj . bui I d. j dk, as

well as the location for the extra libraries, if they are notin nysql - connect or-j /i b, with the
property com nysql . cj . extra. | i bs. Here is a sample file with those properties set (replace the
“pat h_t o_*" parts with the appropriate file paths):

com nysql .cj.build.jdk=path_to jdk_ 1.8
comnysql .cj.extra.libs=path_to folder_for_extra_libraries

Alternatively, you can set the values of those properties through the Ant - D options.
Note

Going from Connector/J 5.1 to 8.0 and beyond, a number of Ant properties for
building Connector/J have been renamed or removed; see Section 4.4.1.4,
“Changes for Build Properties” for details.

Issue the following command to compile the driver and create a . j ar file for Connector/J:

11

https://central.sonatype.com/artifact/com.oracle.oci.sdk/oci-java-sdk-common/3.29.0/jar
https://central.sonatype.com/artifact/io.opentelemetry/opentelemetry-api/1.35.0
https://central.sonatype.com/artifact/io.opentelemetry/opentelemetry-api/1.35.0
https://central.sonatype.com/artifact/io.opentelemetry/opentelemetry-context/1.35.0
https://central.sonatype.com/artifact/org.opentest4j/opentest4j/1.3.0
https://central.sonatype.com/artifact/org.opentest4j/opentest4j/1.3.0
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://github.com/mysql/mysql-connector-j

Upgrading from an Older Version

$> ant build

This creates a bui | d directory in the current directory, where all the build output goes. A directory
is created under the bui | d directory, whose name includes the version number of the release you
are building. That directory contains the sources, the compiled . cl ass files,and a . j ar file for
deployment.

For information on all the build targets, including those that create a fully packaged distribution, issue
the following command:

$> ant -projecthel p

7. Install the newly created . | ar file for the JDBC driver as you would install a binary . j ar file you
download from MySQL by following the instructions given in Configuring the CLASSPATH or
Configuring Connector/J for Application Servers.

4.4 Upgrading from an Older Version

This section has information for users who are upgrading from one version of Connector/J to another,

or to a new version of the MySQL server that supports a more recent level of JDBC. A newer version of
Connector/J might include changes to support new features, improve existing functionality, or comply with
new standards.

Depending on the platform and the way you used to install Connector/J, upgrading can be performed by
one of the following methods:

» Downloading a new platform-independent archive (. tar, . tar. gz, . zi p, etc.) and overwriting with it
your original installation created by an older archive.

Updating the version of the Connector/J dependency in your Maven . pomfile.
» Using the upgrade command of your Linux distro's package management system.
» Using the MySQL Installer for Windows, which can also perform automatic updates for Connector/J

See Chapter 4, Connector/J Installation for details on the installation and upgrade methods. You should
also pay attention to any important changes in the new version like changes in 3rd-party dependencies,
incompatibilities, etc.

4.4.1 Upgrading to MySQL Connector/J 8.4 from Connector/J 5.1

Upgrading an application developed for Connector/J 5.1 to use Connector/J 8.0 and beyond might require
certain changes to your code or the environment in which it runs. Here are some changes for Connector/J
going from 5.1 to 8.0 and beyond, for which adjustments might be required:

4.4.1.1 Running on the Java 8 Platform

Connector/J 8.0 and beyond is created specifically to run on the Java 8 platform. While Java 8 is known
to be strongly compatible with earlier Java versions, incompatibilities do exist, and code designed to
work on Java 7 might need to be adjusted before being run on Java 8. Developers should refer to the
incompatibility information provided by Oracle.

4.4.1.2 Changes in Connection Properties

A complete list of Connector/J 8.4 connection properties are available in Section 6.3, “Configuration
Properties”. The following are connection properties that have been changed (removed, added, have their
names changed, or have their default values changed) going from Connector/J 5.1 to 8.0 and beyond.

12

https://dev.mysql.com/doc/refman/8.0/en/mysql-installer.html
http://www.oracle.com/technetwork/java/javase/8-compatibility-guide-2156366.html#A999198

Upgrading to MySQL Connector/J 8.4 from Connector/J 5.1

Properties that have been removed (do not use them during connection):

useDynam cCharset | nfo

useBl obToSt or eUTF8CQut si deBWP, ut f 8Qut si deBnpExcl udedCol utmmNanePat t er n, and

ut f 8Qut si deBnpl ncl udedCol utmNanePat t er n: MySQL 5.6 and later supports the utf8mb4
character set, which is the character set that should be used by Connector/J applications for supporting
characters beyond the Basic Multilingual Plane (BMP) of Unicode Version 3.

useJvntChar set Convert er s: JVM character set conversion is now used in all cases
The following date and time properties:

e dynam cCal endar s

« noTzConver si onFor Ti neType

e« noTzConver si onFor Dat eType

e cacheDef aul t Ti mezone

e useFast | nt Parsing

¢ useFast Dat ePar si ng

¢ useJDBCConpl i ant Ti nezoneShi ft

e uselLegacyDat et i nreCode

¢ useSSPSConpati bl eTi mezoneShi ft

e useTi nezone

e useGnt M | Ii sForDat eti nes

dunmpMet adat aOnCol urmNot Found

r el axAut oConmi t

strictFl oati ngPoi nt

runni ngCTS13

retai nSt at ement Aft er Resul t Set Cl ose

nul | NanmePat t er n\Vat chesAl |

Properties that have been added:

nysql x. useAsyncPr ot ocol (deprecated)

Property that has its name changed:

com nysql . jdbc. faul tlnjection.serverCharsetlndex changed to
comnysqgl.cj.testsuite.faultlnjection.serverCharsetlndex

| oadBal anceEnabl eJMXto ha. enabl eJMX

replicati onEnabl eJMXto ha. enabl eJMX

13

Upgrading to MySQL Connector/J 8.4 from Connector/J 5.1

Properties that have their default values changed:

* nul | Cat al ogMeansCur r ent is now f al se by default
4.4.1.3 Changes in the Connector/J API

This section describes some of the more important changes to the Connector/J API going from version 5.1
to 8.0 and beyond. You might need to adjust your API calls accordingly:

» The name of the class that implements j ava. sql . Dri ver in MySQL Connector/J has changed
from com nysql . j dbc. Driver tocom nysqgl . cj.jdbc. Driver. The old class name has been
deprecated.

» The names of these commonly-used classes and interfaces have also been changed:

» Exceptioninterceptor: from com mysql . j dbc. Excepti onl nt er cept or to
com nysql . cj . excepti ons. Excepti onl nt ercept or

e Statementinterceptor: from com nysql . j dbc. St at ement | nt er cept or V2 to
comnysql.cj.interceptors. Queryl nterceptor

» ConnectionLifecyclelnterceptor: from com nysql . j dbc. Connecti onLi f ecycl el nt er cept or to
com nysql . cj.jdbc.interceptors. ConnectionLifecycl el nt erceptor

¢ AuthenticationPlugin: from com nysql . j dbc. Aut henti cati onPl ugi n to
com nysql . cj.protocol. Aut henticati onPl ugi n

» BalanceStrategy: from com nysql . j dbc. Bal anceSt r at egy to
com nysql . cj.jdbc. ha. Bal anceStr at egy

« MysqglDataSource: from com nysql . j dbc. j dbc2. opti onal . Mysql Dat aSour ce to
com nysql . cj.jdbc. Mysql Dat aSour ce

« MysqglDataSourceFactory: from com nysql . j dbc. j dbc2. opti onal . Mysql Dat aSour ceFact ory
to com nysql.cj.jdbc. Mysql Dat aSour ceFact ory

* MysglConnectionPoolDataSource: from
com nysql . jdbc.jdbc2. optional. Mysql Connecti onPool Dat aSour ce to
com nysql . cj.jdbc. Mysqgl Connect i onPool Dat aSour ce

« MysqglXADataSource: from com nysql . j dbc. j dbc2. opti onal . Mysql XADat aSour ce to
com nysql . cj.jdbc. Mysql XADat aSour ce

¢ MysqlXid: from com nysql . j dbc. j dbc2. opti onal . Mysql Xi d to
com nysql . cj.jdbc. Mysql Xi d

4.4.1.4 Changes for Build Properties

A number of Ant properties for building Connector/J from source have been renamed; see Table 4.1,
“Changes with the Build Properties from Connector/J 5.1 to 8.0 and Beyond”

Table 4.1 Changes with the Build Properties from Connector/J 5.1 to 8.0 and Beyond

Old name New name
com nysql . jdbc.extra.libs comnysqgl.cj.extra.libs
com nysql . j dbc.j dk com nysql.cj.build.jdk

14

Upgrading to MySQL Connector/J 8.4 from Connector/J 5.1

Old name New name

debug. enabl e com nysql . cj . bui | d. addDebugl nfo

com nysql . j dbc. noCl eanBet weenConpi | es |[com nysql . cj . bui | d. noCl eanBet weenConpi | es
com nysql . j dbc. commer ci al Bui | d com nysql . cj . buil d. conmer ci al

com nysql . jdbc.filterlLicense comnysql.cj.build.filterLicense

com nysql . j dbc. noCrypt oBui | d com nysql . cj . build. noCrypto

com nysql . j dbc. noSour ces com nysql . cj.build. noSources

com nysql . j dbc. noMavenSour ces com nysql . ¢j . bui | d. noMavenSour ces

maj or _version com nysql .cj.build.driver.version. mjor

m nor _versi on com nysql . cj . build.driver.version. n nor
subni nor _ver si on com nysql . cj.build.driver.version.subm por
versi on_st at us comnysql.cj.build.driver.version.status
extra.version comnysql.cj.build.driver.version.extra
snapshot . versi on com nysql . cj . build.driver.version. snapshot
version comnysql.cj.build.driver.version
full.version comnysql .cj.build.driver.version.full

pr odDi spl ayName com nysql .cj.build.driver.displayNane

pr odNarme com nysql . cj.build.driver. nane

ful | ProdNane comnysql.cj.build.driver.full Nane

bui I dDi r com nysql.cj.build.dir

buil dDriverDir comnysql.cj.build.dir.driver

mavenUpl oadDi r com nysql . cj.build. dir. mven

distDr comnysql.cj.dist.dir

t oPackage comnysql.cj.dist.dir.prepare

packageDest com nysql . cj.dist.dir.package

com nysql . j dbc. docs. sourceDi r comnysql.cj.dist.dir.prebuilt.docs

4.4.1.5 Change for Test Properties

A number of Ant properties for testing Connector/J have been renamed or removed; see Table 4.2,
“Changes with the Test Properties from Connector/J 5.1 to 8.0 and Beyond”

Table 4.2 Changes with the Test Properties from Connector/J 5.1 to 8.0 and Beyond

Old name New name

bui | dTestDi r comnysql.cj.testsuite.build. dir
junit.results comnysqgl.cj.testsuite.junit.results
comnysql .jdbc.testsuite.jvm comnysqgl.cj.testsuite.jvm

t est comnysqgl.cj.testsuite.test.class
met hods com nysql . cj.testsuite.test. nethods
com nysql . jdbc.testsuite. url comnysql.cj.testsuite. url

com nysql . jdbc.testsuite.adm n-url comnysql.cj.testsuite.url.admn

15

Upgrading to MySQL Connector/J 8.4 from Connector/J 5.1

have been removed from the test suite.

Old name New name

com nysql .jdbc.testsuite. ClusterUrl comnysql.cj.testsuite.url.cluster

com nysql . jdbc.testsuite. url.sha256def alddm nysql . cj.testsuite.url.openssl

com nysql . jdbc.testsuite. cant G ant com nysql . cj.testsuite.cant G ant

com nysql . jdbc.testsuite.no-nulti- comnysqgl.cj.testsuite.disable.multihost.tests
hosts-tests

com nysql . jdbc. test. ds. host com nysql . cj.testsuite. ds. host

com nysql . jdbc.test.ds. port comnysqgl.cj.testsuite. ds. port

com nmysql . jdbc. test.ds.db com nysqgl .cj.testsuite.ds.db

com nysql . j dbc.test.ds. user com nysql .cj.testsuite.ds. user

com nysql . jdbc. test. ds. password com nysql . cj.testsuite. ds. password

com nysql . j dbc.test.tabl etype comnysqgl.cj.testsuite.l oadstoreperf.tapletype
com nysql . j dbc.testsuite.l oadstoreperf. | EBimgRaguldjs t est suite. | oadst oreperf. useBi gResul
com nysql . j dbc.testsuite. M ni Adm nTest . raorBhutsbgwej . t est sui t e. mi ni Adm nTest . r unShut down
com nysql . jdbc. testsuite. noDebugQut put |com nysql . cj.testsuite. noDebugQut put
comnysql.jdbc.testsuite.retainArtifactsgcomnysqgl.cj.testsuite.retainArtifacts

com nysql . jdbc.testsuite.runLongTests |[com nysqgl.cj.testsuite.runLongTests

com nysql . jdbc.test. ServerControl | er. bagasnrnysqgl . cj.testsuite.serverControll er| basedir
com nysql . jdbc. Repl i cati onConnection. i s®l@auarysql .cj.testsuite.replicati onConnertion.isR
com nysql . j dbc. test.isLocal Host naneRepl gRemewéd

com nysql . jdbc.testsuite.driver Removed

com nysql . jdbc.testsuite.url.default Removed. No longer needed, as multi-JVM tests

4.4.1.6 Changes for Exceptions

Some exceptions have been removed from Connector/J going from version 5.1 to 8.0 and beyond.
Applications that used to catch the removed exceptions should now catch the corresponding exceptions
listed in Table 4.3 below.

Note

Some of these Connector/J 5.1 exceptions are duplicated in the
com.mysql.jdbc.exception.jdbc4 package; that is indicated by “[jdbc4.]" in their
names in Table 4.3.

Table 4.3 Changes for Exceptions from Connector/J 5.1 to 8.0 and Beyond

Removed Exception in Connector/J 5.1

com nysql . j dbc. exceptions. j dbc4. Cormuni cati onsExcepti on

com nysql . j dbc. exceptions. [jdbc4.] MySQLDat aExcepti on

com nysql . j dbc. exceptions.[]jdbc4.] MySQLI ntegrityConstraintViol ati onException
com nysql . j dbc. exceptions. [jdbc4.] MySQLI nval i dAut hori zati onSpecExcepti on

com nysql . j dbc. exceptions. [jdbc4.] MySQLNonTr ansi ent Connect i onExcepti on

com nysql . j dbc. exceptions. [jdbc4.] MySQLNonTr ansi ent Excepti on

16

Testing Connector/J

Removed Exception in Connector/J 5.1

com nysql . j dbc. exceptions. []jdbc4.] MySQLQueryl nt errupt edExcepti on

com nysql . j dbc. excepti ons. MySQLSt at ement Cancel | edExcepti on

com nysql . j dbc. exceptions. []jdbc4.] MySQLSynt axEr r or Excepti on

com nysql . j dbc. exceptions. [jdbc4.] MySQLTi meout Excepti on

com nysql . j dbc. exceptions.[jdbc4.] MySQLTr ansact i onRol | backExcepti on

com nysql . j dbc. exceptions.[]jdbc4.] MySQLTr ansi ent Connecti onExcepti on

com nysql . j dbc. exceptions.[]jdbc4.] MySQLTr ansi ent Excepti on

com nysql . j dbc. exceptions.[jdbc4.] MySQLI nt egrityConstraintViolati onException

4.4.1.7 Other Changes

Here are other changes with Connector/J 8.0 and beyond:

 Removed Repl i cationDri ver. Instead of using a separate driver, you can how obtain a connection
for a replication setup just by using the j dbc: mysql : replication:// scheme.

» See Chapter 4, Connector/J Installation for third-party libraries required for Connector/J 8.4 to work.

» For Connector/J 8.0.22 and earlier: Connector/J always performs time offset adjustments on date-time
values, and the adjustments require one of the following to be true:

« The MySQL server is configured with a canonical time zone that is recognizable by Java (for example,
Europe/Paris, Etc/GMT-5, UTC, etc.)

e The server's time zone is overridden by setting the Connector/J connection property
server Ti mezone (for example, ser ver Ti mnezone=Eur ope/ Pari s).

Note

The Connector/J's behavior in this respect has changed since release 8.0.23.
See Section 6.6.1, “Preserving Time Instants” for details. ser ver Ti nezone is
now an alias for the connection property connect i onTi meZone, which has
replaced ser ver Ti nezone.

4.5 Testing Connector/J

The Connector/J source code repository or packages that are shipped with source code include an
extensive test suite, containing test cases that can be executed independently. The test cases are divided
into the following categories:

» Unit tests: They are methods located in packages aligning with the classes that they test.

» Functional tests: Classes from the package t est sui t e. si npl e. Include test code for the main
features of Connector/J.

» Performance tests: Classes from the package t est sui t e. per f . Include test code to make
measurements for the performance of Connector/J.

* Regression tests: Classes from the package t est sui t e. r egr essi on. Includes code for testing bug
and regression fixes.

» X DevAPI and X Protocol tests: Classes from the package t est sui t e. x for testing X DevAPI and X
Protocol functionality.

17

Testing Connector/J

The bundled Ant build file contains targets like t est , which can facilitate the process of running the
Connector/J tests; see the target descriptions in the build file for details. To run the tests, in addition to
fulfilling the requirements described in Section 4.3, “Installing from Source”, you must also set the following
properties in the bui | d. properti es file or through the Ant - D options:

e comnysql . cj.testsuite.]jvmthe JVM to be used for the tests. If the property is not set, the JVM
supplied with com nmysql . ¢j . bui I d. j dk will be used.

e comnysql . cj.testsuite.url:itspecifies the IDBC URL for connection to a MySQL test server;
see Section 6.2, “Connection URL Syntax”.

e comnysql.cj.testsuite.url.openssl: (for release 8.0.26 and earlier only) it specifies the JDBC
URL for connection to a MySQL test server compiled with OpenSSL; see Section 6.2, “Connection URL
Syntax”.

e com nysql . cj.testsuite.nysql x. url: it specifies the X DevAPI URL for connection to a MySQL
test server; see Section 6.2, “Connection URL Syntax”.

e comnysql.cj.testsuite.nysql x.url.openssl : (for release 8.0.26 and earlier only) it specifies
the X DevAPI URL for connection to a MySQL test server compiled with OpenSSL; see Section 6.2,
“Connection URL Syntax”.

After setting these parameters, run the tests with Ant in the following ways:

» Building the t est target with ant t est runs all test cases by default on a single server
instance. If you want to run a particular test case, put the test's fully qualified class nhames in the
comnysql.cj.testsuite.test.class variable; for example:

shell > ant -Dcom nysql.cj.testsuite.test.class=testsuite.sinple.StringUilsTest test

You can also run individual tests in a test case by specifying the names of the corresponding methods in
the com nysql . cj . testsuite.test. net hods variable, separating multiple methods by commas;
for example:

shell > ant -Dcom nysql.cj.testsuite.test.class=testsuite.sinple.StringUilsTest \
-Dcom nmysql . cj.testsuite.test. methods=t est| ndexCf | gnoreCase, t est Get Byt es t est

While the test results are partially reported by the console, complete reports in HTML and XML formats are
provided. View the HTML report by opening bui | dt est/j uni t/report/i ndex. ht m . XML version of
the reports are located in the folder bui | dt est/j uni t.

Note

Going from Connector/J 5.1 to 8.0 and beyond, a number of Ant properties for
testing Connector/J have been renamed or removed; see Section 4.4.1.5, “Change
for Test Properties” for details.

18

Chapter 5 Connector/J Examples

Examples of using Connector/J are located throughout this document. This section provides a summary
and links to these examples.

» Example 7.1, “Connector/J: Obtaining a connection from the Dr i ver Manager”

« Example 7.2, “Connector/J: Using java.sql.Statement to execute a SELECT query”
» Example 7.3, “Connector/J: Calling Stored Procedures”

» Example 7.4, “Connector/J: Using Connect i on. prepareCal | ()"

« Example 7.5, “Connector/J: Registering output parameters”

» Example 7.6, “Connector/J: Setting Cal | abl eSt at enent input parameters”

» Example 7.7, “Connector/J: Retrieving results and output parameter values”

» Example 7.8, “Connector/J: Retrieving AUTO | NCREMENT column values using
St at enent . get Gener at edKeys()”

» Example 7.9, “Connector/J: Retrieving AUTO_| NCREVENT column values using SELECT
LAST_I NSERT_I ()"

» Example 7.10, “Connector/J: Retrieving AUTO_| NCREMENT column values in Updat abl e
Resul t Set s”

« Example 8.1, “Connector/J: Using a connection pool with a J2EE application server”

» Example 16.1, “Connector/J: Example of transaction with retry logic”

20

Chapter 6 Connector/J Reference

Table of Contents

6.1 Driver/Datasource Class NAIME ...ttt eeebe s 22
6.2 CONNECHION URL SYNIAX ...eittiiiiiiiiiee ittt e et e e ettt e e et et e e e e et e e e e et e e e eebaaeaees 22
6.3 CoNfIQUIrAtiON PTOPEITIESuuieiiiii ettt ettt e ettt e ettt e e e et r e e e etb s e e eenbnaeeeees 25
6.3.1 AULNENTICALION ...t et e et e et e e et e e e eeaa e aees 33
LS 2 0] o] o =Tl 1 o] o PP PPTRPPPTIN 35
B.3.3 SESSION ...ttt ettt ettt e e et aennans 37
B.3.4 INEIWOIKING ... eeeetie ettt ettt et e et et e e et e b e e et bt e e et e e e b 38
B.3.5 SBCUIMY ettt ettt ettt ettt ettt ettt e et eeaa s 41
6.3.6 STALEIMENTS ...eeiit ittt 45
6.3.7 Prepared STAtEIMENLSiiiiii et e e e ettt e et e e aees 46
B.3.8 RESUIL SIS ...iiiiiiiiii ettt et e et e e e e e ab e aen 48
SRS 1V =] - To =1 = R PP PP 50
6.3.10 BLOB/CLOB PrOCESSINGueiettiieeiitiie ettt e ettt e et e e ettt e e et et e e e et e e e e et e e e e et e e e eban s 50
6.3.11 Datetime tYPES PrOCESSING .. .ceuuunetertnieietii ettt e et et et e et et e e et e et et e e e et e e eeaaa s 52
6.3.12 High Availability and CIUSTEIINGieieiiieiiii et eeanns 54
6.3.13 Performance EXIENSIONSc..uuiiiiiiiieiiiii ettt ettt e e et e e e et e e e et e e e entn e eees 59
6.3.14 Debugging/ProfiliNgcoeeuiiiiii e 64
6.3.15 EXCEPLONS/MAIMINGS ...eevtieiiiit ettt e ettt e et e et et e e e e et e e et et e e e eebe e e eeetaaeeee 67
6.3.16 Tunes for integration with Other ProdUCESuuiiiiiiiiiiiii e 68
6.3.17 JDBC COMPIBINCEeuniiiiii ettt et e ettt e et e e e eaa s 68
6.3.18 X ProtoCol and X DEVAPI ... oottt et 69
6.4 JDBC API IMpPIementation NOTESccouuuiiiiiiii et e e 73
6.5 Java, JDBC, and MYSQL TYPES ...ttt iee ettt ettt e e ettt e et e e e e et e e e eat e e e eatreeeeatnreeeentnaaaees 75
6.6 Handling Of DAate-TimMe VAIUEScoouuiiiiiiiiieiiii ettt ettt e e e e e enanas 78
6.6.1 Preserving TiMe INSTANTSccouuuiiiiii et e et e e e et e e e et e e e enba e eeens 78
6.6.2 Fractional SECONUScouuuiiiiiiii ittt e e et e et et e eeeat e e e eata e eeenes 83
6.6.3 Handling of YEAR VAIUESuiiiiiiiii ittt e eeeas 83
6.7 Using Character SetS and UNICOOEviiiiiiiiiiii et e s 84
6.8 USING QUETY ALLHIULES ...t ettt e e et e e e eat e e e enbn e aees 86
6.9 Connecting Securely USING SSL ..ot 88
6.9.1 Setting up Server AUNENTICALIONuiiiiii e 90
6.9.2 Setting up Client AURENTICALIONc..uuiiiii e 92
6.9.3 Setting up 2-Way AULNENTICALIONuuiiiiiiii e 93
6.9.4 JSSE N FIPS MOEottt ettt ettt et e et e e e e e eeens 93
6.9.5 Debugging an SSL CONNECLIONuuiiiiiiieiiii et eenb e e enanns 94
6.10 Connecting Using Unix DOMain SOCKELSccoouuiiiiiiiiiiiiii e 94
6.11 Connecting USING NAMEd PIPESoouuiiiiiiiiiiei et e et e e et e e eab e eees 94
6.12 Connecting Using Various Authentication Methodscooiiiiiiiiiiiiii e, 95
6.12.1 Connecting Using PAM AUtNENEICALIONooiiuiiiiiiii et 95
6.12.2 Connecting USING KEIDEIOScoiiiiiiiiiiii et e e e 96
6.12.3 Connecting Using Multifactor AUtNENtICAtIONcc.uuiiiiiiiiiieiii e 97
6.12.4 Connecting Using Web Authentication (WebAuthn) Authenticationc.ccoooevviniiiiinnnnen. 98
6.13 Using Source/Replica Replication with ReplicationConnectionccooveiiiiiiiniiiineiiieeceeeee, 102
6.14 SuppOrt For DNS SRV RECOMSciiiiiiiiiiie et e e 103
6.15 Client SESSION STAE TIACKETiiiiti e e et e e e 104
6.16 Mapping MySQL Error Numbers to JDBC SQLState COUESvvvvviiiiieiiiieeiiieeei e eeeeeeieee 105

This section of the manual contains reference material for MySQL Connector/J.

21

Driver/Datasource Class Name

6.1 Driver/Datasource Class Name

The name of the class that implements j ava. sql . Dri ver in MySQL Connector/J is
com nysql . cj.jdbc.Driver.

6.2 Connection URL Syntax

This section explains the syntax of the URLSs for connecting to MySQL.

This is the generic format of the connection URL:

protocol / /[hosts] [/ dat abase] [?properti es]
The URL consists of the following parts:
Important

Any reserved characters for URLs (for example, /,:, @(,),[,], & #, =, ?, and
space) that appear in any part of the connection URL must be percent encoded.

pr ot ocol
There are the possible protocols for a connection:
» jdbc: nysql : is for ordinary and basic JDBC failover connections.

» jdbc: nysql : | oadbal ance: is for load-balancing JDBC connections. See Section 9.3, “Configuring
Load Balancing with Connector/J” for details.

» jdbc: nysql :replication: isfor JDBC replication connections. See Section 9.4, “Configuring
Source/Replica Replication with Connector/J” for details.

» nysql x: is for X DevAPI connections.

e jdbc: nysql +srv: is for ordinary and basic failover JDBC connections that make use of DNS SRV
records.

e jdbc: nysql +srv: | oadbal ance: is for load-balancing JDBC connections that make use of DNS SRV
records.

e jdbc: nysql +srv:replication: is for replication JDBC connections that make use of DNS SRV
records.

* mysql x+srv: is for X DevAPI connections that make use of DNS SRV records.

host s

Depending on the situation, the host s part may consist simply of a host name, or it can be a complex
structure consisting of various elements like multiple host names, port numbers, host-specific properties,
and user credentials.

» Single host:
¢ Single-host connections without adding host-specific properties:

e The host s part is written in the format of host :por t . This is an example of a simple single-host
connection URL:

j dbc: nysqgl : // host 1: 33060/ saki | a

22

host s

« host can be an IPv4 or an IPv6 host name string, and in the latter case it must be put inside
square brackets, for example “[1000:2000::abcd].” When host is not specified, the default value of
| ocal host is used.

e port is a standard port number, i.e., an integer between 1 and 65535. The default port number
for an ordinary MySQL connection is 3306, and it is 33060 for a connection using the X Protocol. If
port is not specified, the corresponding default is used.

* Single-host connections adding host-specific properties:

« In this case, the host is defined as a succession of key=val ue pairs. Keys are used to identify the
host, the port, as well as any host-specific properties. There are two alternate formats for specifying
keys:

e The “address-equals” form:
addr ess=(host =host _or _i p) (port=port) (keyl=val uel) (key2=val ue2)... (keyN=val ueN)
Here is a sample URL using the“address-equals” form :
jdbc: nysql : // addr ess=(host =myhost) (port=1111) (keyl=val uel)/db
* The “key-value” form:
(host =host, port =port, keyl=val uel, key2=val ue2, .. ., keyN=val ueN)
Here is a sample URL using the “key-value” form :
jdbc: nysql : // (host =nyhost, port=1111, keyl=val uel)/db

« The host and the port are identified by the keys host and port . The descriptions of the format and
default values of host and port in Single host without host-specific properties [22] above also
apply here.

« Other keys that can be added include user, passwor d, pr ot ocol , and so on. They override
the global values set in the pr oper ti es part of the URL. Limit the overrides to user, password,
network timeouts, and statement and metadata cache sizes; the effects of other per-host overrides
are not defined.

« Different protocols may require different keys. For example, the nysql x: scheme uses two special
keys, address and priority.address isahost:port pairand priority an integer. For
example:

nysql x: // (address=host: 1111, priority=1, keyl=val uel)/db

« key is case-sensitive. Two keys differing in case only are considered conflicting, and there are no
guarantees on which one will be used.

» Multiple hosts
There are two formats for specifying multiple hosts:

 List hosts in a comma-separated list:

host 1, host 2, ..., host N

Each host can be specified in any of the three ways described in Single host [22] above. Here are
some examples:

23

dat abase

jdbc: nmysql : //myhost 1: 1111, nyhost 2: 2222/ db
j dbc: nysql : // address=(host =nmyhost 1) (port =1111) (keyl=val uel), addr ess=(host =nyhost 2) (port =2222) (key2=val ue2)
jdbc: nmysql : // (host =nyhost 1, port=1111, keyl=val uel), (host =nmyhost 2, port =2222, key2=val ue2)/ db
jdbc: mysql : //myhost 1: 1111, (host =nyhost 2, port =2222, key2=val ue2)/ db
nmysql x: // (addr ess=host 1: 1111, pri ori ty=1, keyl=val uel), (addr ess=host 2: 2222, pri ori ty=2, key2=val ue2)/db
« List hosts in a comma-separated list, and then encloses the list by square brackets:

[host 1, host2, ..., hostN]

This is called the host sublist form, which allows sharing of the user credentials by all hosts in the list
as if they are a single host. Each host in the list can be specified in any of the three ways described in
Single host [22] above. Here are some examples:

j dbc: nysql : //sandy: secret @ myhost 1: 1111, nyhost 2: 2222] / db
j dbc: nysql : //sandy: secret @ addr ess=(host =myhost 1) (port=1111) (keyl=val uel), addr ess=(host =nyhost 2) (port =2222
jdbc: nysql : //sandy: secret @ nmyhost 1: 1111, addr ess=(host =nmyhost 2) (port =2222) (key2=val ue2)]/db

While it is not possible to write host sublists recursively, a host list may contain host sublists as its
member hosts.

» User credentials

User credentials can be set outside of the connection URL—for example, as arguments when getting
a connection from the j ava. sql . Dri ver Manager (see Section 6.3, “Configuration Properties” for
details). When set with the connection URL, there are several ways to specify them:

» Prefix the a single host, a host sublist (see Multiple hosts [23]), or any host in a list of hosts with the
user credentials with an @

user: passwor d@ost _or _host _subl i st

For example:
nmysql x: // sandy: secret @ (addr ess=host 1: 1111, pri ori ty=1, keyl=val uel), (addr ess=host 2: 2222, pri ori t y=2, key2=val
¢ Use the keys user and passwor d to specify credentials for each host:

(user =sandy) (passwor d=nypass)

For example:

jdbc: nmysql : //[(host =nyhost 1, port=1111, user =sandy, passwor d=secr et), (host =nyhost 2, port =2222, user =f i nn, passwo
j dbc: nysql : // addr ess=(host =nyhost 1) (port=1111) (user =sandy) (passwor d=secr et) , addr ess=(host =nyhost 2) (port =22

In both forms, when multiple user credentials are specified, the one to the left takes precedence—that is,
going from left to right in the connection string, the first one found that is applicable to a host is the one
that is used.

Inside a host sublist, no host can have user credentials in the @ format, but individual host can have
user credentials specified in the key format.

dat abase

The default database or catalog to open. If the database is not specified, the connection is made with no
default database. In this case, either call the set Cat al og() method on the Connect i on instance, or
specify table names using the database name (that is, SELECT dbnan®e. t abl enane. col nane FROM
dbnane. t abl enane. . .) in your SQL statements. Opening a connection without specifying the database

24

properties

to use is, in general, only useful when building tools that work with multiple databases, such as GUI
database managers.

Note

Always use the Connect i on. set Cat al og() method to specify the desired
database in JDBC applications, rather than the USE dat abase statement.

properties

A succession of global properties applying to all hosts, preceded by ? and written as key=val ue pairs
separated by the symbol “&. " Here are some examples:

jdbc: nysql : // (host =nyhost 1, port=1111), (host =nyhost 2, port =2222) / db?keyl=val uel&key2=val ue2&key3=val ue3
The following are true for the key-value pairs:

» key and val ue are just strings. Proper type conversion and validation are performed internally in
Connector/J.

» key is case-sensitive. Two keys differing in case only are considered conflicting, and it is uncertain
which one will be used.

» Any host-specific values specified with key-value pairs as explained in Single host with host-specific
properties [23] and Multiple hosts [23] above override the global values set here.

See Section 6.3, “Configuration Properties” for details about the configuration properties.

6.3 Configuration Properties

Configuration properties define how Connector/J will make a connection to a MySQL server. Unless
otherwise noted, properties can be set for a Dat aSour ce object or for a Connect i on object.

Configuration properties can be set in one of the following ways:

e Using the set * () methods on MySQL implementations of j ava. sql . Dat aSour ce (which is the
preferred method when using implementations of j ava. sql . Dat aSour ce):

« comnysql.cj.jdbc. Mysql Dat aSour ce
« com nysql . cj.jdbc. Mysql Connect i onPool Dat aSour ce

e As a key-value pairinthe j ava. util . Properti es instance passed to
Dri ver Manager . get Connection() orDriver. connect ()

» As a JDBC URL parameter in the URL givento j ava. sql . Dri ver Manager . get Connecti on(),
java. sqgl . Driver.connect () orthe MySQL implementations of the j avax. sql . Dat aSour ce
set URL() method. If you specify a configuration property in the URL without providing a value for
it, nothing will be set; for example, adding useSer ver Pr epSt nt s alone to the URL does not make
Connector/J use server-side prepared statements; you need to add useSer ver PrepSt nt s=t r ue.

Note

If the mechanism you use to configure a JDBC URL is XML-based, use the XML
character literal &anp; to separate configuration parameters, as the ampersand
is a reserved character for XML.

25

Configuration Properties

The properties are listed by categories in the following tables and then in the subsections that follow. Click

on a property name in the tables to see its full description in the subsections.

Table 6.1 Authentication Properties

Name Default Value Since Version
user - all versions
passwor d - all versions
passwor dl - 8.0.28
passwor d2 - 8.0.28
passwor d3 - 8.0.28

aut henti cati onPl ugi ns - 5.1.19

di sabl edAut henti cati onPl ugi ng- 5.1.19

def aul t Aut henti cati onPl ugi n |mysqgl_native_password 5.1.19

| dapSer ver Host name - 8.0.23

oci ConfigFile - 8.0.27

oci ConfigProfile DEFAULT 8.0.33

aut henti cati onWebAut hnCal | bagkHandl er 8.2.0

Table 6.2 Connection Properties

Name
connecti onAttri butes

Default Value

Since Version
5.1.25

connecti onLi fecycl el ntercept 9rs 514
useConfi gs - 3.15
clientlnfoProvider com.mysqgl.cj.jdbc.CommentClientinfoREo%iGer
cr eat eDat abasel f Not Exi st false 3.1.9
dat abaseTer m CATALOG 8.0.17
det ect Cust onCol | ati ons false 5.1.29
di sconnect OnExpi r edPasswor ds |true 5.1.23
interactivedient false 3.1.0
passwor dChar act er Encodi ng - 517
propertiesTransform - 3.14
rol | backOnPool edC ose true 3.0.15
useAf f ect edRows false 5.1.7

Table 6.3 Session Properties

Name
sessi onVari abl es

Default Value

Since Version
3.1.8

char act er Encodi ng - 1.1g

character Set Results - 3.0.13
connectionCol | ation - 3.0.13
cust onChar set Mappi ng - 8.0.26

26

Configuration Properties

Name
trackSessi onSt at e

Default Value
false

Since Version
8.0.26

Table 6.4 Networking Properties

Name Default Value Since Version
socksPr oxyHost - 5.1.34
socksProxyPort 1080 5.1.34
socket Factory com.mysqgl.cj.protocol.StandardSocketFaot@ry
connect Ti meout 0 3.01
socket Ti meout 0 3.0.1
dnsSrv false 8.0.19
| ocal Socket Addr ess - 5.05
maxAl | owedPacket 65535 5.1.8
socksPr oxyRenot eDns false 8.0.29
t cpKeepAl i ve true 5.0.7
t cpNoDel ay true 5.0.7
t cpRevBuUf 0 5.0.7

t cpSndBuf 0 5.0.7
tcpTrafficd ass 0 5.0.7
useConpr essi on false 3.0.17
useUnbuf f er edl nput true 3.0.11

Table 6.5 Security Properties

Name Default Value Since Version
par anoi d false 3.0.1
server RSAPubl i cKeyFi | e - 5.1.31
al | owPubl i cKeyRetri eval false 5131
ssl Mode PREFERRED 8.0.13
trustCertificateKeyStoreUrl |- 5.1.0
trustCertificateKeyStoreType |JKS 5.1.0
trustCertificat eKeySt or ePasswerd 5.1.0
fall backToSyst emlr ust St ore true 8.0.22
clientCertificateKeyStoreUrl |- 5.1.0
clientCertificateKeyStoreTypeJKS 5.1.0
clientCertificateKeyStorePasgword 5.1.0
fall backToSyst enKeySt or e true 8.0.22
t1sC phersuites - 5.1.35
tl sVersions - 8.0.8
fi psConpli ant Jsse false 8.1.0
KeyManager Fact or yPr ovi der - 8.1.0

27

Configuration Properties

Name
t rust Manager Fact or yPr ovi der

Default Value

Since Version
8.1.0

keySt or eProvi der - 8.1.0
ssl Cont ext Provi der - 8.1.0
al | owLoadLocal Infile false 3.0.3
al | owLoadLocal I nfil el nPath - 8.0.22
al l owmul ti Queri es false 3.1.1
allowlUrl I nLocal Infile false 314
requi r eSSL false 3.1.0
useSSL true 3.0.2
verifyServerCertificate false 5.1.6

Table 6.6 Statements Properties

Name Default Value Since Version
cacheDef aul t Ti neZone true 8.0.20

cont i nueBat chOnErr or true 3.0.3

dont Tr ackOpenResour ces false 3.1.7

queryl nterceptors - 8.0.7

quer yTi meout Ki | | sConnecti on |false 5.1.9

Table 6.7 Prepared Statements Properties

Name Default Value Since Version
al | owNanAndI nf false 3.15

aut oCl osePSt nt St r eans false 3.1.12
conpensat eOnDupl i cat eKeyUpdat|&Bsrint s 5.1.7

enul at eUnsupport edPst nt s true 3.1.7

gener at eSi npl ePar anet er Met adafase 5.05
processEscapeCodesFor Pr epSt nt|rue 3.1.12
useServer PrepStnts false 3.1.0
useStreamnlengt hsl nPrepSt nts |true 3.0.2

Table 6.8 Result Sets Properties

Name Default Value Since Version
cl obber Streani ngResul ts false 3.0.9
enptyStringsConvert ToZero true 3.1.8

hol dResul t sOpenOver St at enent (fadse 3.1.7

j dbcConpl i ant Truncati on true 3.1.2

max Rows -1 all versions
net Ti neout For St r eam ngResul t §600 5.1.0
padChar sWt hSpace false 5.0.6

popul at el nsert RowW t hDef aul t Vidlsees 5.05

28

Configuration Properties

Name Default Value Since Version
scrol | Tol er ant Forwar dOnl y false 8.0.24
strictUpdates true 3.04
tinylntlisBit true 3.0.16
transf or nedBi t | sBool ean false 3.1.9

Table 6.9 Metadata Properties

Name Default Value Since Version
get Procedur esRet ur nsFunct i onstrue 5.1.26
noAccessToPr ocedur eBodi es false 5.0.3

nul | Dat abaseMeansCur r ent false 3.1.8

useHost sl nPrivil eges true 3.0.2

usel nformat i onSchena false 5.0.0

Table 6.10 BLOB/CLOB processing Properties

Name Default Value Since Version
bl obSendChunkSi ze 1048576 3.1.9
bl obsAreStrings false 5.0.8
cl obChar act er Encodi ng - 5.0.0
emul at eLocat ors false 3.1.0
functionsNever Ret ur nBl obs false 5.0.8
| ocat or Fet chBuf ferSi ze 1048576 3.21

Table 6.11 Datetime types processing Properties

Name
connecti onTi neZone

Default Value

Since Version
3.0.2

f orceConnect i onTi neZoneToSessfaise 8.0.23
noDat eti meStri ngSync false 3.1.7
preservel nstants true 8.0.23
sendFr acti onal Seconds true 5.1.37
sendFr act i onal SecondsFor Ti e |true 8.0.23
treat Mysql Dat et i neAsTi nest anpfalse 8.2.0
treat Uti | Dat eAsTi nest anp true 5.0.5
year | sDat eType true 3.1.9
zer oDat eTi meBehavi or EXCEPTION 314

Table 6.12 High Availability and Clus

tering Properties

Name Default Value Since Version
aut oReconnect false 1.1

aut oReconnect For Pool s false 3.1.3

fail Over ReadOnl y true 3.0.12

29

Configuration Properties

Name Default Value Since Version
maxReconnect s 3 1.1
reconnect At TxEnd false 3.0.10
retriesAl | Down 120 5.1.6
initialTi meout 2 1.1
queri esBef or eRet r ySour ce 50 3.0.2
secondsBef or eRet r ySour ce 30 3.0.2
al | owRrepl i caDownConnecti ons |false 6.0.2
al | owSour ceDownConnect i ons false 5.1.27
ha. enabl eJMX false 5.1.27
| oadBal anceHost Renoval G- acePel50@0 6.0.3
r eadFr onSour ceWhenNoRepl i cas |false 6.0.2
sel f Dest ruct OnPi ngMaxQper at i gfis 5.1.6
sel f Dest ruct OnPi ngSecondsLi f ¢0i ne 5.1.6
ha. | oadBal anceSt r at egy random 5.0.6
| oadBal anceAut oConmi t St at enent Regex 5.1.15
| oadBal anceAut oConmi t St at emen0Thr eshol d 5.1.15
| oadBal anceBl ockl i st Ti neout |0 5.1.0
| oadBal anceConnecti onG oup - 5.1.13
| oadBal anceExcepti onChecker |com.mysql.cj.jdbc.ha.StandardLoadBal|&ntdBxceptionChecker
| oadBal ancePi ngTi neout 0 5.1.13
| oadBal anceSQLExcept i onSubcl assFai | over 5.1.13
| oadBal anceSQLSt at eFai | over |- 5.1.13
| oadBal anceVal i dat eConnect i onfalsvapSer ver 5.1.13
pi n@ obal TxToPhysi cal Connect i|taise 5.0.1
replicati onConnecti onG oup - 8.0.7
resourceld - 5.0.1
server Affini tyOrder - 8.0.8

Table 6.13 Performance Extensions Properties

Name Default Value Since Version
cal | abl eSt nt CacheSi ze 100 3.1.2

nmet adat aCacheSi ze 50 3.1.1
uselLocal Sessi onSt at e false 3.1.7
uselLocal Transacti onSt at e false 5.1.7

prepSt nt CacheSi ze 25 3.0.10

prepSt m CacheSql Li m t 256 3.0.10

queryl nf oCacheFact ory

com.mysqgl.cj.PerConnectionLRUFacto

5.1.1

server Confi gCacheFact ory

com.mysql.cj.util.PerVmServerConfigC

achdFactory

30

Configuration Properties

Name Default Value Since Version
al waysSendSet | sol ati on true 3.1.7
mai nt ai nTi meSt at s true 3.1.9
useCur sor Fet ch false 5.0.0
cacheCal | abl eStnt s false 3.1.2
cachePrepStnts false 3.0.10
cacheResul t Set Met adat a false 3.1.1
cacheServer Confi guration false 3.15
def aul t Fet chSi ze 0 3.1.9
dont CheckOnDupl i cat eKeyUpdat efads)l 5.1.32
el i deSet Aut oCommi t s false 3.1.3
enabl eEscapePr ocessi ng true 6.0.1
enabl eQuer yTi neout s true 5.0.6
| ar geRowSi zeThr eshol d 2048 51.1
readOnl yPr opagat esToSer ver true 5.1.35
rewiteBatchedSt atenents false 3.1.13
useReadAheadl nput true 3.15

Table 6.14 Debugging/Profiling Properties

Name
| ogger

Default Value
com.mysqgl.cj.log.StandardLogger

Since Version
3.1.1

profil er Event Handl er

com.mysqgl.cj.log.LoggingProfilerEvent

- thder

useNanosFor El apsedTi ne false 5.0.7
maxQuerySi zeTolLog 2048 3.1.3
maxByt eAr r ay AsHex 1024 8.0.31
profil eSQ false 3.1.0
| ogSl owQueri es false 3.1.2
sl owQueryThreshol dM I 1is 2000 3.1.2
sl owQuer yThr eshol dNanos 0 5.0.7
aut oSl owLog true 514
expl ai nSl owQueri es false 3.1.2
gat her Perf Metrics false 3.1.2
reportMetricsinterval MI1is |30000 3.1.2
| ogXaCommands false 5.0.5
traceProt ocol false 3.1.2
enabl ePacket Debug false 3.1.3
packet DebugBuf f er Si ze 20 3.1.3
useUsageAdvi sor false 3.1.1
resul t Set Si zeThreshol d 100 5.0.5
aut oGener at eTest caseScri pt false 3.1.9

31

Configuration Properties

Name
openTel enetry

Default Value
PREFERRED

Since Version
8.4.0

Table 6.15 Exceptions/Warnings Properties

Name Default Value Since Version
dunmpQuer i esOnExcepti on false 3.1.3
exceptionl nterceptors - 5.1.8

i gnor eNonTxTabl es false 3.0.9

i ncl udel nnodbSt at usl nDeadl ockfaleept i ons 5.0.7

i ncl udeThr eadDunpl nDeadl ockExtadge i ons 5.1.15

i ncl udeThr eadNanesAsSt at enent|fadsarent 5.1.15

useOnl ySer ver Err or Messages true 3.0.15

Table 6.16 Tunes for integration with

other products Properties

Name
overri deSupportslntegrityEnhd

Default Value
\fadserent Facil ity

Since Version
3.1.12

ul t raDevHack

false

2.0.3

Table 6.17 JDBC compliance Propert

ies

Name Default Value Since Version
useCol umNanes! nFi ndCol umrm false 5.1.7
pedantic false 3.0.0
used dAl i asMet adat aBehavi or |false 5.04

Table 6.18 X Protocol and X DevAPI Properties

Name Default Value Since Version
xdevapi . aut h PLAIN 8.0.8
xdevapi . conpr essi on PREFERRED 8.0.20

xdevapi . conpr essi on-
al gorithms

zstd_stream,lz4_message,deflate_stre

#810.22

password

xdevapi . conpr essi on- - 8.0.22
ext ensi ons

xdevapi . connect -t i neout 10000 8.0.13
xdevapi . connecti on- - 8.0.16
attributes

xdevapi . dns-srv false 8.0.19
xdevapi . fal | back-to-system |true 8.0.22
keystore

xdevapi . fal | back-to-system |true 8.0.22
truststore

xdevapi . ssl - keystore - 8.0.22
xdevapi . ssl - keyst or e- - 8.0.22

32

Authentication

Name Default Value Since Version
xdevapi . ssl - keystore-type JKS 8.0.22
xdevapi . ssl - node REQUIRED 8.0.7

xdevapi . ssl -truststore - 6.0.6

xdevapi . ssl -trust store- - 6.0.6
passwor d

xdevapi . ssl -truststore-type [JKS 6.0.6

xdevapi . t| s-ci phersuites - 8.0.19
xdevapi . tl s-versions - 8.0.19

6.3.1 Authentication

user

The user to connect as. If none is specified, it is authentication plugin dependent what user name is
used. Built-in authentication plugins default to the session login user name.

