
MySQL Connector/J Developer Guide

Abstract

This manual describes how to install, configure, and develop database applications using MySQL Connector/J 8.4, a
JDBC and X DevAPI driver for communicating with MySQL servers.

MySQL Connector/J 8.4 supersedes the 8.3 series and is recommended for use on production systems. It is for use
with MySQL Server 8.0 and up. Please upgrade to MySQL Connector/J 8.4.

For notes detailing the changes in each release of Connector/J, see MySQL Connector/J Release Notes.

For legal information, including licensing information, see the Preface and Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other MySQL
users.

Document generated on: 2024-05-21 (revision: 78675)

https://dev.mysql.com/doc/relnotes/connector-j/en/
http://forums.mysql.com

Table of Contents
Preface and Legal Notices .. v
1 Overview of MySQL Connector/J ... 1
2 Compatibility with MySQL and Java Versions ... 3
3 What's New in Connector/J 8.4? .. 5
4 Connector/J Installation ... 7

4.1 Installing Connector/J from a Binary Distribution .. 7
4.2 Installing Connector/J Using Maven ... 9
4.3 Installing from Source ... 9
4.4 Upgrading from an Older Version .. 12

4.4.1 Upgrading to MySQL Connector/J 8.4 from Connector/J 5.1 12
4.5 Testing Connector/J .. 17

5 Connector/J Examples ... 19
6 Connector/J Reference .. 21

6.1 Driver/Datasource Class Name ... 22
6.2 Connection URL Syntax .. 22
6.3 Configuration Properties .. 25

6.3.1 Authentication .. 33
6.3.2 Connection .. 35
6.3.3 Session ... 37
6.3.4 Networking .. 38
6.3.5 Security ... 41
6.3.6 Statements .. 45
6.3.7 Prepared Statements ... 46
6.3.8 Result Sets .. 48
6.3.9 Metadata ... 50
6.3.10 BLOB/CLOB processing ... 50
6.3.11 Datetime types processing ... 52
6.3.12 High Availability and Clustering ... 54
6.3.13 Performance Extensions ... 59
6.3.14 Debugging/Profiling .. 64
6.3.15 Exceptions/Warnings .. 67
6.3.16 Tunes for integration with other products ... 68
6.3.17 JDBC compliance .. 68
6.3.18 X Protocol and X DevAPI ... 69

6.4 JDBC API Implementation Notes ... 73
6.5 Java, JDBC, and MySQL Types .. 75
6.6 Handling of Date-Time Values ... 78

6.6.1 Preserving Time Instants .. 78
6.6.2 Fractional Seconds .. 83
6.6.3 Handling of YEAR Values .. 83

6.7 Using Character Sets and Unicode .. 84
6.8 Using Query Attributes .. 86
6.9 Connecting Securely Using SSL .. 88

6.9.1 Setting up Server Authentication ... 90
6.9.2 Setting up Client Authentication .. 92
6.9.3 Setting up 2-Way Authentication ... 93
6.9.4 JSSE in FIPS Mode ... 93
6.9.5 Debugging an SSL Connection ... 94

6.10 Connecting Using Unix Domain Sockets .. 94
6.11 Connecting Using Named Pipes .. 94
6.12 Connecting Using Various Authentication Methods ... 95

iii

MySQL Connector/J Developer Guide

6.12.1 Connecting Using PAM Authentication .. 95
6.12.2 Connecting Using Kerberos .. 96
6.12.3 Connecting Using Multifactor Authentication .. 97
6.12.4 Connecting Using Web Authentication (WebAuthn) Authentication 98

6.13 Using Source/Replica Replication with ReplicationConnection ... 102
6.14 Support for DNS SRV Records .. 103
6.15 Client Session State Tracker ... 104
6.16 Mapping MySQL Error Numbers to JDBC SQLState Codes .. 105

7 JDBC Concepts ... 113
7.1 Connecting to MySQL Using the JDBC DriverManager Interface 113
7.2 Using JDBC Statement Objects to Execute SQL ... 114
7.3 Using JDBC CallableStatements to Execute Stored Procedures 116
7.4 Retrieving AUTO_INCREMENT Column Values through JDBC .. 118

8 Connection Pooling with Connector/J ... 123
9 Multi-Host Connections .. 127

9.1 Configuring Server Failover for Connections Using JDBC ... 127
9.2 Configuring Server Failover for Connections Using X DevAPI .. 130
9.3 Configuring Load Balancing with Connector/J ... 131
9.4 Configuring Source/Replica Replication with Connector/J .. 133
9.5 Advanced Load-balancing and Failover Configuration ... 137

10 Using the X DevAPI with Connector/J: Special Topics ... 139
10.1 Connection Compression Using X DevAPI ... 139
10.2 Schema Validation .. 140

11 Using the Connector/J Interceptor Classes ... 143
12 Using Logging Frameworks with SLF4J .. 145
13 Using Connector/J with OpenTelemetry .. 147
14 Using Connector/J with Tomcat .. 149
15 Using Connector/J with Spring ... 151

15.1 Using JdbcTemplate .. 152
15.2 Transactional JDBC Access .. 153
15.3 Connection Pooling with Spring ... 155

16 Troubleshooting Connector/J Applications ... 157
17 Known Issues and Limitations .. 165
18 Connector/J Support .. 167

18.1 Connector/J Community Support ... 167
18.2 How to Report Connector/J Bugs or Problems ... 167

Index .. 169

iv

Preface and Legal Notices
This manual describes how to install, configure, and develop database applications using MySQL
Connector/J, the JDBC driver for communicating with MySQL servers.

Licensing information. This product may include third-party software, used under license. If you are
using a Commercial release of MySQL Connector/J 8.4, see the MySQL Connector/J 8.4 Commercial
License Information User Manual for licensing information, including licensing information relating to third-
party software that may be included in this Commercial release. If you are using a Community release of
MySQL Connector/J 8.4, see the MySQL Connector/J 8.4 Community License Information User Manual for
licensing information, including licensing information relating to third-party software that may be included in
this Community release.

Legal Notices

Copyright © 1998, 2024, Oracle and/or its affiliates.

License Restrictions

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted
in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free.
If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or
related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications
of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed
by U.S. Government end users are "commercial computer software," "commercial computer software
documentation," or "limited rights data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including
any operating system, integrated software, any programs embedded, installed, or activated on delivered
hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract.
The terms governing the U.S. Government's use of Oracle cloud services are defined by the applicable
contract for such services. No other rights are granted to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous

v

https://downloads.mysql.com/docs/licenses/connector-j-8.4-com-en.pdf
https://downloads.mysql.com/docs/licenses/connector-j-8.4-com-en.pdf
https://downloads.mysql.com/docs/licenses/connector-j-8.4-gpl-en.pdf

Documentation Accessibility

applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Trademark Notice

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a
registered trademark of The Open Group.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

Use of This Documentation

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion to other
formats is allowed as long as the actual content is not altered or edited in any way. You shall not publish
or distribute this documentation in any form or on any media, except if you distribute the documentation in
a manner similar to how Oracle disseminates it (that is, electronically for download on a Web site with the
software) or on a CD-ROM or similar medium, provided however that the documentation is disseminated
together with the software on the same medium. Any other use, such as any dissemination of printed
copies or use of this documentation, in whole or in part, in another publication, requires the prior written
consent from an authorized representative of Oracle. Oracle and/or its affiliates reserve any and all rights
to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website
at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=trs if you are hearing impaired.

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Chapter 1 Overview of MySQL Connector/J
MySQL provides connectivity for client applications developed in the Java programming language with
MySQL Connector/J. Connector/J implements the Java Database Connectivity (JDBC) API, as well as a
number of value-adding extensions of it. It also supports the new X DevAPI.

MySQL Connector/J is a JDBC Type 4 driver, implementing the JDBC 4.2 specification. The Type 4
designation means that the driver is a pure Java implementation of the MySQL protocol and does not
rely on the MySQL client libraries. See Chapter 2, Compatibility with MySQL and Java Versions for
compatibility information.

Connector/J 8.4 provides ease of development features including auto-registration with the Driver
Manager, standardized validity checks, categorized SQLExceptions, support for large update counts,
support for local and offset date-time variants from the java.time package, support for JDBC-4.x
XML processing, support for per connection client information, and support for the NCHAR, NVARCHAR
and NCLOB data types. See Chapter 2, Compatibility with MySQL and Java Versions for compatibility
information.

For large-scale programs that use common design patterns of data access, consider using one of the
popular persistence frameworks such as Hibernate, Spring's JDBC templates or MyBatis SQL Maps to
reduce the amount of JDBC code for you to debug, tune, secure, and maintain.

Key Topics

• For installation instructions for Connector/J, see Chapter 4, Connector/J Installation.

• For help with connection strings, connection options, and setting up your connection through JDBC, see
Chapter 6, Connector/J Reference.

• For information on connection pooling, see Chapter 8, Connection Pooling with Connector/J.

• For information on multi-host connections, see Chapter 9, Multi-Host Connections.

• For information on using the X DevAPI with Connector/J, see Chapter 10, Using the X DevAPI with
Connector/J: Special Topics.

1

http://www.oracle.com/technetwork/java/javase/jdbc/index.html
http://docs.oracle.com/javase/6/docs/technotes/guides/jdbc/
https://dev.mysql.com/doc/refman/8.4/en/char.html
https://dev.mysql.com/doc/refman/8.4/en/char.html
http://www.hibernate.org/
http://www.springframework.org/
http://www.mybatis.org/

2

Chapter 2 Compatibility with MySQL and Java Versions
Here is some compatibility information for Connector/J 8.4:

• JDBC versions: Connector/J 8.4 implements JDBC 4.2. While Connector/J 8.4 works with libraries of
higher JDBC versions, it returns a SQLFeatureNotSupportedException for any calls of methods
supported only by JDBC 4.3 and higher.

• MySQL Server versions: Connector/J 8.4 supports MySQL 8.0 and up.

• JRE versions: Connector/J 8.4 supports JRE 8 or higher.

• JDK Required for Compilation: JDK 8.0 or higher is required for compiling Connector/J 8.4. Also, a
customized JSSE provider might be required to use some later TLS versions and cipher suites when
connecting to MySQL servers. For example, because Oracle's Java 8 releases before 8u261 were
shipped with JSSE implementations that support TLS up to version 1.2 only, you need a customized
JSSE implementation to use TLSv1.3 on those Java 8 platforms. Oracle Java 8u261 and above do
support TLSv1.3, so no customized JSSE implementation is needed.

3

4

Chapter 3 What's New in Connector/J 8.4?
Version 8.4.0 is a new GA release version of the MySQL Connector/J. MySQL Connector/J 8.4.0
supersedes the 8.3 series and is recommended for use on production systems. This release can be used
against MySQL Server version 8.0 and up. It supports the Java Database Connectivity (JDBC) 4.2 API,
and implements the X DevAPI.

For notes detailling the changes in Connector/J 8.4, see MySQL Connector/J Release Notes

5

https://dev.mysql.com/doc/relnotes/connector-j/en/

6

Chapter 4 Connector/J Installation

Table of Contents
4.1 Installing Connector/J from a Binary Distribution .. 7
4.2 Installing Connector/J Using Maven .. 9
4.3 Installing from Source ... 9
4.4 Upgrading from an Older Version .. 12

4.4.1 Upgrading to MySQL Connector/J 8.4 from Connector/J 5.1 ... 12
4.5 Testing Connector/J .. 17

You can install the Connector/J package using either a binary or source distribution. While the binary
distribution provides the easiest method for installation, the source distribution lets you customize your
installation. Both types of distributions are available from the Connector/J Download page. The source
code for Connector/J is also available on GitHub at https://github.com/mysql/mysql-connector-j.

Connector/J is also available as a Maven artifact in the Central Repository. See Section 4.2, “Installing
Connector/J Using Maven” for details.

If you are upgrading from a previous version, read the upgrade information in Section 4.4, “Upgrading from
an Older Version” before continuing.

Important

Third-party Libraries: According to how you use Connector/J 8.4, you may also
need to install the following third-party libraries on your system for it to work:

• Protocol Buffers (protobuf-java) 3.25.1 is required for using X DevAPI

• Oracle Cloud Infrastructure SDK for Java (oci-java-sdk) 3.29.0 is required to
support OCI AIM authentication

• Simple Logging Facade API (slf4j-api) 2.0.9 is required for using
the logging capabilities provided by the default implementation of
org.slf4j.Logger.Slf4JLogger by Connector/J

These and other third-party libraries are required for building Connector/J from
source—see the section for more information.

4.1 Installing Connector/J from a Binary Distribution

Obtaining and Using the Binary Distribution Packages

Different types of binary distribution packages for Connector/J are available from the Connector/J
Download page. The following explains how to use each type of the packages to install Connector/J.

Using Platform-independent Archives: .tar.gz or .zip archives are available for installing Connector/
J on any platform. Using the appropriate graphical or command-line utility (for example, tar for the
.tar.gz archive and WinZip for the .zip archive), extract the JAR archive from the .tar.gz or .zip
archive to a suitable location.

7

https://dev.mysql.com/downloads/connector/j/
https://github.com/mysql/mysql-connector-j
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/

Configuring the CLASSPATH

Note

Because there are potentially long file names in the distribution, the Connector/J
archives use the GNU Tar archive format. Use GNU Tar or a compatible application
to unpack the .tar.gz variant of the distribution.

Using Packages for Software Package Management Systems on Linux Platforms: RPM and Debian
packages are available for installing Connector/J on a number of Linux distributions like Oracle Linux,
Debian, Ubuntu, SUSE, and so on. Install these packages using your system's software package
management system.

On Windows Platforms: You cannot install Connector/J on Windows platforms using the MySQL Installer
for Windows. Notice that there are also no stand-alone Windows installer files (.msi) for installing
Connector/J. Use the platform-independent archives instead for installations on Windows platforms.

Configuring the CLASSPATH

Once mysql-connector-j-version.jar has been extracted from the binary distribution package
to the right place, finish installing the driver by placing the JAR archive in your Java classpath, either by
adding its full file path to your CLASSPATH environment variable, or by directly specifying the file path with
the command line switch -cp when starting the JVM.

For example, on Linux platforms, add the Connector/J driver to your CLASSPATH using one of the following
forms, depending on your command shell:

Bourne-compatible shell (sh, ksh, bash, zsh):
$> export CLASSPATH=/path/mysql-connector-j-ver.jar:$CLASSPATH

C shell (csh, tcsh):
$> setenv CLASSPATH /path/mysql-connector-j-ver.jar:$CLASSPATH

You can also set the CLASSPATH environment variable in a profile file, either locally for a user within the
user's .profile, .login, or other login file, or globally by editing the global /etc/profile file.

For Windows platforms, you set the environment variable through the System Control Panel.

Important

Remember to also add the locations of the third-party libraries required for using
Connector/J to CLASSPATH.

Configuring Connector/J for Application Servers

To use MySQL Connector/J with an application server such as GlassFish or Tomcat, read your vendor's
documentation for information on how to configure third-party class libraries, as most application servers
ignore the CLASSPATH environment variable. For configuration examples for some J2EE application
servers, see Chapter 8, Connection Pooling with Connector/J, Section 9.3, “Configuring Load Balancing
with Connector/J”, and Section 9.5, “Advanced Load-balancing and Failover Configuration”. However, the
authoritative source for JDBC connection pool configuration information is the documentation for your own
application server.

If you are developing servlets or JSPs and your application server is J2EE-compliant, you can put
the driver's .jar file in the WEB-INF/lib subdirectory of your web application, as this is a standard
location for third-party class libraries in J2EE web applications. You can also use the MysqlDataSource
or MysqlConnectionPoolDataSource classes in the com.mysql.cj.jdbc package, if your
J2EE application server supports or requires them. The javax.sql.XADataSource interface is

8

https://dev.mysql.com/doc/refman/8.0/en/mysql-installer.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-installer.html

Installing Connector/J Using Maven

implemented using the com.mysql.cj.jdbc.MysqlXADataSource class, which supports XA
distributed transactions. The various MysqlDataSource classes support the following parameters
(through standard set mutators):

• user

• password

• serverName

• databaseName

• port

4.2 Installing Connector/J Using Maven

You can also use Maven dependencies manager to install and configure the Connector/J library in your
project. Connector/J is published in The Maven Central Repository with the following groupId and artifactId:

• groupId: com.mysql

• artifactId: mysql-connector-j

You can link the Connector/J library to your project by adding the following dependency in your pom.xml
file:

<dependency>
 <groupId>com.mysql</groupId>
 <artifactId>mysql-connector-j</artifactId>
 <version>x.y.z</version>
</dependency>

Notice that if you use Maven to manage your project dependencies, you do not need to explicitly refer to
the library protobuf-java as it is resolved by dependency transitivity. However, if you do not want to use
the X DevAPI features, you may also want to add a dependency exclusion to avoid linking the unneeded
sub-library. For example:

<dependency>
 <groupId>com.mysql</groupId>
 <artifactId>mysql-connector-j</artifactId>
 <version>x.y.z</version>
 <exclusions>
 <exclusion>
 <groupId>com.google.protobuf</groupId>
 <artifactId>protobuf-java</artifactId>
 </exclusion>
 </exclusions>
</dependency>

4.3 Installing from Source

Caution

You need to install Connector/J from source only if you want to build a customized
version of Connector/J or if you are interested in helping us test our new code. To
just get MySQL Connector/J up and running on your system, install Connector/J
using a standard binary release distribution; see Section 4.1, “Installing Connector/J
from a Binary Distribution” for instructions.

9

https://central.sonatype.com/artifact/com.mysql/mysql-connector-j

Installing from Source

To install MySQL Connector/J from source, make sure that you have the following software on your
system:

Tip

It is suggested that the latest versions available for the following software be used
for compiling Connector/J; otherwise, some features might not be available.

• A Git client, if you want to check out the sources from our GitHub repository (available from http://git-
scm.com/downloads).

• Apache Ant version 1.10.6 or newer (available from http://ant.apache.org/).

• JDK 1.8.x (available from https://www.oracle.com/technetwork/java/javase/downloads/jdk8-
downloads-2133151.html).

• The following third-party libraries:

• JUnit 5.10 (see installation and download information in the JUnit 5 User Guide). The following JAR
files are required:

• junit-jupiter-api-5.10.1.jar (available from, for example, https://central.sonatype.com/
artifact/org.junit.jupiter/junit-jupiter-api/5.10.1/jar).

• junit-jupiter-engine-5.10.1.jar (available from, for example, https://
central.sonatype.com/artifact/org.junit.jupiter/junit-jupiter-engine/5.10.1/jar).

• junit-platform-commons-1.10.1.jar (available from, for example, https://
central.sonatype.com/artifact/org.junit.platform/junit-platform-commons/1.10.1/jar).

• junit-platform-engine-1.10.1.jar (available from, for example, https://
central.sonatype.com/artifact/org.junit.platform/junit-platform-engine/1.10.1/jar).

• junit-platform-launcher-1.10.1.jar (available from, for example, https://
central.sonatype.com/artifact/org.junit.platform/junit-platform-launcher/1.10.1/jar).

• These additional JAR files, which JUnit 5 depends on:

• apiguardian-api-1.1.2.jar (available from, for example, https://central.sonatype.com/
artifact/org.apiguardian/apiguardian-api/1.1.2/jar).

• opentest4j-1.3.0.jar (available from, for example, https://central.sonatype.com/artifact/
org.opentest4j/opentest4j/1.3.0/jar).

• Javassist 3.29.2 (javassist-3.29.2-GA.jar, available from, for example, https://
central.sonatype.com/artifact/org.javassist/javassist/3.29.2-GA/bundle).

• Protocol Buffers Java API 3.25.1 (protobuf-java-3.25.1.jar, available from, for example,
https://central.sonatype.com/artifact/com.google.protobuf/protobuf-java/3.25.1/bundle).

• C3P0 0.9.5.5 or newer (c3p0-0.9.5.5.jar, available from, for example, https://
central.sonatype.com/artifact/com.mchange/c3p0/0.9.5.5/jar).

• Simple Logging Facade API 2.0.9 or newer (slf4j-api-2.0.9.jar, available from, for example,
https://central.sonatype.com/artifact/org.slf4j/slf4j-api/2.0.9/jar).

• Java Hamcrest 2.2 or newer (hamcrest-2.2.jar, available from, for example, https://
central.sonatype.com/artifact/org.hamcrest/hamcrest/2.2/jar).

10

http://git-scm.com/downloads
http://git-scm.com/downloads
http://ant.apache.org/
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://junit.org/junit5/docs/current/user-guide/
https://central.sonatype.com/artifact/org.junit.jupiter/junit-jupiter-api/5.10.1/jar
https://central.sonatype.com/artifact/org.junit.jupiter/junit-jupiter-api/5.10.1/jar
https://central.sonatype.com/artifact/org.junit.jupiter/junit-jupiter-engine/5.10.1/jar
https://central.sonatype.com/artifact/org.junit.jupiter/junit-jupiter-engine/5.10.1/jar
https://central.sonatype.com/artifact/org.junit.platform/junit-platform-commons/1.10.1/jar
https://central.sonatype.com/artifact/org.junit.platform/junit-platform-commons/1.10.1/jar
https://central.sonatype.com/artifact/org.junit.platform/junit-platform-engine/1.10.1/jar
https://central.sonatype.com/artifact/org.junit.platform/junit-platform-engine/1.10.1/jar
https://central.sonatype.com/artifact/org.junit.platform/junit-platform-launcher/1.10.1/jar
https://central.sonatype.com/artifact/org.junit.platform/junit-platform-launcher/1.10.1/jar
https://central.sonatype.com/artifact/org.apiguardian/apiguardian-api/1.1.2/jar
https://central.sonatype.com/artifact/org.apiguardian/apiguardian-api/1.1.2/jar
https://central.sonatype.com/artifact/org.opentest4j/opentest4j/1.3.0/jar
https://central.sonatype.com/artifact/org.opentest4j/opentest4j/1.3.0/jar
https://central.sonatype.com/artifact/org.javassist/javassist/3.29.2-GA/bundle
https://central.sonatype.com/artifact/org.javassist/javassist/3.29.2-GA/bundle
https://central.sonatype.com/artifact/com.google.protobuf/protobuf-java/3.25.1/bundle
https://central.sonatype.com/artifact/org.slf4j/slf4j-api/2.0.9/jar
https://central.sonatype.com/artifact/org.hamcrest/hamcrest/2.2/jar
https://central.sonatype.com/artifact/org.hamcrest/hamcrest/2.2/jar

Installing from Source

• Oracle Cloud Infrastructure SDK for Java (oci-java-sdk-common-3.29.0.jar, available from, for
example, https://central.sonatype.com/artifact/com.oracle.oci.sdk/oci-java-sdk-common/3.29.0/jar).

• OpenTelemetry API (opentelemetry-api-1.35.0.jar, available from, for example, https://
central.sonatype.com/artifact/io.opentelemetry/opentelemetry-api/1.35.0).

• OpenTelemetry Context (opentelemetry-context-1.35.0.jar, available from, for example,
https://central.sonatype.com/artifact/io.opentelemetry/opentelemetry-context/1.35.0).

• Open Test Alliance for the JVM (opentest4j-1.3.0.jar, available from, for example, https://
central.sonatype.com/artifact/org.opentest4j/opentest4j/1.3.0).

To build MySQL Connector/J from source, follow these steps:

1. Make sure that you have JDK 1.8.x installed.

2. Obtain the sources for Connector/J by one of the following means:

• Download the platform independent distribution archive (in .tar.gz or .zip format) for Connector/
J, which contains the sources, from the Connector/J Download page. Extract contents of the archive
into a folder named, for example, mysql-connector-j.

• Download a source RPM package for Connector/J from Connector/J Download page and install it.

• Check out the code from the source code repository for MySQL Connector/J located on GitHub at
https://github.com/mysql/mysql-connector-j. The latest release of the Connector/J 8.4 series is on the
release/8.4 branch; use the following command to check it out:

$> git clone --branch release/8.4 https://github.com/mysql/mysql-connector-j.git

Under the current directory, the command creates a mysql-connector-j subdirectory , which
contains the code you want.

3. Place all the required third-party libraries in a the directory called lib at the root of the source tree (that
is, in mysql-connector-j/lib, if you have followed the steps above), or put them elsewhere and
supply the location to Ant later (see Step 5 below).

4. Change your current working directory to the mysql-connector-j directory created in step 2 above.

5. In the directory, create a file named build.properties to indicate to Ant the location of the
root directory for your JDK 1.8.x installation with the property com.mysql.cj.build.jdk, as
well as the location for the extra libraries, if they are not in mysql-connector-j/lib, with the
property com.mysql.cj.extra.libs. Here is a sample file with those properties set (replace the
“path_to_*” parts with the appropriate file paths):

com.mysql.cj.build.jdk=path_to_jdk_1.8
com.mysql.cj.extra.libs=path_to_folder_for_extra_libraries

Alternatively, you can set the values of those properties through the Ant -D options.

Note

Going from Connector/J 5.1 to 8.0 and beyond, a number of Ant properties for
building Connector/J have been renamed or removed; see Section 4.4.1.4,
“Changes for Build Properties” for details.

6. Issue the following command to compile the driver and create a .jar file for Connector/J:

11

https://central.sonatype.com/artifact/com.oracle.oci.sdk/oci-java-sdk-common/3.29.0/jar
https://central.sonatype.com/artifact/io.opentelemetry/opentelemetry-api/1.35.0
https://central.sonatype.com/artifact/io.opentelemetry/opentelemetry-api/1.35.0
https://central.sonatype.com/artifact/io.opentelemetry/opentelemetry-context/1.35.0
https://central.sonatype.com/artifact/org.opentest4j/opentest4j/1.3.0
https://central.sonatype.com/artifact/org.opentest4j/opentest4j/1.3.0
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://github.com/mysql/mysql-connector-j

Upgrading from an Older Version

$> ant build

This creates a build directory in the current directory, where all the build output goes. A directory
is created under the build directory, whose name includes the version number of the release you
are building. That directory contains the sources, the compiled .class files, and a .jar file for
deployment.

For information on all the build targets, including those that create a fully packaged distribution, issue
the following command:

$> ant -projecthelp

7. Install the newly created .jar file for the JDBC driver as you would install a binary .jar file you
download from MySQL by following the instructions given in Configuring the CLASSPATH or
Configuring Connector/J for Application Servers.

4.4 Upgrading from an Older Version
This section has information for users who are upgrading from one version of Connector/J to another,
or to a new version of the MySQL server that supports a more recent level of JDBC. A newer version of
Connector/J might include changes to support new features, improve existing functionality, or comply with
new standards.

Depending on the platform and the way you used to install Connector/J, upgrading can be performed by
one of the following methods:

• Downloading a new platform-independent archive (.tar, .tar.gz, .zip, etc.) and overwriting with it
your original installation created by an older archive.

• Updating the version of the Connector/J dependency in your Maven .pom file.

• Using the upgrade command of your Linux distro's package management system.

• Using the MySQL Installer for Windows, which can also perform automatic updates for Connector/J

See Chapter 4, Connector/J Installation for details on the installation and upgrade methods. You should
also pay attention to any important changes in the new version like changes in 3rd-party dependencies,
incompatibilities, etc.

4.4.1 Upgrading to MySQL Connector/J 8.4 from Connector/J 5.1

Upgrading an application developed for Connector/J 5.1 to use Connector/J 8.0 and beyond might require
certain changes to your code or the environment in which it runs. Here are some changes for Connector/J
going from 5.1 to 8.0 and beyond, for which adjustments might be required:

4.4.1.1 Running on the Java 8 Platform

Connector/J 8.0 and beyond is created specifically to run on the Java 8 platform. While Java 8 is known
to be strongly compatible with earlier Java versions, incompatibilities do exist, and code designed to
work on Java 7 might need to be adjusted before being run on Java 8. Developers should refer to the
incompatibility information provided by Oracle.

4.4.1.2 Changes in Connection Properties

A complete list of Connector/J 8.4 connection properties are available in Section 6.3, “Configuration
Properties”. The following are connection properties that have been changed (removed, added, have their
names changed, or have their default values changed) going from Connector/J 5.1 to 8.0 and beyond.

12

https://dev.mysql.com/doc/refman/8.0/en/mysql-installer.html
http://www.oracle.com/technetwork/java/javase/8-compatibility-guide-2156366.html#A999198

Upgrading to MySQL Connector/J 8.4 from Connector/J 5.1

Properties that have been removed (do not use them during connection):

• useDynamicCharsetInfo

• useBlobToStoreUTF8OutsideBMP , utf8OutsideBmpExcludedColumnNamePattern, and
utf8OutsideBmpIncludedColumnNamePattern: MySQL 5.6 and later supports the utf8mb4
character set, which is the character set that should be used by Connector/J applications for supporting
characters beyond the Basic Multilingual Plane (BMP) of Unicode Version 3.

• useJvmCharsetConverters: JVM character set conversion is now used in all cases

• The following date and time properties:

• dynamicCalendars

• noTzConversionForTimeType

• noTzConversionForDateType

• cacheDefaultTimezone

• useFastIntParsing

• useFastDateParsing

• useJDBCCompliantTimezoneShift

• useLegacyDatetimeCode

• useSSPSCompatibleTimezoneShift

• useTimezone

• useGmtMillisForDatetimes

• dumpMetadataOnColumnNotFound

• relaxAutoCommit

• strictFloatingPoint

• runningCTS13

• retainStatementAfterResultSetClose

• nullNamePatternMatchesAll

Properties that have been added:

• mysqlx.useAsyncProtocol (deprecated)

Property that has its name changed:

• com.mysql.jdbc.faultInjection.serverCharsetIndex changed to
com.mysql.cj.testsuite.faultInjection.serverCharsetIndex

• loadBalanceEnableJMX to ha.enableJMX

• replicationEnableJMX to ha.enableJMX

13

Upgrading to MySQL Connector/J 8.4 from Connector/J 5.1

Properties that have their default values changed:

• nullCatalogMeansCurrent is now false by default

4.4.1.3 Changes in the Connector/J API

This section describes some of the more important changes to the Connector/J API going from version 5.1
to 8.0 and beyond. You might need to adjust your API calls accordingly:

• The name of the class that implements java.sql.Driver in MySQL Connector/J has changed
from com.mysql.jdbc.Driver to com.mysql.cj.jdbc.Driver. The old class name has been
deprecated.

• The names of these commonly-used classes and interfaces have also been changed:

• ExceptionInterceptor: from com.mysql.jdbc.ExceptionInterceptor to
com.mysql.cj.exceptions.ExceptionInterceptor

• StatementInterceptor: from com.mysql.jdbc.StatementInterceptorV2 to
com.mysql.cj.interceptors.QueryInterceptor

• ConnectionLifecycleInterceptor: from com.mysql.jdbc.ConnectionLifecycleInterceptor to
com.mysql.cj.jdbc.interceptors.ConnectionLifecycleInterceptor

• AuthenticationPlugin: from com.mysql.jdbc.AuthenticationPlugin to
com.mysql.cj.protocol.AuthenticationPlugin

• BalanceStrategy: from com.mysql.jdbc.BalanceStrategy to
com.mysql.cj.jdbc.ha.BalanceStrategy

• MysqlDataSource: from com.mysql.jdbc.jdbc2.optional.MysqlDataSource to
com.mysql.cj.jdbc.MysqlDataSource

• MysqlDataSourceFactory: from com.mysql.jdbc.jdbc2.optional.MysqlDataSourceFactory
to com.mysql.cj.jdbc.MysqlDataSourceFactory

• MysqlConnectionPoolDataSource: from
com.mysql.jdbc.jdbc2.optional.MysqlConnectionPoolDataSource to
com.mysql.cj.jdbc.MysqlConnectionPoolDataSource

• MysqlXADataSource: from com.mysql.jdbc.jdbc2.optional.MysqlXADataSource to
com.mysql.cj.jdbc.MysqlXADataSource

• MysqlXid: from com.mysql.jdbc.jdbc2.optional.MysqlXid to
com.mysql.cj.jdbc.MysqlXid

4.4.1.4 Changes for Build Properties

A number of Ant properties for building Connector/J from source have been renamed; see Table 4.1,
“Changes with the Build Properties from Connector/J 5.1 to 8.0 and Beyond”

Table 4.1 Changes with the Build Properties from Connector/J 5.1 to 8.0 and Beyond

Old name New name

com.mysql.jdbc.extra.libs com.mysql.cj.extra.libs

com.mysql.jdbc.jdk com.mysql.cj.build.jdk

14

Upgrading to MySQL Connector/J 8.4 from Connector/J 5.1

Old name New name

debug.enable com.mysql.cj.build.addDebugInfo

com.mysql.jdbc.noCleanBetweenCompiles com.mysql.cj.build.noCleanBetweenCompiles

com.mysql.jdbc.commercialBuild com.mysql.cj.build.commercial

com.mysql.jdbc.filterLicense com.mysql.cj.build.filterLicense

com.mysql.jdbc.noCryptoBuild com.mysql.cj.build.noCrypto

com.mysql.jdbc.noSources com.mysql.cj.build.noSources

com.mysql.jdbc.noMavenSources com.mysql.cj.build.noMavenSources

major_version com.mysql.cj.build.driver.version.major

minor_version com.mysql.cj.build.driver.version.minor

subminor_version com.mysql.cj.build.driver.version.subminor

version_status com.mysql.cj.build.driver.version.status

extra.version com.mysql.cj.build.driver.version.extra

snapshot.version com.mysql.cj.build.driver.version.snapshot

version com.mysql.cj.build.driver.version

full.version com.mysql.cj.build.driver.version.full

prodDisplayName com.mysql.cj.build.driver.displayName

prodName com.mysql.cj.build.driver.name

fullProdName com.mysql.cj.build.driver.fullName

buildDir com.mysql.cj.build.dir

buildDriverDir com.mysql.cj.build.dir.driver

mavenUploadDir com.mysql.cj.build.dir.maven

distDir com.mysql.cj.dist.dir

toPackage com.mysql.cj.dist.dir.prepare

packageDest com.mysql.cj.dist.dir.package

com.mysql.jdbc.docs.sourceDir com.mysql.cj.dist.dir.prebuilt.docs

4.4.1.5 Change for Test Properties

A number of Ant properties for testing Connector/J have been renamed or removed; see Table 4.2,
“Changes with the Test Properties from Connector/J 5.1 to 8.0 and Beyond”

Table 4.2 Changes with the Test Properties from Connector/J 5.1 to 8.0 and Beyond

Old name New name

buildTestDir com.mysql.cj.testsuite.build.dir

junit.results com.mysql.cj.testsuite.junit.results

com.mysql.jdbc.testsuite.jvm com.mysql.cj.testsuite.jvm

test com.mysql.cj.testsuite.test.class

methods com.mysql.cj.testsuite.test.methods

com.mysql.jdbc.testsuite.url com.mysql.cj.testsuite.url

com.mysql.jdbc.testsuite.admin-url com.mysql.cj.testsuite.url.admin

15

Upgrading to MySQL Connector/J 8.4 from Connector/J 5.1

Old name New name

com.mysql.jdbc.testsuite.ClusterUrl com.mysql.cj.testsuite.url.cluster

com.mysql.jdbc.testsuite.url.sha256defaultcom.mysql.cj.testsuite.url.openssl

com.mysql.jdbc.testsuite.cantGrant com.mysql.cj.testsuite.cantGrant

com.mysql.jdbc.testsuite.no-multi-
hosts-tests

com.mysql.cj.testsuite.disable.multihost.tests

com.mysql.jdbc.test.ds.host com.mysql.cj.testsuite.ds.host

com.mysql.jdbc.test.ds.port com.mysql.cj.testsuite.ds.port

com.mysql.jdbc.test.ds.db com.mysql.cj.testsuite.ds.db

com.mysql.jdbc.test.ds.user com.mysql.cj.testsuite.ds.user

com.mysql.jdbc.test.ds.password com.mysql.cj.testsuite.ds.password

com.mysql.jdbc.test.tabletype com.mysql.cj.testsuite.loadstoreperf.tabletype

com.mysql.jdbc.testsuite.loadstoreperf.useBigResultscom.mysql.cj.testsuite.loadstoreperf.useBigResults

com.mysql.jdbc.testsuite.MiniAdminTest.runShutdowncom.mysql.cj.testsuite.miniAdminTest.runShutdown

com.mysql.jdbc.testsuite.noDebugOutput com.mysql.cj.testsuite.noDebugOutput

com.mysql.jdbc.testsuite.retainArtifactscom.mysql.cj.testsuite.retainArtifacts

com.mysql.jdbc.testsuite.runLongTests com.mysql.cj.testsuite.runLongTests

com.mysql.jdbc.test.ServerController.basedircom.mysql.cj.testsuite.serverController.basedir

com.mysql.jdbc.ReplicationConnection.isSlavecom.mysql.cj.testsuite.replicationConnection.isReplica

com.mysql.jdbc.test.isLocalHostnameReplacementRemoved

com.mysql.jdbc.testsuite.driver Removed

com.mysql.jdbc.testsuite.url.default Removed. No longer needed, as multi-JVM tests
have been removed from the test suite.

4.4.1.6 Changes for Exceptions

Some exceptions have been removed from Connector/J going from version 5.1 to 8.0 and beyond.
Applications that used to catch the removed exceptions should now catch the corresponding exceptions
listed in Table 4.3 below.

Note

Some of these Connector/J 5.1 exceptions are duplicated in the
com.mysql.jdbc.exception.jdbc4 package; that is indicated by “[jdbc4.]” in their
names in Table 4.3.

Table 4.3 Changes for Exceptions from Connector/J 5.1 to 8.0 and Beyond

Removed Exception in Connector/J 5.1 Exception to Catch in Connector/J 8.0 and Beyond

com.mysql.jdbc.exceptions.jdbc4.CommunicationsException com.mysql.cj.jdbc.exceptions.CommunicationsException

com.mysql.jdbc.exceptions.[jdbc4.]MySQLDataException java.sql.SQLDataException

com.mysql.jdbc.exceptions.[jdbc4.]MySQLIntegrityConstraintViolationException java.sql.SQLIntegrityConstraintViolationException

com.mysql.jdbc.exceptions.[jdbc4.]MySQLInvalidAuthorizationSpecException java.sql.SQLInvalidAuthorizationSpecException

com.mysql.jdbc.exceptions.[jdbc4.]MySQLNonTransientConnectionException java.sql.SQLNonTransientConnectionException

com.mysql.jdbc.exceptions.[jdbc4.]MySQLNonTransientException java.sql.SQLNonTransientException

16

Testing Connector/J

Removed Exception in Connector/J 5.1 Exception to Catch in Connector/J 8.0 and Beyond

com.mysql.jdbc.exceptions.[jdbc4.]MySQLQueryInterruptedException com.mysql.cj.jdbc.exceptions.MySQLQueryInterruptedException

com.mysql.jdbc.exceptions.MySQLStatementCancelledException com.mysql.cj.jdbc.exceptions.MySQLStatementCancelledException

com.mysql.jdbc.exceptions.[jdbc4.]MySQLSyntaxErrorException java.sql.SQLSyntaxErrorException

com.mysql.jdbc.exceptions.[jdbc4.]MySQLTimeoutException java.sql.SQLTimeoutException

com.mysql.jdbc.exceptions.[jdbc4.]MySQLTransactionRollbackException java.sql.SQLTransactionRollbackException

com.mysql.jdbc.exceptions.[jdbc4.]MySQLTransientConnectionException java.sql.SQLTransientConnectionException

com.mysql.jdbc.exceptions.[jdbc4.]MySQLTransientException java.sql.SQLTransientException

com.mysql.jdbc.exceptions.[jdbc4.]MySQLIntegrityConstraintViolationException java.sql.SQLIntegrityConstraintViolationException

4.4.1.7 Other Changes

Here are other changes with Connector/J 8.0 and beyond:

• Removed ReplicationDriver. Instead of using a separate driver, you can now obtain a connection
for a replication setup just by using the jdbc:mysql:replication:// scheme.

• See Chapter 4, Connector/J Installation for third-party libraries required for Connector/J 8.4 to work.

• For Connector/J 8.0.22 and earlier: Connector/J always performs time offset adjustments on date-time
values, and the adjustments require one of the following to be true:

• The MySQL server is configured with a canonical time zone that is recognizable by Java (for example,
Europe/Paris, Etc/GMT-5, UTC, etc.)

• The server's time zone is overridden by setting the Connector/J connection property
serverTimezone (for example, serverTimezone=Europe/Paris).

Note

The Connector/J's behavior in this respect has changed since release 8.0.23.
See Section 6.6.1, “Preserving Time Instants” for details. serverTimezone is
now an alias for the connection property connectionTimeZone, which has
replaced serverTimezone.

4.5 Testing Connector/J
The Connector/J source code repository or packages that are shipped with source code include an
extensive test suite, containing test cases that can be executed independently. The test cases are divided
into the following categories:

• Unit tests: They are methods located in packages aligning with the classes that they test.

• Functional tests: Classes from the package testsuite.simple. Include test code for the main
features of Connector/J.

• Performance tests: Classes from the package testsuite.perf. Include test code to make
measurements for the performance of Connector/J.

• Regression tests: Classes from the package testsuite.regression. Includes code for testing bug
and regression fixes.

• X DevAPI and X Protocol tests: Classes from the package testsuite.x for testing X DevAPI and X
Protocol functionality.

17

Testing Connector/J

The bundled Ant build file contains targets like test, which can facilitate the process of running the
Connector/J tests; see the target descriptions in the build file for details. To run the tests, in addition to
fulfilling the requirements described in Section 4.3, “Installing from Source”, you must also set the following
properties in the build.properties file or through the Ant -D options:

• com.mysql.cj.testsuite.jvm: the JVM to be used for the tests. If the property is not set, the JVM
supplied with com.mysql.cj.build.jdk will be used.

• com.mysql.cj.testsuite.url: it specifies the JDBC URL for connection to a MySQL test server;
see Section 6.2, “Connection URL Syntax”.

• com.mysql.cj.testsuite.url.openssl: (for release 8.0.26 and earlier only) it specifies the JDBC
URL for connection to a MySQL test server compiled with OpenSSL; see Section 6.2, “Connection URL
Syntax”.

• com.mysql.cj.testsuite.mysqlx.url: it specifies the X DevAPI URL for connection to a MySQL
test server; see Section 6.2, “Connection URL Syntax”.

• com.mysql.cj.testsuite.mysqlx.url.openssl: (for release 8.0.26 and earlier only) it specifies
the X DevAPI URL for connection to a MySQL test server compiled with OpenSSL; see Section 6.2,
“Connection URL Syntax”.

After setting these parameters, run the tests with Ant in the following ways:

• Building the test target with ant test runs all test cases by default on a single server
instance. If you want to run a particular test case, put the test's fully qualified class names in the
com.mysql.cj.testsuite.test.class variable; for example:

shell > ant -Dcom.mysql.cj.testsuite.test.class=testsuite.simple.StringUtilsTest test

You can also run individual tests in a test case by specifying the names of the corresponding methods in
the com.mysql.cj.testsuite.test.methods variable, separating multiple methods by commas;
for example:

shell > ant -Dcom.mysql.cj.testsuite.test.class=testsuite.simple.StringUtilsTest \
-Dcom.mysql.cj.testsuite.test.methods=testIndexOfIgnoreCase,testGetBytes test

While the test results are partially reported by the console, complete reports in HTML and XML formats are
provided. View the HTML report by opening buildtest/junit/report/index.html. XML version of
the reports are located in the folder buildtest/junit.

Note

Going from Connector/J 5.1 to 8.0 and beyond, a number of Ant properties for
testing Connector/J have been renamed or removed; see Section 4.4.1.5, “Change
for Test Properties” for details.

18

Chapter 5 Connector/J Examples
Examples of using Connector/J are located throughout this document. This section provides a summary
and links to these examples.

• Example 7.1, “Connector/J: Obtaining a connection from the DriverManager”

• Example 7.2, “Connector/J: Using java.sql.Statement to execute a SELECT query”

• Example 7.3, “Connector/J: Calling Stored Procedures”

• Example 7.4, “Connector/J: Using Connection.prepareCall()”

• Example 7.5, “Connector/J: Registering output parameters”

• Example 7.6, “Connector/J: Setting CallableStatement input parameters”

• Example 7.7, “Connector/J: Retrieving results and output parameter values”

• Example 7.8, “Connector/J: Retrieving AUTO_INCREMENT column values using
Statement.getGeneratedKeys()”

• Example 7.9, “Connector/J: Retrieving AUTO_INCREMENT column values using SELECT
LAST_INSERT_ID()”

• Example 7.10, “Connector/J: Retrieving AUTO_INCREMENT column values in Updatable
ResultSets”

• Example 8.1, “Connector/J: Using a connection pool with a J2EE application server”

• Example 16.1, “Connector/J: Example of transaction with retry logic”

19

20

Chapter 6 Connector/J Reference

Table of Contents
6.1 Driver/Datasource Class Name ... 22
6.2 Connection URL Syntax .. 22
6.3 Configuration Properties .. 25

6.3.1 Authentication .. 33
6.3.2 Connection .. 35
6.3.3 Session ... 37
6.3.4 Networking .. 38
6.3.5 Security ... 41
6.3.6 Statements .. 45
6.3.7 Prepared Statements ... 46
6.3.8 Result Sets .. 48
6.3.9 Metadata ... 50
6.3.10 BLOB/CLOB processing ... 50
6.3.11 Datetime types processing ... 52
6.3.12 High Availability and Clustering ... 54
6.3.13 Performance Extensions ... 59
6.3.14 Debugging/Profiling .. 64
6.3.15 Exceptions/Warnings .. 67
6.3.16 Tunes for integration with other products ... 68
6.3.17 JDBC compliance .. 68
6.3.18 X Protocol and X DevAPI ... 69

6.4 JDBC API Implementation Notes ... 73
6.5 Java, JDBC, and MySQL Types .. 75
6.6 Handling of Date-Time Values ... 78

6.6.1 Preserving Time Instants .. 78
6.6.2 Fractional Seconds .. 83
6.6.3 Handling of YEAR Values .. 83

6.7 Using Character Sets and Unicode ... 84
6.8 Using Query Attributes .. 86
6.9 Connecting Securely Using SSL .. 88

6.9.1 Setting up Server Authentication ... 90
6.9.2 Setting up Client Authentication .. 92
6.9.3 Setting up 2-Way Authentication ... 93
6.9.4 JSSE in FIPS Mode ... 93
6.9.5 Debugging an SSL Connection ... 94

6.10 Connecting Using Unix Domain Sockets .. 94
6.11 Connecting Using Named Pipes .. 94
6.12 Connecting Using Various Authentication Methods ... 95

6.12.1 Connecting Using PAM Authentication .. 95
6.12.2 Connecting Using Kerberos .. 96
6.12.3 Connecting Using Multifactor Authentication .. 97
6.12.4 Connecting Using Web Authentication (WebAuthn) Authentication 98

6.13 Using Source/Replica Replication with ReplicationConnection ... 102
6.14 Support for DNS SRV Records ... 103
6.15 Client Session State Tracker ... 104
6.16 Mapping MySQL Error Numbers to JDBC SQLState Codes .. 105

This section of the manual contains reference material for MySQL Connector/J.

