
D'ICUMENT R s ltME

ED 024 602
SE 005 423

By-Kemeny, John G.; Kurtz, Thomas E.
The Dartmouth Time-Sharing Computing System. Final Report.

Spons Agency-National Science Foundation, Washington, D.C.

Pub Date Jun 67
Grant-NSF-GE-3864
Note- 76p.
EDRS Price MF-$0.50 HC-$3.90
Descriptors- *Computer Assisted Instruction, *Computers, Curriculum, Engineering, *Higher Education,

*Instruction, Mathematics, Physics, Program Descriptions, Psychology
Identifiers-Dartmouth College, National Science Foundation

Reported are the activities involved in introducing computer programing to

students at Dartmouth College as part of their program in liberal education. How this

project was accomplished and the subsequent impact on students in mathematics.

engineering, psychology, physics, and business administration is presented in summary

form. Also reported is the impact that this project has had on the faculty at
Dartmouth and at other institutions. (RP)

U.S. DEPARTMENT OF HEALTH, EDUCATION & WELFARE

OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FROM ME

PERSON OR ORGANIZATION ORIGINATING IT. POINTS OF VIEW OR OPINIONS

STATED DO NOT NECESSARILY REPRESENT OFFICIAL OFFICE BF EDUCATION

POSITION OR POLICY.

THE DARTMOUTH TIME-SHARING COMPUTING SYSTEM

developed under a grant from the

Course Content Improvement Program

National Science Foundation

John G. Kemeny

Project Director

(Grant NSF GE-3864)

Final Report

June 1967

Thomas E. Kurtz

Assoc. Project Director

THE DARTMOUTH TIME-SHARING COMPUTING SYSTEM

developed under a grant from the

Course Content Improvement Program
National Science Foundation

(Grant NSF GE-3864)

Final Report
April 1967

John G. Kemeny Thomas E. Kurtz
Project Director Assoc. Project Director

1.

2.

3.

4.

5.

TABLE OF CONTENTS

Page
The Goal of the Project 1

What was Accomplished 5

Impact on the Student Body 10

Mathematics 11

Engineering 13

Psychology 15

Physics 17

Business Administration 17

Impact on the Faculty 20

Impact on Other Institutions 23

Use by Colleges 23

Use by Secondary Schools 24

An Educational Utility 26

Commercial Use 27

Future Plans 28

APPENDICES

I. The Time-Sharing System

The Language BASIC

III. The Freshman Training Program

TEACHING SUPPLEMENTS
(not included)

I. Use of the Computer in a Course in Number Theory

II. Computer Programs of Use in Elementary Statistics

III. Computer Programs of Use in Statistics

IV. Use of the Computer in a Course in Logic

V. Using the Computer in the Teaching of Constructive
Linear Algebra

1.

1. The Goal of the Pro'ect.

Four years ago Lartmouth College reached the conclusion that

learning to use a high-speed computer should be an essential part

of liberal education. Four years ago this was merely a dream,

and considered impractical by many experts. Today it is a

reality.

Computers are beginning to have an increasing effect on the

lives of all of us. They play key roles in business, industry,

government, and all forms of research. The average college
graduate of today is almost sure to need a computer in his work

twenty years from now. Therefore, we must prepare him today to

use this most powerful of tools.

Even more significant is the need for changing the attitude

of the typical intelligent person towards computers. Present

attitudes are often a mixture of fear and superstitious awe.

The same person may refuse to believe that computers can do

large routine tasks, which are no more than simple exercises on

a high-speed computer, and yet accept uncritically "conclusions"
obtained by means of a computer. It is vitally important that

the leade-s of government, industry and education should know

both the potential and limitations of the use of computers, and

to be aware of the respect:tve roles of Man and machine in the

partnership.

By the end of the current academic year, Dartmouth will

have introduced some 2000 students to the use of computers.

This represents 80% of three freshman classes. All of these

students will have completed four significant exercises, in which

they personally "debug" their own programs. A significant minority

of these students have acquired the habit of regular use of the

Dartmouth system. But even those students who did only the

minimal required work have changed their attitude towards

computers. Anyone who tries to convince a Dartmouth under-
graduate either that computers are to be feared or that they

are of little use, will be met with well-founded scorn. The

Dartmouth student knows better -- and knows it from personal

experience.

A secondary goal was to put the computer at the fingertips

of the Faculty. Four years ago only a handful of faculty members

had ever used a computer. This was due in part to the nature of

research on our campus. None of the faculty members were engaged

in projects which required hours of computer time. And while

many could have made good use of smaller quanta of computing time

(and do make such use today), they found the nuisance of using a

traditional computation center too great a deterrent. And none

of us saw how these facilities could reasonably support our

teaching.

2.

Today some 40% of the faculty use the Dartmouth system.Faculty use represents a wide variety of projects. In the areaof research we find anything from the computation of examples
through data-analysis to large computer based research projects.And in teaching it is common to see a faculty member runnlag off
an illustration for his lecture -- usually five minutes before
class. But he will feel equally free to ask his students towork significant exercises and term projects on the computer. Hemay be sure that his students know how to use a computer, that
the computer will be available, and that the student will enjoythe assignment.

There are two reasons for our success: (1) Our easy-to-usetime-sharing system, and (2) the new simple language BASIC. Tounderstand the full significance of these developments, we mustlook at the state of the art of computing before time-sharing.

Five years ago the method of operation at computation centers
was "batch-processing", and this is still the only procedure atmost centers. It is designed to maximize the use of the computerfor a large number of significant problems -- which are known to
be correctly programmed. Since computers are much faster than
human beings, it is inefficient to let a single human being usethe machine all on his own. It takes too long for him to tell
the computer what he wants, and it takes too long for him tounderstand the answer. Therefore human beings submit their
requests, which are collected until there is a large number of
them, and then these are fed into the machine -- usually from a
magnetic tape. The computer works on the first problem for aslong as necessary, and writes the answers on another tape. It
can then immediately start work on the second problem. When allthe problems have received their share of the computer's
attention, the tape is transcribed on a printer, and the answersare distributed to the users. The elapsed time may be anywhere
from two hours to a whole day.

A typical user may have received only a minute of the
computer's time. But since this may save him years of work, itis well worth waiting for several hours until he can obtain his
results, if they are correct. But human beings are not infallible,
and the chances are that there were some slight mistakes in the
instructions (in the program). The user must then make a
correction, and resubmit his problem. It is quite common to haveto do this ten or more times until the program finally works.
Thus it may take two weeks of rather frustrating work until the
programmer succeeds. During all this time the use of the computer
is optimized -- an error may waste only a fraction of a second of
the machine's time -- but it certainly is far from ideal for thehuman being.

3.

We came to the conclusion that while research scientists may

put up with this kind of treatment, Dartmouth undergraduates would

rebel. We therfore designed a system that is ideal from the

human point of view -- and yet is a surprisingly efficient use of

the computer as well.

It would be impossible to have 250 students, during a ten

week term, queuing up for their many dozens of attempts at making

programs work. They would have to arrange their entire schedule

at the computer's eonvenience. And they would often have to

wait overnight until a simple typing error is corrected. These

same factors play a-major role in faculty reluctance to learn the

use of computers.

Yet we could not afford to tunn a million dollar machine over

to a single user. Hence the answer is that the computer should

serve a large number of users all at the same time. On our

present system about 35 users can get good simultaneous service,

each with the illusion that he has complete control of the

machine. Each user sits at a teletype typewriter, types out his

program, and keeps entering corrections until his program finally

works. This makes it both convenient and pleasant to use the

computer. The nature of this time-sharing system is discussed

in the next section, and more technical details are furnished in

Appendix I.

The second major obstacle to the use of computers was the

necessity of learning a strange new language. "Machine language"

is strictly for experts, and useless for the novice or for the

casual user. The first break-through came about a decade ago,

with the development of FORTRAN. It was the first language

designed to make it as easy for the average user to write a

program. Once he writes a program in FORTRAN, the computer

itself translates it from FORTRAN into machine language, so that

the user is under the illusion that the computer speaks FORTRAN.

While FORTRAN was a major advance, it still has many disadvantages

for the novice and the occasional user, and we decided that we

could improve it.

Thus we decided to write a "Beginners' All-purpose Symbolic

Instruction Code" and BASIC was born. Our one major mistake was

to use the word 'Beginners' in the name, since now the language

is widely used (and preferred) by experts as well as novices.

BASIC was originally designed as an extremely simple

language that can be quickly mastered by a novice. This core has

been retained. Our freshmen learn to program in BASIC in two one-

hour lectures. These two lectures, together with a very brief

manual, enable them to be on their on the computer. After that

they learn from their own experience.

The language has since been expanded into a powerful, general
purpose programming language. However unlike other languages,
BASIC provides power without handicapping the novice. The beginner
is simply not aware of the full power of the language. Whenever
new instructions required that someone had to do extra work, we
always put the burden on the experienced programmer.

A language like FORTRAN or ALGOL requires that the user
remember a large number of conventions and that he specify a wide
variety of options. This makes it harder to learn the language,
and occasional users complain that they have to "relearn" the
language each time. In BASIC this difficulty has been avoided.
The language is as close to ordinary English combined with
elementary algebra as possible. Whenever conventions are necessary
or options available, a simple choice is automatically provided
for the novice. The expert may specify a more advance option, if
he desires.

It is tremendously encouraging to the novice, be he a student
or a member of the Faculty, that he can do something interesting
on the computer during the first week of the training program.
The Leader who may be sceptical on this point is encouraged to
look at Appendix II, which discusses BASIC and furnishes examples.

The combination of time-sharing and BASIC has made our
computation center perhaps the most popular educational/research
facility on the campus. Everything we had hoped for four years
ago has come true, and in many ways our success has far surpassed
our dreams. We will speak of this in Sections 3 and 4.

But our most pleasant surprise has been wide national, and
even international, attention attracted by the Dartmouth system.
We have been visited by representatives of some 200 institutions
who wished to see for themselves what we had accomplished. Many
of these institutions have since become active users of time-
sharing or are planning to install time-sharing systems patterned
at least in part on ours. We will describe some of these uses in
Section 5.

2. What was Accomplished.

5.

The project officially started in September 1963. The staff

consisted of the Director and Associate Director, both working

part time, and a dozen very able Dartmouth undergraduates. The

computer equipment had been ordered from the General Electric

Company, but it would not be available for another 6 months.

During these months the detailed planning took place. It was

decided early that the time-sharing system could best be implemented

by using two computers, one to do the actual computations and one

to carry on simultaneous conversations with all the users. The

former was to be a GE-235, a reasonably fast but small computer.

It had a 6 micro-second cycle time, and floating point operations

take 30-60 micro-seconds. That is fast, but not nearly as fast

as today's best computers. Its memory consists of only 16,000

20-bit words, which is a very small memory or a modern computer.

One of the main reasons for choosing GE equipment was the

availability of the Datanet-30 for communication purposes. This

is an independent computer in its own right, strong on logic

and weak on arithmetic. It does, however, have a 16,000 word

memory of its own. Since the small memory of the 235 was needed

for the actual computations, most of the logic of the time-sharing

system -- the so-called "executive program" -- had to be in the

Datanet-30. This meant that the Datanet was the boss, and the

235 acted as a slave computer, simply following orders.

The third component of the system is a large random-access

disc memory, capable of string 6 million 20-bit words. This is

used as scratch-paper, to accumulate the programs of all the current

users, to hold compilers and library programs, and to provide the

capability of storing programs for future use.

While the usual peripherals (printer, tapes, card reader and

punch) were available, they do not play an important role during

time-sharing. The essence of the system is the interaction

between the two computers, and their joint use of the disc memory.

The most difficult design problem was the communication

between two independent computers for which we had no precedents.

This problem was successfully solved by Michael Busch and John

McGeechie, a Dartmouth Sophomore working with a Dartmouth Junior.

They coded and debugged the entire executive system.

At the same time the new language BASIC had to be designed

from scratch, and a compiler had to be written. A "compiler"

is a program that translates from a user language (BASIC in this

case) to the language of the machine. A good compiler will enable

the user to talk to the machine in BASIC, to have various

grammatical errors spotted automatically, and will yield an

efficient machine code.

6.

In addition a wide variety of "utility routines" had to be

written. We will mention only one of these. We wished to make
the process of debugging as painless as possible. Therefore, we

hit on the following idea: It is terribly difficult to make
corrections in a machine-language program. Instead, our system
would always save the original program in BASIC, and all corrections

would be in that language. All instructions were to be numbered,

and if a line was to be changed, one simply retyped the same line

number with the corrected line. If an instruction was to be
inserted between lines 30 and 40, one simply typed a new line with

an intermediate line number, say 44. Therefore, we needed a
utility routine that would take a program with corrections, and
make the insertions and replacements automatically.

The computer (originally a slower 225) arrived on March 1,

1964. During the month of March it was undergoing shake-down,

and some admustments had to be made in the hardware, But the

programmers used every available moment for debugging the various

soft-ware systems. On April 1 the system was officially turned

over to Dartmouth. At 4 a.m. on May 1, 1964 three teletypes
time-shared programs in BASIC. We are rather proud of that time-

table.

But the hardest debugginywas still before us. BASIC was in

a rudimentary form. The executive system still was prone to

catastrophies. Many more features were needed to make the system

both fast enough to handle a large number of users and convenient

enough for our purposes. We also had to prepare for the change-

over to tha 235. This faster computer arrived in September 1964,

and in October we launched the first full-scale freshman training

program.

Before proceeding, it will be useful to describe how our

system looks to a user. We will not at this time talk about
technical details, these are contained in Appendix I.

Let us observe a student who has just sat down at a teletype.

He types 'HELLO', to tell the machine that there is a new user.

He is then asked to identify himself, and then he is ready to type

in a program. Let us consider a trivial example:

10 LET X = LOG(2.39)

20 LET Y = X t 3 + 5

30 PRINT Y

40 END

This is a complete set of instructions in BASIC. It is almost

self-explanatory, one needs only point out that X3 is written as

XI. 3, since exponents cannot be typed on a teletype. The result

of the program is Elog(2.39)0+5. If the student now types RUN,

his program will be translated into machine-language, and executed.

The answer will be printed on his teletype.

7.

He may now wish to make a change. For example, he would
like to print both X and Y. He simply types:

30 PRINT X,Y

and his old instruction 30 is replaced by the new one. He is
then ready to type RUN again. The entire correction may have
taken 15 seconds. If after making several corrections he is not

sure of what his present program looks like, he types LIST, and
receives the up-to-date version of his program.

During these operations a variety of functions are carried
out by the Datanet, the 235, and the disc. His typing is received

by the Datent, which stores his program and the corrections on

the disc. When the instruction RUN (or LIST) is received, the
Datanet commands the 235 to go to work. First the utility program
is called that takes care of sorting out instructions and

corrections. Then the BASIC compiler translates the program into
machine language, and attempts to execute it. If answers are

obtained (or error messages generated), these are written out

on disc, from where they are sent to the user's teletype by the

Datanet.

