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1. Introduction 

The introduction of ridesharing services such as Uber and Lyft have fundamentally changed 

how many individuals are transported in cities and towns across the U.S. on a daily basis. While 

the ability to easily hail a ride through an app has undoubtedly increased convenience for 

passengers seeking car transportation from origin to destination, critics increasingly argue that 

ridesharing creates other, offsetting effects, such as increases in traffic congestion and car-exhaust 

pollution. Are there, in fact, significant costs that come with the convenience of ridesharing? In 

this paper, we present evidence suggesting that such costs exist, are not trivial and can be measured 

in human lives—specifically, in increased rates of major traffic accidents and traffic fatalities. 

Using the staggered introduction of ridesharing services across U.S. cities, we show that the advent 

of ridesharing in a metropolitan area leads to an economically meaningful increase in motor vehicle 

fatalities. This increase is consistent with acknowledged macro trends in motor vehicle accidents, 

which had been falling steeply in the U.S. over the period 1985 to 2010 when ridesharing first 

launched, and have since reversed course and increased (Figure 1).1 

Whether ridesharing should lead to higher accident rates is not apparent at first glance. A naïve 

view of the effects of ridesharing merely views ridesharing as removing drivers who would have 

driven themselves with their car and replacing them with rideshare drivers. Under this naïve view, 

ridesharing substitutes self-drivers with rideshare drivers on a one-to-one basis. Moreover, one 

might argue that many of the users who are substituting away from driving themselves into being 

driven are often doing so because they are (or will be) inebriated or otherwise impaired. This 

substitution of impaired drivers with sober rideshare drivers potentially increases the quality of 

driving while holding car utilization fixed. Under this view, there is no increase in the vehicle 

miles traveled and a possible increase in driver quality, and consequently, there should be no effect 

on, or even a reduction, in accident rates.  

This naïve view, however, ignores many of the nuanced effects of substituting driving oneself 

with being driven by a rideshare driver. For example, rideshare drivers have riders in their car for 

only a fraction of the time that they are driving on the road: they must drive from fare to fare, and 

they drive from location to location in the city looking for better fare prospects as there is not 

                                                 
1 Figure 1 was created by Dennis Bratland and is reproduced under creative commons license. The figure uses NHTSA 
FARS and CrashStats data to depict total U.S. motor vehicle deaths, deaths per VMT, deaths per capita, VMT and 
population for the period 1920-2017.  
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always a fare available. Moreover, rideshare companies often subsidize drivers to stay on the road 

even when utilization is low, to ensure that supply is quickly available.  

Furthermore, the naïve substitution view assumes that only those that would have otherwise 

driven themselves are now utilizing the ridesharing system, which is unlikely. The convenience 

and lower pricing of ridesharing apps suggest that there may be a significant substitution away 

from other modes of previously available transportation, such as subways, buses, biking or 

walking. These individuals would have utilized these modes of transport in the absence of the 

convenience and low cost of ridesharing. Indeed, surveys report that fewer than half of rideshare 

rides in nine major metro areas actually substitute a trip someone would have made in his or her 

car (Schaller, 2018). Moreover, a survey conducted by UC Davis on over 4,000 residents in seven 

major metros areas found that only 39% of respondents would drive themselves, carpool, or take 

a taxi if ride-hailing had not been available. The rest substitute from rail, biking, walking or not 

traveling at all (Clewlow and Mishra, 2017). 2   

The survey evidence suggests that the utilization substitution is not likely to be one-for-one, as 

assumed in the naïve view. From a supply perspective, a local report that examines detailed 

ridesharing data in New York City suggests that ridesharing companies put 2.8 new vehicle miles 

on the road for each mile of personal driving that they eliminated (a 180% overall increase). 

Moreover, the same report suggests that ridesharing has added 5.7 billion miles of annual driving 

in the Boston, Chicago, Los Angeles, Miami, New York, Philadelphia, San Francisco, Seattle and 

Washington DC metro areas (Schaller, 2018). While pooling services such as UberPool and 

LyftLine have the potential to reduce the overall increase in vehicle miles, these modes of 

ridesharing currently represent a relatively small (20%) share of overall rides.  