21

Driver/Datasource Class Name

6.1 Driver/Datasource Class Name
The name of the class that implements java.sql.Driver in MySQL Connector/J is
com.mysql.cj.jdbc.Driver.

6.2 Connection URL Syntax
This section explains the syntax of the URLs for connecting to MySQL.

This is the generic format of the connection URL:

protocol//[hosts][/database][?properties]

The URL consists of the following parts:

Important

Any reserved characters for URLs (for example, /, :, @, (,), [,], &, #, =, ?, and
space) that appear in any part of the connection URL must be percent encoded.

protocol

There are the possible protocols for a connection:

• jdbc:mysql: is for ordinary and basic JDBC failover connections.

• jdbc:mysql:loadbalance: is for load-balancing JDBC connections. See Section 9.3, “Configuring
Load Balancing with Connector/J” for details.

• jdbc:mysql:replication: is for JDBC replication connections. See Section 9.4, “Configuring
Source/Replica Replication with Connector/J” for details.

• mysqlx: is for X DevAPI connections.

• jdbc:mysql+srv: is for ordinary and basic failover JDBC connections that make use of DNS SRV
records.

• jdbc:mysql+srv:loadbalance: is for load-balancing JDBC connections that make use of DNS SRV
records.

• jdbc:mysql+srv:replication: is for replication JDBC connections that make use of DNS SRV
records.

• mysqlx+srv: is for X DevAPI connections that make use of DNS SRV records.

hosts

Depending on the situation, the hosts part may consist simply of a host name, or it can be a complex
structure consisting of various elements like multiple host names, port numbers, host-specific properties,
and user credentials.

• Single host:

• Single-host connections without adding host-specific properties:

• The hosts part is written in the format of host:port. This is an example of a simple single-host
connection URL:

jdbc:mysql://host1:33060/sakila

22

hosts

• host can be an IPv4 or an IPv6 host name string, and in the latter case it must be put inside
square brackets, for example “[1000:2000::abcd].” When host is not specified, the default value of
localhost is used.

• port is a standard port number, i.e., an integer between 1 and 65535. The default port number
for an ordinary MySQL connection is 3306, and it is 33060 for a connection using the X Protocol. If
port is not specified, the corresponding default is used.

• Single-host connections adding host-specific properties:

• In this case, the host is defined as a succession of key=value pairs. Keys are used to identify the
host, the port, as well as any host-specific properties. There are two alternate formats for specifying
keys:

• The “address-equals” form:

address=(host=host_or_ip)(port=port)(key1=value1)(key2=value2)...(keyN=valueN)

Here is a sample URL using the“address-equals” form :

jdbc:mysql://address=(host=myhost)(port=1111)(key1=value1)/db

• The “key-value” form:

(host=host,port=port,key1=value1,key2=value2,...,keyN=valueN)

Here is a sample URL using the “key-value” form :

jdbc:mysql://(host=myhost,port=1111,key1=value1)/db

• The host and the port are identified by the keys host and port. The descriptions of the format and
default values of host and port in Single host without host-specific properties [22] above also
apply here.

• Other keys that can be added include user, password, protocol, and so on. They override
the global values set in the properties part of the URL. Limit the overrides to user, password,
network timeouts, and statement and metadata cache sizes; the effects of other per-host overrides
are not defined.

• Different protocols may require different keys. For example, the mysqlx: scheme uses two special
keys, address and priority. address is a host:port pair and priority an integer. For
example:

mysqlx://(address=host:1111,priority=1,key1=value1)/db

• key is case-sensitive. Two keys differing in case only are considered conflicting, and there are no
guarantees on which one will be used.

• Multiple hosts

There are two formats for specifying multiple hosts:

• List hosts in a comma-separated list:

host1,host2,...,hostN

Each host can be specified in any of the three ways described in Single host [22] above. Here are
some examples:

23

database

jdbc:mysql://myhost1:1111,myhost2:2222/db
jdbc:mysql://address=(host=myhost1)(port=1111)(key1=value1),address=(host=myhost2)(port=2222)(key2=value2)/db
jdbc:mysql://(host=myhost1,port=1111,key1=value1),(host=myhost2,port=2222,key2=value2)/db
jdbc:mysql://myhost1:1111,(host=myhost2,port=2222,key2=value2)/db
mysqlx://(address=host1:1111,priority=1,key1=value1),(address=host2:2222,priority=2,key2=value2)/db

• List hosts in a comma-separated list, and then encloses the list by square brackets:

[host1,host2,...,hostN]

This is called the host sublist form, which allows sharing of the user credentials by all hosts in the list
as if they are a single host. Each host in the list can be specified in any of the three ways described in
Single host [22] above. Here are some examples:

jdbc:mysql://sandy:secret@[myhost1:1111,myhost2:2222]/db
jdbc:mysql://sandy:secret@[address=(host=myhost1)(port=1111)(key1=value1),address=(host=myhost2)(port=2222)(key2=value2)]/db
jdbc:mysql://sandy:secret@[myhost1:1111,address=(host=myhost2)(port=2222)(key2=value2)]/db

While it is not possible to write host sublists recursively, a host list may contain host sublists as its
member hosts.

• User credentials

User credentials can be set outside of the connection URL—for example, as arguments when getting
a connection from the java.sql.DriverManager (see Section 6.3, “Configuration Properties” for
details). When set with the connection URL, there are several ways to specify them:

• Prefix the a single host, a host sublist (see Multiple hosts [23]), or any host in a list of hosts with the
user credentials with an @:

 user:password@host_or_host_sublist

For example:

mysqlx://sandy:secret@[(address=host1:1111,priority=1,key1=value1),(address=host2:2222,priority=2,key2=value2))]/db

• Use the keys user and password to specify credentials for each host:

(user=sandy)(password=mypass)

For example:

jdbc:mysql://[(host=myhost1,port=1111,user=sandy,password=secret),(host=myhost2,port=2222,user=finn,password=secret)]/db
jdbc:mysql://address=(host=myhost1)(port=1111)(user=sandy)(password=secret),address=(host=myhost2)(port=2222)(user=finn)(password=secret)/db

In both forms, when multiple user credentials are specified, the one to the left takes precedence—that is,
going from left to right in the connection string, the first one found that is applicable to a host is the one
that is used.

Inside a host sublist, no host can have user credentials in the @ format, but individual host can have
user credentials specified in the key format.

database

The default database or catalog to open. If the database is not specified, the connection is made with no
default database. In this case, either call the setCatalog() method on the Connection instance, or
specify table names using the database name (that is, SELECT dbname.tablename.colname FROM
dbname.tablename...) in your SQL statements. Opening a connection without specifying the database

24

properties

to use is, in general, only useful when building tools that work with multiple databases, such as GUI
database managers.

Note

Always use the Connection.setCatalog() method to specify the desired
database in JDBC applications, rather than the USE database statement.

properties

A succession of global properties applying to all hosts, preceded by ? and written as key=value pairs
separated by the symbol “&.” Here are some examples:

jdbc:mysql://(host=myhost1,port=1111),(host=myhost2,port=2222)/db?key1=value1&key2=value2&key3=value3

The following are true for the key-value pairs:

• key and value are just strings. Proper type conversion and validation are performed internally in
Connector/J.

• key is case-sensitive. Two keys differing in case only are considered conflicting, and it is uncertain
which one will be used.

• Any host-specific values specified with key-value pairs as explained in Single host with host-specific
properties [23] and Multiple hosts [23] above override the global values set here.

See Section 6.3, “Configuration Properties” for details about the configuration properties.

6.3 Configuration Properties

Configuration properties define how Connector/J will make a connection to a MySQL server. Unless
otherwise noted, properties can be set for a DataSource object or for a Connection object.

Configuration properties can be set in one of the following ways:

• Using the set*() methods on MySQL implementations of java.sql.DataSource (which is the
preferred method when using implementations of java.sql.DataSource):

• com.mysql.cj.jdbc.MysqlDataSource

• com.mysql.cj.jdbc.MysqlConnectionPoolDataSource

• As a key-value pair in the java.util.Properties instance passed to
DriverManager.getConnection() or Driver.connect()

• As a JDBC URL parameter in the URL given to java.sql.DriverManager.getConnection(),
java.sql.Driver.connect() or the MySQL implementations of the javax.sql.DataSource
setURL() method. If you specify a configuration property in the URL without providing a value for
it, nothing will be set; for example, adding useServerPrepStmts alone to the URL does not make
Connector/J use server-side prepared statements; you need to add useServerPrepStmts=true.

Note

If the mechanism you use to configure a JDBC URL is XML-based, use the XML
character literal & to separate configuration parameters, as the ampersand
is a reserved character for XML.

25

Configuration Properties

The properties are listed by categories in the following tables and then in the subsections that follow. Click
on a property name in the tables to see its full description in the subsections.

Table 6.1 Authentication Properties

Name Default Value Since Version

user - all versions

password - all versions

password1 - 8.0.28

password2 - 8.0.28

password3 - 8.0.28

authenticationPlugins - 5.1.19

disabledAuthenticationPlugins- 5.1.19

defaultAuthenticationPlugin mysql_native_password 5.1.19

ldapServerHostname - 8.0.23

ociConfigFile - 8.0.27

ociConfigProfile DEFAULT 8.0.33

authenticationWebAuthnCallbackHandler- 8.2.0

Table 6.2 Connection Properties

Name Default Value Since Version

connectionAttributes - 5.1.25

connectionLifecycleInterceptors- 5.1.4

useConfigs - 3.1.5

clientInfoProvider com.mysql.cj.jdbc.CommentClientInfoProvider5.1.0

createDatabaseIfNotExist false 3.1.9

databaseTerm CATALOG 8.0.17

detectCustomCollations false 5.1.29

disconnectOnExpiredPasswords true 5.1.23

interactiveClient false 3.1.0

passwordCharacterEncoding - 5.1.7

propertiesTransform - 3.1.4

rollbackOnPooledClose true 3.0.15

useAffectedRows false 5.1.7

Table 6.3 Session Properties

Name Default Value Since Version

sessionVariables - 3.1.8

characterEncoding - 1.1g

characterSetResults - 3.0.13

connectionCollation - 3.0.13

customCharsetMapping - 8.0.26

26

Configuration Properties

Name Default Value Since Version

trackSessionState false 8.0.26

Table 6.4 Networking Properties

Name Default Value Since Version

socksProxyHost - 5.1.34

socksProxyPort 1080 5.1.34

socketFactory com.mysql.cj.protocol.StandardSocketFactory3.0.3

connectTimeout 0 3.0.1

socketTimeout 0 3.0.1

dnsSrv false 8.0.19

localSocketAddress - 5.0.5

maxAllowedPacket 65535 5.1.8

socksProxyRemoteDns false 8.0.29

tcpKeepAlive true 5.0.7

tcpNoDelay true 5.0.7

tcpRcvBuf 0 5.0.7

tcpSndBuf 0 5.0.7

tcpTrafficClass 0 5.0.7

useCompression false 3.0.17

useUnbufferedInput true 3.0.11

Table 6.5 Security Properties

Name Default Value Since Version

paranoid false 3.0.1

serverRSAPublicKeyFile - 5.1.31

allowPublicKeyRetrieval false 5.1.31

sslMode PREFERRED 8.0.13

trustCertificateKeyStoreUrl - 5.1.0

trustCertificateKeyStoreType JKS 5.1.0

trustCertificateKeyStorePassword- 5.1.0

fallbackToSystemTrustStore true 8.0.22

clientCertificateKeyStoreUrl - 5.1.0

clientCertificateKeyStoreTypeJKS 5.1.0

clientCertificateKeyStorePassword- 5.1.0

fallbackToSystemKeyStore true 8.0.22

tlsCiphersuites - 5.1.35

tlsVersions - 8.0.8

fipsCompliantJsse false 8.1.0

KeyManagerFactoryProvider - 8.1.0

27

Configuration Properties

Name Default Value Since Version

trustManagerFactoryProvider - 8.1.0

keyStoreProvider - 8.1.0

sslContextProvider - 8.1.0

allowLoadLocalInfile false 3.0.3

allowLoadLocalInfileInPath - 8.0.22

allowMultiQueries false 3.1.1

allowUrlInLocalInfile false 3.1.4

requireSSL false 3.1.0

useSSL true 3.0.2

verifyServerCertificate false 5.1.6

Table 6.6 Statements Properties

Name Default Value Since Version

cacheDefaultTimeZone true 8.0.20

continueBatchOnError true 3.0.3

dontTrackOpenResources false 3.1.7

queryInterceptors - 8.0.7

queryTimeoutKillsConnection false 5.1.9

Table 6.7 Prepared Statements Properties

Name Default Value Since Version

allowNanAndInf false 3.1.5

autoClosePStmtStreams false 3.1.12

compensateOnDuplicateKeyUpdateCountsfalse 5.1.7

emulateUnsupportedPstmts true 3.1.7

generateSimpleParameterMetadatafalse 5.0.5

processEscapeCodesForPrepStmtstrue 3.1.12

useServerPrepStmts false 3.1.0

useStreamLengthsInPrepStmts true 3.0.2

Table 6.8 Result Sets Properties

Name Default Value Since Version

clobberStreamingResults false 3.0.9

emptyStringsConvertToZero true 3.1.8

holdResultsOpenOverStatementClosefalse 3.1.7

jdbcCompliantTruncation true 3.1.2

maxRows -1 all versions

netTimeoutForStreamingResults600 5.1.0

padCharsWithSpace false 5.0.6

populateInsertRowWithDefaultValuesfalse 5.0.5

28

Configuration Properties

Name Default Value Since Version

scrollTolerantForwardOnly false 8.0.24

strictUpdates true 3.0.4

tinyInt1isBit true 3.0.16

transformedBitIsBoolean false 3.1.9

Table 6.9 Metadata Properties

Name Default Value Since Version

getProceduresReturnsFunctionstrue 5.1.26

noAccessToProcedureBodies false 5.0.3

nullDatabaseMeansCurrent false 3.1.8

useHostsInPrivileges true 3.0.2

useInformationSchema false 5.0.0

Table 6.10 BLOB/CLOB processing Properties

Name Default Value Since Version

blobSendChunkSize 1048576 3.1.9

blobsAreStrings false 5.0.8

clobCharacterEncoding - 5.0.0

emulateLocators false 3.1.0

functionsNeverReturnBlobs false 5.0.8

locatorFetchBufferSize 1048576 3.2.1

Table 6.11 Datetime types processing Properties

Name Default Value Since Version

connectionTimeZone - 3.0.2

forceConnectionTimeZoneToSessionfalse 8.0.23

noDatetimeStringSync false 3.1.7

preserveInstants true 8.0.23

sendFractionalSeconds true 5.1.37

sendFractionalSecondsForTime true 8.0.23

treatMysqlDatetimeAsTimestampfalse 8.2.0

treatUtilDateAsTimestamp true 5.0.5

yearIsDateType true 3.1.9

zeroDateTimeBehavior EXCEPTION 3.1.4

Table 6.12 High Availability and Clustering Properties

Name Default Value Since Version

autoReconnect false 1.1

autoReconnectForPools false 3.1.3

failOverReadOnly true 3.0.12

29

Configuration Properties

Name Default Value Since Version

maxReconnects 3 1.1

reconnectAtTxEnd false 3.0.10

retriesAllDown 120 5.1.6

initialTimeout 2 1.1

queriesBeforeRetrySource 50 3.0.2

secondsBeforeRetrySource 30 3.0.2

allowReplicaDownConnections false 6.0.2

allowSourceDownConnections false 5.1.27

ha.enableJMX false 5.1.27

loadBalanceHostRemovalGracePeriod15000 6.0.3

readFromSourceWhenNoReplicas false 6.0.2

selfDestructOnPingMaxOperations0 5.1.6

selfDestructOnPingSecondsLifetime0 5.1.6

ha.loadBalanceStrategy random 5.0.6

loadBalanceAutoCommitStatementRegex- 5.1.15

loadBalanceAutoCommitStatementThreshold0 5.1.15

loadBalanceBlocklistTimeout 0 5.1.0

loadBalanceConnectionGroup - 5.1.13

loadBalanceExceptionChecker com.mysql.cj.jdbc.ha.StandardLoadBalanceExceptionChecker5.1.13

loadBalancePingTimeout 0 5.1.13

loadBalanceSQLExceptionSubclassFailover- 5.1.13

loadBalanceSQLStateFailover - 5.1.13

loadBalanceValidateConnectionOnSwapServerfalse 5.1.13

pinGlobalTxToPhysicalConnectionfalse 5.0.1

replicationConnectionGroup - 8.0.7

resourceId - 5.0.1

serverAffinityOrder - 8.0.8

Table 6.13 Performance Extensions Properties

Name Default Value Since Version

callableStmtCacheSize 100 3.1.2

metadataCacheSize 50 3.1.1

useLocalSessionState false 3.1.7

useLocalTransactionState false 5.1.7

prepStmtCacheSize 25 3.0.10

prepStmtCacheSqlLimit 256 3.0.10

queryInfoCacheFactory com.mysql.cj.PerConnectionLRUFactory5.1.1

serverConfigCacheFactory com.mysql.cj.util.PerVmServerConfigCacheFactory5.1.1

30

Configuration Properties

Name Default Value Since Version

alwaysSendSetIsolation true 3.1.7

maintainTimeStats true 3.1.9

useCursorFetch false 5.0.0

cacheCallableStmts false 3.1.2

cachePrepStmts false 3.0.10

cacheResultSetMetadata false 3.1.1

cacheServerConfiguration false 3.1.5

defaultFetchSize 0 3.1.9

dontCheckOnDuplicateKeyUpdateInSQLfalse 5.1.32

elideSetAutoCommits false 3.1.3

enableEscapeProcessing true 6.0.1

enableQueryTimeouts true 5.0.6

largeRowSizeThreshold 2048 5.1.1

readOnlyPropagatesToServer true 5.1.35

rewriteBatchedStatements false 3.1.13

useReadAheadInput true 3.1.5

Table 6.14 Debugging/Profiling Properties

Name Default Value Since Version

logger com.mysql.cj.log.StandardLogger 3.1.1

profilerEventHandler com.mysql.cj.log.LoggingProfilerEventHandler5.1.6

useNanosForElapsedTime false 5.0.7

maxQuerySizeToLog 2048 3.1.3

maxByteArrayAsHex 1024 8.0.31

profileSQL false 3.1.0

logSlowQueries false 3.1.2

slowQueryThresholdMillis 2000 3.1.2

slowQueryThresholdNanos 0 5.0.7

autoSlowLog true 5.1.4

explainSlowQueries false 3.1.2

gatherPerfMetrics false 3.1.2

reportMetricsIntervalMillis 30000 3.1.2

logXaCommands false 5.0.5

traceProtocol false 3.1.2

enablePacketDebug false 3.1.3

packetDebugBufferSize 20 3.1.3

useUsageAdvisor false 3.1.1

resultSetSizeThreshold 100 5.0.5

autoGenerateTestcaseScript false 3.1.9

31

Configuration Properties

Name Default Value Since Version

openTelemetry PREFERRED 8.4.0

Table 6.15 Exceptions/Warnings Properties

Name Default Value Since Version

dumpQueriesOnException false 3.1.3

exceptionInterceptors - 5.1.8

ignoreNonTxTables false 3.0.9

includeInnodbStatusInDeadlockExceptionsfalse 5.0.7

includeThreadDumpInDeadlockExceptionsfalse 5.1.15

includeThreadNamesAsStatementCommentfalse 5.1.15

useOnlyServerErrorMessages true 3.0.15

Table 6.16 Tunes for integration with other products Properties

Name Default Value Since Version

overrideSupportsIntegrityEnhancementFacilityfalse 3.1.12

ultraDevHack false 2.0.3

Table 6.17 JDBC compliance Properties

Name Default Value Since Version

useColumnNamesInFindColumn false 5.1.7

pedantic false 3.0.0

useOldAliasMetadataBehavior false 5.0.4

Table 6.18 X Protocol and X DevAPI Properties

Name Default Value Since Version

xdevapi.auth PLAIN 8.0.8

xdevapi.compression PREFERRED 8.0.20

xdevapi.compression-
algorithms

zstd_stream,lz4_message,deflate_stream8.0.22

xdevapi.compression-
extensions

- 8.0.22

xdevapi.connect-timeout 10000 8.0.13

xdevapi.connection-
attributes

- 8.0.16

xdevapi.dns-srv false 8.0.19

xdevapi.fallback-to-system-
keystore

true 8.0.22

xdevapi.fallback-to-system-
truststore

true 8.0.22

xdevapi.ssl-keystore - 8.0.22

xdevapi.ssl-keystore-
password

- 8.0.22

32

Authentication

Name Default Value Since Version

xdevapi.ssl-keystore-type JKS 8.0.22

xdevapi.ssl-mode REQUIRED 8.0.7

xdevapi.ssl-truststore - 6.0.6

xdevapi.ssl-truststore-
password

- 6.0.6

xdevapi.ssl-truststore-type JKS 6.0.6

xdevapi.tls-ciphersuites - 8.0.19

xdevapi.tls-versions - 8.0.19

6.3.1 Authentication

• user

The user to connect as. If none is specified, it is authentication plugin dependent what user name is
used. Built-in authentication plugins default to the session login user name.

Since Version all versions

• password

The password to use when authenticating the user.

Since Version all versions

• password1

The password to use in the first phase of a Multi-Factor Authentication workflow. It is a synonym of the
connection property 'password' and can also be set with user credentials in the connection string.

Since Version 8.0.28

• password2

The password to use in the second phase of a Multi-Factor Authentication workflow.

Since Version 8.0.28

• password3

The password to use in the third phase of a Multi-Factor Authentication workflow.

Since Version 8.0.28

• authenticationPlugins

Comma-delimited list of classes that implement the interface
'com.mysql.cj.protocol.AuthenticationPlugin'. These plugins will be loaded at connection initialization
and can be used together with their sever-side counterparts for authenticating users, unless they are
disabled in the connection property 'disabledAuthenticationPlugins'.

Since Version 5.1.19

33

Authentication

• disabledAuthenticationPlugins

Comma-delimited list of authentication plugins client-side protocol names or classes implementing the
interface 'com.mysql.cj.protocol.AuthenticationPlugin'. The authentication plugins listed will not be used
for authenticating users and, if anyone of them is required during the authentication exchange, the
connection fails. The default authentication plugin specified in the property 'defaultAuthenticationPlugin'
cannot be disabled.

Since Version 5.1.19

• defaultAuthenticationPlugin

The default authentication plugin client-side protocol name or a fully qualified name of a class that
implements the interface 'com.mysql.cj.protocol.AuthenticationPlugin'. The specified authentication
plugin must be either one of the built-in authentication plugins or one of the plugins listed in the property
'authenticationPlugins'. Additionally, the default authentication plugin cannot be disabled with the
property 'disabledAuthenticationPlugins'. Neither an empty nor unknown plugin name or class can be set
for this property.

By default, Connector/J honors the server-side default authentication plugin, which is known after
receiving the initial handshake packet, and falls back to this property's default value if that plugin cannot
be used. However, when a value is explicitly provided to this property, Connector/J then overrides the
server-side default authentication plugin and always tries first the plugin specified with this property.

Default Value mysql_native_password

Since Version 5.1.19

• ldapServerHostname

When using MySQL's LDAP pluggable authentication with GSSAPI/Kerberos authentication method,
allows setting the LDAP service principal hostname as configured in the Kerberos KDC. If this property is
not set, Connector/J takes the system property 'java.security.krb5.kdc' and extracts the hostname (short
name) from its value and uses it. If neither is set, the connection fails with an exception.

Since Version 8.0.23

• ociConfigFile

The location of the OCI configuration file as required by the OCI SDK for Java. Default value is "~/.oci/
config" for Unix-like systems and "%HOMEDRIVE%%HOMEPATH%.oci\config" for Windows.

Since Version 8.0.27

• ociConfigProfile

The profile in the OCI configuration file specified in 'ociConfigFile', from where the configuration to use in
the 'authentication_oci_client' authentication plugin is to be read.

Default Value DEFAULT

Since Version 8.0.33

• authenticationWebAuthnCallbackHandler

Fully-qualified class name of a class implementing the interface
'com.mysql.cj.callback.MysqlCallbackHandler'. This class will be used by the WebAuthn authentication

34

Connection

plugin to obtain the authenticator data and signature required for the FIDO authentication process. See
the documentation of com.mysql.cj.callback.WebAuthnAuthenticationCallback for more details.

Since Version 8.2.0

6.3.2 Connection

• connectionAttributes

A comma-delimited list of user-defined "key:value" pairs, in addition to standard MySQL-defined
"key:value" pairs, to be passed to MySQL Server for display as connection attributes in the
'PERFORMANCE_SCHEMA' tables 'session_account_connect_attrs' and 'session_connect_attrs'.
Example usage: "connectionAttributes=key1:value1,key2:value2" This functionality is available
for use with MySQL Server version 5.6 or later only. Earlier versions of MySQL Server do
not support connection attributes, causing this configuration option to be ignored. Setting
"connectionAttributes=none" will cause connection attribute processing to be bypassed for situations
where Connection creation/initialization speed is critical.

Since Version 5.1.25

• connectionLifecycleInterceptors

A comma-delimited list of classes that implement
'com.mysql.cj.jdbc.interceptors.ConnectionLifecycleInterceptor' that should be notified of
connection lifecycle events (creation, destruction, commit, rollback, setting the current database
and changing the autocommit mode) and potentially alter the execution of these commands.
'ConnectionLifecycleInterceptors' are stackable, more than one interceptor may be specified via the
configuration property as a comma-delimited list, with the interceptors executed in order from left to right.

Since Version 5.1.4

• useConfigs

Load the comma-delimited list of configuration properties for specifying combinations of options
for particular scenarios. These properties are loaded before parsing the URL or applying user-
specified properties. Allowed values are "3-0-Compat", "clusterBase", "coldFusion", "fullDebug",
"maxPerformance", "maxPerformance-8-0" and "solarisMaxPerformance", and they correspond to
properties files shipped within the Connector/J jar file, under "com/mysql/cj/configurations".

Since Version 3.1.5

• clientInfoProvider

The name of a class that implements the 'com.mysql.cj.jdbc.ClientInfoProvider' interface in order to
support JDBC-4.0's 'Connection.get/setClientInfo()' methods.

Default Value com.mysql.cj.jdbc.CommentClientInfoProvider

Since Version 5.1.0

• createDatabaseIfNotExist

Creates the database given in the URL if it doesn't yet exist. Assumes the configured user has
permissions to create databases.

35

Connection

Default Value false

Since Version 3.1.9

• databaseTerm

MySQL uses the term "schema" as a synonym of the term "database," while Connector/J historically
takes the JDBC term "catalog" as synonymous to "database". This property sets for Connector/J which
of the JDBC terms "catalog" and "schema" is used in an application to refer to a database. The property
takes one of the two values "CATALOG" or "SCHEMA" and uses it to determine (1) which Connection
methods can be used to set/get the current database (e.g. 'setCatalog()' or 'setSchema()'?), (2) which
arguments can be used within the various 'DatabaseMetaData' methods to filter results (e.g. the catalog
or 'schemaPattern' argument of 'getColumns()'?), and (3) which fields in the result sets returned by
'DatabaseMetaData' methods contain the database identification information (i.e., the 'TABLE_CAT' or
'TABLE_SCHEM' field in the result set returned by 'getTables()'?).

If "databaseTerm=CATALOG", 'schemaPattern' for searches are ignored and calls of schema methods
(like 'setSchema()' or get 'Schema()') become no-ops, and vice versa.

Default Value CATALOG

Since Version 8.0.17

• detectCustomCollations

Should the driver detect custom charsets/collations installed on server? If this option set to "true" the
driver gets actual charsets/collations from the server each time a connection establishes. This could slow
down connection initialization significantly.

Default Value false

Since Version 5.1.29

• disconnectOnExpiredPasswords

If 'disconnectOnExpiredPasswords' is set to "false" and password is expired then server enters sandbox
mode and sends 'ERR(08001, ER_MUST_CHANGE_PASSWORD)' for all commands that are not
needed to set a new password until a new password is set.

Default Value true

Since Version 5.1.23

• interactiveClient

Set the 'CLIENT_INTERACTIVE' flag, which tells MySQL to timeout connections based on
'interactive_timeout' instead of 'wait_timeout'.

Default Value false

Since Version 3.1.0

• passwordCharacterEncoding

Instructs the server to use the default character set for the specified Java encoding during the
authentication phase. If this property is not set, Connector/J falls back to the collation name specified in
the property 'connectionCollation' or to the Java encoding specified in the property 'characterEncoding',

36

Session

in that order of priority. The default collation of the character set utf8mb4 is used if none of the properties
is set.

Since Version 5.1.7

• propertiesTransform

An implementation of 'com.mysql.cj.conf.ConnectionPropertiesTransform' that the driver will use to
modify connection string properties passed to the driver before attempting a connection.

Since Version 3.1.4

• rollbackOnPooledClose

Should the driver issue a 'rollback()' when the logical connection in a pool is closed?

Default Value true

Since Version 3.0.15

• useAffectedRows

Don't set the 'CLIENT_FOUND_ROWS' flag when connecting to the server. Note that this is not JDBC-
compliant and it will break most applications that rely on "found" rows vs. "affected rows" for DML
statements, but does cause correct update counts from "INSERT ... ON DUPLICATE KEY UPDATE"
statements to be returned by the server.

Default Value false

Since Version 5.1.7

6.3.3 Session

• sessionVariables

A comma or semicolon separated list of "name=value" pairs to be sent as "SET [SESSION] ..." to the
server when the driver connects.

Since Version 3.1.8

• characterEncoding

Instructs the server to set session system variables 'character_set_client' and 'character_set_connection'
to the default character set supported by MySQL for the specified Java character encoding and set
'collation_connection' to the default collation for this character set. If neither this property nor the property
'connectionCollation' is set:

For Connector/J 8.0.25 and earlier, the driver will try to use the server's default character set;

For Connector/J 8.0.26 and later, the driver will use "utf8mb4".

Since Version 1.1g

• characterSetResults

37

Networking

Instructs the server to return the data encoded with the default character set for the specified Java
encoding. If not set or set to "null", the server will send data in its original character set and the driver will
decode it according to the result metadata.

Since Version 3.0.13

• connectionCollation

Instructs the server to set session system variable 'collation_connection' to the specified collation
name and set 'character_set_client' and 'character_set_connection' to a corresponding character set.
This property overrides the value of 'characterEncoding' with the default character set this collation
belongs to, if and only if 'characterEncoding' is not configured or is configured with a character set that
is incompatible with the collation. That means 'connectionCollation' may not always correct a mismatch
of character sets. For example, if 'connectionCollation' is set to "latin1_swedish_ci", the corresponding
character set is "latin1" for MySQL, which maps it to the Java character set "windows-1252";
so if 'characterEncoding' is not set,"windows-1252" is the character set that will be used; but if
'characterEncoding' has been set to, e.g. "ISO-8859-1", that is compatible with "latin1_swedish_ci", so
the character encoding setting is left unchanged; and if client is actually using "windows-1252" (which is
similar but different from "ISO-8859-1"), errors would occur for some characters. If neither this property
nor the property 'characterEncoding' is set:

For Connector/J 8.0.25 and earlier, the driver will try to use the server's default character set;

For Connector/J 8.0.26 and later, the driver will use utf8mb4's default collation.

Since Version 3.0.13

• customCharsetMapping

A comma-delimited list of custom "charset:java encoding" pairs.

In case the MySQL server is configured with custom character sets and "detectCustomCollations=true",
Connector/J needs to know which Java character encoding to use for the data represented by these
character sets. Example usage: "customCharsetMapping=charset1:UTF-8,charset2:Cp1252".

Since Version 8.0.26

• trackSessionState

Receive server session state changes on query results. These changes are accessible via
'MysqlConnection.getServerSessionStateController()'.

Default Value false

Since Version 8.0.26

6.3.4 Networking

• socksProxyHost

Name or IP address of a SOCKS host to connect through.

Since Version 5.1.34

• socksProxyPort

38

Networking

Port of the SOCKS server.

Default Value 1080

Since Version 5.1.34

• socketFactory

The name of the class that the driver should use for creating socket connections to the server. This
class must implement the interface 'com.mysql.cj.protocol.SocketFactory' and have a public no-args
constructor.

Default Value com.mysql.cj.protocol.StandardSocketFactory

Since Version 3.0.3

• connectTimeout

Timeout for socket connect (in milliseconds), with 0 being no timeout.

Default Value 0

Since Version 3.0.1

• socketTimeout

Timeout, specified in milliseconds, on network socket operations. Value "0" means no timeout.

Default Value 0

Since Version 3.0.1

• dnsSrv

Should the driver use the given host name to lookup for DNS SRV records and use the resulting list of
hosts in a multi-host failover connection? Note that a single host name and no port must be provided
when this option is enabled.

Default Value false

Since Version 8.0.19

• localSocketAddress

Hostname or IP address given to explicitly configure the interface that the driver will bind the client side
of the TCP/IP connection to when connecting.

Since Version 5.0.5

• maxAllowedPacket

Maximum allowed packet size to send to server. If not set, the value of system variable
'max_allowed_packet' will be used to initialize this upon connecting. This value will not take effect if set
larger than the value of 'max_allowed_packet'. Also, due to an internal dependency with the property
'blobSendChunkSize', this setting has a minimum value of "8203" if 'useServerPrepStmts' is set to "true".

Default Value 65535

39

Networking

Since Version 5.1.8

• socksProxyRemoteDns

When using a SOCKS proxy, whether the DNS lookup for the database host should be performed locally
or through the SOCKS proxy.

Default Value false

Since Version 8.0.29

• tcpKeepAlive

If connecting using TCP/IP, should the driver set 'SO_KEEPALIVE'?

Default Value true

Since Version 5.0.7

• tcpNoDelay

If connecting using TCP/IP, should the driver set 'SO_TCP_NODELAY', disabling the Nagle Algorithm?

Default Value true

Since Version 5.0.7

• tcpRcvBuf

If connecting using TCP/IP, should the driver set 'SO_RCV_BUF' to the given value? The default value
of "0", means use the platform default value for this property.

Default Value 0

Since Version 5.0.7

• tcpSndBuf

If connecting using TCP/IP, should the driver set 'SO_SND_BUF' to the given value? The default value
of "0", means use the platform default value for this property.

Default Value 0

Since Version 5.0.7

• tcpTrafficClass

If connecting using TCP/IP, should the driver set traffic class or type-of-service fields? See the
documentation for 'java.net.Socket.setTrafficClass()' for more information.

Default Value 0

Since Version 5.0.7

• useCompression

Use zlib compression when communicating with the server?

Default Value false

40

Security

Since Version 3.0.17

• useUnbufferedInput

Don't use 'BufferedInputStream' for reading data from the server.

Default Value true

Since Version 3.0.11

6.3.5 Security

• paranoid

Take measures to prevent exposure sensitive information in error messages and clear data structures
holding sensitive data when possible?

Default Value false

Since Version 3.0.1

• serverRSAPublicKeyFile

File path to the server RSA public key file for 'sha256_password' authentication. If not specified, the
public key will be retrieved from the server.

Since Version 5.1.31

• allowPublicKeyRetrieval

Allows special handshake round-trip to get an RSA public key directly from server.

Default Value false

Since Version 5.1.31

• sslMode

By default, network connections are SSL encrypted; this property permits secure connections
to be turned off, or a different levels of security to be chosen. The following values are allowed:
"DISABLED" - Establish unencrypted connections; "PREFERRED" - Establish encrypted connections
if the server enabled them, otherwise fall back to unencrypted connections; "REQUIRED" - Establish
secure connections if the server enabled them, fail otherwise; "VERIFY_CA" - Like "REQUIRED" but
additionally verify the server TLS certificate against the configured Certificate Authority (CA) certificates;
"VERIFY_IDENTITY" - Like "VERIFY_CA", but additionally verify that the server certificate matches the
host to which the connection is attempted.

This property replaced the deprecated legacy properties 'useSSL', 'requireSSL', and
'verifyServerCertificate', which are still accepted but translated into a value for 'sslMode'
if 'sslMode' is not explicitly set: "useSSL=false" is translated to "sslMode=DISABLED";
{"useSSL=true", "requireSSL=false", "verifyServerCertificate=false"} is translated to
"sslMode=PREFERRED"; {"useSSL=true", "requireSSL=true", "verifyServerCertificate=false"} is
translated to "sslMode=REQUIRED"; {"useSSL=true", "verifyServerCertificate=true"} is translated to
"sslMode=VERIFY_CA". There is no equivalent legacy settings for "sslMode=VERIFY_IDENTITY". Note
that, for all server versions, the default setting of 'sslMode' is "PREFERRED", and it is equivalent to the
legacy settings of "useSSL=true", "requireSSL=false", and "verifyServerCertificate=false", which are

41

Security

different from their default settings for Connector/J 8.0.12 and earlier in some situations. Applications
that continue to use the legacy properties and rely on their old default settings should be reviewed.

The legacy properties are ignored if 'sslMode' is set explicitly. If none of 'sslMode' or 'useSSL' is set
explicitly, the default setting of "sslMode=PREFERRED" applies.

Default Value PREFERRED

Since Version 8.0.13

• trustCertificateKeyStoreUrl

URL for the trusted root certificates key store.

If not specified, the property 'fallbackToSystemTrustStore' determines if system-wide trust store is used.

Since Version 5.1.0

• trustCertificateKeyStoreType

Key store type for trusted root certificates.

Null or empty means use the default, which is "JKS". Standard key store types supported by the JVM are
"JKS" and "PKCS12", your environment may have more available depending on what security providers
are installed and available to the JVM.

Default Value JKS

Since Version 5.1.0

• trustCertificateKeyStorePassword

Password for the trusted root certificates key store.

Since Version 5.1.0

• fallbackToSystemTrustStore

Whether the absence of setting a value for 'trustCertificateKeyStoreUrl' falls back to using the system-
wide default trust store or one defined through the system properties 'javax.net.ssl.trustStore*'.

Default Value true

Since Version 8.0.22

• clientCertificateKeyStoreUrl

URL for the client certificate KeyStore.

If not specified, the property 'fallbackToSystemKeyStore' determines if system-wide key store is used.

Since Version 5.1.0

42

Security

• clientCertificateKeyStoreType

Key store type for client certificates.

Null or empty means use the default, which is "JKS". Standard key store types supported by the JVM are
"JKS" and "PKCS12", your environment may have more available depending on what security providers
are installed and available to the JVM.

Default Value JKS

Since Version 5.1.0

• clientCertificateKeyStorePassword

Password for the client certificates key store.

Since Version 5.1.0

• fallbackToSystemKeyStore

Whether the absence of setting a value for 'clientCertificateKeyStoreUrl' falls back to using the system-
wide key store defined through the system properties 'javax.net.ssl.keyStore*'.

Default Value true

Since Version 8.0.22

• tlsCiphersuites

When establishing secure connections, overrides the cipher suites enabled for use on the underlying
SSL sockets. This may be required when using external JSSE providers or to specify cipher suites
compatible with both MySQL server and used JVM. Prior to version 8.0.28, this property was named
'enabledSSLCipherSuites', which remains as an alias.

Since Version 5.1.35

• tlsVersions

List of TLS protocols to allow when establishing secure connections. Overrides the TLS protocols
enabled in the underlying SSL sockets. This can be used to restrict connections to specific TLS versions
and, by doing that, avoid TLS negotiation fallback. Allowed and default values are "TLSv1.2" and
"TLSv1.3". Prior to version 8.0.28, this property was named 'enabledTLSProtocols', which remains as an
alias.

Since Version 8.0.8

• fipsCompliantJsse

Enables Connector/J to be compatible to JSSE operating in FIPS mode. Should be set to "true" if the
JSSE is configured to operate in FIPS mode and Connector/J receives the error "FIPS mode: only
SunJSSE TrustManagers may be used" when creating secure connections. If set to "true" then, when
establishing secure connections, the driver operates as if the 'sslMode' was set to "VERIFY_CA" or
"VERIFY_IDENTITY", i.e., all secure connections require at least server certificate validation, for which a
trust store must be configured or fall back to the system-wide trust store must be enabled.

Default Value false

43

Security

Since Version 8.1.0

• KeyManagerFactoryProvider

The name of the a Java Security Provider that provides a 'javax.net.ssl.KeyManagerFactory'
implementation. If none is specified then the default one is used.

Since Version 8.1.0

• trustManagerFactoryProvider

The name of the a Java Security Provider that provides a 'javax.net.ssl.TrustManagerFactory'
implementation. If none is specified then the default one is used.

Since Version 8.1.0

• keyStoreProvider

The name of the a Java Security Provider that provides a 'java.security.KeyStore' implementation
that supports the key stores types specified with 'clientCertificateKeyStoreType' and
'trustCertificateKeyStoreType'. If none is specified then the default one is used.

Since Version 8.1.0

• sslContextProvider

The name of the a Java Security Provider that provides a 'javax.net.ssl.SSLContext' implementation. If
none is specified then the default one is used.

Since Version 8.1.0

• allowLoadLocalInfile

Should the driver allow use of "LOAD DATA LOCAL INFILE ..."?

Setting to "true" overrides whatever path is set in 'allowLoadLocalInfileInPath', allowing uploading files
from any location.

Default Value false

Since Version 3.0.3

• allowLoadLocalInfileInPath

Enables "LOAD DATA LOCAL INFILE ..." statements, but only allows loading files from the specified
path. Files within sub-directories are also allowed, but relative paths or symlinks that fall outside this path
are forbidden.

Since Version 8.0.22

• allowMultiQueries

Allow the use of ";" to delimit multiple queries during one statement. This option does not affect the
'addBatch()' and 'executeBatch()' methods, which rely on 'rewriteBatchStatements' instead.

Default Value false

44

Statements

Since Version 3.1.1

• allowUrlInLocalInfile

Should the driver allow URLs in "LOAD DATA LOCAL INFILE ..." statements?

Default Value false

Since Version 3.1.4

• requireSSL

DEPRECATED: See 'sslMode' property description for details.

For 8.0.12 and earlier: Require server support of SSL connection if "useSSL=true".

Default Value false

Since Version 3.1.0

• useSSL

DEPRECATED: See 'sslMode' property description for details.

For 8.0.12 and earlier: Use SSL when communicating with the server, default is "true" when connecting
to MySQL 5.5.45+, 5.6.26+ or 5.7.6+, otherwise default is "false".

For 8.0.13 and later: Default is "true".

Default Value true

Since Version 3.0.2

• verifyServerCertificate

DEPRECATED: See 'sslMode' property description for details.

For 8.0.12 and earlier: If 'useSSL' is set to "true", should the driver verify the server's certificate? When
using this feature, the key store parameters should be specified by the 'clientCertificateKeyStore*'
properties, rather than system properties. Default is "false" when connecting to MySQL 5.5.45+, 5.6.26+
or 5.7.6+ and 'useSSL' was not explicitly set to "true". Otherwise default is "true".

For 8.0.13 and later: Default is "false".

Default Value false

Since Version 5.1.6

6.3.6 Statements

• cacheDefaultTimeZone

Caches client's default time zone. This results in better performance when dealing with time zone
conversions in Date and Time data types, however it won't be aware of time zone changes if they
happen at runtime.

Default Value true

45

Prepared Statements

Since Version 8.0.20

• continueBatchOnError

Should the driver continue processing batch commands if one statement fails. The JDBC spec allows
either way.

Default Value true

Since Version 3.0.3

• dontTrackOpenResources

The JDBC specification requires the driver to automatically track and close resources,
however if your application doesn't do a good job of explicitly calling 'close()' on statements
or result sets this can cause memory leakage. Setting this property to "true" relaxes this
constraint, and can be more memory efficient for some applications. Also the automatic
closing of the statement and current result set in 'Statement.closeOnCompletion()'
and 'Statement.getMoreResults([Statement.CLOSE_CURRENT_RESULT |
Statement.CLOSE_ALL_RESULTS])', respectively, ceases to happen. This property automatically sets
"holdResultsOpenOverStatementClose=true".

Default Value false

Since Version 3.1.7

• queryInterceptors

A comma-delimited list of classes that implement 'com.mysql.cj.interceptors.QueryInterceptor' that
intercept query executions and are able influence the results. Query iterceptors are chainable: the results
returned by the current interceptor will be passed on to the next in the chain, from left-to-right in the order
specified in this property.

Since Version 8.0.7

• queryTimeoutKillsConnection

If the timeout given in 'Statement.setQueryTimeout()' expires, should the driver forcibly abort the
connection instead of attempting to abort the query?

Default Value false

Since Version 5.1.9

6.3.7 Prepared Statements

• allowNanAndInf

Should the driver allow NaN or +/- INF values in 'PreparedStatement.setDouble()'?

Default Value false

Since Version 3.1.5

• autoClosePStmtStreams

Should the driver automatically call the method 'close()' on streams/readers passed as arguments via
'set*()' methods?

46

Prepared Statements

Default Value false

Since Version 3.1.12

• compensateOnDuplicateKeyUpdateCounts

Should the driver compensate for the update counts of "INSERT ... ON DUPLICATE KEY UPDATE"
statements (2 = 1, 0 = 1) when using prepared statements?

Default Value false

Since Version 5.1.7

• emulateUnsupportedPstmts

Should the driver detect prepared statements that are not supported by the server, and replace them
with client-side emulated versions?

Default Value true

Since Version 3.1.7

• generateSimpleParameterMetadata

Should the driver generate simplified parameter metadata for prepared statements when no metadata
is available either because the server couldn't support preparing the statement, or server-side prepared
statements are disabled?

Default Value false

Since Version 5.0.5

• processEscapeCodesForPrepStmts

Should the driver process escape codes in queries that are prepared? Default escape processing
behavior in non-prepared statements must be defined with the property 'enableEscapeProcessing'.