All of these activities take place, but the user is not

aware of them! As far as he is concerned, he is talking to a
single machine, and that machine talks in BASIC.

Nor is the typical user aware of the fact that he is sharing

the computer with some 30 other users. The Datanet is capable

of talking simultaneously to all users. For example, if there

are 35 users on the system, andall are having answers typed,

the Datanet will keep all 35 teletypes running at maximum speed,

typing out 35 different sets of answers. When this occurs, the

235 is standing idle. The main computer, the 235, is used only

when a program needs some computing to be done. Since in a

typical situation the user may type for a minute, then require

2 seconds of computing time, and then his answers may take another

half-a-minute to be typed, it is not surprising that the 235

can serve 35 users.

At any given time only 3 or 4 programs are likely to require

service. The 235 serves the first one, places the answers on the

disc, and then is ready to serve the next one. The chances

are that it will have completed three jobs before the first line

of output is typed.

But what if a given program requires longer service? It

is first given 5 seconds by the 235. If it is not finished, all

the work is written out on the disc, and all the other programs

waiting for service are given a chance. Then our longer program

is brought back in, and given further service in 10-second
installments, until it is completed. It should be noted that 5

seconds allow the completion of 100,000 arithmetical operations!

This is more than enough for most jobs.

Most requests are very short. The user makes a correction,
types RUN, and again obtains an error message. This takes a
fraction of a second. Or he asks to have his program listed, or
he tries a simple test run. These requests are usually serviced
within 10 seconds, a time just long enough for the user to catch
his breath, and if one requires a substantial amount of computing
time, one is prepared to wait a few minutes for the results.

An important additional service is the saving of programs.
If the student has successfully debugged his program, and wishes
to use it again, he simply types SAVE. His program is then placed
in a special area on the disc, from which he may retrieve it the
next day (or next month) by typing OLD, and identifying his
program, It will then be available as if he had just typed it.

This feature enabled us to build up a significant list of
library programs -- programs of general usefulness, available to
all users. Thus in addition to retrieving his old programs, the
student may call on a library of some 500 programs. These range
from standard mathematical routines, through routines needed for
specific courses, to a variety of highly popular games. The
student can challenge the computer to a game of three-dimensional
tic-tac-toe, or quarterback Dartmouth's football team in a highly
realistic match against arch-enemy Princeton. The program is
somewhat biased -- Dartmouth usually wins.

A remark is in order concerning the use of computers to
play games. They are a magnificent means of recreation. But
some people feel that it is frivolous to use these giants to
play games. We do not share this prejudice. There is no better
way of destroying fear of machines than to have the novice play
a few games with the computer. We have noted this phenomenon
many times, particularly with visiting alumni. And most of
the games have been programmed by our students, which is an
excellent way to learn programming.

We should, in this connection, note one short-coming of our
equipment. While originally we were able to save user programs
up to 3 months, this time has dangerously shrunk. As the library
grew, and the number of our users increased significantly, the
disc kept being filled up more and more rapidly, until now programs
are saved for only a couple of weeks. It is clear that a larger
random-access memory would be highly desirable.

Once the initial time-sharing system was in operation, our
programming staff was used both to improve its efficiency and
to provide further services. The language ALGOL was added for
experienced programmers, and more recently also FORTRAN for
those who could not be weaned from the language they first learned.

Then a large editorial package was developed. It started
with programs that would rearrange the user's BASIC program,
or combine two such programs into one. But it has grown into
a very sophisticated system. For example, the user may now --
with a single command -- change all occurrences of 'A7' to '82'
in his program. Or he may find all instructions that use the word
'READ'.

9.

Another milestone was the development of "background"

capability. Originally this arose out of the irony that even

though 35 users were being given excellent simultaneous service,

the 235 was often idle for several seconds. This time is now used

to work on background problems; problems that were not initiated

from a teletype. These are "spare time" tasks for the computer,

which are not allowed to delay service to teletypes. But since

these background problems are allowed to use all the peripherals,

they enable our users to input problems from cards or tapes, to

print answers on the high-speed printer, and generally to run

problems too large for ordinary time-sharing treatment.

We must also mention our TEACH system, without which the

freshman training program would not have been possible. We

train 650 freshmen in a given year. Each of them has to debug 4

programs, and may make several false attempts before succeeding.

Thus someone has to check about 10,000 programs per year. Only

a machine is capable of doing this. And at Dartmouth the machine

is capable of doing so.

For example, one of the problems in freshman calculus, TRAP,

requires the student to program numerical integration by the

trapezoid rule. (See appendix IV.) We have written, once and for

all, a program in BASIC that checks out TRAP programs. When the

student thinks that his solution to TRAP works, he types TEST.

Then the special test program takes control of the student's

program and checks it out under various conditions. If the

program does not work, the machine gives a hint as to what is wrong.

And if the program passes all tests, a congratulatory message is

typed out. The student tears off this message, hands it in to

his instructor, and receives credit for the work.

We are now paying the price of our own success. Demand for

more teletypes and more computing time has spread throughout the

campus. We have also seen what a great service we have provided

to the handful of secondary schools and colleges that have been

regular users. Therefore, it was decided to launch an even larger

and more ambitious time-sharing system. It is based on a GE-635,

four Datanet-30's, and much larger random access memories. It has

been developed jointly with the General Electric Company, and is

presently about where our old system was in September 1964. When

it is fully implemented, it will allow simultaneous use by 200

people, and will be much faster, more sophisticated, and more

versatile than our present system. It will also allow the running

of large research problems. When this stage is reached, Dartmouth

hopes to provide computing service for colleges and secondary

schools throughout Northern New England.

3. Impact on the Student Body.

All freshmen who complete a year of mathematics are required
to complete the freshman computer program. At Dartmouth this
includes about 80% of each class. The training takes place in one
of two sequences: Science oriented students take a year of calculus
in their freshman year, and the computer program occurs in the
second semester of calculus. Liberal arts students take an
introduction to the calculus followed by a course in finite
mathematics. Thus their computer training is linked to the latter
course.

Details of the freshman training program, including an
evaluation, will be found in Appendix III. We will simply summarize
some of the main features here. In either sequence the students
attend two one hour lectures, and then are handed a short manual
on BASIC. We have found that this very brief training is adequate.
A student evaluation showed that the original 3-lecture program
was too long!

After the initial lectures, each student has a teletype
reserved for him for 3/4 of an hour per week, for 9 weeks. He
must write four assigned programs, debug them, and pass the
computer TEST on each program (see Section 1). Our experience
shows that students spend between one and two hours a week on their
programs (including teletype time), and that 95% of the programs
are successfully completed.

In either sequence the first program is a very simple one,
while the other three are substantial problems, closely connected
to the cnurse material. The last program in the calculus sequence
is a simple but general purpose program for solving first order
differential equations. In the finite math course the last
program requires the student to estimate thc limiting probabilities
of a Markov chain by simulation. These are both quite demanding
problems. The phenomenal completion rate testifies not only to
the practicability of the freshman training program, but also to
the fact that students thoroughly enjoy the work.

Any upperclassman who elects a course for which computer work
is useful will almost surely have had the computer training.
Therefore, instructors feel free to assign computer problems. And
many students elect to do term projects on computers. There is
a story circulating on the campus about a certain science course
in which the instructor has for years assigned the same pet term
project. This year three students handed in the project the next
day -- and ten others like it. It will take a while until we
fully appreciate that long laborious projects of the past are
trivialities when done on the computer.

11.

The use of the computer for instructional purposes is still

somewhat haphazard. Only the engineering and business schools

have thought through the implications systematically. But

individual professors in all the sciences and several social

sciences use the computer regularly. And students on their own

have used the computer for music projects. It is clear that we

still have a great deal to learn about the optimal use of machines

for teaching purposes.

Of the many departments using the computer we have selected

five, to give more detailed examples. They are the departments

of mathematics, physics, and psychology, and the schools of

engineering and business. But, before giving these illustrations,

it will be useful to make two general remarks.

First of all we should like to distinguish between two
entirely different ways of using computers in instruction. One

is to use them as teaching machines; to have the machine teach the

student. Dartmouth has done little in this area. While we ought

to do more, we are somewhat skeptical about the far-reaching claims

made for this use of machines, especially in higher education.

The other use is to have the students program the computer; in

effect, here the student is the teacher and the machine learns.

We feel that this use of machines is tremendously valuable. Not

only does it increase the power of each student in doing scientific

problems, but there is no better way of learning an algorithm than

to teach it to a computer.

Secondly, we wish to give some indication of the computing

power placed at students' finger tips. The Project Director

was a member of the Los Alamos Computation Center in 1945. This

center represented the most powerful computing complex available

just over 20 years ago. It consisted of 17 IBM bookkeeping machines.

It was staffed by 15-20 employees who operated.the machines 24

hours a day, six days a week. The problems solved were instrumental

in designing the atomic bomb and in estimating the effect of the

bomb. All the work done in a year at Los Alamos could easily

be done by a Dartmouth undergraduate in one afternoon. And he

could do this while 30 others are using the time-sharing systems

Mathematics

The mathematics department has prepared "teaching supplements"

to illustrate the use of computing in connection with four

standard courses. Manuals in Logic, Number Theory, Statistics,

and Linear Algebra are available.

12.

Each of these manuals consists of annotated programs, ranging
from the elementary to the advanced. They show how a course can
be enriched by combining it with computing experience. In practice,
students are asked to write some of the programs for themselves,
since they learn a great deal from this experience. Other programs
are placed in the library, for use by students.

Let us consider the theory of numbers as an example. The
Euclidean algorithm is one of the most ancient and most important
algorithms in mathematics. It finds the greatest common divisor
(g.c.d.) of two numbers. It is amazingly simple, very fast, and
ideally suited for computer work. But the student misses the
simplicity when he gets bogged down in arithmetical computations.
And he fails to realize the power, since large examples take too
long to work by hand.

LIST

EUCLID 21:50 MAR.27,1967

10 PRINT " A", B"s--"G.C.D."
20 READ ApB
30-PRINT AsB,
40 LET (4.= INT(A,B)
45 LeT R a A - P*B
50 LET A = B
55 LET B R
60 IF R 0 THEN 40
70 PRINT A
80 GOTO 20
90 DATA 130,169, 243,256, 1034567893987654321
99 END

RUN

EUCLID 21:51 MAR.27,1967

A R G.C.D.
130 169 13
243 256 1

123456789 987654321 9

OUT OF DATA IN 20

TIME: 0 SECS.

13.

We show a listing and a run for the program EUCLID, which
carries out the algorithm. The program is amazingly short. The
whole algorithm is contained in the five instructions on lines
40-60; the rest of the program reads data and prints answers. The
sample run finds g.c.d.'s for three pairs of numbers, the last
being in the hundreds of millions range. Computing time is rounded
.8to the nearest second, so that 'TIME: 0 SECS.' shows that the
translation of the program from BASIC to machine language plus the
execution took less than 1/2 second.

Equally impressive is the traditional sieve for finding
primes. It is hard to improve on it -- but students delight in
doing so. Much more ambitious is the finding of large twin primes
(see the next section for an example) or programming the Chinese
remainder theorem.

In logic the computation of truth tables or the checking of
whether a formula is well-formed are natural candidates for
computer programs. In linear algebra all kinds of work with
matrices is facilitated by computers, and the simplex method for
linear programming was designed for machines. But the best example
is statistics. Anyone who reads the statistics teaching supplement
will wonder how statistics was ever taught without having a
computer at each student's disposal.

We strongly urge the interested reader to send away for one
or more of these teaching supplements. They are our evidence
that computers do enrich the undergraduate mathematics curriculum,
and that they make courses vastly more interesting.

Engineering (Thayer School)

The time-sharing system has become an integral part of our
educational and research activities. The time-sharing man-machine
interaction has produced a situation in which staff and students
can implement their concepts by programming their mathematical
models, correct their programs and obtain answers 10 to 100 times
faster than a person operating in the most efficient batch-processing
system.

Introductory programming using BASIC language is taught to
all of our freshmen in their mathematics course. The students
then find it convenient to use the computer for their homework and
term assignments. They use the computer to solve course problems
without being told that they should do so. Students naturally try
to do things the easy way. The time-shared computer enables
them to do homework faster and easier than by working longhand.
By the time the student has reached his junior year, he is a steady
programmer, often working two or three digital programs per week
as part of his regular course work.

14.

Our students have developed an attitude that we believe will
become characteristic of engineers in the future. Our students
consider that getting a numerical answer is secondary to the
matter of problem formulation. They are willing to consider the
analysis of much more complicated systems than heretofore and
have no hesitation in exploring the behavior of a complex
mathematical representation.

Fully half the students in the courses in fluid mechanics
and solid mechanics write programs for data reduction and analysis
of their laboratory work. We have found a much closer connection
between what is done in the laboratory and the mathematical
modeling because one can go back and forth so easily.

The impact on design education has been particularly helpful.
Sophomore students in their first engineering course "Introduction
to Design" wrote and used a BASIC program which related torque,
angular position, velocity and acceleration for the rotation of
a human arm in raising itself and a weight in a vertical plane.
They used these design calculations in their project work.

At the graduate level the effect is equally dramatic. We now
ask students to prepare a mathematical model for an entire processing
plant. They do this work within three or four weeks time. Such
an achievement is only possible in a time-shared environment.

Last February an example problem was needed for a workshop
session for a course in digital simulation for practicing engineers
in Sarnia, Ontario. The course used the Dartmouth computer in
Hanover, New Hampshire. A quick interrogation of the computer
files produced a seven stage extraction problem. Dan Frantz, a
first year graduate student, was asked to help. Dan was a physics
major at Michigan. After a 20 minute description of how an
extractor works, Dan went to his desk and wrote his computer unit
calculations in one hour. An hour and a half later he had
programmed the unit calculation, fitted it into an executive system
for this kind of problem and in three hours, by the clock, he had
returned with the answers. The program was then used via long
distance in the demonstration at Sarnia, Ontario.

In a graduate level course in process simulation and design,
three graduate students were asked to simulate a complete process
plant in a six week period. All were familiar with BASIC but it
was necessary for them to learn ALGOL, become familiar with the
time-sharing version of PACER (a process oriented language) with
the mathematical models and to simulate their plants. The
mathematical models developed were limited in detail because of
memory restrictions but they do essentially all of the heat and
material balances for the entire plant. These mathematical models
provide a basis for more comprehensive and larger simulations.
The total cost in computer time was approximately $200.

15.

Another student, as part of his design project, used the

computer to generate a table for morphological synthesis. He

produced over 5,000 alternative system concepts from function

tables entered into the program. The resulting listing was very

helpful because it forced the student to consider the potential

design success of unusual system combinations. It required only

three hoUrs for programming and typing and an additional hour to

obtain the results. This sort of work is helpful because of the

iterative nature of the design process. It is extremely important

to students to be able to generate and evaluate design alternatives

quickly. With time-sharing it is easy for students to modify

systems and generate many cases in a term course..

