A Species-Level Phylogeny of Extant Snakes with Description of a New Colubrid Subfamily and Genus

PLoS One. 2016 Sep 7;11(9):e0161070. doi: 10.1371/journal.pone.0161070. eCollection 2016.

Abstract

Background: With over 3,500 species encompassing a diverse range of morphologies and ecologies, snakes make up 36% of squamate diversity. Despite several attempts at estimating higher-level snake relationships and numerous assessments of generic- or species-level phylogenies, a large-scale species-level phylogeny solely focusing on snakes has not been completed. Here, we provide the largest-yet estimate of the snake tree of life using maximum likelihood on a supermatrix of 1745 taxa (1652 snake species + 7 outgroup taxa) and 9,523 base pairs from 10 loci (5 nuclear, 5 mitochondrial), including previously unsequenced genera (2) and species (61).

Results: Increased taxon sampling resulted in a phylogeny with a new higher-level topology and corroborate many lower-level relationships, strengthened by high nodal support values (> 85%) down to the species level (73.69% of nodes). Although the majority of families and subfamilies were strongly supported as monophyletic with > 88% support values, some families and numerous genera were paraphyletic, primarily due to limited taxon and loci sampling leading to a sparse supermatrix and minimal sequence overlap between some closely-related taxa. With all rogue taxa and incertae sedis species eliminated, higher-level relationships and support values remained relatively unchanged, except in five problematic clades.

Conclusion: Our analyses resulted in new topologies at higher- and lower-levels; resolved several previous topological issues; established novel paraphyletic affiliations; designated a new subfamily, Ahaetuliinae, for the genera Ahaetulla, Chrysopelea, Dendrelaphis, and Dryophiops; and appointed Hemerophis (Coluber) zebrinus to a new genus, Mopanveldophis. Although we provide insight into some distinguished problematic nodes, at the deeper phylogenetic scale, resolution of these nodes may require sampling of more slowly-evolving nuclear genes.

MeSH terms

  • Animals
  • Bayes Theorem
  • DNA, Mitochondrial / genetics
  • Genetic Variation*
  • Likelihood Functions
  • Phylogeny*
  • Sequence Analysis, DNA
  • Snakes / classification
  • Snakes / genetics*
  • Species Specificity

Substances

  • DNA, Mitochondrial

Grants and funding

This work was supported by National Science Foundation East Asia & Pacific Summer Institute (OISE-1107819); University of New Orleans College of Sciences Graduate Student Research Grant; University of New Orleans Department of Biological Science Dissertation Enhancement Award; University of New Orleans Dissertation Improvement Grant; and University of New Orleans Latin American Studies Abroad Program Award. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.