The survey data suggests a more nuanced view of the overall effect of ridesharing on road 

safety. We incorporate these general ideas into a conceptual framework for thinking about how 

ridesharing’s introduction may affect accident rates.3 While the naïve view of ridesharing holds 

the utilization and supply of drivers constant, our nuanced view incorporates rational choice theory 

to drivers and riders’ decisions in the context of ridesharing. Our framework models accidents as 

                                                 
2 Similar numbers emerge from studies conducted by the Boston Metropolitan Area Planning Commission (MAPC, 
2018), the New York Department of Transportation (NYDOT, 2018), and other researchers (Clewlow and Mishra, 
2017; Henao, 2017; Circella et al., 2018). 
3 Our theoretical analysis of ridesharing’s effect on safety can be thought of along the lines of the traditional offsetting 
behaviors literature (Peltzman, 1975). 
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a function of vehicle miles traveled and average driver quality. The advent of ridesharing makes 

car transportation easier for riders, which should, in turn, lead to a decrease in the marginal cost of 

making a trip for riders, thus spurring more rides. In the case of potential drivers, the monetary 

value assigned to driving via the platform also increases the net benefit for individuals with 

vehicles of heading out to give rides. These two forces should lead to overall increases in the 

number of cars on the roads. Depending on the quality of the new rideshare driver entrants as 

compared to the driving quality of former drivers who now ride in a rideshare, this may also lead 

to a potential change in the average quality of drivers on the road. We outline the potential effects 

of the introduction of ridesharing through each of these two components. 

We then turn to an empirical analysis of the effects of ridesharing on accident rates. We define 

the entry of ridesharing into cities using rollout dates obtained directly from Uber and Lyft. The 

companies provided separate launch dates for the different services offered. Thus, for each city, 

we have a separate launch date for UberBlack/UberTaxi, UberX, UberPool, Lyft, and LyftLine. 

We use the launch date of the first service to arrive in each city to determine the first quarter of 

treatment. Our outcome measures are a variety of fatal traffic accident related measures from the 

Fatal Accident Reporting system maintained by the National Highway Traffic Safety 

Administration (NHTSA).  

We begin our analysis by examining changes in the level of accidents in the treated cities 

around the introduction of ridesharing. Figure 2 plots the quarterly average accident rate per 

100,000 people over event time in rideshare cities. At the time of rideshare initiation—time zero—

we see a distinct break in the trend of accident rates in the cities: accident rates begin to rise sharply 

relative to the pre-event time trend, a noticeable increase. We investigate this increase formally 

using a difference-in-differences specification with fixed effects for location, time (quarter-year). 

Consistent with the raw data plotted in Figure 2, the difference-in-differences specification 

documents a 2 to 4% increase in the number of fatal accidents and fatalities: throughout the week, 

on weekends, at night, and on weekend nights. The estimates are robust to the inclusion of a variety 

of control variables as well as to the addition of a location-specific linear time trend, and are similar 

for a variety of different specifications of the left hand side accident measure.  

When we separate the accidents into those that do and do not involve a drunk driver, we find 

that the estimates for non-drunk accidents are similar: a 2-4% increase in accidents, across a variety 

of measures. For drunk accidents, estimates of the model without accounting for a location-specific 



4 
 

time trend suggest a decrease in accidents and fatalities that is much smaller in magnitude and only 

weakly significant if at all. This estimate is consistent with existing studies utilizing smaller 

samples that limit their analysis to fatal drunk driving accidents and that do not account for city-

specific time trends; when we include the location-specific trend, however, the sign and 

magnitudes of the estimate of the effects of ridesharing on drunk accidents are similar to those in 

our other specifications.4   

Having established our primary finding, we proceed to examine differentials in outcomes for 

the various rideshare product lines using the launch dates for pooled versus non-pooled services: 

Despite allowing for more utilization of carpools, and therefore potentially reducing total vehicle 

miles traveled, the introduction of UberPool and LyftLine do not reverse the documented increase 

in fatal accidents. Instead, the estimates suggest that either the share of pooled rides is 

insufficiently large enough relative to single rides or that any positive effects of pooled services in 

reducing VMT—and accordingly, accidents—may be offset by an increase in overall ridership due 

to the lower cost of the pool service.  