In a graduate course devoted to decision theory, before time-

sharing the instructor used to assign two problems for an evening's

homework. With the time-shared computer available, the assignment

was changed. Students were asked to develop a computer program

that would solve 15 problems listed in the text and to present

all 15 solutions. The students not only program the computer to

solve these problems in one night, they also submit an analysis

of the class of problems which can be handled by the methods given

in the EcT5E7 The difference in student understanding is truly

amazing when one compares their performance after they have

programmed a computer to solve a problem as compared to merely

solving the problem.

The examples given in this report represent a small sampling

of the activities at Thayer School. The computer is now such an

important tool in engineering education that we would be totally

lost without it. Our students decide whether or not to go to

another graduate school on the basis of whether they will have

access to a similar time-shared computer. We know of several

students who have gone to another institution for doctoral work

and immediately made arrangements through research contracts to

have a teletype available and tied into a Dartmouth-type time-

shared system. Since the Thayer School of Engineering will not

permit its own students to go on to the doctorate at Dartmouth

College, but insist that they go elsewhere, we have been under

considerable pressure to allow our students to continue with us

simply because, at the moment, there is no place else in the

United States where they can get such good computer service.

Psychology

Three points will serve to highlight the impact of BASIC

and time-shared computing in general on the activities of the

psychology department. (a) The ease with which BASIC can be learned

has given rise to a requirement that all psychology majurs (as of

Fall 1965) shall know how to program in BASIC. No credit is

given for this ability since the use of time-sharing computers is

considered to be the accepted way of analyzing all manner of data.

16.

(b) The psychology department is proud of its experimental
course sequence - Psych 61-62-63 - in which students perform
experiments, obtain data, and apply statistical tests on either
their own data or that for the group. One of the practical
problems of analyzing group data was the simple requirement that
all the data for all students should be available to all members
of the class. On several occasions this was accomplished by
assigning a DATA instruction number to each student, asking him
to call in the stored program, enter his data in the appropriate
instruction number, and then SAVE. By the end of the week most
all of the data was thus Stored in the program and the analysis
could be RUN. In a similar vein, the instructor was able to
gather group data in a class session, have an assistant type in
the data in an already available program, and have the analysis
available for discussion with the class - all within the 50

minute period. This procedure was most useful in connection
with demonstrations of some standard scaling procedures (paired
comparison scaling, direct magnitude estimation scales, balanced
incomplete block designs, and so on).

(c) Perhaps the most important point that can be made is this:
As students learn to operate on a high-speed computer several
attitude changes are evident: (i) the fear and superstition
regarding "automation" evaporates; (ii) social science students,
traditionally apprehensive of things mathematical and statistical,
begin to feel a power over these things; (iii) students realize
that ability to use a computer opens up many opportunities in the
way of thesis topics and, later, in the kind of career they plan;
and (iv) students communicate with each other more once they learn
to use the computer - they feel a sense of camaradie with-other
users. Nowhere has all this been more evident than in the statistics
course offered in the psychology department. Both from the
instructor's point of view and from the students' point of view
a statistics course taught with the aid of a time-sharing computer
is an exciting experience. No longer do coins or dice have to be
tossed 10,000 times - using the random number generator enables
samples this size to be simulated in seconds; no longer is
sampling from a normal distribution practically impossible -
algorithms are available for doing this in seconds; no longer do
sampling distributions of statistics stay in the background -
students can plot the sampling distributions, can approximate the
areas under these distributions, indeed, can make up their own
statistical tables. A great deal more is accomplished in an
introductory statistics course under this system and the feedback
from the students is most encouraging.

The success of this statistics course has led to the writing
of a new textbook: STATISTICS - TRADITIONAL AND BAYESIAN*, in which
exercises are geared essentially to the use of a freely available
time-sharing system.

* by Victor E. McGee for Appleton-Century-Crofts (early 1968).

Physics

The most significant application of computers in physics

education has been the following: A sequence of five programs has

been developed to assist the student to explore in depth several

features of the bound states of a one-dimensional square-well

potential, both in the coordinate and the momentum representations.

The square-well problem was chosen because the analytic solution

is well within the grasp of the beginner in quantum mechanics,

thus permitting an inter-play between analytical and numerical

methods. This project was carried out with great success by 80

second-year students at Dartmouth College, (See the report in

American Journal of Physics 35, 275 (1967).)

The computer is employed to assist the teaching of an optics

lab, where exact calculations are tedious and uninteresting.

Students also turn to the computer as a matter of course in order

to carry out -4%.,h tasks as experimental curve-fitting, solution

of differentia.:, equations and other numerical integrations, Monte

Carlo calculations, and routine arithmetic manipulations formerly

consigned to the desk calculator. Graduate students find it

a vital research tool, as do some faculty members, who also depend

on it to process grades in the high-enrollment courses.

Projected use of the computer in this department is expected

to increase and at an increasing rate. The new capabilities suggest

new uses and stronger demands. Under discussion is a freshman

lab organized around the computer is such a way that the physical

phenomena of mechanics might be displayed in tight conjunction with

the mathematical models intended to describe them. This would have

the advantage of permitting the student to "play" with the

parameters of the theory, much in the same way that he plays with

experimental parameters in a conventional lab.

Easiness Administration (Tuck School)

The system has received extensive use by students and faculty,

in classroom applications, extra-course professional uses and

personal uses. A measure of the growth and extent of usage at

m,ck is the number of teletypes located at the School: one in spring

of 1964, 2 during 1964-65, 4 during 1965-66, and 8 during 1966-67.

A new system, LAFFF (Language for the Aid of Financial Fact Finders)

was conceived, developed and implemented by Tuck School personnel

(See below). A Tuck School Associates program was held in June

of 1966 which featured the time-sharing system in financial

analysis. In addition a number of formal demonstrations of the

time-sharing system were given by Tuck School personnel in Hanover

and elsewhere including a three-session series to Dartmouth

alumni in Washington, D.C., Philadelphia and New York in recent

months.

1

18.

LAFFF. The LAFFF system was conceived as an aid to those
involved in analyzing data on publicly traded companies. It
enables users of the Dartmouth Time-Sharing System to retrieve
and manipulate financial information from a data bank drawn from
the Standard Statistics Corporation's COMPUSTAT tapes. It is the
first such operating system. Currently the data bank contains
thirty financial facts (e.g. price-earnings ratio, dividends,
closing price, etc.) for each of thirty-six companies, for each
of the last ten years. Manipulation includes addition, subtraction,
multiplication, division, correlation and growth rate. The
next version of the language (currently under development for the
GE 635 system) will provide fifty facts for some 900 companies for
the last twenty years.

A description and discussion of the LAFFF system can be found
in "A Language for the Aid of Financial Fact Finders" by R. S. Bower,
C. E. Nugent, J. P. Williamson and B. C. Myers, Financial Analysts
Journal, January-February 1967.

The LAFFF system has been used extensively by Tuck School
students for required course work and projects and by faculty
members in connection with their research (see below).

Course Work. The strategy, at Tuck School is to expose every
incoming stuaent to the Dartmouth Time-Sharing System as part of
a required course "Electronic Computers and Their Uses" which
starts on the opening day of the students' two year tenure, and
then to capitalize on and augment that required exposure by judicious
use of computer-oriented assignments throughout the curriculum.

As part of the required computer course, each student is
obliged to program the solution to about a half dozen business
oriented, increasingly difficult problems. The problems are
graded by the computer. These provide merely a grounding and a
starting point for his computer-oriented experience at Tuck. Discussia
of a few examples follows.

Accounting and Finance. An important assignment is to obtain
company financiar-facts through LAFFF, reconcile financial state-
ments obtained from the LAFFF data with company financial state-
ments as printed in their annual reports, and prepare probabilistic
projections of financial statements for the next five years using
a given behavioral model. This assignment teaches use of the
LAFFF and BASIC system, promotes familiarity with the make-up of
the financial statements and provides an appreciation of the power
of Monte Carlo simulation based on a behavioral model. Later
in the course the students are asked to improve the model and use
the projections in the role of management, a banker faced with
solvency questions or an investment broker.

This course also uses the time-sharing system for capital
budgeting (rate of return, present value, compounding periods,
annuities, etc.), cost of capital using LAFFF and BASIC, and lease
bargaining.

19.

Production. The time-sharing system is frequently used in

connection with this course. The most notable use is in a

production-inventory simulation exercise called UNIPRODUCT.

Briefly, in this exercise the students evolve good production

planning rules by testing prospective rules on a manufacturing

simulation routine containing production uncertainties.

Managerial Economics. This is basically a course in model

building laid in the economic context. The heaviest use of the

system in this course is in the building and testing of regression

models as well as study of the regression technique itself. In

the study of regression, Monte Carlo analysis provides a graphic

illustration of the nature of the statistical estimates and also

of the problems or regression (serial correlation, heteroscedasticity,

autO--correlation, etc.). The system is also heavily used for

student projects in this course.

Quantitative Analysis. Among the uses to which the system

has been put in this course ares generation of probabilities from

standard distributions (binomial, hypergeometric) for values not

tabulated, solution of linear programming problems and exploration

of the sensitivity of the solutions to selected inputs, better

understanding of probability distributions through the Monte Carlo

generation of observations from a range of distributions (Normal,

Binomial, Exponential, Poisson, Gamma), better understanding of

the Central Limit Theorem and the Law of Large Numbers through

their graphic illustration via Monte Carlo methods, better under-

standing of hypothesis testing by the Monte Carlo production of

sampling distributions.

To ics in 0 eration's Research. Typical uses are: Many

applications in mathematical programming, queueing theory,

regression, game theory and simulation. Several computer-oriented

course projects include ones in Job Shop Scheduling and in

Marketing Research.

Investments. Many uses in portfolio selection, use of

statistical indicators, bond bidding, measures of mutual fund

performance. Student projects were done with computer-oriented

study in the areas of bond switching, call premiums, technical

analysis, etc. The final examination this year included a question

which required the students to go to the teletypes and test a

certain growth hypothesis using LAFFF data.

4. Impact on the Faculty.

The previous section gave many illustrations of the usefulness
of the time-sharing system for the college teacher. We will now
consider its impact on faculty research.

We claim that a time-sharing system increases the number of
faculty research uses of computers by an order of magnitude. For
every large research project that makes the use of computers
inevitable, there are ten projects for which computers are useful
if they are simply and quickly available, but which do not justify
going through the delay and inconvenience of a "batch-processing"
system.

An important research use of the machine is to compute examples.
Both in mathematics and in various branches of science theoretical
work requires the computation of carefully chosen examples. One
normally works out two or three examples, at a considerable expense
in human labor, and with a significant chance of making a mistake.
Any example that is at all possible without a computer is a
triviality for the machine. Thus at the cost of writing a simple
procram one can obtain dozens of examples, and obtain them in a
few minutes. The same examples would be useless if one had to
wait several days until the program was debugged. When one has
a hot streak in research one wants examples right then and there,
or not at all.

Equally important is the analysis of laboratory data or
observations of natural phenomena. The researcher can write a
program once and for all, save it, and use it each time new data
is collected. He simply calls up the old program, types in the
data, types RUN, and the answers appear.

But we must not give the impression that the time-sharing
system is useful only for small research problems. We include a
sample of a major research task carried out by the Project Director.
It is in the field of the Theory of Numbers, and concerns the
Arch for large twin primes. Prime numbers are the building stones

Alt of which integers may be built by multiplication; primes can-
not be further decomposed. The first few primes are 2, 3, 5, 7,
11, 13, and 19. All but the first are odd. When two consecutive
odd numbers are primes, such as 3 and 5, or 11 and 13, we call
them "twin primes". While Euclid already knew that there were
infinitely many primes, we still do not know whether there are
infinitely many twin primes. Therefore, many mathematicians have
searched for large twin primes.

The Project Director happened to come across two different
references to the "largest known twin primes", which were slightly
beyond 1012 (a trillion). He was interested in seeing whether the
time-sharing system was powerful enough to find a larger pair.
He asked the computer to search the two thousand numbers starting
at 1012 + 106 for twin primes.

The computer found two such pairs:

21.

10
12 4 106 + 1341 and 1343

1941 and 1943

These were at that time "the largest known twin primes".

Several remarks are in order. First of all, the total time
to find these results was 1 1/4 hours. During this time less than

11 minutes of computing time was used, and there were 20 other

people using the system! Once the problem was entered, the
Project Director went on with other research, simply waiting until

answers were typed out. Any mathematician would agree that this

is a very substantial computation, and it is easy to do it in

a time-sharing environment. But it also shows that there is little

point in finding larger pairs of twin primes. Anyone with a

similar system at his disposal can, in one evening, beat the

record.

HUGEPR 21s00 18 OCT. 1965

PRIMES OF THE FORM A*1000 + 8, 0 4 8 4 2000.

A = 1000001000

VALUES OF 8 YIELDING PRIMES:

21 59 69
249 263 321
569 591 639
819 941 1023
1127 1163
1343 1383
1479 1497
1911 1931

93 99 107
333 347 353
693 711 731

1059 1091
1169 1187
1403 1409
1529 1541
1941 1943

MERE ARE 70 PRIMES IN THE RANGE.

TWIN PRIMES:

1341 1343
1941 1943

TIME: 10 MIMS. 32 SECS.

USE

21 USERS AT 22115.

111 129 197
399 491 513
737 749 759

1107 1113
1193 1239
1413 1431
1569 1577
1953

213 231
549 561
773 797

1119
1301 1341
1443 1473
1613 1691

22.

But the most important development has been what we learned

about man-machine interaction. There have been many debates as

to what tasks are most efficiently done by human beings, and what

tasks should be left to computers. We now feel that in most

cases both solutions are wrong: The tasks should be done by man-

machine teams. This is really efficient only in a time-sharing

environment.

Let us consider a complex problem, which may involve millions

of computations. The programmer must foresee everything that

could possibly happen during the logical chain, and provide for

it in his program. Human beings are not very good at doing this.

Or if they succeed, the price is a tremendously complex program

that must provide for all kinds of catastrophes, most of which

never occur. In a time-sharing system there is a much better

procedure. Let the machine do a reasonable piece of the work, and

then report the results to the programmer. He can then use his

judgment as to whether to proceed, or to change the plan of

operation. It is thus not necessary to program human common

sense -- it can be applied by the human being when needed.

This is the most important lesson we learned during the

project, and we did not predict it at the outset. Many of us who

had significant previous computing experience have changed our

entire approach to coMputers. We have learned how to work with

the computer in solving a problem, rather than submitting a

problem for machine solution.

We will illustrate this with a dramatic example. One of our

colleagues spent a term at another institution, which has an

excellent "batch-processing" computer center. He was working on

a model in Sociology. He had conjectured that a probabilistic

process tends to a limiting distribution, which should be quite

evident after 50 experiments. Many dozens of 50-experiment

sequences were simulated on the computer, but they did not

suggest a reasonable distribution. He returned to Dartmouth,

where he decided to continue the computer experimentation, but

this time he was doing it himself, sitting at a teletype. When

a particularly unlikely series of experiments came up, he asked

the computer to continue. The next 50 experiments changed the

answer drastically, so he continued even further. Eventually he

discovered that his hypothesis was incorrect, 50 experiments

giVe no useful information. In the long run all series of

experiments converge to a fixed outcome. He might never have

made this discovery without a computer at his finger-tips. And

in the meantime he would have wasted an enormous amount of

computing time.