Since Version all versions

passwor d

The password to use when authenticating the user.

Since Version all versions

passwordl

The password to use in the first phase of a Multi-Factor Authentication workflow. It is a synonym of the
connection property 'password' and can also be set with user credentials in the connection string.

Since Version 8.0.28

passwor d2

The password to use in the second phase of a Multi-Factor Authentication workflow.

Since Version 8.0.28

passwor d3

The password to use in the third phase of a Multi-Factor Authentication workflow.

Since Version 8.0.28

aut henti cati onPl ugi ns

Comma-delimited list of classes that implement the interface
‘com.mysql.cj.protocol.AuthenticationPlugin'. These plugins will be loaded at connection initialization
and can be used together with their sever-side counterparts for authenticating users, unless they are
disabled in the connection property ‘disabledAuthenticationPlugins'.

Since Version 5.1.19

33

Authentication

e di sabl edAut henti cati onPl ugi ns

Comma-delimited list of authentication plugins client-side protocol names or classes implementing the
interface ‘com.mysq|.cj.protocol.AuthenticationPlugin'. The authentication plugins listed will not be used
for authenticating users and, if anyone of them is required during the authentication exchange, the
connection fails. The default authentication plugin specified in the property ‘defaultAuthenticationPlugin'
cannot be disabled.

Since Version 5.1.19

e defaul t Aut henticationPl ugin

The default authentication plugin client-side protocol name or a fully qualified name of a class that
implements the interface ‘com.mysql.cj.protocol.AuthenticationPlugin'. The specified authentication
plugin must be either one of the built-in authentication plugins or one of the plugins listed in the property
‘authenticationPlugins'. Additionally, the default authentication plugin cannot be disabled with the
property 'disabledAuthenticationPlugins'. Neither an empty nor unknown plugin name or class can be set
for this property.

By default, Connector/J honors the server-side default authentication plugin, which is known after
receiving the initial handshake packet, and falls back to this property's default value if that plugin cannot
be used. However, when a value is explicitly provided to this property, Connector/J then overrides the
server-side default authentication plugin and always tries first the plugin specified with this property.

Default Value mysql_native_password

Since Version 5.1.19

* | dapSer ver Host nane

When using MySQL's LDAP pluggable authentication with GSSAPI/Kerberos authentication method,
allows setting the LDAP service principal hostname as configured in the Kerberos KDC. If this property is
not set, Connector/J takes the system property 'java.security.krb5.kdc' and extracts the hostname (short
name) from its value and uses it. If neither is set, the connection fails with an exception.

‘Since Version 8.0.23

 ociConfigFile

The location of the OCI configuration file as required by the OCI SDK for Java. Default value is "~/.oci/
config" for Unix-like systems and "%HOMEDRIVE%%HOMEPATH%.oci\config" for Windows.

Since Version 8.0.27

e« oci ConfigProfile

The profile in the OCI configuration file specified in 'ociConfigFile', from where the configuration to use in
the "authentication_oci_client' authentication plugin is to be read.

Default Value DEFAULT

Since Version 8.0.33

e aut henticati onWebAut hnCal | backHandl| er

Fully-qualified class name of a class implementing the interface
‘com.mysql.cj.callback.MysglCallbackHandler'. This class will be used by the WebAuthn authentication

Connection

plugin to obtain the authenticator data and signature required for the FIDO authentication process. See

the documentation of com.mysq|l.cj.callback.WebAuthnAuthenticationCallback for more details.

‘Since Version 8.2.0

6.3.2 Connection

connecti onAttri butes

A comma-delimited list of user-defined "key:value" pairs, in addition to standard MySQL-defined
"key:value" pairs, to be passed to MySQL Server for display as connection attributes in the
'PERFORMANCE_SCHEMA' tables 'session_account_connect_attrs' and 'session_connect_attrs'.
Example usage: "connectionAttributes=keyl:valuel,key2:value2" This functionality is available

for use with MySQL Server version 5.6 or later only. Earlier versions of MySQL Server do

not support connection attributes, causing this configuration option to be ignored. Setting
"connectionAttributes=none" will cause connection attribute processing to be bypassed for situations
where Connection creation/initialization speed is critical.

Since Version 5.1.25

connectionLi fecycl el nterceptors

A comma-delimited list of classes that implement
‘com.mysql.cj.jdbc.interceptors.ConnectionLifecyclelnterceptor' that should be notified of
connection lifecycle events (creation, destruction, commit, rollback, setting the current database
and changing the autocommit mode) and potentially alter the execution of these commands.
‘ConnectionLifecyclelnterceptors' are stackable, more than one interceptor may be specified via the

configuration property as a comma-delimited list, with the interceptors executed in order from left to right.

Since Version 514

useConfi gs

Load the comma-delimited list of configuration properties for specifying combinations of options
for particular scenarios. These properties are loaded before parsing the URL or applying user-

specified properties. Allowed values are "3-0-Compat”, "clusterBase", "coldFusion”, "fullDebug"”,

"maxPerformance”, "maxPerformance-8-0" and "solarisMaxPerformance”, and they correspond to
properties files shipped within the Connector/J jar file, under "com/mysql/cj/configurations”.

Since Version ‘3.1.5

clientl nfoProvider

The name of a class that implements the 'com.mysq|.cj.jdbc.ClientinfoProvider' interface in order to
support JDBC-4.0's 'Connection.get/setClientinfo()' methods.

Default Value com.mysql.cj.jdbc.CommentClientinfoProvider

Since Version 5.1.0

cr eat eDat abasel f Not Exi st

Creates the database given in the URL if it doesn't yet exist. Assumes the configured user has
permissions to create databases.

35

Connection

Default Value

false

Since Version

3.1.9

dat abaseTer m

MySQL uses the term "schema" as a synonym of the term "database," while Connector/J historically
takes the JDBC term "catalog" as synonymous to "database”. This property sets for Connector/J which
of the JDBC terms "catalog" and "schema" is used in an application to refer to a database. The property
takes one of the two values "CATALOG" or "SCHEMA" and uses it to determine (1) which Connection
methods can be used to set/get the current database (e.g. 'setCatalog()’' or 'setSchema()'?), (2) which
arguments can be used within the various ‘DatabaseMetaData’ methods to filter results (e.g. the catalog
or 'schemaPattern' argument of 'getColumns()*?), and (3) which fields in the result sets returned by
'‘DatabaseMetaData’ methods contain the database identification information (i.e., the "TABLE_CAT' or
"TABLE_SCHEM' field in the result set returned by 'getTables()'?).

If "databaseTerm=CATALOG", 'schemaPattern’ for searches are ignored and calls of schema methods
(like 'setSchemay()' or get 'Schemay()") become no-ops, and vice versa.

Default Value

CATALOG

Since Version

8.0.17

det ect Cust ontCol | ati ons

Should the driver detect custom charsets/collations installed on server? If this option set to "true" the
driver gets actual charsets/collations from the server each time a connection establishes. This could slow

down connection initialization significantly.

Default Value

false

Since Version

5.1.29

di sconnect OnExpi r edPasswor ds

If ‘disconnectOnExpiredPasswords' is set to "false" and password is expired then server enters sandbox
mode and sends 'ERR(08001, ER_MUST_CHANGE_PASSWORD)' for all commands that are not
needed to set a new password until a new password is set.

Default Value

true

Since Version

5.1.23

interactivedient

Set the 'CLIENT_INTERACTIVE' flag, which tells MySQL to timeout connections based on

‘interactive_timeout' instead of ‘'wait_timeout'.

Default Value

false

Since Version

3.1.0

passwor dChar act er Encodi ng

Instructs the server to use the default character set for the specified Java encoding during the
authentication phase. If this property is not set, Connector/J falls back to the collation name specified in
the property ‘connectionCollation’ or to the Java encoding specified in the property ‘characterEncoding’,

36

Session

in that order of priority. The default collation of the character set utf8mb4 is used if none of the properties

is set.

‘Since Version 5.1.7

propertiesTransform

An implementation of 'com.mysql.cj.conf.ConnectionPropertiesTransform' that the driver will use to
modify connection string properties passed to the driver before attempting a connection.

‘Since Version 3.14

rol | backOnPool edCl ose

Should the driver issue a 'rollback()' when the logical connection in a pool is closed?

Default Value true

Since Version 3.0.15

useAf f ect edRows

Don't set the '"CLIENT_FOUND_ROWS' flag when connecting to the server. Note that this is not JDBC-
compliant and it will break most applications that rely on "found" rows vs. "affected rows" for DML
statements, but does cause correct update counts from "INSERT ... ON DUPLICATE KEY UPDATE"
statements to be returned by the server.

Default Value false
Since Version 5.1.7
6.3.3 Session

sessi onVari abl es

A comma or semicolon separated list of "name=value" pairs to be sent as "SET [SESSION] ..." to the
server when the driver connects.

Since Version 3.1.8

char act er Encodi ng

Instructs the server to set session system variables 'character_set_client' and 'character_set_connection’

to the default character set supported by MySQL for the specified Java character encoding and set

‘collation_connection' to the default collation for this character set. If neither this property nor the property

‘connectionCollation’ is set:
For Connector/J 8.0.25 and earlier, the driver will try to use the server's default character set;

For Connector/J 8.0.26 and later, the driver will use "utf8@mb4".

_'__‘_
i
«@

character Set Resul ts

Networking

Instructs the server to return the data encoded with the default character set for the specified Java
encoding. If not set or set to "null", the server will send data in its original character set and the driver will
decode it according to the result metadata.

Since Version 3.0.13

e connectionColl ation

Instructs the server to set session system variable 'collation_connection' to the specified collation
name and set 'character_set_client' and 'character_set_connection' to a corresponding character set.
This property overrides the value of 'characterEncoding' with the default character set this collation
belongs to, if and only if 'characterEncoding' is not configured or is configured with a character set that
is incompatible with the collation. That means ‘connectionCollation' may not always correct a mismatch
of character sets. For example, if ‘connectionCollation' is set to "latin1_swedish_ci", the corresponding
character set is "latin1" for MySQL, which maps it to the Java character set "windows-1252";

so if ‘characterEncoding' is not set,"windows-1252" is the character set that will be used; but if
‘characterEncoding' has been set to, e.g. "ISO-8859-1", that is compatible with "latinl_swedish_ci", so
the character encoding setting is left unchanged; and if client is actually using "windows-1252" (which is
similar but different from "ISO-8859-1"), errors would occur for some characters. If neither this property
nor the property 'characterEncoding' is set:

For Connector/J 8.0.25 and earlier, the driver will try to use the server's default character set;

For Connector/J 8.0.26 and later, the driver will use utf8mb4's default collation.

Since Version 3.0.13

e custontChar set Mappi ng
A comma-delimited list of custom "charset:java encoding" pairs.

In case the MySQL server is configured with custom character sets and "detectCustomCollations=true",
Connector/J needs to know which Java character encoding to use for the data represented by these
character sets. Example usage: "customCharsetMapping=charset1:UTF-8,charset2:Cp1252".

Since Version ‘8.0.26

e trackSessionState

Receive server session state changes on query results. These changes are accessible via
'‘MysqlConnection.getServerSessionStateController()'.

Default Value false

Since Version 8.0.26

6.3.4 Networking

* socksProxyHost

Name or IP address of a SOCKS host to connect through.

Since Version 5.1.34

e socksProxyPort

38

Networking

Port of the SOCKS server.

Default Value

1080

Since Version

5.1.34

socket Factory

The name of the class that the driver should use for creating socket connections to the server. This

class must implement the interface 'com.mysql.cj.protocol.SocketFactory' and have a public no-args

constructor.

Default Value

com.mysql.cj.protocol.StandardSocketFactory

Since Version

3.0.3

connect Ti neout

Timeout for socket connect (in milliseconds), with 0 being no timeout.

Default Value

0

Since Version

3.0.1

socket Ti neout

Timeout, specified in milliseconds, on network socket operations. Value "0" means no timeout.

Default Value

0

Since Version

3.0.1

dnsSrv

Should the driver use the given host name to lookup for DNS SRV records and use the resulting list of

hosts in a multi-host failover connection? Note that a single host name and no port must be provided

when this option is enabled.

Default Value

false

Since Version

8.0.19

| ocal Socket Addr ess

Hostname or IP address given to explicitly configure the interface that the driver will bind the client side

of the TCP/IP connection to when connecting.

Since Version

5.0.5

maxAl | onedPacket

Maximum allowed packet size to send to server. If not set, the value of system variable
'max_allowed_packet' will be used to initialize this upon connecting. This value will not take effect if set

larger than the value of 'max_allowed_packet'. Also, due to an internal dependency with the property

'blobSendChunkSize', this setting has a minimum value of "8203" if 'useServerPrepStmts' is set to "true".

Default Value

65535

39

Networking

Since Version 5.1.8

socksPr oxyRenot eDns

When using a SOCKS proxy, whether the DNS lookup for the database host should be performed locally
or through the SOCKS proxy.

Default Value false

Since Version 8.0.29

t cpKeepAl i ve

If connecting using TCP/IP, should the driver set 'SO_KEEPALIVE'?

Default Value true

Since Version 5.0.7

t cpNoDel ay

If connecting using TCP/IP, should the driver set 'SO_TCP_NODELAY", disabling the Nagle Algorithm?
Default Value true

Since Version 5.0.7

t cpRevBuf

If connecting using TCP/IP, should the driver set 'SO_RCV_BUF' to the given value? The default value
of "0", means use the platform default value for this property.

Default Value 0
Since Version 5.0.7
t cpSndBuf

If connecting using TCP/IP, should the driver set 'SO_SND_BUF' to the given value? The default value
of "0", means use the platform default value for this property.

Default Value 0

Since Version 5.0.7

tcpTrafficC ass

If connecting using TCP/IP, should the driver set traffic class or type-of-service fields? See the
documentation for ‘java.net.Socket.setTrafficClass()' for more information.

Default Value 0

Since Version 5.0.7

useConpr essi on

Use zlib compression when communicating with the server?

Default Value false

40

Security

Since Version 3.0.17

e useUnbuf f er edl nput

Don't use 'BufferedinputStream' for reading data from the server.

Default Value true
Since Version 3.0.11

6.3.5 Security
e paranoid

Take measures to prevent exposure sensitive information in error messages and clear data structures
holding sensitive data when possible?

Default Value false
Since Version 3.0.1

» server RSAPubl i cKeyFi l e

File path to the server RSA public key file for 'sha256_password' authentication. If not specified, the
public key will be retrieved from the server.

Since Version 5.1.31

e all owPubl i cKeyRetri eval

Allows special handshake round-trip to get an RSA public key directly from server.

Default Value false
Since Version 5.1.31
* ss| Mbde

By default, network connections are SSL encrypted; this property permits secure connections

to be turned off, or a different levels of security to be chosen. The following values are allowed:
"DISABLED" - Establish unencrypted connections; "PREFERRED" - Establish encrypted connections

if the server enabled them, otherwise fall back to unencrypted connections; "REQUIRED" - Establish
secure connections if the server enabled them, fail otherwise; "VERIFY_CA" - Like "REQUIRED" but
additionally verify the server TLS certificate against the configured Certificate Authority (CA) certificates;
"VERIFY_IDENTITY" - Like "VERIFY_CA", but additionally verify that the server certificate matches the
host to which the connection is attempted.

This property replaced the deprecated legacy properties 'useSSL', 'requireSSL', and
‘verifyServerCertificate', which are still accepted but translated into a value for 'ssiIMode'

if 'ssIMode’ is not explicitly set: "useSSL=false" is translated to "ssIMode=DISABLED";

{"useSSL=true", "requireSSL=false", "verifyServerCertificate=false"} is translated to
"ssIMode=PREFERRED"; {"useSSL=true", "requireSSL=true", "verifyServerCertificate=false"} is
translated to "ssIMode=REQUIRED"; {"useSSL=true", "verifyServerCertificate=true"} is translated to
"chl\/lnrin—\/FDII:V_(‘A"_ There is no nqui\/:\lnnt Ingapy entfingc for "et:ll\/lnrin—\/FDII:V_IDIZI\ITITV"_ Note
that, for all server versions, the default setting of 'ssIMode’ is "PREFERRED", and it is equivalent to the#1
legacy settings of "useSSL=true", "requireSSL=false", and "verifyServerCertificate=false", which are

Security

different from their default settings for Connector/J 8.0.12 and earlier in some situations. Applications
that continue to use the legacy properties and rely on their old default settings should be reviewed.

The legacy properties are ignored if 'ssIMode' is set explicitly. If none of 'ssIMode' or 'useSSL' is set
explicitly, the default setting of "ssIMode=PREFERRED" applies.

Default Value PREFERRED
Since Version 8.0.13

e trustCertificateKeyStoreUrl
URL for the trusted root certificates key store.

If not specified, the property 'fallbackToSystemTrustStore' determines if system-wide trust store is used.

Since Version 5.1.0

e trustCertificateKeyStoreType
Key store type for trusted root certificates.
Null or empty means use the default, which is "JKS". Standard key store types supported by the JVM are

"JKS" and "PKCS12", your environment may have more available depending on what security providers
are installed and available to the JVM.

Default Value JKS

Since Version 5.1.0

e trustCertificateKeyStorePassword

Password for the trusted root certificates key store.

Since Version 5.1.0

» fallbackToSystenlrust Store

Whether the absence of setting a value for 'trustCertificateKeyStoreUr!' falls back to using the system-
wide default trust store or one defined through the system properties 'javax.net.ssl.trustStore*'.

Default Value true

Since Version 8.0.22

e clientCertificateKeyStoreUrl
URL for the client certificate KeyStore.

If not specified, the property 'fallbackToSystemKeyStore' determines if system-wide key store is used.

Since Version 5.1.0

Security

e clientCertificateKeyStoreType
Key store type for client certificates.

Null or empty means use the default, which is "JKS". Standard key store types supported by the JVM are
"JKS" and "PKCS12", your environment may have more available depending on what security providers
are installed and available to the JVM.

Default Value JKS

Since Version 5.1.0

e clientCertificateKeyStorePassword

Password for the client certificates key store.

Since Version 5.1.0

« fall backToSyst enKeyStore

Whether the absence of setting a value for 'clientCertificateKeyStoreUr!' falls back to using the system-
wide key store defined through the system properties 'javax.net.ssl.keyStore*'.

Default Value true

Since Version 8.0.22

 tlsCiphersuites

When establishing secure connections, overrides the cipher suites enabled for use on the underlying
SSL sockets. This may be required when using external JSSE providers or to specify cipher suites
compatible with both MySQL server and used JVM. Prior to version 8.0.28, this property was named
‘enabledSSLCipherSuites', which remains as an alias.

Since Version 5.1.35

e tl|sVersions

List of TLS protocols to allow when establishing secure connections. Overrides the TLS protocols
enabled in the underlying SSL sockets. This can be used to restrict connections to specific TLS versions
and, by doing that, avoid TLS negotiation fallback. Allowed and default values are "TLSv1.2" and
"TLSv1.3". Prior to version 8.0.28, this property was named 'enabledTLSProtocols', which remains as an
alias.

Since Version 8.0.8

o fipsConpliantJsse

Enables Connector/J to be compatible to JSSE operating in FIPS mode. Should be set to "true" if the
JSSE is configured to operate in FIPS mode and Connector/J receives the error "FIPS mode: only
SunJSSE TrustManagers may be used" when creating secure connections. If set to "true" then, when
establishing secure connections, the driver operates as if the 'ssIMode' was set to "VERIFY_CA" or
"VERIFY_IDENTITY", i.e., all secure connections require at least server certificate validation, for which a
trust store must be configured or fall back to the system-wide trust store must be enabled.

Default Value false

43

Security

Since Version 8.1.0

KeyManager Fact or yPr ovi der

The name of the a Java Security Provider that provides a ‘javax.net.ssl.KeyManagerFactory'
implementation. If none is specified then the default one is used.

Since Version 8.1.0

t rust Manager Fact or yPr ovi der

The name of the a Java Security Provider that provides a ‘javax.net.ssl. TrustManagerFactory'
implementation. If none is specified then the default one is used.

Since Version 8.1.0

keySt or eProvi der

The name of the a Java Security Provider that provides a 'java.security.KeyStore' implementation
that supports the key stores types specified with ‘clientCertificateKeyStoreType' and
'trustCertificateKeyStoreType'. If none is specified then the default one is used.

Since Version 8.1.0

ssl| Cont ext Provi der

The name of the a Java Security Provider that provides a ‘javax.net.ssl.SSLContext' implementation. If
none is specified then the default one is used.

Since Version 8.1.0

al | owLoadLocal Infile
Should the driver allow use of "LOAD DATA LOCAL INFILE ..."?

Setting to "true” overrides whatever path is set in 'allowLoadLocallnfileInPath’, allowing uploading files
from any location.

Default Value false

Since Version 3.0.3

al | owLoadLocal I nfil el nPat h

Enables "LOAD DATA LOCAL INFILE ..." statements, but only allows loading files from the specified
path. Files within sub-directories are also allowed, but relative paths or symlinks that fall outside this path
are forbidden.

‘Since Version 8.0.22

al l owMul ti Queri es

Allow the use of ;" to delimit multiple queries during one statement. This option does not affect the
‘addBatch()' and ‘executeBatch()' methods, which rely on 'rewriteBatchStatements' instead.

‘ Default Value false

Statements

Since Version 3.11

allowlr | I nLocal Infile

Should the driver allow URLs in "LOAD DATA LOCAL INFILE ..." statements?

Default Value false
Since Version 3.1.4
requi r eSSL

DEPRECATED: See 'ssIMode' property description for details.

For 8.0.12 and earlier: Require server support of SSL connection if "useSSL=true".

Default Value false
Since Version 3.1.0
useSSL

DEPRECATED: See 'ssIMode' property description for details.

For 8.0.12 and earlier: Use SSL when communicating with the server, default is "true" when connecting
to MySQL 5.5.45+, 5.6.26+ or 5.7.6+, otherwise default is "false".

For 8.0.13 and later: Default is "true".

Default Value true
Since Version 3.0.2

verifyServerCertificate

DEPRECATED: See 'ssIMode' property description for details.

For 8.0.12 and earlier: If 'useSSL' is set to "true", should the driver verify the server's certificate? When
using this feature, the key store parameters should be specified by the ‘clientCertificateKeyStore*'
properties, rather than system properties. Default is "false" when connecting to MySQL 5.5.45+, 5.6.26+
or 5.7.6+ and 'useSSL' was not explicitly set to "true". Otherwise default is "true".

For 8.0.13 and later: Default is "false".

Default Value false

Since Version 5.1.6

6.3.6 Statements

cacheDef aul t Ti neZone

Caches client's default time zone. This results in better performance when dealing with time zone
conversions in Date and Time data types, however it won't be aware of time zone changes if they

happen at runtime. 45

Default Value true

Prepared Statements

Since Version 8.0.20

e conti nueBat chOnError

Should the driver continue processing batch commands if one statement fails. The JDBC spec allows

either way.
Default Value true
Since Version 3.0.3

e dont TrackQpenResour ces

The JDBC specification requires the driver to automatically track and close resources,

however if your application doesn't do a good job of explicitly calling 'close()' on statements

or result sets this can cause memory leakage. Setting this property to "true" relaxes this

constraint, and can be more memory efficient for some applications. Also the automatic

closing of the statement and current result set in ‘Statement.closeOnCompletion()’

and 'Statement.getMoreResults([Statement. CLOSE_CURRENT_RESULT |
Statement.CLOSE_ALL_RESULTS]), respectively, ceases to happen. This property automatically sets
"holdResultsOpenOverStatementClose=true".

Default Value false

Since Version 3.1.7

e querylnterceptors

A comma-delimited list of classes that implement 'com.mysq|l.cj.interceptors.Queryinterceptor' that
intercept query executions and are able influence the results. Query iterceptors are chainable: the results
returned by the current interceptor will be passed on to the next in the chain, from left-to-right in the order
specified in this property.

Since Version ‘8.0.7

e queryTi neout Ki | I sConnecti on

If the timeout given in 'Statement.setQueryTimeout()' expires, should the driver forcibly abort the
connection instead of attempting to abort the query?

Default Value false

Since Version 5.1.9

6.3.7 Prepared Statements
* al | omNanAndI nf

Should the driver allow NaN or +/- INF values in 'PreparedStatement.setDouble()'?

Default Value false

Since Version 3.15

e aut ol osePSt nt St reans

Should the driver automatically call the method 'close()' on streams/readers passed as arguments via
'set*()' methods?

46

Prepared Statements

Default Value

false

Since Version

3.1.12

conpensat eOnDupl i cat eKeyUpdat eCount s

Should the driver compensate for the update counts of "INSERT ... ON DUPLICATE KEY UPDATE"
statements (2 = 1, 0 = 1) when using prepared statements?

Default Value

false

Since Version

5.1.7

enul at eUnsupport edPst m s

Should the driver detect prepared statements that are not supported by the server, and replace them

with client-side emulated versions?

Default Value

true

Since Version

3.1.7

gener at eSi npl ePar anet er Met adat a

Should the driver generate simplified parameter metadata for prepared statements when no metadata
is available either because the server couldn't support preparing the statement, or server-side prepared

statements are disabled?

Default Value

false

Since Version

5.0.5

processEscapeCodesFor PrepSt nt s

Should the driver process escape codes in queries that are prepared? Default escape processing
behavior in non-prepared statements must be defined with the property '‘enableEscapeProcessing'.

Default Value

true

Since Version

3.1.12

useServerPrepStnts

Use server-side prepared statements if the server supports them? The server may limit the number
of prepared statements with 'max_prepared_stmt_count' or disable them altogether. In case of
not being possible to prepare new server-side prepared statements, it depends on the value of
‘emulateUnsupportedPstmts' to whether return an error or fall back to client-side emulated prepared

statements.
Default Value false
Since Version 3.1.0

useStreamnLengt hsl nPrepStnt s

Honor stream length parameter in 'PreparedStatement/ResultSet.set*Stream()' method calls?

Default Value

true

47

Result Sets

‘Since Version

3.0.2

6.3.8 Result Sets

cl obber Stream ngResul ts

This will cause a streaming result set to be automatically closed, and any outstanding data still streaming
from the server to be discarded if another query is executed before all the data has been read from the

server.
Default Value false
Since Version 3.0.9

enptyStri ngsConvert ToZer o

Should the driver allow conversions from empty string fields to numeric values of "0"?

Default Value

true

Since Version

3.1.8

hol dResul t sOpenOver St at enent Cl ose

Should the driver close result sets on 'Statement.close()' as required by the JDBC specification?

Default Value

false

Since Version

3.1.7

j dbcConpl i ant Truncati on

Should the driver throw ‘java.sqgl.DataTruncation' exceptions when data is truncated as is
required by the JDBC specification? This property has no effect if the server sql-mode includes

'STRICT_TRANS_TABLES".

Default Value

true

Since Version

3.1.2

e maxRows

The maximum number of rows to return. The default "0" means return all rows.

Default Value

-1

Since Version

all versions

* net Ti neout For St ream ngResul t s

What value should the driver automatically set the server setting 'net_write_timeout' to when the
streaming result sets feature is in use? Value has unit of seconds, the value "0" means the driver will not

try and adjust this value.

Default Value

600

Since Version

5.1.0

* padChar sW t hSpace

48

Result Sets

If a result set column has the CHAR type and the value does not fill the amount of characters specified
in the DDL for the column, should the driver pad the remaining characters with space (for ANSI

compliance)?

Default Value

false

Since Version

5.0.6

popul at el nsert RowwW t hDef aul t Val ues

When using result sets that are 'CONCUR_UPDATABLE', should the driver pre-populate the insert

row with default values from the DDL for the table used in the query so those values are immediately
available for 'ResultSet' accessors? This functionality requires a call to the database for metadata each
time a result set of this type is created. If disabled, the default values will be populated by the an internal
call to 'refreshRow()' which pulls back default values and/or values changed by triggers.

Default Value

false

Since Version

5.0.5

scrol | Tol er ant For war dOnl y

Should the driver contradict the JDBC API and tolerate and support backward and absolute cursor
movement on result sets of type 'ResultSet. TYPE_ FORWARD_ONLY'?

Regardless of this setting, cursor-based and row streaming result sets cannot be navigated in the

prohibited directions.

Default Value

false

Since Version

8.0.24

strict Updat es

Should the driver do strict checking, i.e. all primary keys selected, of updatable result sets?

Default Value

true

Since Version

3.04

tinylntlisBit

Since the MySQL server silently converts BIT to TINYINT(1) when creating tables, should the driver treat

the datatype TINYINT(1) as the BIT type?

Default Value

true

Since Version

3.0.16

transf or redBi t | sBool ean

If the driver converts TINYINT(1) to a different type, should it use BOOLEAN instead of BIT?

Default Value

false

Since Version

3.1.9

6.3.9 Metadata

» get Procedur esRet urnsFuncti ons

Pre-JDBC4 'DatabaseMetaData’ API has only the ‘getProcedures()' and ‘getProcedureColumns()'
methods, so they return metadata info for both stored procedures and functions. JDBC4 was extended
with the 'getFunctions()' and 'getFunctionColumns()' methods and the expected behaviours of previous
methods are not well defined. For JDBC4 and higher, default "true" value of the option means that

calls of 'DatabaseMetaData.getProcedures()' and 'DatabaseMetaData.getProcedureColumns()'

return metadata for both procedures and functions as before, keeping backward compatibility.

Setting this property to "false" decouples Connector/J from its pre-JDBC4 behaviours for
'DatabaseMetaData.getProcedures()' and 'DatabaseMetaData.getProcedureColumns()', forcing them to

return metadata for procedures only.

Default Value

true

Since Version

5.1.26

e noAccessToProcedur eBodi es

When determining procedure parameter types for 'CallableStatement’, and the connected user can't
access procedure bodies through "SHOW CREATE PROCEDURE" or SELECT on mysq|l.proc should
the driver instead create basic metadata, with all parameters reported as INOUT VARCHARSs, instead of

throwing an exception?

Default Value

false

Since Version

5.0.3

e nul | Dat abaseMeansCur r ent

In 'DatabaseMetaData’ methods that take a 'catalog’ or 'schema’ parameter, does the value "null" mean
to use the current database? See also the property 'databaseTerm'.

Default Value

false

Since Version

3.1.8

e useHostslnPrivil eges

Add '@hostname’ to users in 'DatabaseMetaData.getColumn/TablePrivileges()'.

Default Value

true

Since Version

3.0.2

e usel nformati onSchena

Should the driver use the INFORMATION_SCHEMA to derive information used by 'DatabaseMetaData'?
Default is "true" when connecting to MySQL 8.0.3+, otherwise default is "false".

Default Value

false

Since Version

5.0.0

6.3.10 BLOB/CLOB processing

e bl obSendChunkSi ze

50

BLOB/CLOB processing

Chunk size to use when sending BLOB/CLOBSs via server-prepared statements. Note that this value

cannot exceed the value of 'maxAllowedPacket' and, if that is the case, then this value will be corrected

automatically.

Default Value

1048576

Since Version

3.1.9

bl obsAreStri ngs

Should the driver always treat BLOBs as Strings - specifically to work around dubious metadata returned

by the server for GROUP BY clauses?

Default Value

false

Since Version

5.0.8

cl obChar act er Encodi ng

The character encoding to use for sending and retrieving TEXT, MEDIUMTEXT and LONGTEXT values
instead of the configured connection ‘characterEncoding'.

Since Version

5.0.0

emul at eLocators

Should the driver emulate 'java.sql.Blob' with locators? With this feature enabled, the driver will delay

loading the actual Blob data until the one of the retrieval methods (‘getinputStream()’, 'getBytes()', and so
forth) on the blob data stream has been accessed. For this to work, you must use a column alias with the

value of the column to the actual name of the Blob. The feature also has the following restrictions: The
SELECT that created the result set must reference only one table, the table must have a primary key;

the SELECT must alias the original blob column name, specified as a string, to an alternate name; the
SELECT must cover all columns that make up the primary key.

Default Value

false

Since Version

3.1.0

functi onsNever Ret ur nBl obs

Should the driver always treat data from functions returning BLOBs as Strings - specifically to work
around dubious metadata returned by the server for "GROUP BY" clauses?

Default Value

false

Since Version

5.0.8

| ocat or Fet chBuf fer Si ze

If 'emulateLocators' is configured to "true”, what size buffer should be used when fetching BLOB data for

‘getBinarylnputStream()'?

Default Value

1048576

Since Version

3.2.1

51

Datetime types processing

6.3.11 Datetime types processing
e connectionTi meZone

Configures the connection time zone which is used by Connector/J if conversion between the JVM
default and a target time zone is needed when preserving instant temporal values.

Accepts a geographic time zone name or a time zone offset from Greenwich/UTC, using a syntax
'java.time.Zoneld' is able to parse, or one of the two logical values "LOCAL" and "SERVER". Default

is "LOCAL". If set to an explicit time zone then it must be one that either the JVM or both the JVM and
MySQL support. If set to "LOCAL" then the driver assumes that the connection time zone is the same as
the JVM default time zone. If set to "SERVER" then the driver attempts to detect the session time zone
from the values configured on the MySQL server session variables 'time_zone' or 'system_time_zone'.
The time zone detection and subsequent mapping to a Java time zone may fail due to several reasons,
mostly because of time zone abbreviations being used, in which case an explicit time zone must be set
or a different time zone must be configured on the server.

This option itself does not set MySQL server session variable 'time_zone' to the given value. To do that
the 'forceConnectionTimeZoneToSession' connection option must be set to "true".

Please note that setting a value to 'connectionTimeZone' in conjunction with
"forceConnectionTimeZoneToSession=false" and "preservelnstants=false" has no effect since, in this
case, neither this option is used to change the session time zone nor used for time zone conversions of
time-based data.

Former connection option 'serverTimezone' is still valid as an alias of this one but may be deprecated in
the future.

See also ‘forceConnectionTimeZoneToSession' and ‘preservelnstants' for more details.

Since Version 3.0.2

e forceConnecti onTi neZoneToSessi on

If enabled, sets the time zone value determined by 'connectionTimeZone' connection property to the
current server session 'time_zone' variable. If the time zone value is given as a geographical time zone,
then Connector/J sets this value as-is in the server session, in which case the time zone system tables
must be populated beforehand (consult the MySQL Server documentation for further details); but, if
the value is given as an offset from Greenwich/UTC in any of the supported syntaxes, then the server
session time zone is set as a numeric offset from UTC.

With that no intermediate conversion between JVM default time zone and connection time zone is
needed to store correct milliseconds value of instant Java objects such as ‘java.sqgl.Timestamp' or
'java.time.OffsetDateTime' when stored in TIMESTAMP columns.

Note that it also affects the result of MySQL functions such as 'NOW()', 'CURTIME()' or 'CURDATE()'.

This option has no effect if used in conjunction with "connectionTimeZone=SERVER" since, in this case,
the session is already set with the required time zone.

See also 'connectionTimeZone' and 'preservelnstants' for more details.

Default Value false
Sinee-Version 8.0.23
52

Datetime types processing

noDat eti meStri ngSync

Don't ensure that 'ResultSet.getTimestamp().toString().equals(ResultSet.getString())'.

Default Value false

Since Version 3.1.7

preservel nstants

If enabled, Connector/J does its best to preserve the instant point on the time-line for Java instant-based
objects such as ‘'java.sgl.Timestamp' or ‘'java.time.OffsetDateTime' instead of their original visual form.
Otherwise, the driver always uses the JVM default time zone for rendering the values it sends to the
server and for constructing the Java objects from the fetched data.

MySQL uses implied time zone conversion for TIMESTAMP values: they are converted from the session
time zone to UTC for storage, and back from UTC to the session time zone for retrieval. So, to store

the correct correct UTC value internally, the driver converts the value from the original time zone to the
session time zone before sending to the server. On retrieval, Connector/J converts the received value
from the session time zone to the JVM default one.

When storing, the conversion is performed only if the target 'SQLType', either the explicit one or the
default one, is TIMESTAMP. When retrieving, the conversion is performed only if the source column
has the TIMESTAMP, DATETIME or character type and the target class is an instant-based one, like
'java.sql.Timestamp' or 'java.time.OffsetDateTime'.

Note that this option has no effect if used in conjunction with "connectionTimeZone=LOCAL" since, in
this case, the source and target time zones are the same. Though, in this case, it's still possible to store
a correct instant value if set together with "forceConnectionTimeZoneToSession=true".

See also 'connectionTimeZone' and 'forceConnectionTimeZoneToSession' for more details.

Default Value true

Since Version 8.0.23

sendFr acti onal Seconds

If set to "false”, the fractional seconds will always be truncated before sending any data to the server.
This option applies only to prepared statements, callable statements or updatable result sets.

Default Value true

Since Version 5.1.37

sendFr acti onal SecondsFor Ti ne

If set to "false”, the fractional seconds of 'java.sql.Time' will be ignored as required by JDBC
specification. If set to "true", its value is rendered with fractional seconds allowing to store milliseconds
into MySQL TIME column. This option applies only to prepared statements, callable statements or
updatable result sets. It has no effect if "sendFractionalSeconds=false".

Default Value

true

Since Version

8.0.23

53

High Availability and Clustering

6.3.12 High Availability and Clustering

treat Mysql Dat et i mreAsTi nmest anp

Should the driver treat the MySQL DATETIME type as TIMESTAMP in 'ResultSet.getObject()'?
Enabling this option changes the default MySQL data type to Java type mapping for DATETIME from
'java.time.LocalDateTime' to 'java.sql.Timestamp'. Given the nature of the DATETIME type and its
inability to represent instant values, it is not advisable to enable this option unless the driver is used with
a framework or API that expects exclusively objects following the default MySQL data types to Java
types mapping, which is the case of, for example, 'javax.sgl.rowset.CachedRowSet'.

Default Value

false

Since Version

8.2.0

treat Util Dat eAsTi mest anp

Should the driver treat ‘'java.util.Date' as a TIMESTAMP in 'PreparedStatement.setObject()'?

Default Value

true

Since Version

5.0.5

year | sDat eType

Should the JDBC driver treat the MySQL type YEAR as a ‘java.sql.Date’, or as a SHORT?

Default Value

true

Since Version

3.1.9

zer oDat eTi neBehavi or

What should happen when the driver encounters DATETIME values that are composed entirely of
zeros - used by MySQL to represent invalid dates? Valid values are "EXCEPTION", "ROUND" and

"CONVERT_TO_NULL".

Default Value

EXCEPTION

Since Version

3.14

aut oReconnect

Should the driver try to re-establish stale and/or dead connections? If enabled the driver will throw an
exception for queries issued on a stale or dead connection, which belong to the current transaction,

but will attempt reconnect before the next query issued on the connection in a new transaction. The
use of this feature is not recommended, because it has side effects related to session state and data
consistency when applications don't handle SQLEXxceptions properly, and is only designed to be used
when you are unable to configure your application to handle SQLEXxceptions resulting from dead and
stale connections properly. Alternatively, as a last option, investigate setting the MySQL server variable
'wait_timeout' to a high value, rather than the default of 8 hours.

Default Value

false

54

Since Version

1.1

aut oReconnect For Pool s

High Availability and Clustering

Use a reconnection strategy appropriate for connection pools?
Default Value

Since Version

false
3.1.3

« fail OverReadOnly

When failing over in ‘autoReconnect’' mode, should the connection be set to ‘read-only'?

Default Value true
Since Version 3.0.12
e maxReconnects

Maximum number of reconnects to attempt if 'autoReconnect' is "true".

Default Value 3
Since Version 1.1
e reconnect At TxEnd

If ‘autoReconnect' is set to "true", should the driver attempt reconnections at the end of every

transaction?

Default Value false

Since Version 3.0.10
e retriesAl | Down

When using load balancing or failover, the number of times the driver should cycle through available
hosts, attempting to connect. Between cycles, the driver will pause for 250 ms if no servers are available.

Default Value 120
Since Version 5.1.6
e initial Ti mreout

If 'autoReconnect' is enabled, the initial time to wait between re-connect attempts (in seconds, defaults to
Il2ll).

Default Value

Since Version

quer i esBef or eRet r ySour ce

When using multi-host failover, the number of queries to issue before falling back to the

primary host when failed over. Whichever condition is met first, 'queriesBeforeRetrySource' or
'secondsBeforeRetrySource' will cause an attempt to be made to reconnect to the primary host. Setting
both properties to "0" disables the automatic fall back to the primary host at transaction boundaries.
Default Value

50
3.0.2

Since Version

55

High Availability and Clustering

secondsBef or eRet r ySour ce

How long, in seconds, should the driver wait when failed over, before attempting to reconnect

to the primary host? Whichever condition is met first, 'queriesBeforeRetrySource' or
'secondsBeforeRetrySource' will cause an attempt to be made to reconnect to the source host. Setting
both properties to "0" disables the automatic fall back to the primary host at transaction boundaries.

Default Value

30

Since Version

3.0.2

al | owRepl i caDownConnect i ons

By default, a replication-aware connection will fail to connect when configured replica hosts are all
unavailable at initial connection. Setting this property to "true" allows to establish the initial connection.
It won't prevent failures when switching to replicas i.e. by setting the replication connection to read-only
state. The property 'readFromSourceWhenNoReplicas' should be used for this purpose.

Default Value

false

Since Version

6.0.2

al | owSour ceDownConnecti ons

By default, a replication-aware connection will fail to connect when configured source hosts are all
unavailable at initial connection. Setting this property to "true" allows to establish the initial connection,
by failing over to the replica servers, in read-only state. It won't prevent subsequent failures when
switching back to the source hosts i.e. by setting the replication connection to read/write state.

Default Value

false

Since Version

5.1.27

ha. enabl eJMX

Enables JMX-based management of load-balanced connection groups, including live addition/removal
of hosts from load-balancing pool. Enables JMX-based management of replication connection groups,
including live replica promotion, addition of new replicas and removal of source or replica hosts from

load-balanced source and replica connection pools.

Default Value

false

Since Version

5.1.27

| oadBal anceHost Renpval GracePeri od

Sets the grace period to wait for a host being removed from a load-balanced connection, to be released

when it is currently the active host.

Default Value

15000

Since Version

6.0.3

r eadFr onSour ceWhenNoRepl i cas

Replication-aware connections distribute load by using the source hosts when in read/write state and by
using the replica hosts when in read-only state. If, when setting the connection to read-only state, none
of the replica hosts are available, an 'SQLException' is thrown back. Setting this property to "true" allows

High Availability and Clustering

to fail over to the source hosts, while setting the connection state to read-only, when no replica hosts are
available at switch instant.

Default Value false

Since Version 6.0.2

sel f Dest ruct OnPi ngMaxQper at i ons

If set to a non-zero value, the driver will report close the connection and report failure when
‘com.mysql.cj.jdbc.JdbcConnection.ping()' or ‘java.sql.Connection.isValid(int)' is called if the connection's
count of commands sent to the server exceeds this value.

Default Value 0
Since Version 5.1.6

sel f Dest ruct OnPi ngSecondsLi feti ne

If set to a non-zero value, the driver will close the connection and report failure when
‘com.mysql.cj.jdbc.JdbcConnection.ping()' or ‘java.sql.Connection.isValid(int)' is called if the connection's
lifetime exceeds this value, specified in milliseconds.