We then examine the effects of the intensity of rideshare use on accident rates.  We proxy for 

the intensity of rideshare use by the intensity of Google searches for terms such as “Uber” and 

“Lyft,” in the treatment cities. When we substitute the indicator for city treatment with our Google 

intensity proxy for the adoption and spread of rideshare services within a city, we obtain similar 

results to those in our main specifications: fatal accidents and fatalities increase with the intensity 

of adoption, as proxied for by the Google Trends measure.   

Next, we separate traffic accidents and fatalities into those of car occupants and non-occupants 

(pedestrians, bicycle riders, etc.). Doing so allows us to examine externalities to pedestrians in the 

advent of ridesharing in the city. Pedestrians represent a population that is neither an occupant of 

a rideshare car nor driving or riding in a private vehicle. Here, we find a similar magnitude increase 

in the number of fatal accidents involving pedestrians, the number of pedestrians involved in such 

                                                 
4 The inclusion of a location-specific linear time trend is important: accident rates, particularly drunk driving related 
accident rates, have been falling steeply in the U.S. over the period 1985 to 2010 when ridesharing first launched, and 
have since reversed course and increased. Moreover, we document that ridesharing launched first in cities that had 
been experiencing steeper declines in drunk accident rates. For example, cities in which ridesharing launched in 2011 
had been experiencing significant declines in accident rates over the preceding five years, while cities in which 
ridesharing launched in 2013 were not experiencing much of a decline, and cities in which ridesharing launched in 
2015 were actually experiencing increases in drunk accident rates. In the absence of accounting for these location-
specific trends, a difference-in-differences model can erroneously estimate a negative effect on accidents; this 
estimate, however, will be driven by order of entry and the pre-existing trends, rather than an actual drop in drunk 
accidents. 
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accidents, and the number of fatalities in such accidents, suggesting that the introduction of 

ridesharing imposes a negative externality on pedestrians in addition to affecting vehicle 

occupants.       

Presumably, the effects of ridesharing on accident rates may vary with city characteristics. We 

explore this next. We find that the accident increases are concentrated in large cities (high 

population), and more impoverished cities (as measured by per capita income). They are primarily 

concentrated in cities where the ex-ante use of public transportation is higher, consistent with 

substitution away from the alternative mode of public transportation. Moreover, the effects are 

concentrated in cities with high ex-ante levels of vehicle ownership, consistent with increasing 

usage of existing vehicles.  

We then turn to examine the quantity mechanism suggested by our conceptual framework. We 

first document that at the intensive margin, VMT, measures of excess gas consumption, and annual 

hours spent in traffic go up following the entry of ridesharing. Furthermore, at the extensive 

margin, we find a 3% increase in new car registrations. Consistent with our estimates for fatal 

accident rates, this increase in new car registrations is more substantial in cities with high ex-ante 

use of public transportation, further strengthening the evidence for substitution away from public 

transport.  

We note that the documented effects may be short-term, as pooling services such as LyftLine 

and UberPool increase ridership. Furthermore, as rideshare driver-partners become more 

experienced, both the VMT effects and the driver quality effects may be attenuated. In our sample 

through 2016, however, we observe no reversion of the effect; instead, the estimates appear to be 

increasing with time since rideshare launch, and the persistence is statistical significance. Still, 

many cities only saw the introduction of ridesharing services in the last three years, and pooling 

services are not available in all cities. It may be too soon to tell whether the effect we document is 

a short-term adjustment or a longer-term pattern; our initial evidence suggests that the effect is still 

present three years after the entrance of ridesharing.  

An examination of ridesharing’s effects on accident rates is particularly useful in providing 

insights into changes in motor vehicle fatality trends.  Prior to 2011, and for the preceding twenty 

plus years, motor vehicle accident fatalities, in total, per population, and per VMT, had been 

falling. The 2010s saw a halt to the decrease in fatal accidents and a reversal of the trend. If this 

reversal is partly related to the increased quantity of vehicle miles on the road due to the 
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introduction of ridesharing, this may have implications for policy discussions around decreasing 

motor vehicle accident rates. 