We have several instances of faculty members who have obtained

new results, or corrected old onep, due to the availability of

time-sharing. These were usually in fields where the problems were

considered "too small" to justify the use of a high-speed computer.

And yet the problems were much too difficult to do without a

computer. The time-sharing system closed the gap.

5. Impact on Other Institutions.

23.

Although this project was directed mainly at improving the

teaching of mathematics and science courses at the college level,

part of the project involved placing a teletype machine in the

Hanover High School. One purpose was to learn how effective

easy-access computing could be as an aid to secondary education.

Another purpose was to learn how far down into the secondary
elementary grades computing could be effectively handled by

the students.

At the same time, a number of input ports from the computer

were attached to the Hanover phone .system so that teletypes
located away from the campus could dial the computer. This

permitted several public demonstrations in distant cities (including

Edinburgh, Scotland) and permitted other colleges to experiment

with the type of computing being supplied to the Dartmouth

campus.

There are now about a dozen input ports on the computer
available to the outside world. Current users include schools,
colleges, government agencies, and some local business concerns.

The rapid acceptance of this type of computing, primarily in

the schools, leads us to assert that time-sharing is the sensible

way to supply computing power to the secondary schools. First

of all, there is little monetary investment on the part of the

schools, and they can cancel their teletype service on short

notice. Second, the installation of a teletype machine requires

far less than the installation of a small computer, and much

less administrative and technical support as well. Finally,

the user has available through the teletype a much wider variety

of services and sophisticated languages than could be provided

by a small, free-standing computer.

Use la Colleges

In the early days of the project a number of colleges and

universities experimented with the Dartmouth System over long

distance telephone lines. In most cases the purpose was to

familiarize themselves with the type of service available from

a time-sharing system, In some cases use by students in courses

occurred. A few used the teletype machine for significant amounts

of research work, notwithstanding the presence of a conventional

batch processing system on their own campuses. More recently, a

small number of colleges have installed a teletype machine for

large-scale training and use by their students.

The use by colleges has been limited by the small number of

available telephone lines into the computer. However, the total

number of schools is large, and their distribution impressive.

Most of them are listed below:

Princeton School of Engineering
University of Michigan (3 departments)
Harvard - Business School
Harvard - School of Education
Harvard - Statistics Department
State University of New York at Binghampton (Harpur College)

Plattsburgh
Stony Brook

Mount Holyoke
Smith College
Middlebury College
Amherst College
Williams College
NYU Medical Center
NYU Computation Center
Ohio State University
Standford University
Rennsalear Polytechnic Institute
Brooklyn Polytechnic Institute
Carnegie Institute of Technology
Johns Hopkins University
Lehigh University
University of Maryland
McGill University
University of Pennsylvania

In some cases Dartmouth has contributed to this usage through an
educational grants program.

The number of colleges interested has grown so rapidly that
we have been encouraged to establish a Regional Computation Center
organization to better serve their interests and to learn what
problems and costs are involved. The notion of several schools
sharing a large computer for educational purposes has recently been
given strong encouragement by the report of a Panel of the President's
Scientific Advisory Committee entitled Computers in Higher.
Education. This report of the so-called Pierce Panel was in turn
strongly influenced by the results achieved on the Dartmouth
campus under the auspices of this project.

Use by Secondary Schools

Perhaps the most startling of the unexpected effects of this
project has been its rapid adoption into secondary schools. This
started in the fall of 1964 with the placement of a teletype
machine into the local Hanover High School, mainly to see what
would happen. On the basis of this experience we now feel that
computing will soon become a necessary part of the secondary
curriculum. We also feel that it may be appropriate to introduce
computing to the students as early as seventh grade.

25.

While much work still remains to be done in terms of curriculum
materials and teaching aids, the amazing success so far with little
more in most cases than the standard BASIC Manual strongly suggests
that only moderate curriculum development and teacher retraining
programs will be needed.

One method of introducing students to the computer is through
a Computer Club. One was established at the Hanover High School
as an extra-curricular activity in the fall of 1964. During the
next school year several hundred students became exposed to
computing, and some of them became very proficient. One of the
startling resluts was the work done by a small group of talented
fifth-graders. Learning from the BASIC Manual without formal
instruction, they produced some quite sophisticated programs: one,
an improvement on a library program to factor integers; and
another, a program to generate magic squares. They quickly
absorbed the other languages available in the system, which attests
to the grea .. efficiency and usefulness of time-sharing for
learning programming.

Some of the other work done by Hanover students included
a program for scoring a debate tournament, and another for playing
a game of chess. The latter cannot compare with the chess-playing
programs existing at MIT and Stanford, but this program exists
within the much stricter limitations imposed on program size by
our system.

At the present time the seventh grade mathematics instructors
are experimenting with teaching BASIC as a regular part of the
mathematics course. The obvious advantage for computer instruction
at this level is that it can be used in all subsequent mathematics
and science courses. Experience to date showsthat this training
can be done at this level with average students, but that
instructional materials appropriate for this level need to be
produced. Seventh grade students are capable of producing quite
complicated programs as long as high school or college mathematical
topics are not required.

The second school to install a teletype was the Phillips
Academy at Exeter, New Hampshire, in the spring of 1965. Installed
primarily for a summer session, it quickly became a permanent
fixture. Being a boarding school, the teletype was used during
evening hours as well as during the day. Some students even obtained
permission to get up before "reville" to make fuller use of their
teletype machine. Here as at Hanover several hundred students
obtained instruction in computing, and used it in their courses.

Since then many other schools have inquired about "hooking up"
to our system, and we have been able to accomodate a few, which
are listed below:

Hanover High School
Phillips Exeter Academy
Phillips Andover Academy
Mascoma Valley Regional High School
Mount Hermon School

Vermont Academy
Kimball Union Academy
The Holderness School
St. Paul's School

The work at several of these schools deserves special mention.

At Mascoma Valley Regional School, a small school serving
a rural area, the use of computers by the students was received
so enthusiastically that within one year the School Board was
able to convince the School District to appropriate funds for the
rental of a teletype machine and long distance phone line. The
mathematics instructor in charge, Mr. Richard Moulton, also
conducted adult education classes in computing in the evenings.
He was recently commended by the New Hampshire Association for
Better Schools for his outstanding work in computing with the
Mascoma students. This was all done with no more assistance on
the part of Dartmouth College than the supplying of BASIC Manuals
and the answering of occasional questions.

The St. Paul's School in Concord, New Hampshire, made heavy
use of the computer via an installed teletype machine for their
summer school program. Computing was included as a part of the
Concepts in Mathematics course. The program was so well received
that the School elected to continue the program into the regular
school year.

Computer use at the Mount Hermon School in Mt. Hermon,
Massachusetts, began only in the fall of 1966, but in one semester
they trained 400 students (one-half of the student body) on a
single teletype machine. They now plan to indoctrinate each
incoming ninth grade class in computing.

For the computer usage described above, Dartmouth has
contributed heavily through a program of education grants. Many
schools were thus able to begin work quickly. This program is
especially important to public tax-supported schools which would
otherwise need two or three years to develop their own funds.

Dartmouth is now in the process of organizing a project for
collecting and documenting the exercises and techniques found useful
at these schools, and for trying them out at other schools. If
this project comes about, the materials produced will be available
to any other school in any part of the country wishing to integrate
computing into its educational program. In any case, the number
of secondary schools using the Dartmouth computer is expected
to increase to about 20.

An Educational Utility

More than any other single project, the success of the
Dartmouth project has made concrete the ideas and usefulness of
an Educational Computing Utility. It has been shown not only
to be possible but also to be in great demand by the schools and
colleges not already having their own computers (and by some who
do!) We have shown that the problems are not great, and that
the cost, though substantial, is not out of the reach of most
secondary schools and colleges, even with the relatively crude
system first used by us.

..,,,,.=...7.7149M~MONMOAIWMIWWWWWWWOMINOWignMMIMOr

27.

With our new system, which will be capable of supporting many

more users simultaneously, we estimate that the costs for normal

use will be around $5000 per year full-time teletype machine.

Our experience does not include what is usually called CAI.

While more elaborate CAI systems using fancy terminals (including

TV-type presentations) could be attached to a general purpose

computer system such as ours, the terminal costs would be much

greater than those for teletype machines. The type of activity

we are experiencing is more like that of a student teaching

the computer rather than vice versa. By being able to program

certain processes, the student necessarily shows a thorough

understanding of the process. For example, one student in sixth

grade was able to write a program to add fractions, thereby

showing a complete understanding of the process. Of course, this

does not develop manual skill for performing such calculations.

If this is desired, the computer can easily be used to drill the

student.

We have seen the computerized arithmetic drill provided by

the Suppes project at Stanford. In almost all detail (except the

instant response to individual characters) the automated arithmetic

drill routines can be programmed in BASIC on our computer. The

only difference is that in our system action is taken only upon

receiving the "carriage return" key, whereas in the Stanford

system action can be instigated upon receiving the first incorrect

character of a wrong answer. Of course, if only automated drill

were needed, a general purpose time-sharing system such as ours

would not be needed, and when used in this way implies a

significant amount of system overhead. On the other hand, being

able to program these exercises in a simple language such as

BASIC represents a real saving in program preparation effort.

The strong advantage of a general purpose time-sharing system

at this time is that it can support most or all of the applications

that might arise in educational work. This would include both

instructional use and administrative work. The particular applications

do not have to be planned in detail in advance, and the schools

and colleges themselves can participate in the development of

the programs and systems for their use. We feel that this is a

significant advantage over a firm or organixation preparing a

specialized, non-changeable education computer system and

presenting it as a fait accompli to schools and colleges.

Commercial Use

The Dartmouth system has had a fantastic influence in business,

engineering, and industry. While only a small number of firms

have actually experimented with our system, the ideas have spread

to a large number of firms. The General Electric Company is

providing time-sharing service to many hundreds of customers using

computer systems which are patterned directly on ours. Professional

engineers and bankers alike are finding that a teletype in their

office and connected with a distant time-sharing system can be

extremely valuable to them.

_

The language BASIC has been or is being implemented on a
number of different computers of different make. While Dartmouth
has no direct interest in these activities, this paragraph is
included to indicate the very wide influence this work has had in
a very short time.

Future Plans

Plans now being implcmented involve the development of
a large-scale, general purpose time-sharing system capable of
handling many more users than the original system. It will also
be capable of internal file handling, which will make possible
experiments in administrative and guidance work, and in wir

instructional work where the use by students are not isolated
experiences. It will also permit the development of on-line
library service, the planning for which has already begun.

Along with this new system, which is described briefly in
Appendix I, plans are being developed for about 20 secondary schools
and 12 colleges to be regular users of the Dartmouth system
starting in the fall of 1967. A specific purpose of the work
with schools will be to develop instructional materials. A purpose
of the work with colleges is to develop the notion of the
regional computation network, and to determine the best ways for
its administration. Both programs have as their main prupose the
providing of a general purpose computing capability to these
schools and colleges on a day-to-xlay basis.

APPENDIX I

Description of the Dartmouth Time-Sharing System

The Original System

The original Dartmouth Time-Sharing system was built around

standard hardware components from the General Electric Company.

All of the components were on-shelf items for which specifications

existed before they were approached by Dartmouth. After the

equipment was obtained*, several minor modifications were made in

order to improve its efficiency. But it is important to note that

specially designed hardware was not required for the Dartmouth

project. Rather, it was our purpose to use standard hardware and

to provide through software the desired functional characteristics.

The hardware consisted of the following items:

1 GE-235 Central Processor, 16,384 words of 20 bit

memory.
1 Datanet-30 Communications Processor, 16,384 words

of 18 bit memory.
1 18,000,000 charcter Disc with a controller that

can be accessed by either the GE-235 or the

Datanet-30.
4 Magnetic Tapes operating with the GE-235.

1 900 line per minute Printer, attached to the GE-235.

1 Card Reader, 400 cards per minute.

1 Card Punch, 100 cards per minute.

As can be seen, the capability of the above computer system to

operate in a conventional batch-processing mode is hampered by the

slow speed of the card reader and punchl.and by the presence of

only four tape drives. It should also be noted that we obtained no

off-line computer equipment for card-to-tape or tape-to-printer

operations.

The modifications made to the system after it arrived were

these:

Four magnetic tapes were added to improve the ability

to operate with conventional batch systems but as

background to Time-Sharing.

The Disc Controller was modified to permit reading or

writing 18,432 characters with one command, thus saving

the equivalent of seven latency times for large data

transfers. This modification would have been desirable

in any case.

with the assistance of a $300,000 grant from the

National Science Foundation.

The Central Processor was slightly modified so that
certain illegal instructions which originally caused a
hardware halt became no-operations. This change was
essential for unattended operation.

The schematic plan of the hardware system is shown in figure I-A

Punch

Reader

Console
Typewriter

GE-235

Printer

Computer
Interface v.-N..°

Unit

Master
Teletype

Tapes

Dual
colatirell

Datanet -30

ler

to the
telephone system

Disc

40 lines

Type 103 Datasets

Figure I-A. Schematic diagram of the hardware for the original
Dartmouth Time-Sharing System. This particular
configuration is known as the GE-265.

1-2.

40.*

662.116.1.1MM

1-3.

The memory of the GE-235 is accessed through a Controller
Selector Unit that serves to channel requests for memory access
from the various peripherals. Input and Output to several devices
can thus be carried on simultaneously with processing. Upon
completion, input and output operations interrupt the Processor
which can then initiate further input or output. In particular,
the Datanet-30 can interrupt the GE-235 processor, and can thus act

as a Master computer. In short, the standard features of the GE-235

and Datanet-30 combination (interrupt-controlled and buffered
input-output, dual access disc controller, computer interface unit,
and the ability of the Datanet-30 to connect directly to telephone
datasets) made possible a simple hardware system that could serve
as a basis for a time-sharing system.

The decision was made to define the Datanet-30 as the Master
computer, and equip it to handle all communications lines. It

contains the functions of command analysis, allocation of disc
storage space, scheduling, and control of the GE-235. The latter
computer in turn handles all compiling and running, and also serves
as a buffer for transferring programs from one area on the disc to

another. The GE-235 is equipped with a small executive system
that responds to interrupts including those from the Master Datanet-30

computer, carries out the input and output operations requested of

it, and transfers control to a user program It can also serve to

carry out card-to-printer, tape-to-printer, and other peripheral-to-
peripheral operations without interfering with time sharing. This

last capability is what permitted us to operate without any off-line
punched card equipment of any sort except key punches.

The compilers are designed to be core-resident, and to compile

core-to-core. While this limits the program size that can be
handled in some cases, it permits unusually fast compilations. It

was our decision to always recompile completely each time a program

was rerun or modified for a second run. In no cases do we save the

so-called binary program. We have found that a very fast compiler

makes this mode of operation not only feasible but also highly

desirable. The compilers are reentrant so that a new copy does not
have to be brought into memory for a new job. The compiling data .

are retained in the core memory area assigned to the user, and, in

case a swap between users is called for by the Datanet-30, the
entire user core area is written on the disc. Later when it is
brought back for a second turn, all the compiling data and the

other necessary information is also brought back in order to

continue the compiling.