Default Value true

Since Version 3.1.12

• useServerPrepStmts

Use server-side prepared statements if the server supports them? The server may limit the number
of prepared statements with 'max_prepared_stmt_count' or disable them altogether. In case of
not being possible to prepare new server-side prepared statements, it depends on the value of
'emulateUnsupportedPstmts' to whether return an error or fall back to client-side emulated prepared
statements.

Default Value false

Since Version 3.1.0

• useStreamLengthsInPrepStmts

Honor stream length parameter in 'PreparedStatement/ResultSet.set*Stream()' method calls?

Default Value true

47

Result Sets

Since Version 3.0.2

6.3.8 Result Sets

• clobberStreamingResults

This will cause a streaming result set to be automatically closed, and any outstanding data still streaming
from the server to be discarded if another query is executed before all the data has been read from the
server.

Default Value false

Since Version 3.0.9

• emptyStringsConvertToZero

Should the driver allow conversions from empty string fields to numeric values of "0"?

Default Value true

Since Version 3.1.8

• holdResultsOpenOverStatementClose

Should the driver close result sets on 'Statement.close()' as required by the JDBC specification?

Default Value false

Since Version 3.1.7

• jdbcCompliantTruncation

Should the driver throw 'java.sql.DataTruncation' exceptions when data is truncated as is
required by the JDBC specification? This property has no effect if the server sql-mode includes
'STRICT_TRANS_TABLES'.

Default Value true

Since Version 3.1.2

• maxRows

The maximum number of rows to return. The default "0" means return all rows.

Default Value -1

Since Version all versions

• netTimeoutForStreamingResults

What value should the driver automatically set the server setting 'net_write_timeout' to when the
streaming result sets feature is in use? Value has unit of seconds, the value "0" means the driver will not
try and adjust this value.

Default Value 600

Since Version 5.1.0

• padCharsWithSpace

48

Result Sets

If a result set column has the CHAR type and the value does not fill the amount of characters specified
in the DDL for the column, should the driver pad the remaining characters with space (for ANSI
compliance)?

Default Value false

Since Version 5.0.6

• populateInsertRowWithDefaultValues

When using result sets that are 'CONCUR_UPDATABLE', should the driver pre-populate the insert
row with default values from the DDL for the table used in the query so those values are immediately
available for 'ResultSet' accessors? This functionality requires a call to the database for metadata each
time a result set of this type is created. If disabled, the default values will be populated by the an internal
call to 'refreshRow()' which pulls back default values and/or values changed by triggers.

Default Value false

Since Version 5.0.5

• scrollTolerantForwardOnly

Should the driver contradict the JDBC API and tolerate and support backward and absolute cursor
movement on result sets of type 'ResultSet.TYPE_FORWARD_ONLY'?

Regardless of this setting, cursor-based and row streaming result sets cannot be navigated in the
prohibited directions.

Default Value false

Since Version 8.0.24

• strictUpdates

Should the driver do strict checking, i.e. all primary keys selected, of updatable result sets?

Default Value true

Since Version 3.0.4

• tinyInt1isBit

Since the MySQL server silently converts BIT to TINYINT(1) when creating tables, should the driver treat
the datatype TINYINT(1) as the BIT type?

Default Value true

Since Version 3.0.16

• transformedBitIsBoolean

If the driver converts TINYINT(1) to a different type, should it use BOOLEAN instead of BIT?

Default Value false

Since Version 3.1.9 49

Metadata

6.3.9 Metadata

• getProceduresReturnsFunctions

Pre-JDBC4 'DatabaseMetaData' API has only the 'getProcedures()' and 'getProcedureColumns()'
methods, so they return metadata info for both stored procedures and functions. JDBC4 was extended
with the 'getFunctions()' and 'getFunctionColumns()' methods and the expected behaviours of previous
methods are not well defined. For JDBC4 and higher, default "true" value of the option means that
calls of 'DatabaseMetaData.getProcedures()' and 'DatabaseMetaData.getProcedureColumns()'
return metadata for both procedures and functions as before, keeping backward compatibility.
Setting this property to "false" decouples Connector/J from its pre-JDBC4 behaviours for
'DatabaseMetaData.getProcedures()' and 'DatabaseMetaData.getProcedureColumns()', forcing them to
return metadata for procedures only.

Default Value true

Since Version 5.1.26

• noAccessToProcedureBodies

When determining procedure parameter types for 'CallableStatement', and the connected user can't
access procedure bodies through "SHOW CREATE PROCEDURE" or SELECT on mysql.proc should
the driver instead create basic metadata, with all parameters reported as INOUT VARCHARs, instead of
throwing an exception?

Default Value false

Since Version 5.0.3

• nullDatabaseMeansCurrent

In 'DatabaseMetaData' methods that take a 'catalog' or 'schema' parameter, does the value "null" mean
to use the current database? See also the property 'databaseTerm'.

Default Value false

Since Version 3.1.8

• useHostsInPrivileges

Add '@hostname' to users in 'DatabaseMetaData.getColumn/TablePrivileges()'.

Default Value true

Since Version 3.0.2

• useInformationSchema

Should the driver use the INFORMATION_SCHEMA to derive information used by 'DatabaseMetaData'?
Default is "true" when connecting to MySQL 8.0.3+, otherwise default is "false".

Default Value false

Since Version 5.0.0

6.3.10 BLOB/CLOB processing

• blobSendChunkSize

50

BLOB/CLOB processing

Chunk size to use when sending BLOB/CLOBs via server-prepared statements. Note that this value
cannot exceed the value of 'maxAllowedPacket' and, if that is the case, then this value will be corrected
automatically.

Default Value 1048576

Since Version 3.1.9

• blobsAreStrings

Should the driver always treat BLOBs as Strings - specifically to work around dubious metadata returned
by the server for GROUP BY clauses?

Default Value false

Since Version 5.0.8

• clobCharacterEncoding

The character encoding to use for sending and retrieving TEXT, MEDIUMTEXT and LONGTEXT values
instead of the configured connection 'characterEncoding'.

Since Version 5.0.0

• emulateLocators

Should the driver emulate 'java.sql.Blob' with locators? With this feature enabled, the driver will delay
loading the actual Blob data until the one of the retrieval methods ('getInputStream()', 'getBytes()', and so
forth) on the blob data stream has been accessed. For this to work, you must use a column alias with the
value of the column to the actual name of the Blob. The feature also has the following restrictions: The
SELECT that created the result set must reference only one table, the table must have a primary key;
the SELECT must alias the original blob column name, specified as a string, to an alternate name; the
SELECT must cover all columns that make up the primary key.

Default Value false

Since Version 3.1.0

• functionsNeverReturnBlobs

Should the driver always treat data from functions returning BLOBs as Strings - specifically to work
around dubious metadata returned by the server for "GROUP BY" clauses?

Default Value false

Since Version 5.0.8

• locatorFetchBufferSize

If 'emulateLocators' is configured to "true", what size buffer should be used when fetching BLOB data for
'getBinaryInputStream()'?

Default Value 1048576

Since Version 3.2.1 51

Datetime types processing

6.3.11 Datetime types processing

• connectionTimeZone

Configures the connection time zone which is used by Connector/J if conversion between the JVM
default and a target time zone is needed when preserving instant temporal values.

Accepts a geographic time zone name or a time zone offset from Greenwich/UTC, using a syntax
'java.time.ZoneId' is able to parse, or one of the two logical values "LOCAL" and "SERVER". Default
is "LOCAL". If set to an explicit time zone then it must be one that either the JVM or both the JVM and
MySQL support. If set to "LOCAL" then the driver assumes that the connection time zone is the same as
the JVM default time zone. If set to "SERVER" then the driver attempts to detect the session time zone
from the values configured on the MySQL server session variables 'time_zone' or 'system_time_zone'.
The time zone detection and subsequent mapping to a Java time zone may fail due to several reasons,
mostly because of time zone abbreviations being used, in which case an explicit time zone must be set
or a different time zone must be configured on the server.

This option itself does not set MySQL server session variable 'time_zone' to the given value. To do that
the 'forceConnectionTimeZoneToSession' connection option must be set to "true".

Please note that setting a value to 'connectionTimeZone' in conjunction with
"forceConnectionTimeZoneToSession=false" and "preserveInstants=false" has no effect since, in this
case, neither this option is used to change the session time zone nor used for time zone conversions of
time-based data.

Former connection option 'serverTimezone' is still valid as an alias of this one but may be deprecated in
the future.

See also 'forceConnectionTimeZoneToSession' and 'preserveInstants' for more details.

Since Version 3.0.2

• forceConnectionTimeZoneToSession

If enabled, sets the time zone value determined by 'connectionTimeZone' connection property to the
current server session 'time_zone' variable. If the time zone value is given as a geographical time zone,
then Connector/J sets this value as-is in the server session, in which case the time zone system tables
must be populated beforehand (consult the MySQL Server documentation for further details); but, if
the value is given as an offset from Greenwich/UTC in any of the supported syntaxes, then the server
session time zone is set as a numeric offset from UTC.

With that no intermediate conversion between JVM default time zone and connection time zone is
needed to store correct milliseconds value of instant Java objects such as 'java.sql.Timestamp' or
'java.time.OffsetDateTime' when stored in TIMESTAMP columns.

Note that it also affects the result of MySQL functions such as 'NOW()', 'CURTIME()' or 'CURDATE()'.

This option has no effect if used in conjunction with "connectionTimeZone=SERVER" since, in this case,
the session is already set with the required time zone.

See also 'connectionTimeZone' and 'preserveInstants' for more details.

Default Value false

Since Version 8.0.23
52

Datetime types processing

• noDatetimeStringSync

Don't ensure that 'ResultSet.getTimestamp().toString().equals(ResultSet.getString())'.

Default Value false

Since Version 3.1.7

• preserveInstants

If enabled, Connector/J does its best to preserve the instant point on the time-line for Java instant-based
objects such as 'java.sql.Timestamp' or 'java.time.OffsetDateTime' instead of their original visual form.
Otherwise, the driver always uses the JVM default time zone for rendering the values it sends to the
server and for constructing the Java objects from the fetched data.

MySQL uses implied time zone conversion for TIMESTAMP values: they are converted from the session
time zone to UTC for storage, and back from UTC to the session time zone for retrieval. So, to store
the correct correct UTC value internally, the driver converts the value from the original time zone to the
session time zone before sending to the server. On retrieval, Connector/J converts the received value
from the session time zone to the JVM default one.

When storing, the conversion is performed only if the target 'SQLType', either the explicit one or the
default one, is TIMESTAMP. When retrieving, the conversion is performed only if the source column
has the TIMESTAMP, DATETIME or character type and the target class is an instant-based one, like
'java.sql.Timestamp' or 'java.time.OffsetDateTime'.

Note that this option has no effect if used in conjunction with "connectionTimeZone=LOCAL" since, in
this case, the source and target time zones are the same. Though, in this case, it's still possible to store
a correct instant value if set together with "forceConnectionTimeZoneToSession=true".

See also 'connectionTimeZone' and 'forceConnectionTimeZoneToSession' for more details.

Default Value true

Since Version 8.0.23

• sendFractionalSeconds

If set to "false", the fractional seconds will always be truncated before sending any data to the server.
This option applies only to prepared statements, callable statements or updatable result sets.

Default Value true

Since Version 5.1.37

• sendFractionalSecondsForTime

If set to "false", the fractional seconds of 'java.sql.Time' will be ignored as required by JDBC
specification. If set to "true", its value is rendered with fractional seconds allowing to store milliseconds
into MySQL TIME column. This option applies only to prepared statements, callable statements or
updatable result sets. It has no effect if "sendFractionalSeconds=false".

Default Value true

Since Version 8.0.23
53

High Availability and Clustering

• treatMysqlDatetimeAsTimestamp

Should the driver treat the MySQL DATETIME type as TIMESTAMP in 'ResultSet.getObject()'?
Enabling this option changes the default MySQL data type to Java type mapping for DATETIME from
'java.time.LocalDateTime' to 'java.sql.Timestamp'. Given the nature of the DATETIME type and its
inability to represent instant values, it is not advisable to enable this option unless the driver is used with
a framework or API that expects exclusively objects following the default MySQL data types to Java
types mapping, which is the case of, for example, 'javax.sql.rowset.CachedRowSet'.

Default Value false

Since Version 8.2.0

• treatUtilDateAsTimestamp

Should the driver treat 'java.util.Date' as a TIMESTAMP in 'PreparedStatement.setObject()'?

Default Value true

Since Version 5.0.5

• yearIsDateType

Should the JDBC driver treat the MySQL type YEAR as a 'java.sql.Date', or as a SHORT?

Default Value true

Since Version 3.1.9

• zeroDateTimeBehavior

What should happen when the driver encounters DATETIME values that are composed entirely of
zeros - used by MySQL to represent invalid dates? Valid values are "EXCEPTION", "ROUND" and
"CONVERT_TO_NULL".

Default Value EXCEPTION

Since Version 3.1.4

6.3.12 High Availability and Clustering

• autoReconnect

Should the driver try to re-establish stale and/or dead connections? If enabled the driver will throw an
exception for queries issued on a stale or dead connection, which belong to the current transaction,
but will attempt reconnect before the next query issued on the connection in a new transaction. The
use of this feature is not recommended, because it has side effects related to session state and data
consistency when applications don't handle SQLExceptions properly, and is only designed to be used
when you are unable to configure your application to handle SQLExceptions resulting from dead and
stale connections properly. Alternatively, as a last option, investigate setting the MySQL server variable
'wait_timeout' to a high value, rather than the default of 8 hours.

Default Value false

Since Version 1.1

• autoReconnectForPools

54

High Availability and Clustering

Use a reconnection strategy appropriate for connection pools?

Default Value false

Since Version 3.1.3

• failOverReadOnly

When failing over in 'autoReconnect' mode, should the connection be set to 'read-only'?

Default Value true

Since Version 3.0.12

• maxReconnects

Maximum number of reconnects to attempt if 'autoReconnect' is "true".

Default Value 3

Since Version 1.1

• reconnectAtTxEnd

If 'autoReconnect' is set to "true", should the driver attempt reconnections at the end of every
transaction?

Default Value false

Since Version 3.0.10

• retriesAllDown

When using load balancing or failover, the number of times the driver should cycle through available
hosts, attempting to connect. Between cycles, the driver will pause for 250 ms if no servers are available.

Default Value 120

Since Version 5.1.6

• initialTimeout

If 'autoReconnect' is enabled, the initial time to wait between re-connect attempts (in seconds, defaults to
"2").

Default Value 2

Since Version 1.1

• queriesBeforeRetrySource

When using multi-host failover, the number of queries to issue before falling back to the
primary host when failed over. Whichever condition is met first, 'queriesBeforeRetrySource' or
'secondsBeforeRetrySource' will cause an attempt to be made to reconnect to the primary host. Setting
both properties to "0" disables the automatic fall back to the primary host at transaction boundaries.

Default Value 50

Since Version 3.0.2

55

High Availability and Clustering

• secondsBeforeRetrySource

How long, in seconds, should the driver wait when failed over, before attempting to reconnect
to the primary host? Whichever condition is met first, 'queriesBeforeRetrySource' or
'secondsBeforeRetrySource' will cause an attempt to be made to reconnect to the source host. Setting
both properties to "0" disables the automatic fall back to the primary host at transaction boundaries.

Default Value 30

Since Version 3.0.2

• allowReplicaDownConnections

By default, a replication-aware connection will fail to connect when configured replica hosts are all
unavailable at initial connection. Setting this property to "true" allows to establish the initial connection.
It won't prevent failures when switching to replicas i.e. by setting the replication connection to read-only
state. The property 'readFromSourceWhenNoReplicas' should be used for this purpose.

Default Value false

Since Version 6.0.2

• allowSourceDownConnections

By default, a replication-aware connection will fail to connect when configured source hosts are all
unavailable at initial connection. Setting this property to "true" allows to establish the initial connection,
by failing over to the replica servers, in read-only state. It won't prevent subsequent failures when
switching back to the source hosts i.e. by setting the replication connection to read/write state.

Default Value false

Since Version 5.1.27

• ha.enableJMX

Enables JMX-based management of load-balanced connection groups, including live addition/removal
of hosts from load-balancing pool. Enables JMX-based management of replication connection groups,
including live replica promotion, addition of new replicas and removal of source or replica hosts from
load-balanced source and replica connection pools.

Default Value false

Since Version 5.1.27

• loadBalanceHostRemovalGracePeriod

Sets the grace period to wait for a host being removed from a load-balanced connection, to be released
when it is currently the active host.

Default Value 15000

Since Version 6.0.3

• readFromSourceWhenNoReplicas

Replication-aware connections distribute load by using the source hosts when in read/write state and by
using the replica hosts when in read-only state. If, when setting the connection to read-only state, none
of the replica hosts are available, an 'SQLException' is thrown back. Setting this property to "true" allows

56

High Availability and Clustering

to fail over to the source hosts, while setting the connection state to read-only, when no replica hosts are
available at switch instant.

Default Value false

Since Version 6.0.2

• selfDestructOnPingMaxOperations

If set to a non-zero value, the driver will report close the connection and report failure when
'com.mysql.cj.jdbc.JdbcConnection.ping()' or 'java.sql.Connection.isValid(int)' is called if the connection's
count of commands sent to the server exceeds this value.

Default Value 0

Since Version 5.1.6

• selfDestructOnPingSecondsLifetime

If set to a non-zero value, the driver will close the connection and report failure when
'com.mysql.cj.jdbc.JdbcConnection.ping()' or 'java.sql.Connection.isValid(int)' is called if the connection's
lifetime exceeds this value, specified in milliseconds.

Default Value 0

Since Version 5.1.6

• ha.loadBalanceStrategy

If using a load-balanced connection to connect to SQL servers in a MySQL Cluster configuration (by
using the URL prefix "jdbc:mysql:loadbalance://"), which load balancing algorithm should the driver
use: (1) "random" - the driver will pick a random host for each request. This tends to work better than
round-robin, as the randomness will somewhat account for spreading loads where requests vary in
response time, while round-robin can sometimes lead to overloaded nodes if there are variations in
response times across the workload. (2) "bestResponseTime" - the driver will route the request to the
host that had the best response time for the previous transaction. (3) "serverAffinity" - the driver initially
attempts to enforce server affinity while still respecting and benefiting from the fault tolerance aspects
of the load-balancing implementation. The server affinity ordered list is provided using the property
'serverAffinityOrder'. If none of the servers listed in the affinity list is responsive, the driver then refers to
the "random" strategy to proceed with choosing the next server.

Default Value random

Since Version 5.0.6

• loadBalanceAutoCommitStatementRegex

When load-balancing is enabled for auto-commit statements (via
'loadBalanceAutoCommitStatementThreshold'), the statement counter will only increment when the SQL
matches the regular expression. By default, every statement issued matches.

Since Version 5.1.15

• loadBalanceAutoCommitStatementThreshold

When auto-commit is enabled, the number of statements which should be executed before triggering
load-balancing to rebalance. Default value of "0" causes load-balanced connections to only rebalance

57

High Availability and Clustering

when exceptions are encountered, or auto-commit is disabled and transactions are explicitly committed
or rolled back.

Default Value 0

Since Version 5.1.15

• loadBalanceBlocklistTimeout

Time in milliseconds between checks of servers which are unavailable, by controlling how long a server
lives in the global blocklist.

Default Value 0

Since Version 5.1.0

• loadBalanceConnectionGroup

Logical group of load-balanced connections within a class loader, used to manage different groups
independently. If not specified, live management of load-balanced connections is disabled.

Since Version 5.1.13

• loadBalanceExceptionChecker

Fully-qualified class name of custom exception checker. The class must implement
'com.mysql.cj.jdbc.ha.LoadBalanceExceptionChecker' interface, and is used to inspect 'SQLException'
exceptions and determine whether they should trigger fail-over to another host in a load-balanced
deployment.

Default Value com.mysql.cj.jdbc.ha.StandardLoadBalanceExceptionChecker

Since Version 5.1.13

• loadBalancePingTimeout

Time in milliseconds to wait for ping responses from each of load-balanced physical connections when
using a load-balanced connection.

Default Value 0

Since Version 5.1.13

• loadBalanceSQLExceptionSubclassFailover

Comma-delimited list of classes/interfaces used by default load-balanced exception checker to
determine whether a given 'SQLException' should trigger a failover. The comparison is done using
'Class.isInstance(SQLException)' using the 'SQLException' thrown.

Since Version 5.1.13

• loadBalanceSQLStateFailover

Comma-delimited list of 'SQLState' codes used by the default load-balanced exception checker
to determine whether a given 'SQLException' should trigger a failover. The 'SQLState' of a given

58

Performance Extensions

'SQLException' is evaluated to determine whether it begins with any of the values specified in the
comma-delimited list.

Since Version 5.1.13

• loadBalanceValidateConnectionOnSwapServer

Should the load-balanced connection explicitly check whether the connection is live when swapping to a
new physical connection at commit/rollback?

Default Value false

Since Version 5.1.13

• pinGlobalTxToPhysicalConnection

When using XA connections, should the driver ensure that operations on a given XID are always routed
to the same physical connection? This allows the 'XAConnection' to support "XA START ... JOIN" after
"XA END" has been called.

Default Value false

Since Version 5.0.1

• replicationConnectionGroup

Logical group of replication connections within a class loader, used to manage different groups
independently. If not specified, live management of replication connections is disabled.

Since Version 8.0.7

• resourceId

A globally unique name that identifies the resource that this data source or connection is connected to,
used for 'XAResource.isSameRM()' when the driver can't determine this value based on hostnames
used in the URL.

Since Version 5.0.1

• serverAffinityOrder

A comma separated list containing the host/port pairs that are to be used in load-balancing
"serverAffinity" strategy. Only the sub-set of the hosts enumerated in the main hosts section in this URL
will be used and they must be identical in case and type, i.e., can't use an IP address in one place and
the corresponding host name in the other.

Since Version 8.0.8

6.3.13 Performance Extensions

• callableStmtCacheSize

If 'cacheCallableStmts' is enabled, how many callable statements should be cached?

Default Value 100

Since Version 3.1.2

59

Performance Extensions

• metadataCacheSize

The number of queries to cache 'ResultSetMetadata' for if 'cacheResultSetMetaData' is set to "true".

Default Value 50

Since Version 3.1.1

• useLocalSessionState

Should the driver refer to the internal values of auto-commit and transaction isolation that are set by
'Connection.setAutoCommit()' and 'Connection.setTransactionIsolation()' and transaction state as
maintained by the protocol, rather than querying the database or blindly sending commands to the
database for 'commit()' or 'rollback()' method calls?

Default Value false

Since Version 3.1.7

• useLocalTransactionState

Should the driver use the in-transaction state provided by the MySQL protocol to determine if a
'commit()' or 'rollback()' should actually be sent to the database?

Default Value false

Since Version 5.1.7

• prepStmtCacheSize

If prepared statement caching is enabled, how many prepared statements should be cached?

Default Value 25

Since Version 3.0.10

• prepStmtCacheSqlLimit

If prepared statement caching is enabled, what's the largest SQL the driver will cache the parsing for?

Default Value 256

Since Version 3.0.10

• queryInfoCacheFactory

Name of a class implementing 'com.mysql.cj.CacheAdapterFactory', which will be used to create caches
for the parsed representation of prepared statements. Prior to version 8.0.29, this property was named
'parseInfoCacheFactory', which remains as an alias.

Default Value com.mysql.cj.PerConnectionLRUFactory

Since Version 5.1.1

60

Performance Extensions

• serverConfigCacheFactory

Name of a class implementing 'com.mysql.cj.CacheAdapterFactory', which will be used to create caches
for MySQL server configuration values.

Default Value com.mysql.cj.util.PerVmServerConfigCacheFactory

Since Version 5.1.1

• alwaysSendSetIsolation

Should the driver always communicate with the database when 'Connection.setTransactionIsolation()'
is called? If set to "false", the driver will only communicate with the database when the requested
transaction isolation is different than the whichever is newer, the last value that was set via
'Connection.setTransactionIsolation()', or the value that was read from the server when the
connection was established. Note that "useLocalSessionState=true" will force the same behavior as
"alwaysSendSetIsolation=false", regardless of how 'alwaysSendSetIsolation' is set.

Default Value true

Since Version 3.1.7

• maintainTimeStats

Should the driver maintain various internal timers to enable idle time calculations as well as more
verbose error messages when the connection to the server fails? Setting this property to false removes
at least two calls to 'System.getCurrentTimeMillis()' per query.

Default Value true

Since Version 3.1.9

• useCursorFetch

Should the driver use cursor-based fetching to retrieve rows? If set to "true" and 'defaultFetchSize' is
set to a value higher than zero or 'setFetchSize()' with a value higher than zero is called on a statement,
then the cursor-based result set will be used. Please note that 'useServerPrepStmts' is automatically set
to "true" in this case because cursor functionality is available only for server-side prepared statements.

Default Value false

Since Version 5.0.0

• cacheCallableStmts

Should the driver cache the parsing stage of CallableStatements?

Default Value false

Since Version 3.1.2

• cachePrepStmts

Should the driver cache the parsing stage of PreparedStatements of client-side prepared statements, the
"check" for suitability of server-side prepared and server-side prepared statements themselves?

Default Value false

Since Version 3.0.10

61

Performance Extensions

• cacheResultSetMetadata

Should the driver cache 'ResultSetMetaData' for statements and prepared statements?

Default Value false

Since Version 3.1.1

• cacheServerConfiguration

Should the driver cache the results of "SHOW VARIABLES" and "SHOW COLLATION" on a per-URL
basis?

Default Value false

Since Version 3.1.5

• defaultFetchSize

The driver will call 'setFetchSize(n)' with this value on all newly-created statements.

Default Value 0

Since Version 3.1.9

• dontCheckOnDuplicateKeyUpdateInSQL

Stops checking if every INSERT statement contains the "ON DUPLICATE KEY UPDATE" clause. As a
side effect, obtaining the statement's generated keys information will return a list where normally it would
not. Also be aware that, in this case, the list of generated keys returned may not be accurate. The effect
of this property is canceled if set simultaneously with "rewriteBatchedStatements=true".

Default Value false

Since Version 5.1.32

• elideSetAutoCommits

Should the driver only issue 'set autocommit=n' queries when the server's state doesn't match the
requested state by 'Connection.setAutoCommit(boolean)'?

Default Value false

Since Version 3.1.3

• enableEscapeProcessing

Sets the default escape processing behavior for Statement objects. The method
'Statement.setEscapeProcessing()' can be used to specify the escape processing behavior for an
individual statement object. Default escape processing behavior in prepared statements must be defined
with the property 'processEscapeCodesForPrepStmts'.

Default Value true

Since Version 6.0.1
62

Performance Extensions

• enableQueryTimeouts

When enabled, query timeouts set via 'Statement.setQueryTimeout()' use a shared 'java.util.Timer'
instance for scheduling. Even if the timeout doesn't expire before the query is processed, there will
be memory used by the 'TimerTask' for the given timeout which won't be reclaimed until the time the
timeout would have expired if it hadn't been cancelled by the driver. High-load environments might want
to consider disabling this functionality.

Default Value true

Since Version 5.0.6

• largeRowSizeThreshold

What size result set row should the JDBC driver consider large, and thus use a more memory-efficient
way of representing the row internally?

Default Value 2048

Since Version 5.1.1

• readOnlyPropagatesToServer

Should the driver issue appropriate statements to implicitly set the transaction access mode on server
side when 'Connection.setReadOnly()' is called? Setting this property to "true" enables InnoDB read-
only potential optimizations but also requires an extra roundtrip to set the right transaction state. Even if
this property is set to "false", the driver will do its best effort to prevent the execution of database-state-
changing queries.

Default Value true

Since Version 5.1.35

• rewriteBatchedStatements

Should the driver use multi-queries, regardless of the setting of 'allowMultiQueries', as well as rewriting
of prepared statements for INSERT and REPLACE queries into multi-values clause statements when
'executeBatch()' is called?

Notice that this might allow SQL injection when using plain statements and the provided input is not
properly sanitized. Also notice that for prepared statements, if the stream length is not specified when
using 'PreparedStatement.set*Stream()', the driver would not be able to determine the optimum number
of parameters per batch and might return an error saying that the resultant packet is too large.

'Statement.getGeneratedKeys()', for statements that are rewritten only works when the entire batch
consists of INSERT or REPLACE statements.

Be aware that when using "rewriteBatchedStatements=true" with "INSERT ... ON DUPLICATE KEY
UPDATE" for rewritten statements, the server returns only one value for all affected (or found) rows in
the batch, and it is not possible to map it correctly to the initial statements; in this case the driver returns
"0" as the result for each batch statement if total count was zero, and 'Statement.SUCCESS_NO_INFO'
if total count was above zero.

Default Value false

Since Version 3.1.13

• useReadAheadInput

63

Debugging/Profiling

Use optimized non-blocking buffered input stream when reading from the server?

Default Value true

Since Version 3.1.5

6.3.14 Debugging/Profiling

• logger

The name of a class that implements 'com.mysql.cj.log.Log' that will be used to log messages to. (default
is 'com.mysql.cj.log.StandardLogger', which logs to STDERR).

Default Value com.mysql.cj.log.StandardLogger

Since Version 3.1.1

• profilerEventHandler

Name of a class that implements the interface 'com.mysql.cj.log.ProfilerEventHandler' that will be used to
handle profiling/tracing events.

Default Value com.mysql.cj.log.LoggingProfilerEventHandler

Since Version 5.1.6

• useNanosForElapsedTime

For profiling/debugging functionality that measures elapsed time, should the driver try to use
nanoseconds resolution?

Default Value false

Since Version 5.0.7

• maxQuerySizeToLog

Controls the maximum length of the part of a query that will get logged when profiling or tracing.

Default Value 2048

Since Version 3.1.3

• maxByteArrayAsHex

Maximum size for a byte array parameter in a prepared statement that is converted to a hexadecimal
literal when interpolated by 'JdbcPreparedStatement.toString()'. Any byte arrays larger than this value
are interpolated generically as "** BYTE ARRAY DATA **".

Default Value 1024

Since Version 8.0.31

• profileSQL

Trace queries and their execution/fetch times to the configured 'profilerEventHandler'.

Default Value false

64

Debugging/Profiling

Since Version 3.1.0

• logSlowQueries

Should queries that take longer than 'slowQueryThresholdMillis' or detected by the 'autoSlowLog'
monitoring be reported to the registered 'profilerEventHandler'?

Default Value false

Since Version 3.1.2

• slowQueryThresholdMillis

If 'logSlowQueries' is enabled, how long, in milliseconds, should a query take before it is logged as slow?

Default Value 2000

Since Version 3.1.2

• slowQueryThresholdNanos

If 'logSlowQueries' is enabled, 'useNanosForElapsedTime' is set to "true", and this property is set to a
non-zero value, the driver will use this threshold, in nanosecond units, to determine if a query was slow.

Default Value 0

Since Version 5.0.7

• autoSlowLog

Instead of using 'slowQueryThreshold*' to determine if a query is slow enough to be logged, maintain
statistics that allow the driver to determine queries that are outside the 99th percentile?

Default Value true

Since Version 5.1.4

• explainSlowQueries

If 'logSlowQueries' is enabled, should the driver automatically issue an 'EXPLAIN' on the server and
send the results to the configured logger at a WARN level?

Default Value false

Since Version 3.1.2

• gatherPerfMetrics

Should the driver gather performance metrics, and report them via the configured logger every
'reportMetricsIntervalMillis' milliseconds?

Default Value false

Since Version 3.1.2

65

Debugging/Profiling

• reportMetricsIntervalMillis

If 'gatherPerfMetrics' is enabled, how often should they be logged (in milliseconds)?

Default Value 30000

Since Version 3.1.2

• logXaCommands

Should the driver log XA commands sent by 'MysqlXaConnection' to the server, at the DEBUG level of
logging?

Default Value false

Since Version 5.0.5

• traceProtocol

Should the network protocol be logged at the TRACE level?

Default Value false

Since Version 3.1.2

• enablePacketDebug

When enabled, a ring-buffer of 'packetDebugBufferSize' packets will be kept, and dumped when
exceptions are thrown in key areas in the driver's code.

Default Value false

Since Version 3.1.3

• packetDebugBufferSize

The maximum number of packets to retain when 'enablePacketDebug' is "true".

Default Value 20

Since Version 3.1.3

• useUsageAdvisor

Should the driver issue usage warnings advising proper and efficient usage of JDBC and MySQL
Connector/J to the 'profilerEventHandler'?

Default Value false

Since Version 3.1.1

• resultSetSizeThreshold

If 'useUsageAdvisor' is "true", how many rows should a result set contain before the driver warns that it is
suspiciously large?

Default Value 100

Since Version 5.0.5

66

Exceptions/Warnings

• autoGenerateTestcaseScript

Should the driver dump the SQL it is executing, including server-side prepared statements to STDERR?

Default Value false

Since Version 3.1.9

• openTelemetry

Should the driver generate OpenTelemetry traces and handle context propagation to the MySQL
Server? This option accepts the values "REQUIRED", "PREFERRED", and "DISABLED". If set to
"REQUIRED", an OpenTelemetry library must be available at run time, or connections to the MySQL
Server will fail. Setting it to "DISABLED" turns off generating OpenTelemetry instrumentation by
Connector/J. Setting it to "PREFERRED" enables generating OpenTelemetry instrumentation provided
that an OpenTelemetry library is available at run time, and a warning is issued otherwise. Not setting
a value for the property is equivalent to setting it as "PREFERRED", but no warning is issued when no
OpenTelmetry library is available at run time. Connector/J relies entirely on the OpenTelemetry exporters
configured in the calling application and does not provide any means of configuring its own exporters.

Default Value PREFERRED

Since Version 8.4.0

6.3.15 Exceptions/Warnings

• dumpQueriesOnException

Should the driver dump the contents of the query sent to the server in the message for SQLExceptions?

Default Value false

Since Version 3.1.3

• exceptionInterceptors

Comma-delimited list of classes that implement the interface
'com.mysql.cj.exceptions.ExceptionInterceptor'. These classes will be instantiated one per 'Connection'
instance, and all 'SQLException' exceptions thrown by the driver will be allowed to be intercepted by
these interceptors, in a chained fashion, with the first class listed as the head of the chain.

Since Version 5.1.8

• ignoreNonTxTables

Ignore non-transactional table warning for rollback?

Default Value false

Since Version 3.0.9

• includeInnodbStatusInDeadlockExceptions

Include the output of "SHOW ENGINE INNODB STATUS" in exception messages when deadlock
exceptions are detected?

Default Value false

67

Tunes for integration with other products

Since Version 5.0.7

• includeThreadDumpInDeadlockExceptions

Include current Java thread dump in exception messages when deadlock exceptions are detected?

Default Value false

Since Version 5.1.15

• includeThreadNamesAsStatementComment

Include the name of the current thread as a comment visible in "SHOW PROCESSLIST", or in Innodb
deadlock dumps, useful in correlation with "includeInnodbStatusInDeadlockExceptions=true" and
"includeThreadDumpInDeadlockExceptions=true".

Default Value false

Since Version 5.1.15

• useOnlyServerErrorMessages

Don't prepend standard 'SQLState' error messages to error messages returned by the server.

Default Value true

Since Version 3.0.15

6.3.16 Tunes for integration with other products

• overrideSupportsIntegrityEnhancementFacility

Should the driver return "true" for 'DatabaseMetaData.supportsIntegrityEnhancementFacility()' even if the
database doesn't support it to workaround applications that require this method to return "true" to signal
support of foreign keys, even though the SQL specification states that this facility contains much more
than just foreign key support (one such application being OpenOffice)?

Default Value false

Since Version 3.1.12

• ultraDevHack

Create prepared statements for 'prepareCall()' when required, because UltraDev is broken and issues a
'prepareCall()' for all statements?

Default Value false

Since Version 2.0.3

6.3.17 JDBC compliance

• useColumnNamesInFindColumn

Prior to JDBC-4.0, the JDBC specification had a bug related to what could be given as a
column name to result set methods like 'findColumn()', or getters that took a String property.
JDBC-4.0 clarified "column name" to mean the label, as given in an "AS" clause and returned by

68

X Protocol and X DevAPI

'ResultSetMetaData.getColumnLabel()', and if no "AS" clause is specified, the column name. Setting
this property to "true" will result in a behavior that is congruent to JDBC-3.0 and earlier versions of
the JDBC specification, but which could have unexpected results. This property is preferred over
'useOldAliasMetadataBehavior' unless in need of the specific behavior that it provides with respect to
'ResultSetMetadata'.

Default Value false

Since Version 5.1.7

• pedantic

Follow the JDBC specification to the letter.

Default Value false

Since Version 3.0.0

• useOldAliasMetadataBehavior

Should the driver use the legacy behavior for "AS" clauses on columns and tables, and only return
aliases ,if any, for 'ResultSetMetaData.getColumnName()' or 'ResultSetMetaData.getTableName()'
rather than the original column/table name?

Default Value false

Since Version 5.0.4

6.3.18 X Protocol and X DevAPI

• xdevapi.auth

Authentication mechanism to use with the X Protocol. Allowed values are "SHA256_MEMORY",
"MYSQL41", "PLAIN", and "EXTERNAL". Value is case insensitive. If the property is not set, the
mechanism is chosen depending on the connection type: "PLAIN" is used for TLS connections and
"SHA256_MEMORY" or "MYSQL41" is used for unencrypted connections.

Default Value PLAIN

Since Version 8.0.8

• xdevapi.compression

X DevAPI-specific network traffic compression. This option accepts one of the three values:
"PREFERRED", "REQUIRED", and "DISABLED". Setting this option to "PREFERRED" or "REQUIRED"
enables compression algorithm negotiation between Connector and Server, and turns on compression
of large X Protocol packets, as long as a consensus is reached between client and server regarding
the compression algorithm to use. If a consensus cannot be reached, connection fails if the option is
set to "REQUIRED" and continues without compression if the option is set to "PREFERRED". Setting
this option as "DISABLED" skips the compression negotiation phase and forbids the interchange of
compressed messages between client and server.

Default Value PREFERRED

Since Version 8.0.20

• xdevapi.compression-algorithms

69

X Protocol and X DevAPI

A comma-delimited list of compression algorithms, each one identified by its name and
operating mode, (e.g. "lz4_message"; consult the description for the MySQL global variable
'mysqlx_compression_algorithms' for a list of supported and enabled algorithms), that defines the order
and which algorithms will be attempted when negotiating connection compression with the server.

The compression algorithm 'deflate_stream' is supported natively. Additional compression algorithms
require using third-party libraries and enabling them with the connection property 'xdevapi.compression-
extensions'.

This option is meaningful only when network traffic compression is enabled using the connection
property 'xdevapi.compression'.

As an alternative to the default algorithm names, that contain a reference to the compression operation
mode, the aliases "zstd", "lz4", and "deflate" can be used instead of "zstd_stream", "lz4_message", and
"deflate_stream".

Default Value zstd_stream,lz4_message,deflate_stream

Since Version 8.0.22

• xdevapi.compression-extensions

A comma-delimited list of triplets, with their elements delimited by colon, that enables the support
for additional compression algorithms. Each triplet must contain: first, an algorithm name and
operating mode (e.g. "lz4_message"; consult the description for the MySQL global variable
'mysqlx_compression_algorithms' for a list of supported and enabled algorithms); second, a fully-
qualified class name of a class implementing the interface 'java.io.InputStream' that will be used to inflate
data compressed with the named algorithm; third, a fully-qualified class name of a class implementing
the interface 'java.io.OutputStream' that will be used to deflate data using the named algorithm. Along
with this setting, the library containing implementations of the designated classes must be available in
the application's class path.

Any number of triplets defining compression algorithms and their inflater and deflater implementations
can be provided but only the ones supported and enabled on the MySQL Server can be used.

The compression algorithm 'deflate_stream' is supported natively. Additional compression algorithms
require using third-party libraries.

This option is meaningful only when network traffic compression is enabled using the connection
property 'xdevapi.compression'.

As an alternative to the default algorithm names, that contain a reference to the compression operation
mode, the aliases "zstd", "lz4", and "deflate" can be used instead of "zstd_stream", "lz4_message", and
"deflate_stream".

Since Version 8.0.22

• xdevapi.connect-timeout

X DevAPI-specific timeout, in milliseconds, for socket connect, with "0" being no timeout. If
'xdevapi.connect-timeout' is not set explicitly and 'connectTimeout' is, 'xdevapi.connect-timeout' takes up
the value of 'connectTimeout'.

Default Value 10000
70

X Protocol and X DevAPI

Since Version 8.0.13

• xdevapi.connection-attributes

An X DevAPI-specific comma-delimited list of user-defined "key=value" pairs, in addition to standard X
Protocol-defined "key=value" pairs, to be passed to MySQL Server for display as connection attributes
in the 'PERFORMANCE_SCHEMA' tables 'session_account_connect_attrs' and 'session_connect_attrs'.
Example usage: "xdevapi.connection-attributes=key1=value1,key2=value2" or "xdevapi.connection-
attributes=[key1=value1,key2=value2]". This functionality is available for use with MySQL Server version
8.0.16 or later only. Earlier versions of X Protocol do not support connection attributes, causing this
configuration option to be ignored. For situations where Session creation/initialization speed is critical,
setting "xdevapi.connection-attributes=false" will cause connection attribute processing to be bypassed.

Since Version 8.0.16

• xdevapi.dns-srv

X DevAPI-specific option for instructing the driver use the given host name to lookup for DNS SRV
records and use the resulting list of hosts in a multi-host failover connection. Note that a single host
name and no port must be provided when this option is enabled.

Default Value false

Since Version 8.0.19

• xdevapi.fallback-to-system-keystore

X DevAPI-specific switch to specify whether in the absence of a set value for 'xdevapi.ssl-keystore' (or
'clientCertificateKeyStoreUrl'), Connector/J falls back to using the system-wide key store defined through
the system properties 'javax.net.ssl.keyStore*'. If not specified, the value of 'fallbackToSystemKeyStore'
is used.

Default Value true

Since Version 8.0.22

• xdevapi.fallback-to-system-truststore

X DevAPI-specific switch to specify whether in the absence of a set value for 'xdevapi.ssl-truststore' (or
'trustCertificateKeyStoreUrl'), Connector/J falls back to using the system-wide default trust store or
one defined through the system properties 'javax.net.ssl.trustStore*'. If not specified, the value of
'fallbackToSystemTrustStore' is used.

Default Value true

Since Version 8.0.22

• xdevapi.ssl-keystore

X DevAPI-specific URL for the client certificate key store. If not specified, use
'clientCertificateKeyStoreUrl' value.

Since Version 8.0.22

71

X Protocol and X DevAPI

• xdevapi.ssl-keystore-password

X DevAPI-specific password for the client certificate key store. If not specified, use
'clientCertificateKeyStorePassword' value.

Since Version 8.0.22

• xdevapi.ssl-keystore-type

X DevAPI-specific type of the client certificate key store. If not specified, use
'clientCertificateKeyStoreType' value.

Default Value JKS

Since Version 8.0.22

• xdevapi.ssl-mode

X DevAPI-specific SSL mode setting. If not specified, use 'sslMode'. Because the "PREFERRED" mode
is not applicable to X Protocol, if 'xdevapi.ssl-mode' is not set and 'sslMode' is set to "PREFERRED",
'xdevapi.ssl-mode' is set to "REQUIRED".

Default Value REQUIRED

Since Version 8.0.7

• xdevapi.ssl-truststore

X DevAPI-specific URL for the trusted CA certificates key store. If not specified, use
'trustCertificateKeyStoreUrl' value.

Since Version 6.0.6

• xdevapi.ssl-truststore-password

X DevAPI-specific password for the trusted CA certificates key store. If not specified, use
'trustCertificateKeyStorePassword' value.

Since Version 6.0.6

• xdevapi.ssl-truststore-type

X DevAPI-specific type of the trusted CA certificates key store. If not specified, use
'trustCertificateKeyStoreType' value.

Default Value JKS

Since Version 6.0.6

• xdevapi.tls-ciphersuites

X DevAPI-specific property overriding the cipher suites enabled for use on the underlying SSL sockets. If
not specified, the value of 'enabledSSLCipherSuites' is used.

Since Version 8.0.19

• xdevapi.tls-versions

72

JDBC API Implementation Notes

X DevAPI-specific property that takes a list of TLS protocols to allow when creating secure sessions.
Overrides the TLS protocols enabled in the underlying SSL socket. If not specified, then the value of
'tlsVersions' is used instead. Allowed and default values are "TLSv1.2" and "TLSv1.3".

Since Version 8.0.19

6.4 JDBC API Implementation Notes
MySQL Connector/J, as a rigorous implementation of the JDBC API, passes all of the tests in the publicly
available version of Oracle's JDBC compliance test suite. The JDBC specification is flexible on how certain
functionality should be implemented. This section gives details on an interface-by-interface level about
implementation decisions that might affect how you code applications with MySQL Connector/J.

• BLOB

You can emulate BLOBs with locators by adding the property emulateLocators=true to your JDBC
URL. Using this method, the driver will delay loading the actual BLOB data until you retrieve the other
data and then use retrieval methods (getInputStream(), getBytes(), and so forth) on the BLOB
data stream.

You must use a column alias with the value of the column to the actual name of the BLOB, for example:

SELECT id, 'data' as blob_data from blobtable

You must also follow these rules:

• The SELECT must reference only one table. The table must have a primary key.

• The SELECT must alias the original BLOB column name, specified as a string, to an alternate name.

• The SELECT must cover all columns that make up the primary key.

The BLOB implementation does not allow in-place modification (they are copies, as reported by the
DatabaseMetaData.locatorsUpdateCopies() method). Because of this, use the corresponding
PreparedStatement.setBlob() or ResultSet.updateBlob() (in the case of updatable result
sets) methods to save changes back to the database.

• Connection

The isClosed() method does not ping the server to determine if it is available. In accordance with the
JDBC specification, it only returns true if closed() has been called on the connection. If you need to
determine if the connection is still valid, issue a simple query, such as SELECT 1. The driver will throw
an exception if the connection is no longer valid.

• DatabaseMetaData

Foreign key information (getImportedKeys()/getExportedKeys() and getCrossReference())
is only available from InnoDB tables. The driver uses SHOW CREATE TABLE to retrieve this information,
so if any other storage engines add support for foreign keys, the driver would transparently support them
as well.