Default Value 0
Since Version 5.1.6

ha. | oadBal anceStr at egy

If using a load-balanced connection to connect to SQL servers in a MySQL Cluster configuration (by
using the URL prefix "jdbc:mysgl:loadbalance://"), which load balancing algorithm should the driver
use: (1) "random" - the driver will pick a random host for each request. This tends to work better than
round-robin, as the randomness will somewhat account for spreading loads where requests vary in
response time, while round-robin can sometimes lead to overloaded nodes if there are variations in
response times across the workload. (2) "bestResponseTime" - the driver will route the request to the
host that had the best response time for the previous transaction. (3) "serverAffinity" - the driver initially
attempts to enforce server affinity while still respecting and benefiting from the fault tolerance aspects
of the load-balancing implementation. The server affinity ordered list is provided using the property
‘serverAffinityOrder'. If none of the servers listed in the affinity list is responsive, the driver then refers to
the "random" strategy to proceed with choosing the next server.

Default Value random

Since Version 5.0.6

| oadBal anceAut oConmi t St at enent Regex

When load-balancing is enabled for auto-commit statements (via
'loadBalanceAutoCommitStatementThreshold'), the statement counter will only increment when the SQL
matches the regular expression. By default, every statement issued matches.

Since Version ‘5.1.15

| oadBal anceAut oConmmi t St at enent Thr eshol d

57
When auto-commit is enabled, the number of statements which should be executed before triggering
load-balancing to rebalance. Default value of "0" causes load-balanced connections to only rebalance

High Availability and C

lustering

when exceptions are encountered, or auto-commit is
or rolled back.

disabled and transactions are explicitly committed

Default Value

Since Version

5.1.15

| oadBal anceBl ockl i st Ti neout

Time in milliseconds between checks of servers whic
lives in the global blockilist.

h are unavailable, by controlling how long a server

Default Value

Since Version

5.1.0

| oadBal anceConnect i onG oup

Logical group of load-balanced connections within a class loader, used to manage different groups
independently. If not specified, live management of load-balanced connections is disabled.

Since Version

5.1.13

| oadBal anceExcepti onChecker

Fully-qualified class name of custom exception checker. The class must implement

‘com.mysql.cj.jdbc.ha.LoadBalanceExceptionChecke

r' interface, and is used to inspect 'SQLEXxception’

exceptions and determine whether they should trigger fail-over to another host in a load-balanced

deployment.

Default Value

com.mysql.cj.jdbc.ha.StandardLoadBalanceExcepti

pnChecker

Since Version

5.1.13

| oadBal ancePi ngTi neout

Time in milliseconds to wait for ping responses from each of load-balanced physical connections when

using a load-balanced connection.

Default Value

0

Since Version

5.1.13

| oadBal anceSQLExcepti onSubcl assFai | over

Comma-delimited list of classes/interfaces used by default load-balanced exception checker to
determine whether a given 'SQLException' should trigger a failover. The comparison is done using
'Class.isInstance(SQLEXxception)' using the 'SQLException' thrown.

Since Version

5.1.13

| oadBal anceSQLSt at eFai | over

58

Comma-delimited list of 'SQLState' codes used by the default load-balanced exception checker

to determine whether a given 'SQLException' should

trigger a failover. The 'SQLState' of a given

Performance Extensions

'SQLException' is evaluated to determine whether it begins with any of the values specified in the

comma-delimited list.

Since Version

5.1.13

| oadBal anceVal i dat eConnect i onOnSwapSer ver

Should the load-balanced connection explicitly check whether the connection is live when swapping to a

new physical connection at commit/rollback?

Default Value

false

Since Version

5.1.13

pi nd obal TxToPhysi cal Connecti on

When using XA connections, should the driver ensure that operations on a given XID are always routed
to the same physical connection? This allows the "XAConnection' to support "XA START ... JOIN" after

"XA END" has been called.

Default Value

false

Since Version

5.0.1

replicati onConnecti onG oup

Logical group of replication connections within a class loader, used to manage different groups
independently. If not specified, live management of replication connections is disabled.

Since Version

8.0.7

resourcel d

A globally unique name that identifies the resource that this data source or connection is connected to,
used for '"XAResource.isSameRM()' when the driver can't determine this value based on hostnames

used in the URL.

Since Version

5.0.1

server AffinityQOrder

A comma separated list containing the host/port pairs that are to be used in load-balancing

"serverAffinity" strategy. Only the sub-set of the hosts enumerated in the main hosts section in this URL

will be used and they must be identical in case and type, i.e., can't use an IP address in one place and

the corresponding host name in the other.

‘Since Version

8.0.8

6.3.13 Performance Extensions

cal | abl eSt nt CacheSi ze

If ‘cacheCallableStmts' is enabled, how many callable statements should be cached?

Default Value

100

Since Version

3.1.2

59

Performance Extensions

nmet adat aCacheSi ze

The number of queries to cache 'ResultSetMetadata’ for if ‘cacheResultSetMetaData' is set to "true".

Default Value 50

Since Version 3.11

uselLocal Sessi onSt at e

Should the driver refer to the internal values of auto-commit and transaction isolation that are set by
‘Connection.setAutoCommit()' and 'Connection.setTransactionlsolation()' and transaction state as
maintained by the protocol, rather than querying the database or blindly sending commands to the
database for ‘commit()' or 'rollback()' method calls?

Default Value false

Since Version 3.1.7

uselLocal Transacti onSt at e

Should the driver use the in-transaction state provided by the MySQL protocol to determine if a
‘commit()' or 'rollback()' should actually be sent to the database?

Default Value false

Since Version 5.1.7

prepSt mt CacheSi ze

If prepared statement caching is enabled, how many prepared statements should be cached?

Default Value 25

Since Version 3.0.10

prepSt nmt CacheSql Li m t

If prepared statement caching is enabled, what's the largest SQL the driver will cache the parsing for?

Default Value 256

Since Version 3.0.10

quer yl nf oCacheFact ory

Name of a class implementing ‘com.mysql.cj.CacheAdapterFactory', which will be used to create caches
for the parsed representation of prepared statements. Prior to version 8.0.29, this property was hamed
'‘parselnfoCacheFactory', which remains as an alias.

Default Value com.mysql.cj.PerConnectionLRUFactory

Since Version 5.1.1

60

Performance Extensions

server Confi gCacheFactory

Name of a class implementing 'com.mysql.cj.CacheAdapterFactory', which will be used to create caches
for MySQL server configuration values.

Default Value com.mysql.cj.util.PerVmServerConfigCacheFactory

Since Version 511

al waysSendSet | sol ati on

Should the driver always communicate with the database when 'Connection.setTransactionlsolation()'
is called? If set to "false", the driver will only communicate with the database when the requested
transaction isolation is different than the whichever is newer, the last value that was set via
‘Connection.setTransactionlsolation()', or the value that was read from the server when the
connection was established. Note that "useLocalSessionState=true" will force the same behavior as
"alwaysSendSetlsolation=false", regardless of how 'alwaysSendSetlsolation' is set.

Default Value true

Since Version 3.1.7

mai nt ai nTi neSt ats

Should the driver maintain various internal timers to enable idle time calculations as well as more
verbose error messages when the connection to the server fails? Setting this property to false removes
at least two calls to 'System.getCurrentTimeMillis()' per query.

Default Value true

Since Version 3.1.9

useCur sor Fet ch

Should the driver use cursor-based fetching to retrieve rows? If set to "true" and 'defaultFetchSize' is
set to a value higher than zero or 'setFetchSize()' with a value higher than zero is called on a statement,
then the cursor-based result set will be used. Please note that 'useServerPrepStmts' is automatically set
to "true" in this case because cursor functionality is available only for server-side prepared statements.

Default Value false

Since Version 5.0.0

cacheCal | abl eStnt s

Should the driver cache the parsing stage of CallableStatements?

Default Value false

Since Version 3.1.2

cachePrepStnts

Should the driver cache the parsing stage of PreparedStatements of client-side prepared statements, the
"check" for suitability of server-side prepared and server-side prepared statements themselves?

Default Value false
Since Version 3.0.10

61

Performance Extensions

cacheResul t Set Met adat a

Should the driver cache 'ResultSetMetaData' for statements and prepared statements?

Default Value

false

Since Version

3.1.1

cacheServer Confi guration

Should the driver cache the results of "SHOW VARIABLES" and "SHOW COLLATION" on a per-URL

basis?
Default Value false
Since Version 3.1.5

defaul t Fet chSi ze

The driver will call 'setFetchSize(n)' with this value on all newly-created statements.

Default Value

Since Version

3.1.9

dont CheckOnDupl i cat eKeyUpdat el nSQL

Stops checking if every INSERT statement contains the "ON DUPLICATE KEY UPDATE" clause. As a
side effect, obtaining the statement's generated keys information will return a list where normally it would
not. Also be aware that, in this case, the list of generated keys returned may not be accurate. The effect

of this property is canceled if set simultaneously with "rewriteBatchedStatements=true".

Default Value

false

Since Version

5.1.32

el i deSet Aut oCommi ts

Should the driver only issue 'set autocommit=n' queries when the server's state doesn't match the
requested state by 'Connection.setAutoCommit(boolean)'?

Default Value

false

Since Version

3.1.3

enabl eEscapePr ocessi ng

Sets the default escape processing behavior for Statement objects. The method
'Statement.setEscapeProcessing()' can be used to specify the escape processing behavior for an
individual statement object. Default escape processing behavior in prepared statements must be defined
with the property 'processEscapeCodesForPrepStmts'.

Default Value

true

62

O N/ s
SITCE VETSION

AN a
0.U. L

Performance Extensions

enabl eQuer yTi meout s

When enabled, query timeouts set via 'Statement.setQueryTimeout()' use a shared 'java.util. Timer'
instance for scheduling. Even if the timeout doesn't expire before the query is processed, there will

be memory used by the 'TimerTask' for the given timeout which won't be reclaimed until the time the
timeout would have expired if it hadn't been cancelled by the driver. High-load environments might want
to consider disabling this functionality.

Default Value true

Since Version 5.0.6

| ar geRowSi zeThr eshol d

What size result set row should the JDBC driver consider large, and thus use a more memory-efficient
way of representing the row internally?

Default Value 2048
Since Version 5.1.1

readOnl yPr opagat esToSer ver

Should the driver issue appropriate statements to implicitly set the transaction access mode on server
side when 'Connection.setReadOnly()' is called? Setting this property to "true" enables InnoDB read-
only potential optimizations but also requires an extra roundtrip to set the right transaction state. Even if
this property is set to “false”, the driver will do its best effort to prevent the execution of database-state-
changing queries.

Default Value true
Since Version 5.1.35

rew iteBat chedSt at enents

Should the driver use multi-queries, regardless of the setting of ‘allowMultiQueries', as well as rewriting
of prepared statements for INSERT and REPLACE queries into multi-values clause statements when
‘executeBatch()' is called?

Notice that this might allow SQL injection when using plain statements and the provided input is not
properly sanitized. Also notice that for prepared statements, if the stream length is not specified when
using 'PreparedStatement.set*Stream()’, the driver would not be able to determine the optimum number
of parameters per batch and might return an error saying that the resultant packet is too large.

'Statement.getGeneratedKeys()', for statements that are rewritten only works when the entire batch
consists of INSERT or REPLACE statements.

Be aware that when using "rewriteBatchedStatements=true" with "INSERT ... ON DUPLICATE KEY
UPDATE" for rewritten statements, the server returns only one value for all affected (or found) rows in
the batch, and it is not possible to map it correctly to the initial statements; in this case the driver returns
"0" as the result for each batch statement if total count was zero, and 'Statement. SUCCESS_NO_INFO'
if total count was above zero.

Default Value false
Since Version 3.1.13

useReadAheadl nput

63

Debugging/Profiling

Use optimized non-blocking buffered input stream when reading from the server?

Default Value true

Since Version 3.1.5

6.3.14 Debugging/Profiling

| ogger

The name of a class that implements ‘com.mysql.cj.log.Log' that will be used to log messages to. (default
is 'com.mysgl.cj.log.StandardLogger', which logs to STDERR).

Default Value com.mysql.cj.log.StandardLogger

Since Version 3.11

profil er Event Handl er

Name of a class that implements the interface 'com.mysql.cj.log.ProfilerEventHandler' that will be used to
handle profiling/tracing events.

Default Value com.mysgl.cj.log.LoggingProfilerEventHandler

Since Version 5.1.6

useNanosFor El apsedTi ne

For profiling/debugging functionality that measures elapsed time, should the driver try to use
nanoseconds resolution?

Default Value false

Since Version 5.0.7

maxQuerySi zeTolLog

Controls the maximum length of the part of a query that will get logged when profiling or tracing.

Default Value 2048
Since Version 3.1.3

maxByt eAr r ay AsHex

Maximum size for a byte array parameter in a prepared statement that is converted to a hexadecimal
literal when interpolated by 'JdbcPreparedStatement.toString()'. Any byte arrays larger than this value
are interpolated generically as "** BYTE ARRAY DATA **",

Default Value 1024
Since Version 8.0.31
profil eSQ

Trace queries and their execution/fetch times to the configured 'profilerEventHandler".

Default Value false

64

Debugging/Profiling

Since Version

3.1.0

| ogSl owQueri es

Should queries that take longer than 'slowQueryThresholdMillis' or detected by the 'autoSlowLog'
monitoring be reported to the registered 'profilerEventHandler'?

Default Value

false

Since Version

3.1.2

sl owQueryThreshol dM I li s

If 'logSlowQueries' is enabled, how long, in milliseconds, should a query take before it is logged as slow?

Default Value

2000

Since Version

3.1.2

sl owQuer yThr eshol dNanos

If 'logSlowQueries' is enabled, 'useNanosForElapsedTime' is set to "true", and this property is set to a
non-zero value, the driver will use this threshold, in nanosecond units, to determine if a query was slow.

Default Value

Since Version

5.0.7

aut oSl owlLog

Instead of using 'slowQueryThreshold*' to determine if a query is slow enough to be logged, maintain
statistics that allow the driver to determine queries that are outside the 99th percentile?

Default Value

true

Since Version

5.14

expl ai nSl owQueri es

If 'logSlowQueries' is enabled, should the driver automatically issue an 'EXPLAIN' on the server and
send the results to the configured logger at a WARN level?

Default Value

false

Since Version

3.1.2

gat her Perf Metri cs

Should the driver gather performance metrics, and report them via the configured logger every

'reportMetricsintervalMillis' milliseconds?

Default Value

false

Since Version

3.1.2

65

Debugging/Profiling

reportMetricsintervalMIlis

If 'gatherPerfMetrics' is enabled, how often should they be logged (in milliseconds)?

Default Value

30000

Since Version

3.1.2

| ogXaCommands

Should the driver log XA commands sent by 'MysglXaConnection' to the server, at the DEBUG level of

logging?
Default Value false
Since Version 5.0.5

tracePr ot ocol

Should the network protocol be logged at the TRACE level?

Default Value

false

Since Version

3.1.2

enabl ePacket Debug

When enabled, a ring-buffer of '‘packetDebugBufferSize' packets will be kept, and dumped when
exceptions are thrown in key areas in the driver's code.

Default Value

false

Since Version

3.1.3

packet DebugBufferSi ze

The maximum number of packets to retain when 'enablePacketDebug’ is "true".

Default Value

20

Since Version

3.1.3

useUsageAdvi sor

Should the driver issue usage warnings advising proper and efficient usage of JDBC and MySQL

Connector/J to the 'profilerEventHandler'?

Default Value

false

Since Version

311

resul t Set Si zeThr eshol d

If 'useUsageAdvisor' is "true", how many rows should a result set contain before the driver warns that it is

66

suspiciousty targe?

Default Value

100

Exceptions/Warnings

e aut oCenerateTest caseScri pt

Should the driver dump the SQL it is executing, including server-side prepared statements to STDERR?

Default Value

false

Since Version

3.1.9

e openTel enetry

Should the driver generate OpenTelemetry traces and handle context propagation to the MySQL
Server? This option accepts the values "REQUIRED", "PREFERRED", and "DISABLED". If set to
"REQUIRED", an OpenTelemetry library must be available at run time, or connections to the MySQL
Server will fail. Setting it to "DISABLED" turns off generating OpenTelemetry instrumentation by
Connector/J. Setting it to "PREFERRED" enables generating OpenTelemetry instrumentation provided
that an OpenTelemetry library is available at run time, and a warning is issued otherwise. Not setting

a value for the property is equivalent to setting it as "PREFERRED", but no warning is issued when no
OpenTelmetry library is available at run time. Connector/J relies entirely on the OpenTelemetry exporters
configured in the calling application and does not provide any means of configuring its own exporters.

Default Value

PREFERRED

Since Version

8.4.0

6.3.15 Exceptions/Warnings

dunpQueri esOnExcepti on

Should the driver dump the contents of the query sent to the server in the message for SQLExceptions?

Default Value false

Since Version 3.1.3

exceptionlnterceptors

Comma-delimited list of classes that implement the interface
‘com.mysql.cj.exceptions.Exceptioninterceptor'. These classes will be instantiated one per '‘Connection’
instance, and all 'SQLException' exceptions thrown by the driver will be allowed to be intercepted by
these interceptors, in a chained fashion, with the first class listed as the head of the chain.

Since Version 5.1.8

i gnor eNonTxTabl es

Ignore non-transactional table warning for rollback?

Default Value false

Since Version 3.0.9

e incl udel nnodbSt at usl nDeadl ockExcepti ons

Include the output of "SHOW ENGINE INNODB STATUS" in exception messages when deadlock
exceptions are detected?

Default Value false

67

Tunes for integration with other products

Since Version 5.0.7

e includeThreadDunpl nDeadl ockExcepti ons

Include current Java thread dump in exception messages when deadlock exceptions are detected?

Default Value false

Since Version 5.1.15

e includeThreadNanesAsSt at ement Comment

Include the name of the current thread as a comment visible in "SHOW PROCESSLIST", or in Innodb

deadlock dumps, useful in correlation with "includelnnodbStatusinDeadlockExceptions=true" and
"includeThreadDumplnDeadlockExceptions=true".

Default Value false

Since Version 5.1.15

e useOnl yServer Error Messages

Don't prepend standard 'SQLState' error messages to error messages returned by the server.

Default Value true

Since Version 3.0.15

6.3.16 Tunes for integration with other products
e overrideSupportslntegrityEnhancenmentFacility

Should the driver return "true" for 'DatabaseMetaData.supportsintegrityEnhancementFacility()' even if the
database doesn't support it to workaround applications that require this method to return "true" to signal
support of foreign keys, even though the SQL specification states that this facility contains much more
than just foreign key support (one such application being OpenOffice)?

Default Value false

Since Version 3.1.12

e ul trabDevHack

Create prepared statements for 'prepareCall()' when required, because UltraDev is broken and issues a
'‘prepareCall()' for all statements?

Default Value false

Since Version 2.0.3

6.3.17 JDBC compliance
* useCol utmNanes| nFi ndCol um
Prior to JDBC-4.0, the JDBC specification had a bug related to what could be given as a

68 column name to result set methods like ‘findColumn()’, or getters that took a String property.
JDBC-4.0 clarified "column name" to mean the label, as given in an "AS" clause and returned by

X Protocol and X DevAPI

'ResultSetMetaData.getColumnLabel()', and if no "AS" clause is specified, the column name. Setting
this property to "true" will result in a behavior that is congruent to JDBC-3.0 and earlier versions of
the JDBC specification, but which could have unexpected results. This property is preferred over
‘'useOldAliasMetadataBehavior' unless in need of the specific behavior that it provides with respect to

'ResultSetMetadata’.

Default Value false
Since Version 5.1.7
pedantic

Follow the JDBC specification to the letter.

Default Value false
Since Version 3.0.0

used dAl i asMet adat aBehavi or

Should the driver use the legacy behavior for "AS" clauses on columns and tables, and only return
aliases ,if any, for 'ResultSetMetaData.getColumnName()' or 'ResultSetMetaData.getTableName()'

rather than the original column/table name?

Default Value

false

Since Version

5.04

6.3.18 X Protocol and X DevAPI

xdevapi . aut h

Authentication mechanism to use with the X Protocol. Allowed values are "SHA256 MEMORY",
"MYSQL41", "PLAIN", and "EXTERNAL". Value is case insensitive. If the property is not set, the
mechanism is chosen depending on the connection type: "PLAIN" is used for TLS connections and
"SHA256_MEMORY" or "MYSQL41" is used for unencrypted connections.

Default Value

PLAIN

Since Version

8.0.8

xdevapi . conpr essi on

X DevAPI-specific network traffic compression. This option accepts one of the three values:
"PREFERRED", "REQUIRED", and "DISABLED". Setting this option to "PREFERRED" or "REQUIRED"
enables compression algorithm negotiation between Connector and Server, and turns on compression
of large X Protocol packets, as long as a consensus is reached between client and server regarding

the compression algorithm to use. If a consensus cannot be reached, connection fails if the option is
set to "REQUIRED" and continues without compression if the option is set to "PREFERRED". Setting
this option as "DISABLED" skips the compression negotiation phase and forbids the interchange of

compressed messages between client and server.

Default Value

PREFERRED

Since Version

8.0.20

69

xdevapi . conpr essi on-al gorit hmns

X Protocol and X DevAPI

A comma-delimited list of compression algorithms, each one identified by its name and

operating mode, (e.g. "Iz4_message"; consult the description for the MySQL global variable
'mysqlx_compression_algorithms' for a list of supported and enabled algorithms), that defines the order
and which algorithms will be attempted when negotiating connection compression with the server.

The compression algorithm 'deflate_stream’ is supported natively. Additional compression algorithms
require using third-party libraries and enabling them with the connection property 'xdevapi.compression-
extensions'.

This option is meaningful only when network traffic compression is enabled using the connection
property 'xdevapi.compression'.

As an alternative to the default algorithm names, that contain a reference to the compression operation
mode, the aliases "zstd", "Iz4", and "deflate" can be used instead of "zstd_stream", "lz4_message", and
"deflate_stream".

Default Value zstd_stream,lz4_message,deflate_stream
Since Version 8.0.22

xdevapi . conpr essi on- ext ensi ons

A comma-delimited list of triplets, with their elements delimited by colon, that enables the support

for additional compression algorithms. Each triplet must contain: first, an algorithm name and

operating mode (e.g. "Iz4_message"; consult the description for the MySQL global variable
'mysqlx_compression_algorithms' for a list of supported and enabled algorithms); second, a fully-
qualified class name of a class implementing the interface 'java.io.InputStream' that will be used to inflate
data compressed with the named algorithm; third, a fully-qualified class name of a class implementing
the interface ‘java.io.OutputStream' that will be used to deflate data using the named algorithm. Along
with this setting, the library containing implementations of the designated classes must be available in
the application's class path.

Any number of triplets defining compression algorithms and their inflater and deflater implementations
can be provided but only the ones supported and enabled on the MySQL Server can be used.

The compression algorithm 'deflate_stream’ is supported natively. Additional compression algorithms
require using third-party libraries.

This option is meaningful only when network traffic compression is enabled using the connection
property 'xdevapi.compression'.

As an alternative to the default algorithm names, that contain a reference to the compression operation
mode, the aliases "zstd", "Iz4", and "deflate" can be used instead of "zstd_stream", "lz4_message", and
"deflate_stream".

Since Version 8.0.22

xdevapi . connect -t i meout

X DevAPI-specific timeout, in milliseconds, for socket connect, with "0" being no timeout. If
'xdevapi.connect-timeout' is not set explicitly and ‘connectTimeout' is, 'xdevapi.connect-timeout' takes up
the value of 'connectTimeout'.

! Default Value ! 10000 |

X Protocol and X DevAPI

Since Version

8.0.13

xdevapi . connection-attributes

An X DevAPI-specific comma-delimited list of user-defined "key=value" pairs, in addition to standard X
Protocol-defined "key=value" pairs, to be passed to MySQL Server for display as connection attributes

in the 'PERFORMANCE_SCHEMA' tables 'session_account_connect_attrs' and 'session_connect_attrs'.

Example usage: "xdevapi.connection-attributes=keyl=valuel,key2=value2" or "xdevapi.connection-

attributes=[keyl=valuel,key2=value2]". This functionality is available for use with MySQL Server version

8.0.16 or later only. Earlier versions of X Protocol do not support connection attributes, causing this
configuration option to be ignored. For situations where Session creation/initialization speed is critical,

setting "xdevapi.connection-attributes=false" will cause connection attribute processing to be bypassed.

Since Version

8.0.16

xdevapi . dns-srv

X DevAPI-specific option for instructing the driver use the given host name to lookup for DNS SRV
records and use the resulting list of hosts in a multi-host failover connection. Note that a single host
name and no port must be provided when this option is enabled.

Default Value

false

Since Version

8.0.19

xdevapi . fal | back-to-system keystore

X DevAPI-specific switch to specify whether in the absence of a set value for 'xdevapi.ssl-keystore' (or

‘clientCertificateKeyStoreUrl"), Connector/J falls back to using the system-wide key store defined through
the system properties 'javax.net.ssl.keyStore*'. If not specified, the value of 'fallbackToSystemKeyStore'

is used.

Default Value

true

Since Version

8.0.22

xdevapi . fal | back-to-systemtruststore

X DevAPI-specific switch to specify whether in the absence of a set value for 'xdevapi.ssl-truststore’ (or

‘trustCertificateKeyStoreUrl'), Connector/J falls back to using the system-wide default trust store or
one defined through the system properties ‘javax.net.ssl.trustStore*'. If not specified, the value of

‘fallbackToSystemTrustStore' is used.

Default Value

true

Since Version

8.0.22

xdevapi . ssl - keystore

X DevAPI-specific URL for the client certificate key store. If not specified, use

‘clientCertificateKeyStoreUrl' value.

Since Version

8.0.22

71

X Protocol and X DevAPI

* xdevapi . ssl - keyst ore- password

X DeVvAPI-specific password for the client certificate key store. If not specified, use
‘clientCertificateKeyStorePassword' value.

Since Version 8.0.22

» xdevapi . ssl - keystore-type

X DevAPI-specific type of the client certificate key store. If not specified, use
‘clientCertificateKeyStoreType' value.

Default Value JKS

Since Version 8.0.22

« xdevapi . ssl - node

X DevAPI-specific SSL mode setting. If not specified, use 'ssIMode'. Because the "PREFERRED" mode
is not applicable to X Protocol, if 'xdevapi.ssl-mode' is not set and 'ssIMode’ is set to "PREFERRED",
'xdevapi.ssl-mode’ is set to "REQUIRED".

Default Value REQUIRED
Since Version 8.0.7

* xdevapi.ssl-truststore

X DevAPI-specific URL for the trusted CA certificates key store. If not specified, use
‘trustCertificateKeyStoreUrl' value.

Since Version 6.0.6

» xdevapi . ssl -truststore-password

X DevAPI-specific password for the trusted CA certificates key store. If not specified, use
‘trustCertificateKeyStorePassword' value.

Since Version 6.0.6

e xdevapi.ssl-truststore-type

X DevAPI-specific type of the trusted CA certificates key store. If not specified, use
'trustCertificateKeyStoreType' value.

Default Value JKS

Since Version 6.0.6

* xdevapi.tls-ciphersuites

X DevAPI-specific property overriding the cipher suites enabled for use on the underlying SSL sockets. If
not specified, the value of 'enabledSSLCipherSuites' is used.

Since Version 8.0.19

» xdevapi .tls-versions

JDBC API Implementation Notes

X DevAPI-specific property that takes a list of TLS protocols to allow when creating secure sessions.
Overrides the TLS protocols enabled in the underlying SSL socket. If not specified, then the value of
'tlsVersions' is used instead. Allowed and default values are "TLSv1.2" and "TLSv1.3".

‘Since Version ‘8.0.19

6.4 JDBC API Implementation Notes

MySQL Connector/J, as a rigorous implementation of the JDBC API, passes all of the tests in the publicly
available version of Oracle's JDBC compliance test suite. The JDBC specification is flexible on how certain
functionality should be implemented. This section gives details on an interface-by-interface level about
implementation decisions that might affect how you code applications with MySQL Connector/J.

» BLOB

You can emulate BLOBs with locators by adding the property enul at eLocat or s=t r ue to your JDBC
URL. Using this method, the driver will delay loading the actual BLOB data until you retrieve the other
data and then use retrieval methods (get | nput St reamn(), get Byt es(), and so forth) on the BLOB
data stream.

You must use a column alias with the value of the column to the actual name of the BLOB, for example:
SELECT id, 'data' as blob_data from bl obt abl e

You must also follow these rules:

e The SELECT must reference only one table. The table must have a primary key.

e The SELECT must alias the original BLOB column name, specified as a string, to an alternate name.
e The SELECT must cover all columns that make up the primary key.

The BLOB implementation does not allow in-place modification (they are copies, as reported by the
Dat abaseMet aDat a. | ocat or sUpdat eCopi es() method). Because of this, use the corresponding
Prepar edSt at enent . set Bl ob() or Resul t Set . updat eBl ob() (in the case of updatable result
sets) methods to save changes back to the database.

» Connection

The i sCl osed() method does not ping the server to determine if it is available. In accordance with the
JDBC specification, it only returns true if cl osed() has been called on the connection. If you need to
determine if the connection is still valid, issue a simple query, such as SELECT 1. The driver will throw
an exception if the connection is no longer valid.

» DatabaseMetaData

Foreign key information (get | npor t edKeys() /get Export edKeys() and get Cr ossRef erence())
is only available from | nnoDB tables. The driver uses SHON CREATE TABLE to retrieve this information,
so if any other storage engines add support for foreign keys, the driver would transparently support them
as well.

» PreparedStatement

Two variants of prepared statements are implemented by Connector/J, the client-side and the server-
side prepared statements. Client-side prepared statements are used by default because early MySQL
versions did not support the prepared statement feature or had problems with its implementation. Server-

73

http://www.oracle.com/technetwork/java/javase/jdbc/index.html
https://dev.mysql.com/doc/refman/8.4/en/select.html
https://dev.mysql.com/doc/refman/8.4/en/glossary.html#glos_primary_key
https://dev.mysql.com/doc/refman/8.4/en/select.html
https://dev.mysql.com/doc/refman/8.4/en/select.html
https://dev.mysql.com/doc/refman/8.4/en/glossary.html#glos_foreign_key
https://dev.mysql.com/doc/refman/8.4/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.4/en/show-create-table.html

JDBC API Implementation Notes

side prepared statements and binary-encoded result sets are used when the server supports them. To
enable usage of server-side prepared statements, set useSer ver PrepSt nt s=t r ue.

Be careful when using a server-side prepared statement with large parameters that are set using
setBinaryStrean(), setAscii Stream), set Uni codeStrean(), set CharacterStream),
set NChar acter Strean(), set Bl ob(), set Cl ob(), or set NCLob() . To re-execute the statement
with any large parameter changed to a nonlarge parameter, call cl ear Par anet er s() and set all
parameters again. The reason for this is as follows:

< During both server-side prepared statements and client-side emulation, large data is exchanged only
when Pr epar edSt at ement . execut e() is called.

« Once that has been done, the stream used to read the data on the client side is closed (as per the
JDBC spec), and cannot be read from again.

« If a parameter changes from large to nonlarge, the driver must reset the server-side state of the
prepared statement to allow the parameter that is being changed to take the place of the prior large
value. This removes all of the large data that has already been sent to the server, thus requiring the
data to be re-sent, using the set Bi naryStrean(), set Asci i Strean(), set Uni codeStreant),
set Charact er Stream(), set NCharact er Stream(), set Bl ob(), set C ob(), orset NCLob()
method.

Consequently, to change the type of a parameter to a nonlarge one, you must call
cl ear Par anet er s() and set all parameters of the prepared statement again before it can be re-
executed.

ResultSet

By default, ResultSets are completely retrieved and stored in memory. In most cases this is the most
efficient way to operate and, due to the design of the MySQL network protocol, is easier to implement.
If you are working with ResultSets that have a large number of rows or large values and cannot allocate
heap space in your JVM for the memory required, you can tell the driver to stream the results back one
row at a time.

To enable this functionality, create a St at ement instance in the following manner:

stmt = conn. createStatenent (j ava. sql . Resul t Set . TYPE_FORWARD_ONLY,
j ava. sql . Resul t Set . CONCUR_READ ONLY) ;
stnt.set FetchSi ze(l nteger. M N_VALUE) ;

The combination of a forward-only, read-only result set, with a fetch size of | nt eger . M N_VALUE
serves as a signal to the driver to stream result sets row-by-row. After this, any result sets created with
the statement will be retrieved row-by-row.

There are some caveats with this approach. You must read all of the rows in the result set (or close it)
before you can issue any other queries on the connection, or an exception will be thrown.

The earliest the locks these statements hold can be released (whether they be Myl SAMtable-level locks
or row-level locks in some other storage engine such as | nnoDB) is when the statement completes.

If the statement is within scope of a transaction, then locks are released when the transaction completes
(which implies that the statement needs to complete first). As with most other databases, statements
are not complete until all the results pending on the statement are read or the active result set for the
statement is closed.

Therefore, if using streaming results, process them as quickly as possible if you want to maintain
concurrent access to the tables referenced by the statement producing the result set.

74

Java, JDBC, and MySQL Types

Another alternative is to use cursor-based streaming to retrieve a set number of rows each time.
This can be done by setting the connection property useCur sor Fet ch to true, and then calling
set Fet chSi ze(i nt) withi nt being the desired number of rows to be fetched each time:

conn = DriverManager. get Connecti on("jdbc: nysql://| ocal host/ ?useCur sor Fet ch=true", "user", "s3cr3t");
stnt = conn.createStatenment();

stnt. set Fet chSi ze(100) ;

rs = stnt.executeQuery("SELECT * FROM your _t abl e_here");

» Statement

Connector/J includes support for both St at enent . cancel () and St at enent . set Quer yTi meout ().
Both require a separate connection to issue the KI LL QUERY statement. In the case of

set Quer yTi neout (), the implementation creates an additional thread to handle the timeout
functionality.

Note

Failures to cancel the statement for set Quer yTi neout () may manifest
themselves as Runt i mneExcept i on rather than failing silently, as there is
currently no way to unblock the thread that is executing the query being cancelled
due to timeout expiration and have it throw the exception instead.

MySQL does not support SQL cursors, and the JDBC driver does not emulate them, so
set Cur sor Nane() has no effect.

Connector/J also supplies two additional methods:

e setLocal I nfilelnputStrean() setsan | nput St r eaminstance that will be used to send data to
the MySQL server for a LOAD DATA LOCAL | NFI LE statement rather than a Fi | el nput St r eamor
URLI nput St r eamthat represents the path given as an argument to the statement.

This stream will be read to completion upon execution of a LOAD DATA LOCAL | NFI LE statement,
and will automatically be closed by the driver, so it needs to be reset before each call to execut e* ()
that would cause the MySQL server to request data to fulfill the request for LOAD DATA LOCAL

I NFI LE.

If this value is set to NULL, the driver will revert to using a Fi | el nput St r eamor URLI nput St r eam
as required.

e get Local I nfil el nput Strean() returns the | nput St r eaminstance that will be used to send data
in response to a LOAD DATA LOCAL | NFI LE statement.

This method returns NULL if no such stream has been set using set Local I nfil el nput Strean() .

6.5 Java, JDBC, and MySQL Types

MySQL Connector/J is flexible in the way it handles conversions between MySQL data types and Java
data types.

In general, any MySQL data type can be converted to aj ava. | ang. St ri ng, and any numeric type
can be converted to any of the Java humeric types, although round-off, overflow, or loss of precision may
occur.

75

https://dev.mysql.com/doc/refman/8.4/en/kill.html
https://dev.mysql.com/doc/refman/8.4/en/load-data.html
https://dev.mysql.com/doc/refman/8.4/en/load-data.html
https://dev.mysql.com/doc/refman/8.4/en/load-data.html
https://dev.mysql.com/doc/refman/8.4/en/load-data.html
https://dev.mysql.com/doc/refman/8.4/en/load-data.html

Java, JDBC, and MySQL Types

Connector/J issues warnings or throws Dat aTr uncat i on exceptions as is required by the
JDBC specification, unless the connection was configured not to do so by using the property
j dbcConpl i ant Truncati on and setting itto f al se.

The conversions that are always guaranteed to work are listed in the following table. The first column lists
one or more MySQL data types, and the second column lists one or more Java types to which the MySQL
types can be converted.

Table 6.19 Possible Conversions Between MySQL and Java Data Types

These MySQL Data Types Can always be converted to these Java types
CHAR, VARCHAR, BLOB, TEXT, ENUM and java.lang. String, java.io.lnputStream
SET java.io. Reader, java.sql.Bl ob,
java.sqgl.d ob
FLOAT, REAL, DOUBLE PRECI S| ON, java.l ang. String, java.lang. Short,
NUVERI C, DECI MAL, TI NYI NT, SMALLI NT, java.l ang. | nteger, java.l ang. Long,
MEDI UM NT, | NTEGER, BI G NT java. | ang. Doubl e, java. mat h. Bi gDeci mal
DATE, TINME, DATETI ME, TI VESTAWVP java.lang. String, java.sql.Date,
j ava. sql . Ti nest anp

Note

Round-off, overflow or loss of precision may occur if you choose a Java humeric
data type that has less precision or capacity than the MySQL data type you are
converting to/from.

The Resul t Set . get Obj ect () method uses the type conversions between MySQL and

Java types, following the JDBC specification where appropriate. The values returned by

Resul t Set Met aDat a. Get Col umTypeNane() and Resul t Set Met aDat a. Get Col urmCl assNane()
are shown in the table below. For more information on the JDBC types, see the reference on the
java.sql.Types class.

Table 6.20 MySQL Types and Return Values for ResultSetMetaData.GetColumnTypeName()and
ResultSetMetaData.GetColumnClassName()

MySQL Type Name Return value of Return value of Get Col uimCl assNane
CGet Col unmTypeNane
BI T(1) BIT j ava. | ang. Bool ean
BIT(> 1) BIT byte[]
TINYI NT(1) SIGNED, |If IftinylntlisBit=trueand
BOOLEAN tinylntlisBit=true |[transfornedBitlsBool ean=fal se:
and j ava. | ang. Bool ean
transf ornedBi t | sBool ean=f al se:
BIT IftinylntlisBit=trueand
t ransf or medBi t | sBool ean=t r ue:
If j ava. | ang. Bool ean
tinylntlisBit=true
and IftinylntlisBit=fal se:java.l ang. | nteger
t ransf or nedBi t | sBool ean=t r ue:
BOCOLEAN
If
tinylntlisBit=fal se
TI NYI NT

76

http://docs.oracle.com/javase/8/docs/api/java/sql/Types.html

Java, JDBC, and MySQL Types

MySQL Type Name

Return value of
CGet Col umTypeNane

Return value of Get Col unmC assNane

TINYINT(> 1)

TI NYI NT

java. |l ang. | nt eger

S| GNED

TINYINT(any) TI NYI NT UNSI GNED java. |l ang. | nt eger

UNSI GNED

SMALLI NT[(M] SMALLI NT [UNSI GNED] |j ava. | ang. | nt eger (regardless of whether it is
[UNSI GNED) UNSI GNED or not)

MVEDI UM NT[(M] MEDI UM NT java.l ang. | nt eger (regardless of whether it is
[UNSI GNED| [UNSI GNED] UNSI GNED or not)

I NT, | NTEGER] (M] | NTEGER java. |l ang. | nt eger

I NT, | NTEGER[(M)]

I NTEGER UNSI GNED

java. |l ang. Long

UNSI GNED

BIGNT[(M] Bl G NT java. |l ang. Long

BIGNT[(M] Bl G NT UNSI GNED j ava. mat h. Bi gl nt eger

UNSI GNED

FLOAT[(M D)] FLOAT j ava. | ang. Fl oat

DOUBLE[(M B)] DOUBLE j ava. | ang. Doubl e (regardless of whether it is

[UNSI GNED] UNSI GNED or not)

DECI MAL[(M, D)] DECI MAL j ava. mat h. Bi gDeci mal (regardless of whether it

[UNSI GNED] is UNSI GNED or not)

DATE DATE java.sql . Date

DATETI ME DATETI VE java.tine. Local Dat eTi ne

TI MESTAMP[(M] TI MESTAMP java.sql . Ti mest anp

TI ME TI ME java.sqgl.Tine

YEAR] (2] 4)] YEAR If year | sDat eType configuration property is
setto f al se, then the returned object type is
java.sql . Short.Ifsettotrue (the default), then
the returned object is of type j ava. sql . Dat e.

CHAR(M CHAR java.l ang. String

VARCHAR(M VARCHAR java.lang. String

Bl NARY(M , CHAR(M |BI NARY byt e[]

Bl NARY

VARBI NARY(M) , VARBI NARY byt e[]

VARCHAR(M BI NARY

BLOB BLOB byt e[]

TI NYBLOB TI NYBLOB byt e[]

VEDI UVBLOB MVEDI UVBLOB byt e[]

LONGBLCB LONGBLCB byt e[]

TEXT TEXT java.l ang. String

TI NYTEXT TI NYTEXT java.lang. String

VEDI UMTEXT VEDI UMTEXT java.lang. String

LONGTEXT LONGTEXT java.lang. String

77

Handling of Date-Time Values

MySQL Type Name Return value of Return value of Get Col utmdCl assNane
CGet Col umTypeNane

JSON JSON java.l ang. String

GEQOVETRY GEQVETRY byt e[]

VECTOR(M (only VECTOR byte[]

supported when available
with MySQL Enterprise

Server)
ENUM ' val uel', ' val u¢@HAR. .) java.lang. String
SET(' val uel', ' val ue?CHAR.) java.lang. String

6.6 Handling of Date-Time Values

6.6.1 Preserving Time Instants

Background

A time instant is a specific moment on a time-line. A time instant is said to be preserved when it always
refers to the same point in time when its value is being stored to or retrieved from a database, no matter
what time zones the database server and the clients are operating in.

TI MESTAMP is the only MySQL data type designed to store instants. To preserve time instants, the
server applies time zone conversions in incoming or outgoing time values when needed. Incoming
values are converted by server from the connection session's time zone to Coordinated Universal Time
(UTC) for storage, and outgoing values are converted from UTC to the session time zone. Starting from
MySQL 8.0.19, you can also specify a time zone offset when storing TI MESTAMP values (see The DATE,
DATETIME, and TIMESTAMP Types for details), in which case the TI MESTAMP values are converted to
the UTC from the specified offset instead of the session time zone. But, once stored, the original offset
information is no longer preserved.

The situation is less straightforward with the DATETI ME data type: it does not represent an instant and,
when no time zone offset is specified, there is no time zone conversion for DATETI ME values, so they are
stored and retrieved as they are. However, with a specified time zone offset, the input value is converted
to the session time zone before it is stored; the result is that, when retrieved in a different session with a
different time zone offset as the specified one, the DATETI ME value becomes different from the original
input value.

Because MySQL data types other than TI MESTAMP (and the Java wrapper classes for those other
MySQL data types) do not represent true time instants; mixing up instant-representing and non-instant-
representing date-time types when storing and retrieving values might give rise to unexpected results. For
example:

* When storing j ava. sqgl . Ti mest anp to, for example, a DATETI ME column, you might not get back the
same instant value when retrieving it into a client that is in a different time zone than the one the client
was in when storing the value.

* When storing, for example, a j ava.tine. Local Dat eTi me to a TI MESTAMP column, you might not
be storing the correct UTC-based value for it, because the time zone for the value is actually undefined.

Therefore, do not pass instant date-time types (j ava. uti | . Cal endar,j ava. util . Date,
java.tinme. O fsetDateTine, java. sql . Ti nest anp) to non-instant date-time types (for example,
j ava. sql . DATE, java. ti ne. Local Date,java.tine. Local Tine,java.tinme. OffsetTine)or
vice versa, when working with the server.

78

https://dev.mysql.com/doc/refman/8.4/en/time-zone-support.html#time-zone-variables
https://dev.mysql.com/doc/refman/8.4/en/datetime.html
https://dev.mysql.com/doc/refman/8.4/en/datetime.html

Preserving Time Instants

The rest of the section discusses how to preserve time instants when working with Connector/J.
Preserving Instants with Connector/J

The scenario: Let us assume that an application is running on a certain application server and is
connecting to a MySQL server using Connector/J. Certain events take place in a connection session, for
which timestamps are generated, and the event timestamps are associated with the JVM time zone of the
application server. These timestamps are to be stored onto a MySQL Server, and are also to be retrieved
from it later.

The challenge: The timestamps' instant values need to be preserved when they are saved onto or retrieved
from the server using Connector/J. Because the MySQL Server always assumes implicitly that a time
instant value references to the connection session time zone (which is set by the sessionti ne_zone
variable) when being saved to or retrieved form the server, a time instant value is properly preserved only
in the following situations:

1. When Connector/J is running in the same time zone as the MySQL Server (i.e., the server's session
time zone is the same as the JVM's time zone), time instants are naturally preserved, and no time zone
conversion is needed. Note that in this case, time instants are really preserved only if the server and
the JVM continue to run always in the same time zone in the future.

2. When Connector/J is running in a different time zone from that of the MySQL Server (i.e., the JVM's
time zone is different from the server's session time zone), Connector/.J performs one of the following:

a. Queries the value of the session time zone from the server, and converts the event timestamps
between the session time zone and the JVM time zone.

b. Changes the server's session time zone to that of the JVM time zone, after which no time zone
conversion will be required.

c. Changes the server session time zone to a desired time zone specified by the user, and then
converts the timestamps between the JVM time zone and the user-specified time zone.

We identify the above solutions for time instant preservation as Solution 1, 2a, 2b, and 2c. To achieve
these solutions, the following connection properties have been introduced in Connector/J since release
8.0.23:

e preservel nstants={true|fal se}: Whether to attempt to preserve time instant values by adjusting
timestamps.