Because of the severe core memory limitations in the GE-235,

only one user job exists in memory at a time. Furthermore, in case

of swapping, the GE-235 processor actually must wait while one job

is written out on the disc and then another brought into core

memory for its turn at processing. Despite this significant reduction

in machine cycles that can be allocated to the user, excellent

service is obtained. We feel that there are two factors that explain

why: first, even when there is a heavy load, there may be only a

few users actually competing for compute time. The others will be

either watching their teletype produce output (which involves only

I-4 .

the disc and the Datanet-30.) Second, we have found that the
number of swaps required can be greatly reduced by granting each
job an initial allocation of processing time to provide for
completion in the majority of cases. For instance, with a small
student job, most runs artually terminate because of errors detected
during compilation, and the complete run might take no more than one
second. Even if the program is cc:rect, experience has shown that
a large majority complete their calculations within five seconds.
On the basis of experience, we have set about five seconds for
the initial run of a particular job. During heavy periods this
decision insures that up to 70 percent of all processor cycles are
returned to the users and only about 30 percent lost in waiting
for swapping and in other overhead.

The master control program resides in the Datanet-30 computer.
It is thus completely protected from runaway programs in the GE-235.
In fact, it is possible for the Datanet-30 to insert into the
GE-235 memory a recovery program that brings in from the disc a
clean copy of its executive system. (It should be noted that having
only one user job in the GE-235 memory at a time protects against
one user program destroying another, since hardware memory protection
is not available on the GE-235 memory.) Thus, the most important
reason for memory protection -- that of isolating the master executive
from poorly debugged user programs -- is automatically provided for
in this two computer system.

The master program in the Datanet-30 scans on a clocked basis
the bit buffers associated with the teletype lines, at a clocked
rate of around 110 times a second. Completed characters are
handled also in "real time." In the gaps between these periods of
real time servicing of the bit buffers, the Datanet-30 carries out
spare time tasks. These include all input and output to the disc.
In addition. the GE-235 is regularly queried to see if the previous
job has been completed, or if its allotted time is up. If so, the
Datanet-30 sends to the GE-235 a short message over the computer
interface unit giving it information concerning what disc operations
to carry out. The Datanet-30 then sends an interrupt to the GE-235,
whereupon the latter computer processes the interrupt and carries
out the requested disc operations.

Functions and Services

The main requirement in the design of the time-sharing system
was to keep the user interface simple. The system was to be used
by laige numbers of persons with little classroom or formal training.
The commands were designed to be easy to learn and easy to remember.
The ordinary user was not required to do extra tasks for which he
did not know the reason. This meant that more sophisticated users
had to go through more elaborate sequences to specify their desires
to the system. But the vast majority of users use only a very few
df the commands.

In preparing a program, the essential features, after logging
in to the computer, are (1) composing the program in a language,
usually BASIC, and (2) running it. There is precisely one command
for composing a new program, and that is NBW. There is also
precisely one command for running a program, and that is RUN. We

give an example of a user running a simple problem he has just
composed.

PROBLEM NAME.ftTABLE
DY.

00 PRIAT *X". "LO8(X)". "X0SQUARED"
10 FOR X 2 1 TO 2 STEP .1
20 LET L = LOG(X)
30 LET S = Xt2
40 PRINT X, 1.9 $
50 NEXT X
60 END
UN

iABLE 17114 MAY 19,1967 FRI

LOOIXI XftSQUARED
0 1

9.53102 E02 1.21

1.2 182322 1.44
1.3 .262364 1.69
1.4 .336472 1.96
1.5 .405465 2.25
1.6 .470004. 2.56
1.7 .530628 2.89
1,8 .587787 3.24
L,2 .641854 3.61
2. .693147 4.

ilME: 0 SECS.

1-5.

. ,

user. -irp es Willer toed. words,

1

User 47pes fins's)

itic.luillti RUN

-,,1111,,TIPT.T11TAT

A partial list of system commands, and tbeir functions, follows:

HELLO

NEW

RUN

The request for gaining access. The user
must then supply his user number.

Clears out the "current program" giving
the user a clean slate fo ... colaposing his
new program.

Run the current program, using BASIC unless
some other language has been specified. This
causes both compilation and execution.

LIST The current program is printed out on the
teletype.

SAVE The current program is saved, and a catalog
entry is made under the user's number. The
current program is not destroyed.

UNSAVE The catalog entry for the current program is
removed.

OLD A previously saved program is made into the
current program. The saved program is not
changed.

CATALOG A listing of all program names in the user's
catalog is printed on the teletype.

RENAME The user is allowed to rename a program without
destroying it.

GOODBYE Signs the user off the computer.

There are other commands, but the majority of users use no more than
these most of the time. Block diagrams of some of the commands
are included.

There is a library provision in the system. If, when retrieving
an OLD program, the userappends three asterisk's to the name of the
program, the search for it will be made in the catalog of the public
library rather than his own private catalog. Once he obtains the
program, he can treat it just as if he himself had just composed it.

Of course, he cannot SAVE it back into the public library; if he
types SAVE, it will be saved in his private library.

Obtain Name
from user

Get Catalog
and search for
CP name

Found?

yes

(Immediate)

UO

(Soheduled)

Saved program
from disk to

..toJG

Back to CP
area on disk

Print "PROGRAN
NOT FOUND"

0.111.0

EnT

subroutine)

4'
Append =cliff...
cations of CP
to CP area on
disk

Move CP to
GE-235

I

SORT
Return a copy
to CP area

Move CP to
GE-235

-r--

(not done
for LIST)

EMIT

(SAVE) (Sc)ieduled)

fl
update

1...__

Get catalogs
search for
entry

yes es

no

1 Plaoe new
i entry in

IReturn catalog
to disk

EXIT

UNSAVE

(Immediate)

[--

Get oatalog
from disk

Remove entry

Rmturn catalog
to disk

(Immediate)

'V

Lfrbtain name

om user

LIST

update

Feed CP out
to teletype

RUN

update

(immediate unless
update is needed,
t)ien scheduled.)

(Scheduled.)

MATO oompile
to GE.435

Transfer con-
trol to comp.

CATILLOG (Immediate.)

Get catalog
from disk

iSearch oatal o

for entries

Print entries
on teletype

ELIT

In addition to the language BASIC, which is described in
Appendix II, the system permits other languages to be used. An
ALGOL compiler was prepared and is available in the system. An
interpretive machine language called TSAP is also included and
permits both training of machine language programmers and small
portions of machine language programming itself.

A very important capability is provided by the Edit system.
It is used by typing the command EDIT followed by the name of the
particular edit function desired. For instance, the line numbers
in a program may be resequenced by typing

EDIT RESEQUENCE 100, 0, 5

The numerical parameters in this case are to be interpreted as
follows: "To the first line in the current program whose line
number is not less than 0, assign line number 100, and proceed
from there in steps of 5."

Two, programs may be merged using the MERGE or WEAVE functions.
These functions are useful, for instance, when a student wishes to
merge into his program a set of "official" data provided by the

instructor. EXTRACT and DELETE retain or discard, respectively,
portions of the current program according to line number ranges

specified. Listing either forward or backward of specific portions
of a program may be obtained using the LIST function. There are

other functions, but a detailed discussion is not included here.

For certain jobs a teletype machine may not be adequate. The

job may require magnetic tapes, or need to read cards or print large

amounts of output. A "background" mode is provided in the system.

It is controlled from the console typewriter, and permits the use

of all peripherals. Background programs share time with time-
sharing, but on a lower priority. It is thus possible to run jobs

that require peripherals concurrently with time-sharing. Such jobs

might include, for instance, assemblies of compilers or certain

administrative tasks such as a disc-utilization survey.

It should be noted that almost all of the software for the

system was prepared by Dartmouth undergraduate students at Dartmouth

College under the general supervision of the Director and Associate

Director of this project. Included were the executive systems for

both computers, the several compilers, the editing system, and the

background capability. Even the machine language assembly program

was extensively rewritten to cut assembly times by more than

75 percent.

The New System

Currently under development, a new Dartmouth Time-Sharing system
will provide for many more (up to 200) simultaneous users. It is

being built around a GE-625 computer system. The hardware
configuration and the structure of the executive system is different
from the original system, but the picture to the ordinary user
will almost exactly be the same.

The hardware configuration is shown in figure I-B. Several

important differences exist between the two systems. With the

new hardware there is an adequate method of memory protection and
hardware relocation of program. Thus, it is planned to retain
in the core memory the programs of several of the current users.
Those not in core will be temporarily retained on a magnetic drum,
which can be accessed in a much shorter time than can a disc.
Another difference is that the Datanet-30's in the new system

are concerned only with message switching between the main compute
system and the teletypes. They will also take care of character
and line deletes. But the main executive functions of scheduling

jobs, controlling the composing of a new program, carrying out the

commands, and managing the use of the system reside in the same
computer as do the user programs. (However, it is not convenient at
this time to supply memory protection for compilers, which must
reside within the same protected area as its work. Therefore,
until this condition is remedied, the compilers will not be
reentrant even though users will be fully multi-programmed.)

The user will use the same commands as before. But they will

be handled differently. The reason is that the new system will be

more general and will be capable of expansion as new ideas come

along.

All teletype lines pass through the Datanet-30. All lines

which are not in actual operation with BASIC or some other system

will be logically connected to the LOGIN modultof the executive.

Thus, a user can type HELLO, go through any validation procedures
required by LOGIN, and request a certain system. The LOGIN module
then disconnects itself from the "line" and connects it to the

Simple Monitor, which analyzes all subsequent commands such as OLD,

NEW, and LIST. In other words, the SM portion of the executive
system plays the role played by the command and control portion

of the Datanet-30 program in the original system. When RUN is
typed, control is passed to BASIC. After the run is completed,
control reverts to the Simple Monitor. If GOODBYE is typed,
the user's work is cleared out, and his teletype line is logically

returned to the LOGIN module to wait for another HELLO.

It is planned to include in the new system all the major
services currently provided by the "old" system. In particular,

the interface provided the ordinary user will remain simple.
Additional features will be added to enhance the research potential

of the new system, and these will not erode the simple and friendly

interface whose value has been so resoundly proven by this project.

Reader

Punch

I/

Printer
.____________

Processor

[

Core
Memory

...-1

IOC

10 AM .

-VI

Interrupt
Control

Disc

41614"11Ooorni............O........#es

1_,Console

Disc

1`1**.b.....................4

() () () 0
T APE

, I

High High
Speed Datanet -30 Datanet -30 Speed
Lines Lines

50 linesT1 50 lines
V 1

Figure I-B. The hardware configuration of the GE-635 system that
is to replace the GE-265 system.

APPENDIX II

The BASIC Language

1. Introduction

The single most important factor contributing to the success of

this project is the simple language BASIC. It is very easy to learn,

and can be taught or self-taught in several hours or less to not only

college freshmen but also high school students. Faculty members

having no previous computing experience have been able to learn it,

as have businessmen and administrators. A number of fourth and fifth

graders have taught themselves this language. In sL 4t the BASIC

Language has removed "programming" from the private domain of the

experts, and, for much less effort than learning to type or drive a

car, has placed the powers of the computer into the hands of students

and scholars. For the first time, large numbers of users are now

using computing to enhance and accelerate their education and research.

2. General Description

BASIC is an algebraic language with a strong external resemblance

to other algebraic languages such as FORTRAN and ALGOL. It differs,

however, in certain seemingly unimportant ways, and these differences

are what has contributed to its simplification and resulting success.

In some cases these differences represent restrictions over other

algebraic languages, but it is our experience that most of the time

these restrictions do not limit the applications a user can make

with BASIC. In other cases the differences in BASIC reflect improve-

ments on and generalizations of other languages, particularly where

other languages were found to be unduly and artificially restrictive,

Some of these differences are discussed in this section.

BASIC is a line oriented language with each line beginning with

a line number. This line number serves not only as a serial number

for editing purposes but also as a statement label. In a time-sharing

environment, line numbers for editing purposes are essential; therefore,

in BASIC we allow them to serve also as statement numbers thus avoiding

the necessity for teaching a separate statement labeling technique.

The restriction here is that symbolic statement labels are not allowed,

but neither are they allowed in FORTRAN.

Perhaps the single most important feature of BASIC is the auto-

matic or implied declaration of all variables, both simple and sub-

scripted. Simple variables are declared by their appearance in the

program. There is no distinction between real or integer as in both

2,

FORTRAN and ALGOL. Subscripted variables, both singly and doubly,
can also be declared by implication through their-appearance in the

program. The convention is that a singly subscripted quantity upon
first appearance is assumed to be a vector having subscript range
0 through 10. A doubly subscripted quantity is assumed to represent

a matrix with both subscripts from 0 through 10. If different maxi-
mum dimensions are required for a specific problem, the p'rogrammer
may use a DIM or dimension statement. However, most programs turn
out to require ,only small vectors and matrices and therefore no
special dimension statement.

The programmer is restricted to simple variable names consisting
of a letter or a letter followed by a digit. Subscripted quantities
must be named by a single letter. The same letter may represent
both a simple variable and a subscripted quantity, though not both
a singly and a doubly subscripted quantity. BASIC ignores all spaces
so that the programmer need not be concerned about such formatting

as is required, for example, by many card-oriented systems. The
representation of all numerical constants is free format. As 3tated

earlier, no distinction is made between integer constants and more
general constants. Therefore the mixed expression problem of most
early versions of FORTRAN does not exist in BASIC.

At many places in the definition of the BASIC Language and the
definition of the interpretation of BASIC operations, an attempt is
made to provide the interpretation that the beginning user was likely
to expect rather than the one that the sophisticated programmer
might demand. Thus, for example, in raising a number or quantity to
a power, if the power happens to be an integer the appropriate number
of multiplications is performed. If the power happens to be a non-
integer, the result is determined by taking logarithms and expo-
nentials. Thus, negative quantities raised to odd powers will remain
negative, just the way the ordinary user would expect.

All BASIC statements consist of a line number followed by a word
which identifies the type of the statement; the statement ends with
the end of the line. This simple structure of BASIC easily permits

very fast single pass compilers. It is thus possible to retain for

the user his program in its source language BASIC. Each time the

user calls for a RUN, he automatically receives an edit of his program
followed by a compilation followed by an execution. The compilation
takes place in a time roughly equal to the editing time.

Several features included in the Dartmouth Time-Sharing System
permit an exceptionally easy use of the BASIC Language and are often
identified by users as being part of BASIC. These are the ability
to erase a character or delete a line with a single stroke on the
keyboard of the teletype machine. Another feature is the ability.to
change a line in the middle of the program simply by retyping the

line in question. Lines can be deleted by typing the line number

without anything following it. Lines can be inserted by typing them

with a line number that lies in between two line numbers in the
program. The BASIC program is thus retained inside the computer
system, and the user constructs it and edits in a very simple way
from the teletype keyboard.