Our paper is not the first to attempt to examine the effects of ridesharing’s introduction on 

traffic accidents. A number of recent papers have explored this issue, primarily through the lens 

of drunk driving and the potential for reduction in drunk driving as a result of the availability of 

ridesharing (Brazil and Kirk, 2016; Martin-Buck, 2016; Greenwood and Wattal, 2016; Dills and 

Muholland, 2018). These studies are primarily focused on measures of alcohol-related fatal 

accidents, fatalities, and DUIs. They typically use the introduction of UberX as their measure of 

treatment and find either a reduction or no significant change in drunk accidents or fatalities. In 

contrast, we do not place our focus solely on fatalities resulting from drunk driving or alcohol 

consumption. Rather, in this study, we focus on the totality of fatal accidents, using a broad sample, 

and we account for the introduction of both Uber and Lyft, including the different types of Uber 

and Lyft service types. When we do not account for location-specific trends in our sample, we too 

observe a negative coefficient for alcohol-related accident measures. However, the inclusion of 

the location-specific trend aligns our results for these measures with those we obtain for all other 

accident measures: an increase in overall accidents and fatalities, for vehicle occupants and 

pedestrians. While ridesharing indeed may be displacing some drunk drivers, our findings suggest 

that overall accident rates and fatalities increase in the wake of rideshare introduction, despite the 

possible benefits from limiting impaired driving. 

Our study contributes to several literatures. First, our paper contributes to a growing literature 

exploring the ridesharing industry and its workers. Hall and Krueger (2018) use survey and 

administrative data and find that drivers who partner with Uber appear to be attracted to the 

platform primarily because of the flexibility it offers, the level of compensation, and the fact that 

earnings per hour do not differ much with the number of hours worked. In related work, Chen et 

al. (2018) estimate how drivers reservation wages relate to the flexibility of rideshare work 

arrangements. They find that while the Uber relationship may have other drawbacks, Uber drivers 

benefit significantly from real-time flexibility, earning more than twice the surplus they would in 

less flexible arrangements. Cook et al. (2018) examine the gender earnings gap between male and 

female Uber drivers and show that it can be entirely attributed to three factors: experience on the 

platform, preferences over where to work, and preferences for driving speed. Liu et al. (2018) 

compare Uber drivers to taxi drivers and find that the Uber platform reduces moral hazard in the 
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form of fewer detours by drivers on Manhattan to airport routes, except during times of surge 

pricing. Relatedly, Cramer and Krueger (2016) point to the higher level of efficiency of Uber’s 

matching algorithm between drivers and riders and the resulting lower transaction costs.  

Other work in this category has focused on ridesharing’s effect on other modes of 

transportation, finding mixed evidence. Nie (2017) finds Uber has reduced taxi ridership, while 

Cramer (2016) finds that the wages of taxi drivers and chauffeurs have not decreased. Finally, 

using Uber’s individual-level data and its unique use of surge pricing, Cohen et al. (2016) estimate 

that UberX created $6.8 billion of consumer surplus in 2015. 

Our paper also relates to a larger literature that explores technology diffusion and the struggle 

between such diffusion and the interest and resistance of entrenched incumbents (Parente and 

Prescott, 1994). In many ways, ridesharing has become the modern poster-child for the classic 

battle between what is argued to be outdated regulatory environments and rent-seeking 

incumbents, and the adoption of welfare-enhancing technology. Many new technologies face 

frictions that slow their diffusion (Grubler, 1991). Parente and Prescott (1994) argue that one such 

friction is resistance on the part of sectoral interests. Indeed, emphasizing barriers to technology 

adoption, economic historians such as Rosenberg and Birdzell (1986) argue that the reason why 

the West grew rich first was that active resistance to technology adoption was weaker there. Most 

economic histories of technological adoptions provide cases in which the adoption of technologies 

was met with fierce resistance (Mokyr 1990).  