• PreparedStatement

Two variants of prepared statements are implemented by Connector/J, the client-side and the server-
side prepared statements. Client-side prepared statements are used by default because early MySQL
versions did not support the prepared statement feature or had problems with its implementation. Server-

73

http://www.oracle.com/technetwork/java/javase/jdbc/index.html
https://dev.mysql.com/doc/refman/8.4/en/select.html
https://dev.mysql.com/doc/refman/8.4/en/glossary.html#glos_primary_key
https://dev.mysql.com/doc/refman/8.4/en/select.html
https://dev.mysql.com/doc/refman/8.4/en/select.html
https://dev.mysql.com/doc/refman/8.4/en/glossary.html#glos_foreign_key
https://dev.mysql.com/doc/refman/8.4/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.4/en/show-create-table.html

JDBC API Implementation Notes

side prepared statements and binary-encoded result sets are used when the server supports them. To
enable usage of server-side prepared statements, set useServerPrepStmts=true.

Be careful when using a server-side prepared statement with large parameters that are set using
setBinaryStream(), setAsciiStream(), setUnicodeStream(), setCharacterStream(),
setNCharacterStream(), setBlob(), setClob(), or setNCLob(). To re-execute the statement
with any large parameter changed to a nonlarge parameter, call clearParameters() and set all
parameters again. The reason for this is as follows:

• During both server-side prepared statements and client-side emulation, large data is exchanged only
when PreparedStatement.execute() is called.

• Once that has been done, the stream used to read the data on the client side is closed (as per the
JDBC spec), and cannot be read from again.

• If a parameter changes from large to nonlarge, the driver must reset the server-side state of the
prepared statement to allow the parameter that is being changed to take the place of the prior large
value. This removes all of the large data that has already been sent to the server, thus requiring the
data to be re-sent, using the setBinaryStream(), setAsciiStream(), setUnicodeStream(),
setCharacterStream(), setNCharacterStream(), setBlob(), setClob(), or setNCLob()
method.

Consequently, to change the type of a parameter to a nonlarge one, you must call
clearParameters() and set all parameters of the prepared statement again before it can be re-
executed.

• ResultSet

By default, ResultSets are completely retrieved and stored in memory. In most cases this is the most
efficient way to operate and, due to the design of the MySQL network protocol, is easier to implement.
If you are working with ResultSets that have a large number of rows or large values and cannot allocate
heap space in your JVM for the memory required, you can tell the driver to stream the results back one
row at a time.

To enable this functionality, create a Statement instance in the following manner:

stmt = conn.createStatement(java.sql.ResultSet.TYPE_FORWARD_ONLY,
 java.sql.ResultSet.CONCUR_READ_ONLY);
stmt.setFetchSize(Integer.MIN_VALUE);

The combination of a forward-only, read-only result set, with a fetch size of Integer.MIN_VALUE
serves as a signal to the driver to stream result sets row-by-row. After this, any result sets created with
the statement will be retrieved row-by-row.

There are some caveats with this approach. You must read all of the rows in the result set (or close it)
before you can issue any other queries on the connection, or an exception will be thrown.

The earliest the locks these statements hold can be released (whether they be MyISAM table-level locks
or row-level locks in some other storage engine such as InnoDB) is when the statement completes.

If the statement is within scope of a transaction, then locks are released when the transaction completes
(which implies that the statement needs to complete first). As with most other databases, statements
are not complete until all the results pending on the statement are read or the active result set for the
statement is closed.

Therefore, if using streaming results, process them as quickly as possible if you want to maintain
concurrent access to the tables referenced by the statement producing the result set.

74

Java, JDBC, and MySQL Types

Another alternative is to use cursor-based streaming to retrieve a set number of rows each time.
This can be done by setting the connection property useCursorFetch to true, and then calling
setFetchSize(int) with int being the desired number of rows to be fetched each time:

conn = DriverManager.getConnection("jdbc:mysql://localhost/?useCursorFetch=true", "user", "s3cr3t");
stmt = conn.createStatement();
stmt.setFetchSize(100);
rs = stmt.executeQuery("SELECT * FROM your_table_here");

• Statement

Connector/J includes support for both Statement.cancel() and Statement.setQueryTimeout().
Both require a separate connection to issue the KILL QUERY statement. In the case of
setQueryTimeout(), the implementation creates an additional thread to handle the timeout
functionality.

Note

Failures to cancel the statement for setQueryTimeout() may manifest
themselves as RuntimeException rather than failing silently, as there is
currently no way to unblock the thread that is executing the query being cancelled
due to timeout expiration and have it throw the exception instead.

MySQL does not support SQL cursors, and the JDBC driver does not emulate them, so
setCursorName() has no effect.

Connector/J also supplies two additional methods:

• setLocalInfileInputStream() sets an InputStream instance that will be used to send data to
the MySQL server for a LOAD DATA LOCAL INFILE statement rather than a FileInputStream or
URLInputStream that represents the path given as an argument to the statement.

This stream will be read to completion upon execution of a LOAD DATA LOCAL INFILE statement,
and will automatically be closed by the driver, so it needs to be reset before each call to execute*()
that would cause the MySQL server to request data to fulfill the request for LOAD DATA LOCAL
INFILE.

If this value is set to NULL, the driver will revert to using a FileInputStream or URLInputStream
as required.

• getLocalInfileInputStream() returns the InputStream instance that will be used to send data
in response to a LOAD DATA LOCAL INFILE statement.

This method returns NULL if no such stream has been set using setLocalInfileInputStream().

6.5 Java, JDBC, and MySQL Types

MySQL Connector/J is flexible in the way it handles conversions between MySQL data types and Java
data types.

In general, any MySQL data type can be converted to a java.lang.String, and any numeric type
can be converted to any of the Java numeric types, although round-off, overflow, or loss of precision may
occur.

75

https://dev.mysql.com/doc/refman/8.4/en/kill.html
https://dev.mysql.com/doc/refman/8.4/en/load-data.html
https://dev.mysql.com/doc/refman/8.4/en/load-data.html
https://dev.mysql.com/doc/refman/8.4/en/load-data.html
https://dev.mysql.com/doc/refman/8.4/en/load-data.html
https://dev.mysql.com/doc/refman/8.4/en/load-data.html

Java, JDBC, and MySQL Types

Connector/J issues warnings or throws DataTruncation exceptions as is required by the
JDBC specification, unless the connection was configured not to do so by using the property
jdbcCompliantTruncation and setting it to false.

The conversions that are always guaranteed to work are listed in the following table. The first column lists
one or more MySQL data types, and the second column lists one or more Java types to which the MySQL
types can be converted.

Table 6.19 Possible Conversions Between MySQL and Java Data Types

These MySQL Data Types Can always be converted to these Java types

CHAR, VARCHAR, BLOB, TEXT, ENUM, and
SET

java.lang.String, java.io.InputStream,
java.io.Reader, java.sql.Blob,
java.sql.Clob

FLOAT, REAL, DOUBLE PRECISION,
NUMERIC, DECIMAL, TINYINT, SMALLINT,
MEDIUMINT, INTEGER, BIGINT

java.lang.String, java.lang.Short,
java.lang.Integer, java.lang.Long,
java.lang.Double, java.math.BigDecimal

DATE, TIME, DATETIME, TIMESTAMP java.lang.String, java.sql.Date,
java.sql.Timestamp

Note

Round-off, overflow or loss of precision may occur if you choose a Java numeric
data type that has less precision or capacity than the MySQL data type you are
converting to/from.

The ResultSet.getObject() method uses the type conversions between MySQL and
Java types, following the JDBC specification where appropriate. The values returned by
ResultSetMetaData.GetColumnTypeName()and ResultSetMetaData.GetColumnClassName()
are shown in the table below. For more information on the JDBC types, see the reference on the
java.sql.Types class.

Table 6.20 MySQL Types and Return Values for ResultSetMetaData.GetColumnTypeName()and
ResultSetMetaData.GetColumnClassName()

MySQL Type Name Return value of
GetColumnTypeName

Return value of GetColumnClassName

BIT(1) BIT java.lang.Boolean

BIT(> 1) BIT byte[]

TINYINT(1) SIGNED,
BOOLEAN

If
tinyInt1isBit=true
and
transformedBitIsBoolean=false:
BIT

If
tinyInt1isBit=true
and
transformedBitIsBoolean=true:
BOOLEAN

If
tinyInt1isBit=false:
TINYINT

If tinyInt1isBit=true and
transformedBitIsBoolean=false:
java.lang.Boolean

If tinyInt1isBit=true and
transformedBitIsBoolean=true:
java.lang.Boolean

If tinyInt1isBit=false: java.lang.Integer

76

http://docs.oracle.com/javase/8/docs/api/java/sql/Types.html

Java, JDBC, and MySQL Types

MySQL Type Name Return value of
GetColumnTypeName

Return value of GetColumnClassName

TINYINT(> 1)
SIGNED

TINYINT java.lang.Integer

TINYINT(any)
UNSIGNED

TINYINT UNSIGNED java.lang.Integer

SMALLINT[(M)]
[UNSIGNED]

SMALLINT [UNSIGNED] java.lang.Integer (regardless of whether it is
UNSIGNED or not)

MEDIUMINT[(M)]
[UNSIGNED]

MEDIUMINT
[UNSIGNED]

java.lang.Integer (regardless of whether it is
UNSIGNED or not)

INT,INTEGER[(M)] INTEGER java.lang.Integer

INT,INTEGER[(M)]
UNSIGNED

INTEGER UNSIGNED java.lang.Long

BIGINT[(M)] BIGINT java.lang.Long

BIGINT[(M)]
UNSIGNED

BIGINT UNSIGNED java.math.BigInteger

FLOAT[(M,D)] FLOAT java.lang.Float

DOUBLE[(M,B)]
[UNSIGNED]

DOUBLE java.lang.Double (regardless of whether it is
UNSIGNED or not)

DECIMAL[(M[,D])]
[UNSIGNED]

DECIMAL java.math.BigDecimal (regardless of whether it
is UNSIGNED or not)

DATE DATE java.sql.Date

DATETIME DATETIME java.time.LocalDateTime

TIMESTAMP[(M)] TIMESTAMP java.sql.Timestamp

TIME TIME java.sql.Time

YEAR[(2|4)] YEAR If yearIsDateType configuration property is
set to false, then the returned object type is
java.sql.Short. If set to true (the default), then
the returned object is of type java.sql.Date.

CHAR(M) CHAR java.lang.String

VARCHAR(M) VARCHAR java.lang.String

BINARY(M), CHAR(M)
BINARY

BINARY byte[]

VARBINARY(M),
VARCHAR(M) BINARY

VARBINARY byte[]

BLOB BLOB byte[]

TINYBLOB TINYBLOB byte[]

MEDIUMBLOB MEDIUMBLOB byte[]

LONGBLOB LONGBLOB byte[]

TEXT TEXT java.lang.String

TINYTEXT TINYTEXT java.lang.String

MEDIUMTEXT MEDIUMTEXT java.lang.String

LONGTEXT LONGTEXT java.lang.String

77

Handling of Date-Time Values

MySQL Type Name Return value of
GetColumnTypeName

Return value of GetColumnClassName

JSON JSON java.lang.String

GEOMETRY GEOMETRY byte[]

VECTOR(M) (only
supported when available
with MySQL Enterprise
Server)

VECTOR byte[]

ENUM('value1','value2',...)CHAR java.lang.String

SET('value1','value2',...)CHAR java.lang.String

6.6 Handling of Date-Time Values

6.6.1 Preserving Time Instants

Background

A time instant is a specific moment on a time-line. A time instant is said to be preserved when it always
refers to the same point in time when its value is being stored to or retrieved from a database, no matter
what time zones the database server and the clients are operating in.

TIMESTAMP is the only MySQL data type designed to store instants. To preserve time instants, the
server applies time zone conversions in incoming or outgoing time values when needed. Incoming
values are converted by server from the connection session's time zone to Coordinated Universal Time
(UTC) for storage, and outgoing values are converted from UTC to the session time zone. Starting from
MySQL 8.0.19, you can also specify a time zone offset when storing TIMESTAMP values (see The DATE,
DATETIME, and TIMESTAMP Types for details), in which case the TIMESTAMP values are converted to
the UTC from the specified offset instead of the session time zone. But, once stored, the original offset
information is no longer preserved.

The situation is less straightforward with the DATETIME data type: it does not represent an instant and,
when no time zone offset is specified, there is no time zone conversion for DATETIME values, so they are
stored and retrieved as they are. However, with a specified time zone offset, the input value is converted
to the session time zone before it is stored; the result is that, when retrieved in a different session with a
different time zone offset as the specified one, the DATETIME value becomes different from the original
input value.

Because MySQL data types other than TIMESTAMP (and the Java wrapper classes for those other
MySQL data types) do not represent true time instants; mixing up instant-representing and non-instant-
representing date-time types when storing and retrieving values might give rise to unexpected results. For
example:

• When storing java.sql.Timestamp to, for example, a DATETIME column, you might not get back the
same instant value when retrieving it into a client that is in a different time zone than the one the client
was in when storing the value.

• When storing, for example, a java.time.LocalDateTime to a TIMESTAMP column, you might not
be storing the correct UTC-based value for it, because the time zone for the value is actually undefined.

Therefore, do not pass instant date-time types (java.util.Calendar, java.util.Date,
java.time.OffsetDateTime, java.sql.Timestamp) to non-instant date-time types (for example,
java.sql.DATE, java.time.LocalDate, java.time.LocalTime, java.time.OffsetTime) or
vice versa, when working with the server.

78

https://dev.mysql.com/doc/refman/8.4/en/time-zone-support.html#time-zone-variables
https://dev.mysql.com/doc/refman/8.4/en/datetime.html
https://dev.mysql.com/doc/refman/8.4/en/datetime.html

Preserving Time Instants

The rest of the section discusses how to preserve time instants when working with Connector/J.

Preserving Instants with Connector/J

The scenario: Let us assume that an application is running on a certain application server and is
connecting to a MySQL server using Connector/J. Certain events take place in a connection session, for
which timestamps are generated, and the event timestamps are associated with the JVM time zone of the
application server. These timestamps are to be stored onto a MySQL Server, and are also to be retrieved
from it later.

The challenge: The timestamps' instant values need to be preserved when they are saved onto or retrieved
from the server using Connector/J. Because the MySQL Server always assumes implicitly that a time
instant value references to the connection session time zone (which is set by the session time_zone
variable) when being saved to or retrieved form the server, a time instant value is properly preserved only
in the following situations:

1. When Connector/J is running in the same time zone as the MySQL Server (i.e., the server's session
time zone is the same as the JVM's time zone), time instants are naturally preserved, and no time zone
conversion is needed. Note that in this case, time instants are really preserved only if the server and
the JVM continue to run always in the same time zone in the future.

2. When Connector/J is running in a different time zone from that of the MySQL Server (i.e., the JVM's
time zone is different from the server's session time zone), Connector/.J performs one of the following:

a. Queries the value of the session time zone from the server, and converts the event timestamps
between the session time zone and the JVM time zone.

b. Changes the server's session time zone to that of the JVM time zone, after which no time zone
conversion will be required.

c. Changes the server session time zone to a desired time zone specified by the user, and then
converts the timestamps between the JVM time zone and the user-specified time zone.

We identify the above solutions for time instant preservation as Solution 1, 2a, 2b, and 2c. To achieve
these solutions, the following connection properties have been introduced in Connector/J since release
8.0.23:

• preserveInstants={true|false}: Whether to attempt to preserve time instant values by adjusting
timestamps.

• When it is false, no conversions are attempted; a timestamp is sent to the server as-is for storage,
and its visual presentation, not the actual time instant is preserved. When it is retrieved from the server
by Connector/J, different time zones might be associated with it, as the retrieval might happen in
different JVM time zones. For example: For example:

• Time zones: UTC for JVM, UTC+1 for server session

• Original timestamp from client (in UTC): 2020-01-01 01:00:00

• Timestamp sent to server by Connector/J: 2020-01-01 01:00:00 (no conversion)

• Timestamp values stored internally on the server: 2020-01-01 00:00:00 UTC (after internal
conversion of 2020-01-01 00:00:00 UTC+1 to UTC)

• Timestamp value retrieved later into a server section (in UTC+1): 2020-01-01 01:00:00 (after
internal conversion of 2020-01-01 00:00:00 from UTC to UTC+1)

79

https://dev.mysql.com/doc/refman/8.4/en/server-system-variables.html#sysvar_time_zone

Preserving Time Instants

• Timestamp values constructed by Connector/J in some other JVM time zone then before (say, in
UTC+3): 2020-01-01 01:00:00

• Comment: Time instant is not preserved

• When it is true, Connector/J attempts to preserve the time instants by performing the
conversions in a manner defined by the connection properties connectionTimeZone and
forceConnectionTimeZoneToSession.

When storing a value, the conversion is performed only if the target data type, either the explicit one or
the default one, is TIMESTAMP. When retrieving a value, the conversion is performed only if the source
column has the TIMESTAMP, DATETIME, or a character data type and the target class is an instant-
preserving one, like java.sql.Timestamp or java.time.OffsetDateTime.

• connectionTimeZone={LOCAL|SERVER|user-defined-time-zone}: Specifies how the server's
session time zone (in reference to which the timestamps are saved onto the server) is to be determined
by Connector/J. It takes on one of the following values:

• LOCAL: Connector/J assumes that the server's session time zone either (a) is the same as the JVM
time zone for Connector/J, or (b) should be set as the same as the JVM time zone for Connector/
J. Connector/J takes the situation as (a) or (b) depending on the value of the connection property
forceConnectionTimeZoneToSession.

• SERVER: Connector/J should query the session's time zone from the server, instead of making any
assumptions about it. If the session time zone actually turns out to be different from Connector/J's JVM
time zone and preserveInstants=true, Connector/J performs time zone conversion between the
session time zone and the JVM time zone.

• user-defined-time-zone: Connector/J assumes that the server's session time zone either
(a) is the same as the user-defined time zone, or (b) should be set as the user-defined time zone.
Connector/J takes the situation as (a) or (b) depending on the value of the connection property
forceConnectionTimeZoneToSession.

Note

For Connector/J 8.0.23 and later, serverTimezone is an alias for
connectionTimeZone. For Connector/J 8.0.22 and earlier, serverTimezone
was used to override the session time zone setting on the server.

• forceConnectionTimeZoneToSession={true|false}: Controls whether the session time_zone
variable is to be set to the value specified in connectionTimeZone.

Now, here are the connection properties values to be used for achieving the Solutions defined above for
preserving time instants:

• Solution 1: Use either preserveInstants=false or connectionTimeZone=LOCAL&
forceConnectionTimeZoneToSession=false. Because it can be safely assumed that the server
session time zone is the same as Connector/J' s JVM timezone, no query of the server's session time
zone occurs, and no time zone conversion occurs. For example:

• Time zones: UTC+1 for both the JVM and the server session

• Original timestamp from client (in UTC+1): 2020-01-01 01:00:00

• Timestamp sent to server by Connector/J: 2020-01-01 01:00:00 (no conversion needed)

80

https://dev.mysql.com/doc/refman/8.4/en/server-system-variables.html#sysvar_time_zone

Preserving Time Instants

• Timestamp values stored internally on the server: 2020-01-01 00:00:00 UTC (after internal
conversion from UTC+1 to UTC)

• Timestamp value retrieved later into a server time session in UTC+1 that Connector/J connects to:
2020-01-01 01:00:00 (after internal conversion from UTC to UTC+1)

• Timestamp value constructed by Connector/J in the same JVM time zone as before (UTC+1) and
returned to an application: 2020-01-01 01:00:00

• Comment: Time instant is preserved without conversion.

Note

This setting corresponds to the default behavior of Connector/J 5.1

• Solution 2a: Use preserveInstants=true&connectionTimeZone=SERVER . Connector/J then queries
the value of the session time zone from the server, and converts the event timestamps between the
session time zone and the JVM time zone. For example:

• Time zones: UTC+2 for JVM, UTC+1 for server session

• Original timestamp from client (in UTC+2): 2020-01-01 02:00:00

• Timestamp sent to server by Connector/J: 2020-01-01 01:00:00 (after conversion from UTC+2 to
UTC+1)

• Timestamp value stored internally on the server: 2020-01-01 00:00:00 UTC (after internal
conversion from UTC+1 to UTC)

• Timestamp value retrieved later into a server session in UTC+1: 2020-01-01 01:00:00 (after
internal conversion from UTC to UTC+1)

• Timestamp values constructed by Connector/J in the same JVM time zone as before (UTC+2) and
returned to an application: 2020-01-01 02:00:00 (after conversion from UTC+1 to UTC+2)

• Timestamp values constructed by Connector/J in another JVM time zone (say, UTC+3) and returned
to an application: 2020-01-01 03:00:00 (after conversion from UTC+1 to UTC+3)

• Comment: Time instant is preserved.

Notes

• This setting corresponds to the default behavior of Connector/
J 8.0.22 and before and to the behavior of Connector/J 5.1 with
useLegacyDatetimeCode=false.

81

Preserving Time Instants

• Solution 2b: Use connectionTimeZone=LOCAL& forceConnectionTimeZoneToSession=true.
Connector/J then changes the server's session time zone to that of the JVM time zone, after which no
timezone conversions are required when storing or achieving the timestamps. For example:

• Time zones: UTC+1 for JVM, UTC+2 for server session originally, but now modified to UTC+1 by
Connector/J

• Original timestamp from client (in UTC+1): 2020-01-01 01:00:00

• Timestamp sent to server by Connector/J: 2020-01-01 01:00:00 (no conversion)

• Timestamp values stored internally on the server: 2020-01-01 00:00:00 (after internal conversion
from UTC+1 to UTC)

• Timestamp values retrieved later into a server session (in UTC+1, as set by Connector/J):
2020-01-01 01:00:00 (after internal conversion from UTC to UTC+1)

• Timestamp value constructed by Connector/J in the same JVM time zone as before (UTC+1):
2020-01-01 01:00:00 (no conversion needed)

• Timestamp values retrieved later into a server session (time zone modified to, say, UTC+3, by
Connector/J): 2020-01-01 03:00:00 (after internal conversion from UTC to UTC+3)

• Timestamp value constructed by Connector/J in the JVM time zone of UTC+3: 2020-01-01
03:00:00 (no conversion needed)

• Comment: Time instant is preserved without conversion by Connector/J, because the session time
zone is changed by Connector/J to its JVM's value.

Warnings

• • Altering the session time zone affects the results of MySQL functions such
as NOW(), CURTIME(), or CURDATE()—if you do not want those functions
to be affected, do not use this setting.

• If you use this setting on different clients in different time zones, the clients
are going to modify their connection session's time zones to different values;
if you want to keep the same visual date-time value representation for the
same time instant for all the clients and in all their sessions, store the values
to a DATETIME instead of a TIMESTAMP column and use non-instant Java
classes for them, for example, java.time.LocalDateTime.

• Solution 2c: Use preserveInstants=true&connectionTimeZone=user-defined-time-zone&
forceConnectionTimeZoneToSession=true. Connector/J then changes the server's session time zone
to the user-defined time zone, and converts the timestamps between the user-defined time zone and the
JVM time zone. A typical use case for this setting is when the session time zone value on the server is
known to be unrecognizable by Connector/J (e.g., CST or CEST). For example:

• Time zones: UTC+2 for JVM, CET for server session originally, but now modified to user-specified
Europe/Berlin by Connector/J

• Original timestamp from client (in UTC+2): 2020-01-01 02:00:00

• Timestamp sent to server by Connector/J: 2020-01-01 01:00:00 (after conversion between JVM
time zone (UTC+2) and user-defined time zone (Europe/Berlin=UTC+1))

82

Fractional Seconds

• Timestamp values stored internally on the server: 2020-01-01 00:00:00 (after internal conversion
from UTC+1 to UTC)

• Timestamp value retrieved into a server session (time zone modified to Europe/Berlin (=UTC+1)
by Connector/J): 2020-01-01 01:00:00 (after internal conversion from UTC to UTC+1)

• Timestamp value constructed by Connector/J in the same JVM time zone as before (UTC+2) and
returned to an application: 2020-01-01 02:00:00 (after conversion between user-defined time
zone (UTC+1) and JVM time zone (UTC+2)).

• Comment: Time instant is preserved with conversion and with the session time zone being changed by
Connector/J according to a user-defined value.

As an alternative to this solution, the user might want the same conversion of the timestamps
between the JVM time zone and the user-defined time zone as described above, without
actually correcting the unrecognizable time zone value on the server. To do so, use,
preserveInstants=true&connectionTimeZone=user-defined-time-zone&
forceConnectionTimeZoneToSession=false. This achieves the same result of preserving the
time instant.

Warnings

See the warnings above for Solution 2b.

6.6.2 Fractional Seconds

While a java.sql.TIME instance, according to the JDBC specification, is not supposed to contain
fractional seconds by design, because java.sql.TIME is a wrapper around java.util.Date, it
is possible to store fractional seconds in a java.sql.TIME instance. However, when Connector/
J inserted a java.sql.TIME into the server as a MySQL TIME value, the fractional seconds were
always truncated. To allow the fractional seconds to be sent to the server, a connection property,
sendFractionalSecondsForTime, has been introduced in release 8.0.23: when the property is true
(which is the default value), the fractional seconds for java.sql.TIME are sent to the server; otherwise,
the fractional seconds are truncated.

Also, the connection property sendFractionalSeconds has become a global control for
the sending of fractional seconds for ALL date-time types since release 8.0.23. As a result, if
sendFractionalSeconds=false, fractional seconds are not sent irrespective of the value of
sendFractionalSecondsForTime.

6.6.3 Handling of YEAR Values

How a value in a MySQL YEAR column is handled is controlled by the connection property
yearIsDateType:

• If yearIsDateType is true (the default), YEAR is mapped to the Java data type java.sql.Date.

• If yearIsDateType is false, YEAR is mapped to the Java data type java.sql.Short.

Connector/J follows the same rules that govern how values are inserted by a mysql client; see
explanations in The YEAR Type for details.

Connector/J handles the retrieval of zero values from a YEAR column differently than a mysql client.
Treatments of zero values depend on whether they are strings or numbers, and on the value of
yearIsDateType:

83

https://dev.mysql.com/doc/refman/8.4/en/year.html
https://dev.mysql.com/doc/refman/8.4/en/year.html
https://dev.mysql.com/doc/refman/8.4/en/year.html
https://dev.mysql.com/doc/refman/8.4/en/year.html

Using Character Sets and Unicode

• If a string value of '0', '00', or '000' is entered into a YEAR column, when retrieved by Connector/J:

• If yearIsDateType is true, the retrieved value is equivalent to January 1, 2000 00:00:00.000.

• If yearIsDateType is false, the retrieved value is 2000

• If a numeric value of 0, 00, 000, or 0000 is entered into a YEAR column, when retrieved by Connector/
J,

• If yearIsDateType is true, the retrieved value is equivalent to January 1, 2000 00:00:00.000.

• If yearIsDateType is false, the retrieved value is 0

6.7 Using Character Sets and Unicode

All strings sent from the JDBC driver to the server are converted automatically from native
Java Unicode form to the connection's character encoding, including all queries sent using
Statement.execute(), Statement.executeUpdate(), and Statement.executeQuery(), as
well as all PreparedStatement and CallableStatement parameters, excluding parameters set using
the following methods:

• setBlob()

• setBytes()

• setClob()

• setNClob()

• setAsciiStream()

• setBinaryStream()

• setCharacterStream()

• setNCharacterStream()

• setUnicodeStream()

Number of Encodings Per Connection

Connector/J supports a single character encoding between the client and the server, and any number of
character encodings for data returned by the server to the client in ResultSets.

Setting the Character Encoding

For Connector/J 8.0.25 and earlier: The character encoding between the client and the server
is automatically detected upon connection (provided that the Connector/J connection properties
characterEncoding and connectionCollation are not set). The encoding on the server is specified
using the system variable character_set_server (for more information, see Server Character Set and
Collation), and the driver automatically uses the encoding. For example, to use the 4-byte UTF-8 character
set with Connector/J, configure the MySQL server with character_set_server=utf8mb4, and leave
characterEncoding and connectionCollation out of the Connector/J connection string. Connector/
J will then autodetect the UTF-8 setting. To override the automatically detected encoding on the client side,
use the characterEncoding property in the connection URL to the server.

84

https://dev.mysql.com/doc/refman/8.4/en/server-system-variables.html#sysvar_character_set_server
https://dev.mysql.com/doc/refman/8.4/en/charset-server.html
https://dev.mysql.com/doc/refman/8.4/en/charset-server.html
https://dev.mysql.com/doc/refman/8.4/en/charset-unicode-utf8mb4.html
https://dev.mysql.com/doc/refman/8.4/en/charset-unicode-utf8mb4.html
https://dev.mysql.com/doc/refman/8.4/en/server-system-variables.html#sysvar_character_set_server

Custom Character Sets and Collations

For Connector/J 8.0.26 and later: There are two phases during the connection initialization in which the
character encoding and collation are set.

• Pre-Authentication Phase: In this phase, the character encoding between the client and the server is
determined by the settings of the Connector/J connection properties, in the following order of priority:

• passwordCharacterEncoding

• connectionCollation

• characterEncoding

• Set to UTF8 (corresponds to utf8mb4 on MySQL servers), if none of the properties above is set

• Post-Authentication Phase: In this phase, the character encoding between the client and the server for
the rest of the session is determined by the settings of the Connector/J connection properties, in the
following order of priority:

• connectionCollation

• characterEncoding

• Set to UTF8 (corresponds to utf8mb4 on MySQL servers), if none of the properties above is set

This means Connector/J needs to issue a SET NAMES Statement to change the character set and
collation that were established in the pre-authentication phase only if passwordCharacterEncoding
is set, but its setting is different from that of connectionCollation, or different from that of
characterEncoding (when connectionCollation is not set), or different from utf8mb4 (when
both connectionCollation and characterEncoding are not set).

Custom Character Sets and Collations

To support the use of custom character sets and collations on the server, set the Connector/J connection
property detectCustomCollations to true, and provide the mapping between the custom character
sets and the Java character encodings by supplying the customCharsetMapping connection
property with a comma-delimited list of custom_charset:java_encoding pairs (for example:
customCharsetMapping=charset1:UTF-8,charset2:Cp1252).

MySQL to Java Encoding Name Translations

Use Java-style names when specifying character encodings. The following table lists MySQL character set
names and their corresponding Java-style names:

Table 6.21 MySQL to Java Encoding Name Translations

MySQL Character Set Name Java-Style Character Encoding Name

ascii US-ASCII

big5 Big5

gbk GBK

sjis SJIS or Cp932

cp932 Cp932 or MS932

gb2312 EUC_CN

85

https://dev.mysql.com/doc/refman/8.4/en/set-names.html

Using Query Attributes

MySQL Character Set Name Java-Style Character Encoding Name

ujis EUC_JP

euckr EUC_KR

latin1 Cp1252

latin2 ISO8859_2

greek ISO8859_7

hebrew ISO8859_8

cp866 Cp866

tis620 TIS620

cp1250 Cp1250

cp1251 Cp1251

cp1257 Cp1257

macroman MacRoman

macce MacCentralEurope

utf8mb4 UTF-8

ucs2 UnicodeBig

Notes

• When UTF-8 is used for characterEncoding in the connection string, it maps
to the MySQL character set name utf8mb4.

• If the connection option connectionCollation is also set alongside
characterEncoding and is incompatible with it, characterEncoding will be
overridden with the encoding corresponding to connectionCollation.

• Because there is no Java-style character set name for utfmb3 that you can use
with the connection option charaterEncoding, the only way to use utf8mb3
as your connection character set is to use a utf8mb3 collation (for example,
utf8_general_ci) for the connection option connectionCollation, which
forces a utf8mb3 character set to be used, as explained in the last bullet.

Warning

Do not issue the query SET NAMES with Connector/J, as the driver will not detect
that the character set has been changed by the query, and will continue to use the
character set configured when the connection was first set up.

6.8 Using Query Attributes

Connector/J supports Query Attributes when it has been enabled on the server by installing the
query_attributes component (see Prerequisites for Using Query Attributes for details).

Attributes are set for a query by using the setAttribute() method of the JdbcStatement interface.
Here is the method's signature:

JdbcStatement.setAttribute(String name, Object value)

Here is an example of using the query attributes with a JdbcStatement:

86

https://dev.mysql.com/doc/refman/8.4/en/set-names.html
https://dev.mysql.com/doc/refman/8.4/en/query-attributes.html
https://dev.mysql.com/doc/refman/8.4/en/query-attributes.html#query-attributes-prerequisites

Using Query Attributes

Example 6.1 Using Query Attributes with a Plain Statement

conn = DriverManager.getConnection("jdbc:mysql://localhost/test", "myuser", "password");

Statement stmt = conn.createStatement();

JdbcStatement jdbcStmt = (JdbcStatement) stmt;

jdbcStmt.executeUpdate("CREATE TABLE t11 (c1 CHAR(20), c2 CHAR(20))");

jdbcStmt.setAttribute("attr1", "cat");
jdbcStmt.setAttribute("attr2", "mat");
jdbcStmt.executeUpdate("INSERT INTO t11 (c1, c2) VALUES(\n" +
 " mysql_query_attribute_string('attr1'),\n" +
 " mysql_query_attribute_string('attr2')\n" +
 ");");

ResultSet rs = stmt.executeQuery("SELECT * from t11");

while(rs.next()) {
 String col1 = rs.getString(1);
 String col2 = rs.getString(2);
 System.out.println("The "+col1+" is on the "+col2);
 }

While query attributes are cleared on the server after each query, they are kept on the side of Connector/J,
so they can be resent for the next query. To clear the attributes, use the clearAttributes() method of
the JdbcStatement interface:

JdbcStatement.clearAttributes()

The following example (a continuation of the code in Example 6.1, “Using Query Attributes with a Plain
Statement”) shows how the attributes are preserved for a statement until it is cleared :

Example 6.2 Preservation of Query Attributes

/* Continuing from the code in the last example, where query attributes have
already been set and used */

rs = stmt.executeQuery("SELECT c2 FROM t11 where " +
 "c1 = mysql_query_attribute_string('attr1')");

 if (rs.next()) {
 String col1 = rs.getString(1);
 System.out.println("It is on the "+col1);
 }

 // Prints "It is on the mat"

 jdbcStmt.clearAttributes();
 rs = stmt.executeQuery("SELECT c2 FROM t11 where " +
 "c1 = mysql_query_attribute_string('attr1')");

 if (rs.next()) {
 String col1 = rs.getString(1);
 System.out.println("It is on the "+col1);
 }

 else {
 System.out.println("No results!");
 }
 // Prints "No results!" as attribute string attr1 is empty

Attributes can also be set for client-side and server-side prepared statements, using the setAttribute()
method:

87

Connecting Securely Using SSL

Example 6.3 Using Query Attributes with a Prepared Statement

conn = DriverManager.getConnection("jdbc:mysql://localhost/test", "myuser", "password");

PreparedStatement ps = conn.prepareStatement(
 "select ?, c2 from t11 where c1 = mysql_query_attribute_string('attr1')");
ps.setString(1, "It is on a ");

JdbcStatement jdbcPs = (JdbcStatement) ps;
jdbcPs.setAttribute("attr1", "cat");
rs = ps.executeQuery();
if (rs.next()) {
 System.out.println(rs.getString(1)+" "+ rs.getString(2));
}

Not all MySQL data types are supported by the setAttribute() method; only the following MySQL data
types are supported and are directly mapped to from specific Java objects or their subclasses:

Table 6.22 Data Type Mappings for Query Attributes

MySQL Data Type Java Object

MYSQL_TYPE_STRING java.lang.String

MYSQL_TYPE_TINY java.lang.Boolean, java.lang.Byte

MYSQL_TYPE_SHORT java.lang.Short

MYSQL_TYPE_LONG java.lang.Integer

MYSQL_TYPE_LONGLONG java.lang.Long, java.math.BigInteger

MYSQL_TYPE_FLOAT java.lang.Float

MYSQL_TYPE_DOUBLE java.lang.Double, java.math.BigDecimal

MYSQL_TYPE_DATE java.sql.Date, java.time.LocalDate

MYSQL_TYPE_TIME java.sql.Time, java.time.LocalTime,
java.time.OffsetTime,
java.time.Duration

MYSQL_TYPE_DATETIME java.time.LocalDateTime

MYSQL_TYPE_TIMESTAMP java.sql.Timestamp, java.time.Instant,
java.time.OffsetDateTime,
java.time.ZonedDateTime, java.util.Date,
java.util.Calendar

When there is no direct mapping from a Java object type to any MySQL data type, the attribute is set with a
string value that comes from converting the supplied object to a String using the .toString() method.

6.9 Connecting Securely Using SSL

Connector/J can encrypt all data communicated between the JDBC driver and the server (except for the
initial handshake) using SSL. There is a performance penalty for enabling connection encryption, the
severity of which depends on multiple factors including (but not limited to) the size of the query, the amount
of data returned, the server hardware, the SSL library used, the network bandwidth, and so on.

The system works through two Java keystore files: one file contains the certificate information for the
server (truststore in the examples below), and another contains the keys and certificate for the client
(keystore in the examples below). All Java keystore files are protected by the password supplied to the
keytool when you created the files. You need the file names and the associated passwords to create an
SSL connection.

88

Connecting Securely Using SSL

For SSL support to work, you must have the following:

• A MySQL server that supports SSL, and compiled and configured to do so. For more information, see
Using Encrypted Connections and Configuring SSL Library Support.

• A signed client certificate, if using mutual (two-way) authentication.

By default, Connector/J establishes secure connections with the MySQL servers. Note that MySQL servers
5.7 and up, when compiled with OpenSSL, can automatically generate missing SSL files at startup and
configure the SSL connection accordingly.

For 8.0.12 and earlier: As long as the server is correctly configured to use SSL, there is no need to
configure anything on the Connector/J client to use encrypted connections (the exception is when
Connector/J is connecting to very old server versions like 5.6.25 and earlier or 5.7.5 and earlier, in which
case the client must set the connection property useSSL=true in order to use encrypted connections).
The client can demand SSL to be used by setting the connection property requireSSL=true; the
connection then fails if the server is not configured to use SSL. Without requireSSL=true, the
connection just falls back to non-encrypted mode if the server is not configured to use SSL.

For 8.0.13 and later: As long as the server is correctly configured to use SSL, there is no need to configure
anything on the Connector/J client to use encrypted connections. The client can demand SSL to be
used by setting the connection property sslMode=REQUIRED, VERIFY_CA, or VERIFY_IDENTITY;
the connection then fails if the server is not configured to use SSL. With sslMode=PREFERRED, the
connection just falls back to non-encrypted mode if the server is not configured to use SSL. For X-Protocol
connections, the connection property xdevapi.ssl-mode specifies the SSL Mode setting, just like
sslMode does for MySQL-protocol connections (except that PREFERRED is not supported by X Protocol); if
not explicitly set, xdevapi.ssl-mode takes up the value of sslMode (if xdevapi.ssl-mode is not set
and sslMode is set to PREFERRED, xdevapi.ssl-mode is set to REQUIRED).

For additional security, you can setup the client for a one-way (server or client) or two-way (server and
client) SSL authentication, allowing the client or the server to authenticate each other's identity.

TLS versions: The allowable versions of TLS protocol can be restricted using the connection properties
tlsVersions and, for X DevAPI connections and for release 8.0.19 and later, xdevapi.tls-versions
(when xdevapi.tls-versions is not specified, it takes up the value of tlsVersions). If no such
restrictions have been specified, Connector/J attempts to connect to the server with the TLSv1.2 and
TLSv1.3.

Notes

• Since Connector/J 8.0.28, the connection property enabledTLSProtocols has
been renamed to tlsVersions, and enabledSSLCipherSuites has been
renamed to tlsCiphersuites; the original names remain as aliases.

• For Connector/J 8.0.26 and later: TLSv1 and TLSv1.1 were deprecated in
Connector/J 8.0.26 and removed in release 8.0.28; the removed values are
considered invalid for use with connection options and session settings.
Connections can be made using the more-secure TLSv1.2 and TLSv1.3
protocols. Using TLSv1.3 requires that the server be compiled with OpenSSL
1.1.1 or higher and Connector/J be run with a JVM that supports TLSv1.3 (for
example, Oracle Java 8u261 and above).

• For Connector/J 8.0.18 and earlier when connecting to MySQL Community
Server 5.6 and 5.7 using the JDBC API: Due to compatibility issues with
MySQL Server compiled with yaSSL, Connector/J does not enable connections

89

https://dev.mysql.com/doc/refman/8.4/en/encrypted-connections.html
https://dev.mysql.com/doc/refman/8.4/en/source-ssl-library-configuration.html

Setting up Server Authentication

with TLSv1.2 and higher by default. When connecting to servers that restrict
connections to use those higher TLS versions, enable them explicitly by setting
the Connector/J connection property enabledTLSProtocols (e.g., set
enabledTLSProtocols=TLSv1.2,TLSv1.3).

Cipher Suites: Since release 8.0.19, the cipher suites usable by Connector/J are pre-
restricted by a properties file that can be found at src/main/resources/com/mysql/cj/
TlsSettings.properties inside the src folder on the source tree or in the platform-independent
distribution archive (in .tar.gz or .zip format) for Connector/J. The file contains four sections, listing
in each the mandatory, approved, deprecated, and unacceptable ciphers. Only suites listed in the first
three sections can be used. The last section (unacceptable) defines patterns or masks that blocklist unsafe
cipher suites. Practically, with the allowlist already given in the first three sections, the blocklist patterns in
the forth section are redundant; but they are there as an extra safeguard against unwanted ciphers. The
allowlist and blocklist of cipher suites apply to both JDBC and X DevAPI connections.

The allowable cipher suites for SSL connections can be restricted using the connection properties
tlsCiphersuites and, for X DevAPI connections and for release 8.0.19 and later, xdevapi.tls-
ciphersuites (when xdevapi.tls-ciphersuites is not specified, it takes up the value of
tlsCiphersuites). If no such restrictions have been specified, Connector/J attempts to establish SSL
connections with any allowlisted cipher suites that the server accepts.

6.9.1 Setting up Server Authentication

Server authentication via server certificate verification is enabled when the Connector/J connection
property sslMode is set to VERIFY_CA or VERIFY_IDENTITY. If sslMode is not set, server
authentication via server certificate verification is enabled when the legacy properties useSSL AND
verifyServerCertificate are both true.

Certificates signed by a trusted CA. When server authentication via server certificate verification is
enabled, if no additional configurations are made regarding server authentication, Java verifies the server
certificate using its default trusted CA certificates, usually from $JAVA_HOME/lib/security/cacerts.

Using self-signed certificates. It is pretty common though for MySQL server certificates to be self-
signed or signed by a self-signed CA certificate; the auto-generated certificates and keys created by the
MySQL server are based on the latter—that is, the server generates all required keys and a self-signed CA
certificate that is used to sign a server and a client certificate. The server then configures itself to use the
CA certificate and the server certificate. Although the client certificate file is placed in the same directory, it
is not used by the server.

To verify the server certificate, Connector/J needs to be able to read the certificate that signed it, that
is, the server certificate that signed itself or the self-signed CA certificate. This can be accomplished by
either importing the certificate (ca.pem or any other certificate) into the Java default truststore (although
tampering the default truststore is not recommended) or by importing it into a custom Java truststore
file and configuring the Connector/J driver accordingly. Use Java's keytool (typically located in the bin
subdirectory of your JDK or JRE installation) to import the server certificates:

$> keytool -importcert -alias MySQLCACert -file ca.pem \
 -keystore truststore -storepass mypassword

Supply the proper arguments for the command options. If the truststore file does not already exist, a new
one will be created; otherwise the certificate will be added to the existing file. Interaction with keytool
looks like this:

Owner: CN=MySQL_Server_8.4.0_Auto_Generated_CA_Certificate
Issuer: CN=MySQL_Server_8.4.0_Auto_Generated_CA_Certificate

90

Setting up Server Authentication

Serial number: 1
Valid from: Thu Mar 07 11:37:33 WET 2024 until: Sun Mar 05 11:37:33 WET 2034
Certificate fingerprints:
 SHA1: 43:12:0F:96:1A:09:1C:D2:5B:62:7A:2A:55:6C:62:6A:84:5F:78:E4
 SHA256: 7D:86:18:FF:06:A7:DF:A7:7C:D0:07:AB:96:1A:51:FD:02:4F:32:BF:1C:51:35:42:27:81:53:0A:8F:D3:56:39
Signature algorithm name: SHA256withRSA
Subject Public Key Algorithm: 2048-bit RSA key
Version: 3

Extensions:

#1: ObjectId: 2.5.29.19 Criticality=true
BasicConstraints:[
 CA:true
 PathLen:2147483647
]

Trust this certificate? [no]: yes
Certificate was added to keystore

The output of the command shows all details about the imported certificate. Make sure you remember the
password you have supplied. Also, be mindful that the password will have to be written as plain text in your
Connector/J configuration file or application source code.

The next step is to configure Java or Connector/J to read the truststore you just created or modified. This
can be done by using one of the following three methods:

1. Using the Java command line arguments:

-Djavax.net.ssl.trustStore=path_to_truststore_file
-Djavax.net.ssl.trustStorePassword=mypassword

2. Setting the system properties directly in the client code:

System.setProperty("javax.net.ssl.trustStore","path_to_truststore_file");
System.setProperty("javax.net.ssl.trustStorePassword","mypassword");

3. Setting the Connector/J connection properties:

trustCertificateKeyStoreUrl=file:path_to_truststore_file
trustCertificateKeyStorePassword=mypassword

Notice that when used together, the connection properties override the values set by the other two
methods. Also, whatever values set with connection properties are used in that connection only, while
values set using the system-wide values are used for all connections (unless overridden by the connection
properties). Setting the connection property fallbackToSystemTrustStore to false prevents
Connector/J from falling back to the system-wide truststore setup you created using method (1) or (2) when
method (3) is not used.

With the above setup and the server authentication enabled, all connections established are going to be
SSL-encrypted, with the server being authenticated in the SSL handshake process, and the client can now
safely trust the server it is connecting to.

For X-Protocol connections, the connection properties xdevapi.ssl-truststore,
xdevapi.ssl-truststore-type, xdevapi.ssl-truststore-password, and
xdevapi.ssl-fallbackToSystemTrustStore specify the truststore settings,
just like trustCertificateKeyStoreUrl, trustCertificateKeyStoreType,
trustCertificateKeyStorePasswordamd fallbackToSystemTrustStore do for MySQL-
protocol connections; if not explicitly set, xdevapi.ssl-truststore, xdevapi.ssl-truststore-
type, xdevapi.ssl-truststore-password, and xdevapi.ssl-fallbackToSystemTrustStore

91

Setting up Client Authentication

take up the values of trustCertificateKeyStoreUrl, trustCertificateKeyStoreType,
trustCertificateKeyStorePassword, and fallbackToSystemTrustStore respectively.