3. Elementary BASIC

We have found it convenient in teaching BASIC to identify as

elementary BASIC nine BASIC statements. With these nine statements

most programs can be written quite conveniently. These are not

presented as minimal set--the looping statements are included because

looping is an extremely common programming technique. The input-

output statements in elementary BASIC are READ, PRINT, and DATA.

The READ statement causes the variable following it to be assigned

data according to the next consequtively available data in the data

block. The data block is prepared by collecting together all the

numerical data appearing in the DATA statements, independently of in

which data statement a particular number is found. The PRINT state-

ment causes the values of the variables or expressions following it

to be printed. In both read and print statements the comma is used

to separate the items. Printing is done in a pre-determined, six

significant figure format. The type of the format is determined not

by the user but by the range and the type of the number involved.

That is, integers come out as integers. Non-integers come out as

decimal numbers with the decimal point appropriately placed. Numbers

out of range are represented as a fraction and an exponent. The

print statement automatically places the printed numbers in columns

fifteen spaces wide. On a teletype machine there are five fields.

If the user wishes to pack information more closely on a line, he

can use the semi-colon rather than a comma to separate the items in

his list. The user may also print verbal information by enclosing

the information inside quotation marks in a print statement. Thus,

labeling and numerical information can be mixed. A print statement

without any arguments following it will print a blank line.

The Computational or assignment statement is introduced with

the LET. Following the word LET is a variable, which can be either

simple or subscripted, and then an equal sign. To the right of the

equal sign is an arithmetic expression which is to be evaluated.

The expression may be quite complex, and the meaning of the parenthesis

and the order of precedence for the arithmetic operators follows

standard usage. Thus, multiplications are performed before additions

unless parenthesis intervene. The multiply symbol is an asterisk,

and simple juxtaposition of variables will nal cause them to be

interpreted as a product, but will cause an error. The exponentia-

tion or raise-to-a-power symbol is the up-arrow. On an ordinary

teletype machine superscripts and subscripts as such are not easily

obtainable.

The BASIC statements are normally executed in sequence. A GO

To statement can be used to transfer control to the statement whose

number follows the GO TO. The conditional transfer is carried out

by the IF statement which has the following form:

IF <relational expressiori> THEN <line number>

If the relational expression is true, then control is passed to the

line number indicated after the THEN. If the relational expression

is false, then the computer continues on its sequence. All six
common relational operators are included. Less-than-or-equal is
represented by a less-than sign followed by an equal sign, and
similarly for greater-than-or-equal. Not-equal is represented by
a less-than sign followed by a greater-than sign.

Looping is carried out by a pair of statements: the FOR state-
ment and the corresponding NEXT statement. The NEXT statement serves
to define the scope of the loop. In this respect it is similar to
the CONTINUE statement in FORTRAN. The FOR statement indicates a
variable which it controls together with an initial value, a final
value, and a step size. If the step size is not specified, it is
taken to be unity. The corresponding NEXT statement must refer to
the same control variable. The test for completion of the loop is
made at the beginning of the loop. Thus, if the loop is in fact
vacuous, control then jumps around the body of the loop to the
statement following the NEXT. The initial, final, and step size
values may be anything. Thus a loop can operate with a decreasing
series of values as well as an increasing series, or with negative
numbers as well as positive numbers. The initial, final, and step
size values are determined upon entry to the loop and thereafter
remain unchanged. It is thus not possible to change the step size
in the middle of the loop if one is interested in preparing a table
with differing step sizes as thc table progresses.

The final statement in the program is always an END statement.

Besides the nine statements, BASIC includes a number of standard
functions, of which most are listed below:

SIN
COS
TAN
ATN
SQR
RND (random number)

LOG
EXP
ABS
SGN (sign -1, 0, +1

of argument)
INT (integer part)

An example program Utilizing all nine of the elementary BASIC
statements is shown on Page 8 . It calculates the sum of a geometric
series for 100 terms given the initial term and the ratio. (For
a more complete description of the details of the BASIC Language,
the reader is referred to the Manual for BASIC.) The program should
be self-explanatory, and is designed primarily to illustrate the nine
statements of elementary BASIC. The sample run is shown on page 8.

It is revealing also to compare a typical program in BASIC with
the corresponding program in FORTRAN and ALGOL. The program chosen
is a simple one that prints a small table of the square and cube
roots of numbers from 1 to 2 with a spacing of .1. The programs in
all three languages are shown on Page 9.

The BASIC program should be self-explanatory, and has been
actually test-run. The ALGOL shown is the version of ALGOL available

on the Dartmouth Time-Sharing System, and has also been test-run.
The FORTRAN program is in a hypothetical version of FORTRAN that
might quite reasonably be implemented on a Time-Sharing System, but
which does not, to our knowledge, actually exist. However, its
form follows closely the form and conventions of standard FORTRAN II.

Comparing these programs, we see that BASIC is economical in
typing, and is simple to read. The FORTRAN version contains several
extra steps required by the peculiarities of FORTRAN. For instance,
non-integer step sizes cannot be used in DO statements. The distinction
between real and integer requires both extraneous decimal points and
the extra statement in line 30. Finally, the FORMAT statement is
awkward to use when only simple output is needed.

The ALGOL version shows an economy of typing similar to BASIC's,
but additional declaration statements are needed. Furthermore, even
for relatively simple looping statements, the compound statement
structure using the BEGIN-END is needed.

This simple example thus shows that BASIC contains crucial
simplifications over both FORTRAN and ALGOL. These simplifications,
and others of a similar nature, have turned out to be the important
difference in being able to bring computing to essentially all
students and faculty at Dartmouth.

4. Advanced BASIC

The title of this section is misleading in that the statements
outlined in Section 3 can lead to quite complex programs. There

are additional statements, of course, and these are what is discussed

here. Perhaps the title "less-needed BASIC statements" would be

more appropriate.

There is an additional input instruction called INPUT. It

operates much as READ does, but draws data from the teletype key-
board rather than from the DATA block. This statement permits the
user to interact with his program while it is running. It is

essential for game-playing, or any similar application. For easy-

to-use utility programs, it is easier to have the lay user enter his

special data through an INPUT statement rather than giving him
directions for attaching DATA statements to the programs before
running it.

Besides the special functions automatically provided by BASIC,
the user may define up to 26 functions of his own through a DEF or
define statement. The format is:

DEF FN 4etter> (<simple variable)) = 4xpression) .

The name of the function is thus three letters of which the first
two must be FN. The parameter in the DEF statement must be a simple
variable, that is, a letter possibly followed by a digit. Defined
functions are used exactly like ordinary functions.

Certain sections of a program may be transferred to using the
GOSUB statement, which also "remembers" the return address. The

RETURN statement in the sub-program causes a return to the statement
following the GOSUB. GOSUB's may appear in sub-programs; that is,

they may be nested.

The RESTORE statement causes the pointer in the data block to
be reset so that the next READ statement will read the first datum
as if it were the first READ statement in the program.

The DIM statement is used to declare sizes for list and tables
(vectors and matrices) other than the standard implied declaration
(0 to 10.) It may be used to declare large matrices, or to conserve
spacE,1 in a tight program by declaring the matrices to be small.

The REM statement is used to supply remarks or comments in the

program. Whatever follows REM is ignored until a carriage return

is reached. The STOP statement is equivalent to a GO TO to the
line number of the END statement in the program.

Besides these additional instructions, the PRINT statement is
capable of more generality. Using the ; instead of the , causes

a "packing" in the output line.. For labels, the packing is simple

juxtaposition. For numbers, the packing depends on the number of

digits or special characters printed out. This should not be con-

fused with formatted output, which can be provided by special GOSUB

type routines if needed.

5. Matrix Operations

One of the most useful of all BASIC statements is the MAT. It

indicates that what follows is to be interpreted as an operation on

a matrix (or vector.) With MAT statements, matrices can be added,

subtracted, or multiplied, scalar multiplication can be performed,

or an inverse or a transpose produced each in one line. Also an

identity matrix or a matrix of all zeros or ones can be supplied, or

a matrix read or printed. For instance, the following program
exclusive of DIM and DATA statements can find the solution of a set

of linear equations:

10 MAT READ A,B
20 MAT C = INV(A)
30 MAT D = C*B
40 MAT PRINT D

Details of MAT operations can be found in the BASIC Manual.

6. Future Plans

As the use of BASIC has increased, we have become aware of a
number of shortcomings in the language. These range from a poor

original choice of convention to the inability to handle alphabetical
information as data. Accordingly, as BASIC is being implemented for
the new 635 computer system, a number of changes are being made.

a. A new statement ON

A new statement ON will act as a many-way branch. For
example:

117 ON X + 2 GO TO 100, 200, 300, 450

will transfer to 100 if X + 2 (truncated) equals 1, to 200 if X + 2
(truncated) equals 2, and so on.

b. Defined functions can have any number of arguments.

Functions defined by the DEF statement will be able to have
any number of arguments, including none. Two argument functions
will, for instance, greatly simplify the DIFFEQ student exercise
described in Appendix III.

c. A new statement RANWMIZE

This statement will jumble up the random number sequence.
After a program is debugged (for which it is important to have a
reproducible sequence), the user can insert a RANDOMIZE statement
to avoid repeating earlier experlments or similar experiments by
other users.

d. String-handling capability

The new BASIC will have the ability to read, input, print,
assign, and compare string data. Comparison will be on the basis of
the lexeographical order implied by the ASCII code. Individual
characters in the string can be retrieved or modified using a special
CHANGE statement, which spreads out a string into a numerical vector,
one character per entry, or vice versa.

e. MAT clean-up

Certain conventions in the original MAT package proved to
be unwise. In particular, subscripts ran from 0 to N. In the new
BASIC, subscripts will run from 1 to N. Further changes include
implied dimensioning as well as implied declaration whenever possible.
A programmer will be able to use the MAT instructions as easily as he
can now use ordinary BASIC.

f. Miscellaneous changes

Certain small changes are being made in the use of the; in
PRINT statements.

LIST

SERIES 14:24 6/13/67 TUESDAY

100 PRINT "A", "R", "SUM", "TRUE SUM"
110 READ A, R
120 IF ABS(R) 1 THEN 210
130 LET S = 0
140 LET T = A
150 FOR I = 1 TO 100
160 LET S = $ + T
170 LET T = T*R
180 NEXT I
190 PRINT A, R, S, A/(1-R)
200 GO TO 110
2r0 PRINT A, R,
220 GO TO 110
230 DATA 1, 2
240 END

RUM

SERIES 14:25

A

"SERIES IS DIVERGENT"

1, 05, 111. .8, 1, .9,

6/13/67 TUESDAY

1, 1.5

R SUM TRUE SUM
1 .2 1.25 1.25
1 .5 2. 2

1 .8 5, 5.

1 .9 9.99973 10.

1 1.5 SERIES IS DIVERGENT

OUT OF DATA IN 110

TIME: 1 SECS.

X-..13AS

10 PRINT "X"s "SQUARE ROOT"s "CUBE ROOT"
20 FOR X = 1 TO 2 STEP .1
30 LET S = Saii(x)
40 LET C = Xt(1/3)
50 PRINT X1 SP C
60 NEXT X
70 END

10
20
30
40
50 S = SQRTF(X)
60 C = X**(1/3)
70 10 PRINT 30, Xs Ss C
80 20 FORMATC1HX, 14Xs 11HSQUARE ROOT./ 4X, 9HCUBE ROOT)
90 30 FORMATC 3F15.5)
99 END

PRINT 20
DO 10 I = Os 10
XI = I
X = 1.0 + XI/10.0

10 BEGIN REAL X, Ss Ci
20 PRINTC"X", "SQUARE ROOT", "CUBE ROOT").1
30 FOR X := 1 STEP .1 UNTIL 2 DO
40 BEGIN S := SWITCX); C := XtC1/3);
50 PRINT(X, S, C) END END

9.

Appendix III

The Freshman Training Program

The TEACH System

1. Problems from Freshman Mathematics

The computer training program at Dartmouth is given to students

enrolled in their second course of freshman mathematics. There are

two main options, depending on the student's interest, for this

second course:

First Course Introduction to Calculus

Second Course Techniques of
Calculus

Finite Mathematics

The Calculus option is elected by students interested in Mathematics,

Engineering, Rhysics, and other Sciences. The Finite Mathematics

option is elected by Pre-Meds and students headed toward the Social

Sciences. (In addition, there are advanced placement tracts and

honors sections, and the computer training is also provided for these

modifications.)

The content of these three courses may be summarized as follows:

Introduction to Calculus

Differentiation
Curve Plotting
Integration
Simple Differential Equations

Techniques of Calculus

Integration Techniques (linear)
Techniques for Solution of Differential Equations
Infinite and Power Series
Applications

Finite Mathematics

Logic and Sets
Probability Up To Central Limit Theorem For Binomial Trials

Vectors and Matrices
Applications to Markov Chains or Linear Programming

An important slant of the training program was to present pro-

gramming techniques in terms of applications to the mathematics

course. We thus avoided the artificiality of teaching programming

as an isolated discipline. In line with this point of view, we
presented two extra one-hour lectures near the beginning of the
course. The student was shown a teletype machine, and then shown
how to use BASIC to carry out certain simple computations. At the
end of the second lecture, he was handed his first assignment.
Later on in the course he received on schedule his second, third
and fourth assignments. While the first one is more of an ice-
breaker and is not directly related to the course, the remaining
exercises are related to the course both in content and in timing.

For the Calculus option, the four computer exercises are:

PIE The student is asked to approximatelr by
calculating the perimeter of a regular
polygon inscribed in a unit circle. He
starts with a hexagon and doubles the
number of sides a specified number of times.
The most common type of program for this
problem uses the BASIC statements READ,
DATA, PRINT, LET, FOR, NEXT, and END.

The student is asked to prepare a program
for implementing the trapezoid rule for
approximately a definite integral. The
end points of the interval as well as the
number of subintervals are supplied as data,
and the function is introduced with a DEF
statement. The usual approach will include
a FOR statement with a non-integer step
size, though other techniques for running
through the sum are acceptable.

The student is asked to construct a program
to explore the truncated power series for
the sine function.

DIFFE0 A program is required for integrating a
first order differential equation with a
given initial value. The method used is the
so-called "modified Euler" which also can be
viewed as a simple type of Runge-Kutta method.
In any case, this method is stable, and has
second-order error term for a fixed range of
integration. The method is thus "safe" for
general use, and halving the meshsize reduces
the error to approximately one-quarter.

For the finite mathematics option, the four problems are:

MOD The student becomes familiar with modular or
residual arithmetic, and is asked to calculate

2 .

3.

the value of AB mod (M). He will probably
subtract multiples of M until the residual
is < M; he has not yet seen the INT function,

which is the natural way for performing this

calculation. He will probably use the BASIC

statements READ, DATA, PRINT, LET, IF and

END, and possibly also the FOR and NEXT.