« Whenitis f al se, no conversions are attempted; a timestamp is sent to the server as-is for storage,
and its visual presentation, not the actual time instant is preserved. When it is retrieved from the server
by Connector/J, different time zones might be associated with it, as the retrieval might happen in
different JVM time zones. For example: For example:

» Time zones: UTC for JVM, UTC+1 for server session
« Original timestamp from client (in UTC): 2020- 01- 01 01: 00: 00
» Timestamp sent to server by Connector/J: 2020- 01- 01 01: 00: 00 (no conversion)

« Timestamp values stored internally on the server: 2020- 01- 01 00: 00: 00 UTC (after internal
conversion of 2020- 01- 01 00: 00: 00 UTC+1 to UTC)

« Timestamp value retrieved later into a server section (in UTC+1): 2020- 01- 01 01: 00: 00 (after
internal conversion of 2020- 01- 01 00: 00: 00 from UTC to UTC+1)

79

https://dev.mysql.com/doc/refman/8.4/en/server-system-variables.html#sysvar_time_zone

Preserving Time Instants

» Timestamp values constructed by Connector/J in some other JVM time zone then before (say, in
UTC+3): 2020- 01- 01 01:00: 00

« Comment: Time instant is not preserved

* When itis t r ue, Connector/J attempts to preserve the time instants by performing the
conversions in a manner defined by the connection properties connect i onTi neZone and
forceConnecti onTi neZoneToSessi on.

When storing a value, the conversion is performed only if the target data type, either the explicit one or
the default one, is TI MESTAMP. When retrieving a value, the conversion is performed only if the source
column has the TI MESTAMP, DATETI ME, or a character data type and the target class is an instant-
preserving one, like j ava. sql . Ti nestanp orj ava. ti me. O f set Dat eTi ne.

e connectionTi meZone={ LOCAL| SERVER| user - def i ned-ti ne- zone} : Specifies how the server's
session time zone (in reference to which the timestamps are saved onto the server) is to be determined
by Connector/J. It takes on one of the following values:

e LOCAL: Connector/J assumes that the server's session time zone either (a) is the same as the JVM
time zone for Connector/J, or (b) should be set as the same as the JVM time zone for Connector/
J. Connector/J takes the situation as (a) or (b) depending on the value of the connection property
forceConnecti onTi neZoneToSessi on.

* SERVER: Connector/J should query the session's time zone from the server, instead of making any
assumptions about it. If the session time zone actually turns out to be different from Connector/J's JVM
time zone and pr eser vel nst ant s=t r ue, Connector/J performs time zone conversion between the
session time zone and the JVM time zone.

e user-defined-tine-zone: Connector/J assumes that the server's session time zone either
(a) is the same as the user-defined time zone, or (b) should be set as the user-defined time zone.
Connector/J takes the situation as (a) or (b) depending on the value of the connection property
forceConnecti onTi neZoneToSessi on.

Note

For Connector/J 8.0.23 and later, ser ver Ti mezone is an alias for
connecti onTi neZone. For Connector/J 8.0.22 and earlier, ser ver Ti nezone
was used to override the session time zone setting on the server.

» forceConnectionTi neZoneToSessi on={true| f al se}: Controls whether the sessionti ne_zone
variable is to be set to the value specified in connect i onTi neZone.

Now, here are the connection properties values to be used for achieving the Solutions defined above for
preserving time instants:

» Solution 1: Use either preservelnstants=false or connectionTimeZone=LOCAL&
forceConnectionTimeZoneToSession=false. Because it can be safely assumed that the server
session time zone is the same as Connector/J' s JVM timezone, no query of the server's session time
zone occurs, and no time zone conversion occurs. For example:

* Time zones: UTC+1 for both the JVM and the server session
 Original timestamp from client (in UTC+1): 2020- 01- 01 01: 00: 00

« Timestamp sent to server by Connector/J: 2020- 01- 01 01: 00: 00 (no conversion needed)

80

https://dev.mysql.com/doc/refman/8.4/en/server-system-variables.html#sysvar_time_zone

Preserving Time Instants

Timestamp values stored internally on the server: 2020- 01- 01 00: 00: 00 UTC (after internal
conversion from UTC+1 to UTC)

Timestamp value retrieved later into a server time session in UTC+1 that Connector/J connects to:
2020-01- 01 01: 00: 00 (after internal conversion from UTC to UTC+1)

Timestamp value constructed by Connector/J in the same JVM time zone as before (UTC+1) and
returned to an application: 2020- 01- 01 01: 00: 00

Comment: Time instant is preserved without conversion.
Note

This setting corresponds to the default behavior of Connector/J 5.1

Solution 2a: Use preservelnstants=true&connectionTimeZone=SERVER . Connector/J then queries
the value of the session time zone from the server, and converts the event timestamps between the
session time zone and the JVM time zone. For example:

Time zones: UTC+2 for JVM, UTC+1 for server session
Original timestamp from client (in UTC+2): 2020- 01- 01 02: 00: 00

Timestamp sent to server by Connector/J: 2020- 01- 01 01: 00: 00 (after conversion from UTC+2 to
UTC+1)

Timestamp value stored internally on the server: 2020- 01- 01 00: 00: 00 UTC (after internal
conversion from UTC+1 to UTC)

Timestamp value retrieved later into a server session in UTC+1: 2020- 01- 01 01: 00: 00 (after
internal conversion from UTC to UTC+1)

Timestamp values constructed by Connector/J in the same JVM time zone as before (UTC+2) and
returned to an application: 2020- 01- 01 02: 00: 00 (after conversion from UTC+1 to UTC+2)

Timestamp values constructed by Connector/J in another JVM time zone (say, UTC+3) and returned
to an application: 2020- 01- 01 03: 00: 00 (after conversion from UTC+1 to UTC+3)

Comment: Time instant is preserved.
Notes

« This setting corresponds to the default behavior of Connector/
J 8.0.22 and before and to the behavior of Connector/J 5.1 with
uselLegacyDat et i neCode=f al se.

81

Preserving Time Instants

 Solution 2b: Use connectionTimeZone=LOCAL& forceConnectionTimeZoneToSession=true.
Connector/J then changes the server's session time zone to that of the JVM time zone, after which no
timezone conversions are required when storing or achieving the timestamps. For example:

Time zones: UTC+1 for JVM, UTC+2 for server session originally, but now modified to UTC+1 by
Connector/J

Original timestamp from client (in UTC+1): 2020- 01- 01 01: 00: 00
Timestamp sent to server by Connector/J;: 2020- 01- 01 01: 00: 00 (no conversion)

Timestamp values stored internally on the server: 2020- 01- 01 00: 00: 00 (after internal conversion
from UTC+1 to UTC)

Timestamp values retrieved later into a server session (in UTC+1, as set by Connector/J):
2020- 01- 01 01: 00: 00 (after internal conversion from UTC to UTC+1)

Timestamp value constructed by Connector/J in the same JVM time zone as before (UTC+1):
2020- 01- 01 01: 00: 00 (no conversion needed)

Timestamp values retrieved later into a server session (time zone modified to, say, UTC+3, by
Connector/J): 2020- 01- 01 03: 00: 00 (after internal conversion from UTC to UTC+3)

Timestamp value constructed by Connector/J in the JVM time zone of UTC+3: 2020- 01- 01
03: 00: 00 (no conversion needed)

Comment: Time instant is preserved without conversion by Connector/J, because the session time
zone is changed by Connector/J to its JVM's value.

Warnings

» « Altering the session time zone affects the results of MySQL functions such
as NOW(), CURTI ME() , or CURDATE() —if you do not want those functions
to be affected, do not use this setting.

« If you use this setting on different clients in different time zones, the clients
are going to modify their connection session's time zones to different values;
if you want to keep the same visual date-time value representation for the
same time instant for all the clients and in all their sessions, store the values
to a DATETI ME instead of a TI MESTAMP column and use non-instant Java
classes for them, for example, j ava. t i ne. Local Dat eTi ne.

e Solution 2c: Use preservelnstants=true&connectionTimeZone=user - def i ned-ti ne- zone&
forceConnectionTimeZoneToSession=true. Connector/J then changes the server's session time zone
to the user-defined time zone, and converts the timestamps between the user-defined time zone and the
JVM time zone. A typical use case for this setting is when the session time zone value on the server is
known to be unrecognizable by Connector/J (e.g., CST or CEST). For example:

Time zones: UTC+2 for JVM, CET for server session originally, but now modified to user-specified
Eur ope/ Ber | i n by Connector/J

Original timestamp from client (in UTC+2): 2020- 01- 01 02: 00: 00

Timestamp sent to server by Connector/J;: 2020- 01- 01 01: 00: 00 (after conversion between JVM
time zone (UTC+2) and user-defined time zone (Eur ope/ Ber | i n=UTC+1))

82

Fractional Seconds

« Timestamp values stored internally on the server: 2020- 01- 01 00: 00: 00 (after internal conversion
from UTC+1 to UTC)

< Timestamp value retrieved into a server session (time zone modified to Eur ope/ Ber | i n (=UTC+1)
by Connector/J): 2020- 01- 01 01: 00: 00 (after internal conversion from UTC to UTC+1)

< Timestamp value constructed by Connector/J in the same JVM time zone as before (UTC+2) and
returned to an application: 2020- 01- 01 02: 00: 00 (after conversion between user-defined time
zone (UTC+1) and JVM time zone (UTC+2)).

« Comment: Time instant is preserved with conversion and with the session time zone being changed by
Connector/J according to a user-defined value.

As an alternative to this solution, the user might want the same conversion of the timestamps
between the JVM time zone and the user-defined time zone as described above, without

actually correcting the unrecognizable time zone value on the server. To do so, use,

preservel nst ant s=true&connecti onTi neZone=user - def i ned-ti nme- zone&
forceConnecti onTi neZoneToSessi on=f al se. This achieves the same result of preserving the
time instant.

Warnings
See the warnings above for Solution 2b.

6.6.2 Fractional Seconds

While aj ava. sql . Tl ME instance, according to the JDBC specification, is not supposed to contain
fractional seconds by design, because j ava. sqgl . TI ME is a wrapper around j ava. uti | . Dat e, it

is possible to store fractional seconds in aj ava. sqgl . Tl ME instance. However, when Connector/
Jinserted aj ava. sql . Tl VE into the server as a MySQL TI VE value, the fractional seconds were
always truncated. To allow the fractional seconds to be sent to the server, a connection property,

sendFr act i onal SecondsFor Ti ne, has been introduced in release 8.0.23: when the property ist r ue
(which is the default value), the fractional seconds for j ava. sql . TI ME are sent to the server; otherwise,
the fractional seconds are truncated.

Also, the connection property sendFr act i onal Seconds has become a global control for

the sending of fractional seconds for ALL date-time types since release 8.0.23. As a result, if
sendFract i onal Seconds=f al se, fractional seconds are not sent irrespective of the value of
sendFr acti onal SecondsFor Ti ne.

6.6.3 Handling of YEAR Values

How a value in a MySQL YEAR column is handled is controlled by the connection property
yearlsDateType:

 If yearlsDateType ist r ue (the default), YEAR is mapped to the Java data type j ava. sql . Dat e.
 If yearlsDateType is f al se, YEAR is mapped to the Java data type j ava. sql . Short.

Connector/J follows the same rules that govern how values are inserted by a mysql client; see
explanations in The YEAR Type for details.

Connector/J handles the retrieval of zero values from a YEAR column differently than a nysql client.
Treatments of zero values depend on whether they are strings or numbers, and on the value of
yearlsDateType:

83

https://dev.mysql.com/doc/refman/8.4/en/year.html
https://dev.mysql.com/doc/refman/8.4/en/year.html
https://dev.mysql.com/doc/refman/8.4/en/year.html
https://dev.mysql.com/doc/refman/8.4/en/year.html

Using Character Sets and Unicode

e Ifastring value of ' 0' ," 00", or' 000" is entered into a YEAR column, when retrieved by Connector/J:
« If yearlsDateType is true, the retrieved value is equivalent to January 1, 2000 00:00:00.000.
 If yearlsDateType is false, the retrieved value is 2000

« If a numeric value of 0, 00, 000, or 0000 is entered into a YEAR column, when retrieved by Connector/
‘]1

« If yearlsDateType is true, the retrieved value is equivalent to January 1, 2000 00:00:00.000.

 If yearlsDateType is false, the retrieved value is 0

6.7 Using Character Sets and Unicode

All strings sent from the JDBC driver to the server are converted automatically from native

Java Unicode form to the connection's character encoding, including all queries sent using

St at enent . execut e(), St at enent . execut eUpdat e(), and St at enent . execut eQuery(), as
well as all Pr epar edSt at enent and Cal | abl eSt at enent parameters, excluding parameters set using
the following methods:

» set Bl ob()

» setBytes()

» set C ob()

e set NCl ob()

* setAscii Stream()

e setBi naryStream)

e set Character Stream)
* set NChar acter Strean()

e set Uni codeStream()

Number of Encodings Per Connection

Connector/J supports a single character encoding between the client and the server, and any number of
character encodings for data returned by the server to the client in Resul t Set s.

Setting the Character Encoding

For Connector/J 8.0.25 and earlier: The character encoding between the client and the server

is automatically detected upon connection (provided that the Connector/J connection properties

char act er Encodi ng and connect i onCol | ati on are not set). The encoding on the server is specified
using the system variable char act er _set server (for more information, see Server Character Set and
Collation), and the driver automatically uses the encoding. For example, to use the 4-byte UTF-8 character
set with Connector/J, configure the MySQL server with char act er _set ser ver =ut f 8nb4, and leave
char act er Encodi ng and connect i onCol | ati on out of the Connector/J connection string. Connector/
J will then autodetect the UTF-8 setting. To override the automatically detected encoding on the client side,
use the char act er Encodi ng property in the connection URL to the server.

84

https://dev.mysql.com/doc/refman/8.4/en/server-system-variables.html#sysvar_character_set_server
https://dev.mysql.com/doc/refman/8.4/en/charset-server.html
https://dev.mysql.com/doc/refman/8.4/en/charset-server.html
https://dev.mysql.com/doc/refman/8.4/en/charset-unicode-utf8mb4.html
https://dev.mysql.com/doc/refman/8.4/en/charset-unicode-utf8mb4.html
https://dev.mysql.com/doc/refman/8.4/en/server-system-variables.html#sysvar_character_set_server

Custom Character Sets and Collations

For Connector/J 8.0.26 and later: There are two phases during the connection initialization in which the
character encoding and collation are set.

* Pre-Authentication Phase: In this phase, the character encoding between the client and the server is
determined by the settings of the Connector/J connection properties, in the following order of priority:

¢ passwor dChar act er Encodi ng

e connectionCol | ati on

e charact er Encodi ng

« Set to UTF8 (corresponds to ut f 8nb4 on MySQL servers), if none of the properties above is set

» Post-Authentication Phase: In this phase, the character encoding between the client and the server for
the rest of the session is determined by the settings of the Connector/J connection properties, in the
following order of priority:

e connectionCol I ation
e charact er Encodi ng

« Setto UTF8 (corresponds to ut f 8nmb4 on MySQL servers), if none of the properties above is set

This means Connector/J needs to issue a SET NAMES Statement to change the character set and
collation that were established in the pre-authentication phase only if passwor dChar act er Encodi ng
is set, but its setting is different from that of connect i onCol | at i on, or different from that of

char act er Encodi ng (when connect i onCol | ati on is not set), or different from ut f 8nmb4 (when
both connecti onCol | ati on and char act er Encodi ng are not set).

Custom Character Sets and Collations

To support the use of custom character sets and collations on the server, set the Connector/J connection
property det ect Cust onCol | ati ons tot r ue, and provide the mapping between the custom character
sets and the Java character encodings by supplying the cust ontChar set Mappi ng connection

property with a comma-delimited list of cust om char set : j ava_encodi ng pairs (for example:

cust onChar set Mappi ng=char set 1: UTF- 8, char set 2: Cp1252).

MySQL to Java Encoding Name Translations

Use Java-style names when specifying character encodings. The following table lists MySQL character set
names and their corresponding Java-style names:

Table 6.21 MySQL to Java Encoding Name Translations

MySQL Character Set Name Java-Style Character Encoding Name
asci i US- ASCl |

bi g5 Bi g5

gbk GBK

sjis SJI'S or (Cp932

cp932 Cp932 or MsS932

gb2312 EUC CN

85

https://dev.mysql.com/doc/refman/8.4/en/set-names.html

Using Query Attributes

MySQL Character Set Name Java-Style Character Encoding Name
ujis EUC JP
euckr EUC_KR
latinl Cpl252
latin2 | SO8859_2
gr eek | SC8859 7
hebr ew | SC8859 8
cp866 Cp866
tis620 Tl S620
cpl250 Cp1250
cpl251 Cpl251
cpl257 Cp1257
macr oman MacRoman
macce MacCent r al Eur ope
ut f 8nb4 UTF- 8
ucs2 Uni codeBi g
Notes

¢ When UTF- 8 is used for char act er Encodi ng in the connection string, it maps
to the MySQL character set name ut f 8nb4.

« If the connection option connect i onCol | at i on is also set alongside
char act er Encodi ng and is incompatible with it, char act er Encodi ng will be
overridden with the encoding corresponding to connect i onCol | ati on.

e Because there is no Java-style character set name for ut f mb3 that you can use
with the connection option char at er Encodi ng, the only way to use ut f 8nb3
as your connection character set is to use a ut f 8nb3 collation (for example,
ut f 8_general _ci) for the connection option connecti onCol | ati on, which
forces a ut f 8nb3 character set to be used, as explained in the last bullet.

Warning
Do not issue the query SET NAMES with Connector/J, as the driver will not detect

that the character set has been changed by the query, and will continue to use the
character set configured when the connection was first set up.

6.8 Using Query Attributes

Connector/J supports Query Attributes when it has been enabled on the server by installing the
guery_attri butes component (see Prerequisites for Using Query Attributes for details).

Attributes are set for a query by using the set At t ri but e() method of the Jdbc St at enent interface.
Here is the method's signature:

JdbcSt at enent . set Attri bute(String name, Object val ue)

Here is an example of using the query attributes with a Jdbc St at enent :

86

https://dev.mysql.com/doc/refman/8.4/en/set-names.html
https://dev.mysql.com/doc/refman/8.4/en/query-attributes.html
https://dev.mysql.com/doc/refman/8.4/en/query-attributes.html#query-attributes-prerequisites

Using Query Attributes

Example 6.1 Using Query Attributes with a Plain Statement

conn = DriverManager. get Connecti on("jdbc: nysql://local host/test", "nyuser", "password");
Statenment stnt = conn.createStatenent();

JdbcSt at enent jdbcStmt = (JdbcStatenent) stnt;

j dbcSt nt . execut eUpdat e(" CREATE TABLE t11 (cl CHAR(20), c2 CHAR(20))");

jdbcStnt.setAttribute("attr1", "cat");
jdbcStnt.setAttribute("attr2", "mat");
j dbcSt nt . execut eUpdat e(" 1 NSERT I NTO t11 (cl, c2) VALUES(\n" +
" nysql _query_attribute_string('attrl'),\n" +
" nysql _query_attribute_string('attr2')\n" +
"))

Resul t Set rs = stnt.executeQuery("SELECT * fromt11");

while(rs.next()) {
String coll = rs.getString(1);
String col2 = rs.getString(2);
System out. println("The "+col 1+" is on the "+col 2);

}

While query attributes are cleared on the server after each query, they are kept on the side of Connector/J,
so they can be resent for the next query. To clear the attributes, use the cl ear At tri but es() method of
the JdbcSt at enent interface:

JdbcSt at enent . cl ear Attri butes()

The following example (a continuation of the code in Example 6.1, “Using Query Attributes with a Plain
Statement”) shows how the attributes are preserved for a statement until it is cleared :

Example 6.2 Preservation of Query Attributes

/* Continuing fromthe code in the |ast exanple, where query attributes have
al ready been set and used */

rs = stnt.executeQuery("SELECT c2 FROMt11 where " +
"cl = nysqgl _query_attribute_string('attrl')");

if (rs.next()) {
String coll = rs.getString(1);
Systemout.printin("lIt is on the "+col 1);

}

/!l Prints "It is on the mat"

jdbcStnt.clearAttributes();
rs = stnt.executeQuery("SELECT c2 FROMt11 where " +
"cl = nmysqgl _query_attribute_string('attrl')");

if (rs.next()) {
String coll = rs.getString(1);
Systemout.printin(“lIt is on the "+col 1);

}
el se {

Systemout.println("No results!");
}

// Prints "No results!" as attribute string attrl is enpty

Attributes can also be set for client-side and server-side prepared statements, using the set Attri but e()
method:

87

Connecting Securely Using SSL

Example 6.3 Using Query Attributes with a Prepared Statement
conn = DriverManager. get Connecti on("jdbc: nysql://|ocal host/test", "nyuser", "password");

Pr epar edSt at enent ps = conn. prepar eSt at enent (
"select ?, c2 fromtll where cl = nysql _query_attribute_string('attrl')");
ps.setString(1, "It is on a");

JdbcSt at enent j dbcPs = (JdbcStatenent) ps;
jdbcPs. set Attribute("attr1", "cat");
rs = ps.executeQuery();
if (rs.next()) {
Systemout.println(rs.getString(1l)+" "+ rs.getString(2));
}

Not all MySQL data types are supported by the set At t ri but e() method; only the following MySQL data
types are supported and are directly mapped to from specific Java objects or their subclasses:

Table 6.22 Data Type Mappings for Query Attributes

MySQL Data Type Java Object

MYSQL_TYPE_STRI NG java.lang. String

MYSQL_TYPE_TI NY j ava. | ang. Bool ean, j ava. | ang. Byt e

MYSQL_TYPE_SHORT j ava. | ang. Short

MYSQL_TYPE_LONG j ava. | ang. | nt eger

MYSQL_TYPE_LONGLONG j ava. | ang. Long, j ava. mat h. Bi gl nt eger

MYSQL_TYPE_FLOAT j ava. | ang. Fl oat

MYSQL_TYPE DOUBLE j ava. | ang. Doubl e, j ava. nat h. Bi gDeci nal

MYSQ._TYPE_DATE java.sqgl . Date,java. tinme. Local Date

MYSQL_TYPE_TI ME java.sqgl . Time,java. tinme. Local Ti e,
java.tine. O fsetTine,
java.tine.Duration

MYSQL_TYPE_DATETI ME java.tine. Local Dat eTi ne

MYSQL_TYPE_TI VESTAMP java. sql . Ti nestanp, j ava. ti ne. I nst ant,
java.tine. O fset Dat eTi ne,
java.tine. ZonedDat eTi ne,j ava. util . Date,
java. util. Cal endar

When there is no direct mapping from a Java object type to any MySQL data type, the attribute is set with a
string value that comes from converting the supplied object to a St ri ng using the . t oSt ri ng() method.

6.9 Connecting Securely Using SSL

Connector/J can encrypt all data communicated between the JDBC driver and the server (except for the
initial handshake) using SSL. There is a performance penalty for enabling connection encryption, the
severity of which depends on multiple factors including (but not limited to) the size of the query, the amount
of data returned, the server hardware, the SSL library used, the network bandwidth, and so on.

The system works through two Java keystore files: one file contains the certificate information for the
server (t r ust st or e in the examples below), and another contains the keys and certificate for the client
(keyst or e in the examples below). All Java keystore files are protected by the password supplied to the
keyt ool when you created the files. You need the file names and the associated passwords to create an
SSL connection.

88

Connecting Securely Using SSL

For SSL support to work, you must have the following:

* A MySQL server that supports SSL, and compiled and configured to do so. For more information, see
Using Encrypted Connections and Configuring SSL Library Support.

» A signed client certificate, if using mutual (two-way) authentication.

By default, Connector/J establishes secure connections with the MySQL servers. Note that MySQL servers
5.7 and up, when compiled with OpenSSL, can automatically generate missing SSL files at startup and
configure the SSL connection accordingly.

For 8.0.12 and earlier: As long as the server is correctly configured to use SSL, there is ho need to
configure anything on the Connector/J client to use encrypted connections (the exception is when
Connector/J is connecting to very old server versions like 5.6.25 and earlier or 5.7.5 and earlier, in which
case the client must set the connection property useSSL=t r ue in order to use encrypted connections).
The client can demand SSL to be used by setting the connection property r equi r eSSL=t r ue; the
connection then fails if the server is not configured to use SSL. Without r equi r eSSL=t r ue, the
connection just falls back to non-encrypted mode if the server is not configured to use SSL.

For 8.0.13 and later: As long as the server is correctly configured to use SSL, there is no need to configure
anything on the Connector/J client to use encrypted connections. The client can demand SSL to be

used by setting the connection property ss| Mbde=REQUI RED, VERI FY_CA, or VERI FY_| DENTI TY;

the connection then fails if the server is not configured to use SSL. With ss| Mode=PREFERRED, the
connection just falls back to non-encrypted mode if the server is not configured to use SSL. For X-Protocol
connections, the connection property xdevapi . ssl - node specifies the SSL Mode setting, just like

ssl Mode does for MySQL-protocol connections (except that PREFERRED is not supported by X Protocol); if
not explicitly set, xdevapi . ssl - node takes up the value of ssl Mode (if xdevapi . ssl - node is not set
and ssl Mode is set to PREFERRED, xdevapi . ssl - node is set to REQUI RED).

For additional security, you can setup the client for a one-way (server or client) or two-way (server and
client) SSL authentication, allowing the client or the server to authenticate each other's identity.

TLS versions: The allowable versions of TLS protocol can be restricted using the connection properties

t | sVer si ons and, for X DevAPI connections and for release 8.0.19 and later, xdevapi . t | s- versi ons
(when xdevapi . t | s-ver si ons is not specified, it takes up the value of t | sVer si ons). If no such
restrictions have been specified, Connector/J attempts to connect to the server with the TLSv1.2 and
TLSv1.3.

Notes

¢ Since Connector/J 8.0.28, the connection property enabl edTLSPr ot ocol s has
been renamed tot | sVer si ons, and enabl edSSLCi pher Sui t es has been
renamed to t | sCi pher sui t es; the original names remain as aliases.

¢ For Connector/J 8.0.26 and later: TLSv1 and TLSv1.1 were deprecated in
Connector/J 8.0.26 and removed in release 8.0.28; the removed values are
considered invalid for use with connection options and session settings.
Connections can be made using the more-secure TLSv1.2 and TLSv1.3
protocols. Using TLSv1.3 requires that the server be compiled with OpenSSL
1.1.1 or higher and Connector/J be run with a JVM that supports TLSv1.3 (for
example, Oracle Java 8u261 and above).

« For Connector/J 8.0.18 and earlier when connecting to MySQL Community
Server 5.6 and 5.7 using the JDBC API: Due to compatibility issues with
MySQL Server compiled with yaSSL, Connector/J does not enable connections

89

https://dev.mysql.com/doc/refman/8.4/en/encrypted-connections.html
https://dev.mysql.com/doc/refman/8.4/en/source-ssl-library-configuration.html

Setting up Server Authentication

with TLSv1.2 and higher by default. When connecting to servers that restrict
connections to use those higher TLS versions, enable them explicitly by setting
the Connector/J connection property enabl edTLSPr ot ocol s (e.g., set
enabl edTLSPr ot ocol s=TLSv1. 2, TLSv1. 3).

Cipher Suites: Since release 8.0.19, the cipher suites usable by Connector/J are pre-

restricted by a properties file that can be found at sr ¢/ mai n/ r esour ces/ com nysql / cj /

Tl sSettings. properti es inside the sr c folder on the source tree or in the platform-independent
distribution archive (in . t ar. gz or . zi p format) for Connector/J. The file contains four sections, listing

in each the mandatory, approved, deprecated, and unacceptable ciphers. Only suites listed in the first
three sections can be used. The last section (unacceptable) defines patterns or masks that blocklist unsafe
cipher suites. Practically, with the allowlist already given in the first three sections, the blocklist patterns in
the forth section are redundant; but they are there as an extra safeguard against unwanted ciphers. The
allowlist and blocklist of cipher suites apply to both JDBC and X DevAPI connections.

The allowable cipher suites for SSL connections can be restricted using the connection properties

t | sC phersui t es and, for X DevAPI connections and for release 8.0.19 and later, xdevapi . t| s-

ci phersui t es (when xdevapi . t| s-ci phersui t es is not specified, it takes up the value of

t I sCi pher sui t es). If no such restrictions have been specified, Connector/J attempts to establish SSL
connections with any allowlisted cipher suites that the server accepts.

6.9.1 Setting up Server Authentication

Server authentication via server certificate verification is enabled when the Connector/J connection
property ssl Mode is setto VERI FY_CA or VERI FY_| DENTI TY. If ssl Mbde is not set, server
authentication via server certificate verification is enabled when the legacy properties useSSL AND
verifyServerCertificate are both true.

Certificates signed by a trusted CA. When server authentication via server certificate verification is
enabled, if no additional configurations are made regarding server authentication, Java verifies the server
certificate using its default trusted CA certificates, usually from $JAVA HOVE/ | i b/ security/ cacerts.

Using self-signed certificates. Itis pretty common though for MySQL server certificates to be self-
signed or signed by a self-signed CA certificate; the auto-generated certificates and keys created by the
MySQL server are based on the latter—that is, the server generates all required keys and a self-signed CA
certificate that is used to sign a server and a client certificate. The server then configures itself to use the
CA certificate and the server certificate. Although the client certificate file is placed in the same directory, it
is not used by the server.

To verify the server certificate, Connector/J needs to be able to read the certificate that signed it, that

is, the server certificate that signed itself or the self-signed CA certificate. This can be accomplished by
either importing the certificate (ca. pemor any other certificate) into the Java default truststore (although
tampering the default truststore is not recommended) or by importing it into a custom Java truststore

file and configuring the Connector/J driver accordingly. Use Java's keytool (typically located in the bi n
subdirectory of your JDK or JRE installation) to import the server certificates:

$> keytool -inportcert -alias M/SQLCACert -file ca.pem\
-keystore truststore -storepass nypassword

Supply the proper arguments for the command options. If the truststore file does not already exist, a new
one will be created; otherwise the certificate will be added to the existing file. Interaction with keyt ool
looks like this:

Onner: CN=MySQL_Server_8.4.0_Auto_Generated_CA Certificate
| ssuer: CN=MySQL_Server _8.4.0_Auto_GCenerated_CA Certificate

90

Setting up Server Authentication

Serial nunber: 1
Valid from Thu Mar 07 11:37:33 WET 2024 until: Sun Mar 05 11:37:33 WET 2034
Certificate fingerprints:
SHA1: 43:12: 0F: 96: 1A: 09: 1C:. D2: 5B: 62: 7A: 2A: 55: 6C. 62: 6A: 84: 5F: 78: E4
SHA256: 7D: 86: 18: FF: 06: A7: DF: A7: 7C. DO: 07: AB: 96: 1A: 51: FD: 02: 4F: 32: BF: 1C. 51: 35: 42: 27: 81: 53: OA: 8F: D3: 56: 39
Si gnature al gorithm name: SHA256w t hRSA
Subj ect Public Key Algorithm 2048-bit RSA key
Version: 3

Ext ensi ons:

#1: Qpjectld: 2.5.29.19 Criticality=true
Basi cConstraints: [

CA: true

Pat hLen: 2147483647

]

Trust this certificate? [no]: yes
Certificate was added to keystore

The output of the command shows all details about the imported certificate. Make sure you remember the
password you have supplied. Also, be mindful that the password will have to be written as plain text in your
Connector/J configuration file or application source code.

The next step is to configure Java or Connector/J to read the truststore you just created or modified. This
can be done by using one of the following three methods:

1. Using the Java command line arguments:

-Dj avax. net.ssl.trustStore=path_to_truststore file
- D avax. net. ssl . trust St or ePasswor d=nypasswor d

2. Setting the system properties directly in the client code:

System set Property("javax. net.ssl.trustStore","path_to_truststore file");
System set Property("j avax. net. ssl.trust St orePassword", " nypassword");

3. Setting the Connector/J connection properties:

trustCertificateKeyStoreUrl=file:path_to_truststore_file
trustCertificat eKeySt or ePasswor d=nypasswor d

Notice that when used together, the connection properties override the values set by the other two
methods. Also, whatever values set with connection properties are used in that connection only, while
values set using the system-wide values are used for all connections (unless overridden by the connection
properties). Setting the connection property f al | backToSyst enilr ust St or e to f al se prevents
Connector/J from falling back to the system-wide truststore setup you created using method (1) or (2) when
method (3) is not used.

With the above setup and the server authentication enabled, all connections established are going to be
SSL-encrypted, with the server being authenticated in the SSL handshake process, and the client can now
safely trust the server it is connecting to.

For X-Protocol connections, the connection properties xdevapi . ssl -trust st or e,

xdevapi . ssl -truststore-type, xdevapi . ssl -trust store-password, and

xdevapi . ssl -fal | backToSyst enlr ust St or e specify the truststore settings,

justliketrust CertificateKeyStoreUrl,trustCertificateKeyStoreType,
trustCertificateKeySt orePasswordamdfal | backToSyst enilr ust St or e do for MySQL-
protocol connections; if not explicitly set, xdevapi . ssl -trust st or e, xdevapi . ssl -trust st ore-

t ype, xdevapi . ssl -trust st or e- passwor d, and xdevapi . ssl -fal | backToSyst enTr ust St or e

91

Setting up Client Authentication

take up the values of t rust Certifi cat eKeyStoreUrl ,trustCertifi cateKeyStoreType,
trustCertificateKeySt orePassword, andfal |l backToSyst enilr ust St or e respectively.

Service Identity Verification. Beyond server authentication via server certificate verification, when
ssl Mode is set to VERI FY_| DENTI TY, Connector/J also performs host name identity verification by
checking whether the host name that it uses for connecting matches the Common Name value in the
server certificate.

6.9.2 Setting up Client Authentication

The server may want to authenticate a client and require the client to provide an SSL certificate to it,

which it verifies against its known certificate authorities or performs additional checks on the client identity
if needed (see CREATE USER SSL/TLS Options for details). In that case, Connector/J needs to have
access to the client certificate, so it can be sent to the server while establishing new database connections.
This is done using the Java keystore files.

To allow client authentication, the client connecting to the server must have its own set of keys and an SSL
certificate. The client certificate must be signed so that the server can verify it. While you can have the
client certificates signed by official certificate authorities, it is more common to use an intermediate, private,
CA certificate to sign client certificates. Such an intermediate CA certificate may be self-signed or signed
by a trusted root CA. The requirement is that the server knows a CA certificate that is capable of validating
the client certificate.

Some MySQL server builds are able to generate SSL keys and certificates for communication encryption,
including a certificate and a private key (contained in the cl i ent - cert. pemand cl i ent - key. pem
files), which can be used by any client. This SSL certificate is already signed by the self-signed CA
certificate ca. pem which the server may have already been configured to use.

If you do not want to use the client keys and certificate files generated by the server, you can also generate
new ones using the procedures described in Creating SSL and RSA Certificates and Keys. Notice that,
according to the setup of the server, you may have to reuse the already existing CA certificate the server is
configured to work with to sign the new client certificate, instead of creating a new one.

Once you have the client private key and certificate files you want to use, you need to import them into a
Java keystore so that they can be used by the Java SSL library and Connector/J. The following instructions
explain how to create the keystore file:

» Convert the client key and certificate files to a PKCS #12 archive:

$> openssl pkcsl12 -export -in client-cert.pem-inkey client-key.pem\
-nane "mysqglclient" -passout pass:nypassword -out client-keystore.pl2

* Import the client key and certificate into a Java keystore:

$> keytool -inportkeystore -srckeystore client-keystore.pl2 -srcstoretype pkcsl2 \
-srcstorepass mypassword -destkeystore keystore -deststoretype JKS -deststorepass nypassword

Supply the proper arguments for the command options. If the keystore file does not already exist, a new
one will be created; otherwise the certificate will be added to the existing file. Output by keyt ool looks
like this:

Entry for alias nysqglclient successfully inported
| nport command conpleted: 1 entries successfully inported, O entries failed or cancelled

Make sure you remember the password you have chosen. Also, be mindful that the password will have
to be written as plain text in your Connector/J configuration file or application source code.

After the step, you can delete the PKCS #12 archive (cl i ent - keyst or e. p12 in the example).

92

https://dev.mysql.com/doc/refman/8.4/en/create-user.html#create-user-tls
https://dev.mysql.com/doc/refman/8.4/en/creating-ssl-rsa-files.html

Setting up 2-Way Authentication

The next step is to configure Java or Connector/J so that it reads the keystore you just created or modified.
This can be done by using one of the following three methods:

1. Using the Java command line arguments:

- D avax. net. ssl . keyStore=path_to_keystore file
- D avax. net . ssl . keySt or ePasswor d=nmypasswor d

2. Setting the system properties directly in the client code:

System set Property("javax. net.ssl.keyStore", "path_to_keystore file");
Syst em set Property("javax. net. ssl . keySt or ePasswor d", " nmypasswor d") ;

3. Through Connector/J connection properties:

clientCertificateKeyStoreUr |l =file:path_to truststore file
clientCertificateKeySt orePasswor d=nmypasswor d

Notice that when used together, the connection properties override the values set by the other two
methods. Also, whatever values set with connection properties are used in that connection only, while
values set using the system-wide values are used for all connections (unless overridden by the connection
properties). Setting the connection property f al | backToSyst enKey St or e to f al se prevents
Connector/J from falling back to the system-wide keystore setup you created using method (1) or (2) when
method (3) is not used.

With the above setups, all connections established are going to be SSL-encrypted with the client being
authenticated in the SSL handshake process, and the server can now safely trust the client that is
requesting a connection to it.

For X-Protocol connections, the connection properties xdevapi . ssl - keyst or e,

xdevapi . ssl - keyst ore-type, xdevapi . ssl - keyst or e- passwor d, and

xdevapi . ssl -fal | backToSyst enKeySt or e specify the keystore settings, just
liketrustCertificateKeyStoreUrl,trustCertificateKeyStoreType,

trust CertificateKeyStorePassword,andfal | backToSyst enifKey St or e do for MySQL-
protocol connections; if not explicitly set, xdevapi . ssl - keyst or e, xdevapi . ssl - keyst or e-

t ype, xdevapi . ssl - keyst or e- passwor d, and xdevapi . ssl -fal | backToSyst enKeySt or e
take up the values of cl i ent Certi fi cateKeyStoreUrl,clientCertificateKeyStoreType,
clientCertificateKeyStorePassword, andfal |l backToSyst enKeySt or e respectively.

6.9.3 Setting up 2-Way Authentication

Apply the steps outlined in both Section 6.9.1, “Setting up Server Authentication” and Section 6.9.2,
“Setting up Client Authentication” to set up a mutual, two-way authentication process in which the server
and the client authenticate each other before establishing a connection.

Although the typical setup described above uses the same CA certificate in both ends for mutual
authentication, it does not have to be the case. The only requirements are that the CA certificate
configured in the server must be able to validate the client certificate and the CA certificate imported into
the client truststore must be able to validate the server certificate; the two CA certificates used on the two
ends can be distinct.

6.9.4 JSSE in FIPS Mode

When using a Java 8 to 12 JREs, if JSSE is configured to use FIPS mode, attempts to connect to a
MySQL Server may fail in some cases with a KeyManagenent Except i on, complaining that "FIPS
mode: only SunJSSE Tr ust Manager s may be used." This happens because, in that case, a custom

93

Debugging an SSL Connection

Tr ust Manager implemented by Connector/J that supports the different ssl Mode options is invoked but is
eventually rejected by the default implementation of SunJSSE.

The issue can be overcome by telling Connector/J not to use its custom Tr ust Manager implementation,
but use your own security providers instead. This can be done by setting the following connection
properties:

« fipsConpliantJsse: Settotrue to overcome the above-mentioned issue with FIPS mode.
Note

When set to true, Connector/J always performs server certificate validation (even
if ssl Mode is set to PREFERRED or REQUI RED), which means a truststore must
be configured with the connection proprieties described below, or the fallback
system-wide truststore must be enabled.

» KeyManager Fact or yPr ovi der : The name of the a Java Security Provider that provides a
j avax. net . ssl . KeyManager Fact or y implementation.

e trust Manager Fact or yProvi der : The name of the a Java Security Provider that provides a
j avax. net. ssl . Trust Manager Fact or y implementation.

» keySt or eProvi der: The name of the a Java Security Provider that provides a
j ava. security. KeySt or e implementation, supporting the key stores types specified with
clientCertificateKeyStoreTypeandtrustCertificateKeyStoreType.

6.9.5 Debugging an SSL Connection

JSSE provides debugging information to st dout when you set the system property -

Dj avax. net . debug=al | . Java then tells you what keystores and truststores are being used, as well as
what is going on during the SSL handshake and certificate exchange. That will be helpful when you are
trying to debug a failed SSL connection.

6.10 Connecting Using Unix Domain Sockets

Connector/J does not natively support connections to MySQL Servers with Unix domain sockets. However,
there is provision for using 3rd-party libraries that supply the function via a pluggable socket factory. Such
a custom factory should implement the com mysql . cj . prot ocol . Socket Fact ory interface or the
legacy com mmysql . j dbc. Socket Fact ory interface of Connector/J. Follow these requirements when
you use such a custom socket factory for Unix sockets :

e The MySQL Server must be configured with the system variable - - socket (for native protocol
connections using the JDBC API) or - - nysqgl x- socket (for X Protocol connections using the X
DevAPI), which must contain the file path of the Unix socket file.

» The fully-qualified class name of the custom factory should be passed to Connector/J via the connection
property socket Fact ory. For example, with the junixsocket library, set:

socket Fact or y=or g. newscl ub. net . mysgl . AFUNI XDat abaseSocket Fact ory

You might also need to pass other parameters to the custom factory as connection properties.
For example, for the junixsocket library, provide the file path of the socket file with the property
j uni xsocket . file:

j uni xsocket . fil e=path_to_socket file

6.11 Connecting Using Named Pipes

94

https://dev.mysql.com/doc/refman/8.4/en/server-system-variables.html#sysvar_socket
https://dev.mysql.com/doc/refman/8.4/en/x-plugin-options-system-variables.html#sysvar_mysqlx_socket

Connecting Using Various Authentication Methods

Important

Minimal permissions on named pipes are granted to clients that use them

to connect to the server. Connector/J, however, can only use named pipes

when granted full access on them. As a workaround, the MySQL Server that
Connector/J wants to connect to must be started with the system variable
naned_pi pe_full _access_group, which specifies a Windows local group
containing the user by which the client application JVM (and thus Connector/J) is
being executed; see the description for naned_pi pe_ful | _access_group for
more details.

Note
Support for named pipes is not available for X Protocol connections.

Connector/J also supports access to MySQL using named pipes on Windows platforms with the

NanmedPi peSocket Fact ory as a plugin-sockets factory. If you do not use a nanedPi pePat h property,
the default of ' \'\ . \ pi pe\ MySQL" is used. If you use the NanedPi peSocket Fact ory, the host name
and port number values in the JDBC URL are ignored. To enable this feature, set the socket Fact ory

property:

socket Fact ory=com nmysql . cj . prot ocol . NamedPi peSocket Fact ory
Set this property, as well as the path of the named pipe, with the following connection URL:
jdbc: nysql :///test?socket Fact ory=com nysql . cj . prot ocol . NanedPi peSocket Fact or y&nanedPi pePat h=\\ . \ pi pe\ MySQ_:

To create your own socket factories, follow the sample code in
com nysql . cj . prot ocol . NanedPi peSocket Fact ory or
com nysql . cj . protocol . St andar dSocket Fact ory.

An alternate approach is to use the following two properties in connection URLSs for establishing named
pipe connections on Windows platforms:

e (protocol =pi pe) for named pipes (default value for the property is t cp).
* (path=pat h_t o_pi pe) for path of named pipes. Default value for the pathis\\ . \ pi pe\ MySQL.

The “address-equals” or “key-value” form of host specification (see Single host [22] for details) greatly
simplifies the URL for a named pipe connection on Windows. For example, to use the default named pipe

of “\\ . \ pi pe\ MySQL,” just specify:
jdbc: nysql : // addr ess=(pr ot ocol =pi pe)/t est

To use the custom named pipe of “\ \ . \ pi pe\ MySQL80" :
j dbc: nysql : // addr ess=(pr ot ocol =pi pe) (pat h=\\.\ pi pe\ MySQL80) / t est
With (pr ot ocol =pi pe), the NanedPi peSocket Fact ory is automatically selected.

Named pipes only work when connecting to a MySQL server on the same physical machine where the
JDBC driver is running. In simple performance tests, named pipe access is between 30%-50% faster than
the standard TCP/IP access. However, this varies per system, and named pipes are slower than TCP/IP in
many Windows configurations.

6.12 Connecting Using Various Authentication Methods
6.12.1 Connecting Using PAM Authentication

95

https://dev.mysql.com/doc/refman/8.4/en/server-system-variables.html#sysvar_named_pipe_full_access_group
https://dev.mysql.com/doc/refman/8.4/en/server-system-variables.html#sysvar_named_pipe_full_access_group

Connecting Using Kerberos

Java applications using Connector/J can connect to MySQL servers that use the pluggable authentication
module (PAM) authentication scheme.

For PAM authentication to work, you must have the following:

» A MySQL server that supports PAM authentication. See PAM Pluggable Authentication for more
information. Connector/J implements the same cleartext authentication method as in Client-Side
Cleartext Pluggable Authentication.

» SSL capability, as explained in Section 6.9, “Connecting Securely Using SSL". Because the PAM
authentication scheme sends the original password to the server, the connection to the server must be
encrypted.

PAM authentication support is enabled by default in Connector/J 8.4, so no extra configuration is needed.

To disable the PAM authentication feature, specify nysql _cl ear _passwor d (the method) or

com nysql .cj.protocol.a.authentication. Mysgl Cl ear Passwor dPl ugi n (the class nhame) in
the comma-separated list of arguments for the di sabl edAut henti cati onPl ugi ns connection option.
See Section 6.3, “Configuration Properties” for details about that connection option.

6.12.2 Connecting Using Kerberos

Kerberos is a ticket-based server-client mutual authentication protocol that is supported by the MySQL
Server (commercial versions only) .