Service Identity Verification. Beyond server authentication via server certificate verification, when
sslMode is set to VERIFY_IDENTITY, Connector/J also performs host name identity verification by
checking whether the host name that it uses for connecting matches the Common Name value in the
server certificate.

6.9.2 Setting up Client Authentication

The server may want to authenticate a client and require the client to provide an SSL certificate to it,
which it verifies against its known certificate authorities or performs additional checks on the client identity
if needed (see CREATE USER SSL/TLS Options for details). In that case, Connector/J needs to have
access to the client certificate, so it can be sent to the server while establishing new database connections.
This is done using the Java keystore files.

To allow client authentication, the client connecting to the server must have its own set of keys and an SSL
certificate. The client certificate must be signed so that the server can verify it. While you can have the
client certificates signed by official certificate authorities, it is more common to use an intermediate, private,
CA certificate to sign client certificates. Such an intermediate CA certificate may be self-signed or signed
by a trusted root CA. The requirement is that the server knows a CA certificate that is capable of validating
the client certificate.

Some MySQL server builds are able to generate SSL keys and certificates for communication encryption,
including a certificate and a private key (contained in the client-cert.pem and client-key.pem
files), which can be used by any client. This SSL certificate is already signed by the self-signed CA
certificate ca.pem, which the server may have already been configured to use.

If you do not want to use the client keys and certificate files generated by the server, you can also generate
new ones using the procedures described in Creating SSL and RSA Certificates and Keys. Notice that,
according to the setup of the server, you may have to reuse the already existing CA certificate the server is
configured to work with to sign the new client certificate, instead of creating a new one.

Once you have the client private key and certificate files you want to use, you need to import them into a
Java keystore so that they can be used by the Java SSL library and Connector/J. The following instructions
explain how to create the keystore file:

• Convert the client key and certificate files to a PKCS #12 archive:

$> openssl pkcs12 -export -in client-cert.pem -inkey client-key.pem \
 -name "mysqlclient" -passout pass:mypassword -out client-keystore.p12

• Import the client key and certificate into a Java keystore:

$> keytool -importkeystore -srckeystore client-keystore.p12 -srcstoretype pkcs12 \
 -srcstorepass mypassword -destkeystore keystore -deststoretype JKS -deststorepass mypassword

Supply the proper arguments for the command options. If the keystore file does not already exist, a new
one will be created; otherwise the certificate will be added to the existing file. Output by keytool looks
like this:

Entry for alias mysqlclient successfully imported.
Import command completed: 1 entries successfully imported, 0 entries failed or cancelled

Make sure you remember the password you have chosen. Also, be mindful that the password will have
to be written as plain text in your Connector/J configuration file or application source code.

After the step, you can delete the PKCS #12 archive (client-keystore.p12 in the example).

92

https://dev.mysql.com/doc/refman/8.4/en/create-user.html#create-user-tls
https://dev.mysql.com/doc/refman/8.4/en/creating-ssl-rsa-files.html

Setting up 2-Way Authentication

The next step is to configure Java or Connector/J so that it reads the keystore you just created or modified.
This can be done by using one of the following three methods:

1. Using the Java command line arguments:

-Djavax.net.ssl.keyStore=path_to_keystore_file
-Djavax.net.ssl.keyStorePassword=mypassword

2. Setting the system properties directly in the client code:

System.setProperty("javax.net.ssl.keyStore","path_to_keystore_file");
System.setProperty("javax.net.ssl.keyStorePassword","mypassword");

3. Through Connector/J connection properties:

clientCertificateKeyStoreUrl=file:path_to_truststore_file
clientCertificateKeyStorePassword=mypassword

Notice that when used together, the connection properties override the values set by the other two
methods. Also, whatever values set with connection properties are used in that connection only, while
values set using the system-wide values are used for all connections (unless overridden by the connection
properties). Setting the connection property fallbackToSystemKeyStore to false prevents
Connector/J from falling back to the system-wide keystore setup you created using method (1) or (2) when
method (3) is not used.

With the above setups, all connections established are going to be SSL-encrypted with the client being
authenticated in the SSL handshake process, and the server can now safely trust the client that is
requesting a connection to it.

For X-Protocol connections, the connection properties xdevapi.ssl-keystore,
xdevapi.ssl-keystore-type, xdevapi.ssl-keystore-password, and
xdevapi.ssl-fallbackToSystemKeyStore specify the keystore settings, just
like trustCertificateKeyStoreUrl, trustCertificateKeyStoreType,
trustCertificateKeyStorePassword, and fallbackToSystemTKeyStore do for MySQL-
protocol connections; if not explicitly set, xdevapi.ssl-keystore, xdevapi.ssl-keystore-
type, xdevapi.ssl-keystore-password, and xdevapi.ssl-fallbackToSystemKeyStore
take up the values of clientCertificateKeyStoreUrl, clientCertificateKeyStoreType,
clientCertificateKeyStorePassword, and fallbackToSystemKeyStore respectively.

6.9.3 Setting up 2-Way Authentication

Apply the steps outlined in both Section 6.9.1, “Setting up Server Authentication” and Section 6.9.2,
“Setting up Client Authentication” to set up a mutual, two-way authentication process in which the server
and the client authenticate each other before establishing a connection.

Although the typical setup described above uses the same CA certificate in both ends for mutual
authentication, it does not have to be the case. The only requirements are that the CA certificate
configured in the server must be able to validate the client certificate and the CA certificate imported into
the client truststore must be able to validate the server certificate; the two CA certificates used on the two
ends can be distinct.

6.9.4 JSSE in FIPS Mode

When using a Java 8 to 12 JREs, if JSSE is configured to use FIPS mode, attempts to connect to a
MySQL Server may fail in some cases with a KeyManagementException, complaining that "FIPS
mode: only SunJSSE TrustManagers may be used." This happens because, in that case, a custom

93

Debugging an SSL Connection

TrustManager implemented by Connector/J that supports the different sslMode options is invoked but is
eventually rejected by the default implementation of SunJSSE.

The issue can be overcome by telling Connector/J not to use its custom TrustManager implementation,
but use your own security providers instead. This can be done by setting the following connection
properties:

• fipsCompliantJsse: Set to true to overcome the above-mentioned issue with FIPS mode.

Note

When set to true, Connector/J always performs server certificate validation (even
if sslMode is set to PREFERRED or REQUIRED), which means a truststore must
be configured with the connection proprieties described below, or the fallback
system-wide truststore must be enabled.

• KeyManagerFactoryProvider: The name of the a Java Security Provider that provides a
javax.net.ssl.KeyManagerFactory implementation.

• trustManagerFactoryProvider: The name of the a Java Security Provider that provides a
javax.net.ssl.TrustManagerFactory implementation.

• keyStoreProvider: The name of the a Java Security Provider that provides a
java.security.KeyStore implementation, supporting the key stores types specified with
clientCertificateKeyStoreType and trustCertificateKeyStoreType.

6.9.5 Debugging an SSL Connection

JSSE provides debugging information to stdout when you set the system property -
Djavax.net.debug=all. Java then tells you what keystores and truststores are being used, as well as
what is going on during the SSL handshake and certificate exchange. That will be helpful when you are
trying to debug a failed SSL connection.

6.10 Connecting Using Unix Domain Sockets
Connector/J does not natively support connections to MySQL Servers with Unix domain sockets. However,
there is provision for using 3rd-party libraries that supply the function via a pluggable socket factory. Such
a custom factory should implement the com.mysql.cj.protocol.SocketFactory interface or the
legacy com.mysql.jdbc.SocketFactory interface of Connector/J. Follow these requirements when
you use such a custom socket factory for Unix sockets :

• The MySQL Server must be configured with the system variable --socket (for native protocol
connections using the JDBC API) or --mysqlx-socket (for X Protocol connections using the X
DevAPI), which must contain the file path of the Unix socket file.

• The fully-qualified class name of the custom factory should be passed to Connector/J via the connection
property socketFactory. For example, with the junixsocket library, set:

socketFactory=org.newsclub.net.mysql.AFUNIXDatabaseSocketFactory

You might also need to pass other parameters to the custom factory as connection properties.
For example, for the junixsocket library, provide the file path of the socket file with the property
junixsocket.file:

junixsocket.file=path_to_socket_file

6.11 Connecting Using Named Pipes

94

https://dev.mysql.com/doc/refman/8.4/en/server-system-variables.html#sysvar_socket
https://dev.mysql.com/doc/refman/8.4/en/x-plugin-options-system-variables.html#sysvar_mysqlx_socket

Connecting Using Various Authentication Methods

Important

Minimal permissions on named pipes are granted to clients that use them
to connect to the server. Connector/J, however, can only use named pipes
when granted full access on them. As a workaround, the MySQL Server that
Connector/J wants to connect to must be started with the system variable
named_pipe_full_access_group, which specifies a Windows local group
containing the user by which the client application JVM (and thus Connector/J) is
being executed; see the description for named_pipe_full_access_group for
more details.

Note

Support for named pipes is not available for X Protocol connections.

Connector/J also supports access to MySQL using named pipes on Windows platforms with the
NamedPipeSocketFactory as a plugin-sockets factory. If you do not use a namedPipePath property,
the default of '\\.\pipe\MySQL' is used. If you use the NamedPipeSocketFactory, the host name
and port number values in the JDBC URL are ignored. To enable this feature, set the socketFactory
property:

socketFactory=com.mysql.cj.protocol.NamedPipeSocketFactory

Set this property, as well as the path of the named pipe, with the following connection URL:

jdbc:mysql:///test?socketFactory=com.mysql.cj.protocol.NamedPipeSocketFactory&namedPipePath=\\.\pipe\MySQL80

To create your own socket factories, follow the sample code in
com.mysql.cj.protocol.NamedPipeSocketFactory or
com.mysql.cj.protocol.StandardSocketFactory.

An alternate approach is to use the following two properties in connection URLs for establishing named
pipe connections on Windows platforms:

• (protocol=pipe) for named pipes (default value for the property is tcp).

• (path=path_to_pipe) for path of named pipes. Default value for the path is \\.\pipe\MySQL.

The “address-equals” or “key-value” form of host specification (see Single host [22] for details) greatly
simplifies the URL for a named pipe connection on Windows. For example, to use the default named pipe
of “\\.\pipe\MySQL,” just specify:

jdbc:mysql://address=(protocol=pipe)/test

To use the custom named pipe of “\\.\pipe\MySQL80” :

jdbc:mysql://address=(protocol=pipe)(path=\\.\pipe\MySQL80)/test

With (protocol=pipe), the NamedPipeSocketFactory is automatically selected.

Named pipes only work when connecting to a MySQL server on the same physical machine where the
JDBC driver is running. In simple performance tests, named pipe access is between 30%-50% faster than
the standard TCP/IP access. However, this varies per system, and named pipes are slower than TCP/IP in
many Windows configurations.

6.12 Connecting Using Various Authentication Methods

6.12.1 Connecting Using PAM Authentication

95

https://dev.mysql.com/doc/refman/8.4/en/server-system-variables.html#sysvar_named_pipe_full_access_group
https://dev.mysql.com/doc/refman/8.4/en/server-system-variables.html#sysvar_named_pipe_full_access_group

Connecting Using Kerberos

Java applications using Connector/J can connect to MySQL servers that use the pluggable authentication
module (PAM) authentication scheme.

For PAM authentication to work, you must have the following:

• A MySQL server that supports PAM authentication. See PAM Pluggable Authentication for more
information. Connector/J implements the same cleartext authentication method as in Client-Side
Cleartext Pluggable Authentication.

• SSL capability, as explained in Section 6.9, “Connecting Securely Using SSL”. Because the PAM
authentication scheme sends the original password to the server, the connection to the server must be
encrypted.

PAM authentication support is enabled by default in Connector/J 8.4, so no extra configuration is needed.

To disable the PAM authentication feature, specify mysql_clear_password (the method) or
com.mysql.cj.protocol.a.authentication.MysqlClearPasswordPlugin (the class name) in
the comma-separated list of arguments for the disabledAuthenticationPlugins connection option.
See Section 6.3, “Configuration Properties” for details about that connection option.

6.12.2 Connecting Using Kerberos

Kerberos is a ticket-based server-client mutual authentication protocol that is supported by the MySQL
Server (commercial versions only) .

Support for Kerberos is implemented by Connector/J using the GSS-API, JAAS API, and JCA API;
providers for each of these APIs must be available on the Java Virtual Machine running your application
that uses Kerberos authentication. Using non-default providers can lead to unexpected results.

Kerberos Authentication Workflow

The main usage of Kerberos authentication in MySQL is to allow users to create
connections without having to specify a user name and password in the connection string.
For that to work, Connector/J must be configured with the connection property setting
defaultAuthenticationPlugin=authentication_kerberos_client and then the MySQL user
name may be extracted from the Kerberos principal associated to the locally cached Ticket-Granting Ticket
(TGT). Notice that a MySQL user name differs from a Kerberos principal in not containing a realm part;
therefore, Connector/J cuts all the characters in the principle after the “@” sign and uses it as the MySQL
user name.

If there is no TGT available in the local Kerberos cache, Connector/J uses the OS login user name as the
MySQL user name. A user name specified in the connection string always takes precedence over names
obtained by any other means for the MySQL user.

The MySQL user name is then sent to the MySQL server for validation. Non-existing users cause the
server to return an error. Existing users are allowed to proceed with the authentication process, and the
authentication mechanism that follows depends on how the MySQL user was created:

• For users created with the authentication plugin authentication_kerberos, MySQL server sends
the corresponding Kerberos realm back to Connector/J, which, in turn, uses it to construct the Kerberos
principal that identifies the user on the Kerberos server. One of three things may then happen:

• The newly constructed Kerberos principal matches the Kerberos principal associated to the locally
cached TGT; this TGT is then sent to the Kerberos server to obtain the desired MySQL Service Ticket,
and the authentication proceeds.

96

https://dev.mysql.com/doc/refman/8.4/en/pam-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.4/en/cleartext-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.4/en/cleartext-pluggable-authentication.html

Connecting Using Multifactor Authentication

• The newly constructed Kerberos principal does not match the Kerberos principal associated to
the locally cached TGT, or there is no local Kerberos cache; this Kerberos principal, as well as the
password that may have been specified in the connection string (or an empty string if none was
specified), is sent to the Kerberos server to obtain first a valid TGT, and then the desired MySQL
Service Ticket; and the authentication proceeds.

• An error is thrown if Connector/J is unable to obtain the correct Kerberos configurations, unable to
communicate with the Kerberos server, or unable to perform either of the two steps above.

• For users defined with a plugin different from authentication_kerberos, the server requests
Connector/J to use another authentication method.

Client-side Kerberos configurations

In order to operate properly with the Kerberos server, Connector/J requires either a system-wide Kerberos
configuration, or these local system property settings for the JVM:

• -Djava.security.krb5.kdc=[the KDC host name]

• -Djava.security.krb5.realm=[the default Kerberos realm]

Debug Information

The process of configuring Connector/J to use Kerberos authentication is not always straightforward.
Enabling logging in the internal Java providers can help find potential problems. That can be done by
setting these system properties:

• -Dsun.security.krb5.debug=true

• -Dsun.security.jgss.debug=true

6.12.3 Connecting Using Multifactor Authentication

Multifactor authentication (MFA) is the use of multiple authentication factors during an authentication
process. MySQL Server supports MFA for up to three authentication factors.

Connection to MySQL Server with MFA is supported by Connector/J. When authenticating user accounts
that require multiple passwords, up to three passwords can be specified using the Connector/J connection
properties password1, password2, and password3 . This is a sample connection string that uses the
three connection properties for passwords:

jdbc:mysql://localhost/db?user=johndoe&password1=password&passsword2=password&password3=password

The following apply when using the connection properties for passwords:

• password1, password2, and password3 are passwords for authentication factors 1, 2, and 3,
respectively, as described in Getting Started with Multifactor Authentication.

• If any of the authentication factors (say, factor N) does not require a password, the corresponding
password (passwordN) is ignored, even if supplied.

• Not specifying the corresponding password for an authentication factor that requires a password is
equivalent to supplying an empty password for the factor.

• password and password1 are taken as synonyms except when both are supplied, in which case
password1 overrides password.

97

https://dev.mysql.com/doc/refman/8.4/en/multifactor-authentication.html#multifactor-authentication-getting-started

Connecting Using Web Authentication (WebAuthn) Authentication

6.12.4 Connecting Using Web Authentication (WebAuthn) Authentication

Web Authentication (WebAuthn) enables user authentication for MySQL Server using devices such as
smart cards, security keys, and biometric readers. WebAuthn enables passwordless authentication, and
can be used for MySQL accounts that use multifactor authentication. It is supported by MySQL Enterprise
Edition and Connector/J since release 8.2.0—see WebAuthn Pluggable Authentication for details.

The following explains how to use WebAuthn authentication with Connector/J. It assumes there is a
MySQL server running and configured to support WebAuthn authentication, with the authentication plugin
authentication_webauthn loaded and the system variable authentication_webauthn_rp_id
properly configured. Although not always the case, FIDO authentication often works with multifactor
authentication, so additional configuration might be necessary but, typically, a default MySQL installation is
multifactor authentication ready.

Create a MySQL User

Create the MySQL user to be linked to the FIDO device. Use the mysql client with a root user:

mysql > CREATE USER 'johndoe'@'%' IDENTIFIED WITH caching_sha2_password BY 's3cr3t' AND IDENTIFIED WITH authentication_webauthn;
Query OK, 0 rows affected (0,02 sec)

Register the FIDO device by the user you just created. This is accomplished by running the mysql client
on the same system the device is installed, which might require installing the mysql client in your working
machine or moving the FIDO device to the system where the MySQL Server is running. In either case,
issue the following command (additional command options to connect to the right server might be needed):

$ mysql --user=johndoe --password1 --register-factor=2
Enter password: <type "s3cr3t">
Please insert FIDO device and follow the instruction. Depending on the device, you may have to perform gesture action multiple times.
1. Perform gesture action (Skip this step if you are prompted to enter device PIN).
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 12
Server version: 8.2.0-commercial MySQL Enterprise Server - Commercial

Copyright (c) 2000, 2023, Oracle and/or its affiliates.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql >

Get 3rd-party Dependencies

MySQL Connector/J is a JDBC Type 4 driver, which is a 100% pure Java implementation, However,
there is no pure Java library supporting the authentication devices that Connector/J can use. Therefore,
developers need to implement the code that handles the interaction with the authentication devices, for
which the following 3rd-party libraries are needed.

• The libfido2 native library, which must be installed in the system where the application will run.

• Some Java bindings, for example Java Native Interface (JNI) or Java Native Access (JNA). In the
following example, Java Native Access (JNA) is used to implement our minimal Java bindings over the
libfido2 library.

98

https://dev.mysql.com/doc/refman/8.4/en/webauthn-pluggable-authentication.html
https://dev.mysql.com/doc/mysql-security-excerpt/en/webauthn-pluggable-authentication.html
https://dev.mysql.com/doc/mysql-security-excerpt/en/pluggable-authentication-system-variables.html#sysvar_authentication_webauthn_rp_id
https://dev.mysql.com/doc/refman/en/multifactor-authentication.html
https://dev.mysql.com/doc/refman/en/multifactor-authentication.html
https://developers.yubico.com/libfido2/
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/
https://github.com/java-native-access/jna
https://github.com/java-native-access/jna

Connecting Using Web Authentication (WebAuthn) Authentication

Implement the Native Bindings

Create a simple class (called FidoAssertion below) that implements the minimal set of bindings
between Java and the libfido2 native library (consult the libfido2 manuals if needed):

import com.sun.jna.Library;
import com.sun.jna.Native;
import com.sun.jna.Pointer;
import com.sun.jna.PointerType;
import com.sun.jna.ptr.IntByReference;
import com.sun.jna.ptr.PointerByReference;

public class FidoAssertion {

 private interface LibFido2 extends Library {
 public static int FIDO_OK = 0;
 static class FidoAssertT extends PointerType {}
 static class FidoDevInfoT extends PointerType {}
 static class FidoDevT extends PointerType {}
 LibFido2 INSTANCE = Native.load("fido2", LibFido2.class);
 int fido_assert_allow_cred(FidoAssertT assrt, byte[] ptr, int len);
 int fido_assert_authdata_len(FidoAssertT assrt, int idx);
 Pointer fido_assert_authdata_ptr(FidoAssertT assrt, int idx);
 void fido_assert_free(PointerByReference assrt);
 FidoAssertT fido_assert_new();
 int fido_assert_count(FidoAssertT assrt);
 int fido_assert_set_clientdata_hash(FidoAssertT assrt, byte[] ptr, int len);
 int fido_assert_set_rp(FidoAssertT assrt, String id);
 int fido_assert_sig_len(FidoAssertT assrt, int idx);
 Pointer fido_assert_sig_ptr(FidoAssertT assrt, int idx);
 int fido_dev_close(FidoDevT dev);
 void fido_dev_free(PointerByReference dev);
 int fido_dev_get_assert(FidoDevT dev, FidoAssertT assrt, String pin);
 void fido_dev_info_free(PointerByReference devlist, int n);
 int fido_dev_info_manifest(FidoDevInfoT devlist, int ilen, IntByReference olen);
 FidoDevInfoT fido_dev_info_new(int n);
 String fido_dev_info_path(FidoDevInfoT di);
 FidoDevInfoT fido_dev_info_ptr(FidoDevInfoT devList, int size);
 FidoDevT fido_dev_new();
 int fido_dev_open(FidoDevT dev, String path);
 boolean fido_dev_supports_credman(FidoDevT dev);
 void fido_init(int flags);
 }

 private LibFido2.FidoAssertT fidoAssert;
 private LibFido2.FidoDevT fidoDev;
 private byte[] clientDataHash;
 private String relyingPartyId;
 private byte[] credentialId;
 private boolean supportsCredMan = false;

 public FidoAssertion() {
 LibFido2.INSTANCE.fido_init(0);
 initializeFidoDevice();
 }

 private void initializeFidoDevice() {
 LibFido2.FidoDevInfoT fidoDevInfo = LibFido2.INSTANCE.fido_dev_info_new(1);
 IntByReference olen = new IntByReference();
 int r = LibFido2.INSTANCE.fido_dev_info_manifest(fidoDevInfo, 1, olen);
 if (r != LibFido2.FIDO_OK) {
 throw new RuntimeException("Failed locating FIDO devices.");
 }
 LibFido2.FidoDevInfoT dev = LibFido2.INSTANCE.fido_dev_info_ptr(fidoDevInfo, 0);
 String path = LibFido2.INSTANCE.fido_dev_info_path(dev);

99

https://developers.yubico.com/libfido2/Manuals/

Connecting Using Web Authentication (WebAuthn) Authentication

 LibFido2.INSTANCE.fido_dev_info_free(new PointerByReference(fidoDevInfo.getPointer()), 1);

 this.fidoDev = LibFido2.INSTANCE.fido_dev_new();
 r = LibFido2.INSTANCE.fido_dev_open(this.fidoDev, path);
 if (r != LibFido2.FIDO_OK) {
 throw new RuntimeException("Failed opening the FIDO device.");
 }

 this.supportsCredMan = LibFido2.INSTANCE.fido_dev_supports_credman(this.fidoDev);
 }

 boolean supportsCredentialManagement() {
 return this.supportsCredMan;
 }

 void setClienDataHash(byte[] clientDataHash) {
 this.clientDataHash = clientDataHash;
 }

 void setRelyingPartyId(String relyingPartyId) {
 this.relyingPartyId = relyingPartyId;
 }

 void setCredentialId(byte[] credentialId) {
 this.credentialId = credentialId;
 }

 void computeAssertions() {
 int r;
 this.fidoAssert = LibFido2.INSTANCE.fido_assert_new();

 // Set the Relying Party Id.
 r = LibFido2.INSTANCE.fido_assert_set_rp(this.fidoAssert, this.relyingPartyId);
 if (r != LibFido2.FIDO_OK) {
 throw new RuntimeException("Failed setting the relying party id.");
 }

 // Set the Client Data Hash.
 r = LibFido2.INSTANCE.fido_assert_set_clientdata_hash(this.fidoAssert, this.clientDataHash, this.clientDataHash.length);
 if (r != LibFido2.FIDO_OK) {
 throw new RuntimeException("Failed setting the client data hash.");
 }

 // Set the Credential Id. Not applicable when resident keys are used.
 if (this.credentialId.length > 0) {
 r = LibFido2.INSTANCE.fido_assert_allow_cred(this.fidoAssert, this.credentialId, this.credentialId.length);
 if (r != LibFido2.FIDO_OK) {
 throw new RuntimeException("Failed setting the credential id.");
 }
 }

 // Obtain the assertion(s) from the FIDO device.
 r = LibFido2.INSTANCE.fido_dev_get_assert(this.fidoDev, this.fidoAssert, null);
 if (r != LibFido2.FIDO_OK) {
 throw new RuntimeException("Failed obtaining the assertion(s) from the FIDO device.");
 }
 }

 public int getAssertCount() {
 int assertCount = LibFido2.INSTANCE.fido_assert_count(this.fidoAssert);
 return assertCount;
 }

 public byte[] getAuthenticatorData(int idx) {
 int authDataLen = LibFido2.INSTANCE.fido_assert_authdata_len(this.fidoAssert, idx);
 Pointer authData = LibFido2.INSTANCE.fido_assert_authdata_ptr(this.fidoAssert, idx);
 byte[] authenticatorData = authData.getByteArray(0, authDataLen);

100

Connecting Using Web Authentication (WebAuthn) Authentication

 return authenticatorData;
 }

 public byte[] getSignature(int idx) {
 int sigLen = LibFido2.INSTANCE.fido_assert_sig_len(this.fidoAssert, idx);
 Pointer sigData = LibFido2.INSTANCE.fido_assert_sig_ptr(this.fidoAssert, idx);
 byte[] signature = sigData.getByteArray(0, sigLen);
 return signature;
 }

 public void freeResources() {
 LibFido2.INSTANCE.fido_dev_close(this.fidoDev);
 LibFido2.INSTANCE.fido_dev_free(new PointerByReference(this.fidoDev.getPointer()));
 LibFido2.INSTANCE.fido_assert_free(new PointerByReference(this.fidoAssert.getPointer()));
 }
}

Compile the class with a Java 8 compiler (or above).

$ javac -classpath *:. FidoAssertion.java

Implement the Authentication Callback

MySQL Connector/J uses a pluggable callback class that exchanges data between the authentication
process and the interaction with the authentication device. This class must be an instance of the interface
com.mysql.cj.callback.MysqlCallbackHandler, which defines one single method: void
handle(MysqlCallback cb);. The MysqlCallback argument this method takes is an instance of
com.mysql.cj.callback.WebAuthnAuthenticationCallback and it contains all the data required
by the FIDO assertion code implemented earlier. Likewise, it also takes the output from the FIDO device
(authenticator data and signatures) to the running authentication process.

Here is one possible implementation of the WebAuthnAuthenticationCallback.

import com.mysql.cj.callback.MysqlCallback;
import com.mysql.cj.callback.MysqlCallbackHandler;
import com.mysql.cj.callback.WebAuthnAuthenticationCallback;

public class AuthenticationWebAuthnCallbackHandler implements MysqlCallbackHandler {
 @Override
 public void handle(MysqlCallback cb) {
 if (!WebAuthnAuthenticationCallback.class.isAssignableFrom(cb.getClass())) {
 return;
 }

 WebAuthnAuthenticationCallback webAuthnAuthCallback = (WebAuthnAuthenticationCallback) cb;

 FidoAssertion libFido2Assertion = new FidoAssertion();
 webAuthnAuthCallback.setSupportsCredentialManagement(libFido2Assertion.supportsCredentialManagement());

 libFido2Assertion.setClienDataHash(webAuthnAuthCallback.getClientDataHash());
 libFido2Assertion.setRelyingPartyId(webAuthnAuthCallback.getRelyingPartyId());
 libFido2Assertion.setCredentialId(webAuthnAuthCallback.getCredentialId());

 System.out.println("Please perform the gesture action on your FIDO device.");
 libFido2Assertion.computeAssertions();

 for (int i = 0; i < libFido2Assertion.getAssertCount(); i++) {
 webAuthnAuthCallback.addAuthenticatorData(libFido2Assertion.getAuthenticatorData(i));
 webAuthnAuthCallback.addSignature(libFido2Assertion.getSignature(i));
 }

 libFido2Assertion.freeResources();
 }
}

101

Using Source/Replica Replication with ReplicationConnection

Notice how this implementation is responsible for asking the user to perform the gesture action. In a real
use case, this would eventually trigger an event that would, for example, open a pop-up message to the
user.

Compile this code:

$ javac -classpath *:. AuthenticationWebAuthnCallbackHandler.java

The name of this class must be supplied to Connector/J through the connection property
authenticationWebAuthnCallbackHandler.

Implement the Application

Implement the client application. The following implementation is just a proof of concept that creates a
MySQL connection to the MySQL server with the user created earlier and checks if the connection was
established successfully. Notice that FIDO authentication requires some sort of human interactions, so
this is not a solution to apply for a typical three-tier architecture, where there is usually a single database
user configured in the application server and connections to the database are established from a remote
machine.

Here is a simple client application code:

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.util.Properties;

import com.mysql.cj.conf.PropertyKey;

public class AuthenticationWebAuthnApp {
 private static final String HOST = "localhost";
 private static final String PORT = "3306";
 private static final String USER = "johndoe";
 private static final String PASS = "s3cr3t";

 public static void main(String[] args) throws Exception {
 Properties props = new Properties();
 props.setProperty(PropertyKey.authenticationWebAuthnCallbackHandler.getKeyName(), AuthenticationWebAuthnCallbackHandler.class.getName());

 String url = "jdbc:mysql://" + USER + ":" + PASS + "@" + HOST + ":" + PORT + "/";

 try (Connection conn = DriverManager.getConnection(url, props)) {
 ResultSet rs = conn.createStatement().executeQuery("SELECT CURRENT_USER()");
 rs.next();
 System.out.println(rs.getString(1) + " AUTHENTICATED SUCCESSFULLY!");
 }
 }
}

Compile the code:

$ javac -classpath *:. AuthenticationWebAuthnApp.java

Run the code:

$ /usr/lib/jvm/jdk-17/bin/java -classpath *:. AuthenticationWebAuthnApp
Please perform the gesture action on your FIDO device.
johndoe@% AUTHENTICATED SUCCESSFULLY!

6.13 Using Source/Replica Replication with ReplicationConnection
See Section 9.4, “Configuring Source/Replica Replication with Connector/J” for details on the topic.

102

Support for DNS SRV Records

6.14 Support for DNS SRV Records

Connector/J supports the use of DNS SRV records for connections. For information about DNS SRV
support in MySQL, see Connecting to the Server Using DNS SRV Records.

When multiple MySQL instances provide the same service for your applications, DNS SRV records can
be used to provide failover, load balancing, and replication services. They eliminate the need for clients
to identify each possible host in the connection string, or for connections to be handled by an additional
software component. Here is a summary for Connector/J's support for DNS SRV records:

• These new schemas in the connection URLs enable DNS SRV record support:

• jdbc:mysql+srv: For ordinary and basic failover JDBC connections that make use of DNS SRV
records.

• jdbc:mysql+srv:loadbalance: For load-balancing JDBC connections that make use of DNS
SRV records.

• jdbc:mysql+srv:replication: For replication JDBC connections that make use of DNS SRV
records.

• mysqlx+srv: For X DevAPI connections that make use of DNS SRV records.

• Besides using the new schemas in the connection URLs, DNS SRV record support can be enabled or
disabled using the two new connection properties, dnsSrv and xdevapi.dns-srv, for JDBC and X
DevAPI connections respectively. For example, this connection URL enables DNS SRV record support:

mysqlx://johndoe:secret@_mysql._tcp.mycompany.local/db?xdevapi.dns-srv=true

However, using the DNS SRV schema with the DNS SRV connection properties set to false results in
an error; for example:

mysqlx+srv://johndoe:secret@_mysql._tcp.mycompany.local/db?xdevapi.dns-srv=false
The connection URL causes Connector/J to throw an error

Here are some requirements and restrictions on the DNS SRV record support by Connector/J:

• Connector/J throws an exception if multiple hosts are specified in the connection URL for a DNS SRV
connection (except for a replication set up, created using jdbc:mysql+srv:replication, which
requires exactly one source and one replica server to be specified).

• Connector/J throws an exception if a port number is specified in the connection URL for a DNS SRV
connection.

• DNS SRV records are supported only for TCP/IP connections. Connector/J throws an exception if you
attempt to enable DNS SRV record support Windows named pipe connections.

DNS SRV Record Support for Load Balancing and Failover. For load-balancing and failover
connections, Connector/J uses the priority field of the DNS SRV records to decide on the priorities for
connection attempts for hosts.

DNS SRV Record Support for Connection Pooling. In an X DevAPI connection pooling setup,
Connector/J re-queries the DNS SRV records regularly and phases out gracefully any connections whose
hosts no longer appear in the records, and readmits the connections into the pool when their hosts
reappear in the records.

103

https://dev.mysql.com/doc/refman/8.4/en/connecting-using-dns-srv.html

Client Session State Tracker

Looking up DNS SRV Records. It is the users' responsibility to provide a full service host name;
Connector/J does not append any prefix nor validate the host name structure. The following are examples
of valid service host name patterns:

• foo.domain.local

• _mysql._tcp.foo.domain.local

• _mysqlx._tcp.foo.domain.local

• _readonly._tcp.foo.domain.local

• _readwrite._tcp.foo.domain.local

See Connections Using DNS SRV Records in the X DevAPI User Guide for details.

6.15 Client Session State Tracker
Connector/J can receive information on client session state changes tracked by the server if the tracking
has been enabled on the server. The reception of the information is enabled by setting the Connector/J
connection property trackSessionState to true (default value is false for the property).

When the function is enabled, information on session state changes received from the server are stored
inside the SessionStateChanges object, accessible through a ServerSessionStateController
and its getSessionStateChanges() method:

ServerSessionStateChanges ssc =
 MysqlConnection.getServerSessionStateController().getSessionStateChanges();

In SessionStateChanges is a list of SessoinStateChange objects, accessible by the
getSessionStateChangesList() method:

List<SessionStateChange> sscList = ssc.getSessionStateChangesList();

Each SessionStateChange has the fields type and values, accessible by the getType() and
getValues() methods. The types and their corresponding values are described below:

Table 6.23 SessionStateChange Type and Values

Type Number of Values in the value
List

Values

SESSION_TRACK_SYSTEM_VARIABLES2 The name of the changed system
variable and its new value

SESSION_TRACK_SCHEMA 1 The new schema name

SESSION_TRACK_STATE_CHANGE 1 "1" or "0"

SESSION_TRACK_GTIDS 1 List of GTIDs as reported by
server

SESSION_TRACK_TRANSACTION_CHARACTERISTICS1 Transaction characteristics
statement

SESSION_TRACK_TRANSACTION_STATE1 Transaction state record

Connector/J receives changes only from the most recent OK packet sent by the server. With
getSessionStateChanges(), some changes returned by the intermediate queries issued
by Connector/J could be missed. However, the session state change information can also
be received using a SessionStateChangesListener, which has to be registered with a
ServerSessionStateController using the addSessionStateChangesListener() method.

104

https://dev.mysql.com/doc/x-devapi-userguide/en/
https://dev.mysql.com/doc/refman/8.4/en/session-state-tracking.html

Mapping MySQL Error Numbers to JDBC SQLState Codes

The following example implements SessionStateChangesListener in a class, which also provides a
method to print the change information:

class SSCListener implements SessionStateChangesListener {
 ServerSessionStateChanges changes = null;

 public void handleSessionStateChanges(ServerSessionStateChanges ch) {
 this.changes = ch;
 for (SessionStateChange change : ch.getSessionStateChangesList()) {
 printChange(change);
 }
 }

 private void printChange(SessionStateChange change) {
 System.out.print(change.getType() + " == > ");
 int pos = 0;
 if (change.getType() == ServerSessionStateController.SESSION_TRACK_SYSTEM_VARIABLES) {
 // There are two values with this change type, the system variable name and its new value
 System.out.print(change.getValues().get(pos++) + "=");
 }
 System.out.println(change.getValues().get(pos));
 }
 }
SessionStateChangesListener listener = new SSCListener();
MysqlConnection.getServerSessionStateController().addSessionStateChangesListener(listener);

With a registered SessionStateChangesListener, users have access to all intermediate results,
though the listener might slow down the delivery of query results. That is because the listener is invoked
immediately after the OK packet is consumed by Connector/J, before the ResultSet is constructed.

6.16 Mapping MySQL Error Numbers to JDBC SQLState Codes
The table below provides a mapping of the MySQL error numbers to JDBC SQLState values.

Table 6.24 Mapping of MySQL Error Numbers to SQLStates

MySQL
Error
Number

MySQL Error Name SQL
Standard
SQLState

1022 ER_DUP_KEY 23000

1037 ER_OUTOFMEMORY HY001

1038 ER_OUT_OF_SORTMEMORY HY001

1040 ER_CON_COUNT_ERROR 08004

1042 ER_BAD_HOST_ERROR 08S01

1043 ER_HANDSHAKE_ERROR 08S01

1044 ER_DBACCESS_DENIED_ERROR 42000

1045 ER_ACCESS_DENIED_ERROR 28000

1046 ER_NO_DB_ERROR 3D000

1047 ER_UNKNOWN_COM_ERROR 08S01

1048 ER_BAD_NULL_ERROR 23000

1049 ER_BAD_DB_ERROR 42000

1050 ER_TABLE_EXISTS_ERROR 42S01

1051 ER_BAD_TABLE_ERROR 42S02

1052 ER_NON_UNIQ_ERROR 23000

105

Mapping MySQL Error Numbers to JDBC SQLState Codes

MySQL
Error
Number

MySQL Error Name SQL
Standard
SQLState

1053 ER_SERVER_SHUTDOWN 08S01

1054 ER_BAD_FIELD_ERROR 42S22

1055 ER_WRONG_FIELD_WITH_GROUP 42000

1056 ER_WRONG_GROUP_FIELD 42000

1057 ER_WRONG_SUM_SELECT 42000

1058 ER_WRONG_VALUE_COUNT 21S01

1059 ER_TOO_LONG_IDENT 42000

1060 ER_DUP_FIELDNAME 42S21

1061 ER_DUP_KEYNAME 42000

1062 ER_DUP_ENTRY 23000

1063 ER_WRONG_FIELD_SPEC 42000

1064 ER_PARSE_ERROR 42000

1065 ER_EMPTY_QUERY 42000

1066 ER_NONUNIQ_TABLE 42000

1067 ER_INVALID_DEFAULT 42000

1068 ER_MULTIPLE_PRI_KEY 42000

1069 ER_TOO_MANY_KEYS 42000

1070 ER_TOO_MANY_KEY_PARTS 42000

1071 ER_TOO_LONG_KEY 42000

1072 ER_KEY_COLUMN_DOES_NOT_EXITS 42000

1073 ER_BLOB_USED_AS_KEY 42000

1074 ER_TOO_BIG_FIELDLENGTH 42000

1075 ER_WRONG_AUTO_KEY 42000

1080 ER_FORCING_CLOSE 08S01

1081 ER_IPSOCK_ERROR 08S01

1082 ER_NO_SUCH_INDEX 42S12

1083 ER_WRONG_FIELD_TERMINATORS 42000

1084 ER_BLOBS_AND_NO_TERMINATED 42000

1090 ER_CANT_REMOVE_ALL_FIELDS 42000

1091 ER_CANT_DROP_FIELD_OR_KEY 42000

1101 ER_BLOB_CANT_HAVE_DEFAULT 42000

1102 ER_WRONG_DB_NAME 42000

1103 ER_WRONG_TABLE_NAME 42000

1104 ER_TOO_BIG_SELECT 42000

1106 ER_UNKNOWN_PROCEDURE 42000

1107 ER_WRONG_PARAMCOUNT_TO_PROCEDURE 42000

106

Mapping MySQL Error Numbers to JDBC SQLState Codes

MySQL
Error
Number

MySQL Error Name SQL
Standard
SQLState

1109 ER_UNKNOWN_TABLE 42S02

1110 ER_FIELD_SPECIFIED_TWICE 42000

1112 ER_UNSUPPORTED_EXTENSION 42000

1113 ER_TABLE_MUST_HAVE_COLUMNS 42000

1115 ER_UNKNOWN_CHARACTER_SET 42000

1118 ER_TOO_BIG_ROWSIZE 42000

1120 ER_WRONG_OUTER_JOIN 42000

1121 ER_NULL_COLUMN_IN_INDEX 42000

1131 ER_PASSWORD_ANONYMOUS_USER 42000

1132 ER_PASSWORD_NOT_ALLOWED 42000

1133 ER_PASSWORD_NO_MATCH 42000

1136 ER_WRONG_VALUE_COUNT_ON_ROW 21S01

1138 ER_INVALID_USE_OF_NULL 22004

1139 ER_REGEXP_ERROR 42000

1140 ER_MIX_OF_GROUP_FUNC_AND_FIELDS 42000

1141 ER_NONEXISTING_GRANT 42000

1142 ER_TABLEACCESS_DENIED_ERROR 42000

1143 ER_COLUMNACCESS_DENIED_ERROR 42000

1144 ER_ILLEGAL_GRANT_FOR_TABLE 42000

1145 ER_GRANT_WRONG_HOST_OR_USER 42000

1146 ER_NO_SUCH_TABLE 42S02

1147 ER_NONEXISTING_TABLE_GRANT 42000

1148 ER_NOT_ALLOWED_COMMAND 42000

1149 ER_SYNTAX_ERROR 42000

1152 ER_ABORTING_CONNECTION 08S01

1153 ER_NET_PACKET_TOO_LARGE 08S01

1154 ER_NET_READ_ERROR_FROM_PIPE 08S01

1155 ER_NET_FCNTL_ERROR 08S01

1156 ER_NET_PACKETS_OUT_OF_ORDER 08S01

1157 ER_NET_UNCOMPRESS_ERROR 08S01

1158 ER_NET_READ_ERROR 08S01

1159 ER_NET_READ_INTERRUPTED 08S01

1160 ER_NET_ERROR_ON_WRITE 08S01

1161 ER_NET_WRITE_INTERRUPTED 08S01

1162 ER_TOO_LONG_STRING 42000

1163 ER_TABLE_CANT_HANDLE_BLOB 42000

107

Mapping MySQL Error Numbers to JDBC SQLState Codes

MySQL
Error
Number

MySQL Error Name SQL
Standard
SQLState

1164 ER_TABLE_CANT_HANDLE_AUTO_INCREMENT 42000

1166 ER_WRONG_COLUMN_NAME 42000

1167 ER_WRONG_KEY_COLUMN 42000

1169 ER_DUP_UNIQUE 23000

1170 ER_BLOB_KEY_WITHOUT_LENGTH 42000

1171 ER_PRIMARY_CANT_HAVE_NULL 42000

1172 ER_TOO_MANY_ROWS 42000

1173 ER_REQUIRES_PRIMARY_KEY 42000

1176 ER_KEY_DOES_NOT_EXITS 42000

1177 ER_CHECK_NO_SUCH_TABLE 42000

1178 ER_CHECK_NOT_IMPLEMENTED 42000

1179 ER_CANT_DO_THIS_DURING_AN_TRANSACTION 25000

1184 ER_NEW_ABORTING_CONNECTION 08S01

1189 ER_SOURCE_NET_READ 08S01

1190 ER_SOURCE_NET_WRITE 08S01

1203 ER_TOO_MANY_USER_CONNECTIONS 42000

1205 ER_LOCK_WAIT_TIMEOUT 40001

1207 ER_READ_ONLY_TRANSACTION 25000

1211 ER_NO_PERMISSION_TO_CREATE_USER 42000

1213 ER_LOCK_DEADLOCK 40001

1216 ER_NO_REFERENCED_ROW 23000

1217 ER_ROW_IS_REFERENCED 23000

1218 ER_CONNECT_TO_SOURCE 08S01

1222 ER_WRONG_NUMBER_OF_COLUMNS_IN_SELECT 21000

1226 ER_USER_LIMIT_REACHED 42000

1227 ER_SPECIFIC_ACCESS_DENIED_ERROR 42000

1230 ER_NO_DEFAULT 42000

1231 ER_WRONG_VALUE_FOR_VAR 42000

1232 ER_WRONG_TYPE_FOR_VAR 42000

1234 ER_CANT_USE_OPTION_HERE 42000

1235 ER_NOT_SUPPORTED_YET 42000

1239 ER_WRONG_FK_DEF 42000

1241 ER_OPERAND_COLUMNS 21000

1242 ER_SUBQUERY_NO_1_ROW 21000

1247 ER_ILLEGAL_REFERENCE 42S22

1248 ER_DERIVED_MUST_HAVE_ALIAS 42000

108

Mapping MySQL Error Numbers to JDBC SQLState Codes

MySQL
Error
Number

MySQL Error Name SQL
Standard
SQLState

1249 ER_SELECT_REDUCED 01000

1250 ER_TABLENAME_NOT_ALLOWED_HERE 42000

1251 ER_NOT_SUPPORTED_AUTH_MODE 08004

1252 ER_SPATIAL_CANT_HAVE_NULL 42000

1253 ER_COLLATION_CHARSET_MISMATCH 42000

1261 ER_WARN_TOO_FEW_RECORDS 01000

1262 ER_WARN_TOO_MANY_RECORDS 01000

1263 ER_WARN_NULL_TO_NOTNULL 22004

1264 ER_WARN_DATA_OUT_OF_RANGE 22003

1265 ER_WARN_DATA_TRUNCATED 01000

1280 ER_WRONG_NAME_FOR_INDEX 42000

1281 ER_WRONG_NAME_FOR_CATALOG 42000

1286 ER_UNKNOWN_STORAGE_ENGINE 42000

1292 ER_TRUNCATED_WRONG_VALUE 22007

1303 ER_SP_NO_RECURSIVE_CREATE 2F003

1304 ER_SP_ALREADY_EXISTS 42000

1305 ER_SP_DOES_NOT_EXIST 42000

1308 ER_SP_LILABEL_MISMATCH 42000

1309 ER_SP_LABEL_REDEFINE 42000

1310 ER_SP_LABEL_MISMATCH 42000

1311 ER_SP_UNINIT_VAR 01000

1312 ER_SP_BADSELECT 0A000

1313 ER_SP_BADRETURN 42000

1314 ER_SP_BADSTATEMENT 0A000

1315 ER_UPDATE_LOG_DEPRECATED_IGNORED 42000

1316 ER_UPDATE_LOG_DEPRECATED_TRANSLATED 42000

1317 ER_QUERY_INTERRUPTED 70100

1318 ER_SP_WRONG_NO_OF_ARGS 42000

1319 ER_SP_COND_MISMATCH 42000

1320 ER_SP_NORETURN 42000

1321 ER_SP_NORETURNEND 2F005

1322 ER_SP_BAD_CURSOR_QUERY 42000

1323 ER_SP_BAD_CURSOR_SELECT 42000

1324 ER_SP_CURSOR_MISMATCH 42000

1325 ER_SP_CURSOR_ALREADY_OPEN 24000

1326 ER_SP_CURSOR_NOT_OPEN 24000

109

Mapping MySQL Error Numbers to JDBC SQLState Codes

MySQL
Error
Number

MySQL Error Name SQL
Standard
SQLState

1327 ER_SP_UNDECLARED_VAR 42000

1329 ER_SP_FETCH_NO_DATA 02000

1330 ER_SP_DUP_PARAM 42000

1331 ER_SP_DUP_VAR 42000

1332 ER_SP_DUP_COND 42000

1333 ER_SP_DUP_CURS 42000

1335 ER_SP_SUBSELECT_NYI 0A000

1336 ER_STMT_NOT_ALLOWED_IN_SF_OR_TRG 0A000

1337 ER_SP_VARCOND_AFTER_CURSHNDLR 42000

1338 ER_SP_CURSOR_AFTER_HANDLER 42000

1339 ER_SP_CASE_NOT_FOUND 20000

1365 ER_DIVISION_BY_ZERO 22012

1367 ER_ILLEGAL_VALUE_FOR_TYPE 22007

1370 ER_PROCACCESS_DENIED_ERROR 42000

1397 ER_XAER_NOTA XAE04

1398 ER_XAER_INVAL XAE05

1399 ER_XAER_RMFAIL XAE07

1400 ER_XAER_OUTSIDE XAE09

1401 ER_XA_RMERR XAE03

1402 ER_XA_RBROLLBACK XA100

1403 ER_NONEXISTING_PROC_GRANT 42000

1406 ER_DATA_TOO_LONG 22001

1407 ER_SP_BAD_SQLSTATE 42000

1410 ER_CANT_CREATE_USER_WITH_GRANT 42000

1413 ER_SP_DUP_HANDLER 42000

1414 ER_SP_NOT_VAR_ARG 42000

1415 ER_SP_NO_RETSET 0A000

1416 ER_CANT_CREATE_GEOMETRY_OBJECT 22003

1425 ER_TOO_BIG_SCALE 42000

1426 ER_TOO_BIG_PRECISION 42000

1427 ER_M_BIGGER_THAN_D 42000

1437 ER_TOO_LONG_BODY 42000

1439 ER_TOO_BIG_DISPLAYWIDTH 42000

1440 ER_XAER_DUPID XAE08

1441 ER_DATETIME_FUNCTION_OVERFLOW 22008

1451 ER_ROW_IS_REFERENCED_2 23000

110

Mapping MySQL Error Numbers to JDBC SQLState Codes

MySQL
Error
Number

MySQL Error Name SQL
Standard
SQLState

1452 ER_NO_REFERENCED_ROW_2 23000

1453 ER_SP_BAD_VAR_SHADOW 42000

1458 ER_SP_WRONG_NAME 42000

1460 ER_SP_NO_AGGREGATE 42000

1461 ER_MAX_PREPARED_STMT_COUNT_REACHED 42000

1463 ER_NON_GROUPING_FIELD_USED 42000

1557 ER_FOREIGN_DUPLICATE_KEY 23000

1568 ER_CANT_CHANGE_TX_ISOLATION 25001

1582 ER_WRONG_PARAMCOUNT_TO_NATIVE_FCT 42000

1583 ER_WRONG_PARAMETERS_TO_NATIVE_FCT 42000

1584 ER_WRONG_PARAMETERS_TO_STORED_FCT 42000

1586 ER_DUP_ENTRY_WITH_KEY_NAME 23000

1613 ER_XA_RBTIMEOUT XA106

1614 ER_XA_RBDEADLOCK XA102

1630 ER_FUNC_INEXISTENT_NAME_COLLISION 42000

1641 ER_DUP_SIGNAL_SET 42000

1642 ER_SIGNAL_WARN 01000

1643 ER_SIGNAL_NOT_FOUND 02000

1645 ER_RESIGNAL_WITHOUT_ACTIVE_HANDLER 0K000

1687 ER_SPATIAL_MUST_HAVE_GEOM_COL 42000

1690 ER_DATA_OUT_OF_RANGE 22003

1698 ER_ACCESS_DENIED_NO_PASSWORD_ERROR 28000

1701 ER_TRUNCATE_ILLEGAL_FK 42000

1758 ER_DA_INVALID_CONDITION_NUMBER 35000

1761 ER_FOREIGN_DUPLICATE_KEY_WITH_CHILD_INFO 23000

1762 ER_FOREIGN_DUPLICATE_KEY_WITHOUT_CHILD_INFO 23000

1792 ER_CANT_EXECUTE_IN_READ_ONLY_TRANSACTION 25006

1845 ER_ALTER_OPERATION_NOT_SUPPORTED 0A000

1846 ER_ALTER_OPERATION_NOT_SUPPORTED_REASON 0A000

1859 ER_DUP_UNKNOWN_IN_INDEX 23000

1873 ER_ACCESS_DENIED_CHANGE_USER_ERROR 28000

1887 ER_GET_STACKED_DA_WITHOUT_ACTIVE_HANDLER 0Z002

1903 ER_INVALID_ARGUMENT_FOR_LOGARITHM 2201E

111

112

Chapter 7 JDBC Concepts

Table of Contents
7.1 Connecting to MySQL Using the JDBC DriverManager Interface ... 113
7.2 Using JDBC Statement Objects to Execute SQL ... 114
7.3 Using JDBC CallableStatements to Execute Stored Procedures ... 116
7.4 Retrieving AUTO_INCREMENT Column Values through JDBC .. 118

This section provides some general JDBC background.