QUINT The student must write a program for finding

a real root of a given quintic equation,

which is introduced through a DEF statement.

The method requested is a binary search be-

tween 0 and 1 using N (read in) iterations.

BDAY The student must program the formula for
the probability that two or more in a group

of N persons have a birthday on the same

date.

OZ In this exercise the student must simulate a

three state Markov chain purportedly dealing

with weather in the Land of Oz. He must use

the RND function for generating random num-

bers between 0 and 1, and will probably elect

to retain the transition probabilities in

table (matrix) form. He is asked to accumu-
late the elementary statistics from the

simulation.

Slightly edited instruction sheets for each of the eight exer-

cises are included. These follow a one-page general instruction

sheet handed to students at the end of their second computer lecture.

The general instruction sheet is shown on page 4 of this

Appendix, and the instruction sheets for the eight exercises are

included on pages five through eleven.

4.

MACHINE TESTING OF COMPUTER PROBLEMS

The Dartmouth College Computation Center has developed a
special system for aiding freshmen in their required programming
problems. Each of the four assigned problems can be automatically
tested by the computer, to help students debug their programs. To
enable the computer to do this, a small number of conventions must
be observed.

Name of problem: Each problem has an official name. The student
must use precisely this name for his program.

Data: The instructions for the problem will specify what
data is to be read. The program must read this data,
and no more. For example, if two numbers M and N are
to be read, any attempt to read only one number, or
read more than two, results in an error message. If
the programmer wishes to try out his program for vari-
ous values of M and N, he can do this by several
RUN's, each with different data.

Answers: The instructions will specify what answers are to
be computed, and what names to call them. Using names
other than the official ones will result in an error
message. NOTE: The machine will test the computed
answers, not the printed ones. Thus it is possible to
obtain an error message even if the answers printed
are correct.

Printing: Answers may be printed in any format convenient to
the programmer (see note above). To avoid confusing
printed answers with computed answers, it is recommended
that all answers be printed after the computations have
been completed.

Line Numbers: No line number greater than 9999 is allowed.

How to test: Write the program and debug it in the usual manner.
When you think that it works correctly, type the word TEST.
The machine wilIEFen either approve your program, or
it will give a hint as to where you have made a mistake.

Hand In: Always hand in a LIST, with your name and course num-
ber, a sample RUN, and TEST showing approval of your
program.

5.

FRESHMAN MATHEMATICS

Computer Problem No. 1.

Name of problem: PIE

Purpose: To obtain an approximate value for Tr, by approximating

the circumferance of a unit circle.

Mathematics involved: Start with a regular hexagon inscribed in

the unit circle (6 sides, each of unit length). If we

know the number of sides (N) and the length of the side

(S), we obtain the same quantities for a regular polygon

with twice as many sides as follows:

X = S/2

Y = 1 - /3777-(2

New s=Jx2 4. y2

New N = 2N

P = NS/2

where P is the approximate value of 7r .

Data: Read a single number D. This tells you how many times

to double the number of sides. For example, if D = 2,

you start with a hexagon, then double to 12 sides, and

finally double to 24 sides.

Answers: Compute N (number of sides), S (length of side), and P

(approximate value of 71). Use the method described above;

certain short-cuts can lead to bad round-off errors.

Hand in: A LIST of your program (with your name and course), a

RUN (using D = 10), and a TEST which approves your

program.

6.

FRESHMAN MATHEMATICS

Computer Problem No. 2.

Name of Problem: TRAP

Purpose: To evaluate the integral

I
=if(x)dx

A
by the trapazoid rule. The mathematics of this will be

covered in class.

Data: Read three numbers A, B: N. The first two specify the end-

points of the interval [A,B]. You are to divide the inter-

val into N equal parts for the trapezoid rule.

Answer: The answer is I, the approximate value of the integral.

The function: To write a program that will work for an arbitrary

function, one uses the DEF instruction. This works as follows:

If at the beginning of your program you write
10 DEF FNF(X) = EXP(Xt 2)

then you may use FNF as if it were one of the usual functions

in BASIC. Each time in your program that you have FNF(X), it

will evaluate it as
e
x2 . And of course, you may write FNF(A),

or FNF(2.5), etc.

You should introduce your function as indicated. Then,

in the rest of the program, always use FNF in place of the

function. This will mean that you can apply your program to

any other function by simply changing the DEF.

Hand in: As usual, hand in a LIST, a RUN, and an ok TEST.

For the run you are to compute 1 2

JP x dx

0

to 6 place accuracy. You will have to try various values of

N, till you get no further improvement. Note that this integral

cannot be evaluated by a formula!

7.

FRESHMAN MATHEMATICS

Computer Problem No. 3.

Name of the problem: SINE

Purpose: To approximate sin (X) by taking M terms of the

Taylor series (around X = 0).

Data: Read two numbers, X and M. X is the point at which

we wish to approximate sin(X). M is the number of

terms to be used in the Taylor series. For. example,

3
if M = 2, we approximate by X - X /3!

Answers: Two numbers are to be computed. T = the Mth term

of the Taylor series. S = the sum of the first M

terms -- hence our approximation.

Hand in: A LIST and an ok by means of TEST.

In addition we suggest that you RUN a few sample

approximations. Get a feeling of how many terms

you need in the series if X is small, and how

many if X is around 3, for an approximation to

4 significant figures. You may also want to see

whether sin(X) = sin(X+27V) can be verified from

the series.

FRESHMAN MATHEMATICS

Computer Problem No. 4

Name of the problem: DIFFEQ

Purpose: To find that solution of the differential equation

(1) y' = f(x,y)

which passes through the point (ary
o
). Or, more precisely, to

find the value of the unknown function y(x) at the point x =b.

Mathematical method: Divide the interval (a,b] into n equal parts,
each of length h. Let xk be the kth end point, i.e.,

= a+kh, for k = of 1, n. And let yk = y(xk).
AE the start x = x

o
= a, and y = yo. Given an approxi-

mate value for yk, we compute y in two steps:

Pk+1 = Yk + hf(nvyk)

1(1, nYk+l
=
711k L-k+1 hf(xk+1,13k+l))*

Then y(b) = y . The derivation of these formulas is given
in the enclosed pages.

(2)

(3)

Data: READ the numbers A, B, YO, and N. They play the roles
of a, b, yo, and n above.

Conventions: Use P and Y for the current values of pk and yk
at each iteration. Since BASIC does not have defined
functions with two variables, one introduces f(x,y) by
a trick:

Answers:

Hand in:

Note:

DEF FNF(Y) = OOOOO 71

with the formula for f(x,y) on the right. As long as
X has the desired value before FNF is used, one need
only type FNF(...) where ... contains the desired
value of Y. A newer version of BASIC contains provision
for defined functions of several arguments.

At the conclusion of your computations PRINT N and Y.
The latter should at this stage be y(b).

A LIST and an ok by means of TEST. Also hand in a RUN in
which FNF(Y) = Y+EXP(-X), A=0, B=1, YO=l, and N=100.

This is a very useful program. You may wish to try it
out on various differential equations, and may want to
print out the values of the function y over a whole
interval.

9.

MATHEMATICS 6

Computer Problem No. 1

Name of problem: MOD

Purpose: To obtain the product AB (Mod M), that is the product

of A and B, if we want only the remainder after

dividing by M.

Data: Read three numbers, A, B, and M, in that order.

Answer: Compute P, where

P = AB (Mod M).

Mathematics involved: Modular arithmetic, or arithmetic modulo

a given number M, is integer arithmetic in which multi-

ples of M are always discarded. Thus the only numbers

are 0, 1, 2, ..., M-1. Otherwise one can operate in

modular arithmetic very much the way one operates in

ordinary arithmetic. Thus the present problem one

computes AB, and then reduces the answer (if necessary)

by discarding multiples of M.

Hand in: A LIST of your program, a RUN, and a TEST which ap-

proves your programall on the same piece of paper.

MATHEMATICS 6

Computer Problem No. 2

Name of problem: QUINT

Purpose: To find a root of the quintic equation

x
5
+ 2x

3
- 1 = 0.

Data: Read a single number N, the number of iterations.

Defined function: Introduce the quintic as a function, by an

instruction of the form

DEF FNF(X) =

Once lou have done this, you may use FNF(X) anywhere

in your program to give you a value of the quintic.

Mathematics involved: We note that the quintic has a negative

value at x = 0, and a positive value at x = 1. Let

A = 0, and B = 1. There must be a root of the equation

between A and B. Let X be half-way between and evalu-

ate the quintic at X. If FNF(X) c 0, then we have a

root between X and B. If FNF(X) 0, then there is a

root between A and X. In either case the interval has

been cut in half. We again choose X as the midpoint,

and start the second "iteration", which proceeds just

as before. If we do this 20 times, the interval has

been cut to about .000001, and hence we know a root of

the equation to within this accuracy!

Answer: At each stage A = left-hand end-point, B = right-hand

end-point, and X = mid-point. The final value of X is

the answer. Your program should carry out precisely N

iterations,

Hand in: A LIST (with your name), a RUN, and a TEST--all on the

same piece of paper.

11.

MATHEMATICS 6

Computer Problem No. 3

Name of problem: BDAY

Purpose: To find the probability of two out of N peop3,

he-ing the same birthday.

Data: N = number of people.

Answer: P = probability of two people having same

birthday.

Mathematics involved: See INTRODUCTION TO FINITE

MATHEMATICS, Chapter IV, Section 4.

Hand in: A LIST, a TEST, and four RUNs, using

N = 22, 23, 30, 50.

Compare your answers to the answers in the text.

MATHEMATICS 6

Computer Problem No. 4

Namc :. of problem: OZ

Purpose: To simulate a Markov chain -- The Land of Oz.

Data: N = number of days.

Procedure: Start with RAIN. Then simulate N days, keeping
a count of the number of days of each type.
The transition matrix is:

NICE

RAIN .5 .25 .25
NICE .5 0 .5
SNOW .25 .25 .5

Random numbers: You may generate a random number by:

LET A = RND (X).

Then A will be less than .3 with probability
.3, it will be between .3 and .5 with proba-
bility .2, etc.

Convention: Always let a low value of RND correspond to RAIN,
the middle range to NICE, and large values to SNOW.

Answers: The number of times in various states -- not counting
the initial state (RAIN.)
The fraction of time in each state.
Compare these fractions with the long-range probabili-
ties: .4, .2, .4.

TEST: There is no TEST program available for this problem.
However, IT you RUN your program for N = 30, you may
compare it with your homework problem.

Hand in: A LIST, and a RUN for N = 2500.

13

2. The TEACH System

Upperclass student readers are used to check the regular home-
work exercises of the students. However, this method for checking
computer exercises is not practical. First of all, both the method
and the answer must be correct--there is no partial credit.
Secondly, there will be many possible correct programs, too many
to ask any one person to pass judgement on: It was thus necessary
to develop a machine method for testing student program.

The TEACH System is actually an extension of BASIC. It
operates by appending to the student program a checking program,
making changes to the student program, and then executing the
combination. In effect, the TEACH test program is "running" the
student program with special test data. /f the correct answer is
obtained in all cases tried, the student program is assumed to be
correct. If one or more cases produces an incorrect answer, the
test program will print out an error message that can be made
dependent on the particular incorrect answer produced. Thus, the
TEACH test program not only accepts a correct program, it also
assists the student by supplying error messages that suggest what
is wrong with the student program. The matter of identifying the
nature of the error in the student program from the particular
wrong answer produced is limited only by the ingenuity of the
instructor in anticipating the kinds of mistakes that are likely
to be made.

Specifically, to use the TEACH System, the student must:

1. Prepare his program according to the instructions,
using specified variables for his "answers."

2. Use line numbers of 5 digits or less.

3. Have his program treat one case at a time, with no
doubling back for multiple cases.

He composes and debugs his program in the usual way. When he feels
that it works, he types TEST to invoke the TEACH system. The
following steps take place:

1. A TEACH program having the same name as his program
is appended to the student's program after the END
statement.

2. All PRINT, DATA, STOP and END statements are removed
from the student's program. STOP and END statements
are replaced by GOTO's to the first instruction in the
TEACH section.

3. The combined program is started running at the beginning
of the TEACH section.

14.

Several conventions were adopted to make it possible to
carry out a very flexible check of the student's program.

1. The symbol * stands fox the first executable
instruction in the student's program. Thus the
TEACH portion can return control to the student
portion without knowing the line numbers in
advance.

2. Eleven private variables ($ $l,...$0) and a
private list (0 are provided for the exclusive
use of the TEACH portion. They are initially
set to 0 and may be used as counters, etc.,
knowing that the student portion cannot modify
them.

3. Line numbers in the student portion must not
exceed 9999. Those in the TEACH portion must
be at least 10000.

4. A time limit may be set using TIME. The time
is checked at all GOTO's, IF's and NEXT's; if
the time is exceeded, the running stops, thus
avoiding a possible infinite loop in the stud-
ent portion.

As an example, we have included the complete TEACH test program
for PIE, the first problem used in the freshman training program.
The combined programs are started at line 10000. After setting up
certain variables,the test program in line 15000 jumps to the stud-
ent program. The * indicates the iirst instruction in the student
portion. After the student portion has completed its calculation,
the computer "drops down" into the TEACH portion. This time, $9
is 1 so that we jump to 20000 for checking. We use $9 to count
the number of times the TEACH portion is entered--this counter can
thus tell us when all testing has been completed, as well as dis-
tinguishing between the first and later times the test program is
entered.

The block diagram of the test program PIE is also included,
and may help in interpreting the program. The five digit numbers
in the block diagram refer to line numbers in the test program.
Notice that the test program is written entirely in BASIC, except
for the special use of $ and *, so that the instructor himself can
prepare the test program. When he is ready to allow use of the
test program, it is inserted into the TEACH library, from which it
cannot be listed.

The following six pages are illustrations of the above-
described TEACH program.

The text of this report continues on page 22.

15,

PIE

10000 REM THIS IS A SKELETON TEACH PROGRAM.
10010 REM IT IS DESIGNED BOTH AS A REMINDER, AND TO SAVE TYPING.

10020 REM THIS PROGRAM USES VARIABLES AS FOLLOWS:

10030 REM $9 (ONE MORE THAN NO. OF PASSES THRU STUDENT PROGRAM)

10040 REM $7 (NO. OF TIMES Y0 0 WISH TO GO TO STUDENT PROGRAM)

10050 REM $8 (USED IN CHECKING THE AMOUNT HE READS).
10100 REM READ EACH OF THE REM'S STARTING IN 11000,
10110 REM AND INSERT INSTRUCTIONS IMMEDIATELY FOLLOWING THE MEM,

10120 kEM WHENEVER APPROPRIATE.
11000 REM DESCRIP1%0N OF PROBLEM:
11001 HEM TO COMPUTE VALUE OF PIE.
11002 HEM START WITH HEXAGON, DOUBLE SIDES D TIMES.

11003 REM DATA: D. N= NO. SIDES, S= SIDE, P= APPROX. PIE.

11500 REM REMINDER: CHANGE NAME OF PROBLEM, USING 'RENAME'.
12000 LET $9 = $9+1
12100 IF $9 1 THEN 20000
12200 READ $7
13000 REM INITIALIZE STUDENT'S VARIABLES TO RECOGNIZABLE WRONG NOS.