Support for Kerberos is implemented by Connector/J using the GSS-API, JAAS API, and JCA API;
providers for each of these APIs must be available on the Java Virtual Machine running your application
that uses Kerberos authentication. Using non-default providers can lead to unexpected results.

Kerberos Authentication Workflow

The main usage of Kerberos authentication in MySQL is to allow users to create

connections without having to specify a user name and password in the connection string.

For that to work, Connector/J must be configured with the connection property setting

def aul t Aut henti cati onPl ugi n=aut henti cati on_kerberos_client andthenthe MySQL user
name may be extracted from the Kerberos principal associated to the locally cached Ticket-Granting Ticket
(TGT). Notice that a MySQL user name differs from a Kerberos principal in not containing a realm part;
therefore, Connector/J cuts all the characters in the principle after the “@” sign and uses it as the MySQL
user name.

If there is no TGT available in the local Kerberos cache, Connector/J uses the OS login user name as the
MySQL user name. A user name specified in the connection string always takes precedence over names
obtained by any other means for the MySQL user.

The MySQL user name is then sent to the MySQL server for validation. Non-existing users cause the
server to return an error. Existing users are allowed to proceed with the authentication process, and the
authentication mechanism that follows depends on how the MySQL user was created:

» For users created with the authentication plugin aut hent i cati on_ker ber os, MySQL server sends
the corresponding Kerberos realm back to Connector/J, which, in turn, uses it to construct the Kerberos
principal that identifies the user on the Kerberos server. One of three things may then happen:

¢ The newly constructed Kerberos principal matches the Kerberos principal associated to the locally
cached TGT; this TGT is then sent to the Kerberos server to obtain the desired MySQL Service Ticket,
and the authentication proceeds.

96

https://dev.mysql.com/doc/refman/8.4/en/pam-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.4/en/cleartext-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.4/en/cleartext-pluggable-authentication.html

Connecting Using Multifactor Authentication

« The newly constructed Kerberos principal does not match the Kerberos principal associated to
the locally cached TGT, or there is no local Kerberos cache; this Kerberos principal, as well as the
password that may have been specified in the connection string (or an empty string if none was
specified), is sent to the Kerberos server to obtain first a valid TGT, and then the desired MySQL
Service Ticket; and the authentication proceeds.

< An error is thrown if Connector/J is unable to obtain the correct Kerberos configurations, unable to
communicate with the Kerberos server, or unable to perform either of the two steps above.

» For users defined with a plugin different from aut hent i cati on_ker ber os, the server requests
Connector/J to use another authentication method.

Client-side Kerberos configurations

In order to operate properly with the Kerberos server, Connector/J requires either a system-wide Kerberos
configuration, or these local system property settings for the JVM:

e -Djava. security. krb5. kdc=[the KDC host nane]

e -Djava. security. krb5.real me[the default Kerberos real nj

Debug Information

The process of configuring Connector/J to use Kerberos authentication is not always straightforward.
Enabling logging in the internal Java providers can help find potential problems. That can be done by
setting these system properties:

e -Dsun. security. krb5. debug=true

e -Dsun. security.jgss. debug=true

6.12.3 Connecting Using Multifactor Authentication

Multifactor authentication (MFA) is the use of multiple authentication factors during an authentication
process. MySQL Server supports MFA for up to three authentication factors.

Connection to MySQL Server with MFA is supported by Connector/J. When authenticating user accounts
that require multiple passwords, up to three passwords can be specified using the Connector/J connection
properties passwor d1, passwor d2, and passwor d3 . This is a sample connection string that uses the
three connection properties for passwords:

jdbc: nysql : / /1 ocal host/ db?user =j ohndoe&passwor d1=passwor d&passswor d2=passwor d&passwor d3=passwor d
The following apply when using the connection properties for passwords:

e passwor dl, passwor d2, and passwor d3 are passwords for authentication factors 1, 2, and 3,
respectively, as described in Getting Started with Multifactor Authentication.

« If any of the authentication factors (say, factor N) does not require a password, the corresponding
password (passwor dN) is ignored, even if supplied.

* Not specifying the corresponding password for an authentication factor that requires a password is
equivalent to supplying an empty password for the factor.

» password and passwor d1 are taken as synonyms except when both are supplied, in which case
passwor d1 overrides password.

97

https://dev.mysql.com/doc/refman/8.4/en/multifactor-authentication.html#multifactor-authentication-getting-started

Connecting Using Web Authentication (WebAuthn) Authentication

6.12.4 Connecting Using Web Authentication (WebAuthn) Authentication

Web Authentication (WebAuthn) enables user authentication for MySQL Server using devices such as
smart cards, security keys, and biometric readers. WebAuthn enables passwordless authentication, and
can be used for MySQL accounts that use multifactor authentication. It is supported by MySQL Enterprise
Edition and Connector/J since release 8.2.0—see WebAuthn Pluggable Authentication for details.

The following explains how to use WebAuthn authentication with Connector/J. It assumes there is a
MySQL server running and configured to support WebAuthn authentication, with the authentication plugin
aut henti cati on_webaut hn loaded and the system variable aut hent i cati on_webaut hn_rp_id
properly configured. Although not always the case, FIDO authentication often works with multifactor
authentication, so additional configuration might be necessary but, typically, a default MySQL installation is
multifactor authentication ready.

Create a MySQL User

Create the MySQL user to be linked to the FIDO device. Use the nysql client with a root user:

mysql > CREATE USER 'j ohndoe' @ % | DENTI FI ED W TH cachi ng_sha2_password BY 's3cr3t' AND | DENTI FI ED W TH aut hen
Query OK, O rows affected (0,02 sec)

Register the FIDO device by the user you just created. This is accomplished by running the nysqgl client
on the same system the device is installed, which might require installing the nysql client in your working
machine or moving the FIDO device to the system where the MySQL Server is running. In either case,
issue the following command (additional command options to connect to the right server might be needed):

$ nysql --user=johndoe --passwordl --register-factor=2

Ent er password: <type "s3cr3t">

Pl ease insert FIDO device and follow the instruction. Depending on the device, you nay have to perform gestur
1. Performgesture action (Skip this step if you are pronpted to enter device PIN).

Wel conme to the MySQL nonitor. Commands end with ; or \g.

Your MySQL connection id is 12

Server version: 8.2.0-commercial MySQL Enterprise Server - Commerci al

Copyright (c) 2000, 2023, Oracle and/or its affiliates.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. O her nanmes may be trademarks of their respective
owners.

Type 'help;' or "\h' for help. Type '\c' to clear the current input statenent.

nmysql >
Get 3rd-party Dependencies

MySQL Connector/J is a JDBC Type 4 driver, which is a 100% pure Java implementation, However,
there is no pure Java library supporting the authentication devices that Connector/J can use. Therefore,
developers need to implement the code that handles the interaction with the authentication devices, for
which the following 3rd-party libraries are needed.

» Thel i bfi do2 native library, which must be installed in the system where the application will run.

» Some Java bindings, for example Java Native Interface (JNI) or Java Native Access (JNA). In the
following example, Java Native Access (JNA) is used to implement our minimal Java bindings over the
['i bfido2 library.

98

https://dev.mysql.com/doc/refman/8.4/en/webauthn-pluggable-authentication.html
https://dev.mysql.com/doc/mysql-security-excerpt/en/webauthn-pluggable-authentication.html
https://dev.mysql.com/doc/mysql-security-excerpt/en/pluggable-authentication-system-variables.html#sysvar_authentication_webauthn_rp_id
https://dev.mysql.com/doc/refman/en/multifactor-authentication.html
https://dev.mysql.com/doc/refman/en/multifactor-authentication.html
https://developers.yubico.com/libfido2/
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/
https://github.com/java-native-access/jna
https://github.com/java-native-access/jna

Connecting Using Web Authentication (WebAuthn) Authentication

Implement the Native Bindings

Create a simple class (called Fi doAsser ti on below) that implements the minimal set of bindings
between Java and the | i bf i do2 native library (consult the | i bf i do2 manuals if needed):

i mport
i mport
i mport
i mport
i mport
i mport

public

com sun. j na. Li brary;

com sun. j na. Nati ve;

com sun. j na. Poi nt er;

com sun. j na. Poi nt er Type;

com sun. j na. ptr. | nt ByRef er ence;
com sun. j na. ptr. Poi nt er ByRef er ence;

cl ass Fi doAssertion {

private interface LibFido2 extends Library {

}

public static int FIDO OK = 0;

static class FidoAssertT extends PointerType {}

static class FidoDevl nfoT extends PointerType {}

static class FidoDevT extends PointerType {}

Li bFi do2 | NSTANCE = Native.l oad("fido2", LibFido2.class);

int fido_assert_allow cred(Fi doAssertT assrt, byte[] ptr, int len);
int fido_assert_authdata_l en(Fi doAssertT assrt, int idx);

Poi nter fido_assert_authdata_ptr(Fi doAssertT assrt, int idx);

voi d fido_assert_free(Poi nterByReference assrt);

Fi doAssertT fido_assert_new();

int fido_assert_count(Fi doAssertT assrt);

int fido_assert_set_clientdata_hash(Fi doAssertT assrt, byte[] ptr, int |len);
int fido_assert_set_rp(FidoAssertT assrt, String id);

int fido_assert_sig_|len(FidoAssertT assrt, int idx);

Poi nter fido_assert_sig_ptr(Fi doAssertT assrt, int idx);

int fido_dev_cl ose(Fi doDevT dev);

voi d fido_dev_free(PointerByReference dev);

int fido_dev_get_assert (Fi doDevT dev, FidoAssertT assrt, String pin);
voi d fido_dev_info_free(PointerByReference devlist, int n);

int fido_dev_info_manifest(FidoDevlnfoT devlist, int ilen, |ntByReference olen);
Fi doDevl nf oT fido_dev_info_new(int n);

String fido_dev_info_path(Fi doDevl nfoT di);

Fi doDevl nf oT fi do_dev_i nfo_ptr(Fi doDevl nfoT devList, int size);

Fi doDevT fi do_dev_new();

int fido_dev_open(Fi doDevT dev, String path);

bool ean fi do_dev_supports_credman(Fi doDevT dev);

void fido_init(int flags);

private LibFido2.FidoAssertT fi doAssert;
private LibFi do2.Fi doDevT fi doDev;
private byte[] clientDataHash;

private String relyingPartyld;

private byte[] credentialld;

private bool ean supportsCredMan = fal se;

publ i c Fi doAssertion() {

}

Li bFi do2. | NSTANCE. fi do_i nit(0);
initializeFidoDevice();

private void initializeFidoDevice() {

Li bFi do2. Fi doDevl nf oT fi doDevl nfo = Li bFi do2. | NSTANCE. fi do_dev_i nfo_new(1);
I nt ByRef erence ol en = new | nt ByRef erence();
int r = Li bFi do2. | NSTANCE. fi do_dev_i nf o_mani fest (fi doDevlnfo, 1, olen);
if (r !'= LibFido2. FI DO OK) {
t hrow new Runti meException("Fail ed | ocating FIDO devices.");

}
Li bFi do2. Fi doDevl nf oT dev = Li bFi do2. | NSTANCE. fi do_dev_i nfo_ptr(fi doDevlnfo, 0);
String path = Li bFi do2. | NSTANCE. fi do_dev_i nf o_pat h(dev) ;

99

https://developers.yubico.com/libfido2/Manuals/

Connecting Using Web Authentication (WebAuthn) Authentication

Li bFi do2. | NSTANCE. fi do_dev_i nf o_f ree(new Poi nt er ByRef er ence(fi doDevl nf o. get Pointer()), 1);

this.fidoDev = LibFido2. | NSTANCE. fi do_dev_new();
r = Li bFi do2. | NSTANCE. fi do_dev_open(thi s.fi doDev, path);
if (r !'= LibFido2. FI DO OK) {
t hrow new Runti meExcepti on("Fail ed opening the FI DO device.");

}

thi s. supportsCredMan = Li bFi do2. | NSTANCE. fi do_dev_supports_credman(this. fi doDev);
}

bool ean supportsCredenti al Managenent () {
return this.supportsCredMan;

}

voi d set d i enDat aHash(byte[] clientDataHash) {
this.clientDataHash = client Dat aHash;

}

voi d setRelyingPartyld(String relyingPartyld) {
this.relyingPartyld = rel yingPartyl d;
}

voi d setCredential Id(byte[] credentialld) {
this.credentialld = credentialld;

}

voi d conput eAssertions() {
int r;
this.fidoAssert = LibFi do2. | NSTANCE. fi do_assert_new();

/! Set the Relying Party Id.
r = Li bFi do2. 1 NSTANCE. fi do_assert_set _rp(this.fidoAssert, this.relyingPartyld);
if (r !'= LibFido2. FI DO OK) {
t hrow new Runti meException("Fail ed setting the relying party id.");
}

/1 Set the Cient Data Hash.
r = Li bFi do2. 1 NSTANCE. fi do_assert_set _clientdata_hash(this.fidoAssert, this.clientDataHash, this.clien
if (r !'= LibFido2. FI DO OK) {

t hrow new Runti meException("Fail ed setting the client data hash.");

}

/! Set the Credential 1d. Not applicable when resident keys are used.
if (this.credentialld.length > 0) {
r = Li bFi do2. | NSTANCE. fi do_assert_al | ow cred(this.fidoAssert, this.credentialld, this.credentialld
if (r !'= LibFido2. FI DO OK) {
t hrow new Runti meException("Failed setting the credential id.");
}
}

/] Ootain the assertion(s) fromthe FIDO devi ce.
r = Li bFi do2. | NSTANCE. fi do_dev_get _assert(this.fidoDev, this.fidoAssert, null);
if (r !'= LibFido2. FI DO OK) {
t hrow new Runti meException("Fail ed obtaining the assertion(s) fromthe FI DO device.");

}

public int getAssertCount () {
int assertCount = LibFi do2. | NSTANCE. fi do_assert_count (this.fi doAssert);
return assert Count;

public byte[] getAuthenticatorData(int idx) {
int aut hDatalLen = Li bFi do2. | NSTANCE. fi do_assert_aut hdata_|l en(thi s. fi doAssert, idx);
Poi nter authData = Li bFi do2. 1 NSTANCE. fi do_assert_authdata_ptr(this.fidoAssert, idx);
byte[] authenticatorData = authData. get Byt eArray(0, authDatalen);

100

Connecting Using Web Authentication (WebAuthn) Authentication

}

return aut henti cat or Dat a;

public byte[] getSignature(int idx) {

}

int sigLen = LibFido2. | NSTANCE. fi do_assert_sig_l en(this.fidoAssert, idx);

Poi nter sigbData = LibFi do2. 1 NSTANCE. fi do_assert_sig_ptr(this.fidoAssert, idx);
byte[] signature = sigData.getByteArray(0, siglLen);

return signature;

public void freeResources() {

}

Li bFi do2. | NSTANCE. fi do_dev_cl ose(thi s. fi doDev) ;
Li bFi do2. | NSTANCE. fi do_dev_free(new Poi nt er ByRef erence(this.fi doDev. get Pointer()));
Li bFi do2. | NSTANCE. fi do_assert _free(new Poi nt er ByRef erence(thi s. fi doAssert. getPointer()));

Compile the class with a Java 8 compiler (or above).

$ javac -classpath *:. FidoAssertion.java

Implement the Authentication Callback

MySQL Connector/J uses a pluggable callback class that exchanges data between the authentication
process and the interaction with the authentication device. This class must be an instance of the interface
com nysql . cj . cal | back. Mysqgl Cal | backHandl er, which defines one single method: voi d

handl e(Mysql Cal | back ch);.The Mysql Cal | back argument this method takes is an instance of
com nysql . cj . cal | back. WebAut hnAut hent i cat i onCal | back and it contains all the data required
by the FIDO assertion code implemented earlier. Likewise, it also takes the output from the FIDO device
(authenticator data and signatures) to the running authentication process.

Here is one possible implementation of the \ebAut hnAut hent i cati onCal | back.

i mport com nysgql . cj . cal | back. Mysql Cal | back;

i mport com nysgql . cj . cal | back. Mysql Cal | backHandl er;

i mport com nysgql . cj . cal | back. WebAut hnAut hent i cati onCal | back;

public class Authenticati onWebAut hnCal | backHandl er i npl enents Mysqgl Cal | backHandl er {
@verride

public void handl e(Mysql Cal | back cb) {

i f (!WebAut hnAut henti cati onCal | back. cl ass. i sAssi gnabl eFron{cbh. getd ass())) {
return;
}

WebAut hnAut hent i cati onCal | back webAut hnAut hCal | back = (WebAut hnAut hent i cati onCal | back) cb;

Fi doAssertion |ibFi do2Asserti on = new Fi doAssertion();
webAut hnAut hCal | back. set Suppor t sCr edent i al Managenent (| i bFi do2Asserti on. supportsCredenti al Managenens

|'i bFi do2Assertion. set C i enDat aHash(webAut hnAut hCal | back. get Cl i ent Dat aHash()) ;
|'i bFi do2Asserti on. set Rel yi ngPartyl d(webAut hnAut hCal | back. get Rel yi ngPartyl d());
|'i bFi do2Assertion. set Credenti al | d(webAut hnAut hCal | back. get Credenti al 1d());

Systemout. println("Please performthe gesture action on your FIDO device.");
|'i bFi do2Assertion. conput eAssertions();

for (int i =0; i < |libFido2Assertion.getAssertCount(); i++) {
webAut hnAut hCal | back. addAut hent i cat or Dat a(| i bFi do2Asserti on. get Aut henti catorData(i));
webAut hnAut hCal | back. addSi gnat ur e(l i bFi do2Asserti on. get Signature(i));

}

|'i bFi do2Assertion. freeResources();

101

Using Source/Replica Replication with ReplicationConnection

Notice how this implementation is responsible for asking the user to perform the gesture action. In a real
use case, this would eventually trigger an event that would, for example, open a pop-up message to the
user.

Compile this code:

$ javac -classpath *:. Authenticati onWebAut hnCal | backHandl er. j ava

The name of this class must be supplied to Connector/J through the connection property
aut henti cati onWebAut hnCal | backHandl er .

Implement the Application

Implement the client application. The following implementation is just a proof of concept that creates a
MySQL connection to the MySQL server with the user created earlier and checks if the connection was
established successfully. Notice that FIDO authentication requires some sort of human interactions, so
this is not a solution to apply for a typical three-tier architecture, where there is usually a single database
user configured in the application server and connections to the database are established from a remote
machine.

Here is a simple client application code:

i mport java. sql . Connecti on;

i nport java.sql.DriverManager;
import java.sql.Result Set;
inmport java.util.Properties;

i mport com nysql . cj.conf. PropertyKey;

public class Authenticati onWebAut hnApp {
private static final String HOST = "l ocal host";

private static final String PORT = "3306";
private static final String USER = "johndoe";
private static final String PASS = "s3cr3t";

public static void main(String[] args) throws Exception {
Properties props = new Properties();
props. set Property(PropertyKey. aut henti cati onWebAut hnCal | backHandl er . get KeyNane(), Aut henti cati onWebAut
String url = "jdbc:nysqgl://" + USER + ":" + PASS + "@ + HOST + ":" + PORT + "/";
try (Connection conn = Driver Manager . get Connecti on(url, props)) {
Resul t Set rs = conn. creat eSt at enent () . execut eQuer y(" SELECT CURRENT_USER()");

rs.next();
Systemout.println(rs.getString(1l) + " AUTHENTI CATED SUCCESSFULLY!");

}
Compile the code:

$ javac -classpath *:. Authenticati onWebAut hnApp.j ava

Run the code:

$ /usr/lib/jvmjdk-17/bin/java -classpath *:. Authenticati onWebAut hnApp
Pl ease performthe gesture action on your FIDO devi ce.
j ohndoe @6 AUTHENTI CATED SUCCESSFULLY!

6.13 Using Source/Replica Replication with ReplicationConnection

See Section 9.4, “Configuring Source/Replica Replication with Connector/J” for details on the topic.

102

Support for DNS SRV Records

6.14 Support for DNS SRV Records

Connector/J supports the use of DNS SRV records for connections. For information about DNS SRV
support in MySQL, see Connecting to the Server Using DNS SRV Records.

When multiple MySQL instances provide the same service for your applications, DNS SRV records can
be used to provide failover, load balancing, and replication services. They eliminate the need for clients
to identify each possible host in the connection string, or for connections to be handled by an additional
software component. Here is a summary for Connector/J's support for DNS SRV records:

» These new schemas in the connection URLSs enable DNS SRV record support:

e jdbc: nysqgl +srv: For ordinary and basic failover JDBC connections that make use of DNS SRV
records.

e jdbc: nysqgl +srv: | oadbal ance: For load-balancing JDBC connections that make use of DNS
SRV records.

e jdbc: nysql +srv:replication: For replication JDBC connections that make use of DNS SRV
records.

e nmysql x+srv: For X DevAPI connections that make use of DNS SRV records.

» Besides using the new schemas in the connection URLs, DNS SRV record support can be enabled or
disabled using the two new connection properties, dnsSr v and xdevapi . dns- sr v, for JDBC and X
DevAPI connections respectively. For example, this connection URL enables DNS SRV record support:

nmysql x: //j ohndoe: secret @nysql . _t cp. myconpany. | ocal / db?xdevapi . dns-srv=true

However, using the DNS SRV schema with the DNS SRV connection properties set to f al se results in
an error; for example:

nysql x+srv://johndoe: secret @nysql . _tcp. myconpany. | ocal / db?xdevapi . dns-srv=f al se
The connection URL causes Connector/J to throw an error

Here are some requirements and restrictions on the DNS SRV record support by Connector/J:

» Connector/J throws an exception if multiple hosts are specified in the connection URL for a DNS SRV
connection (except for a replication set up, created using j dbc: nysql +srv: repli cati on, which
requires exactly one source and one replica server to be specified).

» Connector/J throws an exception if a port number is specified in the connection URL for a DNS SRV
connection.

» DNS SRV records are supported only for TCP/IP connections. Connector/J throws an exception if you
attempt to enable DNS SRV record support Windows named pipe connections.

DNS SRV Record Support for Load Balancing and Failover. For load-balancing and failover
connections, Connector/J uses the pri ori ty field of the DNS SRV records to decide on the priorities for
connection attempts for hosts.

DNS SRV Record Support for Connection Pooling. In an X DevAPI connection pooling setup,
Connector/J re-queries the DNS SRV records regularly and phases out gracefully any connections whose
hosts no longer appear in the records, and readmits the connections into the pool when their hosts
reappear in the records.

103

https://dev.mysql.com/doc/refman/8.4/en/connecting-using-dns-srv.html

Client Session State Tracker

Looking up DNS SRV Records. Itis the users' responsibility to provide a full service host name;
Connector/J does not append any prefix nor validate the host name structure. The following are examples
of valid service host name patterns:

» foo. domai n. | ocal

e nysqgl. _tcp.foo.domain. | ocal

e nysqgl x. _tcp. foo.donain. | ocal

e readonly. tcp.foo.donuin.|ocal
e readwite. tcp.foo.donnin.local

See Connections Using DNS SRV Records in the X DevAPI User Guide for details.

6.15 Client Session State Tracker

Connector/J can receive information on client session state changes tracked by the server if the tracking
has been enabled on the server. The reception of the information is enabled by setting the Connector/J
connection property t r ackSessi onSt at e to t r ue (default value is f al se for the property).

When the function is enabled, information on session state changes received from the server are stored
inside the Sessi onSt at eChanges object, accessible through a Ser ver Sessi onSt at eControl | er
and its get Sessi onSt at eChanges() method:

Ser ver Sessi onSt at eChanges ssc =
Mysgl Connect i on. get Ser ver Sessi onSt at eControl | er (). get Sessi onSt at eChanges() ;

In Sessi onSt at eChanges is a list of Sessoi nSt at eChange objects, accessible by the
get Sessi onSt at eChangesLi st () method:

Li st <Sessi onSt at eChange> sscLi st = ssc. get Sessi onSt at eChangesLi st () ;

Each Sessi onSt at eChange has the fields t ype and val ues, accessible by the get Type() and
get Val ues() methods. The types and their corresponding values are described below:

Table 6.23 SessionStateChange Type and Values

Type Number of Values in the value |Values
List

SESSI ON_TRACK_SYSTEM VARI ARLES The name of the changed system
variable and its new value

SESSI ON_TRACK _SCHENA 1 The new schema name

SESSI ON_TRACK_STATE_CHANGH1 "1" or "0"

SESSI ON_ TRACK_GTI DS 1 List of GTIDs as reported by
server

SESSI ON_ TRACK_TRANSACTI ON_|GHARACTERI STI CS Transaction characteristics
statement

SESSI ON_TRACK_TRANSACTI ON_|STATE Transaction state record

Connector/J receives changes only from the most recent OK packet sent by the server. With

get Sessi onSt at eChanges(), some changes returned by the intermediate queries issued

by Connector/J could be missed. However, the session state change information can also

be received using a Sessi onSt at eChangesLi st ener, which has to be registered with a

Server Sessi onSt at eCont rol | er using the addSessi onSt at eChangesLi st ener () method.

104

https://dev.mysql.com/doc/x-devapi-userguide/en/
https://dev.mysql.com/doc/refman/8.4/en/session-state-tracking.html

Mapping MySQL Error Numbers to JDBC SQLState Codes

The following example implements Sessi onSt at eChangesLi st ener in a class, which also provides a
method to print the change information:

cl ass SSCLi stener inplenments SessionStateChangesLi stener {
Ser ver Sessi onSt at eChanges changes = nul | ;

public void handl eSessi onSt at eChanges(Ser ver Sessi onSt at eChanges ch) {

}

t hi s. changes = ch;
for (SessionStateChange change : ch. get Sessi onSt at eChangesList()) {
pri nt Change(change);

}

private void printChange(Sessi onSt at eChange change) {
System out . print (change. get Type() + " == > ");
int pos = 0;

}

i f (change. get Type() == Server Sessi onSt at eControl | er. SESSI ON_ TRACK_SYSTEM VARI ABLES) {
/1 There are two values with this change type, the systemvariable nane and its new val ue
System out . pri nt (change. get Val ues(). get (pos++) + "=");

}
System out . pri ntl n(change. get Val ues() . get (pos));

Sessi onSt at eChangesLi stener |istener = new SSCLi st ener ();
Mysql Connect i on. get Ser ver Sessi onSt at eControl | er (). addSessi onSt at eChangesLi st ener (| i st ener);

With a registered Sessi onSt at eChangesLi st ener, users have access to all intermediate results,
though the listener might slow down the delivery of query results. That is because the listener is invoked
immediately after the OK packet is consumed by Connector/J, before the Resul t Set is constructed.

6.16 Mapping MySQL Error Numbers to JDBC SQL State Codes

The table below provides a mapping of the MySQL error numbers to JDBC SQLSt at e values.
Table 6.24 Mapping of MySQL Error Numbers to SQLStates

MySQL MySQL Error Name SQL
Error Standard
Number SQLState
1022 ER_DUP_KEY 23000
1037 ER_OUTOFMEMORY HY001
1038 ER_OUT_OF_SORTMEMORY HYO001
1040 ER_CON_COUNT_ERROR 08004
1042 ER_BAD_HOST_ERROR 08s01
1043 ER_HANDSHAKE_ERROR 08s01
1044 ER_DBACCESS_DENIED_ERROR 42000
1045 ER_ACCESS_DENIED_ERROR 28000
1046 ER_NO_DB_ERROR 3D000
1047 ER_UNKNOWN_COM_ERROR 08s01
1048 ER_BAD_NULL_ERROR 23000
1049 ER_BAD_DB_ERROR 42000
1050 ER_TABLE_EXISTS_ERROR 42501
1051 ER_BAD_TABLE_ERROR 42502
1052 ER_NON_UNIQ_ERROR 23000

105

Mapping MySQL Error Numbers to JDBC SQLState Codes

MySQL MySQL Error Name SQL
Error Standard
Number SQLState
1053 ER_SERVER_SHUTDOWN 08s01
1054 ER_BAD_FIELD_ERROR 42522
1055 ER_WRONG_FIELD_WITH_GROUP 42000
1056 ER_WRONG_GROUP_FIELD 42000
1057 ER_WRONG_SUM_SELECT 42000
1058 ER_WRONG_VALUE_COUNT 21S01
1059 ER_TOO_LONG_IDENT 42000
1060 ER_DUP_FIELDNAME 42521
1061 ER_DUP_KEYNAME 42000
1062 ER_DUP_ENTRY 23000
1063 ER_WRONG_FIELD_SPEC 42000
1064 ER_PARSE_ERROR 42000
1065 ER_EMPTY_QUERY 42000
1066 ER_NONUNIQ_TABLE 42000
1067 ER_INVALID_DEFAULT 42000
1068 ER_MULTIPLE_PRI_KEY 42000
1069 ER_TOO_MANY_KEYS 42000
1070 ER_TOO_MANY_KEY_PARTS 42000
1071 ER_TOO_LONG_KEY 42000
1072 ER_KEY_COLUMN_DOES NOT_EXITS 42000
1073 ER_BLOB_USED_AS KEY 42000
1074 ER_TOO_BIG_FIELDLENGTH 42000
1075 ER_WRONG_AUTO_KEY 42000
1080 ER_FORCING_CLOSE 08s01
1081 ER_IPSOCK_ERROR 08s01
1082 ER_NO_SUCH_INDEX 42512
1083 ER_WRONG_FIELD_TERMINATORS 42000
1084 ER_BLOBS_AND_NO_TERMINATED 42000
1090 ER_CANT_REMOVE_ALL_FIELDS 42000
1091 ER_CANT_DROP_FIELD_OR_KEY 42000
1101 ER_BLOB_CANT_HAVE_DEFAULT 42000
1102 ER_WRONG_DB_NAME 42000
1103 ER_WRONG_TABLE_NAME 42000
1104 ER_TOO_BIG_SELECT 42000
1106 ER_UNKNOWN_PROCEDURE 42000
1107 ER_WRONG_PARAMCOUNT_TO_PROCEDURE 42000

106

Mapping MySQL Error Numbers to JDBC SQLState Codes

MySQL MySQL Error Name SQL
Error Standard
Number SQLState
1109 ER_UNKNOWN_TABLE 42502
1110 ER_FIELD_SPECIFIED_TWICE 42000
1112 ER_UNSUPPORTED_EXTENSION 42000
1113 ER_TABLE_MUST_HAVE_COLUMNS 42000
1115 ER_UNKNOWN_CHARACTER_SET 42000
1118 ER_TOO_BIG_ROWSIZE 42000
1120 ER_WRONG_OUTER_JOIN 42000
1121 ER_NULL_COLUMN_IN_INDEX 42000
1131 ER_PASSWORD_ANONYMOUS_USER 42000
1132 ER_PASSWORD_NOT_ALLOWED 42000
1133 ER_PASSWORD_NO_MATCH 42000
1136 ER_WRONG_VALUE_COUNT_ON_ROW 21S01
1138 ER_INVALID_USE_OF_NULL 22004
1139 ER_REGEXP_ERROR 42000
1140 ER_MIX_OF GROUP_FUNC_AND_FIELDS 42000
1141 ER_NONEXISTING_GRANT 42000
1142 ER_TABLEACCESS_DENIED_ERROR 42000
1143 ER_COLUMNACCESS_DENIED_ERROR 42000
1144 ER_ILLEGAL_GRANT_FOR_TABLE 42000
1145 ER_GRANT_WRONG_HOST_OR_USER 42000
1146 ER_NO_SUCH_TABLE 42502
1147 ER_NONEXISTING_TABLE_GRANT 42000
1148 ER_NOT_ALLOWED_ COMMAND 42000
1149 ER_SYNTAX_ERROR 42000
1152 ER_ABORTING_CONNECTION 08s01
1153 ER_NET_PACKET_TOO_LARGE 08s01
1154 ER_NET_READ ERROR_FROM_PIPE 08s01
1155 ER_NET_FCNTL_ERROR 08s01
1156 ER_NET_PACKETS_OUT_OF_ORDER 08s01
1157 ER_NET_UNCOMPRESS_ERROR 08s01
1158 ER_NET_READ_ERROR 08s01
1159 ER_NET_READ_INTERRUPTED 08s01
1160 ER_NET_ERROR_ON_WRITE 08s01
1161 ER_NET_WRITE_INTERRUPTED 08s01
1162 ER_TOO_LONG_STRING 42000
1163 ER_TABLE_CANT_HANDLE_BLOB 42000

107

Mapping MySQL Error Numbers to JDBC SQLState Codes

MySQL MySQL Error Name SQL
Error Standard
Number SQLState
1164 ER_TABLE_CANT_HANDLE_AUTO_INCREMENT 42000
1166 ER_WRONG_COLUMN_NAME 42000
1167 ER_WRONG_KEY_COLUMN 42000
1169 ER_DUP_UNIQUE 23000
1170 ER_BLOB_KEY_WITHOUT_LENGTH 42000
1171 ER_PRIMARY_CANT_HAVE_NULL 42000
1172 ER_TOO_MANY_ROWS 42000
1173 ER_REQUIRES_PRIMARY_KEY 42000
1176 ER_KEY_DOES_NOT_EXITS 42000
1177 ER_CHECK_NO_SUCH_TABLE 42000
1178 ER_CHECK_NOT_IMPLEMENTED 42000
1179 ER_CANT_DO_THIS_DURING_AN_TRANSACTION 25000
1184 ER_NEW_ABORTING_CONNECTION 08s01
1189 ER_SOURCE_NET_READ 08s01
1190 ER_SOURCE_NET WRITE 08S01
1203 ER_TOO_MANY_USER_CONNECTIONS 42000
1205 ER_LOCK_WAIT_TIMEOUT 40001
1207 ER_READ_ONLY_TRANSACTION 25000
1211 ER_NO_PERMISSION_TO_CREATE_USER 42000
1213 ER_LOCK_DEADLOCK 40001
1216 ER_NO_REFERENCED_ROW 23000
1217 ER_ROW_IS_REFERENCED 23000
1218 ER_CONNECT_TO_SOURCE 08s01
1222 ER_WRONG_NUMBER_OF _COLUMNS_IN_SELECT 21000
1226 ER_USER_LIMIT_REACHED 42000
1227 ER_SPECIFIC_ACCESS_DENIED_ERROR 42000
1230 ER_NO_DEFAULT 42000
1231 ER_WRONG_VALUE_FOR_VAR 42000
1232 ER_WRONG_TYPE_FOR_VAR 42000
1234 ER_CANT_USE_OPTION_HERE 42000
1235 ER_NOT_SUPPORTED_YET 42000
1239 ER_WRONG_FK_DEF 42000
1241 ER_OPERAND_COLUMNS 21000
1242 ER_SUBQUERY_NO_1 ROW 21000
1247 ER_ILLEGAL_REFERENCE 42522
1248 ER_DERIVED_MUST_HAVE_ALIAS 42000

108

Mapping MySQL Error Numbers to JDBC SQLState Codes

MySQL MySQL Error Name SQL
Error Standard
Number SQLState
1249 ER_SELECT_REDUCED 01000
1250 ER_TABLENAME_NOT_ALLOWED_HERE 42000
1251 ER_NOT_SUPPORTED_AUTH_MODE 08004
1252 ER_SPATIAL_CANT_HAVE_NULL 42000
1253 ER_COLLATION_CHARSET_MISMATCH 42000
1261 ER_WARN_TOO_FEW_RECORDS 01000
1262 ER_WARN_TOO_MANY_RECORDS 01000
1263 ER_WARN_NULL_TO_NOTNULL 22004
1264 ER_WARN_DATA_OUT_OF_RANGE 22003
1265 ER_WARN_DATA_TRUNCATED 01000
1280 ER_WRONG_NAME_FOR_INDEX 42000
1281 ER_WRONG_NAME_FOR_CATALOG 42000
1286 ER_UNKNOWN_STORAGE_ENGINE 42000
1292 ER_TRUNCATED_WRONG_VALUE 22007
1303 ER_SP_NO_RECURSIVE_CREATE 2F003
1304 ER_SP_ALREADY_EXISTS 42000
1305 ER_SP_DOES_NOT_EXIST 42000
1308 ER_SP_LILABEL_MISMATCH 42000
1309 ER_SP_LABEL_REDEFINE 42000
1310 ER_SP_LABEL_MISMATCH 42000
1311 ER_SP_UNINIT_VAR 01000
1312 ER_SP_BADSELECT 0A000
1313 ER_SP_BADRETURN 42000
1314 ER_SP_BADSTATEMENT 0A000
1315 ER_UPDATE_LOG_DEPRECATED_IGNORED 42000
1316 ER_UPDATE_LOG_DEPRECATED_TRANSLATED 42000
1317 ER_QUERY_INTERRUPTED 70100
1318 ER_SP_WRONG_NO_OF_ARGS 42000
1319 ER_SP_COND_MISMATCH 42000
1320 ER_SP_NORETURN 42000
1321 ER_SP_NORETURNEND 2F005
1322 ER_SP_BAD_CURSOR_QUERY 42000
1323 ER_SP_BAD_CURSOR_SELECT 42000
1324 ER_SP_CURSOR_MISMATCH 42000
1325 ER_SP_CURSOR_ALREADY_OPEN 24000
1326 ER_SP_CURSOR_NOT_OPEN 24000

109

Mapping MySQL Error Numbers to JDBC SQLState Codes

MySQL MySQL Error Name SQL
Error Standard
Number SQLState
1327 ER_SP_UNDECLARED_VAR 42000
1329 ER_SP_FETCH_NO_DATA 02000
1330 ER_SP_DUP_PARAM 42000
1331 ER_SP_DUP_VAR 42000
1332 ER_SP_DUP_COND 42000
1333 ER_SP_DUP_CURS 42000
1335 ER_SP_SUBSELECT_NYI 0A000
1336 ER_STMT_NOT_ALLOWED_IN_SF OR_TRG 0A000
1337 ER_SP_VARCOND_AFTER_CURSHNDLR 42000
1338 ER_SP_CURSOR_AFTER_HANDLER 42000
1339 ER_SP_CASE_NOT_FOUND 20000
1365 ER_DIVISION_BY_ZERO 22012
1367 ER_ILLEGAL_VALUE_FOR_TYPE 22007
1370 ER_PROCACCESS_DENIED_ERROR 42000
1397 ER_XAER_NOTA XAEO4
1398 ER_XAER_INVAL XAEOQ5
1399 ER_XAER_RMFAIL XAEQ7
1400 ER_XAER_OUTSIDE XAEQ09
1401 ER_XA RMERR XAEO3
1402 ER_XA_ RBROLLBACK XA100
1403 ER_NONEXISTING_PROC_GRANT 42000
1406 ER_DATA_TOO_LONG 22001
1407 ER_SP_BAD_SQLSTATE 42000
1410 ER_CANT_CREATE_USER_WITH_GRANT 42000
1413 ER_SP_DUP_HANDLER 42000
1414 ER_SP_NOT_VAR_ARG 42000
1415 ER_SP_NO_RETSET 0A000
1416 ER_CANT_CREATE_GEOMETRY_OBJECT 22003
1425 ER_TOO_BIG_SCALE 42000
1426 ER_TOO_BIG_PRECISION 42000
1427 ER_M_BIGGER_THAN_D 42000
1437 ER_TOO_LONG_BODY 42000
1439 ER_TOO_BIG_DISPLAYWIDTH 42000
1440 ER_XAER_DUPID XAEO08
1441 ER_DATETIME_FUNCTION_OVERFLOW 22008
1451 ER_ROW_IS REFERENCED_2 23000

110

Mapping MySQL Error Numbers to JDBC SQLState Codes

MySQL MySQL Error Name SQL
Error Standard
Number SQLState
1452 ER_NO_REFERENCED_ROW_2 23000
1453 ER_SP_BAD_VAR_SHADOW 42000
1458 ER_SP_WRONG_NAME 42000
1460 ER_SP_NO_AGGREGATE 42000
1461 ER_MAX_PREPARED_STMT_COUNT_REACHED 42000
1463 ER_NON_GROUPING_FIELD_USED 42000
1557 ER_FOREIGN_DUPLICATE_KEY 23000
1568 ER_CANT_CHANGE_TX_ISOLATION 25001
1582 ER_WRONG_PARAMCOUNT_TO_NATIVE_FCT 42000
1583 ER_WRONG_PARAMETERS_TO_NATIVE_FCT 42000
1584 ER_WRONG_PARAMETERS_TO_STORED_FCT 42000
1586 ER_DUP_ENTRY_WITH_KEY_NAME 23000
1613 ER_XA_RBTIMEOUT XA106
1614 ER_XA_RBDEADLOCK XA102
1630 ER_FUNC_INEXISTENT_NAME_COLLISION 42000
1641 ER_DUP_SIGNAL_SET 42000
1642 ER_SIGNAL_WARN 01000
1643 ER_SIGNAL_NOT_FOUND 02000
1645 ER_RESIGNAL _WITHOUT_ACTIVE_HANDLER 0K000
1687 ER_SPATIAL_MUST_HAVE_GEOM_COL 42000
1690 ER_DATA_OUT_OF_RANGE 22003
1698 ER_ACCESS_DENIED_NO_PASSWORD_ERROR 28000
1701 ER_TRUNCATE_ILLEGAL FK 42000
1758 ER_DA_INVALID_CONDITION_NUMBER 35000
1761 ER_FOREIGN_DUPLICATE_KEY_WITH_CHILD_INFO 23000
1762 ER_FOREIGN_DUPLICATE_KEY_WITHOUT_CHILD_INFO 23000
1792 ER_CANT_EXECUTE_IN_READ_ONLY_TRANSACTION 25006
1845 ER_ALTER_OPERATION_NOT_SUPPORTED 0A000
1846 ER_ALTER_OPERATION_NOT_SUPPORTED_REASON 0A000
1859 ER_DUP_UNKNOWN_IN_INDEX 23000
1873 ER_ACCESS DENIED_CHANGE_USER_ERROR 28000
1887 ER_GET_STACKED_DA_WITHOUT_ACTIVE_HANDLER 0z002
1903 ER_INVALID_ARGUMENT_FOR_LOGARITHM 2201E

111

112

Chapter 7 JDBC Concepts

Table of Contents

7.1 Connecting to MySQL Using the JDBC Dr i ver Manager Interfaceooooiiiiiiiiiiniiiiiiineecinnn. 113
7.2 Using JDBC St at emrent ODbjects t0 EXECULE SQL ...uuuiiiiiiieiiii e 114
7.3 Using JDBC Cal | abl eSt at enent s to Execute Stored Procedurescooevveieiiniiiiiiiiiineeines 116
7.4 Retrieving AUTO_| NCREVENT Column Values through JDBCccocuiiiiiiiiiiieeii e 118

This section provides some general JDBC background.

7.1 Connecting to MySQL Using the JDBC Dr i ver Manager Interface

When you are using JDBC outside of an application server, the Dri ver Manager class manages the
establishment of connections.

Specify to the Dr i ver Manager which JDBC drivers to try to make Connections with. The easiest way to
do this is to use Cl ass. f or Nanme() on the class that implements the j ava. sql . Dri ver interface. With
MySQL Connector/J, the name of this class is com nysql . cj . j dbc. Dri ver . With this method, you
could use an external configuration file to supply the driver class hame and driver parameters to use when
connecting to a database.

The following section of Java code shows how you might register MySQL Connector/J from the nai n()
method of your application. If testing this code, first read the installation section at Chapter 4, Connector/J
Installation, to make sure you have connector installed correctly and the CLASSPATH set up. Also, ensure
that MySQL is configured to accept external TCP/IP connections.

i nport java. sql. Connecti on;
i mport java.sql.DriverManager;
i mport java. sql.SQ.Excepti on;

/1 Notice, do not inport comnysql.cj.jdbc.*
/1 or you will have probl ens!

public class LoadDriver {
public static void main(String[] args) {

try {
// The newi nstance() call is a work around for sone

/1 broken Java i npl enent ati ons

Cl ass. for Nanme("com nysql . cj.jdbc. Driver").new nstance();
} catch (Exception ex) {

/1 handl e the error
}

}

After the driver has been registered with the Dr i ver Manager , you can obtain a Connect i on instance
that is connected to a particular database by calling Dr i ver Manager . get Connection():

Example 7.1 Connector/J: Obtaining a connection from the Dri ver Manager

If you have not already done so, please review the portion of Section 7.1, “Connecting to MySQL Using the
JDBC Dri ver Manager Interface” above before working with the example below.

113

Using JDBC St at enent Objects to Execute SQL

This example shows how you can obtain a Connect i on instance from the Dri ver Manager . There are
a few different signatures for the get Connecti on() method. Consult the APl documentation that comes
with your JDK for more specific information on how to use them.

i nport java. sql . Connecti on;
i mport java.sql.DriverManager;
i mport java. sql.SQ.Excepti on;

Connection conn = null;

try {
conn =
Dri ver Manager . get Connect i on("j dbc: nysql ://| ocal host/test?" +
"user =m nt y&asswor d=gr eat sql db") ;

/1 Do sonething with the Connection

} catch (SQLException ex) {
/1 handl e any errors
System out. printl n("SQ.Exception: " + ex.getMessage());
Systemout.println("SQState: " + ex.getSQState());
System out. println("VendorError: " + ex.getErrorCode());
}

Once a Connect i on is established, it can be used to create St at enment and Pr epar edSt at enent
objects, as well as retrieve metadata about the database. This is explained in the following sections.

When the user for the connection is unspecified, Connector/J's implementations of the authentication
plugins use by default the name of the OS user who runs the application for authentication with the MySQL
server (except when the Kerberos authentication plugin is being used; see Section 6.12.2, “Connecting
Using Kerberos” for details).

Note

A user name is considered unspecified only when the following conditions are alll
met:

1. The method Dri ver Manager . get Connection(String url, String
user, String password) is notused.

2. The connection property user is not used in, for example, the connection
URL,or elsewhere.

3. The user is not mentioned in the authority of the connection URL, as
injdbc: mysql ://1ocal host:3306/test,or jdbc:nysql://
@ ocal host: 3306/ t est.