7.1 Connecting to MySQL Using the JDBC DriverManager Interface

When you are using JDBC outside of an application server, the DriverManager class manages the
establishment of connections.

Specify to the DriverManager which JDBC drivers to try to make Connections with. The easiest way to
do this is to use Class.forName() on the class that implements the java.sql.Driver interface. With
MySQL Connector/J, the name of this class is com.mysql.cj.jdbc.Driver. With this method, you
could use an external configuration file to supply the driver class name and driver parameters to use when
connecting to a database.

The following section of Java code shows how you might register MySQL Connector/J from the main()
method of your application. If testing this code, first read the installation section at Chapter 4, Connector/J
Installation, to make sure you have connector installed correctly and the CLASSPATH set up. Also, ensure
that MySQL is configured to accept external TCP/IP connections.

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;

// Notice, do not import com.mysql.cj.jdbc.*
// or you will have problems!

public class LoadDriver {
 public static void main(String[] args) {
 try {
 // The newInstance() call is a work around for some
 // broken Java implementations

 Class.forName("com.mysql.cj.jdbc.Driver").newInstance();
 } catch (Exception ex) {
 // handle the error
 }
 }
}

After the driver has been registered with the DriverManager, you can obtain a Connection instance
that is connected to a particular database by calling DriverManager.getConnection():

Example 7.1 Connector/J: Obtaining a connection from the DriverManager

If you have not already done so, please review the portion of Section 7.1, “Connecting to MySQL Using the
JDBC DriverManager Interface” above before working with the example below.

113

Using JDBC Statement Objects to Execute SQL

This example shows how you can obtain a Connection instance from the DriverManager. There are
a few different signatures for the getConnection() method. Consult the API documentation that comes
with your JDK for more specific information on how to use them.

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;

Connection conn = null;
...
try {
 conn =
 DriverManager.getConnection("jdbc:mysql://localhost/test?" +
 "user=minty&password=greatsqldb");

 // Do something with the Connection

 ...
} catch (SQLException ex) {
 // handle any errors
 System.out.println("SQLException: " + ex.getMessage());
 System.out.println("SQLState: " + ex.getSQLState());
 System.out.println("VendorError: " + ex.getErrorCode());
}

Once a Connection is established, it can be used to create Statement and PreparedStatement
objects, as well as retrieve metadata about the database. This is explained in the following sections.

When the user for the connection is unspecified, Connector/J's implementations of the authentication
plugins use by default the name of the OS user who runs the application for authentication with the MySQL
server (except when the Kerberos authentication plugin is being used; see Section 6.12.2, “Connecting
Using Kerberos” for details).

Note

A user name is considered unspecified only when the following conditions are all
met:

1. The method DriverManager.getConnection(String url, String
user, String password) is not used.

2. The connection property user is not used in, for example, the connection
URL,or elsewhere.

3. The user is not mentioned in the authority of the connection URL, as
in jdbc:mysql://localhost:3306/test, or jdbc:mysql://
@localhost:3306/test.

Notice if (1) or (2) is not true and an empty string is passed, the user name is an
empty string then, and is not considered unspecified.

7.2 Using JDBC Statement Objects to Execute SQL

Statement objects allow you to execute basic SQL queries and retrieve the results through the
ResultSet class, which is described later.

To create a Statement instance, you call the createStatement() method on the
Connection object you have retrieved using one of the DriverManager.getConnection() or
DataSource.getConnection() methods described earlier.

114

Using JDBC Statement Objects to Execute SQL

Once you have a Statement instance, you can execute a SELECT query by calling the
executeQuery(String) method with the SQL you want to use.

To update data in the database, use the executeUpdate(String SQL) method. This method returns
the number of rows matched by the update statement, not the number of rows that were modified.

If you do not know ahead of time whether the SQL statement will be a SELECT or an UPDATE/INSERT,
then you can use the execute(String SQL) method. This method will return true if the SQL query
was a SELECT, or false if it was an UPDATE, INSERT, or DELETE statement. If the statement was a
SELECT query, you can retrieve the results by calling the getResultSet() method. If the statement
was an UPDATE, INSERT, or DELETE statement, you can retrieve the affected rows count by calling
getUpdateCount() on the Statement instance.

Example 7.2 Connector/J: Using java.sql.Statement to execute a SELECT query

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.sql.Statement;
import java.sql.ResultSet;

// assume that conn is an already created JDBC connection (see previous examples)

Statement stmt = null;
ResultSet rs = null;

try {
 stmt = conn.createStatement();
 rs = stmt.executeQuery("SELECT foo FROM bar");

 // or alternatively, if you don't know ahead of time that
 // the query will be a SELECT...

 if (stmt.execute("SELECT foo FROM bar")) {
 rs = stmt.getResultSet();
 }

 // Now do something with the ResultSet
}
catch (SQLException ex){
 // handle any errors
 System.out.println("SQLException: " + ex.getMessage());
 System.out.println("SQLState: " + ex.getSQLState());
 System.out.println("VendorError: " + ex.getErrorCode());
}
finally {
 // it is a good idea to release
 // resources in a finally{} block
 // in reverse-order of their creation
 // if they are no-longer needed

 if (rs != null) {
 try {
 rs.close();
 } catch (SQLException sqlEx) { } // ignore

 rs = null;
 }

 if (stmt != null) {
 try {
 stmt.close();
 } catch (SQLException sqlEx) { } // ignore

 stmt = null;

115

https://dev.mysql.com/doc/refman/8.4/en/select.html
https://dev.mysql.com/doc/refman/8.4/en/select.html
https://dev.mysql.com/doc/refman/8.4/en/update.html
https://dev.mysql.com/doc/refman/8.4/en/insert.html
https://dev.mysql.com/doc/refman/8.4/en/select.html
https://dev.mysql.com/doc/refman/8.4/en/update.html
https://dev.mysql.com/doc/refman/8.4/en/insert.html
https://dev.mysql.com/doc/refman/8.4/en/delete.html
https://dev.mysql.com/doc/refman/8.4/en/select.html
https://dev.mysql.com/doc/refman/8.4/en/update.html
https://dev.mysql.com/doc/refman/8.4/en/insert.html
https://dev.mysql.com/doc/refman/8.4/en/delete.html

Using JDBC CallableStatements to Execute Stored Procedures

 }
}

7.3 Using JDBC CallableStatements to Execute Stored
Procedures

Connector/J fully implements the java.sql.CallableStatement interface.

For more information on MySQL stored procedures, please refer to Using Stored Routines.

Connector/J exposes stored procedure functionality through JDBC's CallableStatement interface.

The following example shows a stored procedure that returns the value of inOutParam incremented by 1,
and the string passed in using inputParam as a ResultSet:

Example 7.3 Connector/J: Calling Stored Procedures

CREATE PROCEDURE demoSp(IN inputParam VARCHAR(255), \
 INOUT inOutParam INT)
BEGIN
 DECLARE z INT;
 SET z = inOutParam + 1;
 SET inOutParam = z;

 SELECT inputParam;

 SELECT CONCAT('zyxw', inputParam);
END

To use the demoSp procedure with Connector/J, follow these steps:

1. Prepare the callable statement by using Connection.prepareCall().

Notice that you have to use JDBC escape syntax, and that the parentheses surrounding the parameter
placeholders are not optional:

Example 7.4 Connector/J: Using Connection.prepareCall()

import java.sql.CallableStatement;

...

 //
 // Prepare a call to the stored procedure 'demoSp'
 // with two parameters
 //
 // Notice the use of JDBC-escape syntax ({call ...})
 //

 CallableStatement cStmt = conn.prepareCall("{call demoSp(?, ?)}");

 cStmt.setString(1, "abcdefg");

Note

Connection.prepareCall() is an expensive method, due to the metadata
retrieval that the driver performs to support output parameters. For performance
reasons, minimize unnecessary calls to Connection.prepareCall() by
reusing CallableStatement instances in your code.

116

https://dev.mysql.com/doc/refman/8.4/en/stored-routines.html

Using JDBC CallableStatements to Execute Stored Procedures

2. Register the output parameters (if any exist)

To retrieve the values of output parameters (parameters specified as OUT or INOUT when you created
the stored procedure), JDBC requires that they be specified before statement execution using the
various registerOutputParameter() methods in the CallableStatement interface:

Example 7.5 Connector/J: Registering output parameters

import java.sql.Types;
...
//
// Connector/J supports both named and indexed
// output parameters. You can register output
// parameters using either method, as well
// as retrieve output parameters using either
// method, regardless of what method was
// used to register them.
//
// The following examples show how to use
// the various methods of registering
// output parameters (you should of course
// use only one registration per parameter).
//

//
// Registers the second parameter as output, and
// uses the type 'INTEGER' for values returned from
// getObject()
//

cStmt.registerOutParameter(2, Types.INTEGER);

//
// Registers the named parameter 'inOutParam', and
// uses the type 'INTEGER' for values returned from
// getObject()
//

cStmt.registerOutParameter("inOutParam", Types.INTEGER);
...

3. Set the input parameters (if any exist)

Input and in/out parameters are set as for PreparedStatement objects. However,
CallableStatement also supports setting parameters by name:

Example 7.6 Connector/J: Setting CallableStatement input parameters

...

 //
 // Set a parameter by index
 //

 cStmt.setString(1, "abcdefg");

 //
 // Alternatively, set a parameter using
 // the parameter name
 //

 cStmt.setString("inputParam", "abcdefg");

 //
 // Set the 'in/out' parameter using an index

117

Retrieving AUTO_INCREMENT Column Values through JDBC

 //

 cStmt.setInt(2, 1);

 //
 // Alternatively, set the 'in/out' parameter
 // by name
 //

 cStmt.setInt("inOutParam", 1);

...

4. Execute the CallableStatement, and retrieve any result sets or output parameters.

Although CallableStatement supports calling any of the Statement execute methods
(executeUpdate(), executeQuery() or execute()), the most flexible method to call is
execute(), as you do not need to know ahead of time if the stored procedure returns result sets:

Example 7.7 Connector/J: Retrieving results and output parameter values

...

 boolean hadResults = cStmt.execute();

 //
 // Process all returned result sets
 //

 while (hadResults) {
 ResultSet rs = cStmt.getResultSet();

 // process result set
 ...

 hadResults = cStmt.getMoreResults();
 }

 //
 // Retrieve output parameters
 //
 // Connector/J supports both index-based and
 // name-based retrieval
 //

 int outputValue = cStmt.getInt(2); // index-based

 outputValue = cStmt.getInt("inOutParam"); // name-based

...

7.4 Retrieving AUTO_INCREMENT Column Values through JDBC
getGeneratedKeys() is the preferred method to use if you need to retrieve AUTO_INCREMENT keys
and through JDBC; this is illustrated in the first example below. The second example shows how you
can retrieve the same value using a standard SELECT LAST_INSERT_ID() query. The final example
shows how updatable result sets can retrieve the AUTO_INCREMENT value when using the insertRow()
method.

Example 7.8 Connector/J: Retrieving AUTO_INCREMENT column values using
Statement.getGeneratedKeys()

Statement stmt = null;
ResultSet rs = null;

118

Retrieving AUTO_INCREMENT Column Values through JDBC

try {

 //
 // Create a Statement instance that we can use for
 // 'normal' result sets assuming you have a
 // Connection 'conn' to a MySQL database already
 // available

 stmt = conn.createStatement();

 //
 // Issue the DDL queries for the table for this example
 //

 stmt.executeUpdate("DROP TABLE IF EXISTS autoIncTutorial");
 stmt.executeUpdate(
 "CREATE TABLE autoIncTutorial ("
 + "priKey INT NOT NULL AUTO_INCREMENT, "
 + "dataField VARCHAR(64), PRIMARY KEY (priKey))");

 //
 // Insert one row that will generate an AUTO INCREMENT
 // key in the 'priKey' field
 //

 stmt.executeUpdate(
 "INSERT INTO autoIncTutorial (dataField) "
 + "values ('Can I Get the Auto Increment Field?')",
 Statement.RETURN_GENERATED_KEYS);

 //
 // Example of using Statement.getGeneratedKeys()
 // to retrieve the value of an auto-increment
 // value
 //

 int autoIncKeyFromApi = -1;

 rs = stmt.getGeneratedKeys();

 if (rs.next()) {
 autoIncKeyFromApi = rs.getInt(1);
 } else {

 // throw an exception from here
 }

 System.out.println("Key returned from getGeneratedKeys():"
 + autoIncKeyFromApi);
} finally {

 if (rs != null) {
 try {
 rs.close();
 } catch (SQLException ex) {
 // ignore
 }
 }

 if (stmt != null) {
 try {
 stmt.close();
 } catch (SQLException ex) {
 // ignore
 }
 }

119

Retrieving AUTO_INCREMENT Column Values through JDBC

}

Example 7.9 Connector/J: Retrieving AUTO_INCREMENT column values using SELECT
LAST_INSERT_ID()

Statement stmt = null;
ResultSet rs = null;

try {

 //
 // Create a Statement instance that we can use for
 // 'normal' result sets.

 stmt = conn.createStatement();

 //
 // Issue the DDL queries for the table for this example
 //

 stmt.executeUpdate("DROP TABLE IF EXISTS autoIncTutorial");
 stmt.executeUpdate(
 "CREATE TABLE autoIncTutorial ("
 + "priKey INT NOT NULL AUTO_INCREMENT, "
 + "dataField VARCHAR(64), PRIMARY KEY (priKey))");

 //
 // Insert one row that will generate an AUTO INCREMENT
 // key in the 'priKey' field
 //

 stmt.executeUpdate(
 "INSERT INTO autoIncTutorial (dataField) "
 + "values ('Can I Get the Auto Increment Field?')");

 //
 // Use the MySQL LAST_INSERT_ID()
 // function to do the same thing as getGeneratedKeys()
 //

 int autoIncKeyFromFunc = -1;
 rs = stmt.executeQuery("SELECT LAST_INSERT_ID()");

 if (rs.next()) {
 autoIncKeyFromFunc = rs.getInt(1);
 } else {
 // throw an exception from here
 }

 System.out.println("Key returned from " +
 "'SELECT LAST_INSERT_ID()': " +
 autoIncKeyFromFunc);

} finally {

 if (rs != null) {
 try {
 rs.close();
 } catch (SQLException ex) {
 // ignore
 }
 }

 if (stmt != null) {
 try {
 stmt.close();
 } catch (SQLException ex) {

120

Retrieving AUTO_INCREMENT Column Values through JDBC

 // ignore
 }
 }
}

Example 7.10 Connector/J: Retrieving AUTO_INCREMENT column values in Updatable ResultSets

Statement stmt = null;
ResultSet rs = null;

try {

 //
 // Create a Statement instance that we can use for
 // 'normal' result sets as well as an 'updatable'
 // one, assuming you have a Connection 'conn' to
 // a MySQL database already available
 //

 stmt = conn.createStatement(java.sql.ResultSet.TYPE_FORWARD_ONLY,
 java.sql.ResultSet.CONCUR_UPDATABLE);

 //
 // Issue the DDL queries for the table for this example
 //

 stmt.executeUpdate("DROP TABLE IF EXISTS autoIncTutorial");
 stmt.executeUpdate(
 "CREATE TABLE autoIncTutorial ("
 + "priKey INT NOT NULL AUTO_INCREMENT, "
 + "dataField VARCHAR(64), PRIMARY KEY (priKey))");

 //
 // Example of retrieving an AUTO INCREMENT key
 // from an updatable result set
 //

 rs = stmt.executeQuery("SELECT priKey, dataField "
 + "FROM autoIncTutorial");

 rs.moveToInsertRow();

 rs.updateString("dataField", "AUTO INCREMENT here?");
 rs.insertRow();

 //
 // the driver adds rows at the end
 //

 rs.last();

 //
 // We should now be on the row we just inserted
 //

 int autoIncKeyFromRS = rs.getInt("priKey");

 System.out.println("Key returned for inserted row: "
 + autoIncKeyFromRS);

} finally {

 if (rs != null) {
 try {
 rs.close();
 } catch (SQLException ex) {
 // ignore

121

Retrieving AUTO_INCREMENT Column Values through JDBC

 }
 }

 if (stmt != null) {
 try {
 stmt.close();
 } catch (SQLException ex) {
 // ignore
 }
 }
}

Running the preceding example code should produce the following output:

Key returned from getGeneratedKeys(): 1
Key returned from SELECT LAST_INSERT_ID(): 1
Key returned for inserted row: 1

At times, it can be tricky to use the SELECT LAST_INSERT_ID() query, as that function's value is scoped
to a connection. So, if some other query happens on the same connection, the value is overwritten. On the
other hand, the getGeneratedKeys() method is scoped by the Statement instance, so it can be used
even if other queries happen on the same connection, but not on the same Statement instance.

122

Chapter 8 Connection Pooling with Connector/J
Connection pooling is a technique of creating and managing a pool of connections that are ready for use
by any thread that needs them. Connection pooling can greatly increase the performance of your Java
application, while reducing overall resource usage.

How Connection Pooling Works

Most applications only need a thread to have access to a JDBC connection when they are actively
processing a transaction, which often takes only milliseconds to complete. When not processing a
transaction, the connection sits idle. Connection pooling enables the idle connection to be used by some
other thread to do useful work.

In practice, when a thread needs to do work against a MySQL or other database with JDBC, it requests a
connection from the pool. When the thread is finished using the connection, it returns it to the pool, so that
it can be used by any other threads.

When the connection is loaned out from the pool, it is used exclusively by the thread that
requested it. From a programming point of view, it is the same as if your thread called
DriverManager.getConnection() every time it needed a JDBC connection. With connection pooling,
your thread may end up using either a new connection or an already-existing connection.

Benefits of Connection Pooling

The main benefits to connection pooling are:

• Reduced connection creation time.

Although this is not usually an issue with the quick connection setup that MySQL offers compared to
other databases, creating new JDBC connections still incurs networking and JDBC driver overhead that
will be avoided if connections are recycled.

• Simplified programming model.

When using connection pooling, each individual thread can act as though it has created its own JDBC
connection, allowing you to use straightforward JDBC programming techniques.

• Controlled resource usage.

If you create a new connection every time a thread needs one rather than using connection pooling,
your application's resource usage can be wasteful, and it could lead to unpredictable behaviors for your
application when it is under a heavy load.

Using Connection Pooling with Connector/J

The concept of connection pooling in JDBC has been standardized through the JDBC 2.0 Optional
interfaces, and all major application servers have implementations of these APIs that work with MySQL
Connector/J.

Generally, you configure a connection pool in your application server configuration files, and access it
through the Java Naming and Directory Interface (JNDI). The following code shows how you might use a
connection pool from an application deployed in a J2EE application server:

Example 8.1 Connector/J: Using a connection pool with a J2EE application server

import java.sql.Connection;
import java.sql.SQLException;
import java.sql.Statement;

123

https://dev.mysql.com/doc/refman/8.4/en/glossary.html#glos_thread
https://dev.mysql.com/doc/refman/8.4/en/glossary.html#glos_transaction

Using Connection Pooling with Connector/J

import javax.naming.InitialContext;
import javax.sql.DataSource;

public class MyServletJspOrEjb {

 public void doSomething() throws Exception {
 /*
 * Create a JNDI Initial context to be able to
 * lookup the DataSource
 *
 * In production-level code, this should be cached as
 * an instance or static variable, as it can
 * be quite expensive to create a JNDI context.
 *
 * Note: This code only works when you are using servlets
 * or EJBs in a J2EE application server. If you are
 * using connection pooling in standalone Java code, you
 * will have to create/configure datasources using whatever
 * mechanisms your particular connection pooling library
 * provides.
 */

 InitialContext ctx = new InitialContext();

 /*
 * Lookup the DataSource, which will be backed by a pool
 * that the application server provides. DataSource instances
 * are also a good candidate for caching as an instance
 * variable, as JNDI lookups can be expensive as well.
 */

 DataSource ds =
 (DataSource)ctx.lookup("java:comp/env/jdbc/MySQLDB");

 /*
 * The following code is what would actually be in your
 * Servlet, JSP or EJB 'service' method...where you need
 * to work with a JDBC connection.
 */

 Connection conn = null;
 Statement stmt = null;

 try {
 conn = ds.getConnection();

 /*
 * Now, use normal JDBC programming to work with
 * MySQL, making sure to close each resource when you're
 * finished with it, which permits the connection pool
 * resources to be recovered as quickly as possible
 */

 stmt = conn.createStatement();
 stmt.execute("SOME SQL QUERY");

 stmt.close();
 stmt = null;

 conn.close();
 conn = null;
 } finally {
 /*
 * close any jdbc instances here that weren't
 * explicitly closed during normal code path, so

124

Sizing the Connection Pool

 * that we don't 'leak' resources...
 */

 if (stmt != null) {
 try {
 stmt.close();
 } catch (sqlexception sqlex) {
 // ignore, as we can't do anything about it here
 }

 stmt = null;
 }

 if (conn != null) {
 try {
 conn.close();
 } catch (sqlexception sqlex) {
 // ignore, as we can't do anything about it here
 }

 conn = null;
 }
 }
 }
}

As shown in the example above, after obtaining the JNDI InitialContext, and looking up the
DataSource, the rest of the code follows familiar JDBC conventions.

When using connection pooling, always make sure that connections, and anything created by them
(such as statements or result sets) are closed. This rule applies no matter what happens in your code
(exceptions, flow-of-control, and so forth). When these objects are closed, they can be re-used; otherwise,
they will be stranded, which means that the MySQL server resources they represent (such as buffers,
locks, or sockets) are tied up for some time, or in the worst case can be tied up forever.

Sizing the Connection Pool

Each connection to MySQL has overhead (memory, CPU, context switches, and so forth) on both the client
and server side. Every connection limits how many resources there are available to your application as
well as the MySQL server. Many of these resources will be used whether or not the connection is actually
doing any useful work! Connection pools can be tuned to maximize performance, while keeping resource
utilization below the point where your application will start to fail rather than just run slower.

The optimal size for the connection pool depends on anticipated load and average database transaction
time. In practice, the optimal connection pool size can be smaller than you might expect. If you take
Oracle's Java Petstore blueprint application for example, a connection pool of 15-20 connections can serve
a relatively moderate load (600 concurrent users) using MySQL and Tomcat with acceptable response
times.

To correctly size a connection pool for your application, create load test scripts with tools such as Apache
JMeter or The Grinder, and load test your application.

An easy way to determine a starting point is to configure your connection pool's maximum number of
connections to be unbounded, run a load test, and measure the largest amount of concurrently used
connections. You can then work backward from there to determine what values of minimum and maximum
pooled connections give the best performance for your particular application.

Validating Connections

MySQL Connector/J can validate the connection by executing a lightweight ping against a server. In the
case of load-balanced connections, this is performed against all active pooled internal connections that are

125

Validating Connections

retained. This is beneficial to Java applications using connection pools, as the pool can use this feature to
validate connections. Depending on your connection pool and configuration, this validation can be carried
out at different times:

1. Before the pool returns a connection to the application.

2. When the application returns a connection to the pool.

3. During periodic checks of idle connections.

To use this feature, specify a validation query in your connection pool that starts with /* ping
*/. Note that the syntax must be exactly as specified. This will cause the driver send a ping to the
server and return a dummy lightweight result set. When using a ReplicationConnection or
LoadBalancedConnection, the ping will be sent across all active connections.

It is critical that the syntax be specified correctly. The syntax needs to be exact for reasons of efficiency, as
this test is done for every statement that is executed:

protected static final String PING_MARKER = "/* ping */";
...
if (sql.charAt(0) == '/') {
if (sql.startsWith(PING_MARKER)) {
doPingInstead();
...

None of the following snippets will work, because the ping syntax is sensitive to whitespace, capitalization,
and placement:

sql = "/* PING */ SELECT 1";
sql = "SELECT 1 /* ping*/";
sql = "/*ping*/ SELECT 1";
sql = " /* ping */ SELECT 1";
sql = "/*to ping or not to ping*/ SELECT 1";

All of the previous statements will issue a normal SELECT statement and will not be transformed into
the lightweight ping. Further, for load-balanced connections, the statement will be executed against one
connection in the internal pool, rather than validating each underlying physical connection. This results
in the non-active physical connections assuming a stale state, and they may die. If Connector/J then re-
balances, it might select a dead connection, resulting in an exception being passed to the application.
To help prevent this, you can use loadBalanceValidateConnectionOnSwapServer to validate the
connection before use.

If your Connector/J deployment uses a connection pool that allows you to specify a validation query, take
advantage of it, but ensure that the query starts exactly with /* ping */. This is particularly important
if you are using the load-balancing or replication-aware features of Connector/J, as it will help keep alive
connections which otherwise will go stale and die, causing problems later.

126

Chapter 9 Multi-Host Connections

Table of Contents
9.1 Configuring Server Failover for Connections Using JDBC ... 127
9.2 Configuring Server Failover for Connections Using X DevAPI ... 130
9.3 Configuring Load Balancing with Connector/J .. 131
9.4 Configuring Source/Replica Replication with Connector/J .. 133
9.5 Advanced Load-balancing and Failover Configuration ... 137

The following sections discuss a number of topics that involve multi-host connections, namely, server load-
balancing, failover, and replication.

Developers should know the following things about multi-host connections that are managed through
Connector/J:

• Each multi-host connection is a wrapper of the underlying physical connections.

• Each of the underlying physical connections has its own session. Sessions cannot be tracked, shared, or
copied, given the MySQL architecture.

• Every switch between physical connections means a switch between sessions.

• Within a transaction boundary, there are no switches between physical connections. Beyond a
transaction boundary, there is no guarantee that a switch does not occur.

Note

If an application reuses session-scope data (for example, variables, SSPs)
beyond a transaction boundary, failures are possible, as a switch between the
physical connections (which is also a switch between sessions) might occur.
Therefore, the application should re-prepare the session data and also restart the
last transaction in case of an exception, or it should re-prepare session data for
each new transaction if it does not want to deal with exception handling.

9.1 Configuring Server Failover for Connections Using JDBC

MySQL Connector/J supports server failover. A failover happens when connection-related errors occur for
an underlying, active connection. The connection errors are, by default, propagated to the client, which
has to handle them by, for example, recreating the working objects (Statement, ResultSet, etc.) and
restarting the processes. Sometimes, the driver might eventually fall back to the original host automatically
before the client application continues to run, in which case the host switch is transparent and the client
application will not even notice it.

A connection using failover support works just like a standard connection: the client does not experience
any disruptions in the failover process. This means the client can rely on the same connection instance
even if two successive statements might be executed on two different physical hosts. However, this does
not mean the client does not have to deal with the exception that triggered the server switch.

The failover is configured at the initial setup stage of the server connection by the connection URL (see
explanations for its format here):

127

Configuring Connection Access Mode

jdbc:mysql://[primary host][:port],[secondary host 1][:port][,[secondary host 2][:port]]...[/[database]]»
[?propertyName1=propertyValue1[&propertyName2=propertyValue2]...]

The host list in the connection URL comprises of two types of hosts, the primary and the secondary. When
starting a new connection, the driver always tries to connect to the primary host first and, if required, fails
over to the secondary hosts on the list sequentially when communication problems are experienced. Even
if the initial connection to the primary host fails and the driver gets connected to a secondary host, the
primary host never loses its special status: for example, it can be configured with an access mode distinct
from those of the secondary hosts, and it can be put on a higher priority when a host is to be picked during
a failover process.

The failover support is configured by the following connection properties (their functions are explained in
the paragraphs below):

• failOverReadOnly

• secondsBeforeRetrySource

• queriesBeforeRetrySource

• retriesAllDown

• autoReconnect

• autoReconnectForPools

Configuring Connection Access Mode

As with any standard connection, the initial connection to the primary host is in read/write mode. However,
if the driver fails to establish the initial connection to the primary host and it automatically switches to the
next host on the list, the access mode now depends on the value of the property failOverReadOnly,
which is “true” by default. The same happens if the driver is initially connected to the primary host and,
because of some connection failure, it fails over to a secondary host. Every time the connection falls
back to the primary host, its access mode will be read/write, irrespective of whether or not the primary
host has been connected to before. The connection access mode can be changed any time at runtime
by calling the method Connection.setReadOnly(boolean), which partially overrides the property
failOverReadOnly. When failOverReadOnly=false and the access mode is explicitly set to either
true or false, it becomes the mode for every connection after a host switch, no matter what host type
are being connected to; but, if failOverReadOnly=true, changing the access mode to read/write is
only possible if the driver is connecting to the primary host; however, even if the access mode cannot be
changed for the current connection, the driver remembers the client's last intention and, when falling back
to the primary host, that is the mode that will be used. For an illustration, see the following successions of
events with a two-host connection.

• Sequence A, with failOverReadOnly=true:

1. Connects to primary host in read/write mode

2. Sets Connection.setReadOnly(true); primary host now in read-only mode

3. Failover event; connects to secondary host in read-only mode

4. Sets Connection.setReadOnly(false); secondary host remains in read-only mode

5. Falls back to primary host; connection now in read/write mode

• Sequence B, with failOverReadOnly=false

128

Configuring Fallback to Primary Host

1. Connects to primary host in read/write mode

2. Sets Connection.setReadOnly(true); primary host now in read-only mode

3. Failover event; connects to secondary host in read-only mode

4. Set Connection.setReadOnly(false); connection to secondary host switches to read/write
mode

5. Falls back to primary host; connection now in read/write mode

The difference between the two scenarios is in step 4: the access mode for the secondary host in
sequence A does not change at that step, but the driver remembers and uses the set mode when falling
back to the primary host, which would be read-only otherwise; but in sequence B, the access mode for the
secondary host changes immediately.

Configuring Fallback to Primary Host

As already mentioned, the primary host is special in the failover arrangement when it comes to the
host's access mode. Additionally, the driver tries to fall back to the primary host as soon as possible by
default, even if no communication exception occurs. Two properties, secondsBeforeRetrySource and
queriesBeforeRetrySource, determine when the driver is ready to retry a reconnection to the primary
host (the Source in the property names stands for the primary host of our connection URL, which is not
necessarily a source host in a replication setup):

• secondsBeforeRetrySource determines how much time the driver waits before trying to fall back to
the primary host

• queriesBeforeRetrySource determines the number of queries that are executed
before the driver tries to fall back to the primary host. Note that for the driver, each call to a
Statement.execute*() method increments the query execution counter; therefore, when calls are
made to Statement.executeBatch() or if allowMultiQueries or rewriteBatchStatements
are enabled, the driver may not have an accurate count of the actual number of queries executed on the
server. Also, the driver calls the Statement.execute*() methods internally in several occasions. All
these mean you can only use queriesBeforeRetrySource only as a coarse specification for when to
fall back to the primary host.

In general, an attempt to fallback to the primary host is made when at least one of the conditions specified
by the two properties is met, and the attempt always takes place at transaction boundaries. However,
if auto-commit is turned off, the check happens only when the method Connection.commit() or
Connection.rollback() is called. The automatic fallback to the primary host can be turned off by
setting simultaneously secondsBeforeRetrySource and queriesBeforeRetrySource to “0”.
Setting only one of the properties to “0” only disables one part of the check.

Configuring Reconnection Attempts

When establishing a new connection or when a failover event occurs, the driver tries to connect
successively to the next candidate on the host list. When the end of the list has been reached, it restarts
all over again from the beginning of the list; however, the primary host is skipped over, if (a) NOT all
the secondary hosts have already been tested at least once, AND (b) the fallback conditions defined by
secondsBeforeRetrySource and queriesBeforeRetrySource are not yet fulfilled. Each run-
through of the whole host list, (which is not necessarily completed at the end of the host list) counts as a
single connection attempt. The driver tries as many connection attempts as specified by the value of the
property retriesAllDown.

129

Seamless Reconnection

Seamless Reconnection

Although not recommended, you can make the driver perform failovers without invalidating the
active Statement or ResultSet instances by setting either the parameter autoReconnect or
autoReconnectForPools to true. This allows the client to continue using the same object instances
after a failover event, without taking any exceptional measures. This, however, may lead to unexpected
results: for example, if the driver is connected to the primary host with read/write access mode and it fails-
over to a secondary host in read-only mode, further attempts to issue data-changing queries will result
in errors, and the client will not be aware of that. This limitation is particularly relevant when using data
streaming: after the failover, the ResultSet looks to be alright, but the underlying connection may have
changed already, and no backing cursor is available anymore.

Configuring Server Failover Using JDBC with DNS SRV

See Section 6.14, “Support for DNS SRV Records” for details.

9.2 Configuring Server Failover for Connections Using X DevAPI

When using the X Protocol, Connector/J supports a client-side failover feature for establishing a Session.
If multiple hosts are specified in the connection URL, when Connector/J fails to connect to a listed host, it
tries to connect to another one. This is a sample X DevAPI URL for configuring client-side failover:

mysqlx://sandy:mypassword@[host1:33060,host2:33061]/test

With the client-side failover configured, when there is a failure to establish a connection, Connector/J
keeps attempting to connect to a host on the host list. The order in which the hosts are attempted for
connection is as follows:

• For connections with the priority property set for each host in the connection URL, hosts are
attempted according to the set priorities for the hosts, which are specified by any numbers between 0 to
100, with a larger number indicating a higher priority for connection. For example:

mysqlx://sandy:mypassword@[(address=host1:33060,priority=2),(address=host2:33061,priority=1)]/test

In this example, host1 is always attempted before host2 when new sessions are created.

Priorities should either be set for all or no hosts.

• For connections with the priority property NOT set for each host in the connection URL, hosts are
attempted one after another in a random order.

Notice that the server failover feature for X DevAPI only allows for a failover when Connector/J is trying to
establish a connection, but not during operations after a connection has already been made.

Connection Pooling Using X DevAPI. When using connection pooling with X DevAPI,
Connector/J keeps track of any host it failed to connect to and, for a short waiting period after
the failure, avoids connecting to it during the creation or retrieval of a Session. However, if
all other hosts have already been tried, those excluded hosts will be retried without waiting.
Once all hosts have been tried and no connections can be established, Connector/J throws a
com.mysql.cj.exceptions.CJCommunicationsException and returns the message Unable to
connect to any of the target hosts.

Configuring Server Failover Using X DevAPI with DNS SRV

See Section 6.14, “Support for DNS SRV Records” for details.

130

Configuring Load Balancing with Connector/J

9.3 Configuring Load Balancing with Connector/J
Connector/J has long provided an effective means to distribute read/write load across multiple MySQL
server instances for Cluster or source-source replication deployments. You can dynamically configure load-
balanced connections, with no service outage. In-process transactions are not lost, and no application
exceptions are generated if any application is trying to use that particular server instance.

The load balancing is configured at the initial setup stage of the server connection by the following
connection URL, which has a similar format as the general JDBC URL for MySQL connection, but a
specialized scheme:

jdbc:mysql:loadbalance://[host1][:port],[host2][:port][,[host3][:port]]...[/[database]] »
[?propertyName1=propertyValue1[&propertyName2=propertyValue2]...]

There are two configuration properties associated with this functionality:

• loadBalanceConnectionGroup – This provides the ability to group connections from different
sources. This allows you to manage these JDBC sources within a single class loader in any combination
you choose. If they use the same configuration, and you want to manage them as a logical single
group, give them the same name. This is the key property for management: if you do not define a
name (string) for loadBalanceConnectionGroup, you cannot manage the connections. All load-
balanced connections sharing the same loadBalanceConnectionGroup value, regardless of how the
application creates them, will be managed together.

• ha.enableJMX – The ability to manage the connections is exposed when you define a
loadBalanceConnectionGroup; but if you want to manage this externally, enable JMX by
setting this property to true. This enables a JMX implementation, which exposes the management
and monitoring operations of a connection group. Further, start your application with the -
Dcom.sun.management.jmxremote JVM flag. You can then perform connect and perform operations
using a JMX client such as jconsole.

Once a connection has been made using the correct connection properties, a number of monitoring
properties are available:

• Current active host count.

• Current active physical connection count.

• Current active logical connection count.

• Total logical connections created.

• Total transaction count.

The following management operations can also be performed:

• Add host.

• Remove host.

The JMX interface, com.mysql.cj.jdbc.jmx.LoadBalanceConnectionGroupManagerMBean, has
the following methods:

• int getActiveHostCount(String group);

• int getTotalHostCount(String group);

• long getTotalLogicalConnectionCount(String group);

131

Configuring Load Balancing with Connector/J

• long getActiveLogicalConnectionCount(String group);

• long getActivePhysicalConnectionCount(String group);

• long getTotalPhysicalConnectionCount(String group);

• long getTotalTransactionCount(String group);

• void removeHost(String group, String host) throws SQLException;

• void stopNewConnectionsToHost(String group, String host) throws SQLException;

• void addHost(String group, String host, boolean forExisting);

• String getActiveHostsList(String group);

• String getRegisteredConnectionGroups();

The getRegisteredConnectionGroups() method returns the names of all connection groups defined
in that class loader.

You can test this setup with the following code:

public class Test {

 private static String URL = "jdbc:mysql:loadbalance://" +
 "localhost:3306,localhost:3310/test?" +
 "loadBalanceConnectionGroup=first&ha.enableJMX=true";

 public static void main(String[] args) throws Exception {
 new Thread(new Repeater()).start();
 new Thread(new Repeater()).start();
 new Thread(new Repeater()).start();
 }

 static Connection getNewConnection() throws SQLException, ClassNotFoundException {
 Class.forName("com.mysql.cj.jdbc.Driver");
 return DriverManager.getConnection(URL, "root", "");
 }

 static void executeSimpleTransaction(Connection c, int conn, int trans){
 try {
 c.setAutoCommit(false);
 Statement s = c.createStatement();
 s.executeQuery("SELECT SLEEP(1) /* Connection: " + conn + ", transaction: " + trans + " */");
 c.commit();
 } catch (SQLException e) {
 e.printStackTrace();
 }
 }

 public static class Repeater implements Runnable {
 public void run() {
 for(int i=0; i < 100; i++){
 try {
 Connection c = getNewConnection();
 for(int j=0; j < 10; j++){
 executeSimpleTransaction(c, i, j);
 Thread.sleep(Math.round(100 * Math.random()));
 }
 c.close();
 Thread.sleep(100);
 } catch (Exception e) {
 e.printStackTrace();

132

Configuring Load Balancing with DNS SRV

 }
 }
 }
 }
}

After compiling, the application can be started with the -Dcom.sun.management.jmxremote
flag, to enable remote management. jconsole can then be started. The Test main class
will be listed by jconsole. Select this and click Connect. You can then navigate to the
com.mysql.cj.jdbc.jmx.LoadBalanceConnectionGroupManager bean. At this point, you can
click on various operations and examine the returned result.

If you now had an additional instance of MySQL running on port 3309, you could ensure that Connector/J
starts using it by using the addHost(), which is exposed in jconsole. Note that these operations can be
performed dynamically without having to stop the application running.

For further information on the combination of load balancing and failover, see Section 9.5, “Advanced
Load-balancing and Failover Configuration”.

Configuring Load Balancing with DNS SRV

See Section 6.14, “Support for DNS SRV Records” for details.

9.4 Configuring Source/Replica Replication with Connector/J
This section describe a number of features of Connector/J's support for replication-aware deployments.

The replication is configured at the initial setup stage of the server connection by the connection URL,
which has a similar format as the general JDBC URL for MySQL connection, but a specialized scheme:

jdbc:mysql:replication://[source host][:port],[replica host 1][:port][,[replica host 2][:port]]...[/[database]] »
[?propertyName1=propertyValue1[&propertyName2=propertyValue2]...]

Users may specify the property allowSourceDownConnections=true to allow Connection objects
to be created even though no source hosts are reachable. Such Connection objects report they are
read-only, and isSourceConnection() returns false for them. The Connection tests for available
source hosts when Connection.setReadOnly(false) is called, throwing an SQLException if it cannot
establish a connection to a source, or switching to a source connection if the host is available.

Users may specify the property allowReplicasDownConnections=true to allow Connection
objects to be created even though no replica hosts are reachable. A Connection then, at runtime, tests
for available replica hosts when Connection.setReadOnly(true) is called (see explanation for
the method below), throwing an SQLException if it cannot establish a connection to a replica, unless
the property readFromSourceWhenNoReplicas is set to be “true” (see below for a description of the
property).

Scaling out Read Load by Distributing Read Traffic to Replicas

Connector/J supports replication-aware connections. It can automatically send queries to a read/
write source host, or a failover or round-robin loadbalanced set of replicas based on the state of
Connection.getReadOnly().