Our findings may be cause to reframe the discussion around city response to the rapid growth 

of ridesharing. While much of the resistance to ridesharing has been presented as a case of 

entrenched incumbents (taxis) seeking rents, our findings suggest that more considerable societal 

costs are also at play. In ridesharing’s case, delays in the diffusion of new technology may be 

optimal, if we consider offsetting costs such as increased accident rates or pollution or the need 

for learning-by-doing on the part of users. Introduction of new technology can have unintended 

effects: it may impose externalities not priced into the cost for the individual user. Overall, whether 

ridesharing is welfare-enhancing or decreasing depends on the value of the increase in convenience 

and other consumer surplus effects versus the offsetting costs in time, material and human life of 

increased accidents and traffic-related fatalities. Studies have suggested that ridesharing may 

create considerable customer surplus (Cohen et al., 2016), as well as provide job opportunities for 

groups facing unusually high unemployment risk (Landier et al., 2016).   
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The paper proceeds as follows. Section 2 provides a brief overview of ridesharing services and 

lays out our conceptual framework. Section 3 describes our sample and data sources. Section 4 

presents our main empirical results on accidents and fatalities. Section 5 explores the quantity 

mechanism described in our conceptual framework. Section 6 presents an estimate of costs and 

discusses welfare considerations. Section 7 concludes.  

2. Ridesharing & Conceptual Framework 

Before the advent of ridesharing services, the primary forms of private for-hire transportation 

were limited to traditional taxis, limousines, and larger vehicles such as bus and van services. Of 

these, only traditional taxis did not need to be reserved in advance, and all came at fairly substantial 

costs, and the number of cars available varied widely from city to city. Most municipalities heavily 

regulate the traditional taxi industry, placing restrictions on the number of vehicles that can 

operate, the prices they can charge, and the licensing and insurance requirements for the drivers 

and cars. Quantity restrictions, in particular, where thought to lead to shortages of taxis during 

periods of high demand and an inconvenience to riders.   

Uber was the first ridesharing firm in the U.S., launching in San Francisco in May 2010, and 

was followed two years later by Lyft and Sidecar. Ridesharing then expanded rapidly across the 

U.S. By the end of 2014, ridesharing firms operated in 80% of U.S. cities with a population of 

100,000 or more. Much of the spread in ridesharing was driven by the convenience for users, 

stemming from new technology making it easier for riders to match with drivers and both quickly 

hail a ride and seamlessly pay through the app. Ridesharing firms’ exemptions from (or willful 

disregard for) taxi and livery restrictions allowed them to expand supply during periods of high 

demand and adjust prices to encourage more riders and/or drivers to participate in the market. 5  

To better understand the expected effects of ridesharing on accident rates, we develop a simple 

conceptual model in which accident rates are a function of two elements: the number of vehicle 

miles traveled (VMT) on roads and the average quality of drivers. For notational purposes, we 

denote the accident rate for city 𝑖𝑖 in period 𝑡𝑡 as 𝐴𝐴𝑖𝑖,𝑡𝑡 and the new technology (ridesharing) as 𝜃𝜃. 

Accident rates can then be thought of as:  

                                                 
5 Many major ridesharing companies adjust pricing in real time to better match supply and demand, charging higher 
"Surge Pricing" fares during periods with high demand relative to supply. 
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  𝐴𝐴𝑖𝑖,𝑡𝑡 =  𝑓𝑓(𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖(𝜃𝜃);  𝑄𝑄𝑖𝑖,𝑡𝑡(𝜃𝜃)), 

where 𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖(𝜃𝜃) is the number of vehicle miles traveled on the road in city 𝑖𝑖 in period 𝑡𝑡 (potentially 

a function of whether ridesharing is available or not) and 𝑄𝑄𝑖𝑖,𝑡𝑡(𝜃𝜃) is the quality of the average driver 

on the road in city 𝑖𝑖 in period 𝑡𝑡. 

The number of VMTs can further be broken down into three sub-categories: (i) the number of 

VMTs generated by people driving themselves from origin to destination (which we denote by 

𝑉𝑉𝑉𝑉𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜; (ii) the number of VMTs generated by rideshare driver-partners driving passengers from 

origin to destination, denoted by 𝑉𝑉𝑉𝑉𝑉𝑉𝑅𝑅𝑅𝑅; and (iii) the number of VMTs generated by rideshare 

driver-partners while driving in-between rideshare passengers, denoted by 𝑉𝑉𝑉𝑉𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. Thus, 

𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖 = 𝑉𝑉𝑉𝑉𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑉𝑉𝑉𝑉𝑉𝑉𝑅𝑅𝑅𝑅 + 𝑉𝑉𝑉𝑉𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. 