13010 LET N = -177
13020 LET S = -177
13030 LET P = -277
14000 REM SET UP YOUR $-VARIABLES. (ELSE THEY WILL BE 0.)

15000 GOTO *
16000 REM TIME-LIMIT SET AT 5 SECS. CHANGE IF DESIRED.

16001 TIME 5
20000 IF $9 2 THEN 30000
20100 READ $8
20200 IF $8 = 117 THEN 30000
20300 PRINT "YOU ARE READING THE WRONG AMOUNT OF DATA."
21000 REM INSERT AN ADDITIONAL SENTENCE' IF DESIRED.
21010 PRINT "READ A SINGLE NUMBER Dt MNEN COMPUTE 141, St AND P."

22000 STOP
30000 REM READ A DUPLICATE SET OF DATA, TO BE USED IN
30001 REM PRINTING ERROR-MESSAGES.
30010 READ $1
31000 REM READ OR COMPUTE CORRECT ANSWERS.
31010 LET $2 = 6
31020 LET $3 =
31030 FOk $ = 1 TO SI
31040 LE1 $5 = $3/2
31050 LET $6 = 1-SQR(1-$5t2)
31060 LET $3 = SQR($5t2+$6t2)
31070 LET $2 = 2*$2
31080 LET $4 = $2*$3/2
31090 NEXT $
32000 REM CHECK STUDENT ANSWERS IF ERROR, THEN 40000.
32010 IF ABS($3-S) a 1E-6 THEN 40000
32020 IF ABS($4-11) 1Em6 THEN 40000
32030 IF 144>$2 THEN 40000
33000 IF $9 4= $7 THEN *

16.

PIE CONTINUED

33100 PRINT "CONGRATULAISIONS. YOUR PROGRAM WORKS."
33200 REM ADD AN ADDITIONAL USEFUL ON FUNNY SENTENCE.
33210 PRINT "YOU HAVE EARNED YOUR FIRST STRIPE AS A PROGRANNEW
33220 PhINT
33830 PRINT "HAND IN: THIS PAGE WITH A LIST AND A RUN."
33240 PRINT "BE SURE YOUR NAME AND COURSE APPEARS ON IT."
33300 STOP
40000 IF $9 > 2 THEN 50000
41000 REM CHECK WHETHER ANY OF THE INITIAL VALUES YOU SUPPLIED
41001 REM ARE UNCHANGED. IF SO, STUDENT IS NOT USING THE
41002 REM CORRECT VARIABLE(S).
41010 IF N " 4°177 THEN 41100
41020 PRINT "YOU ARE NOT USING N FOR THE NUMBER OF SIDES."
41030 STOP
41100 IF S 4> 177 THEN 41150
41110 PRINT "YOU ARE NOT USING S FOR TME LENGTH OF THE SIDE."
41120 STOP
41150 IF S " 1 THEN 41200
41160 PRINT "YOU HAVE FAILED TO ITERATE. "
41170 PRINT "ARE YOU ITERATING D TIMES?"
41180 STOP
41200 IF P 277 THEN 42000
41210 PRINT "YOU ARE NOT USING P FOR THE APPROX. VALUE OF PIE."
41220 STOP
42000 REM CHECK WTHETHER WRONG ANSWER IS RESULT OF YOUR
42001 REM INITIAL VALUES. THEN HE IS NOT INITIALIZING.
42100 IF N 0 THEN 42200
42110 PRINT "YOU DID NOT INITIALIZE N."
42120 STOP
42200 IF ABS(S11124.4)>I THEN 50000
42210 PRINT "YOU DID NOT INITIALIZE S."
42220 STOP
50000 REM DETAILED ERROR ANALYSIS. THIS IS THE PAYOFF.
50010 IF N = $2 THEN 50100
50015 IF $9 > 2 THEN 50150
50020 PRINT "EITHER YOU HAVE INITIALIZED N INCORRECTLY, OR "I
50025 IF N > $2 THEN 50050
50030 PRINT "YOU ARE NOT DOUBLING IT."
50040 STOP
50050 PRINT "YOU ARE!
50055 PRINT "ITERATING TOO MANY TIMES."
50060 STOP
50100 1F S $3 THEN 50200
50110 IF $9 > 2 THEN 50150
50120 PRINT "YOU ARE COMPUTING S INCORRECTLY."
50130 PRINT "PLEASE CHECK THE NOTES HANDED OUT IN LECTURE."
50140 STOP
50150 PRINT "YOU STARTED OUT ALL RIGHT, BUT THERE IS AN ERROR";
50160 PRINT " IN THE WAY YOU ITERATE."
50165 PRINT "ARE YOU ITERATING D TIMES?"

PI E CONTI NUED

50170 STOP
501200 PRINT "YOU ARE FINDING P INCORRECTLY FROM N AND S."

50210 STOP
60000 REM REMINDER: BE SURE THERE IS A 'STOP' AFTER EACH
60001 REM ERROR MESSAGE YOU WROTE.
90000 REM DATA: NO. OF TIMES YOU WANT TO GO THRU STUDENT PROGRAM.
90001 DATA 3
91000 REM DATA: FIRST SET OF DATA FOR STUDENT.
91001 DATA 1

92000 DATA 117
93000 REM DATA: DUPLICATE OF STUDENT DATA, OTHER DATA FOR

93001 REM CHECKING FIRST STUDENT PASS.
93002 DATA 1
94000 REM DATA: DATA FOR LATER PASSES. ALWAYS HAVE
94001 REM STUDENT DATA, THEN DUPLICATE, THEN OTHER DATA.
94002 DATA 2,2,10,10
99999 END

17.

START

100004

#9 + 1 +$9

12000

BLOCK DIAGRAM

TEACH TEST PROGRAM

PIE

$9 Is trial number

this way - first time only

no

12100 yes

20000 es

READ $7)
12200

nudber of oases

to be tested

N
-177*
-277

13010 15000

set student variables to

to recognisablE student

wrong values program

seoond time through - oheok data -.should be 117

(: READ $5

20100

(:IREAD #1

30010

oompute
#2, $3, and #4
by approved
method

31000 -
31090

duplicate of student's data

$1 corresponds to D

IlL correskonds to N

$3 corresponds to

$4 corresponds to P

Sgo to next page of this dia ram

"YOU ARE READING
THE WRONG AMOUNT
OF atztj READ A
SIMLE NUMBER n

N, St and P"

20300

18.

19.
PIE - 2

check S, NI and P against; approved values.
E is the error tolerance, this case OK 11.22Y2.11

yeano

32010 32020 32030 yes 33000 no
y all cases OK

for second and
later oases
skip around

'OONPATULATIONS.
YOUR PROGRAM WORK
YOU HAVE EARNED
YOUR FIRST STRIPE
... ON IT,"

after first case
only.,
oheok to see
if student
initialized
N,S and P
properly.

40000 no (next page.)

41010 es 41020

"YOU ARE NOT
USING S FOR THE
LENGTH OF
THE SIDE."

41100 41110

STOP

41150 41110

"YOU ra NOT
USING P FOR THE
APPROX. VALUE
OF PIE."

41200 41210

42100

42200 no 42210

next page)

PIE - 3

N is wrong.

= $2 ?

50010 yes

N is OK.

1

no

50020

yea

50015 ''''^n"-o

first case OK but a
later oase is in error.
"YOU STARTRD OUT1

AII, RIGHT, BUT 1yesy
)i THERE IS AN

ERROR IN THE WAY1

50150 D TIMES?"

"EITHER YOU
HAVE INITIALIZED
N INCORRECTLY,
OR ft

es

50025 no 50050

50030

S is OK.
P must be in drror.

20 .

throush on14

"YOU ARE
ITERATINn TOO
MANY TIMEb."

"YOU ARE NOT
; DOUBLING IT."

L._,
50100 o 50200

$ is not OK.

no

50110 yes 50120

first oase OK N OK but 8 not in a
later case - give up.
(top of this page.)

"YOU ARE FINDING
P INCORRECTLY
FROM N AND S."

"YOU ARE COMP-
UTING S INCOR-
RECTLY. PLEASE
CHECK THE NOTES

IN LECTURE."

STOP

21.

TEACH-

10000 REM THIS IS A SKELETON TEACH PROGRAM.
10010 REM IT IS DESIGNED BOTH AS A REMINDER, AND TO SAVE TYPING.

10020 REM THIS PROGRAM USES VARIABLES AS FOLLOWS:

10030 REM $9 (ONE MORE THAN NO. OF PASSES THRU STUDENT PROGRAM)

10040 REM $7 (NO. OF TIMES YOU WISH TO GO TO STUDENT PROGRAM)

10050 REM $8 (USED IN CHECKING THE AMOUNT HE READS).

10100 REM READ EACH OF THE REM'S STARTING IN 11000,

10110 REM AND INSERT INSTRUCTIONS IMMEDIATELY FOLLOWING THE REM,

10120 REM WHENEVER APPROPRIATE,
11000 REM DESCRIPTION OF PROBLEM:
11500 REM REMINDER: CHANGE NAME OF PROBLEM, USING 'RENAME'.

12000 LET $9 = $9+1
12100 IF $9 > 1 THEN 20000
12200 READ $7
13000 REM INITIALIZE STUDENT'S VARIABLES TO RECOGNIZABLE WRONG NOS.

14000 REM SET UP YOUR $-VARIABLES. (ELSE THEY WILL BE 0.)

15000 GOTO *
16000 REM TIME-LIMIT SET AT 5 SECS. CHANGE /F DESIRED.

16001 TIME 5
20000 IF $9 > 2 THEN 30000
20100 READ $8
20200 IF $8 = 117 THEN 30000
20300 PRINT "YOU ARE READING THE WRONG AMOUNT OF DATA.

21000 REM INSERT AN ADDITIONAL SENTENCE, IF DESIRED.

22000 STOP
30000 REM READ A DUPLICATE SET OF DATA, TO BE USED IN

30001 REM PRINTING ERROR-MESSAGES.
31000 REM READ OR COMPUTE CORRECT ANSWERS.

32000 REM CHECK STUDENT ANSWERS -- IF ERROR, THEN 40000.

33000 IF $9 4= $7 THEN *
33100 PRINT "CONGRATULATIONS. YOUR PROGRAM WORKS."

33200 REM ADD AN ADDITIONAL USEFUL OR FUNNY SENTENCE.

33300 STOP
40000 IF $9 > 2 THEN 50000
41000 REM CHECK WHETHER ANY OF THE INITIAL VALUES YOU SUPPLIED

41001 REM ARE UNCHANGED. IF SO, STUDENT IS NOT USING THE

41002 REM CORRECT VARIABLE(S).
42000 REM CHECK WTHETHER WRONG ANSWER IS RESULT OF YOUR

42001 REM INITIAL VALUES. THEN HE IS NOT INITIALIZING.

50000 REM DETAILED ERROR ANALYSIS. THIS IS THE PAY-OFF.

60000 REM REMINDER: BE SURE THERE IS A 'STOP' AFTER EACH

60001 REM ERROR MESSAGE YOU WROTE.

90000 REM DATA: NO. OF TIMES YOU WANT TO GO THRU STUDENT PROGRAM.

91000 REM DATA: FIRST SET OF DATA FOR STUDENT.

92000 DATA 117
93000 REM DATA: DUPLICATE OF STUDENT DATA, OTHER DATA FOR

93001 REM CHECKING FIRST STUDENT PASS.

94000 REM DATA: DATA FOR LATER PASSES. ALWAYS HAVE

94001 REM STUDENT DATA, THEN DUPLICATE, THEN OTHER DATA.

99999 END

To help the instructor get started, we furnish a skeleton
TEACH test program containing information remarks and certain
common portions of the program that are most likely to be needed.
A listing of this skeleton program, called TEACH-Fis included.
Notice that the time limit is set nominally to 5 seconds in
line 16001. It should be emphasized that any statement or vari-
able can be changed-- TEACH- is provided merely to save work.

An illustration of this program is given on the preceding
page.

22.

The TEACH system is used for the computer training in fresh-
man mathematics. It is also used by other departments and at
other levels for training students. For instance, the Tuck School
of Business Administration requires a series of seVeral TEACH-checked
exercises for their first year students.

An interesting application is the BASICT system for teaching
BASIC in the absence of the introductory lectures. When the user
prepares his first (very simple) exercise, he types TEST. If it
is accepted, not only is he immediately notified, but also the
test program prints out directions for his next exercise. While
still in the developmental stage, this approach has already proved
quite useful and is continually being improved.

3. A Typical Expezience

Following the winter term of 1965-1966, during which the com-
puter training was provided for students enrolled in second-term
calculus, a survey of the 166 students in the regular section was
conducted. This group excludes the advanced placement and honors
students. A completed questionnaire was returned by 96 of the
166 students. The results below are based on this incomplete but
nonetheless significant survey.

Based on the survey, the average amount of time spent by the
students for the four exercises was:

Preparation (hours) teletype

PIE 1.7 1.5
TRAP 1.7 1.5
SINE 1.8 1.5
DIFFEQ* 1.2 1.0

* Only about 63 students had completed DIFFEQ by the
time of the survey.

Adding to these average times the two hours of preliminary
lectures, we conclude that the total time spent by the "average"
student on the entire four-exeraiiprogram is around 14 hours.
This amount was deemed to be not excessivelband no material was
deleted from the mathematics course to compensate.

23,

Other results from the survey show that:

a. A majority felt that two one-hour lectures were
either about right or too much.

b. Half the students were not good typists, and half
of these felt this caused them to require extra
time of up to an hour per problem.

c. There was much discussion between students, but
very little use was made of graduate student or fac-
ulty consultants.

d. Most, but not all, students felt that the TEACH
error messages were helpful, and a few made the
excellent observation that they should be sug-
gestive only, allowing the student to figure out
his own error.

e. Some improvement in the problem handouts was sug-
gested, but most felt the BASIC Manual was quite
good.

f. Some students felt that the computer training
helped with their understanding of the Calculus, but
many felt that more integration with the course work
would be helpful.

For a different term (fall 1965) results were gathered on the

numbers of students in several sedions who actually completed each

of the exercises. In this term, the computer training was required
of students in the following courses:

Course Number Students Description

4 41 Second term Calculus
5 71 Advanced Placement Calculus
9 50 Honors Section of Math 5

27 18 Sophomore honors (freshman only)

Overall, 95 percent of all exercises were completed success-

fully. The specific statistics for the four exercises were:

Exercise Numbers Percent

PIE 178 out of 181 98

TRAP 172 out of 180 96

SINE 167 out of 180 93

DIFFEO 168 out of 180 93

While the students were told that the computer exercises
were required, no specific penalties for non-completion were
mentioned. Even so, the proportion completing this work is
considered high in comparison with other types of "required"
work, such as daily homework. This indicates to us that the
computer training portion of the course is generally popular
with the students, and that most of them take it quire seriously.

24.