An application signals that it wants a transaction to be read-only by calling
Connection.setReadOnly(true). The replication-aware connection will use one of
the replica connections, which are load-balanced per replica host using a round-robin
scheme. A given connection is sticky to a replica until a transaction boundary command

133

Scaling out Read Load by Distributing Read Traffic to Replicas

(a commit or rollback) is issued, or until the replica is removed from service. After calling
Connection.setReadOnly(true), if you want to allow connection to a source when no replicas
are available, set the property readFromSourceWhenNoReplicas to “true.” Notice that the source
host will be used in read-only state in those cases, as if it is a replica host. Also notice that setting
readFromSourceWhenNoReplicas=true might result in an extra load for the source host in a
transparent manner.

If you have a write transaction, or if you have a read that is time-sensitive (remember, replication in MySQL
is asynchronous), set the connection to be not read-only, by calling Connection.setReadOnly(false)
and the driver will ensure that further calls are sent to the source MySQL server. The driver takes care of
propagating the current state of autocommit, isolation level, and catalog between all of the connections that
it uses to accomplish this load balancing functionality.

To enable this functionality, use the specialized replication scheme (jdbc:mysql:replication://)
when connecting to the server.

Here is a short example of how a replication-aware connection might be used in a standalone application:

import java.sql.Connection;
import java.sql.ResultSet;
import java.util.Properties;
import java.sql.DriverManager;

public class ReplicationDemo {

 public static void main(String[] args) throws Exception {

 Properties props = new Properties();

 // We want this for failover on the replicas
 props.put("autoReconnect", "true");

 // We want to load balance between the replicas
 props.put("roundRobinLoadBalance", "true");

 props.put("user", "foo");
 props.put("password", "password");

 //
 // Looks like a normal MySQL JDBC url, with a
 // comma-separated list of hosts, the first
 // being the 'source', the rest being any number
 // of replicas that the driver will load balance against
 //

 Connection conn =
 DriverManager.getConnection("jdbc:mysql:replication://source,replica1,replica2,replica3/test",
 props);

 //
 // Perform read/write work on the source
 // by setting the read-only flag to "false"
 //

 conn.setReadOnly(false);
 conn.setAutoCommit(false);
 conn.createStatement().executeUpdate("UPDATE some_table");
 conn.commit();

 //
 // Now, do a query from a replica, the driver automatically picks one
 // from the list
 //

134

Support for Multiple-Source Replication Topographies

 conn.setReadOnly(true);

 ResultSet rs =
 conn.createStatement().executeQuery("SELECT a,b FROM alt_table");

 }
}

Consider using the Load Balancing JDBC Pool (lbpool) tool, which provides a wrapper around the
standard JDBC driver and enables you to use DB connection pools that includes checks for system failures
and uneven load distribution. For more information, see Load Balancing JDBC Driver for MySQL (mysql-
lbpool).

Support for Multiple-Source Replication Topographies

Connector/J supports multi-source replication topographies.

The connection URL for replication discussed earlier (i.e., in the format of
jdbc:mysql:replication://source,replica1,replica2,replica3/test) assumes that
the first (and only the first) host is the source host. Supporting deployments with an arbitrary number of
sources and replicas requires the "address-equals" URL syntax for multiple host connection discussed in
Section 6.2, “Connection URL Syntax”, with the property type=[source|replica]; for example:

jdbc:mysql:replication://address=(type=source)(host=source1host),address=(type=source)(host=source2host),address=(type=replica)(host=replica1host)/database

Connector/J uses a load-balanced connection internally for management of the source connections, which
means that ReplicationConnection, when configured to use multiple sources, exposes the same
options to balance load across source hosts as described in Section 9.3, “Configuring Load Balancing with
Connector/J”.

Live Reconfiguration of Replication Topography

Connector/J also supports live management of replication host (single or multi-source) topographies. This
enables users to promote replicas for Java applications without requiring an application restart.

The replication hosts are most effectively managed in the context of a replication connection group. A
ReplicationConnectionGroup class represents a logical grouping of connections which can be managed
together. There may be one or more such replication connection groups in a given Java class loader (there
can be an application with two different JDBC resources needing to be managed independently). This key
class exposes host management methods for replication connections, and ReplicationConnection
objects register themselves with the appropriate ReplicationConnectionGroup if a value for the new
replicationConnectionGroup property is specified. The ReplicationConnectionGroup object
tracks these connections until they are closed, and it is used to manipulate the hosts associated with these
connections.

Some important methods related to host management include:

• getSourceHosts(): Returns a collection of strings representing the hosts configured as source hosts

• getReplicaHosts(): Returns a collection of strings representing the hosts configured as replica hosts

• addReplicaHost(String host): Adds new host to pool of possible replica hosts for selection at
start of new read-only workload

• promoteReplicaToSource(String host): Removes the host from the pool of potential replica
hosts for future read-only processes (existing read-only process is allowed to continue to completion)
and adds the host to the pool of potential source hosts

135

http://code.google.com/p/mysql-lbpool/
http://code.google.com/p/mysql-lbpool/

ReplicationConnectionGroupManager

• removeReplicaHost(String host, boolean closeGently): Removes the host (host name
match must be exact) from the list of configured replica hosts; if closeGently is false, existing
connections which have this host as currently active will be closed hardly (application should expect
exceptions)

• removeSourceHost(String host, boolean closeGently): Same as
removeReplicaHost(), but removes the host from the list of configured source hosts

Some useful management metrics include:

• getConnectionCountWithHostAsReplica(String host): Returns the number of
ReplicationConnection objects that have the given host configured as a possible replica host

• getConnectionCountWithHostAsSource(String host): Returns the number of
ReplicationConnection objects that have the given host configured as a possible source host

• getNumberOfReplicasAdded(): Returns the number of times a replica host has been dynamically
added to the group pool

• getNumberOfReplicasRemoved(): Returns the number of times a replica host has been dynamically
removed from the group pool

• getNumberOfReplicaPromotions(): Returns the number of times a replica host has been promoted
to be a source host

• getTotalConnectionCount(): Returns the number of ReplicationConnection objects which have
been registered with this group

• getActiveConnectionCount(): Returns the number of ReplicationConnection objects currently
being managed by this group

ReplicationConnectionGroupManager

com.mysql.cj.jdbc.ha.ReplicationConnectionGroupManager provides access to the
replication connection groups, together with some utility methods.

• getConnectionGroup(String groupName): Returns the ReplicationConnectionGroup object
matching the groupName provided

The other methods in ReplicationConnectionGroupManager mirror those of
ReplicationConnectionGroup, except that the first argument is a String group name. These methods
will operate on all matching ReplicationConnectionGroups, which are helpful for removing a server from
service and have it decommissioned across all possible ReplicationConnectionGroups.

These methods might be useful for in-JVM management of replication hosts if an application triggers
topography changes. For managing host configurations from outside the JVM, JMX can be used.

Using JMX for Managing Replication Hosts

When Connector/J is started with ha.enableJMX=true and a value set for the
property replicationConnectionGroup, a JMX MBean will be registered, allowing
manipulation of replication hosts by a JMX client. The MBean interface is defined in
com.mysql.cj.jdbc.jmx.ReplicationGroupManagerMBean, and leverages the
ReplicationConnectionGroupManager static methods:

 public abstract void addReplicaHost(String groupFilter, String host) throws SQLException;
 public abstract void removeReplicaHost(String groupFilter, String host) throws SQLException;

136

Configuring Source/Replica Replication with DNS SRV

 public abstract void promoteReplicaToSource(String groupFilter, String host) throws SQLException;
 public abstract void removeSourceHost(String groupFilter, String host) throws SQLException;
 public abstract String getSourceHostsList(String group);
 public abstract String getReplicaHostsList(String group);
 public abstract String getRegisteredConnectionGroups();
 public abstract int getActiveSourceHostCount(String group);
 public abstract int getActiveReplicaHostCount(String group);
 public abstract int getReplicaPromotionCount(String group);
 public abstract long getTotalLogicalConnectionCount(String group);
 public abstract long getActiveLogicalConnectionCount(String group);

Configuring Source/Replica Replication with DNS SRV

See Section 6.14, “Support for DNS SRV Records” for details.

9.5 Advanced Load-balancing and Failover Configuration

Connector/J provides a useful load-balancing implementation for MySQL Cluster or multi-source
deployments, as explained in Section 9.3, “Configuring Load Balancing with Connector/J” and Support for
Multiple-Source Replication Topographies. This same implementation is used for balancing load between
read-only replicas for replication-aware connections.

When trying to balance workload between multiple servers, the driver has to determine when it is safe to
swap servers, doing so in the middle of a transaction, for example, could cause problems. It is important
not to lose state information. For this reason, Connector/J will only try to pick a new server when one of the
following happens:

1. At transaction boundaries (transactions are explicitly committed or rolled back).

2. A communication exception (SQL State starting with "08") is encountered.

3. When a SQLException matches conditions defined by user, using the extension points defined by
the loadBalanceSQLStateFailover, loadBalanceSQLExceptionSubclassFailover or
loadBalanceExceptionChecker properties.

The third condition revolves around three properties, which allow you to control which SQLExceptions
trigger failover:

• loadBalanceExceptionChecker - The loadBalanceExceptionChecker property
is really the key. This takes a fully-qualified class name which implements the new
com.mysql.cj.jdbc.ha.LoadBalanceExceptionChecker interface. This interface is very simple,
and you only need to implement the following method:

public boolean shouldExceptionTriggerFailover(SQLException ex)

A SQLException is passed in, and a boolean returned. A value of true triggers a failover, false does
not.

You can use this to implement your own custom logic. An example where this might be useful is when
dealing with transient errors when using MySQL Cluster, where certain buffers may become overloaded.
The following code snippet illustrates this:

public class NdbLoadBalanceExceptionChecker
 extends StandardLoadBalanceExceptionChecker {

 public boolean shouldExceptionTriggerFailover(SQLException ex) {
 return super.shouldExceptionTriggerFailover(ex)
 || checkNdbException(ex);

137

Configuring Load Balancing and Failover with DNS SRV

 }

 private boolean checkNdbException(SQLException ex){
 // Have to parse the message since most NDB errors
 // are mapped to the same DEMC.
 return (ex.getMessage().startsWith("Lock wait timeout exceeded") ||
 (ex.getMessage().startsWith("Got temporary error")
 && ex.getMessage().endsWith("from NDB")));
 }
}

The code above extends com.mysql.cj.jdbc.ha.StandardLoadBalanceExceptionChecker,
which is the default implementation. There are a few convenient shortcuts built into this, for those
who want to have some level of control using properties, without writing Java code. This default
implementation uses the two remaining properties: loadBalanceSQLStateFailover and
loadBalanceSQLExceptionSubclassFailover.

• loadBalanceSQLStateFailover - allows you to define a comma-delimited list of SQLState code
prefixes, against which a SQLException is compared. If the prefix matches, failover is triggered. So, for
example, the following would trigger a failover if a given SQLException starts with "00", or is "12345":

loadBalanceSQLStateFailover=00,12345

• loadBalanceSQLExceptionSubclassFailover - can be used in conjunction with
loadBalanceSQLStateFailover or on its own. If you want certain subclasses of SQLException to
trigger failover, simply provide a comma-delimited list of fully-qualified class or interface names to check
against. For example, if you want all SQLTransientConnectionExceptions to trigger failover, you
would specify:

loadBalanceSQLExceptionSubclassFailover=java.sql.SQLTransientConnectionException

While the three failover conditions enumerated earlier suit most situations, if autocommit is enabled,
Connector/J never re-balances, and continues using the same physical connection. This can be
problematic, particularly when load-balancing is being used to distribute read-only load across multiple
replicas. However, Connector/J can be configured to re-balance after a certain number of statements are
executed, when autocommit is enabled. This functionality is dependent upon the following properties:

• loadBalanceAutoCommitStatementThreshold – defines the number of matching statements
which will trigger the driver to potentially swap physical server connections. The default value, 0, retains
the behavior that connections with autocommit enabled are never balanced.

• loadBalanceAutoCommitStatementRegex – the regular expression against which statements must
match. The default value, blank, matches all statements. So, for example, using the following properties
will cause Connector/J to re-balance after every third statement that contains the string “test”:

loadBalanceAutoCommitStatementThreshold=3
loadBalanceAutoCommitStatementRegex=.*test.*

loadBalanceAutoCommitStatementRegex can prove useful in a number of situations. Your
application may use temporary tables, server-side session state variables, or connection state, where
letting the driver arbitrarily swap physical connections before processing is complete could cause data
loss or other problems. This allows you to identify a trigger statement that is only executed when it is
safe to swap physical connections.

Configuring Load Balancing and Failover with DNS SRV

See Section 6.14, “Support for DNS SRV Records” for details.

138

Chapter 10 Using the X DevAPI with Connector/J: Special Topics

Table of Contents
10.1 Connection Compression Using X DevAPI ... 139
10.2 Schema Validation .. 140

Connector/J 8.4 supports the X DevAPI, through which native support by MySQL for JSON, NoSQL,
document collection, and other features are provided to Java applications. See Using MySQL as a
Document Store, the X DevAPI User Guide, and the Connector/J X DevAPI Reference available at
Connectors and APIs for details.

Information on using the X DevAPI with Connector/J can be found in different chapters in this manual. This
chapter explores some special topics that are not covered elsewhere.

10.1 Connection Compression Using X DevAPI
Connector/J supports data compression for X DevAPI connections when working with MySQL Server
8.0.19 and later. General details about this feature can be found in Connection Compression with X
Plugin. For details on how to configure connection compression for Connector/J, see the descriptions
for the connection properties xdevapi.compression, xdevapi.compression-algorithms, and
xdevapi.compression-extensions in Section 6.3, “Configuration Properties”. The following is a
summary of the feature:

The compression algorithms to be negotiated with the server and the priority of negotiation can be
specified using the connection property xdevapi.compression-algorithms. It accepts a list of
[algorithm-name]_[operation-mode], separated by commas (,). If the property is not set, the
default value of “zstd_stream,lz4_message,deflate_stream” is used. The priority for negotiation
follows the order the algorithms appear in the list. Setting an empty string explicitly for the property means
compression should be disabled for the connection.

Note

When specifying compression algorithms with xdevapi.compression-
algorithms, the aliases zstd, lz4, and deflate can be used in place of
zstd_stream, lz4_message, and deflate_stream, respectively.

Out of all the compression algorithms now supported by MySQL Server for X DevAPI connections,
Connector/J provides out-of-the-box support for Deflate only; this is because none of the other
compression algorithms (LZ4 and zstd, for now) are natively supported by the existing JREs. To support
those algorithms, the client application must provide implementations for the corresponding deflate and
inflate operations in the form of an OutputStream and an InputStream object, respectively. The easiest
way to accomplish this is by using a third-party library such as the Apache Commons Compress library,
which supports LZ4 and zstd. The connection option xdevapi.compression-extensions allows
users to configure Connector/J to use any compression algorithm that is supported by MySQL Server, as
long as there is a Java implementation for that algorithm. The option takes a list of triplets separated by
commas (,), and each triplet in turn contains the following elements, separated by colons (:):

• The compression algorithm name, indicated by the identifier used by the server (see Connection
Compression with X Plugin; aliases mentioned in the Note above can be used).

• A fully-qualified name of a class implementing the interface java.io.InputStream that will be used to
inflate data compressed with the named algorithm.

139

https://dev.mysql.com/doc/refman/8.4/en/document-store.html
https://dev.mysql.com/doc/refman/8.4/en/document-store.html
https://dev.mysql.com/doc/x-devapi-userguide/en/
https://dev.mysql.com/doc/index-connectors.html
https://dev.mysql.com/doc/refman/8.4/en/x-plugin-connection-compression.html
https://dev.mysql.com/doc/refman/8.4/en/x-plugin-connection-compression.html
https://dev.mysql.com/doc/refman/8.4/en/x-plugin-connection-compression.html
https://dev.mysql.com/doc/refman/8.4/en/x-plugin-connection-compression.html

Schema Validation

• A fully-qualified name of a class implementing the interface java.io.OutputStream that will be used
to deflate data using the named algorithm.

Here is an example that sets up the support for the algorithms lz4_message and zstd_stream using the
Apache Commons Compress library:

String connStr = "jdbc:mysql://johndoe:secret@localhost:33060/mydb?"
 + "xdevapi.compression-extensions="
 + "lz4_message"+":" // LZ4 triplet
 + FramedLZ4CompressorInputStream.class.getName() + ":"
 + FramedLZ4CompressorOutputStream.class.getName() + ","
 + "zstd_stream"+":" // zstd triplet
 + ZstdCompressorInputStream.class.getName() + ":"
 + ZstdCompressorOutputStream.class.getName();
SessionFactory sessFact = new SessionFactory();
Session sess = sessFact.getSession(connStr);
Collection col = sess.getDefaultSchema().getCollection("myCollection");
// (...)
sess.close();

Note

For Connector/J 8.0.21 and earlier: The connection property
xdevapi.compression-extensions described above is named
xdevapi.compression-algorithm for Connector/J 8.0.21 and earlier, and the
elements in each triplet should be separated by commas (,) instead of colons (:).

Negotiation for a compression algorithm is attempted by default (xdevapi.compression=Preferred
by default), unless the connection property xdevapi.compression is set to DISABLED. The final
choice of compression algorithm depends on what algorithms are enabled on the server. By default,
because compression is not required, if the negotiation fails, the connection will not be compressed,
but the client will still be able to communicate with the server; however, if the connection property
xdevapi.compression is set to REQUIRED, the connection attempt fails with an error if no algorithm can
be negotiated for successfully.

10.2 Schema Validation

When working with MySQL Server 8.0.19 and later: Schema validation can be configured for a
Collection, so that documents in the Collection are validated against a schema before they can
be inserted or updated. This is done by specifying a JSON Schema during Collection creation or
modification; schema validation is then performed by the server at a document creation or update, and an
error is returned if the document does not validate against the assigned schema. For more information on
JSON schema validation in MySQL, see JSON Schema Validation Functions. This section describes how
to configure schema validation for a Collection with Connector/J.

To configure schema validation during the creation of a Collection, pass to the createCollection()
method a CreateCollectionOptions object, which has these fields:

• reuse: a boolean set by the setReuseExisting method. If it is true, when the Collection to be
created already exists within the Schema that is to contain it, Connector/J returns success (without any
attempt to apply JSON schema to the existing Collection); in the same case, Connector/J returns an
error if the parameter is set to false. If reuse is not set, it is taken to be false.

• validation: a Validation object set by the setValidation() method. A Validation object in
turns contains these fields:

• level: a enumeration of the class ValidationLevel, set by the setLevel() method; it can be
one of the following two values:

140

http://json-schema.org
https://dev.mysql.com/doc/refman/8.4/en/json-validation-functions.html

Schema Validation

• STRICT: Strict validation. Attempting to insert or modify a document that violates the validation
schema results in a server error being raised.

• OFF: No validation. Schema validation is turned off.

If level is not set, it is taken as OFF for MySQL Server 8.0.19, and STRICT for 8.0.20 and later.

• schema: A string representing a JSON Schema to be used to validate a Document in the
Collection; set by the setSchema() method.

If schema is not provided but level is set to STRICT, the Collection is validated against the
default schema {"type" : "object"}.

This is an example of how to configure schema validation at the creation of a Collection:

Collection coll = this.schema.createCollection(collName,
 new CreateCollectionOptions()
 .setReuseExisting(false)
 .setValidation(new Validation()
 .setLevel(ValidationLevel.STRICT)
 .setSchema(
 "{\"id\": \"http://json-schema.org/geo\","
 + "\"$schema\": \"http://json-schema.org/draft-06/schema#\","
 + " \"description\": \"A geographical coordinate\","
 + " \"type\": \"object\","
 + " \"properties\": {"
 + " \"latitude\": {"
 + " \"type\": \"number\""
 + " },"
 + " \"longitude\": {"
 + " \"type\": \"number\""
 + " }"
 + " },"
 + " \"required\": [\"latitude\", \"longitude\"]"
 + " }"
)));

The set fields are accessible by the corresponding getter methods.

To modify the schema validation configuration for a Collection, use the modifyCollection()
method and pass to it a ModifyCollectionOptions object, which has the same fields as
the CreateCollectionOptions object except for the reuse field, which does not exist for a
ModifyCollectionOptions object. For the Validation object of a ModifyCollectionOptions
object, users can set either its level or schema, or both. Here is an example of using the
modifyCollection() to change the schema validation configuration:

schema.modifyCollection(collName,
 new ModifyCollectionOptions()
 .setValidation(new Validation()
 .setLevel(ValidationLevel.OFF)
 .setSchema(
 "{\"id\": \"http://json-schema.org/geo\","
 + "\"$schema\": \"http://json-schema.org/draft-06/schema#\","
 + " \"description\": \"NEW geographical coordinate\","
 + " \"type\": \"object\","
 + " \"properties\": {"
 + " \"latitude\": {"
 + " \"type\": \"number\""
 + " },"
 + " \"longitude\": {"
 + " \"type\": \"number\""

141

http://json-schema.org

Schema Validation

 + " }"
 + " },"
 + " \"required\": [\"latitude\", \"longitude\"]"
 + " }"
)));

If the Collection contains documents that do not validate against the new JSON schema supplied through
ModifyCollectionOptions, the server will reject the schema modification with the error ERROR 5180
(HY000) Document is not valid according to the schema assigned to collection.

Note

createCollection() and modifyCollection() are overloaded: they can
be called without passing to them the CreateCollectionOptions or the
ModifyCollectionOptions, respectively, in which case schema validation will
not be applied to the Collection.

142

Chapter 11 Using the Connector/J Interceptor Classes
An interceptor is a software design pattern that provides a transparent way to extend or modify some
aspect of a program, similar to a user exit. No recompiling is required. With Connector/J, the interceptors
are enabled and disabled by updating the connection string to refer to different sets of interceptor classes
that you instantiate.

The connection properties that control the interceptors are explained in Section 6.3, “Configuration
Properties”:

• connectionLifecycleInterceptors, where you specify the fully qualified names of classes that
implement the com.mysql.cj.jdbc.interceptors.ConnectionLifecycleInterceptor
interface. In these kinds of interceptor classes, you might log events such as rollbacks, measure the time
between transaction start and end, or count events such as calls to setAutoCommit().

• exceptionInterceptors, where you specify the fully qualified names of classes that implement
the com.mysql.cj.exceptions.ExceptionInterceptor interface. In these kinds of interceptor
classes, you might add extra diagnostic information to exceptions that can have multiple causes or
indicate a problem with server settings. exceptionInterceptors classes are called when handling
an Exception thrown from Connector/J code.

• queryInterceptors, where you specify the fully qualified names of classes that implement the
com.mysql.cj.interceptors.QueryInterceptor interface. In these kinds of interceptor classes,
you might change or augment the processing done by certain kinds of statements, such as automatically
checking for queried data in a memcached server, rewriting slow queries, logging information about
statement execution, or route requests to remote servers.

143

144

Chapter 12 Using Logging Frameworks with SLF4J
Besides its default logger com.mysql.cj.log.StandardLogger, which logs to stderr, Connector/
J supports the SLF4J logging facade, allowing end users of applications using Connector/J to plug
in logging frameworks of their own choices at deployment time. Popular logging frameworks such as
java.util.logging, logback, and log4j are supported by SLF4J. Follow these requirements to use
a logging framework with SLF4J and Connector/J:

• In the development environment:

• Install on your system slf4j-api-x.y.z.jar (available at https://www.slf4j.org/download.html) and
add it to the Java classpath.

• In the code of your application, obtain an SLF4JLogger as a Log instantiated within a
MysqlConnection Session, and then use the Log instance for your logging.

• On the deployment system:

• Install on your system slf4j-api-x.y.z.jar and add it to the Java classpath

• Install on your system the SLF4J binding for the logging framework of your choice and add it
to your Java classpath. SLF4J bindings are available at, for example, https://www.slf4j.org/
manual.html#swapping.

Note

Do not put more than one SLF4J binding in you Java classpath. Switch from
one logging framework to another by removing a binding and adding a new one
to the classpath.

• Install the logging framework of your choice on your system and add it to the Java classpath.

• Configure the logging framework of your choice. This often consists of setting up appenders or
handlers for log messages using a configuration file; see your logging framework's documentation for
details.

• When connecting the application to the MySQL Server, set the Connector/J connection property
logger to Slf4JLogger.

The log category name used by Connector/J with SLF4J is MySQL. See the SLF4J user manual for more
details about using SLF4J, including discussions on Maven dependency and bindings. Here is a sample
code for using SLF4J with Connector/J:

import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import com.mysql.cj.jdbc.JdbcConnection;
import com.mysql.cj.log.Log;

public class JDBCDemo {

 public static void main(String[] args) {

 Connection conn = null;
 Statement statement = null;
 ResultSet resultSet = null;
 Log logger = null;

145

https://www.slf4j.org/download.html
https://www.slf4j.org/manual.html#swapping
https://www.slf4j.org/manual.html#swapping
http://www.slf4j.org/manual.html

 try {
 // Database parameters
 String url = "jdbc:mysql://myexample.com:3306/pets?logger=Slf4JLogger&explainSlowQueries=true";
 String user = "user";
 String password = "password";
 // create a connection to the database
 conn = DriverManager.getConnection(url, user, password);
 logger = ((JdbcConnection)conn).getSession().getLog();
 }
 catch (SQLException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }

 try {
 statement = conn.createStatement();
 resultSet = statement.executeQuery("SELECT * FROM pets.dogs");
 while(resultSet.next()){
 System.out.printf("%d\t%s\t%s\t %4$ty.%4$tm.%4$td \n",
 resultSet.getInt(1),
 resultSet.getString(2),
 resultSet.getString(3),
 resultSet.getDate(4));
 }
 }
 catch(SQLException e) {
 logger.logWarn("Warning: Select failed!");
 }

}

}

If you want to use, for example, Log4j 2.17.1 as your logging framework when running this program, put
these JAR files in your Java classpath:

• slf4j-api-2.0.3.jar (SLF4J API module, available at, for example, https://central.sonatype.com/
artifact/org.slf4j/slf4j-api/2.0.3/jar).

• log4j-api-2.17.1.jar and log4j-core-2.17.1.jar (Log4J library, available at, for example,
https://central.sonatype.com/artifact/org.apache.logging.log4j/log4j-api/2.17.1/jar and https://
central.sonatype.com/artifact/org.apache.logging.log4j/log4j-core/2.17.1/jar).

• log4j-slf4j-impl-2.17.1.jar (SLF4J's binding for Log4J 2.17.1, available at, for example, https://
central.sonatype.com/artifact/org.apache.logging.log4j/log4j-slf4j-impl/2.17.1/jar).

Here is output of the program when the SELECT statement failed:

[2021-09-05 12:06:19,624] WARN 0[main] - WARN MySQL - Warning: Select failed!

146

https://central.sonatype.com/artifact/org.slf4j/slf4j-api/2.0.3/jar
https://central.sonatype.com/artifact/org.slf4j/slf4j-api/2.0.3/jar
https://central.sonatype.com/artifact/org.apache.logging.log4j/log4j-api/2.17.1/jar
https://central.sonatype.com/artifact/org.apache.logging.log4j/log4j-api/2.17.1/jar
https://central.sonatype.com/artifact/org.apache.logging.log4j/log4j-core/2.17.1/jar
https://central.sonatype.com/artifact/org.apache.logging.log4j/log4j-core/2.17.1/jar
https://central.sonatype.com/artifact/org.apache.logging.log4j/log4j-slf4j-impl/2.17.1/jar
https://central.sonatype.com/artifact/org.apache.logging.log4j/log4j-slf4j-impl/2.17.1/jar

Chapter 13 Using Connector/J with OpenTelemetry
OpenTelemetry is a set of APIs, libraries, agents, and instrumentation to provide observability for
applications and their interactions with one another. It enables developers to instrument their code so that
they can export observability data including traces, metrics, and logs, enabling increased granularity of
profiling, debugging, and testing.

The OpenTelemetry project provides automatic instrumentation for JDBC libraries. However, when it
comes to distributed tracing, the automatic instrumentation is not able to propagate the context to the
database layer, causing the trace chain to be broken. Also, the automatic instrumentation applies only to
the visible layer of the JDBC instrumentation, keeping out any internal operations that are worth tracing as
well.

MySQL Enterprise Server 8.4.0 has the capability of collecting observability data for the server
operations in the OpenTelemetry format (see Telemetry for details). The feature is supported by
component_telemetry. MySQL Connector/J 8.4.0 introduces the client-side counterpart feature, with the
capability of propagating the context to the MySQL Server it connects to and allowing a more complete
observability for an application stack.

Applications using Connector/J that wish to enable OpenTelemetry tracing need the following 3rd-party
libraries:

• The opentelemetry-api library.

• The opentelemetry-context library

• The opentelemetry-sdk library if you choose manual instrumentation, or the opentelemetry-javaagent if
you prefer automatic instrumentation.

The Connector/J connection property openTelemetry controls how observability data production is to be
handled on a per connection basis. This option accepts the following values:

• REQUIRED: An OpenTelemetry library must be available at run time, or connections to the MySQL
Server will fail. Note that the opentelemtry-api library alone does not produce any output traces.

• PREFERRED: Enables generating OpenTelemetry instrumentation, provided that an OpenTelemetry
library is available at run time; a warning is issued if a library is not available.

• DISABLED: Turns off generating OpenTelemetry instrumentation by Connector/J. However, this does
not prevent external means of instrumentation, such as the automatic instrumentation provided by the
OpenTelemetry Java agent.

Not setting a value for the property is equivalent to setting it as PREFERRED, except that no warning is
issued when no OpenTelemetry library is available at runtime.

Notice that MySQL Connector/J does not provide any means for configuring its own OpenTelemetry
exporters—it relies entirely on the calling application for the exporter configuration.

The following is a demonstration for how to use OpenTelemetry. It assumes that client application,
MySQL Server, and the observability backend are all running on the same machine. It also assumes that
component_telemetry is enabled and is properly configured on the MySQL Server. The Java agent is used
for the sake of simplicity. The opentelemetry-instrumentation-annotations library is also used, so there is no
need to write any OpenTelemetry code in the sample class.

This simple demonstration contains a class OTelDemo, which creates a connection to the Sakila database
and executes an SQL SELECT statement that returns five rows from the table film. The purpose of the

147

https://opentelemetry.io/
https://dev.mysql.com/doc/refman/8.4/en/telemetry.html
https://dev.mysql.com/doc/refman/8.4/en/telemetry-trace-install.html
https://central.sonatype.com/artifact/io.opentelemetry/opentelemetry-api
https://central.sonatype.com/artifact/io.opentelemetry/opentelemetry-context
https://central.sonatype.com/artifact/io.opentelemetry/opentelemetry-sdk
https://github.com/open-telemetry/opentelemetry-java-instrumentation/releases
https://dev.mysql.com/doc/refman/8.4/en/telemetry-trace-install.html
https://central.sonatype.com/artifact/io.opentelemetry.instrumentation/opentelemetry-instrumentation-annotations
https://dev.mysql.com/doc/sakila/en/

demonstration is just to generate a sequence of traces, not to produce anything practically useful. Here are
the contents of the source file src/demo/OTelDemo.java

package demo;
import java.sql.*;
import io.opentelemetry.instrumentation.annotations.WithSpan;
public class OTelDemo {
 public static void main(String[] args) throws Exception {
 listFiveFilms();
 }
 @WithSpan
 private static void listFiveFilms() throws Exception {
 try (Connection conn = DriverManager.getConnection("jdbc:mysql://johndoe:s3cr3t@localhost:3306/sakila")) {
 Statement stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery("SELECT * FROM film LIMIT 5");
 while (rs.next()) {
 System.out.println(rs.getString(2));
 }
 }
 }
}

The top level trace that will be observed is created within the application code via the annotation
@WithSpan. This trace becomes the current context (parent) for any subsequent spans created inside the
JDBC driver. Subsequently, via context propagation with the executed commands, a trace created by the
driver becomes the parent of the spans created within the MySQL Server.

The code can be compiled by issuing the command:

$ javac -classpath "lib/*" -d bin src/demo/OTelDemo.java

Before you run the demonstration, set up an observability backend with, for example, Jaeger. You can then
execute the code with the command:

$ java -javaagent:agent/opentelemetry-javaagent.jar \
 -Dotel.traces.exporter=jaeger \
 -Dotel.metrics.exporter=none \
 -Dotel.service.name=OTelDemo \
 -Dotel.instrumentation.common.default-enabled=false \
 -Dotel.instrumentation.opentelemetry-api.enabled=true \
 -Dotel.instrumentation.opentelemetry-instrumentation-annotations.enabled=true \
 -classpath "bin:lib/*" \
 demo.OTelDemo
 [otel.javaagent 2024-04-12 16:10:32:140 +0100]
 [main] INFO io.opentelemetry.javaagent.tooling.VersionLogger - opentelemetry-javaagent - version: 1.32.0
 ACADEMY DINOSAUR
 ACE GOLDFINGER
 ADAPTATION HOLES
 AFFAIR PREJUDICE
 AFRICAN EGG

You can now open the Jaeger backend in your web browser and search for the traces of the OTelDemo
service.

Distributed tracing in MySQL is limited to statement executions. This limitation comes from the fact that
context propagation is implemented through query attributes and is only supported for query executions.
While running, the server generates spans for other operations as well. Those spans can be seen in the
observability backend too, but they are unlinked from any of the traces started by the client application or
library. Similarly, spans created by Connector/J that do not produce server commands or those producing
commands lacking support for query attributes are depicted as terminal nodes in the trace graphs. This is
exemplified by operations such as the PING command. Nonetheless, the server still generates a span for
the corresponding operation, just that it appears unlinked from the originating trace.

148

https://www.jaegertracing.io/docs
https://dev.mysql.com/doc/refman/en/query-attributes.html

Chapter 14 Using Connector/J with Tomcat
The following instructions are based on the instructions for Tomcat-5.x, available at http://
tomcat.apache.org/tomcat-5.5-doc/jndi-datasource-examples-howto.html which is current at the time this
document was written.

First, install the .jar file that comes with Connector/J in $CATALINA_HOME/common/lib so that it is
available to all applications installed in the container.

Next, configure the JNDI DataSource by adding a declaration resource to $CATALINA_HOME/conf/
server.xml in the context that defines your web application:

 <Context>

 ...

 <Resource name="jdbc/MySQLDB"
 auth="Container"
 type="javax.sql.DataSource"/>

 <ResourceParams name="jdbc/MySQLDB">
 <parameter>
 <name>factory</name>
 <value>org.apache.commons.dbcp.BasicDataSourceFactory</value>
 </parameter>

 <parameter>
 <name>maxActive</name>
 <value>10</value>
 </parameter>

 <parameter>
 <name>maxIdle</name>
 <value>5</value>
 </parameter>

 <parameter>
 <name>validationQuery</name>
 <value>SELECT 1</value>
 </parameter>

 <parameter>
 <name>testOnBorrow</name>
 <value>true</value>
 </parameter>

 <parameter>
 <name>testWhileIdle</name>
 <value>true</value>
 </parameter>

 <parameter>
 <name>timeBetweenEvictionRunsMillis</name>
 <value>10000</value>
 </parameter>

 <parameter>
 <name>minEvictableIdleTimeMillis</name>
 <value>60000</value>
 </parameter>

 <parameter>
 <name>username</name>
 <value>someuser</value>

149

http://tomcat.apache.org/tomcat-5.5-doc/jndi-datasource-examples-howto.html
http://tomcat.apache.org/tomcat-5.5-doc/jndi-datasource-examples-howto.html

 </parameter>

 <parameter>
 <name>password</name>
 <value>somepass</value>
 </parameter>

 <parameter>
 <name>driverClassName</name>
 <value>com.mysql.cj.jdbc.Driver</value>
 </parameter>

 <parameter>
 <name>url</name>
 <value>jdbc:mysql://localhost:3306/test</value>
 </parameter>

 </ResourceParams>
</Context>

Connector/J introduces a facility whereby, rather than use a validationQuery value of SELECT 1, it
is possible to use validationQuery with a value set to /* ping */. This sends a ping to the server
which then returns a fake result set. This is a lighter weight solution. It also has the advantage that if using
ReplicationConnection or LoadBalancedConnection type connections, the ping will be sent
across all active connections. The following XML snippet illustrates how to select this option:

<parameter>
 <name>validationQuery</name>
 <value>/* ping */</value>
</parameter>

Note that /* ping */ has to be specified exactly.

In general, follow the installation instructions that come with your version of Tomcat, as the way you
configure datasources in Tomcat changes from time to time, and if you use the wrong syntax in your XML
file, you will most likely end up with an exception similar to the following:

Error: java.sql.SQLException: Cannot load JDBC driver class 'null ' SQL
state: null

Note that the auto-loading of drivers having the META-INF/service/java.sql.Driver class in JDBC
4.0 and later causes an improper undeployment of the Connector/J driver in Tomcat on Windows. Namely,
the Connector/J jar remains locked. This is an initialization problem that is not related to the driver. The
possible workarounds, if viable, are as follows: use "antiResourceLocking=true" as a Tomcat Context
attribute, or remove the META-INF/ directory.

150

Chapter 15 Using Connector/J with Spring

Table of Contents
15.1 Using JdbcTemplate .. 152
15.2 Transactional JDBC Access .. 153
15.3 Connection Pooling with Spring ... 155

The Spring Framework is a Java-based application framework designed for assisting in application design
by providing a way to configure components. The technique used by Spring is a well known design pattern
called Dependency Injection (see Inversion of Control Containers and the Dependency Injection pattern).
This article will focus on Java-oriented access to MySQL databases with Spring 2.0. For those wondering,
there is a .NET port of Spring appropriately named Spring.NET.

Spring is not only a system for configuring components, but also includes support for aspect oriented
programming (AOP). This is one of the main benefits and the foundation for Spring's resource and
transaction management. Spring also provides utilities for integrating resource management with JDBC
and Hibernate.

For the examples in this section the MySQL world sample database will be used. The first task is to set up
a MySQL data source through Spring. Components within Spring use the “bean” terminology. For example,
to configure a connection to a MySQL server supporting the world sample database, you might use:

<util:map id="dbProps">
 <entry key="db.driver" value="com.mysql.cj.jdbc.Driver"/>
 <entry key="db.jdbcurl" value="jdbc:mysql://localhost/world"/>
 <entry key="db.username" value="myuser"/>
 <entry key="db.password" value="mypass"/>
</util:map>

In the above example, we are assigning values to properties that will be used in the configuration. For the
datasource configuration:

<bean id="dataSource"
 class="org.springframework.jdbc.datasource.DriverManagerDataSource">
 <property name="driverClassName" value="${db.driver}"/>
 <property name="url" value="${db.jdbcurl}"/>
 <property name="username" value="${db.username}"/>
 <property name="password" value="${db.password}"/>
</bean>

The placeholders are used to provide values for properties of this bean. This means that we can specify
all the properties of the configuration in one place instead of entering the values for each property on
each bean. We do, however, need one more bean to pull this all together. The last bean is responsible for
actually replacing the placeholders with the property values.

<bean
 class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
 <property name="properties" ref="dbProps"/>
</bean>

151

http://www.martinfowler.com/articles/injection.html

Using JdbcTemplate

Now that we have our MySQL data source configured and ready to go, we write some Java code to access
it. The example below will retrieve three random cities and their corresponding country using the data
source we configured with Spring.

// Create a new application context. this processes the Spring config
ApplicationContext ctx =
 new ClassPathXmlApplicationContext("ex1appContext.xml");
// Retrieve the data source from the application context
 DataSource ds = (DataSource) ctx.getBean("dataSource");
// Open a database connection using Spring's DataSourceUtils
Connection c = DataSourceUtils.getConnection(ds);
try {
 // retrieve a list of three random cities
 PreparedStatement ps = c.prepareStatement(
 "select City.Name as 'City', Country.Name as 'Country' " +
 "from City inner join Country on City.CountryCode = Country.Code " +
 "order by rand() limit 3");
 ResultSet rs = ps.executeQuery();
 while(rs.next()) {
 String city = rs.getString("City");
 String country = rs.getString("Country");
 System.out.printf("The city %s is in %s%n", city, country);
 }
} catch (SQLException ex) {
 // something has failed and we print a stack trace to analyse the error
 ex.printStackTrace();
 // ignore failure closing connection
 try { c.close(); } catch (SQLException e) { }
} finally {
 // properly release our connection
 DataSourceUtils.releaseConnection(c, ds);
}

This is very similar to normal JDBC access to MySQL with the main difference being that we are using
DataSourceUtils instead of the DriverManager to create the connection.

While it may seem like a small difference, the implications are somewhat far reaching. Spring manages
this resource in a way similar to a container managed data source in a J2EE application server. When a
connection is opened, it can be subsequently accessed in other parts of the code if it is synchronized with
a transaction. This makes it possible to treat different parts of your application as transactional instead of
passing around a database connection.

15.1 Using JdbcTemplate
Spring makes extensive use of the Template method design pattern (see Template Method
Pattern). Our immediate focus will be on the JdbcTemplate and related classes, specifically
NamedParameterJdbcTemplate. The template classes handle obtaining and releasing a connection for
data access when one is needed.

The next example shows how to use NamedParameterJdbcTemplate inside of a DAO (Data Access
Object) class to retrieve a random city given a country code.

public class Ex2JdbcDao {
 /**
 * Data source reference which will be provided by Spring.
 */
 private DataSource dataSource;

 /**
 * Our query to find a random city given a country code. Notice
 * the ":country" parameter toward the end. This is called a
 * named parameter.
 */

152

http://en.wikipedia.org/wiki/Template_method_pattern
http://en.wikipedia.org/wiki/Template_method_pattern

Transactional JDBC Access

 private String queryString = "select Name from City " +
 "where CountryCode = :country order by rand() limit 1";

 /**
 * Retrieve a random city using Spring JDBC access classes.
 */
 public String getRandomCityByCountryCode(String cntryCode) {
 // A template that permits using queries with named parameters
 NamedParameterJdbcTemplate template =
 new NamedParameterJdbcTemplate(dataSource);
 // A java.util.Map is used to provide values for the parameters
 Map params = new HashMap();
 params.put("country", cntryCode);
 // We query for an Object and specify what class we are expecting
 return (String)template.queryForObject(queryString, params, String.class);
 }

 /**
 * A JavaBean setter-style method to allow Spring to inject the data source.
 * @param dataSource
 */
 public void setDataSource(DataSource dataSource) {
 this.dataSource = dataSource;
 }
}

The focus in the above code is on the getRandomCityByCountryCode() method. We pass a country
code and use the NamedParameterJdbcTemplate to query for a city. The country code is placed in a
Map with the key "country", which is the parameter is named in the SQL query.

To access this code, you need to configure it with Spring by providing a reference to the data source.

<bean id="dao" class="code.Ex2JdbcDao">
 <property name="dataSource" ref="dataSource"/>
</bean>

At this point, we can just grab a reference to the DAO from Spring and call
getRandomCityByCountryCode().

 // Create the application context
 ApplicationContext ctx =
 new ClassPathXmlApplicationContext("ex2appContext.xml");
 // Obtain a reference to our DAO
 Ex2JdbcDao dao = (Ex2JdbcDao) ctx.getBean("dao");

 String countryCode = "USA";

 // Find a few random cities in the US
 for(int i = 0; i < 4; ++i)
 System.out.printf("A random city in %s is %s%n", countryCode,
 dao.getRandomCityByCountryCode(countryCode));

This example shows how to use Spring's JDBC classes to completely abstract away the use of traditional
JDBC classes including Connection and PreparedStatement.

15.2 Transactional JDBC Access

Spring allows us to add transactions into our code without having to deal directly with the JDBC classes.
For that purpose, Spring provides a transaction management package that not only replaces JDBC
transaction management, but also enables declarative transaction management (configuration instead of
code).

153

Transactional JDBC Access

To use transactional database access, we will need to change the storage engine of the tables in the world
database. The downloaded script explicitly creates MyISAM tables, which do not support transactional
semantics. The InnoDB storage engine does support transactions and this is what we will be using. We
can change the storage engine with the following statements.

ALTER TABLE City ENGINE=InnoDB;
ALTER TABLE Country ENGINE=InnoDB;
ALTER TABLE CountryLanguage ENGINE=InnoDB;

A good programming practice emphasized by Spring is separating interfaces and implementations. What
this means is that we can create a Java interface and only use the operations on this interface without any
internal knowledge of what the actual implementation is. We will let Spring manage the implementation and
with this it will manage the transactions for our implementation.

First you create a simple interface:

public interface Ex3Dao {
 Integer createCity(String name, String countryCode,
 String district, Integer population);
}

This interface contains one method that will create a new city record in the database and return the id of
the new record. Next you need to create an implementation of this interface.

public class Ex3DaoImpl implements Ex3Dao {
 protected DataSource dataSource;
 protected SqlUpdate updateQuery;
 protected SqlFunction idQuery;

 public Integer createCity(String name, String countryCode,
 String district, Integer population) {
 updateQuery.update(new Object[] { name, countryCode,
 district, population });
 return getLastId();
 }

 protected Integer getLastId() {
 return idQuery.run();
 }
}

You can see that we only operate on abstract query objects here and do not deal directly with the JDBC
API. Also, this is the complete implementation. All of our transaction management will be dealt with in the
configuration. To get the configuration started, we need to create the DAO.

<bean id="dao" class="code.Ex3DaoImpl">
 <property name="dataSource" ref="dataSource"/>
 <property name="updateQuery">...</property>
 <property name="idQuery">...</property>
</bean>

Now we need to set up the transaction configuration. The first thing we must do is create transaction
manager to manage the data source and a specification of what transaction properties are required for the
dao methods.

<bean id="transactionManager"
 class="org.springframework.jdbc.datasource.DataSourceTransactionManager">
 <property name="dataSource" ref="dataSource"/>
</bean>

154

Connection Pooling with Spring

<tx:advice id="txAdvice" transaction-manager="transactionManager">
 <tx:attributes>
 <tx:method name="*"/>
 </tx:attributes>
</tx:advice>

The preceding code creates a transaction manager that handles transactions for the data source provided
to it. The txAdvice uses this transaction manager and the attributes specify to create a transaction for all
methods. Finally we need to apply this advice with an AOP pointcut.

<aop:config>
 <aop:pointcut id="daoMethods"
 expression="execution(* code.Ex3Dao.*(..))"/>
 <aop:advisor advice-ref="txAdvice" pointcut-ref="daoMethods"/>
</aop:config>

This basically says that all methods called on the Ex3Dao interface will be wrapped in a transaction. To
make use of this, we only have to retrieve the dao from the application context and call a method on the
dao instance.