Note that even if 𝑉𝑉𝑉𝑉𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 and 𝑉𝑉𝑉𝑉𝑉𝑉𝑅𝑅𝑅𝑅 simply offset as people move from driving themselves 

to their destination to being driven in a rideshare vehicle, there is still “between driving” (between 

fares, waiting for fares, going from fare location to fare location) that is introduced by the advent 

of ridesharing in a city. While 𝑉𝑉𝑉𝑉𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 is almost certainly decreased by the introduction of 

ridesharing in a city, the ridesharing technology leads to the introduction of additional vehicle 

miles in the form of 𝑉𝑉𝑉𝑉𝑉𝑉𝑅𝑅𝑅𝑅 and 𝑉𝑉𝑉𝑉𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. Thus, the effect of the introduction of ridesharing in 

a city on the number of VMTs on the road depends on whether the decrease in 𝑉𝑉𝑉𝑉𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 is more 

than offset by 𝑉𝑉𝑉𝑉𝑉𝑉𝑅𝑅𝑅𝑅 and 𝑉𝑉𝑉𝑉𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 that are introduced with the technology. Taking the model 

naively (and ignoring for the moment the UberPool and LyftLine services), each person who no 

longer chooses to drive themselves is now driven by a rideshare driver, thus precisely offsetting 

the effect on the overall vehicle miles traveled. But unless there is absolutely no between-fare 

miles driven by a ride-sharing driver, we would expect to see an increase in the overall number of 

VMTs after ridesharing arrives. The limited evidence to date suggests that there is considerable 

between-fare travel by drivers. Henao (2016) reports statistics suggesting ridesharing drivers only 

have passengers in the car 39% of the time and 59% of the miles they drive while active on the 

app. Schaller (2018), using detailed data from New York City, shows that rideshare drivers on 

average drive 2.8 miles while waiting for a fare, 0.7 miles to pick up the fare, and 5.1 miles with a 

passenger in the car, implying a 59% utilization rate. Both Lyft and Uber offer subsidies designed 

to induce drivers to spend more time out on the road active in the app, so as to decrease wait time 
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for passengers. Finally, while not the focus of their study, the analysis in Chen et al. (2018) is 

consistent with a mismatch between rider demand and the supply of drivers.  

More formally, we write the first order condition for the effects on accident rate 𝐴𝐴𝑖𝑖 from the 

introduction of ridesharing technology 𝜃𝜃 as:  

∂𝐴𝐴𝑖𝑖
∂𝜃𝜃

=
∂𝐴𝐴𝑖𝑖

∂𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖
∂𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖
∂𝜃𝜃

+
∂𝐴𝐴𝑖𝑖
∂𝑄𝑄𝑖𝑖

∂𝑄𝑄𝑖𝑖
∂𝜃𝜃

 

where  

∂𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖
∂𝜃𝜃

=  
∂𝑉𝑉𝑉𝑉𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖

∂𝜃𝜃
+  
∂𝑉𝑉𝑉𝑉𝑇𝑇𝑅𝑅𝑅𝑅𝑖𝑖

∂𝜃𝜃
+
∂𝑉𝑉𝑉𝑉𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖

∂𝜃𝜃
. 

Clearly, ∂𝐴𝐴𝑖𝑖
∂𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖

 is positive, as every additional vehicle mile travelled will increase the likelihood 

of an accident, and thus, the overall accident rate. ∂𝑉𝑉𝑉𝑉𝑇𝑇
𝑜𝑜𝑜𝑜𝑜𝑜

𝑖𝑖
∂𝜃𝜃

 is negative. ∂𝑉𝑉𝑉𝑉𝑇𝑇
𝑅𝑅𝑅𝑅

𝑖𝑖
∂𝜃𝜃

, however, will 

either equal or (more likely, due to substitution away from other forms of transport) larger in 

magnitude than ∂𝑉𝑉𝑉𝑉𝑇𝑇
𝑜𝑜𝑜𝑜𝑜𝑜

𝑖𝑖
∂𝜃𝜃

, and ∂𝑉𝑉𝑉𝑉𝑇𝑇
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑖𝑖
∂𝜃𝜃

 is positive. Thus, the overall effect ∂𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖
∂𝜃𝜃

 is positive: 

vehicle miles traveled are increasing in the introduction of rideshare technology.  