Notice if (1) or (2) is not true and an empty string is passed, the user name is an
empty string then, and is not considered unspecified.

7.2 Using JDBC St at enent Objects to Execute SQL

St at ement objects allow you to execute basic SQL queries and retrieve the results through the
Resul t Set class, which is described later.

To create a St at enent instance, you call the cr eat eSt at enent () method on the
Connect i on object you have retrieved using one of the Dri ver Manager . get Connecti on() or
Dat aSour ce. get Connecti on() methods described earlier.

114

Using JDBC St at enent Objects to Execute SQL

Once you have a St at enent instance, you can execute a SELECT query by calling the
execut eQuery(String) method with the SQL you want to use.

To update data in the database, use the execut eUpdat e(Stri ng SQ.) method. This method returns
the number of rows matched by the update statement, not the number of rows that were modified.

If you do not know ahead of time whether the SQL statement will be a SELECT or an UPDATE/lI NSERT,
then you can use the execut e(String SQ.) method. This method will return true if the SQL query
was a SELECT, or false if it was an UPDATE, | NSERT, or DELETE statement. If the statement was a
SELECT query, you can retrieve the results by calling the get Resul t Set () method. If the statement
was an UPDATE, | NSERT, or DELETE statement, you can retrieve the affected rows count by calling
get Updat eCount () onthe St at enent instance.

Example 7.2 Connector/J: Using java.sql.Statement to execute a SELECT query

i mport java.sql.Connecti on;

i mport java.sql.DriverManager;
i mport java.sql.SQLException;
import java.sql.Statenment;
import java.sql.ResultSet;

/] assune that conn is an already created JDBC connection (see previous exanpl es)

Statenent stnt = null;
ResultSet rs = null;

try {
stnt = conn. createStatenent();

rs = stnt.executeQuery("SELECT foo FROM bar");

I/l or alternatively, if you don't know ahead of tine that
/'l the query will be a SELECT...

if (stnt.execute("SELECT foo FROM bar")) {
rs = stnt.getResultSet();

}

/1 Now do sonething with the ResultSet
}
catch (SQLException ex){
/'l handl e any errors
System out . printl n("SQLException: " + ex.getMessage());
Systemout.println("SQLState: " + ex.getSQL.State());
System out . println("VendorError: " + ex.getErrorCode());
}
finally {
/Il it is a good idea to rel ease
Il resources in a finally{} block
/1 in reverse-order of their creation
/1 if they are no-|onger needed

if (rs!=null) {

try {
rs.close();

} catch (SQLException sqlEx) { } // ignore
rs = null;

if (stnmt !'=null) {

try {
stnt.cl ose();

} catch (SQLException sqlEx) { } // ignore

stmt = null;

115

https://dev.mysql.com/doc/refman/8.4/en/select.html
https://dev.mysql.com/doc/refman/8.4/en/select.html
https://dev.mysql.com/doc/refman/8.4/en/update.html
https://dev.mysql.com/doc/refman/8.4/en/insert.html
https://dev.mysql.com/doc/refman/8.4/en/select.html
https://dev.mysql.com/doc/refman/8.4/en/update.html
https://dev.mysql.com/doc/refman/8.4/en/insert.html
https://dev.mysql.com/doc/refman/8.4/en/delete.html
https://dev.mysql.com/doc/refman/8.4/en/select.html
https://dev.mysql.com/doc/refman/8.4/en/update.html
https://dev.mysql.com/doc/refman/8.4/en/insert.html
https://dev.mysql.com/doc/refman/8.4/en/delete.html

Using JDBC Cal | abl eSt at enent s to Execute Stored Procedures

}

7.3 Using JDBC Cal | abl eSt at enent s to Execute Stored
Procedures

Connector/J fully implements the j ava. sql . Cal | abl eSt at enent interface.
For more information on MySQL stored procedures, please refer to Using Stored Routines.
Connector/J exposes stored procedure functionality through JDBC's Cal | abl eSt at enent interface.

The following example shows a stored procedure that returns the value of i nQut Par amincremented by 1,
and the string passed in using i nput Par amas a Resul t Set :

Example 7.3 Connector/J: Calling Stored Procedures

CREATE PROCEDURE denoSp(| N i nput Par am VARCHAR(255), \
I NOUT i nQut Par am | NT)
BEG N
DECLARE z | NT;
SET z = i nCQut Param + 1;
SET i nQut Param = z;

SELECT i nput Par am

SELECT CONCAT(' zyxw , i nput Paran);
END

To use the denpSp procedure with Connector/J, follow these steps:
1. Prepare the callable statement by using Connect i on. prepareCal | ().

Notice that you have to use JDBC escape syntax, and that the parentheses surrounding the parameter
placeholders are not optional:

Example 7.4 Connector/J: Using Connecti on. prepareCal | ()

i nport java.sql.Call abl eSt at enent ;

/1l

/] Prepare a call to the stored procedure 'denpSp'
// with two paraneters

/1l

/1 Notice the use of JDBC- escape syntax ({call ...})
/1l

Cal | abl eStatement cStnmt = conn. prepareCal | ("{cal |l demoSp(?, ?)}");

cStnt.setString(l, "abcdefg");
Note

Connecti on. prepareCal | () is an expensive method, due to the metadata
retrieval that the driver performs to support output parameters. For performance
reasons, minimize unnecessary calls to Connect i on. prepareCal | () by
reusing Cal | abl eSt at enent instances in your code.

116

https://dev.mysql.com/doc/refman/8.4/en/stored-routines.html

Using JDBC Cal | abl eSt at enent s to Execute Stored Procedures

2. Register the output parameters (if any exist)

To retrieve the values of output parameters (parameters specified as OUT or | NOUT when you created

the stored procedure), JDBC requires that they be specified before statement execution using the
various r egi st er Qut put Par anet er () methods in the Cal | abl eSt at enent interface:

Example 7.5 Connector/J: Registering output parameters

i mport java.sql. Types;

Connector/J supports both naned and i ndexed
out put paranmeters. You can register output

paraneters using either nethod, as well

as retrieve output paraneters using either

met hod, regardl ess of what nethod was

used to register them

The fol | owi ng exanpl es show how to use
the various nethods of registering

out put paranmeters (you should of course
use only one registration per paraneter).

Regi sters the second paraneter as output, and
uses the type 'I NTEGER for values returned from
get Obj ect ()

cStnt.registerQutParaneter(2, Types.|NTEGER);

/1
/1
/1
/1
/1

cStnt. regi sterQutParaneter("inQutParant,

Regi sters the nanmed paraneter 'inQutParam, and
uses the type 'I NTEGER for values returned from
get Obj ect ()

3. Set the input parameters (if any exist)

Input and in/out parameters are set as for Pr epar edSt at enent objects. However,
Cal | abl eSt at enent also supports setting parameters by name:

Example 7.6 Connector/J: Setting Cal | abl eSt at enment input parameters

/1
[/l Set a paraneter by index
/1

cStnt.setString(1, "abcdefg");

/1

I/l Aternatively, set a paraneter using
/'l the paraneter nane

/1

cStnt.setString("inputParant, "abcdefg");

/1
Set the '"inle
t -Rl-o

Types. | NTEGER) ;

—1—oFtt 1A>2

117

Retrieving AUTO | NCREMENT Column Values through JDBC

/1
cStnt.setInt(2, 1);

/1

// Alternatively, set the '"in/out' paraneter
/] by nane

/1

cStnt.setlnt("inQutParant, 1);

4. Execute the Cal | abl eSt at enent, and retrieve any result sets or output parameters.

Although Cal | abl eSt at enent supports calling any of the St at enent execute methods
(execut eUpdat e(), execut eQuery() orexecut e()), the most flexible method to call is
execut e(), as you do not need to know ahead of time if the stored procedure returns result sets:

Example 7.7 Connector/J: Retrieving results and output parameter values

bool ean hadResults = cStnt.execute();

I/
/Il Process all returned result sets
I/

whi | e (hadResults) {
ResultSet rs = cStnt.getResultSet();

/] process result set

hadResults = cStnt.get MoreResul ts();
}

/1

/'l Retrieve output paraneters

/1

/'l Connector/J supports both index-based and
/] nane-based retrieval

/1

int outputValue = cStnt.getlnt(2); // index-based

out putValue = cStnt.getlInt("inQutParant); // nane-based

7.4 Retrieving AUTO | NCREMENT Column Values through JDBC

get Gener at edKeys() is the preferred method to use if you need to retrieve AUTO_| NCREMENT keys
and through JDBC; this is illustrated in the first example below. The second example shows how you

can retrieve the same value using a standard SELECT LAST_| NSERT_I D() query. The final example
shows how updatable result sets can retrieve the AUTO_| NCREMENT value when using the i nsert Row()
method.

Example 7.8 Connector/J: Retrieving AUTO | NCREMENT column values using
St at enent . get Gener at edKeys()

Statenent stnt = null;
ResultSet rs = null;

118

Retrieving AUTO | NCREMENT Column Values through JDBC

try {

/1

/]l Create a Statenment instance that we can use for
/1 '"normal' result sets assumi ng you have a

/'l Connection 'conn' to a MySQL dat abase al r eady
/] avail abl e

stnmt = conn.createStatenent();

/1
/'l 1ssue the DDL queries for the table for this exanple
/1

st nt . execut eUpdat e(" DROP TABLE | F EXI STS autol ncTutorial ");
st nt . execut eUpdat e(

" CREATE TABLE aut ol ncTutorial ("

+ "priKey INT NOT NULL AUTO_| NCREMENT,

+ "dataFi el d VARCHAR(64), PRI MARY KEY (priKey))");

/1

/'l Insert one row that will generate an AUTO | NCREMENT
/1 key in the 'priKey' field

/1

st nt . execut eUpdat e(
"I NSERT | NTO aut ol ncTutori al (dataFi el d)
+ "values ("Can | Get the Auto Increnent Field?)",
St at ement . RETURN_GENERATED_KEYS) ;

/1
/| Exanpl e of using Statenment.get Gener at edKeys()
/Il to retrieve the value of an auto-increnent

/] val ue
/1
i nt autol nckeyFromApi = -1;

rs = stnt.get Gener at edKeys();

if (rs.next()) {
aut ol ncKeyFromApi = rs.getlnt(1);
} else {

/1 throw an exception from here

}

System out . println("Key returned from get Gener at edKeys(): "
+ aut ol ncKeyFr omApi) ;

nally {
if (rs!=null) {
try {
rs.close();
} catch (SQLException ex) {
/'l ignore
}
}
if (stnt !'=null) {
try {
stnt.cl ose();
} catch (SQLException ex) {
/'l ignore
}
}

119

Retrieving AUTO | NCREMENT Column Values through JDBC

}

Example 7.9 Connector/J: Retrieving AUTO | NCREMENT column values using SELECT
LAST_| NSERT_| IX()

Statenent stnt = null;
ResultSet rs = null;

try {

/1
/|l Create a Statenent instance that we can use for
/1l "normal' result sets.

stnt = conn.createStatenent();

/1
/1 1ssue the DDL queries for the table for this exanple
/1

st nt . execut eUpdat e(" DROP TABLE | F EXI STS aut ol ncTutorial ");
st nt . execut eUpdat e(

" CREATE TABLE autol ncTutorial ("

+ "priKey INT NOT NULL AUTO_| NCREMENT,

+ "dat aFi el d VARCHAR(64), PRI MARY KEY (priKey))");

/1

/'l Insert one row that will generate an AUTO | NCREMENT
/1 key in the 'priKey' field

/1

st nt . execut eUpdat e(
"I NSERT | NTO aut ol ncTut ori al (dataFi el d)
+ "values ("Can | Get the Auto Increnent Field?)");

/1

/1l Use the MySQL LAST_I NSERT_I ()

/'l function to do the same thing as get Gener at edKeys()
/1

i nt autol nckeyFronfunc = -1;
rs = stnt.executeQuery("SELECT LAST_INSERT_ID()");

if (rs.next()) {

aut ol ncKeyFronfFunc = rs.getlnt(1);
} else {

/1 throw an exception from here

}

Systemout. println("Key returned from" +
"' SELECT LAST_INSERT_ID()': " +
aut ol ncKeyFr onfunc) ;

} finally {
if (rs!=null) {
try {
rs.close();
} catch (SQLException ex) {
/'l ignore
}
}
if (stnt !'=null) {
try {

stnt.cl ose();
} catch (SQLException ex) {

120

Retrieving AUTO | NCREMENT Column Values through JDBC

/'l ignore

Example 7.10 Connector/J: Retrieving AUTO_| NCREMENT column values in Updat abl e Resul t Set's

Statenent stnt = null;
ResultSet rs = null;

try {

/1

/] Create a Statenent instance that we can use for
/1 '"normal' result sets as well as an 'updatabl e’
/'l one, assuming you have a Connection 'conn' to
/'l a MySQL dat abase al ready avail abl e

/1

stnt = conn. createSt at ement (j ava. sql . Resul t Set . TYPE_FORWARD_ONLY,
j ava. sqgl . Resul t Set . CONCUR_UPDATABLE) ;

/1
/1 1ssue the DDL queries for the table for this exanple
/1

st nt . execut eUpdat e(" DROP TABLE | F EXI STS aut ol ncTutorial ");
st nt . execut eUpdat e(

" CREATE TABLE aut ol ncTutorial ("

+ "priKey INT NOT NULL AUTO_| NCREMENT,

+ "dat aFi el d VARCHAR(64), PRI MARY KEY (priKey))");

/1

/] Exanple of retrieving an AUTO | NCREMENT key
/1 from an updatable result set

/1

rs = stnt.executeQuery("SELECT pri Key, dataField "
+ "FROM aut ol ncTutorial ");

rs. moveTol nsert Row() ;

rs.updateString("dataFi el d, "AUTO | NCREMENT here?");
rs.insertRow();

/1

// the driver adds rows at the end

/1

rs.last();

/1

/1l W shoul d now be on the row we just inserted
/1

i nt autol nckeyFronRS = rs.getlnt("priKey");

Systemout. println("Key returned for inserted row
+ aut ol ncKeyFr onRS) ;

} finally {
if (rs!=null) {
try {
rs.close();
} catch (SQLException ex) {
/'l ignore

121

Retrieving AUTO | NCREMENT Column Values through JDBC

}

if (stnt !'=null) {

try {
stnt.cl ose();

} catch (SQLException ex) {
/'l ignore

}
}
Running the preceding example code should produce the following output:

Key returned from get Generat edKeys(): 1
Key returned from SELECT LAST_INSERT_ID(): 1
Key returned for inserted row 1

At times, it can be tricky to use the SELECT LAST_| NSERT_I D() query, as that function's value is scoped
to a connection. So, if some other query happens on the same connection, the value is overwritten. On the
other hand, the get Gener at edKeys() method is scoped by the St at enent instance, so it can be used
even if other queries happen on the same connection, but not on the same St at enent instance.

122

Chapter 8 Connection Pooling with Connector/J

Connection pooling is a technique of creating and managing a pool of connections that are ready for use
by any thread that needs them. Connection pooling can greatly increase the performance of your Java
application, while reducing overall resource usage.

How Connection Pooling Works

Most applications only need a thread to have access to a JDBC connection when they are actively
processing a transaction, which often takes only milliseconds to complete. When not processing a
transaction, the connection sits idle. Connection pooling enables the idle connection to be used by some
other thread to do useful work.

In practice, when a thread needs to do work against a MySQL or other database with JDBC, it requests a
connection from the pool. When the thread is finished using the connection, it returns it to the pool, so that
it can be used by any other threads.

When the connection is loaned out from the pool, it is used exclusively by the thread that

requested it. From a programming point of view, it is the same as if your thread called

Dri ver Manager . get Connecti on() every time it needed a JDBC connection. With connection pooling,
your thread may end up using either a new connection or an already-existing connection.

Benefits of Connection Pooling
The main benefits to connection pooling are:
» Reduced connection creation time.

Although this is not usually an issue with the quick connection setup that MySQL offers compared to
other databases, creating new JDBC connections still incurs networking and JDBC driver overhead that
will be avoided if connections are recycled.

» Simplified programming model.

When using connection pooling, each individual thread can act as though it has created its own JDBC
connection, allowing you to use straightforward JDBC programming techniques.

» Controlled resource usage.

If you create a new connection every time a thread needs one rather than using connection pooling,
your application's resource usage can be wasteful, and it could lead to unpredictable behaviors for your
application when it is under a heavy load.

Using Connection Pooling with Connector/J

The concept of connection pooling in JDBC has been standardized through the JDBC 2.0 Optional
interfaces, and all major application servers have implementations of these APIs that work with MySQL
Connector/J.

Generally, you configure a connection pool in your application server configuration files, and access it
through the Java Naming and Directory Interface (JNDI). The following code shows how you might use a
connection pool from an application deployed in a J2EE application server:

Example 8.1 Connector/J: Using a connection pool with a J2EE application server
i mport java. sql. Connecti on;

i nport java. sql.SQ.Excepti on;
import java.sql. Statenent;

123

https://dev.mysql.com/doc/refman/8.4/en/glossary.html#glos_thread
https://dev.mysql.com/doc/refman/8.4/en/glossary.html#glos_transaction

Using Connection Pooling with Connector/J

i mport javax.nam ng. | nitial Context;
i mport javax. sql . Dat aSour ce;
public class MyServl etJspOE b {

public void doSonething() throws Exception {
/*

*

Create a JNDI Initial context to be able to

* | ookup the DataSource

*

* In production-|level code, this should be cached as

* an instance or static variable, as it can

* be quite expensive to create a JNDI context.

*

* Note: This code only works when you are using servlets
* or EJBs in a J2EE application server. If you are

* using connection pooling in standal one Java code, you
* will have to create/configure datasources using whatever
* mechani sns your particul ar connection pooling library
* provides.

*

/
Initial Context ctx = new Initial Context();

/*

* Lookup the DataSource, which will be backed by a pool

* that the application server provides. DataSource instances
* are al so a good candi date for caching as an instance

* variable, as JNDI | ookups can be expensive as well.

*/

Dat aSource ds =
(Dat aSour ce) ct x. | ookup("j ava: conp/ env/ j dbc/ MySQLDB") ;

/*

* The followi ng code is what woul d actually be in your
* Servlet, JSP or EJB 'service' nethod...where you need
* to work with a JDBC connecti on.

*/

Connection conn = null;
Statenent stnt = null;

try {
conn = ds. get Connection();

/
Now, use normal JDBC progranming to work with
MySQL, nmaking sure to cl ose each resource when you're
finished with it, which permits the connecti on pool
resources to be recovered as quickly as possible

/

E R

stnt = conn.createStatenent();
stnt. execut e(" SOVE SQL QUERY");

stnt.cl ose();
stnt = null;

conn. cl ose();
conn = null;
} finally {
/*
* close any jdbc instances here that weren't
* explicitly closed during normal code path, so

124

Sizing the Connection Pool

* that we don't 'leak' resources..
&

if (stnt !'=null) {
try {
stnt. cl ose()
} catch (sql exception sqgl ex) {
/'l ignore, as we can't do anything about it here

}
stmt = null
}
if (conn !'=null) {
try {
conn. cl ose()
} catch (sql exception sqglex) {
/'l ignore, as we can't do anything about it here
}
conn = nul |
}

}

As shown in the example above, after obtaining the JNDI | ni ti al Cont ext , and looking up the
Dat aSour ce, the rest of the code follows familiar JDBC conventions.

When using connection pooling, always make sure that connections, and anything created by them

(such as statements or result sets) are closed. This rule applies no matter what happens in your code
(exceptions, flow-of-control, and so forth). When these objects are closed, they can be re-used; otherwise,
they will be stranded, which means that the MySQL server resources they represent (such as buffers,
locks, or sockets) are tied up for some time, or in the worst case can be tied up forever.

Sizing the Connection Pool

Each connection to MySQL has overhead (memory, CPU, context switches, and so forth) on both the client
and server side. Every connection limits how many resources there are available to your application as
well as the MySQL server. Many of these resources will be used whether or not the connection is actually
doing any useful work! Connection pools can be tuned to maximize performance, while keeping resource
utilization below the point where your application will start to fail rather than just run slower.

The optimal size for the connection pool depends on anticipated load and average database transaction
time. In practice, the optimal connection pool size can be smaller than you might expect. If you take
Oracle's Java Petstore blueprint application for example, a connection pool of 15-20 connections can serve
a relatively moderate load (600 concurrent users) using MySQL and Tomcat with acceptable response
times.

To correctly size a connection pool for your application, create load test scripts with tools such as Apache
JMeter or The Grinder, and load test your application.

An easy way to determine a starting point is to configure your connection pool's maximum number of
connections to be unbounded, run a load test, and measure the largest amount of concurrently used
connections. You can then work backward from there to determine what values of minimum and maximum
pooled connections give the best performance for your particular application.

Validating Connections

MySQL Connector/J can validate the connection by executing a lightweight ping against a server. In the
case of load-balanced connections, this is performed against all active pooled internal connections that are

125

Validating Connections

retained. This is beneficial to Java applications using connection pools, as the pool can use this feature to
validate connections. Depending on your connection pool and configuration, this validation can be carried
out at different times:

1. Before the pool returns a connection to the application.
2. When the application returns a connection to the pool.
3. During periodic checks of idle connections.

To use this feature, specify a validation query in your connection pool that starts with / * pi ng

*/ . Note that the syntax must be exactly as specified. This will cause the driver send a ping to the
server and return a dummy lightweight result set. When using a Repl i cat i onConnect i on or
LoadBal ancedConnect i on, the ping will be sent across all active connections.

It is critical that the syntax be specified correctly. The syntax needs to be exact for reasons of efficiency, as
this test is done for every statement that is executed:

protected static final String PING MARKER = "/* ping */";

it (sql.charAt(0) == '/') {
if (sqgl.startsWth(PlI NG MARKER)) {
doPi ngl nst ead() ;

None of the following snippets will work, because the ping syntax is sensitive to whitespace, capitalization,
and placement:

sgql = "/* PING */ SELECT 1";

sql = "SELECT 1 /* ping*/";

sql = "/*ping*/ SELECT 1";

sql =" /* ping */ SELECT 1";

sql = "/*to ping or not to ping*/ SELECT 1";

All of the previous statements will issue a normal SELECT statement and will not be transformed into
the lightweight ping. Further, for load-balanced connections, the statement will be executed against one
connection in the internal pool, rather than validating each underlying physical connection. This results
in the non-active physical connections assuming a stale state, and they may die. If Connector/J then re-
balances, it might select a dead connection, resulting in an exception being passed to the application.
To help prevent this, you can use | oadBal anceVal i dat eConnecti onOnSwapSer ver to validate the
connection before use.

If your Connector/J deployment uses a connection pool that allows you to specify a validation query, take
advantage of it, but ensure that the query starts exactly with / * pi ng */. This is particularly important
if you are using the load-balancing or replication-aware features of Connector/J, as it will help keep alive
connections which otherwise will go stale and die, causing problems later.

126

Chapter 9 Multi-Host Connections

Table of Contents

9.1 Configuring Server Failover for Connections UsSing JDBCccocuiiiiiiiiiiiiiiiiiecci e 127
9.2 Configuring Server Failover for Connections Using X DEVAPIcoovviiiiiiiiiiiceie e 130
9.3 Configuring Load Balancing with CONNECIOI Tocivuuiiiiiiii e 131
9.4 Configuring Source/Replica Replication with CONNECIOIoevuiiiiiiiii e 133
9.5 Advanced Load-balancing and Failover Configurationccoiiiiiiiiniiiiii e 137

The following sections discuss a number of topics that involve multi-host connections, namely, server load-
balancing, failover, and replication.

Developers should know the following things about multi-host connections that are managed through
Connector/J:

» Each multi-host connection is a wrapper of the underlying physical connections.

» Each of the underlying physical connections has its own session. Sessions cannot be tracked, shared, or
copied, given the MySQL architecture.

» Every switch between physical connections means a switch between sessions.

» Within a transaction boundary, there are no switches between physical connections. Beyond a
transaction boundary, there is no guarantee that a switch does not occur.

Note

If an application reuses session-scope data (for example, variables, SSPs)
beyond a transaction boundary, failures are possible, as a switch between the
physical connections (which is also a switch between sessions) might occur.
Therefore, the application should re-prepare the session data and also restart the
last transaction in case of an exception, or it should re-prepare session data for
each new transaction if it does not want to deal with exception handling.

9.1 Configuring Server Failover for Connections Using JDBC

MySQL Connector/J supports server failover. A failover happens when connection-related errors occur for
an underlying, active connection. The connection errors are, by default, propagated to the client, which
has to handle them by, for example, recreating the working objects (St at enent , Resul t Set , etc.) and
restarting the processes. Sometimes, the driver might eventually fall back to the original host automatically
before the client application continues to run, in which case the host switch is transparent and the client
application will not even notice it.

A connection using failover support works just like a standard connection: the client does not experience
any disruptions in the failover process. This means the client can rely on the same connection instance
even if two successive statements might be executed on two different physical hosts. However, this does
not mean the client does not have to deal with the exception that triggered the server switch.

The failover is configured at the initial setup stage of the server connection by the connection URL (see
explanations for its format here):

127

Configuring Connection Access Mode

jdbc:nysql ://[primary host][:port],[secondary host 1][:port][,[secondary host 2][:port]]...[/[database]]»
[?pr oper t yNanel=propertyVal uel[&r opert yNane2=propertyVal ue?]...]

The host list in the connection URL comprises of two types of hosts, the primary and the secondary. When
starting a new connection, the driver always tries to connect to the primary host first and, if required, fails
over to the secondary hosts on the list sequentially when communication problems are experienced. Even
if the initial connection to the primary host fails and the driver gets connected to a secondary host, the
primary host never loses its special status: for example, it can be configured with an access mode distinct
from those of the secondary hosts, and it can be put on a higher priority when a host is to be picked during
a failover process.

The failover support is configured by the following connection properties (their functions are explained in
the paragraphs below):

« fail Over ReadOnl y
» secondsBef or eRet rySour ce

e queri esBef oreRetrySource

retriesAl | Down
e aut oReconnect

e aut oReconnect For Pool s

Configuring Connection Access Mode

As with any standard connection, the initial connection to the primary host is in read/write mode. However,
if the driver fails to establish the initial connection to the primary host and it automatically switches to the
next host on the list, the access mode now depends on the value of the property f ai | Over ReadOnl vy,
which is “true” by default. The same happens if the driver is initially connected to the primary host and,
because of some connection failure, it fails over to a secondary host. Every time the connection falls

back to the primary host, its access mode will be read/write, irrespective of whether or not the primary
host has been connected to before. The connection access mode can be changed any time at runtime

by calling the method Connecti on. set ReadOnl y(bool ean), which partially overrides the property
fail Over ReadOnl y. When f ai | Over ReadOnl y=f al se and the access mode is explicitly set to either
true or false, it becomes the mode for every connection after a host switch, no matter what host type

are being connected to; but, if f ai | Over ReadOnl y=t r ue, changing the access mode to read/write is
only possible if the driver is connecting to the primary host; however, even if the access mode cannot be
changed for the current connection, the driver remembers the client's last intention and, when falling back
to the primary host, that is the mode that will be used. For an illustration, see the following successions of
events with a two-host connection.

* Sequence A, with f ai | Over ReadOnl y=t r ue:
1. Connects to primary host in read/write mode
2. Sets Connecti on. set ReadOnl y(true); primary host now in read-only mode
3. Failover event; connects to secondary host in read-only mode
4. Sets Connection. set ReadOnl y(f al se); secondary host remains in read-only mode
5. Falls back to primary host; connection now in read/write mode

e Sequence B, with f ai | Over ReadOnl y=f al se

128

Configuring Fallback to Primary Host

1. Connects to primary host in read/write mode
2. Sets Connecti on. set ReadOnl y(true); primary host now in read-only mode
3. Failover event; connects to secondary host in read-only mode

4. Set Connection. set ReadOnl y(f al se); connection to secondary host switches to read/write
mode

5. Falls back to primary host; connection now in read/write mode

The difference between the two scenarios is in step 4: the access mode for the secondary host in
sequence A does not change at that step, but the driver remembers and uses the set mode when falling
back to the primary host, which would be read-only otherwise; but in sequence B, the access mode for the
secondary host changes immediately.

Configuring Fallback to Primary Host

As already mentioned, the primary host is special in the failover arrangement when it comes to the

host's access mode. Additionally, the driver tries to fall back to the primary host as soon as possible by
default, even if no communication exception occurs. Two properties, secondsBef or eRet r ySour ce and
qguer i esBef or eRet r ySour ce, determine when the driver is ready to retry a reconnection to the primary
host (the Sour ce in the property names stands for the primary host of our connection URL, which is not
necessarily a source host in a replication setup):

» secondsBef or eRet r ySour ce determines how much time the driver waits before trying to fall back to
the primary host

* queri esBef or eRet r ySour ce determines the number of queries that are executed
before the driver tries to fall back to the primary host. Note that for the driver, each call to a
St at ement . execut e* () method increments the query execution counter; therefore, when calls are
made to St at enment . execut eBatch() orifal | omvul ti Queries orrewiteBatchStatenents
are enabled, the driver may not have an accurate count of the actual number of queries executed on the
server. Also, the driver calls the St at enent . execut e* () methods internally in several occasions. All
these mean you can only use quer i esBef or eRet r ySour ce only as a coarse specification for when to
fall back to the primary host.

In general, an attempt to fallback to the primary host is made when at least one of the conditions specified
by the two properties is met, and the attempt always takes place at transaction boundaries. However,

if auto-commit is turned off, the check happens only when the method Connecti on. commi t () or
Connection. rol | back() is called. The automatic fallback to the primary host can be turned off by
setting simultaneously secondsBef or eRet r ySour ce and quer i esBef or eRet r ySour ce to “0".
Setting only one of the properties to “0” only disables one part of the check.

Configuring Reconnection Attempts

When establishing a new connection or when a failover event occurs, the driver tries to connect
successively to the next candidate on the host list. When the end of the list has been reached, it restarts
all over again from the beginning of the list; however, the primary host is skipped over, if (a) NOT all

the secondary hosts have already been tested at least once, AND (b) the fallback conditions defined by
secondsBef or eRet r ySour ce and quer i esBef or eRet r ySour ce are not yet fulfilled. Each run-
through of the whole host list, (which is not necessarily completed at the end of the host list) counts as a
single connection attempt. The driver tries as many connection attempts as specified by the value of the
property r et ri esAl | Down.

129

Seamless Reconnection

Seamless Reconnection

Although not recommended, you can make the driver perform failovers without invalidating the

active St at enent or Resul t Set instances by setting either the parameter aut oReconnect or

aut oReconnect For Pool s to t r ue. This allows the client to continue using the same object instances
after a failover event, without taking any exceptional measures. This, however, may lead to unexpected
results: for example, if the driver is connected to the primary host with read/write access mode and it fails-
over to a secondary host in read-only mode, further attempts to issue data-changing queries will result

in errors, and the client will not be aware of that. This limitation is particularly relevant when using data
streaming: after the failover, the Resul t Set looks to be alright, but the underlying connection may have
changed already, and no backing cursor is available anymore.

Configuring Server Failover Using JDBC with DNS SRV

See Section 6.14, “Support for DNS SRV Records” for details.

9.2 Configuring Server Failover for Connections Using X DevAPI

When using the X Protocol, Connector/J supports a client-side failover feature for establishing a Session.
If multiple hosts are specified in the connection URL, when Connector/J fails to connect to a listed host, it
tries to connect to another one. This is a sample X DevAPI URL for configuring client-side failover:

nmysql x: // sandy: mypasswor d@ host 1: 33060, host 2: 33061] / t est

With the client-side failover configured, when there is a failure to establish a connection, Connector/J
keeps attempting to connect to a host on the host list. The order in which the hosts are attempted for
connection is as follows:

» For connections with the pri ori ty property set for each host in the connection URL, hosts are
attempted according to the set priorities for the hosts, which are specified by any numbers between 0 to
100, with a larger number indicating a higher priority for connection. For example:

nmysql x: // sandy: mypasswor d@ (addr ess=host 1: 33060, pri ority=2), (addr ess=host 2: 33061, priority=1)]/test
In this example, host 1 is always attempted before host 2 when new sessions are created.
Priorities should either be set for all or no hosts.

» For connections with the pri ori ty property NOT set for each host in the connection URL, hosts are
attempted one after another in a random order.

Notice that the server failover feature for X DevAPI only allows for a failover when Connector/J is trying to
establish a connection, but not during operations after a connection has already been made.

Connection Pooling Using X DevAPI. When using connection pooling with X DevAPI,

Connector/J keeps track of any host it failed to connect to and, for a short waiting period after

the failure, avoids connecting to it during the creation or retrieval of a Sessi on. However, if

all other hosts have already been tried, those excluded hosts will be retried without waiting.

Once all hosts have been tried and no connections can be established, Connector/J throws a

com nysql . cj . exceptions. CJCommuni cat i onsExcepti on and returns the message Unabl e to
connect to any of the target hosts.

Configuring Server Failover Using X DevAPI with DNS SRV

See Section 6.14, “Support for DNS SRV Records” for details.

130

Configuring Load Balancing with Connector/J

9.3 Configuring Load Balancing with Connector/J

Connector/J has long provided an effective means to distribute read/write load across multiple MySQL
server instances for Cluster or source-source replication deployments. You can dynamically configure load-
balanced connections, with no service outage. In-process transactions are not lost, and no application
exceptions are generated if any application is trying to use that particular server instance.

The load balancing is configured at the initial setup stage of the server connection by the following
connection URL, which has a similar format as the general JDBC URL for MySQL connection, but a
specialized scheme:

jdbc: nysql : | oadbal ance: //[host1][:port],[host2][:port][,[host3][:port]]...[/[database]] »
[?pr oper t yNanel=pr opertyVal uel[&or opert yNane2=pr opertyVal ue2?]...]

There are two configuration properties associated with this functionality:

» | oadBal anceConnecti onG oup — This provides the ability to group connections from different
sources. This allows you to manage these JDBC sources within a single class loader in any combination
you choose. If they use the same configuration, and you want to manage them as a logical single
group, give them the same name. This is the key property for management: if you do not define a
name (string) for | oadBal anceConnect i onG oup, you cannot manage the connections. All load-
balanced connections sharing the same | oadBal anceConnect i onG oup value, regardless of how the
application creates them, will be managed together.

» ha. enabl eJMX — The ability to manage the connections is exposed when you define a
| oadBal anceConnect i onG oup; but if you want to manage this externally, enable JMX by
setting this property to t r ue. This enables a JMX implementation, which exposes the management
and monitoring operations of a connection group. Further, start your application with the -
Dcom sun. managenent . j nxr enot e JVM flag. You can then perform connect and perform operations
using a JMX client such as j consol e.

Once a connection has been made using the correct connection properties, a number of monitoring
properties are available:

» Current active host count.
» Current active physical connection count.

» Current active logical connection count.

Total logical connections created.

 Total transaction count.

The following management operations can also be performed:
* Add host.

* Remove host.

The JMX interface, com nysql . c¢j . j dbc. j nx. LoadBal anceConnect i onG oupManager MBean, has
the following methods:

e int getActiveHostCount(String group);
e int getTotal Host Count (String group);

* | ong get Total Logi cal Connecti onCount (String group);

131

Configuring Load Balancing with Connector/J

* | ong get Acti velLogi cal Connecti onCount (String group);

* | ong get Acti vePhysi cal Connecti onCount (String group);

* | ong get Tot al Physi cal Connecti onCount (String group);

* | ong get Total Transacti onCount (String group);

e« void renpveHost (String group, String host) throws SQ.Excepti on;

» voi d st opNewConnecti onsToHost (String group, String host) throws SQLException;
e void addHost (String group, String host, bool ean forExisting);

e String getActiveHostsList(String group);

e« String getRegisteredConnecti onG oups();

The get Regi st er edConnect i onG oups() method returns the names of all connection groups defined
in that class loader.

You can test this setup with the following code:

public class Test {

private static String URL = "jdbc: nysqgl : | oadbal ance://" +
"l ocal host: 3306, | ocal host: 3310/ test ?" +
"| oadBal anceConnect i onG oup=fi r st &a. enabl eJMX=t r ue";

public static void main(String[] args) throws Exception {
new Thr ead(new Repeater()).start();
new Thread(new Repeater()).start();
new Thr ead(new Repeater()).start();

}

static Connection get NewConnection() throws SQLException, C assNot FoundException {
Cl ass. f or Name("com nysql . cj . jdbc. Driver");
return Driver Manager. get Connecti on(URL, "root", "");

}

static void executeSi npl eTransacti on(Connection ¢, int conn, int trans){
try {
c.set Aut oConmmi t (fal se);
Statenent s = c.createStatenent();
s. execut eQuery("SELECT SLEEP(1) /* Connection: " + conn + ", transaction: " + trans + " */");
c.comm t();
} catch (SQLException e) {
e.printStackTrace();
}
}

public static class Repeater inplenments Runnable {
public void run() {
for(int i=0; i < 100; i++){
try {
Connection ¢ = get NewConnecti on();
for(int j=0; j < 10; j++){
execut eSi npl eTransaction(c, i, j);
Thr ead. sl eep(Mat h. round(100 * Mat h. randon()));
}
c.close();
Thr ead. sl eep(100) ;
} catch (Exception e) {
e.printStackTrace();

132

Configuring Load Balancing with DNS SRV

After compiling, the application can be started with the - Dcom sun. nmanagenent . j nxr enot e

flag, to enable remote management. j consol e can then be started. The Test main class

will be listed by j consol e. Select this and click Connect. You can then navigate to the

com nysql.cj.jdbc.jnm. LoadBal anceConnecti onG oupManager bean. At this point, you can
click on various operations and examine the returned result.

If you now had an additional instance of MySQL running on port 3309, you could ensure that Connector/J
starts using it by using the addHost () , which is exposed in j consol e. Note that these operations can be
performed dynamically without having to stop the application running.

For further information on the combination of load balancing and failover, see Section 9.5, “Advanced
Load-balancing and Failover Configuration”.

Configuring Load Balancing with DNS SRV

See Section 6.14, “Support for DNS SRV Records” for details.

9.4 Configuring Source/Replica Replication with Connector/J

This section describe a number of features of Connector/J's support for replication-aware deployments.

The replication is configured at the initial setup stage of the server connection by the connection URL,
which has a similar format as the general JDBC URL for MySQL connection, but a specialized scheme:

jdbc:nysql :replication://[source host][:port],[replica host 1][:port][,[replica host 2][:port]]...[/[datab:
[?pr oper t yNanel=propertyVal uel[&or opert yNane2=pr opertyVal ue2?]...]

Users may specify the property al | owSour ceDownConnect i ons=t r ue to allow Connect i on objects
to be created even though no source hosts are reachable. Such Connect i on objects report they are
read-only, and i sSour ceConnecti on() returns false for them. The Connect i on tests for available
source hosts when Connect i on. set ReadOnl y(f al se) is called, throwing an SQLException if it cannot
establish a connection to a source, or switching to a source connection if the host is available.

Users may specify the property al | owRepl i casDownConnect i ons=t r ue to allow Connecti on
objects to be created even though no replica hosts are reachable. A Connect i on then, at runtime, tests
for available replica hosts when Connecti on. set ReadOnl y(true) is called (see explanation for

the method below), throwing an SQLException if it cannot establish a connection to a replica, unless

the property r eadFr onSour ceWhenNoRepl i cas is set to be “true” (see below for a description of the
property).

Scaling out Read Load by Distributing Read Traffic to Replicas

Connector/J supports replication-aware connections. It can automatically send queries to a read/
write source host, or a failover or round-robin loadbalanced set of replicas based on the state of
Connecti on. get ReadOnl y() .

An application signals that it wants a transaction to be read-only by calling

Connecti on. set ReadOnl y(true) . The replication-aware connection will use one of
the replica connections, which are load-balanced per replica host using a round-robin
scheme. A given connection is sticky to a replica until a transaction boundary command

133

Scaling out Read Load by Distributing Read Traffic to Replicas

(a commit or rollback) is issued, or until the replica is removed from service. After calling

Connecti on. set ReadOnl y(true), if you want to allow connection to a source when no replicas
are available, set the property r eadFr onSour ceWhenNoRepl i cas to “true.” Notice that the source
host will be used in read-only state in those cases, as if it is a replica host. Also notice that setting
readFr onSour ceWhenNoRepl i cas=t r ue might result in an extra load for the source host in a
transparent manner.

If you have a write transaction, or if you have a read that is time-sensitive (remember, replication in MySQL
is asynchronous), set the connection to be not read-only, by calling Connect i on. set ReadOnl y(f al se)
and the driver will ensure that further calls are sent to the source MySQL server. The driver takes care of
propagating the current state of autocommit, isolation level, and catalog between all of the connections that
it uses to accomplish this load balancing functionality.

To enable this functionality, use the specialized replication scheme (j dbc: nysql : replication://)
when connecting to the server.

Here is a short example of how a replication-aware connection might be used in a standalone application:

i mport java.sql.Connecti on;
import java.sql.ResultSet;
inmport java.util.Properties;

i mport java.sql.DriverManager;

public class Replicati onDeno {

public static void main(String[] args) throws Exception {
Properties props = new Properties();

/1 We want this for failover on the replicas
props. put ("aut oReconnect", "true");

/1l W& want to | oad bal ance between the replicas
props. put ("roundRobi nLoadBal ance", "true");

props. put ("user", "foo");
props. put ("password", "password");
/1

/'l Looks like a normal MySQL JDBC url, with a

/'l comma-separated |ist of hosts, the first

/'l being the 'source', the rest being any nunber

/'l of replicas that the driver will |oad bal ance agai nst
/1

Connection conn =
Dri ver Manager . get Connecti on("j dbc: nmysql :replication://source, replical,replica2,replica3/test",

props);

/1

/|l Performread/wite work on the source
/] by setting the read-only flag to "fal se"
/1

conn. set ReadOnl y(f al se);

conn. set Aut oCommi t (f al se) ;

conn. cr eat eSt at enent () . execut eUpdat e(" UPDATE sone_table");
conn. comit();

/1

/1l Now, do a query froma replica, the driver automatically picks one
/'l fromthe |ist

/1

134

Support for Multiple-Source Replication Topographies

conn. set ReadOnl y(true);

ResultSet rs =
conn. cr eat eSt at enent () . execut eQuery (" SELECT a,b FROM alt _tabl e");

Consider using the Load Balancing JDBC Pool (I bpool) tool, which provides a wrapper around the
standard JDBC driver and enables you to use DB connection pools that includes checks for system failures
and uneven load distribution. For more information, see Load Balancing JDBC Driver for MySQL (mysql-
Ibpool).

Support for Multiple-Source Replication Topographies

Connector/J supports multi-source replication topographies.

The connection URL for replication discussed earlier (i.e., in the format of

jdbc: nysql :replication://source, replical,replica2, replica3/test)assumes that
the first (and only the first) host is the source host. Supporting deployments with an arbitrary number of
sources and replicas requires the "address-equals” URL syntax for multiple host connection discussed in
Section 6.2, “Connection URL Syntax”, with the property t ype=[sour ce| repl i ca] ; for example:

jdbc: nysql :replication://address=(type=source) (host =sour celhost), address=(type=source) (host =sour ce2host), a

Connector/J uses a load-balanced connection internally for management of the source connections, which
means that Repl i cat i onConnect i on, when configured to use multiple sources, exposes the same
options to balance load across source hosts as described in Section 9.3, “Configuring Load Balancing with
Connector/J".

Live Reconfiguration of Replication Topography

Connector/J also supports live management of replication host (single or multi-source) topographies. This
enables users to promote replicas for Java applications without requiring an application restart.

The replication hosts are most effectively managed in the context of a replication connection group. A
ReplicationConnectionGroup class represents a logical grouping of connections which can be managed
together. There may be one or more such replication connection groups in a given Java class loader (there
can be an application with two different JDBC resources needing to be managed independently). This key
class exposes host management methods for replication connections, and Repl i cat i onConnect i on
objects register themselves with the appropriate Repl i cati onConnect i onG oup if a value for the new
replicati onConnecti onG oup property is specified. The Repl i cat i onConnecti onG oup object
tracks these connections until they are closed, and it is used to manipulate the hosts associated with these
connections.

Some important methods related to host management include:
» get Sour ceHost s() : Returns a collection of strings representing the hosts configured as source hosts
» get Repl i caHost s() : Returns a collection of strings representing the hosts configured as replica hosts

e addRepl i caHost (String host): Adds new host to pool of possible replica hosts for selection at
start of new read-only workload

e pronot eRepl i caToSour ce(String host): Removes the host from the pool of potential replica
hosts for future read-only processes (existing read-only process is allowed to continue to completion)
and adds the host to the pool of potential source hosts

135

http://code.google.com/p/mysql-lbpool/
http://code.google.com/p/mysql-lbpool/

ReplicationConnectionGroupManager

e renoveReplicaHost (String host, bool ean cl oseCGently): Removes the host (host name
match must be exact) from the list of configured replica hosts; if cl oseGent | y is false, existing
connections which have this host as currently active will be closed hardly (application should expect
exceptions)

» renmoveSour ceHost (String host, bool ean cl oseCGently): Same as
renoveRepl i caHost (), but removes the host from the list of configured source hosts

Some useful management metrics include:

» get Connecti onCount Wt hHost AsRepl i ca(String host): Returns the number of
ReplicationConnection objects that have the given host configured as a possible replica host

e get Connecti onCount Wt hHost AsSour ce(String host) : Returns the number of
ReplicationConnection objects that have the given host configured as a possible source host

» get Nunber Of Repl i casAdded() : Returns the number of times a replica host has been dynamically
added to the group pool

» get Nunber O Repl i casRenoved() : Returns the number of times a replica host has been dynamically
removed from the group pool

» get Nunber Of Repl i caPronoti ons() : Returns the number of times a replica host has been promoted
to be a source host

e get Tot al Connecti onCount () : Returns the number of ReplicationConnection objects which have
been registered with this group

e get Acti veConnecti onCount () : Returns the number of ReplicationConnection objects currently
being managed by this group

ReplicationConnectionGroupManager

com nysql . cj.jdbc. ha. Replicati onConnecti onG oupManager provides access to the
replication connection groups, together with some utility methods.

e get ConnectionG oup(String groupNane): Returns the Repl i cati onConnecti onG oup object
matching the groupName provided

The other methods in Repl i cati onConnect i onG oupManager mirror those of

Repl i cati onConnecti onG oup, except that the first argument is a String group name. These methods
will operate on all matching ReplicationConnectionGroups, which are helpful for removing a server from
service and have it decommissioned across all possible Repl i cati onConnecti onG oups.