Ex3Dao dao = (Ex3Dao) ctx.getBean("dao");
Integer id = dao.createCity(name, countryCode, district, pop);

We can verify from this that there is no transaction management happening in our Java code and it is all
configured with Spring. This is a very powerful notion and regarded as one of the most beneficial features
of Spring.

15.3 Connection Pooling with Spring

In many situations, such as web applications, there will be a large number of small database transactions.
When this is the case, it usually makes sense to create a pool of database connections available for web
requests as needed. Although MySQL does not spawn an extra process when a connection is made,
there is still a small amount of overhead to create and set up the connection. Pooling of connections also
alleviates problems such as collecting large amounts of sockets in the TIME_WAIT state.

Setting up pooling of MySQL connections with Spring is as simple as changing the data source
configuration in the application context. There are a number of configurations that we can use. The
first example is based on the Jakarta Commons DBCP library. The example below replaces the source
configuration that was based on DriverManagerDataSource with DBCP's BasicDataSource.

<bean id="dataSource" destroy-method="close"
 class="org.apache.commons.dbcp.BasicDataSource">
 <property name="driverClassName" value="${db.driver}"/>
 <property name="url" value="${db.jdbcurl}"/>
 <property name="username" value="${db.username}"/>
 <property name="password" value="${db.password}"/>
 <property name="initialSize" value="3"/>
</bean>

The configuration of the two solutions is very similar. The difference is that DBCP will pool connections
to the database instead of creating a new connection every time one is requested. We have also set a
parameter here called initialSize. This tells DBCP that we want three connections in the pool when it
is created.

155

http://jakarta.apache.org/commons/dbcp/

156

Chapter 16 Troubleshooting Connector/J Applications
This section explains the symptoms and resolutions for the most commonly encountered issues with
applications using MySQL Connector/J.

Questions

• 16.1: When I try to connect to the database with MySQL Connector/J, I get the following exception:

SQLException: Server configuration denies access to data source
SQLState: 08001
VendorError: 0

What is going on? I can connect just fine with the MySQL command-line client.

• 16.2: My application throws an SQLException 'No Suitable Driver'. Why is this happening?

• 16.3: I'm trying to use MySQL Connector/J in an applet or application and I get an exception similar to:

SQLException: Cannot connect to MySQL server on host:3306.
Is there a MySQL server running on the machine/port you
are trying to connect to?

(java.security.AccessControlException)
SQLState: 08S01
VendorError: 0

• 16.4: I have a servlet/application that works fine for a day, and then stops working overnight

• 16.5: I cannot connect to the MySQL server using Connector/J, and I'm sure the connection parameters
are correct.

• 16.6: Updating a table that contains a primary key that is either FLOAT or compound primary key that
uses FLOAT fails to update the table and raises an exception.

• 16.7: I get an ER_NET_PACKET_TOO_LARGE exception, even though the binary blob size I want to
insert using JDBC is safely below the max_allowed_packet size.

• 16.8: What should I do if I receive error messages similar to the following: “Communications link failure
– Last packet sent to the server was X ms ago”?

• 16.9: Why does Connector/J not reconnect to MySQL and re-issue the statement after a communication
failure instead of throwing an Exception, even though I use the autoReconnect connection string
option?

• 16.10: How can I use 3-byte UTF8 with Connector/J?

• 16.11: How can I use 4-byte UTF8 (utf8mb4) with Connector/J?

• 16.12: Using useServerPrepStmts=false and certain character encodings can lead to corruption
when inserting BLOBs. How can this be avoided?

Questions and Answers

16.1: When I try to connect to the database with MySQL Connector/J, I get the following exception:

SQLException: Server configuration denies access to data source
SQLState: 08001
VendorError: 0

What is going on? I can connect just fine with the MySQL command-line client.

157

https://dev.mysql.com/doc/refman/8.4/en/glossary.html#glos_primary_key
https://dev.mysql.com/doc/refman/8.4/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.4/en/floating-point-types.html
https://dev.mysql.com/doc/mysql-errors/8.4/en/server-error-reference.html#error_er_net_packet_too_large
https://dev.mysql.com/doc/refman/8.4/en/server-system-variables.html#sysvar_max_allowed_packet

Connector/J normally uses TCP/IP sockets to connect to MySQL (see Section 6.10, “Connecting
Using Unix Domain Sockets” and Section 6.11, “Connecting Using Named Pipes” for exceptions). The
security manager on the MySQL server uses its grant tables to determine whether a TCP/IP connection
is permitted. You must therefore add the necessary security credentials to the MySQL server for the
connection by issuing a GRANT statement to your MySQL Server. See GRANT Statement, for more
information.

Warning

Changing privileges and permissions improperly on MySQL can potentially cause
your server installation to have non-optimal security properties.

Note

Testing your connectivity with the mysql command-line client will not work unless
you add the --host flag, and use something other than localhost for the
host. The mysql command-line client will try to use Unix domain sockets if you
use the special host name localhost. If you are testing TCP/IP connectivity to
localhost, use 127.0.0.1 as the host name instead.

16.2: My application throws an SQLException 'No Suitable Driver'. Why is this happening?

There are three possible causes for this error:

• The Connector/J driver is not in your CLASSPATH, see Chapter 4, Connector/J Installation.

• The format of your connection URL is incorrect, or you are referencing the wrong JDBC driver.

• When using DriverManager, the jdbc.drivers system property has not been populated with the
location of the Connector/J driver.

16.3: I'm trying to use MySQL Connector/J in an applet or application and I get an exception similar
to:

SQLException: Cannot connect to MySQL server on host:3306.
Is there a MySQL server running on the machine/port you
are trying to connect to?

(java.security.AccessControlException)
SQLState: 08S01
VendorError: 0

Either you're running an Applet, your MySQL server has been installed with the skip_networking
system variable enabled, or your MySQL server has a firewall sitting in front of it.

Applets can only make network connections back to the machine that runs the web server that served
the .class files for the applet. This means that MySQL must run on the same machine (or you must have
some sort of port re-direction) for this to work. This also means that you will not be able to test applets from
your local file system, but must always deploy them to a web server.

Connector/J normally uses TCP/IP sockets to connect to MySQL (see Section 6.10, “Connecting Using
Unix Domain Sockets” and Section 6.11, “Connecting Using Named Pipes” for exceptions). TCP/IP
communication with MySQL can be affected by the skip_networking system variable or the server
firewall. If MySQL has been started with skip_networking enabled, you need to comment it out in
the file /etc/mysql/my.cnf or /etc/my.cnf for TCP/IP connections to work. (Note that your server
configuration file might also exist in the data directory of your MySQL server, or somewhere else,
depending on how MySQL was compiled; binaries created by Oracle always look for /etc/my.cnf and
datadir/my.cnf; see Using Option Files for details.) If your MySQL server has been firewalled, you will

158

https://dev.mysql.com/doc/refman/8.4/en/grant.html
https://dev.mysql.com/doc/refman/8.4/en/grant.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-command-options.html#option_mysql_host
https://dev.mysql.com/doc/refman/8.4/en/server-system-variables.html#sysvar_skip_networking
https://dev.mysql.com/doc/refman/8.4/en/server-system-variables.html#sysvar_skip_networking
https://dev.mysql.com/doc/refman/8.4/en/server-system-variables.html#sysvar_skip_networking
https://dev.mysql.com/doc/refman/8.4/en/option-files.html

need to have the firewall configured to allow TCP/IP connections from the host where your Java code is
running to the MySQL server on the port that MySQL is listening to (by default, 3306).

16.4: I have a servlet/application that works fine for a day, and then stops working overnight

MySQL closes connections after 8 hours of inactivity. You either need to use a connection pool that
handles stale connections or use the autoReconnect parameter (see Section 6.3, “Configuration
Properties”).

Also, catch SQLExceptions in your application and deal with them, rather than propagating them all
the way until your application exits. This is just good programming practice. MySQL Connector/J will set
the SQLState (see java.sql.SQLException.getSQLState() in your API docs) to 08S01 when it
encounters network-connectivity issues during the processing of a query. Attempt to reconnect to MySQL
at this point.

The following (simplistic) example shows what code that can handle these exceptions might look like:

Example 16.1 Connector/J: Example of transaction with retry logic

public void doBusinessOp() throws SQLException {
 Connection conn = null;
 Statement stmt = null;
 ResultSet rs = null;

 //
 // How many times do you want to retry the transaction
 // (or at least _getting_ a connection)?
 //
 int retryCount = 5;

 boolean transactionCompleted = false;

 do {
 try {
 conn = getConnection(); // assume getting this from a
 // javax.sql.DataSource, or the
 // java.sql.DriverManager

 conn.setAutoCommit(false);

 //
 // Okay, at this point, the 'retry-ability' of the
 // transaction really depends on your application logic,
 // whether or not you're using autocommit (in this case
 // not), and whether you're using transactional storage
 // engines
 //
 // For this example, we'll assume that it's _not_ safe
 // to retry the entire transaction, so we set retry
 // count to 0 at this point
 //
 // If you were using exclusively transaction-safe tables,
 // or your application could recover from a connection going
 // bad in the middle of an operation, then you would not
 // touch 'retryCount' here, and just let the loop repeat
 // until retryCount == 0.
 //
 retryCount = 0;

 stmt = conn.createStatement();

 String query = "SELECT foo FROM bar ORDER BY baz";

 rs = stmt.executeQuery(query);

159

 while (rs.next()) {
 }

 rs.close();
 rs = null;

 stmt.close();
 stmt = null;

 conn.commit();
 conn.close();
 conn = null;

 transactionCompleted = true;
 } catch (SQLException sqlEx) {

 //
 // The two SQL states that are 'retry-able' are 08S01
 // for a communications error, and 40001 for deadlock.
 //
 // Only retry if the error was due to a stale connection,
 // communications problem or deadlock
 //

 String sqlState = sqlEx.getSQLState();

 if ("08S01".equals(sqlState) || "40001".equals(sqlState)) {
 retryCount -= 1;
 } else {
 retryCount = 0;
 }
 } finally {
 if (rs != null) {
 try {
 rs.close();
 } catch (SQLException sqlEx) {
 // You'd probably want to log this...
 }
 }

 if (stmt != null) {
 try {
 stmt.close();
 } catch (SQLException sqlEx) {
 // You'd probably want to log this as well...
 }
 }

 if (conn != null) {
 try {
 //
 // If we got here, and conn is not null, the
 // transaction should be rolled back, as not
 // all work has been done

 try {
 conn.rollback();
 } finally {
 conn.close();
 }
 } catch (SQLException sqlEx) {
 //
 // If we got an exception here, something
 // pretty serious is going on, so we better
 // pass it up the stack, rather than just
 // logging it...

160

 throw sqlEx;
 }
 }
 }
 } while (!transactionCompleted && (retryCount > 0));
}

Note

Use of the autoReconnect option is not recommended because there is no safe
method of reconnecting to the MySQL server without risking some corruption of
the connection state or database state information. Instead, use a connection
pool, which will enable your application to connect to the MySQL server using an
available connection from the pool. The autoReconnect facility is deprecated, and
may be removed in a future release.

16.5: I cannot connect to the MySQL server using Connector/J, and I'm sure the connection
parameters are correct.

Make sure that the skip_networking system variable has not been enabled on your server. Connector/
J must be able to communicate with your server over TCP/IP; named sockets are not supported. Also
ensure that you are not filtering connections through a firewall or other network security system. For more
information, see Can't connect to [local] MySQL server.

16.6: Updating a table that contains a primary key that is either FLOAT or compound primary key
that uses FLOAT fails to update the table and raises an exception.

Connector/J adds conditions to the WHERE clause during an UPDATE to check the old values of the primary
key. If there is no match, then Connector/J considers this a failure condition and raises an exception.

The problem is that rounding differences between supplied values and the values stored in the database
may mean that the values never match, and hence the update fails. The issue will affect all queries, not
just those from Connector/J.

To prevent this issue, use a primary key that does not use FLOAT. If you have to use a floating point
column in your primary key, use DOUBLE or DECIMAL types in place of FLOAT.

16.7: I get an ER_NET_PACKET_TOO_LARGE exception, even though the binary blob size I want to
insert using JDBC is safely below the max_allowed_packet size.

This is because the hexEscapeBlock() method in
com.mysql.cj.AbstractPreparedQuery.streamToBytes() may almost double the size of your
data.

16.8: What should I do if I receive error messages similar to the following: “Communications link
failure – Last packet sent to the server was X ms ago”?

Generally speaking, this error suggests that the network connection has been closed. There can be several
root causes:

• Firewalls or routers may clamp down on idle connections (the MySQL client/server protocol does not
ping).

• The MySQL Server may be closing idle connections that exceed the wait_timeout or
interactive_timeout threshold.

Although network connections can be volatile, the following can be helpful in avoiding problems:

161

https://dev.mysql.com/doc/refman/8.4/en/server-system-variables.html#sysvar_skip_networking
https://dev.mysql.com/doc/refman/8.4/en/can-not-connect-to-server.html
https://dev.mysql.com/doc/refman/8.4/en/glossary.html#glos_primary_key
https://dev.mysql.com/doc/refman/8.4/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.4/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.4/en/update.html
https://dev.mysql.com/doc/refman/8.4/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.4/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.4/en/fixed-point-types.html
https://dev.mysql.com/doc/refman/8.4/en/floating-point-types.html
https://dev.mysql.com/doc/mysql-errors/8.4/en/server-error-reference.html#error_er_net_packet_too_large
https://dev.mysql.com/doc/refman/8.4/en/server-system-variables.html#sysvar_max_allowed_packet

• Ensure connections are valid when used from the connection pool. Use a query that starts with /* ping
*/ to execute a lightweight ping instead of full query. Note, the syntax of the ping needs to be exactly as
specified here.

• Minimize the duration a connection object is left idle while other application logic is executed.

• Explicitly validate the connection before using it if the connection has been left idle for an extended
period of time.

• Ensure that wait_timeout and interactive_timeout are set sufficiently high.

• Ensure that tcpKeepalive is enabled.

• Ensure that any configurable firewall or router timeout settings allow for the maximum expected
connection idle time.

Note

Do not expect to be able to reuse a connection without problems if it has being lying
idle for a period. If a connection is to be reused after being idle for any length of
time, ensure that you explicitly test it before reusing it.

16.9: Why does Connector/J not reconnect to MySQL and re-issue the statement after a
communication failure instead of throwing an Exception, even though I use the autoReconnect
connection string option?

There are several reasons for this. The first is transactional integrity. The MySQL Reference Manual states
that “there is no safe method of reconnecting to the MySQL server without risking some corruption of the
connection state or database state information”. Consider the following series of statements for example:

conn.createStatement().execute(
 "UPDATE checking_account SET balance = balance - 1000.00 WHERE customer='Smith'");
conn.createStatement().execute(
 "UPDATE savings_account SET balance = balance + 1000.00 WHERE customer='Smith'");
conn.commit();

Consider the case where the connection to the server fails after the UPDATE to checking_account.
If no exception is thrown, and the application never learns about the problem, it will continue executing.
However, the server did not commit the first transaction in this case, so that will get rolled back. But
execution continues with the next transaction, and increases the savings_account balance by 1000.
The application did not receive an exception, so it continued regardless, eventually committing the second
transaction, as the commit only applies to the changes made in the new connection. Rather than a transfer
taking place, a deposit was made in this example.

Note that running with autocommit enabled does not solve this problem. When Connector/J encounters
a communication problem, there is no means to determine whether the server processed the currently
executing statement or not. The following theoretical states are equally possible:

• The server never received the statement, and therefore no related processing occurred on the server.

• The server received the statement, executed it in full, but the response was not received by the client.

If you are running with autocommit enabled, it is not possible to guarantee the state of data on the server
when a communication exception is encountered. The statement may have reached the server, or it may
not. All you know is that communication failed at some point, before the client received confirmation (or
data) from the server. This does not only affect autocommit statements though. If the communication

162

problem occurred during Connection.commit(), the question arises of whether the transaction was
committed on the server before the communication failed, or whether the server received the commit
request at all.

The second reason for the generation of exceptions is that transaction-scoped contextual data may be
vulnerable, for example:

• Temporary tables.

• User-defined variables.

• Server-side prepared statements.

These items are lost when a connection fails, and if the connection silently reconnects without generating
an exception, this could be detrimental to the correct execution of your application.

In summary, communication errors generate conditions that may well be unsafe for Connector/J to simply
ignore by silently reconnecting. It is necessary for the application to be notified. It is then for the application
developer to decide how to proceed in the event of connection errors and failures.

16.10: How can I use 3-byte UTF8 with Connector/J?

Because there is no Java-style character set name for utfmb3 that you can use with the connection option
charaterEncoding, the only way to use utf8mb3 as your connection character set is to use a utf8mb3
collation (for example, utf8_general_ci) for the connection option connectionCollation, which
forces a utf8mb3 character set to be used. See Section 6.7, “Using Character Sets and Unicode” for
details.

16.11: How can I use 4-byte UTF8 (utf8mb4) with Connector/J?

To use 4-byte UTF8 with Connector/J configure the MySQL server with
character_set_server=utf8mb4. Connector/J will then use that setting, if characterEncoding and
connectionCollation have not been set in the connection string. This is equivalent to autodetection
of the character set. See Section 6.7, “Using Character Sets and Unicode” for details. You can use
characterEncoding=UTF-8 to use utf8mb4, even if character_set_server on the server has
been set to something else.

16.12: Using useServerPrepStmts=false and certain character encodings can lead to corruption
when inserting BLOBs. How can this be avoided?

When using certain character encodings, such as SJIS, CP932, and BIG5, it is possible that BLOB data
contains characters that can be interpreted as control characters, for example, backslash, '\'. This can lead
to corrupted data when inserting BLOBs into the database. There are two things that need to be done to
avoid this:

1. Set the connection string option useServerPrepStmts to true.

2. Set SQL_MODE to NO_BACKSLASH_ESCAPES.

163

https://dev.mysql.com/doc/refman/8.4/en/server-system-variables.html#sysvar_character_set_server
https://dev.mysql.com/doc/refman/8.4/en/server-system-variables.html#sysvar_character_set_server

164

Chapter 17 Known Issues and Limitations
The following are some known issues and limitations for MySQL Connector/J:

• When Connector/J retrieves timestamps for a daylight saving time (DST) switch day using the
getTimeStamp() method on the result set, some of the returned values might be wrong. In order to
avoid such errors, we recommend setting a connection time zone that uses a monotonic clock by, for
example, setting connectionTimeZone=UTC, and configuring other date-time connection properties
according to your needs; see Section 6.6, “Handling of Date-Time Values” for details.

• The functionality of the property elideSetAutoCommits has been disabled due to Bug# 66884. Any
value given for the property is ignored by Connector/J.

• MySQL Server uses a proleptic Gregorian calendar internally. However, Connector/J uses
java.sql.Date, which is non-proleptic. Therefore, when setting and retrieving dates that were before
the Julian-Gregorian cutover (October 15, 1582) using the PreparedStatement methods, always
supply explicitly a proleptic Gregorian calendar to the setDate() and getDate() methods, in order to
avoid possible errors with dates stored to and calculated by the server.

• To use Windows named pipes for connections, the MySQL Server that Connector/J wants to connect
to must be started with the system variable named_pipe_full_access_group; see Section 6.11,
“Connecting Using Named Pipes” for details.

165

https://dev.mysql.com/doc/refman/8.4/en/server-system-variables.html#sysvar_named_pipe_full_access_group

166

Chapter 18 Connector/J Support

Table of Contents
18.1 Connector/J Community Support ... 167
18.2 How to Report Connector/J Bugs or Problems ... 167

18.1 Connector/J Community Support

You can join the #connectors channel in the MySQL Community Slack workspace, where you can get
help directly from MySQL developers and other users.

18.2 How to Report Connector/J Bugs or Problems

The normal place to report bugs is http://bugs.mysql.com/, which is the address for our bugs database.
This database is public, and can be browsed and searched by anyone. If you log in to the system, you will
also be able to enter new reports.

If you find a sensitive security bug in MySQL Server, please let us know immediately by sending an email
message to <secalert_us@oracle.com>. Exception: Support customers should report all problems,
including security bugs, to Oracle Support at http://support.oracle.com/.

Writing a good bug report takes patience, but doing it right the first time saves time both for us and for
yourself. A good bug report, containing a full test case for the bug, makes it very likely that we will fix
sooner rather than later.

This section will help you write your report correctly so that you do not waste your time doing things that
may not help us much or at all.

If you have a repeatable bug report, please report it to the bugs database at http://bugs.mysql.com/. Any
bug that we are able to repeat has a high chance of being fixed sooner rather than later.

To report other problems, you can use one of the MySQL mailing lists.

Remember that it is possible for us to respond to a message containing too much information, but not to
one containing too little. People often omit facts because they think they know the cause of a problem and
assume that some details do not matter.

A good principle is this: If you are in doubt about stating something, state it. It is faster and less
troublesome to write a couple more lines in your report than to wait longer for the answer if we must ask
you to provide information that was missing from the initial report.

The most common errors made in bug reports are (a) not including the version number of Connector/J or
MySQL used, and (b) not fully describing the platform on which Connector/J is installed (including the JVM
version, and the platform type and version number that MySQL itself is installed on).

This is highly relevant information, and in 99 cases out of 100, the bug report is useless without it. Very
often we get questions like, “Why doesn't this work for me?” Then we find that the feature requested was
not implemented in that MySQL version, or that a bug described in a report has already been fixed in
newer MySQL versions.

Sometimes the error is platform-dependent; in such cases, it is next to impossible for us to fix anything
without knowing the operating system and the version number of the platform.

167

https://mysqlcommunity.slack.com/messages/connectors
http://bugs.mysql.com/
http://support.oracle.com/
http://bugs.mysql.com/

How to Report Connector/J Bugs or Problems

If at all possible, create a repeatable, standalone testcase that doesn't involve any third-party classes.

To streamline this process, we ship a base class for testcases with Connector/J, named
'com.mysql.cj.jdbc.util.BaseBugReport'. To create a testcase for Connector/J using this class,
create your own class that inherits from com.mysql.cj.jdbc.util.BaseBugReport and override the
methods setUp(), tearDown() and runTest().

In the setUp() method, create code that creates your tables, and populates them with any data needed to
demonstrate the bug.

In the runTest() method, create code that demonstrates the bug using the tables and data you created
in the setUp method.

In the tearDown() method, drop any tables you created in the setUp() method.

In any of the above three methods, use one of the variants of the getConnection() method to create a
JDBC connection to MySQL:

• getConnection() - Provides a connection to the JDBC URL specified in getUrl(). If a connection
already exists, that connection is returned, otherwise a new connection is created.

• getNewConnection() - Use this if you need to get a new connection for your bug report (that is, there
is more than one connection involved).

• getConnection(String url) - Returns a connection using the given URL.

• getConnection(String url, Properties props) - Returns a connection using the given URL
and properties.

If you need to use a JDBC URL that is different from 'jdbc:mysql:///test', override the method getUrl() as
well.

Use the assertTrue(boolean expression) and assertTrue(String failureMessage,
boolean expression) methods to create conditions that must be met in your testcase demonstrating
the behavior you are expecting (vs. the behavior you are observing, which is why you are most likely filing
a bug report).

Finally, create a main() method that creates a new instance of your testcase, and calls the run method:

public static void main(String[] args) throws Exception {
 new MyBugReport().run();
 }

Once you have finished your testcase, and have verified that it demonstrates the bug you are reporting,
upload it with your bug report to http://bugs.mysql.com/.

168

http://bugs.mysql.com/

Index

, 98

A
allowLoadLocalInfile connection property, 44
allowLoadLocalInfileInPath connection property, 44
allowMultiQueries connection property, 44
allowNanAndInf connection property, 46
allowPublicKeyRetrieval connection property, 41
allowReplicaDownConnections connection property, 56
allowSourceDownConnections connection property, 56
allowUrlInLocalInfile connection property, 45
alwaysSendSetIsolation connection property, 61
Authentication Methods

Kerberos, 96
PAM, 96

authenticationPlugins connection property, 33
authenticationWebAuthnCallbackHandler connection
property, 34
autoClosePStmtStreams connection property, 46
autoGenerateTestcaseScript connection property, 67
autoReconnect connection property, 54
autoReconnectForPools connection property, 54
autoSlowLog connection property, 65

B
blobsAreStrings connection property, 51
blobSendChunkSize connection property, 50

C
cacheCallableStmts connection property, 61
cacheDefaultTimeZone connection property, 45
cachePrepStmts connection property, 61
cacheResultSetMetadata connection property, 62
cacheServerConfiguration connection property, 62
callableStmtCacheSize connection property, 59
character sets

with Connector/J, 84
characterEncoding connection property, 37
characterSetResults connection property, 37
client-side failover, 130
clientCertificateKeyStorePassword connection property,
43
clientCertificateKeyStoreType connection property, 43
clientCertificateKeyStoreUrl connection property, 42
clientInfoProvider connection property, 35
clobberStreamingResults connection property, 48
clobCharacterEncoding connection property, 51
compatibility information, 3
compensateOnDuplicateKeyUpdateCounts connection
property, 47

connecting
through JDBC and Connector/J, 22
with Unix domain socket, 94
with Windows named pipes, 94, 165

connection pooling, 123, 155
connection properties, 25
connection URL, 22
connectionAttributes connection property, 35
connectionCollation connection property, 38
connectionLifecycleInterceptors connection property, 35
connectionTimeZone connection property, 52, 78
Connector/J

known issues, 165
limitations, 165
reporting problems, 167
troubleshooting, 157

connectTimeout connection property, 39
continueBatchOnError connection property, 46
createDatabaseIfNotExist connection property, 35
customCharsetMapping connection property, 38

D
databaseTerm connection property, 36
defaultAuthenticationPlugin connection property, 34
defaultFetchSize connection property, 62
detectCustomCollations connection property, 36
disabledAuthenticationPlugins connection property, 34
disconnectOnExpiredPasswords connection property, 36
DNS SRV records, 22, 103
dnsSrv connection property, 39
dontCheckOnDuplicateKeyUpdateInSQL connection
property, 62
dontTrackOpenResources connection property, 46
dumpQueriesOnException connection property, 67

E
elideSetAutoCommits connection property, 62
emptyStringsConvertToZero connection property, 48
emulateLocators connection property, 51
emulateUnsupportedPstmts connection property, 47
enableEscapeProcessing connection property, 62
enablePacketDebug connection property, 66
enableQueryTimeouts connection property, 63
error codes, 105
ER_ABORTING_CONNECTION, 105
ER_ACCESS_DENIED_ERROR, 105
ER_BAD_FIELD_ERROR, 105
ER_BAD_HOST_ERROR, 105
ER_BAD_TABLE_ERROR, 105
ER_BLOBS_AND_NO_TERMINATED, 105
ER_BLOB_CANT_HAVE_DEFAULT, 105
ER_BLOB_KEY_WITHOUT_LENGTH, 105
ER_BLOB_USED_AS_KEY, 105

169

ER_CANT_DO_THIS_DURING_AN_TRANSACTION,
105
ER_CANT_DROP_FIELD_OR_KEY, 105
ER_CANT_REMOVE_ALL_FIELDS, 105
ER_CANT_USE_OPTION_HERE, 105
ER_CHECK_NOT_IMPLEMENTED, 105
ER_CHECK_NO_SUCH_TABLE, 105
ER_COLLATION_CHARSET_MISMATCH, 105
ER_COLUMNACCESS_DENIED_ERROR, 105
ER_CONNECT_TO_SOURCE, 105
ER_CON_COUNT_ERROR, 105
ER_DBACCESS_DENIED_ERROR, 105
ER_DERIVED_MUST_HAVE_ALIAS, 105
ER_DUP_ENTRY, 105
ER_DUP_FIELDNAME, 105
ER_DUP_KEY, 105
ER_DUP_KEYNAME, 105
ER_DUP_UNIQUE, 105
ER_EMPTY_QUERY, 105
ER_FIELD_SPECIFIED_TWICE, 105
ER_FORCING_CLOSE, 105
ER_GRANT_WRONG_HOST_OR_USER, 105
ER_HANDSHAKE_ERROR, 105
ER_HOST_IS_BLOCKED, 105
ER_HOST_NOT_PRIVILEGED, 105
ER_ILLEGAL_GRANT_FOR_TABLE, 105
ER_ILLEGAL_REFERENCE, 105
ER_INVALID_DEFAULT, 105
ER_INVALID_USE_OF_NULL, 105
ER_IPSOCK_ERROR, 105
ER_KEY_COLUMN_DOES_NOT_EXITS, 105
ER_LOCK_DEADLOCK, 105
ER_LOCK_WAIT_TIMEOUT, 105
ER_MIX_OF_GROUP_FUNC_AND_FIELDS, 105
ER_MULTIPLE_PRI_KEY, 105
ER_NET_ERROR_ON_WRITE, 105
ER_NET_FCNTL_ERROR, 105
ER_NET_PACKETS_OUT_OF_ORDER, 105
ER_NET_PACKET_TOO_LARGE, 105
ER_NET_READ_ERROR, 105
ER_NET_READ_ERROR_FROM_PIPE, 105
ER_NET_READ_INTERRUPTED, 105
ER_NET_UNCOMPRESS_ERROR, 105
ER_NET_WRITE_INTERRUPTED, 105
ER_NEW_ABORTING_CONNECTION, 105
ER_NONEXISTING_GRANT, 105
ER_NONEXISTING_TABLE_GRANT, 105
ER_NONUNIQ_TABLE, 105
ER_NON_UNIQ_ERROR, 105
ER_NOT_ALLOWED_COMMAND, 105
ER_NOT_SUPPORTED_AUTH_MODE, 105
ER_NOT_SUPPORTED_YET, 105
ER_NO_DEFAULT, 105
ER_NO_PERMISSION_TO_CREATE_USER, 105

ER_NO_REFERENCED_ROW, 105
ER_NO_SUCH_INDEX, 105
ER_NO_SUCH_TABLE, 105
ER_NULL_COLUMN_IN_INDEX, 105
ER_OPERAND_COLUMNS, 105
ER_OUTOFMEMORY, 105
ER_OUT_OF_SORTMEMORY, 105
ER_PARSE_ERROR, 105
ER_PASSWORD_ANONYMOUS_USER, 105
ER_PASSWORD_NOT_ALLOWED, 105
ER_PASSWORD_NO_MATCH, 105
ER_PRIMARY_CANT_HAVE_NULL, 105
ER_READ_ONLY_TRANSACTION, 105
ER_REGEXP_ERROR, 105
ER_REQUIRES_PRIMARY_KEY, 105
ER_ROW_IS_REFERENCED, 105
ER_SELECT_REDUCED, 105
ER_SERVER_SHUTDOWN, 105
ER_SOURCE_NET_READ, 105
ER_SOURCE_NET_WRITE, 105
ER_SPATIAL_CANT_HAVE_NULL, 105
ER_SUBQUERY_NO_1_ROW, 105
ER_SYNTAX_ERROR, 105
ER_TABLEACCESS_DENIED_ERROR, 105
ER_TABLENAME_NOT_ALLOWED_HERE, 105
ER_TABLE_CANT_HANDLE_AUTO_INCREMENT, 105
ER_TABLE_CANT_HANDLE_BLOB, 105
ER_TABLE_EXISTS_ERROR, 105
ER_TABLE_MUST_HAVE_COLUMNS, 105
ER_TOO_BIG_FIELDLENGTH, 105
ER_TOO_BIG_ROWSIZE, 105
ER_TOO_BIG_SELECT, 105
ER_TOO_LONG_IDENT, 105
ER_TOO_LONG_KEY, 105
ER_TOO_LONG_STRING, 105
ER_TOO_MANY_KEYS, 105
ER_TOO_MANY_KEY_PARTS, 105
ER_TOO_MANY_ROWS, 105
ER_TOO_MANY_USER_CONNECTIONS, 105
ER_UNKNOWN_CHARACTER_SET, 105
ER_UNKNOWN_COM_ERROR, 105
ER_UNKNOWN_PROCEDURE, 105
ER_UNKNOWN_STORAGE_ENGINE, 105
ER_UNKNOWN_TABLE, 105
ER_UNSUPPORTED_EXTENSION, 105
ER_USER_LIMIT_REACHED, 105
ER_WARN_DATA_OUT_OF_RANGE, 105
ER_WARN_DATA_TRUNCATED, 105
ER_WARN_NULL_TO_NOTNULL, 105
ER_WARN_TOO_FEW_RECORDS, 105
ER_WARN_TOO_MANY_RECORDS, 105
ER_WRONG_AUTO_KEY, 105
ER_WRONG_COLUMN_NAME, 105
ER_WRONG_DB_NAME, 105

170

ER_WRONG_FIELD_SPEC, 105
ER_WRONG_FIELD_TERMINATORS, 105
ER_WRONG_FIELD_WITH_GROUP, 105
ER_WRONG_FK_DEF, 105
ER_WRONG_GROUP_FIELD, 105
ER_WRONG_KEY_COLUMN, 105
ER_WRONG_NAME_FOR_CATALOG, 105
ER_WRONG_NAME_FOR_INDEX, 105
ER_WRONG_NUMBER_OF_COLUMNS_IN_SELECT,
105
ER_WRONG_OUTER_JOIN, 105
ER_WRONG_PARAMCOUNT_TO_PROCEDURE, 105
ER_WRONG_SUM_SELECT, 105
ER_WRONG_TABLE_NAME, 105
ER_WRONG_TYPE_FOR_VAR, 105
ER_WRONG_VALUE_COUNT, 105
ER_WRONG_VALUE_COUNT_ON_ROW, 105
ER_WRONG_VALUE_FOR_VAR, 105
exceptionInterceptors connection property, 67
explainSlowQueries connection property, 65

F
failover

Java clients, 127
failOverReadOnly connection property, 55
fallbackToSystemKeyStore connection property, 43
fallbackToSystemTrustStore connection property, 42
fipsCompliantJsse connection property, 43
forceConnectionTimeZoneToSession connection
property, 52, 78
fractional seconds connection property, 83
functionsNeverReturnBlobs connection property, 51

G
gatherPerfMetrics connection property, 65
generateSimpleParameterMetadata connection property,
47
getProceduresReturnsFunctions connection property, 50

H
ha.enableJMX connection property, 56
ha.loadBalanceStrategy connection property, 57
holdResultsOpenOverStatementClose connection
property, 48

I
ignoreNonTxTables connection property, 67
includeInnodbStatusInDeadlockExceptions connection
property, 67
includeThreadDumpInDeadlockExceptions connection
property, 68
includeThreadNamesAsStatementComment connection
property, 68

initialTimeout connection property, 55
Installing Connector/J

With binary distribution, 7
With Maven dependencies, 9

interactiveClient connection property, 36

J
J2EE

connection pooling, 123
load balancing, 131

JDBC
and MySQL data types, 75
background information for Connector/J, 113
character sets, 84
CLASSPATH, 8
code examples, 19
compatibility, 73
configuration properties, 25
driver for MySQL, 1
SQLState codes, 105
troubleshooting, 157, 165
versions supported, 3

jdbcCompliantTruncation connection property, 48
JSON

scheme validation, 140

K
Kerberos authentication

with Connector/J, 96
KeyManagerFactoryProvider connection property, 44
keyStoreProvider connection property, 44
known issues

Connector/J, 165

L
largeRowSizeThreshold connection property, 63
ldapServerHostname connection property, 34
limitations

Connector/J, 165
load balancing

with Connector/J, 131, 133
loadBalanceAutoCommitStatementRegex connection
property, 57
loadBalanceAutoCommitStatementThreshold connection
property, 57
loadBalanceBlocklistTimeout connection property, 58
loadBalanceConnectionGroup connection property, 58
loadBalanceExceptionChecker connection property, 58
loadBalanceHostRemovalGracePeriod connection
property, 56
loadBalancePingTimeout connection property, 58
loadBalanceSQLExceptionSubclassFailover connection
property, 58

171

loadBalanceSQLStateFailover connection property, 58
loadBalanceValidateConnectionOnSwapServer
connection property, 59
localSocketAddress connection property, 39
locatorFetchBufferSize connection property, 51
logger connection property, 64
loggers, 145
logging, 145
logSlowQueries connection property, 65
logXaCommands connection property, 66

M
maintainTimeStats connection property, 61
maxAllowedPacket connection property, 39
maxByteArrayAsHex connection property, 64
maxQuerySizeToLog connection property, 64
maxReconnects connection property, 55
maxRows connection property, 48
metadataCacheSize connection property, 60
multi-host connections

with Connector/J, 127
multifactor authentication (MFA), 97

N
named pipes, 94, 165
netTimeoutForStreamingResults connection property, 48
noAccessToProcedureBodies connection property, 50
noDatetimeStringSync connection property, 53
nullDatabaseMeansCurrent connection property, 50

O
ociConfigFile connection property, 34
ociConfigProfile connection property, 34
OpenTelemetry, 147
openTelemetry connection property, 67
overrideSupportsIntegrityEnhancementFacility
connection property, 68

P
packetDebugBufferSize connection property, 66
padCharsWithSpace connection property, 48
PAM authentication, 95
paranoid connection property, 41
password connection property, 33
password1 connection property, 33
password2 connection property, 33
password3 connection property, 33
passwordCharacterEncoding connection property, 36
passwords, 97
pedantic connection property, 69
pinGlobalTxToPhysicalConnection connection property,
59

populateInsertRowWithDefaultValues connection
property, 49
prepStmtCacheSize connection property, 60
prepStmtCacheSqlLimit connection property, 60
preserveInstant connection property, 78
preserveInstants connection property, 53
processEscapeCodesForPrepStmts connection property,
47
profilerEventHandler connection property, 64
profileSQL connection property, 64
proleptic Gregorian calendar, 165
propertiesTransform connection property, 37

Q
queriesBeforeRetrySource connection property, 55
query attributes, 86
queryInfoCacheFactory connection property, 60
queryInterceptors connection property, 46
queryTimeoutKillsConnection connection property, 46

R
readFromSourceWhenNoReplicas connection property,
56
readOnlyPropagatesToServer connection property, 63
reconnectAtTxEnd connection property, 55
replication

with Connector/J, 133
replicationConnectionGroup connection property, 59
reportMetricsIntervalMillis connection property, 66
requireSSL connection property, 45
resourceId connection property, 59
resultSetSizeThreshold connection property, 66
retriesAllDown connection property, 55
rewriteBatchedStatements connection property, 63
rollbackOnPooledClose connection property, 37

S
scrollTolerantForwardOnly connection property, 49
secondsBeforeRetrySource connection property, 56
selfDestructOnPingMaxOperations connection property,
57
selfDestructOnPingSecondsLifetime connection property,
57
sendFractionalSeconds connection property, 53
sendFractionalSecondsForTime connection property, 53,
83
serverAffinityOrder connection property, 59
serverConfigCacheFactory connection property, 61
serverRSAPublicKeyFile connection property, 41
session state tracker, 104
sessionVariables connection property, 37
SLF4J, 145
slowQueryThresholdMillis connection property, 65

172

slowQueryThresholdNanos connection property, 65
socketFactory connection property, 39
socketTimeout connection property, 39
socksProxyHost connection property, 38
socksProxyPort connection property, 38
socksProxyRemoteDns connection property, 40
Spring framework, 151
SQLState error codes, 105
SSL, 88
sslContextProvider connection property, 44
sslMode connection property, 41
strictUpdates connection property, 49

T
tcpKeepAlive connection property, 40
tcpNoDelay connection property, 40
tcpRcvBuf connection property, 40
tcpSndBuf connection property, 40
tcpTrafficClass connection property, 40
time zone conversion, 78
tinyInt1isBit connection property, 49
tlsCiphersuites connection property, 43
tlsVersions connection property, 43
Tomcat application server, 149
traceProtocol connection property, 66
trackSessionState connection property, 38
transformedBitIsBoolean connection property, 49
treatMysqlDatetimeAsTimestamp connection property, 54
treatUtilDateAsTimestamp connection property, 54
troubleshooting

Connector/J, 157
JDBC SQLState codes, 105

trustCertificateKeyStorePassword connection property,
42
trustCertificateKeyStoreType connection property, 42
trustCertificateKeyStoreUrl connection property, 42
trustManagerFactoryProvider connection property, 44

U
ultraDevHack connection property, 68
Unicode

with Connector/J, 84
Unix doman socket, 94
useAffectedRows connection property, 37
useColumnNamesInFindColumn connection property, 68
useCompression connection property, 40
useConfigs connection property, 35
useCursorFetch connection property, 61
useHostsInPrivileges connection property, 50
useInformationSchema connection property, 50
useLocalSessionState connection property, 60
useLocalTransactionState connection property, 60
useNanosForElapsedTime connection property, 64

useOldAliasMetadataBehavior connection property, 69
useOnlyServerErrorMessages connection property, 68
user connection property, 33
useReadAheadInput connection property, 63
useServerPrepStmts connection property, 47
useSSL connection property, 45
useStreamLengthsInPrepStmts connection property, 47
useUnbufferedInput connection property, 41
useUsageAdvisor connection property, 66

V
validation

for JSON schemas, 140
verifyServerCertificate connection property, 45

W
Web Authentication (WebAuthn) authentication, 98

X
X DevAPI

client-side failover, 130
xdevapi.auth connection property, 69
xdevapi.compression connection property, 69
xdevapi.compression-algorithms connection property, 69
xdevapi.compression-extensions connection property, 70
xdevapi.connect-timeout connection property, 70
xdevapi.connection-attributes connection property, 71
xdevapi.dns-srv connection property, 71
xdevapi.fallback-to-system-keystore connection property,
71
xdevapi.fallback-to-system-truststore connection
property, 71
xdevapi.ssl-keystore connection property, 71
xdevapi.ssl-keystore-password connection property, 72
xdevapi.ssl-keystore-type connection property, 72
xdevapi.ssl-mode connection property, 72
xdevapi.ssl-truststore connection property, 72
xdevapi.ssl-truststore-password connection property, 72
xdevapi.ssl-truststore-type connection property, 72
xdevapi.tls-ciphersuites connection property, 72
xdevapi.tls-versions connection property, 72

Y
yearIsDateType connection property, 54

Z
zeroDateTimeBehavior connection property, 54

173

174

	MySQL Connector/J Developer Guide
	Table of Contents
	Preface and Legal Notices
	Chapter 1 Overview of MySQL Connector/J
	Chapter 2 Compatibility with MySQL and Java Versions
	Chapter 3 What's New in Connector/J 8.4?
	Chapter 4 Connector/J Installation
	4.1 Installing Connector/J from a Binary Distribution
	4.2 Installing Connector/J Using Maven
	4.3 Installing from Source
	4.4 Upgrading from an Older Version
	4.4.1 Upgrading to MySQL Connector/J 8.4 from Connector/J 5.1
	4.4.1.1 Running on the Java 8 Platform
	4.4.1.2 Changes in Connection Properties
	4.4.1.3 Changes in the Connector/J API
	4.4.1.4 Changes for Build Properties
	4.4.1.5 Change for Test Properties
	4.4.1.6 Changes for Exceptions
	4.4.1.7 Other Changes

	4.5 Testing Connector/J

	Chapter 5 Connector/J Examples
	Chapter 6 Connector/J Reference
	6.1 Driver/Datasource Class Name
	6.2 Connection URL Syntax
	6.3 Configuration Properties
	6.3.1 Authentication
	6.3.2 Connection
	6.3.3 Session
	6.3.4 Networking
	6.3.5 Security
	6.3.6 Statements
	6.3.7 Prepared Statements
	6.3.8 Result Sets
	6.3.9 Metadata
	6.3.10 BLOB/CLOB processing
	6.3.11 Datetime types processing
	6.3.12 High Availability and Clustering
	6.3.13 Performance Extensions
	6.3.14 Debugging/Profiling
	6.3.15 Exceptions/Warnings
	6.3.16 Tunes for integration with other products
	6.3.17 JDBC compliance
	6.3.18 X Protocol and X DevAPI

	6.4 JDBC API Implementation Notes
	6.5 Java, JDBC, and MySQL Types
	6.6 Handling of Date-Time Values
	6.6.1 Preserving Time Instants
	6.6.2 Fractional Seconds
	6.6.3 Handling of YEAR Values

	6.7 Using Character Sets and Unicode
	6.8 Using Query Attributes
	6.9 Connecting Securely Using SSL
	6.9.1 Setting up Server Authentication
	6.9.2 Setting up Client Authentication
	6.9.3 Setting up 2-Way Authentication
	6.9.4 JSSE in FIPS Mode
	6.9.5 Debugging an SSL Connection

	6.10 Connecting Using Unix Domain Sockets
	6.11 Connecting Using Named Pipes
	6.12 Connecting Using Various Authentication Methods
	6.12.1 Connecting Using PAM Authentication
	6.12.2 Connecting Using Kerberos
	6.12.3 Connecting Using Multifactor Authentication
	6.12.4 Connecting Using Web Authentication (WebAuthn) Authentication

	6.13 Using Source/Replica Replication with ReplicationConnection
	6.14 Support for DNS SRV Records
	6.15 Client Session State Tracker
	6.16 Mapping MySQL Error Numbers to JDBC SQLState Codes

	Chapter 7 JDBC Concepts
	7.1 Connecting to MySQL Using the JDBC DriverManager Interface
	7.2 Using JDBC Statement Objects to Execute SQL
	7.3 Using JDBC CallableStatements to Execute Stored Procedures
	7.4 Retrieving AUTO_INCREMENT Column Values through JDBC

	Chapter 8 Connection Pooling with Connector/J
	Chapter 9 Multi-Host Connections
	9.1 Configuring Server Failover for Connections Using JDBC
	9.2 Configuring Server Failover for Connections Using X DevAPI
	9.3 Configuring Load Balancing with Connector/J
	9.4 Configuring Source/Replica Replication with Connector/J
	9.5 Advanced Load-balancing and Failover Configuration

	Chapter 10 Using the X DevAPI with Connector/J: Special Topics
	10.1 Connection Compression Using X DevAPI
	10.2 Schema Validation

	Chapter 11 Using the Connector/J Interceptor Classes
	Chapter 12 Using Logging Frameworks with SLF4J
	Chapter 13 Using Connector/J with OpenTelemetry
	Chapter 14 Using Connector/J with Tomcat
	Chapter 15 Using Connector/J with Spring
	15.1 Using JdbcTemplate
	15.2 Transactional JDBC Access
	15.3 Connection Pooling with Spring

	Chapter 16 Troubleshooting Connector/J Applications
	Chapter 17 Known Issues and Limitations
	Chapter 18 Connector/J Support
	18.1 Connector/J Community Support
	18.2 How to Report Connector/J Bugs or Problems

	Index