These methods might be useful for in-JVM management of replication hosts if an application triggers
topography changes. For managing host configurations from outside the JVM, JMX can be used.

Using JMX for Managing Replication Hosts

When Connector/J is started with ha. enabl eJMX=t r ue and a value set for the
property r epl i cat i onConnecti onG oup, a JIMX MBean will be registered, allowing
manipulation of replication hosts by a JMX client. The MBean interface is defined in
com nysql . cj.jdbc.jnx.Replicati onG oupManager MBean, and leverages the
Repl i cati onConnecti onG oupManager static methods:

publ i c abstract void addReplicaHost(String groupFilter, String host) throws SQ.Excepti on;
public abstract void renpveReplicaHost (String groupFilter, String host) throws SQLExcepti on;

136

Configuring Source/Replica Replication with DNS SRV

publ i c abstract void pronoteReplicaToSource(String groupFilter, String host) throws SQ.Exception
publ i c abstract void renpveSourceHost(String groupFilter, String host) throws SQ.Exception
public abstract String get SourceHostsList(String group)

public abstract String getReplicaHostsList(String group)

public abstract String getRegi steredConnecti onG oups()

public abstract int getActiveSourceHost Count (String group)

public abstract int getActiveReplicaHostCount (String group)

public abstract int getReplicaPronoti onCount(String group)

public abstract |ong get Tot al Logi cal Connecti onCount (Stri ng group)

public abstract |ong getActivelLogi cal Connecti onCount (String group)

Configuring Source/Replica Replication with DNS SRV

See Section 6.14, “Support for DNS SRV Records” for details.

9.5 Advanced Load-balancing and Failover Configuration

Connector/J provides a useful load-balancing implementation for MySQL Cluster or multi-source
deployments, as explained in Section 9.3, “Configuring Load Balancing with Connector/J” and Support for
Multiple-Source Replication Topographies. This same implementation is used for balancing load between
read-only replicas for replication-aware connections.

When trying to balance workload between multiple servers, the driver has to determine when it is safe to
swap servers, doing so in the middle of a transaction, for example, could cause problems. It is important
not to lose state information. For this reason, Connector/J will only try to pick a new server when one of the
following happens:

1. Attransaction boundaries (transactions are explicitly committed or rolled back).
2. A communication exception (SQL State starting with "08") is encountered.

3. When a SQLExcept i on matches conditions defined by user, using the extension points defined by
the | oadBal anceSQ_St at eFai | over, | oadBal anceSQLExcept i onSubcl assFai | over or
| oadBal anceExcept i onChecker properties.

The third condition revolves around three properties, which allow you to control which SQLExcept i ons
trigger failover:

* | oadBal anceExcepti onChecker - The | oadBal anceExcept i onChecker property
is really the key. This takes a fully-qualified class name which implements the new
com nysql . cj.jdbc. ha. LoadBal anceExcepti onChecker interface. This interface is very simple,
and you only need to implement the following method:

publ i ¢ bool ean shoul dExcepti onTri gger Fai | over (SQLExcepti on ex)

A SQLExcept i on is passed in, and a boolean returned. A value of t r ue triggers a failover, f al se does
not.

You can use this to implement your own custom logic. An example where this might be useful is when
dealing with transient errors when using MySQL Cluster, where certain buffers may become overloaded.
The following code snippet illustrates this:

public class NdbLoadBal anceExcept i onChecker
ext ends St andardLoadBal anceExcepti onChecker {

publ i ¢ bool ean shoul dExcepti onTri gger Fai | over (SQLExcepti on ex) {
return super.shoul dExcepti onTri gger Fai | over (ex)
|| checkNdbException(ex);

137

Configuring Load Balancing and Failover with DNS SRV

}

private bool ean checkNdbExcepti on(SQLException ex) {

// Have to parse the nessage since nmost NDB errors

/] are mapped to the same DEMC.
return (ex.getMessage().startsWth("Lock wait timeout exceeded") ||
(ex. get Message().startsWth("CGot tenporary error")
&& ex. get Message().endsWth("from NDB")));

}
}

The code above extends com nysql . cj . j dbc. ha. St andar dLoadBal anceExcept i onChecker,
which is the default implementation. There are a few convenient shortcuts built into this, for those

who want to have some level of control using properties, without writing Java code. This default
implementation uses the two remaining properties: | oadBal anceSQLSt at eFai | over and

| oadBal anceSQLExcepti onSubcl assFai | over.

* | oadBal anceSQLSt at eFai | over - allows you to define a comma-delimited list of SQLSt at e code
prefixes, against which a SQLExcept i on is compared. If the prefix matches, failover is triggered. So, for
example, the following would trigger a failover if a given SQLExcept i on starts with "00", or is "12345":

| oadBal anceSQ_St at eFai | over =00, 12345

» | oadBal anceSQLExcepti onSubcl assFai | over - can be used in conjunction with
| oadBal anceSQLSt at eFai | over or on its own. If you want certain subclasses of SQLExcepti on to
trigger failover, simply provide a comma-delimited list of fully-qualified class or interface names to check
against. For example, if you want all SQLTr ansi ent Connect i onExcept i ons to trigger failover, you
would specify:

| oadBal anceSQLExcept i onSubcl assFai | over =j ava. sql . SQLTr ansi ent Connect i onExcepti on

While the three failover conditions enumerated earlier suit most situations, if aut oconmi t is enabled,
Connector/J never re-balances, and continues using the same physical connection. This can be
problematic, particularly when load-balancing is being used to distribute read-only load across multiple
replicas. However, Connector/J can be configured to re-balance after a certain number of statements are
executed, when aut oconmi t is enabled. This functionality is dependent upon the following properties:

» | oadBal anceAut oConmmi t St at enent Thr eshol d — defines the number of matching statements
which will trigger the driver to potentially swap physical server connections. The default value, 0, retains
the behavior that connections with aut oconmi t enabled are never balanced.

* | oadBal anceAut oConmi t St at ement Regex — the regular expression against which statements must
match. The default value, blank, matches all statements. So, for example, using the following properties
will cause Connector/J to re-balance after every third statement that contains the string “test”:

| oadBal anceAut oConmi t St at ement Thr eshol d=3
| oadBal anceAut oConmmi t St at enent Regex=. *test . *

| oadBal anceAut oConmmi t St at enent Regex can prove useful in a number of situations. Your
application may use temporary tables, server-side session state variables, or connection state, where
letting the driver arbitrarily swap physical connections before processing is complete could cause data
loss or other problems. This allows you to identify a trigger statement that is only executed when it is
safe to swap physical connections.

Configuring Load Balancing and Failover with DNS SRV

See Section 6.14, “Support for DNS SRV Records” for details.

138

Chapter 10 Using the X DevAPI with Connector/J: Special Topics

Table of Contents

10.1 Connection Compression USING X DEVAPIc.u it e e e 139
10.2 Schema ValIdationoouuiiiiii et 140

Connector/J 8.4 supports the X DevAPI, through which native support by MySQL for JSON, NoSQL,
document collection, and other features are provided to Java applications. See Using MySQL as a
Document Store, the X DevAPI User Guide, and the Connector/J X DevAPI Reference available at
Connectors and APIs for details.

Information on using the X DevAPI with Connector/J can be found in different chapters in this manual. This
chapter explores some special topics that are not covered elsewhere.

10.1 Connection Compression Using X DevAPI

Connector/J supports data compression for X DevAPI connections when working with MySQL Server
8.0.19 and later. General details about this feature can be found in Connection Compression with X
Plugin. For details on how to configure connection compression for Connector/J, see the descriptions
for the connection properties xdevapi . conpr essi on, xdevapi . conpr essi on-al gori t hns, and
xdevapi . conpr essi on- ext ensi ons in Section 6.3, “Configuration Properties”. The following is a
summary of the feature:

The compression algorithms to be negotiated with the server and the priority of negotiation can be
specified using the connection property xdevapi . conpr essi on- al gori t hns. It accepts a list of

[al gorithm nane] [operation-node], separated by commas (,). If the property is not set, the
default value of “zstd_stream | z4 nessage, def | at e_st r eant is used. The priority for negotiation
follows the order the algorithms appear in the list. Setting an empty string explicitly for the property means
compression should be disabled for the connection.

Note

When specifying compression algorithms with xdevapi . conpr essi on-
al gorit his, the aliases zst d, | z4, and def | at e can be used in place of
zstd_stream| z4 nessage, and def | at e_st r eam respectively.

Out of all the compression algorithms now supported by MySQL Server for X DevAPI connections,
Connector/J provides out-of-the-box support for Deflate only; this is because none of the other
compression algorithms (LZ4 and zstd, for now) are natively supported by the existing JREs. To support
those algorithms, the client application must provide implementations for the corresponding deflate and
inflate operations in the form of an Qut put St r eamand an | nput St r eamobject, respectively. The easiest
way to accomplish this is by using a third-party library such as the Apache Commons Compress library,
which supports LZ4 and zstd. The connection option xdevapi . conpr essi on- ext ensi ons allows
users to configure Connector/J to use any compression algorithm that is supported by MySQL Server, as
long as there is a Java implementation for that algorithm. The option takes a list of triplets separated by
commas (,), and each triplet in turn contains the following elements, separated by colons (:):

» The compression algorithm name, indicated by the identifier used by the server (see Connection
Compression with X Plugin; aliases mentioned in the Note above can be used).

» A fully-qualified name of a class implementing the interface j ava. i 0. | nput St r eamthat will be used to
inflate data compressed with the named algorithm.

139

https://dev.mysql.com/doc/refman/8.4/en/document-store.html
https://dev.mysql.com/doc/refman/8.4/en/document-store.html
https://dev.mysql.com/doc/x-devapi-userguide/en/
https://dev.mysql.com/doc/index-connectors.html
https://dev.mysql.com/doc/refman/8.4/en/x-plugin-connection-compression.html
https://dev.mysql.com/doc/refman/8.4/en/x-plugin-connection-compression.html
https://dev.mysql.com/doc/refman/8.4/en/x-plugin-connection-compression.html
https://dev.mysql.com/doc/refman/8.4/en/x-plugin-connection-compression.html

Schema Validation

A fully-qualified name of a class implementing the interface j ava. i 0. Qut put St r eamthat will be used
to deflate data using the named algorithm.

Here is an example that sets up the support for the algorithms | z4_nessage and zst d_st r eamusing the
Apache Commons Compress library:

String connStr = "jdbc:nysql://johndoe: secret @ ocal host : 33060/ nydb?"
+ "xdevapi . conpr essi on- ext ensi ons="

"l z4 _message"+":" [/ LZ4 triplet

Fr amedLZ4Conpr essor | nput Stream cl ass. get Name() + "

Fr amedLZ4Conpr essor Qut put St ream cl ass. get Nane() + ",

"zstd_streant+":" // zstd triplet

Zst dConpr essor | nput Stream cl ass. get Name() + "

Zst dConpr essor Qut put St ream cl ass. get Nanme()

Sessi onFactory sessFact = new Sessi onFactory();

Sessi on sess = sessFact. get Session(connStr);

Col | ection col = sess. getDefaul t Schenma(). get Col | ection("nyColl ection");

HEG)

sess. cl ose();

+ o+ 4+ + +

4L

Note

For Connector/J 8.0.21 and earlier: The connection property

xdevapi . conpr essi on- ext ensi ons described above is named

xdevapi . conpr essi on- al gori t hmfor Connector/J 8.0.21 and earlier, and the
elements in each triplet should be separated by commas (,) instead of colons (;).

Negotiation for a compression algorithm is attempted by default (xdevapi . conpr essi on=Pref erred
by default), unless the connection property xdevapi . conpr essi on is set to DI SABLED. The final

choice of compression algorithm depends on what algorithms are enabled on the server. By default,
because compression is not required, if the negotiation fails, the connection will not be compressed,

but the client will still be able to communicate with the server; however, if the connection property

xdevapi . conpr essi on is set to REQUI RED, the connection attempt fails with an error if no algorithm can
be negotiated for successfully.

10.2 Schema Validation

When working with MySQL Server 8.0.19 and later: Schema validation can be configured for a

Col | ecti on, so that documents in the Col | ect i on are validated against a schema before they can

be inserted or updated. This is done by specifying a JSON Schema during Col | ect i on creation or
modification; schema validation is then performed by the server at a document creation or update, and an
error is returned if the document does not validate against the assigned schema. For more information on
JSON schema validation in MySQL, see JSON Schema Validation Functions. This section describes how
to configure schema validation for a Col | ect i on with Connector/J.

To configure schema validation during the creation of a Col | ect i on, pass to the cr eat eCol | ecti on()
method a Cr eat eCol | ect i onQpt i ons object, which has these fields:

» reuse: aboolean set by the set ReuseExi st i ng method. Ifitis t r ue, when the Col | ect i on to be
created already exists within the Schenma that is to contain it, Connector/J returns success (without any
attempt to apply JSON schema to the existing Col | ect i on); in the same case, Connector/J returns an
error if the parameter is setto f al se. If reuse is not set, it is taken to be f al se.

» val idation:aValidation objectsethythe setValidation() method. AVal i dati on objectin
turns contains these fields:

* | evel : a enumeration of the class Val i dati onLevel , set by the set Level () method; it can be
one of the following two values:

140

http://json-schema.org
https://dev.mysql.com/doc/refman/8.4/en/json-validation-functions.html

Schema Validation

e STRI CT: Strict validation. Attempting to insert or modify a document that violates the validation

schema re

sults in a server error being raised.

* OFF: No validation. Schema validation is turned off.

Ifl evel isn

ot set, it is taken as OFF for MySQL Server 8.0.19, and STRI CT for 8.0.20 and later.

« schema: A string representing a JSON Schema to be used to validate a Docunent in the
Col | ecti on; set by the set Scherma() method.

If schenma is

not provided but | evel is setto STRICT, the Col | ect i on is validated against the

default schema {"type" : "object"}.

This is an example of how to configure schema validation at the creation of a Col | ect i on:

Col | ection coll
new Creat eCo
. set Reus

= this.schema. createCol |l ecti on(col | Nane,
Il ectionOptions()
eExi sting(fal se)

.set Val i dati on(new Val i dati on()
.set Level (Val i dati onLevel . STRI CT)
. set Schena(

“{\"id\": \"http://json-schema.org/geo\","

4L

++ + ++++++++ o+

)));

The set fields are

"\"$schema\": \"http://json-schema. org/draft-06/schema#\","
" \"description\": \"A geographical coordinate\","
" \"type\": \"object\", "

" \"properties\": {"

" \"latitude\": {"

" \"type\": \"nunber\""

T 1,

" \"longitude\": {"

" \"type\": \"nunmber\""

T 3

T 1,

" \"required\": [\"latitude\", \"longitude\"]"
Y

accessible by the corresponding getter methods.

To modify the schema validation configuration for a Col | ect i on, use the nodi fyCol | ecti on()

method and pass

toita Modi f yCol | ecti onOpti ons object, which has the same fields as

the Creat eCol | ecti onOpt i ons object except for the r euse field, which does not exist for a

Modi f yCol | ecti onOpt i ons object. For the Val i dat i on object of a Modi f yCol | ecti onOpti ons

object, users can
nodi f yCol | ect

schema. nodi f yCol
new Mbdi fyCo

set either its | evel or schenm, or both. Here is an example of using the
i on() to change the schema validation configuration:

| ection(col | Narne,
Il ectionOptions()

.setValidation(new Validation()
.set Level (Val i dati onLevel . OFF)
. set Schema(
“{\"id\": \"http://json-schema. org/geo\","

+ o+ o+ o+ o+ o+

"\"$schema\": \"http://json-schema. org/draft-06/schema#\","

' \"description\": \"NEW geographical coordinate\","

\"type\": \"object\", "

\"properties\": {"
\"latitude\": {"

\"type\": \"nunber\""

1,

\"l ongi tude\": {"
\"type\": \"nunber\""

141

http://json-schema.org

Schema Validation

3
b
\"required\": [\"latitude\", \"longitude\"]"

+ + + +

)));

If the Collection contains documents that do not validate against the new JSON schema supplied through
Modi fyCol | ecti onOpt i ons, the server will reject the schema modification with the error ERROR 5180
(HY000) Docunent is not valid according to the schema assigned to collection.

Note

createCol | ection() and nodi fyCol | ecti on() are overloaded: they can
be called without passing to them the Cr eat eCol | ecti onOpt i ons or the

Modi fyCol | ecti onOpt i ons, respectively, in which case schema validation will
not be applied to the Col | ect i on.

142

Chapter 11 Using the Connector/J Interceptor Classes

An interceptor is a software design pattern that provides a transparent way to extend or modify some
aspect of a program, similar to a user exit. No recompiling is required. With Connector/J, the interceptors
are enabled and disabled by updating the connection string to refer to different sets of interceptor classes
that you instantiate.

The connection properties that control the interceptors are explained in Section 6.3, “Configuration
Properties”

connectionLi fecycl el nt er cept or s, where you specify the fully qualified names of classes that
implement the com nysql . cj . jdbc. i nterceptors. ConnectionLi fecycl el nt erceptor
interface. In these kinds of interceptor classes, you might log events such as rollbacks, measure the time
between transaction start and end, or count events such as calls to set Aut oConmi t ().

exceptionl nterceptors, where you specify the fully qualified names of classes that implement
the com nysql . cj . exceptions. Excepti onl nt er cept or interface. In these kinds of interceptor
classes, you might add extra diagnostic information to exceptions that can have multiple causes or
indicate a problem with server settings. except i onl nt er cept or s classes are called when handling
an Except i on thrown from Connector/J code.

gueryl nt er cept or s, where you specify the fully qualified names of classes that implement the
comnysql .cj.interceptors. Queryl nterceptor interface. In these kinds of interceptor classes,
you might change or augment the processing done by certain kinds of statements, such as automatically
checking for queried data in a nencached server, rewriting slow queries, logging information about
statement execution, or route requests to remote servers.

143

144

Chapter 12 Using Logging Frameworks with SLF4J

Besides its default logger com nmysql . c¢j . | og. St andar dLogger , which logs to st der r, Connector/

J supports the SLF4J logging facade, allowing end users of applications using Connector/J to plug

in logging frameworks of their own choices at deployment time. Popular logging frameworks such as
java.util.logging, ! ogback, and| og4j are supported by SLF4J. Follow these requirements to use
a logging framework with SLF4J and Connector/J:

* In the development environment:

* Install on your system sl f 4j - api - x. y. z. j ar (available at https://www.slf4j.org/download.html) and
add it to the Java classpath.

* In the code of your application, obtain an SLF4JLogger as a Log instantiated within a
Mysql Connecti on Sessi on, and then use the Log instance for your logging.

» On the deployment system:
« Install on your system sl f 4 - api - x. y. z. j ar and add it to the Java classpath

« Install on your system the SLF4J binding for the logging framework of your choice and add it
to your Java classpath. SLF4J bindings are available at, for example, https://www.slf4j.org/
manual.html#swapping.

Note

Do not put more than one SLF4J binding in you Java classpath. Switch from
one logging framework to another by removing a binding and adding a new one
to the classpath.

« Install the logging framework of your choice on your system and add it to the Java classpath.

< Configure the logging framework of your choice. This often consists of setting up appenders or
handlers for log messages using a configuration file; see your logging framework's documentation for
details.

« When connecting the application to the MySQL Server, set the Connector/J connection property
| ogger to Sl f 4JLogger .

The log category name used by Connector/J with SLF4J is MySQL. See the SLF4J user manual for more
details about using SLF4J, including discussions on Maven dependency and bindings. Here is a sample
code for using SLF4J with Connector/J:

i mport java.sql.DriverManager;

i mport java.sql.Connecti on;

import java.sql.ResultSet;

i mport java.sql.SQLException;

i mport java.sgql.Statenent;

i mport com nysql.cj.jdbc.JdbcConnecti on;
i mport com nysql.cj.!log.Log;

public class JDBCDenp {
public static void main(String[] args) {
Connection conn = null;
St at enent st at enent nul | ;

Resul t Set resul t Set nul | ;
Log | ogger = null;

145

https://www.slf4j.org/download.html
https://www.slf4j.org/manual.html#swapping
https://www.slf4j.org/manual.html#swapping
http://www.slf4j.org/manual.html

}
}

try {
/| Database paraneters

String url = "jdbc:nysql:// myexanpl e. com 3306/ pet s?l ogger =S| f 4JLogger &expl ai nSI owQueri es=true";
String user = "user";
String password = "password";

/Il create a connection to the database
conn = DriverManager. get Connection(url, user, password);
| ogger = ((JdbcConnecti on)conn). get Sessi on() . getLog();

}
catch (SQLException e) {
Systemerr.println(e.get Message());
Systemexit(1);
}

try {
statement = conn.createStatenent();
resultSet = statenent.executeQuery("SELECT * FROM pets. dogs");
whi | e(resul t Set. next()){
Systemout.printf("%\t%\t%\t %s$ty. %St m %$td \n",
resultSet.getlnt(1),
resul t Set.getString(2),
resul t Set.getString(3),
resul t Set. get Date(4));

}

}
cat ch(SQLException e) {

| ogger. | ogWarn("Warni ng: Select failed!");
}

If you want to use, for example, Log4j 2.17.1 as your logging framework when running this program, put
these JAR files in your Java classpath:

sl f4j-api-2.0.3.jar (SLF4J APl module, available at, for example, https://central.sonatype.com/
artifact/org.slf4j/slf4j-api/2.0.3/jar).

| 0og4j -api-2.17.1.jar and | og4j -core-2.17.1.jar (Log4d library, available at, for example,
https://central.sonatype.com/artifact/org.apache.logging.log4j/log4j-api/2.17.1/jar and https://
central.sonatype.com/artifact/org.apache.logging.log4j/log4j-core/2.17.1/jar).

| og4j-slf4j-inpl-2.17.1.)ar (SLF4J's binding for Log4J 2.17.1, available at, for example, https://
central.sonatype.com/artifact/org.apache.logging.log4j/log4j-slf4j-impl/2.17.1/jar).

Here is output of the program when the SELECT statement failed:

[2021-09- 05 12: 06: 19, 624] WARN O[mai n] - WARN MySQL - Warning: Select fail ed!

146

https://central.sonatype.com/artifact/org.slf4j/slf4j-api/2.0.3/jar
https://central.sonatype.com/artifact/org.slf4j/slf4j-api/2.0.3/jar
https://central.sonatype.com/artifact/org.apache.logging.log4j/log4j-api/2.17.1/jar
https://central.sonatype.com/artifact/org.apache.logging.log4j/log4j-api/2.17.1/jar
https://central.sonatype.com/artifact/org.apache.logging.log4j/log4j-core/2.17.1/jar
https://central.sonatype.com/artifact/org.apache.logging.log4j/log4j-core/2.17.1/jar
https://central.sonatype.com/artifact/org.apache.logging.log4j/log4j-slf4j-impl/2.17.1/jar
https://central.sonatype.com/artifact/org.apache.logging.log4j/log4j-slf4j-impl/2.17.1/jar

Chapter 13 Using Connector/J with OpenTelemetry

OpenTelemetry is a set of APIs, libraries, agents, and instrumentation to provide observability for
applications and their interactions with one another. It enables developers to instrument their code so that
they can export observability data including traces, metrics, and logs, enabling increased granularity of
profiling, debugging, and testing.

The OpenTelemetry project provides automatic instrumentation for JDBC libraries. However, when it
comes to distributed tracing, the automatic instrumentation is not able to propagate the context to the
database layer, causing the trace chain to be broken. Also, the automatic instrumentation applies only to
the visible layer of the JDBC instrumentation, keeping out any internal operations that are worth tracing as
well.

MySQL Enterprise Server 8.4.0 has the capability of collecting observability data for the server
operations in the OpenTelemetry format (see Telemetry for details). The feature is supported by
component_telemetry. MySQL Connector/J 8.4.0 introduces the client-side counterpart feature, with the
capability of propagating the context to the MySQL Server it connects to and allowing a more complete
observability for an application stack.

Applications using Connector/J that wish to enable OpenTelemetry tracing need the following 3rd-party
libraries:

» The opentelemetry-api library.
e The opentelemetry-context library

» The opentelemetry-sdk library if you choose manual instrumentation, or the opentelemetry-javaagent if
you prefer automatic instrumentation.

The Connector/J connection property openTelemetry controls how observability data production is to be
handled on a per connection basis. This option accepts the following values:

» REQUI RED: An OpenTelemetry library must be available at run time, or connections to the MySQL
Server will fail. Note that the opent el ent ry- api library alone does not produce any output traces.

» PREFERRED: Enables generating OpenTelemetry instrumentation, provided that an OpenTelemetry
library is available at run time; a warning is issued if a library is not available.

» DI SABLED: Turns off generating OpenTelemetry instrumentation by Connector/J. However, this does
not prevent external means of instrumentation, such as the automatic instrumentation provided by the
OpenTelemetry Java agent.

Not setting a value for the property is equivalent to setting it as PREFERRED, except that no warning is
issued when no OpenTelemetry library is available at runtime.

Notice that MySQL Connector/J does not provide any means for configuring its own OpenTelemetry
exporters—it relies entirely on the calling application for the exporter configuration.

The following is a demonstration for how to use OpenTelemetry. It assumes that client application,

MySQL Server, and the observability backend are all running on the same machine. It also assumes that
component_telemetry is enabled and is properly configured on the MySQL Server. The Java agent is used
for the sake of simplicity. The opentelemetry-instrumentation-annotations library is also used, so there is no
need to write any OpenTelemetry code in the sample class.

This simple demonstration contains a class OTel Denp, which creates a connection to the Sakila database
and executes an SQL SELECT statement that returns five rows from the table f i | m The purpose of the

147

https://opentelemetry.io/
https://dev.mysql.com/doc/refman/8.4/en/telemetry.html
https://dev.mysql.com/doc/refman/8.4/en/telemetry-trace-install.html
https://central.sonatype.com/artifact/io.opentelemetry/opentelemetry-api
https://central.sonatype.com/artifact/io.opentelemetry/opentelemetry-context
https://central.sonatype.com/artifact/io.opentelemetry/opentelemetry-sdk
https://github.com/open-telemetry/opentelemetry-java-instrumentation/releases
https://dev.mysql.com/doc/refman/8.4/en/telemetry-trace-install.html
https://central.sonatype.com/artifact/io.opentelemetry.instrumentation/opentelemetry-instrumentation-annotations
https://dev.mysql.com/doc/sakila/en/

demonstration is just to generate a sequence of traces, not to produce anything practically useful. Here are
the contents of the source file sr ¢/ deno/ OTel Denp. j ava

package denv;
import java.sql.*;
inmport io0.opentelenetry.instrunentation.annotati ons. Wt hSpan;
public class OTel Denp {
public static void main(String[] args) throws Exception {
listFiveFilns();
}
@\ t hSpan
private static void listFiveFilns() throws Exception {
try (Connection conn = DriverManager. get Connection("j dbc: mysqgl://johndoe: s3cr 3t @ ocal host : 3306/ saki | a"
Statenent stnt = conn.createStatenent();
Resul tSet rs = stnt.executeQuery("SELECT * FROMfilmLIMT 5");
while (rs.next()) {
Systemout.printin(rs.getString(2));
}

}

The top level trace that will be observed is created within the application code via the annotation

@V t hSpan. This trace becomes the current context (parent) for any subsequent spans created inside the
JDBC driver. Subsequently, via context propagation with the executed commands, a trace created by the
driver becomes the parent of the spans created within the MySQL Server.

The code can be compiled by issuing the command:

$ javac -classpath "lib/*" -d bin src/denon/ Olel Denp. j ava

Before you run the demonstration, set up an observability backend with, for example, Jaeger. You can then
execute the code with the command:

$ java -javaagent: agent/opentel enetry-j avaagent.jar \
-Dot el . traces. exporter=jaeger \
-Dotel . nmetrics. exporter=none \
- Dot el . servi ce. nane=0OTel Deno \
- Dot el . i nstrunentati on. conmon. def aul t - enabl ed=f al se \
-Dot el .instrunmentation. opentel enetry-api.enabl ed=true \
-Dotel .instrunmentation. opentel enetry-instrunentation-annotations. enabl ed=true \
-classpath "bin:lib/*" \
deno. OTel Denp
[otel .javaagent 2024-04-12 16:10: 32: 140 +0100]
[main] INFO io.opentel enetry.javaagent.tooling. Versi onLogger - opentel enetry-javaagent - version: 1.32.0
ACADEMY DI NOSAUR
ACE GOLDFI NGER
ADAPTATI ON HOLES
AFFAI R PREJUDI CE
AFRI CAN EGG

You can now open the Jaeger backend in your web browser and search for the traces of the OTel Deno
service.

Distributed tracing in MySQL is limited to statement executions. This limitation comes from the fact that
context propagation is implemented through query attributes and is only supported for query executions.
While running, the server generates spans for other operations as well. Those spans can be seen in the
observability backend too, but they are unlinked from any of the traces started by the client application or
library. Similarly, spans created by Connector/J that do not produce server commands or those producing
commands lacking support for query attributes are depicted as terminal nodes in the trace graphs. This is
exemplified by operations such as the PI NG command. Nonetheless, the server still generates a span for
the corresponding operation, just that it appears unlinked from the originating trace.

148

https://www.jaegertracing.io/docs
https://dev.mysql.com/doc/refman/en/query-attributes.html

Chapter 14 Using Connector/J with Tomcat

The following instructions are based on the instructions for Tomcat-5.x, available at http://
tomcat.apache.org/tomcat-5.5-doc/jndi-datasource-examples-howto.html which is current at the time this
document was written.

First, install the . | ar file that comes with Connector/J in $CATALI NA HOVE/ common/ | i b so that it is
available to all applications installed in the container.

Next, configure the JNDI DataSource by adding a declaration resource to $CATALI NA HOVE/ conf /
server. xm in the context that defines your web application:

<Context>

<Resour ce nane="j dbc/ MySQLDB'
aut h="Cont ai ner"
type="j avax. sql . Dat aSour ce"/ >

<Resour cePar ans nane="j dbc/ MySQLDB" >
<par anet er >
<nane>f act or y</ nane>
<val ue>or g. apache. commons. dbcp. Basi cDat aSour ceFact or y</ val ue>
</ par anet er >

<par anet er >
<nanme>nmaxAct i ve</ nane>
<val ue>10</ val ue>

</ par anet er >

<par anet er >
<nanme>max| dl e</ nane>
<val ue>5</val ue>

</ par anet er >

<par anet er >
<nane>val i dat i onQuer y</ name>
<val ue>SELECT 1</val ue>

</ par anet er >

<par anet er >
<nane>t est OnBor r ow</ nane>
<val ue>t rue</ val ue>

</ par anet er >

<par anet er >
<nane>t est Wi | el dl e</ nane>
<val ue>t rue</ val ue>

</ par anet er >

<par anet er >
<nanme>t i neBet weenEvi cti onRunsM | | i s</ nane>
<val ue>10000</ val ue>

</ par anet er >

<par anet er >
<nanme>m nEvi ct abl el dl eTi nreM | | i s</ nane>
<val ue>60000</ val ue>

</ par anet er >

<par anet er >
<nane>user nane</ nane>
<val ue>soneuser </ val ue>

149

http://tomcat.apache.org/tomcat-5.5-doc/jndi-datasource-examples-howto.html
http://tomcat.apache.org/tomcat-5.5-doc/jndi-datasource-examples-howto.html

</ par anet er >

<par anet er >
<nanme>passwor d</ nane>
<val ue>sonepass</ val ue>
</ par anet er >

<par anet er >

<nane>dri ver Cl assNanme</ name>

<val ue>com nysql . cj . j dbc. Dri ver </ val ue>
</ par anet er >

<par anet er >

<nane>ur | </ name>

<val ue>j dbc: nysql : / /| ocal host : 3306/ t est </ val ue>
</ par anet er >

</ Resour cePar ans>
</ Cont ext >

Connector/J introduces a facility whereby, rather than use a val i dat i onQuery value of SELECT 1, it

is possible to use val i dat i onQuer y with a value setto/* ping */. This sends a ping to the server
which then returns a fake result set. This is a lighter weight solution. It also has the advantage that if using
Repl i cati onConnecti on or LoadBal ancedConnect i on type connections, the ping will be sent
across all active connections. The following XML snippet illustrates how to select this option:

<par anet er >
<nane>val i dat i onQuer y</ name>
<val ue>/* ping */</val ue>

</ par anet er >

Note that/* pi ng */ has to be specified exactly.

In general, follow the installation instructions that come with your version of Tomcat, as the way you
configure datasources in Tomcat changes from time to time, and if you use the wrong syntax in your XML
file, you will most likely end up with an exception similar to the following:

Error: java.sql.SQLException: Cannot |oad JDBC driver class '"null ' SQL
state: null

Note that the auto-loading of drivers having the META- | NF/ ser vi ce/ j ava. sql . Dri ver class in JDBC
4.0 and later causes an improper undeployment of the Connector/J driver in Tomcat on Windows. Namely,
the Connector/J jar remains locked. This is an initialization problem that is not related to the driver. The
possible workarounds, if viable, are as follows: use "ant i Resour ceLocki ng=t r ue" as a Tomcat Context
attribute, or remove the META- | NF/ directory.

150

Chapter 15 Using Connector/J with Spring

Table of Contents

15.1 USING JADCTEIMPI 8L € .ottt e et e et e et e e b e ean s 152
15.2 TranSaCtioNal JDBEC ACCESSuuiiiirtieeiiiti ettt e ettt e e et e et e et e et ettt e e e ettt e e e eatreeeentnaeeeentaaaeees 153
15.3 Connection Pooling WIth SPIINGoeuiiii e e e e aanas 155

The Spring Framework is a Java-based application framework designed for assisting in application design
by providing a way to configure components. The technique used by Spring is a well known design pattern
called Dependency Injection (see Inversion of Control Containers and the Dependency Injection pattern).
This article will focus on Java-oriented access to MySQL databases with Spring 2.0. For those wondering,
there is a .NET port of Spring appropriately named Spring.NET.

Spring is not only a system for configuring components, but also includes support for aspect oriented
programming (AOP). This is one of the main benefits and the foundation for Spring's resource and
transaction management. Spring also provides utilities for integrating resource management with JDBC
and Hibernate.

For the examples in this section the MySQL world sample database will be used. The first task is to set up
a MySQL data source through Spring. Components within Spring use the “bean” terminology. For example,
to configure a connection to a MySQL server supporting the world sample database, you might use:

<util:map i d="dbProps">
<entry key="db.driver" val ue="com nysql.cj.jdbc.Driver"/>
<entry key="db.jdbcurl" val ue="jdbc: nysql://|ocal host/world"/>
<entry key="db. usernane" val ue="nyuser"/>
<entry key="db. password" val ue="nypass"/>

</util:map>

In the above example, we are assigning values to properties that will be used in the configuration. For the
datasource configuration:

<bean i d="dat aSour ce"
cl ass="org. spri ngframewor k. j dbc. dat asour ce. Dri ver Manager Dat aSour ce" >
<property nanme="driverCl assNane" val ue="${db. driver}"/>
<property name="url" val ue="${db. jdbcurl}"/>
<property nanme="user nane" val ue="${db. usernane}"/>
<property nanme="password" val ue="${db. password}"/>
</ bean>

The placeholders are used to provide values for properties of this bean. This means that we can specify
all the properties of the configuration in one place instead of entering the values for each property on
each bean. We do, however, need one more bean to pull this all together. The last bean is responsible for
actually replacing the placeholders with the property values.

<bean

cl ass="org. spri ngframewor k. beans. f act ory. confi g. Propert yPl acehol der Confi gurer">
<property nanme="properties" ref="dbProps"/>

</ bean>

151

http://www.martinfowler.com/articles/injection.html

Using JdbcTenpl at e

Now that we have our MySQL data source configured and ready to go, we write some Java code to access
it. The example below will retrieve three random cities and their corresponding country using the data
source we configured with Spring.

/Il Create a new application context. this processes the Spring config
Appl i cati onContext ctx =
new C assPat hXm Appl i cati onCont ext (" exlappCont ext.xm ") ;
/! Retrieve the data source fromthe application context
Dat aSource ds = (DataSource) ctx.getBean("dataSource");
/'l Open a database connection using Spring's DataSourceUtils
Connection ¢ = DataSourceUtils. get Connecti on(ds);
try {
/] retrieve a list of three randomcities
Prepar edSt at enent ps = c. prepareSt at enent (
"select City.Nane as 'City', Country.Name as 'Country' " +
"fromCity inner join Country on City. CountryCode = Country.Code " +
"order by rand() limt 3");
Resul t Set rs = ps. executeQuery();
while(rs.next()) {
String city = rs.getString("Gty");
String country = rs.getString("Country");
Systemout.printf("The city % is in %%", city, country);

} catch (SQLException ex) {
/'l something has failed and we print a stack trace to anal yse the error
ex. print StackTrace();
/1 ignore failure closing connection
try { c.close(); } catch (SQ.Exception e) { }

} finally {
/'l properly rel ease our connection
Dat aSour celti | s. rel easeConnecti on(c, ds);

}

This is very similar to normal JDBC access to MySQL with the main difference being that we are using
DataSourceUltils instead of the DriverManager to create the connection.

While it may seem like a small difference, the implications are somewhat far reaching. Spring manages
this resource in a way similar to a container managed data source in a J2EE application server. When a
connection is opened, it can be subsequently accessed in other parts of the code if it is synchronized with
a transaction. This makes it possible to treat different parts of your application as transactional instead of
passing around a database connection.

15.1 Using JdbcTenpl at e

Spring makes extensive use of the Template method design pattern (see Template Method

Pattern). Our immediate focus will be on the JdbcTenpl at e and related classes, specifically

NarmedPar anmet er Jdbc Tenpl at e. The template classes handle obtaining and releasing a connection for
data access when one is needed.

The next example shows how to use NanedPar anet er JdbcTenpl at e inside of a DAO (Data Access
Object) class to retrieve a random city given a country code.

public class Ex2JdbcDao {
/**
* Data source reference which will be provided by Spring.
*
/
private DataSource dataSource;

/**

* Qur query to find a randomcity given a country code. Notice
* the ":country" paraneter toward the end. This is called a

* named paraneter.

*/

152

http://en.wikipedia.org/wiki/Template_method_pattern
http://en.wikipedia.org/wiki/Template_method_pattern

Transactional JDBC Access

private String queryString = "sel ect Name fromCity " +
"where CountryCode = :country order by rand() limt 1";

/**
* Retrieve a randomcity using Spring JDBC access cl asses.
*/
public String get RandonCit yByCountryCode(String cntryCode) {
/Il A tenplate that permts using queries with named paraneters
NamedPar anet er JdbcTenpl ate tenpl ate =
new NanmedPar anmet er JdbcTenpl at e(dat aSour ce) ;
/1l Ajava.util.Map is used to provide values for the paraneters
Map paranms = new HashMap();
par ans. put ("country", cntryCode);
/'l We query for an Object and specify what class we are expecting
return (String)tenplate.queryForObj ect (queryString, parans, String.class);
}

| **

* A JavaBean setter-style method to allow Spring to inject the data source.
* @ar am dat aSour ce
*/
public voi d set Dat aSour ce(Dat aSour ce dat aSource) {
t hi s. dat aSour ce = dat aSour ce;
}

}

The focus in the above code is on the get RandonCi t yByCount r yCode() method. We pass a country
code and use the NanedPar anet er JdbcTenpl at e to query for a city. The country code is placed in a
Map with the key "country”, which is the parameter is named in the SQL query.

To access this code, you need to configure it with Spring by providing a reference to the data source.

<bean i d="dao" cl ass="code. Ex2JdbcDao" >
<property nanme="dat aSource" ref="dataSource"/>
</ bean>

At this point, we can just grab a reference to the DAO from Spring and call
get RandonCi t yByCount r yCode() .

/] Create the application context

Appl i cati onContext ctx =

new Cl assPat hXm Appl i cati onCont ext (" ex2appCont ext. xm ");
/] Obtain a reference to our DAO

Ex2JdbcDao dao = (Ex2JdbcDao) ctx. get Bean("dao");

String countryCode = "USA";

// Find a fewrandomcities in the US
for(int i =0; i < 4; ++i)
Systemout.printf("A randomcity in % is %%", countryCode,
dao. get RandonCi t yByCount r yCode(count r yCode)) ;

This example shows how to use Spring's JDBC classes to completely abstract away the use of traditional
JDBC classes including Connect i on and Pr epar edSt at enent .

15.2 Transactional JDBC Access

Spring allows us to add transactions into our code without having to deal directly with the JDBC classes.
For that purpose, Spring provides a transaction management package that not only replaces JDBC
transaction management, but also enables declarative transaction management (configuration instead of
code).

153

Transactional JDBC Access

To use transactional database access, we will need to change the storage engine of the tables in the world
database. The downloaded script explicitly creates MylSAM tables, which do not support transactional
semantics. The InnoDB storage engine does support transactions and this is what we will be using. We
can change the storage engine with the following statements.

ALTER TABLE City ENG NE=I nnoDB;
ALTER TABLE Country ENG NE=I nnoDB;
ALTER TABLE CountrylLanguage ENG NE=I nnoDB;

A good programming practice emphasized by Spring is separating interfaces and implementations. What
this means is that we can create a Java interface and only use the operations on this interface without any
internal knowledge of what the actual implementation is. We will let Spring manage the implementation and
with this it will manage the transactions for our implementation.

First you create a simple interface:

public interface Ex3Dao {
Integer createCity(String name, String countryCode,
String district, Integer popul ation);

}

This interface contains one method that will create a new city record in the database and return the id of
the new record. Next you need to create an implementation of this interface.

public class Ex3Daol npl inpl enments Ex3Dao {
prot ect ed Dat aSource dataSource;
protected Sgl Updat e updat eQuery;
protected Sgl Function idQuery;

public Integer createCty(String name, String countryCode,
String district, Integer popul ation) {
updat eQuery. updat e(new Obj ect[] { nane, countryCode,
district, population });
return getlLastld();
}

protected Integer getlLastld() {
return i dQuery.run();
}

}

You can see that we only operate on abstract query objects here and do not deal directly with the JDBC
API. Also, this is the complete implementation. All of our transaction management will be dealt with in the
configuration. To get the configuration started, we need to create the DAO.

<bean i d="dao" cl ass="code. Ex3Daol npl ">
<property nanme="dat aSource" ref="dataSource"/>
<property nanme="updateQuery">...</property>
<property name="idQuery">...</property>

</ bean>

Now we need to set up the transaction configuration. The first thing we must do is create transaction
manager to manage the data source and a specification of what transaction properties are required for the
dao methods.

<bean i d="transacti onManager"
cl ass="org. spri ngframewor k. j dbc. dat asour ce. Dat aSour ceTr ansact i onManager " >
<property nanme="dat aSource" ref="dataSource"/>
</ bean>

154

Connection Pooling with Spring

<t x: advi ce id="txAdvi ce" transaction-nmanager="transacti onManager">
<tx:attributes>

(RORT)

</[tx:attributes>
</t x: advi ce>

The preceding code creates a transaction manager that handles transactions for the data source provided
to it. The t xAdvi ce uses this transaction manager and the attributes specify to create a transaction for all
methods. Finally we need to apply this advice with an AOP pointcut.

<aop: confi g>
<aop: poi nt cut i d="daoMet hods"
expr essi on="executi on(* code. Ex3Dao.*(..))"/>
<aop: advi sor advi ce-ref ="t xAdvi ce" poi ntcut-ref="daoMet hods"/ >
</ aop: confi g>

This basically says that all methods called on the Ex3Dao interface will be wrapped in a transaction. To
make use of this, we only have to retrieve the dao from the application context and call a method on the
dao instance.

Ex3Dao dao
I nteger id

(Ex3Da0) ctx. get Bean("dao");
dao. createC ty(name, countryCode, district, pop);

We can verify from this that there is no transaction management happening in our Java code and it is all
configured with Spring. This is a very powerful notion and regarded as one of the most beneficial features
of Spring.

15.3 Connection Pooling with Spring

In many situations, such as web applications, there will be a large number of small database transactions.
When this is the case, it usually makes sense to create a pool of database connections available for web
requests as needed. Although MySQL does not spawn an extra process when a connection is made,
there is still a small amount of overhead to create and set up the connection. Pooling of connections also
alleviates problems such as collecting large amounts of sockets in the TI ME_WAI T state.

Setting up pooling of MySQL connections with Spring is as simple as changing the data source
configuration in the application context. There are a number of configurations that we can use. The
first example is based on the Jakarta Commons DBCP library. The example below replaces the source
configuration that was based on Dr i ver Manager Dat aSour ce with DBCP's BasicDataSource.

<bean i d="dat aSour ce" destroy-nethod="cl ose"
cl ass="org. apache. commons. dbcp. Basi cDat aSour ce" >

<property nanme="driverCl assNane" val ue="${db. driver}"/>
<property name="url" val ue="${db.jdbcurl}"/>
<property nanme="usernane" val ue="${db. usernane}"/>
<property nanme="password" val ue="${db. password}"/>
<property name="initial Size" val ue="3"/>

</ bean>

The configuration of the two solutions is very similar. The difference is that DBCP will pool connections

to the database instead of creating a new connection every time one is requested. We have also set a
parameter here called i ni ti al Si ze. This tells DBCP that we want three connections in the pool when it
is created.

155

http://jakarta.apache.org/commons/dbcp/

156

Chapter 16 Troubleshooting Connector/J Applications

This section explains the symptoms and resolutions for the most commonly encountered issues with
applications using MySQL Connector/J.

Questions

» 16.1: When | try to connect to the database with MySQL Connector/J, | get the following exception:
SQLException: Server configuration denies access to data source
SQ.State: 08001
VendorError: 0
What is going on? | can connect just fine with the MySQL command-line client.
» 16.2: My application throws an SQLException 'No Suitable Driver'. Why is this happening?

» 16.3: I'm trying to use MySQL Connector/J in an applet or application and | get an exception similar to:
SQLException: Cannot connect to MySQL server on host: 3306.
Is there a MySQL server running on the nachi ne/port you
are trying to connect to?
(java. security. AccessControl Excepti on)

SQLSt at e: 08S01
VendorError: 0O

e 16.4: | have a servlet/application that works fine for a day, and then stops working overnight

» 16.5: | cannot connect to the MySQL server using Connector/J, and I'm sure the connection parameters
are correct.

» 16.6: Updating a table that contains a primary key that is either FLOAT or compound primary key that
uses FLOAT fails to update the table and raises an exception.

» 16.7: I getan ER_NET PACKET TOO LARGE exception, even though the binary blob size | want to
insert using JDBC is safely below the max_al | owed_packet size.

» 16.8: What should | do if | receive error messages similar to the following: “Communications link failure
— Last packet sent to the server was X ms ago”?

» 16.9: Why does Connector/J not reconnect to MySQL and re-issue the statement after a communication
failure instead of throwing an Exception, even though | use the aut oReconnect connection string
option?

e 16.10: How can | use 3-byte UTF8 with Connector/J?
» 16.11: How can | use 4-byte UTF8 (ut f 8nb4) with Connector/J?

» 16.12: Using useSer ver PrepSt nt s=f al se and certain character encodings can lead to corruption
when inserting BLOBs. How can this be avoided?

Questions and Answers

16.1: When I try to connect to the database with MySQL Connector/J, | get the following exception:
SQ.Exception: Server configuration denies access to data source

SQLSt at e: 08001

Vendor Error: O

What is going on? | can connect just fine with the MySQL command-line client.

157

https://dev.mysql.com/doc/refman/8.4/en/glossary.html#glos_primary_key
https://dev.mysql.com/doc/refman/8.4/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.4/en/floating-point-types.html
https://dev.mysql.com/doc/mysql-errors/8.4/en/server-error-reference.html#error_er_net_packet_too_large
https://dev.mysql.com/doc/refman/8.4/en/server-system-variables.html#sysvar_max_allowed_packet

Connector/J normally uses TCP/IP sockets to connect to MySQL (see Section 6.10, “Connecting

Using Unix Domain Sockets” and Section 6.11, “Connecting Using Named Pipes” for exceptions). The
security manager on the MySQL server uses its grant tables to determine whether a TCP/IP connection
is permitted. You must therefore add the necessary security credentials to the MySQL server for the
connection by issuing a GRANT statement to your MySQL Server. See GRANT Statement, for more
information.

Warning

Changing privileges and permissions improperly on MySQL can potentially cause
your server installation to have non-optimal security properties.

Note

Testing your connectivity with the nysgl command-line client will not work unless
you add the - - host flag, and use something other than | ocal host for the

host. The nysqgl command-line client will try to use Unix domain sockets if you
use the special host name | ocal host . If you are testing TCP/IP connectivity to

| ocal host, use 127. 0. 0. 1 as the host nhame instead.

16.2: My application throws an SQLException 'No Suitable Driver'. Why is this happening?
There are three possible causes for this error:

» The Connector/J driver is not in your CLASSPATH, see Chapter 4, Connector/J Installation.

» The format of your connection URL is incorrect, or you are referencing the wrong JDBC driver.

» When using DriverManager, the j dbc. dri ver s system property has not been populated with the
location of the Connector/J driver.

16.3: I'm trying to use MySQL Connector/J in an applet or application and | get an exception similar
to:

SQLExcepti on: Cannot connect to MySQL server on host: 3306.
Is there a MySQ. server running on the nmachi ne/ port you
are trying to connect to?

(java. security. AccessControl Excepti on)
SQLSt ate: 08S01
Vendor Error: 0O

Either you're running an Applet, your MySQL server has been installed with the ski p_net wor ki ng
system variable enabled, or your MySQL server has a firewall sitting in front of it.

Applets can only make network connections back to the machine that runs the web server that served

the .class files for the applet. This means that MySQL must run on the same machine (or you must have
some sort of port re-direction) for this to work. This also means that you will not be able to test applets from
your local file system, but must always deploy them to a web server.

Connector/J normally uses TCP/IP sockets to connect to MySQL (see Section 6.10, “Connecting Using
Unix Domain Sockets” and Section 6.11, “Connecting Using Named Pipes” for exceptions). TCP/IP
communication with MySQL can be affected by the ski p_net wor ki ng system variable or the server
firewall. If MySQL has been started with ski p_net wor ki ng enabled, you need to comment it out in

the file / et ¢/ nysql / my. cnf or/ et c/ nmy. cnf for TCP/IP connections to work. (Note that your server
configuration file might also exist in the dat a directory of your MySQL server, or somewhere else,
depending on how MySQL was compiled; binaries created by Oracle always look for / et ¢/ my. cnf and
dat adi r/ my. cnf ; see Using Option Files for details.) If your MySQL server has been firewalled, you will

158

https://dev.mysql.com/doc/refman/8.4/en/grant.html
https://dev.mysql.com/doc/refman/8.4/en/grant.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-command-options.html#option_mysql_host
https://dev.mysql.com/doc/refman/8.4/en/server-system-variables.html#sysvar_skip_networking
https://dev.mysql.com/doc/refman/8.4/en/server-system-variables.html#sysvar_skip_networking
https://dev.mysql.com/doc/refman/8.4/en/server-system-variables.html#sysvar_skip_networking
https://dev.mysql.com/doc/refman/8.4/en/option-files.html

need to have the firewall configured to allow TCP/IP connections from the host where your Java code is
running to the MySQL server on the port that MySQL is listening to (by default, 3306).

16.4: | have a servlet/application that works fine for a day, and then stops working overnight

MySQL closes connections after 8 hours of inactivity. You either need to use a connection pool that
handles stale connections or use the aut oReconnect parameter (see Section 6.3, “Configuration
Properties”).

Also, catch SQLExcept i ons in your application and deal with them, rather than propagating them all

the way until your application exits. This is just good programming practice. MySQL Connector/J will set
the SQLSt at e (see j ava. sql . SQLExcepti on. get SQLSt at e() in your API docs) to 08S01 when it
encounters network-connectivity issues during the processing of a query. Attempt to reconnect to MySQL
at this point.

The following (simplistic) example shows what code that can handle these exceptions might look like:

Example 16.1 Connector/J: Example of transaction with retry logic

publ i c voi d doBusi nessOp() throws SQLException {
Connection conn = null;
Statenent stnt = null;
ResultSet rs = null;

/1

/! How many tinmes do you want to retry the transaction
/! (or at least _getting_ a connection)?

/1

int retryCount = 5;

bool ean transacti onConpl eted = fal se;

do {
try {
conn = get Connection(); // assume getting this froma
/] javax.sql.DataSource, or the
/'l java.sql.Driver Manager

conn. set Aut oCommi t (f al se) ;

I/

/]l Okay, at this point, the '"retry-ability' of the

/] transaction really depends on your application | ogic,
/'l whether or not you're using autocommit (in this case
/1 not), and whether you're using transactional storage
/'l engi nes

I/

/'l For this exanple, we'll assune that it's _not_ safe
/Il to retry the entire transaction, so we set retry

/'l count to O at this point

I/

/1 1f you were using exclusively transaction-safe tables,
/'l or your application could recover froma connecti on goi ng
/1 bad in the mddle of an operation, then you woul d not
/Il touch 'retryCount' here, and just let the | oop repeat
[/l until retryCount == 0.

I/

retryCount = O;

stnt = conn.createStatenent();
String query = "SELECT foo FROM bar ORDER BY baz";

rs = stnt.executeQuery(query);

159

while (rs.next()) {

}
rs.close();
rs = null;

stnt.cl ose();
stnt = null;

conn.comit();
conn. cl ose();
conn = null;

transacti onConpl eted = true;
} catch (SQLException sqgl Ex) {

/1

/'l The two SQL states that are 'retry-able' are 08S01

/1 for a communications error, and 40001 for deadl ock.

/1

/Il Only retry if the error was due to a stal e connecti on,
/'l comuni cati ons probl em or deadl ock

/1

String sqgl State = sqgl Ex. get SQLState();

if ("08S01".equal s(sqgl State) || "40001".equal s(sqgl State)) {
retryCount -= 1,

} else {
retryCount = O;

}
nally {
if (rs!=null) {
try {
rs.close();
} catch (SQLException sql Ex) {
/1 You'd probably want to log this...
}

}of

}

if (stnt !'=null) {
try {
stnt.cl ose();
} catch (SQLException sql Ex) {
/1 You'd probably want to log this as well...
}

}

if (conn = null) {
try {
/1
/1l 1f we got here, and conn is not null, the
/'l transaction should be rolled back, as not
/1 all work has been done

try {
conn. rol | back();
} finally {

conn. cl ose();

}

} catch (SQLException sqgl Ex) {
/1
/1 1f we got an exception here, sonething
/] pretty serious is going on, so we better
/] pass it up the stack, rather than just
Il logging it...

160

t hrow sqgl Ex;

}

}
} while (!transacti onConpl eted && (retryCount > 0));

Note

Use of the aut oReconnect option is not recommended because there is no safe
method of reconnecting to the MySQL server without risking some corruption of

the connection state or database state information. Instead, use a connection

pool, which will enable your application to connect to the MySQL server using an
available connection from the pool. The aut oReconnect facility is deprecated, and
may be removed in a future release.

16.5: | cannot connect to the MySQL server using Connector/J, and I'm sure the connection
parameters are correct.

Make sure that the ski p_net wor ki ng system variable has not been enabled on your server. Connector/
J must be able to communicate with your server over TCP/IP; named sockets are not supported. Also
ensure that you are not filtering connections through a firewall or other network security system. For more
information, see Can't connect to [local] MySQL server.

16.6: Updating a table that contains a primary key that is either FLOAT or compound primary key
that uses FLOAT fails to update the table and raises an exception.

Connector/J adds conditions to the WHERE clause during an UPDATE to check the old values of the primary
key. If there is no match, then Connector/J considers this a failure condition and raises an exception.

The problem is that rounding differences between supplied values and the values stored in the database
may mean that the values never match, and hence the update fails. The issue will affect all queries, not
just those from Connector/J.

To prevent this issue, use a primary key that does not use FLOAT. If you have to use a floating point
column in your primary key, use DOUBLE or DECI VAL types in place of FLOAT.

16.7: 1get an ER_NET_PACKET_TOO LARCE exception, even though the binary blob size | want to
insert using JDBC is safely below the max_al | owed_packet size.

This is because the hexEscapeBl ock() method in
com nysql . cj . Abstract PreparedQuery. streanifoByt es() may almost double the size of your
data.

16.8: What should I do if | receive error messages similar to the following: “Communications link
failure — Last packet sent to the server was X ms ago”?

Generally speaking, this error suggests that the network connection has been closed. There can be several
root causes:

» Firewalls or routers may clamp down on idle connections (the MySQL client/server protocol does not
ping).

» The MySQL Server may be closing idle connections that exceed the wai t _ti meout or
i nteractive_ timeout threshold.

Although network connections can be volatile, the following can be helpful in avoiding problems:

161

https://dev.mysql.com/doc/refman/8.4/en/server-system-variables.html#sysvar_skip_networking
https://dev.mysql.com/doc/refman/8.4/en/can-not-connect-to-server.html
https://dev.mysql.com/doc/refman/8.4/en/glossary.html#glos_primary_key
https://dev.mysql.com/doc/refman/8.4/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.4/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.4/en/update.html
https://dev.mysql.com/doc/refman/8.4/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.4/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.4/en/fixed-point-types.html
https://dev.mysql.com/doc/refman/8.4/en/floating-point-types.html
https://dev.mysql.com/doc/mysql-errors/8.4/en/server-error-reference.html#error_er_net_packet_too_large
https://dev.mysql.com/doc/refman/8.4/en/server-system-variables.html#sysvar_max_allowed_packet

» Ensure connections are valid when used from the connection pool. Use a query that starts with / * pi ng
*/ to execute a lightweight ping instead of full query. Note, the syntax of the ping needs to be exactly as
specified here.

* Minimize the duration a connection object is left idle while other application logic is executed.

» Explicitly validate the connection before using it if the connection has been left idle for an extended
period of time.

e Ensurethatwait tineout andinteractive_ tineout are set sufficiently high.
» Ensure that t cpKeepal i ve is enabled.

» Ensure that any configurable firewall or router timeout settings allow for the maximum expected
connection idle time.

Note

Do not expect to be able to reuse a connection without problems if it has being lying
idle for a period. If a connection is to be reused after being idle for any length of
time, ensure that you explicitly test it before reusing it.

16.9: Why does Connector/J not reconnect to MySQL and re-issue the statement after a
communication failure instead of throwing an Exception, even though | use the aut oReconnect
connection string option?

There are several reasons for this. The first is transactional integrity. The MySQL Reference Manual states
that “there is no safe method of reconnecting to the MySQL server without risking some corruption of the
connection state or database state information”. Consider the following series of statements for example:

conn. creat eSt at enent () . execut e(

" UPDATE checki ng_account SET bal ance = bal ance - 1000. 00 WHERE custoner="Snith'");
conn. creat eSt at enent () . execut e(

"UPDATE savi ngs_account SET bal ance = bal ance + 1000. 00 WHERE custoner='Snith'");
conn.comit();

Consider the case where the connection to the server fails after the UPDATE to checki ng_account .

If no exception is thrown, and the application never learns about the problem, it will continue executing.
However, the server did not commit the first transaction in this case, so that will get rolled back. But
execution continues with the next transaction, and increases the savi ngs_account balance by 1000.
The application did not receive an exception, so it continued regardless, eventually committing the second
transaction, as the commit only applies to the changes made in the new connection. Rather than a transfer
taking place, a deposit was made in this example.

Note that running with aut ocomni t enabled does not solve this problem. When Connector/J encounters
a communication problem, there is no means to determine whether the server processed the currently
executing statement or not. The following theoretical states are equally possible:

e The server never received the statement, and therefore no related processing occurred on the server.
» The server received the statement, executed it in full, but the response was not received by the client.

If you are running with aut ocommi t enabled, it is not possible to guarantee the state of data on the server
when a communication exception is encountered. The statement may have reached the server, or it may
not. All you know is that communication failed at some point, before the client received confirmation (or
data) from the server. This does not only affect aut ocommi t statements though. If the communication

162

problem occurred during Connect i on. conmi t (), the question arises of whether the transaction was
committed on the server before the communication failed, or whether the server received the commit
request at all.

The second reason for the generation of exceptions is that transaction-scoped contextual data may be
vulnerable, for example:

» Temporary tables.
» User-defined variables.
» Server-side prepared statements.

These items are lost when a connection fails, and if the connection silently reconnects without generating
an exception, this could be detrimental to the correct execution of your application.

In summary, communication errors generate conditions that may well be unsafe for Connector/J to simply
ignore by silently reconnecting. It is necessary for the application to be notified. It is then for the application
developer to decide how to proceed in the event of connection errors and failures.

16.10: How can | use 3-byte UTF8 with Connector/J?

Because there is no Java-style character set name for ut f nb3 that you can use with the connection option
char at er Encodi ng, the only way to use ut f 8nb3 as your connection character set is to use a ut f 8nb3
collation (for example, ut f 8_gener al _ci) for the connection option connect i onCol | at i on, which
forces a ut f 8nb3 character set to be used. See Section 6.7, “Using Character Sets and Unicode” for
details.

16.11: How can | use 4-byte UTF8 (ut f 8nb4) with Connector/J?

To use 4-byte UTF8 with Connector/J configure the MySQL server with

character_set_server =ut f 8nmb4. Connector/J will then use that setting, if char act er Encodi ng and
connect i onCol | at i on have not been set in the connection string. This is equivalent to autodetection

of the character set. See Section 6.7, “Using Character Sets and Unicode” for details. You can use

char act er Encodi ng=UTF- 8 to use ut f 8nmb4, even if char act er _set server on the server has
been set to something else.

16.12: Using useSer ver PrepSt nt s=f al se and certain character encodings can lead to corruption
when inserting BLOBs. How can this be avoided?

When using certain character encodings, such as SJIS, CP932, and BIG5, it is possible that BLOB data
contains characters that can be interpreted as control characters, for example, backslash, \'. This can lead
to corrupted data when inserting BLOBSs into the database. There are two things that need to be done to
avoid this:

1. Setthe connection string option useSer ver PrepStnt s totr ue.

2. Set SQL_MODE to NO_BACKSLASH_ESCAPES.

163

https://dev.mysql.com/doc/refman/8.4/en/server-system-variables.html#sysvar_character_set_server
https://dev.mysql.com/doc/refman/8.4/en/server-system-variables.html#sysvar_character_set_server

164

Chapter 17 Known Issues and Limitations

The following are some known issues and limitations for MySQL Connector/J:

» When Connector/J retrieves timestamps for a daylight saving time (DST) switch day using the
get Ti meSt anp() method on the result set, some of the returned values might be wrong. In order to
avoid such errors, we recommend setting a connection time zone that uses a monotonic clock by, for
example, setting connect i onTi meZone=UTC, and configuring other date-time connection properties
according to your needs; see Section 6.6, “Handling of Date-Time Values” for details.

e The functionality of the property el i deSet Aut oConmi t s has been disabled due to Bug# 66884. Any
value given for the property is ignored by Connector/J.

» MySQL Server uses a proleptic Gregorian calendar internally. However, Connector/J uses
j ava. sql . Dat e, which is non-proleptic. Therefore, when setting and retrieving dates that were before
the Julian-Gregorian cutover (October 15, 1582) using the Pr epar edSt at enment methods, always
supply explicitly a proleptic Gregorian calendar to the set Dat e() and get Dat e() methods, in order to
avoid possible errors with dates stored to and calculated by the server.

» To use Windows named pipes for connections, the MySQL Server that Connector/J wants to connect
to must be started with the system variable naned_pi pe_ful | _access_gr oup; see Section 6.11,
“Connecting Using Named Pipes” for detalils.

165

https://dev.mysql.com/doc/refman/8.4/en/server-system-variables.html#sysvar_named_pipe_full_access_group

166

Chapter 18 Connector/J Support

Table of Contents

18.1 Connector/J COMMUNILY SUPPOIT . .ceuniiteii ettt ettt e e e e et e et e e e e e et e e ean e eannas 167
18.2 How to Report Connector/J Bugs or Problems ... 167

18.1 Connector/J Community Support

You can join the #connect or s channel in the MySQL Community Slack workspace, where you can get
help directly from MySQL developers and other users.

18.2 How to Report Connector/J Bugs or Problems

The normal place to report bugs is http://bugs.mysql.com/, which is the address for our bugs database.
This database is public, and can be browsed and searched by anyone. If you log in to the system, you will
also be able to enter new reports.

If you find a sensitive security bug in MySQL Server, please let us know immediately by sending an email
message to <secal ert _us@r acl e. conm. Exception: Support customers should report all problems,
including security bugs, to Oracle Support at http://support.oracle.com/.

Writing a good bug report takes patience, but doing it right the first time saves time both for us and for
yourself. A good bug report, containing a full test case for the bug, makes it very likely that we will fix
sooner rather than later.

This section will help you write your report correctly so that you do not waste your time doing things that
may not help us much or at all.

If you have a repeatable bug report, please report it to the bugs database at http://bugs.mysql.com/. Any
bug that we are able to repeat has a high chance of being fixed sooner rather than later.

To report other problems, you can use one of the MySQL mailing lists.

Remember that it is possible for us to respond to a message containing too much information, but not to
one containing too little. People often omit facts because they think they know the cause of a problem and
assume that some details do not matter.

A good principle is this: If you are in doubt about stating something, state it. It is faster and less
troublesome to write a couple more lines in your report than to wait longer for the answer if we must ask
you to provide information that was missing from the initial report.

The most common errors made in bug reports are (a) not including the version number of Connector/J or
MySQL used, and (b) not fully describing the platform on which Connector/J is installed (including the JVM
version, and the platform type and version number that MySQL itself is installed on).

This is highly relevant information, and in 99 cases out of 100, the bug report is useless without it. Very
often we get questions like, “Why doesn't this work for me?” Then we find that the feature requested was
not implemented in that MySQL version, or that a bug described in a report has already been fixed in
newer MySQL versions.

Sometimes the error is platform-dependent; in such cases, it is next to impossible for us to fix anything
without knowing the operating system and the version number of the platform.

167

https://mysqlcommunity.slack.com/messages/connectors
http://bugs.mysql.com/
http://support.oracle.com/
http://bugs.mysql.com/

How to Report Connector/J Bugs or Problems

If at all possible, create a repeatable, standalone testcase that doesn't involve any third-party classes.

To streamline this process, we ship a base class for testcases with Connector/J, named

‘com nysql . cj.jdbc.util.BaseBugReport' To create atestcase for Connector/J using this class,
create your own class that inherits from com nysql . cj . j dbc. uti | . BaseBugReport and override the
methods set Up(), t ear Down() and runTest ().

In the set Up() method, create code that creates your tables, and populates them with any data needed to
demonstrate the bug.

Inthe runTest () method, create code that demonstrates the bug using the tables and data you created
in the set Up method.

In the t ear Down() method, drop any tables you created in the set Up() method.

In any of the above three methods, use one of the variants of the get Connect i on() method to create a
JDBC connection to MySQL:

e get Connection() - Provides a connection to the JDBC URL specified in get Ur | () . If a connection
already exists, that connection is returned, otherwise a new connection is created.

» get NewConnect i on() - Use this if you need to get a new connection for your bug report (that is, there
is more than one connection involved).

» get Connection(String url) -Returns a connection using the given URL.

e get Connection(String url, Properties props) - Returns a connection using the given URL
and properties.

If you need to use a JDBC URL that is different from 'jdbc:mysql:///test’, override the method get Ur | () as
well.

Use the assert Tr ue(bool ean expressi on) and assert True(String fail ureMessage,

bool ean expressi on) methods to create conditions that must be met in your testcase demonstrating
the behavior you are expecting (vs. the behavior you are observing, which is why you are most likely filing
a bug report).

Finally, create a mai n() method that creates a new instance of your testcase, and calls the r un method:
public static void main(String[] args) throws Exception {
new MyBugReport ().run();
}

Once you have finished your testcase, and have verified that it demonstrates the bug you are reporting,
upload it with your bug report to http://bugs.mysqgl.com/.

168

http://bugs.mysql.com/

Index
, 98

A

allowLoadLocallnfile connection property, 44
allowLoadLocallnfilelnPath connection property, 44
allowMultiQueries connection property, 44
allowNanAndInf connection property, 46
allowPublicKeyRetrieval connection property, 41
allowReplicaDownConnections connection property, 56
allowSourceDownConnections connection property, 56
allowUrlinLocallnfile connection property, 45
alwaysSendSetlsolation connection property, 61
Authentication Methods

Kerberos, 96

PAM, 96
authenticationPlugins connection property, 33
authenticationWebAuthnCallbackHandler connection
property, 34
autoClosePStmtStreams connection property, 46
autoGenerateTestcaseScript connection property, 67
autoReconnect connection property, 54
autoReconnectForPools connection property, 54
autoSlowlLog connection property, 65

B

blobsAreStrings connection property, 51
blobSendChunkSize connection property, 50

C

cacheCallableStmts connection property, 61
cacheDefaultTimeZone connection property, 45
cachePrepStmts connection property, 61
cacheResultSetMetadata connection property, 62
cacheServerConfiguration connection property, 62
callableStmtCacheSize connection property, 59
character sets

with Connector/J, 84
characterEncoding connection property, 37
characterSetResults connection property, 37
client-side failover, 130
clientCertificateKeyStorePassword connection property,
43
clientCertificateKeyStoreType connection property, 43
clientCertificateKeyStoreUrl connection property, 42
clientinfoProvider connection property, 35
clobberStreamingResults connection property, 48
clobCharacterEncoding connection property, 51
compatibility information, 3
compensateOnDuplicateKeyUpdateCounts connection
property, 47

connecting

through JDBC and Connector/J, 22

with Unix domain socket, 94

with Windows named pipes, 94, 165
connection pooling, 123, 155
connection properties, 25
connection URL, 22
connectionAttributes connection property, 35
connectionCollation connection property, 38
connectionLifecyclelnterceptors connection property, 35
connectionTimeZone connection property, 52, 78
Connector/J

known issues, 165

limitations, 165

reporting problems, 167

troubleshooting, 157
connectTimeout connection property, 39
continueBatchOnError connection property, 46
createDatabaselfNotExist connection property, 35
customCharsetMapping connection property, 38

D

databaseTerm connection property, 36
defaultAuthenticationPlugin connection property, 34
defaultFetchSize connection property, 62
detectCustomCaollations connection property, 36
disabledAuthenticationPlugins connection property, 34
disconnectOnExpiredPasswords connection property, 36
DNS SRV records, 22, 103

dnsSrv connection property, 39
dontCheckOnDuplicateKeyUpdatelInSQL connection
property, 62

dontTrackOpenResources connection property, 46
dumpQueriesOnException connection property, 67

E

elideSetAutoCommits connection property, 62
emptyStringsConvertToZero connection property, 48
emulateLocators connection property, 51
emulateUnsupportedPstmts connection property, 47
enableEscapeProcessing connection property, 62
enablePacketDebug connection property, 66
enableQueryTimeouts connection property, 63

error codes, 105

ER_ABORTING_CONNECTION, 105
ER_ACCESS_DENIED_ERROR, 105
ER_BAD_FIELD_ERROR, 105
ER_BAD_HOST_ERROR, 105
ER_BAD_TABLE_ERROR, 105
ER_BLOBS_AND_NO_TERMINATED, 105
ER_BLOB_CANT_HAVE_DEFAULT, 105
ER_BLOB_KEY_WITHOUT_LENGTH, 105
ER_BLOB_USED_AS_KEY, 105

169

ER_CANT_DO_THIS_DURING_AN_TRANSACTION,

105
ER_CANT_DROP_FIELD_OR_KEY, 105
ER_CANT_REMOVE_ALL_FIELDS, 105
ER_CANT_USE_OPTION_HERE, 105
ER_CHECK_NOT_IMPLEMENTED, 105
ER_CHECK_NO_SUCH_TABLE, 105
ER_COLLATION_CHARSET_MISMATCH, 105
ER_COLUMNACCESS_DENIED_ERROR, 105
ER_CONNECT_TO_SOURCE, 105
ER_CON_COUNT_ERROR, 105
ER_DBACCESS_DENIED_ERROR, 105
ER_DERIVED_MUST_HAVE_ALIAS, 105
ER_DUP_ENTRY, 105
ER_DUP_FIELDNAME, 105

ER_DUP_KEY, 105

ER_DUP_KEYNAME, 105

ER_DUP_UNIQUE, 105

ER_EMPTY_QUERY, 105
ER_FIELD_SPECIFIED_TWICE, 105
ER_FORCING_CLOSE, 105
ER_GRANT_WRONG_HOST_OR_USER, 105
ER_HANDSHAKE_ERROR, 105
ER_HOST_IS_BLOCKED, 105
ER_HOST_NOT_PRIVILEGED, 105
ER_ILLEGAL_GRANT_FOR_TABLE, 105
ER_ILLEGAL_REFERENCE, 105
ER_INVALID_DEFAULT, 105
ER_INVALID_USE_OF_NULL, 105
ER_IPSOCK_ERROR, 105
ER_KEY_COLUMN_DOES_NOT_EXITS, 105
ER_LOCK_DEADLOCK, 105
ER_LOCK_WAIT_TIMEOUT, 105
ER_MIX_OF _GROUP_FUNC_AND_FIELDS, 105
ER_MULTIPLE_PRI_KEY, 105
ER_NET_ERROR_ON_WRITE, 105
ER_NET_FCNTL_ERROR, 105
ER_NET_PACKETS_OUT_OF_ORDER, 105
ER_NET_PACKET_TOO_LARGE, 105
ER_NET_READ_ERROR, 105
ER_NET_READ_ERROR_FROM_PIPE, 105
ER_NET_READ_INTERRUPTED, 105
ER_NET_UNCOMPRESS_ERROR, 105
ER_NET_WRITE_INTERRUPTED, 105
ER_NEW_ABORTING_CONNECTION, 105
ER_NONEXISTING_GRANT, 105
ER_NONEXISTING_TABLE_GRANT, 105
ER_NONUNIQ_TABLE, 105
ER_NON_UNIQ_ERROR, 105
ER_NOT_ALLOWED_COMMAND, 105
ER_NOT_SUPPORTED_AUTH_MODE, 105
ER_NOT_SUPPORTED_YET, 105
ER_NO_DEFAULT, 105
ER_NO_PERMISSION_TO_CREATE_USER, 105

ER_NO_REFERENCED_ROW, 105
ER_NO_SUCH_INDEX, 105
ER_NO_SUCH_TABLE, 105
ER_NULL_COLUMN_IN_INDEX, 105
ER_OPERAND_COLUMNS, 105
ER_OUTOFMEMORY, 105
ER_OUT_OF_SORTMEMORY, 105
ER_PARSE_ERROR, 105
ER_PASSWORD_ANONYMOUS_USER, 105
ER_PASSWORD_NOT_ALLOWED, 105
ER_PASSWORD_NO_MATCH, 105
ER_PRIMARY_CANT_HAVE_NULL, 105
ER_READ_ONLY_TRANSACTION, 105
ER_REGEXP_ERROR, 105
ER_REQUIRES_PRIMARY_KEY, 105
ER_ROW_IS_REFERENCED, 105
ER_SELECT_REDUCED, 105
ER_SERVER_SHUTDOWN, 105
ER_SOURCE_NET_READ, 105
ER_SOURCE_NET_WRITE, 105
ER_SPATIAL_CANT_HAVE_NULL, 105
ER_SUBQUERY_NO_1_ROW, 105
ER_SYNTAX_ERROR, 105
ER_TABLEACCESS_DENIED_ERROR, 105
ER_TABLENAME_NOT_ALLOWED_HERE, 105
ER_TABLE_CANT_HANDLE_AUTO_INCREMENT, 105
ER_TABLE_CANT_HANDLE_BLOB, 105
ER_TABLE_EXISTS_ERROR, 105
ER_TABLE_MUST_HAVE_COLUMNS, 105
ER_TOO_BIG_FIELDLENGTH, 105
ER_TOO_BIG_ROWSIZE, 105
ER_TOO_BIG_SELECT, 105
ER_TOO_LONG_IDENT, 105
ER_TOO_LONG_KEY, 105
ER_TOO_LONG_STRING, 105
ER_TOO_MANY_KEYS, 105
ER_TOO_MANY_KEY_PARTS, 105
ER_TOO_MANY_ROWS, 105
ER_TOO_MANY_USER_CONNECTIONS, 105
ER_UNKNOWN_CHARACTER_SET, 105
ER_UNKNOWN_COM_ERROR, 105
ER_UNKNOWN_PROCEDURE, 105
ER_UNKNOWN_STORAGE_ENGINE, 105
ER_UNKNOWN_TABLE, 105
ER_UNSUPPORTED_EXTENSION, 105
ER_USER_LIMIT_REACHED, 105
ER_WARN_DATA_OUT_OF_RANGE, 105
ER_WARN_DATA_TRUNCATED, 105
ER_WARN_NULL_TO_NOTNULL, 105
ER_WARN_TOO_FEW_RECORDS, 105
ER_WARN_TOO_MANY_RECORDS, 105
ER_WRONG_AUTO_KEY, 105
ER_WRONG_COLUMN_NAME, 105
ER_WRONG_DB_NAME, 105

170

ER_WRONG_FIELD_SPEC, 105
ER_WRONG_FIELD_TERMINATORS, 105
ER_WRONG_FIELD_WITH_GROUP, 105
ER_WRONG_FK_DEF, 105
ER_WRONG_GROUP_FIELD, 105
ER_WRONG_KEY_COLUMN, 105
ER_WRONG_NAME_FOR_CATALOG, 105
ER_WRONG_NAME_FOR_INDEX, 105
ER_WRONG_NUMBER_OF_COLUMNS_IN_SELECT,
105

ER_WRONG_OUTER_JOIN, 105
ER_WRONG_PARAMCOUNT_TO_PROCEDURE, 105
ER_WRONG_SUM_SELECT, 105
ER_WRONG_TABLE_NAME, 105
ER_WRONG_TYPE_FOR_VAR, 105
ER_WRONG_VALUE_COUNT, 105
ER_WRONG_VALUE_COUNT_ON_ROW, 105
ER_WRONG_VALUE_FOR_VAR, 105
exceptioninterceptors connection property, 67
explainSlowQueries connection property, 65

F

failover

Java clients, 127
failOverReadOnly connection property, 55
fallbackToSystemKeyStore connection property, 43
fallbackToSystemTrustStore connection property, 42
fipsCompliantJsse connection property, 43
forceConnectionTimeZoneToSession connection
property, 52, 78
fractional seconds connection property, 83
functionsNeverReturnBlobs connection property, 51

G

gatherPerfMetrics connection property, 65
generateSimpleParameterMetadata connection property,
47

getProceduresReturnsFunctions connection property, 50

H

ha.enableJMX connection property, 56
ha.loadBalanceStrategy connection property, 57
holdResultsOpenOverStatementClose connection
property, 48

ignoreNonTxTables connection property, 67
includelnnodbStatusinDeadlockExceptions connection
property, 67

includeThreadDumplnDeadlockExceptions connection
property, 68
includeThreadNamesAsStatementComment connection
property, 68

initialTimeout connection property, 55
Installing Connector/J

With binary distribution, 7

With Maven dependencies, 9
interactiveClient connection property, 36

J
J2EE

connection pooling, 123

load balancing, 131
JDBC

and MySQL data types, 75

background information for Connector/J, 113

character sets, 84

CLASSPATH, 8

code examples, 19

compatibility, 73

configuration properties, 25

driver for MySQL, 1

SQLState codes, 105

troubleshooting, 157, 165

versions supported, 3
jdbcCompliantTruncation connection property, 48
JSON

scheme validation, 140

K

Kerberos authentication
with Connector/J, 96
KeyManagerFactoryProvider connection property, 44
keyStoreProvider connection property, 44
known issues
Connector/J, 165

largeRowsSizeThreshold connection property, 63
IdapServerHostname connection property, 34
limitations

Connector/J, 165
load balancing

with Connector/J, 131, 133
loadBalanceAutoCommitStatementRegex connection
property, 57
loadBalanceAutoCommitStatementThreshold connection
property, 57
loadBalanceBlocklistTimeout connection property, 58
loadBalanceConnectionGroup connection property, 58
loadBalanceExceptionChecker connection property, 58
loadBalanceHostRemovalGracePeriod connection
property, 56
loadBalancePingTimeout connection property, 58
loadBalanceSQLExceptionSubclassFailover connection
property, 58

171

loadBalanceSQLStateFailover connection property, 58
loadBalanceValidateConnectionOnSwapServer
connection property, 59

localSocketAddress connection property, 39
locatorFetchBufferSize connection property, 51

logger connection property, 64

loggers, 145

logging, 145

logSlowQueries connection property, 65
logXaCommands connection property, 66

M

maintainTimeStats connection property, 61
maxAllowedPacket connection property, 39
maxByteArrayAsHex connection property, 64
maxQuerySizeTolLog connection property, 64
maxReconnects connection property, 55
maxRows connection property, 48
metadataCacheSize connection property, 60
multi-host connections

with Connector/J, 127
multifactor authentication (MFA), 97

N

named pipes, 94, 165

netTimeoutForStreamingResults connection property, 48
noAccessToProcedureBodies connection property, 50
noDatetimeStringSync connection property, 53
nullDatabaseMeansCurrent connection property, 50

O

ociConfigFile connection property, 34
ociConfigProfile connection property, 34
OpenTelemetry, 147

openTelemetry connection property, 67
overrideSupportsintegrityEnhancementFacility
connection property, 68

P

packetDebugBufferSize connection property, 66
padCharsWithSpace connection property, 48

PAM authentication, 95

paranoid connection property, 41

password connection property, 33

passwordl connection property, 33

password2 connection property, 33

password3 connection property, 33
passwordCharacterEncoding connection property, 36
passwords, 97

pedantic connection property, 69
pinGlobalTxToPhysicalConnection connection property,
59

populatelnsertRowWithDefaultValues connection
property, 49

prepStmtCacheSize connection property, 60
prepStmtCacheSqlLimit connection property, 60
preservelnstant connection property, 78
preservelnstants connection property, 53
processEscapeCodesForPrepStmts connection property,
47

profilerEventHandler connection property, 64
profileSQL connection property, 64

proleptic Gregorian calendar, 165
propertiesTransform connection property, 37

Q

queriesBeforeRetrySource connection property, 55
query attributes, 86

querylnfoCacheFactory connection property, 60
querylnterceptors connection property, 46
queryTimeoutKillsConnection connection property, 46

R

readFromSourceWhenNoReplicas connection property,
56
readOnlyPropagatesToServer connection property, 63
reconnectAtTXEnd connection property, 55
replication

with Connector/J, 133
replicationConnectionGroup connection property, 59
reportMetricsintervalMillis connection property, 66
requireSSL connection property, 45
resourceld connection property, 59
resultSetSizeThreshold connection property, 66
retriesAllIDown connection property, 55
rewriteBatchedStatements connection property, 63
rollbackOnPooledClose connection property, 37

S

scrollTolerantForwardOnly connection property, 49
secondsBeforeRetrySource connection property, 56
selfDestructOnPingMaxOperations connection property,
57

selfDestructOnPingSecondsLifetime connection property,
57

sendFractionalSeconds connection property, 53
sendFractionalSecondsForTime connection property, 53,
83

serverAffinityOrder connection property, 59
serverConfigCacheFactory connection property, 61
serverRSAPublicKeyFile connection property, 41
session state tracker, 104

sessionVariables connection property, 37

SLF4J, 145

slowQueryThresholdMillis connection property, 65

172

slowQueryThresholdNanos connection property, 65
socketFactory connection property, 39
socketTimeout connection property, 39
socksProxyHost connection property, 38
socksProxyPort connection property, 38
socksProxyRemoteDns connection property, 40
Spring framework, 151

SQLState error codes, 105

SSL, 88

sslContextProvider connection property, 44
ssIMode connection property, 41

strictUpdates connection property, 49

T

tcpKeepAlive connection property, 40
tcpNoDelay connection property, 40
tcpRcvBuf connection property, 40
tcpSndBuf connection property, 40
tcpTrafficClass connection property, 40
time zone conversion, 78
tinyIntlisBit connection property, 49
tisCiphersuites connection property, 43
tisVersions connection property, 43
Tomcat application server, 149
traceProtocol connection property, 66
trackSessionState connection property, 38
transformedBitIsBoolean connection property, 49
treatMysglDatetimeAsTimestamp connection property, 54
treatUtiIDateAsTimestamp connection property, 54
troubleshooting

Connector/J, 157

JDBC SQLState codes, 105
trustCertificateKeyStorePassword connection property,
42
trustCertificateKeyStoreType connection property, 42
trustCertificateKeyStoreUrl connection property, 42
trustManagerFactoryProvider connection property, 44

U

ultraDevHack connection property, 68
Unicode

with Connector/J, 84
Unix doman socket, 94
useAffectedRows connection property, 37
useColumnNamesInFindColumn connection property, 68
useCompression connection property, 40
useConfigs connection property, 35
useCursorFetch connection property, 61
useHostsInPrivileges connection property, 50
uselnformationSchema connection property, 50
useLocalSessionState connection property, 60
useLocalTransactionState connection property, 60
useNanosForElapsedTime connection property, 64

useOldAliasMetadataBehavior connection property, 69
useOnlyServerErrorMessages connection property, 68
user connection property, 33

useReadAheadInput connection property, 63
useServerPrepStmts connection property, 47

useSSL connection property, 45
useStreamLengthsIinPrepStmts connection property, 47
useUnbufferedinput connection property, 41
useUsageAdvisor connection property, 66

V

validation
for JSON schemas, 140
verifyServerCertificate connection property, 45

w

Web Authentication (WebAuthn) authentication, 98

X

X DevAPI

client-side failover, 130
xdevapi.auth connection property, 69
xdevapi.compression connection property, 69
xdevapi.compression-algorithms connection property, 69
xdevapi.compression-extensions connection property, 70
xdevapi.connect-timeout connection property, 70
xdevapi.connection-attributes connection property, 71
xdevapi.dns-srv connection property, 71
xdevapi.fallback-to-system-keystore connection property,
71
xdevapi.fallback-to-system-truststore connection
property, 71
xdevapi.ssl-keystore connection property, 71
xdevapi.ssl-keystore-password connection property, 72
xdevapi.ssl-keystore-type connection property, 72
xdevapi.ssl-mode connection property, 72
xdevapi.ssl-truststore connection property, 72
xdevapi.ssl-truststore-password connection property, 72
xdevapi.ssl-truststore-type connection property, 72
xdevapi.tls-ciphersuites connection property, 72
xdevapi.tls-versions connection property, 72

Y

yearlsDateType connection property, 54

Z

zeroDateTimeBehavior connection property, 54

173

174

	MySQL Connector/J Developer Guide
	Table of Contents
	Preface and Legal Notices
	Chapter 1 Overview of MySQL Connector/J
	Chapter 2 Compatibility with MySQL and Java Versions
	Chapter 3 What's New in Connector/J 8.4?
	Chapter 4 Connector/J Installation
	4.1 Installing Connector/J from a Binary Distribution
	4.2 Installing Connector/J Using Maven
	4.3 Installing from Source
	4.4 Upgrading from an Older Version
	4.4.1 Upgrading to MySQL Connector/J 8.4 from Connector/J 5.1
	4.4.1.1 Running on the Java 8 Platform
	4.4.1.2 Changes in Connection Properties
	4.4.1.3 Changes in the Connector/J API
	4.4.1.4 Changes for Build Properties
	4.4.1.5 Change for Test Properties
	4.4.1.6 Changes for Exceptions
	4.4.1.7 Other Changes

	4.5 Testing Connector/J

	Chapter 5 Connector/J Examples
	Chapter 6 Connector/J Reference
	6.1 Driver/Datasource Class Name
	6.2 Connection URL Syntax
	6.3 Configuration Properties
	6.3.1 Authentication
	6.3.2 Connection
	6.3.3 Session
	6.3.4 Networking
	6.3.5 Security
	6.3.6 Statements
	6.3.7 Prepared Statements
	6.3.8 Result Sets
	6.3.9 Metadata
	6.3.10 BLOB/CLOB processing
	6.3.11 Datetime types processing
	6.3.12 High Availability and Clustering
	6.3.13 Performance Extensions
	6.3.14 Debugging/Profiling
	6.3.15 Exceptions/Warnings
	6.3.16 Tunes for integration with other products
	6.3.17 JDBC compliance
	6.3.18 X Protocol and X DevAPI

	6.4 JDBC API Implementation Notes
	6.5 Java, JDBC, and MySQL Types
	6.6 Handling of Date-Time Values
	6.6.1 Preserving Time Instants
	6.6.2 Fractional Seconds
	6.6.3 Handling of YEAR Values

	6.7 Using Character Sets and Unicode
	6.8 Using Query Attributes
	6.9 Connecting Securely Using SSL
	6.9.1 Setting up Server Authentication
	6.9.2 Setting up Client Authentication
	6.9.3 Setting up 2-Way Authentication
	6.9.4 JSSE in FIPS Mode
	6.9.5 Debugging an SSL Connection

	6.10 Connecting Using Unix Domain Sockets
	6.11 Connecting Using Named Pipes
	6.12 Connecting Using Various Authentication Methods
	6.12.1 Connecting Using PAM Authentication
	6.12.2 Connecting Using Kerberos
	6.12.3 Connecting Using Multifactor Authentication
	6.12.4 Connecting Using Web Authentication (WebAuthn) Authentication

	6.13 Using Source/Replica Replication with ReplicationConnection
	6.14 Support for DNS SRV Records
	6.15 Client Session State Tracker
	6.16 Mapping MySQL Error Numbers to JDBC SQLState Codes

	Chapter 7 JDBC Concepts
	7.1 Connecting to MySQL Using the JDBC DriverManager Interface
	7.2 Using JDBC Statement Objects to Execute SQL
	7.3 Using JDBC CallableStatements to Execute Stored Procedures
	7.4 Retrieving AUTO_INCREMENT Column Values through JDBC

	Chapter 8 Connection Pooling with Connector/J
	Chapter 9 Multi-Host Connections
	9.1 Configuring Server Failover for Connections Using JDBC
	9.2 Configuring Server Failover for Connections Using X DevAPI
	9.3 Configuring Load Balancing with Connector/J
	9.4 Configuring Source/Replica Replication with Connector/J
	9.5 Advanced Load-balancing and Failover Configuration

	Chapter 10 Using the X DevAPI with Connector/J: Special Topics
	10.1 Connection Compression Using X DevAPI
	10.2 Schema Validation

	Chapter 11 Using the Connector/J Interceptor Classes
	Chapter 12 Using Logging Frameworks with SLF4J
	Chapter 13 Using Connector/J with OpenTelemetry
	Chapter 14 Using Connector/J with Tomcat
	Chapter 15 Using Connector/J with Spring
	15.1 Using JdbcTemplate
	15.2 Transactional JDBC Access
	15.3 Connection Pooling with Spring

	Chapter 16 Troubleshooting Connector/J Applications
	Chapter 17 Known Issues and Limitations
	Chapter 18 Connector/J Support
	18.1 Connector/J Community Support
	18.2 How to Report Connector/J Bugs or Problems

	Index