Of course, in some cities, at later dates, the option to “carpool” in a rideshare was introduced 

into the mix, in the form of Uber Pool and Lyft Line. With the introduction of these services, the 

reduction in own drive car hours may not be fully offset by rideshare drive hours, as multiple 

people may be substituting away from driving themselves into a single rideshare car. While Uber 

and Lyft have both heavily invested in promoting their shared services, Uber reports that UberPool 

accounts for only 20% of trips in cities where it is offered, and Lyft reports that 37% of users in 

cities with LyftLine request a Line trip, and many trips are not matched, thus leaving a single rider 

(Schaller, 2018). Pooled rides are also cheaper, potentially inducing more substitution from other 

modes of transport. It is not clear what fraction of rides must be pooled to counteract 𝑉𝑉𝑉𝑉𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 

but Schaller (2018) suggests that even if half of rides were pooled, total VMT would still increase.  

Furthermore, stepping away from the naïve model, survey evidence suggests that 𝑉𝑉𝑉𝑉𝑇𝑇
𝑅𝑅𝑅𝑅

𝑉𝑉𝑉𝑉𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜
> 1, 

as many riders are substituting away not from driving themselves, but rather from other forms of 
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transportation, including walking, biking, and more importantly, public transportation (Clewlow 

and Mishra, 2017).    

Assessing the effects of the introduction of ridesharing technology on the quality of the average 

driver on the road is less straightforward. On the one hand, the people substituting into a rideshare 

ride rather than driving themselves may be low quality drivers (impaired or inebriated, not skilled 

at driving and prefer not to), but they may be high quality drivers who simply dislike driving. On 

the other hand, there is no guarantee that the driver that substitutes them is of higher quality. Put 

another way, the introduction of ridesharing makes it less costly to have someone else drive you 

from place to place, but also makes the gains from getting out on the road as a driver greater (as 

you can make money by doing so). Lower quality drivers who in the absence of compensation may 

not have driven now have an incentive to drive. More affluent people are more likely to use 

ridesharing, and the less affluent are more likely to become rideshare drivers. To the extent that 

this substitution leads to more vehicle miles driven by lower quality drivers or in lower quality 

cars, this may positively affect accident rates. Yet, rideshare drivers, especially with more 

experience from more hours driven, may in fact be of improved quality. To the extent that the 

substitution goes the other way, and lower quality drivers are substituted by better drivers, this 

may lead to a reduction in accident rates if the increase in quality offsets the increase in VMT.  

Formally,  ∂𝐴𝐴𝑖𝑖
∂𝑄𝑄𝑖𝑖

 is negative: better quality drivers should lead to a reduction in accident rates, all 

else equal. The effect of rideshare technology on the quality of the average driver on the road, ∂𝑄𝑄𝑖𝑖
∂𝜃𝜃

, 

however, is ambiguous. If the quality of the average driver increases, it could offset the quantity 

effect above. If it decreases or does not change, the quantity effect will prevail. Which effect 

dominates, of course, is an empirical question. 

Many indicators suggest that both total VMT and driver quality may adjust over time. Cook et 

al. (2018) note that even in the relatively simple production of a passenger’s ride, experience is 

valuable for drivers. A driver with more than 2,500-lifetime trips completed earns 14% more per 

hour than a driver who has completed fewer than 100-lifetime trips, in part because he learns where 

and when to drive, which may decrease 𝑉𝑉𝑉𝑉𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. Similarly, Haggag et al. (2017) show that 

learning-by-doing and experience are important for New York City taxi drivers. At the same time, 

not all learning-by-doing is necessarily good for accident rates. For example, learning by doing to 
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maximize earnings could lead to behavior, on the part of certain driver populations, that increases 

the probability of accidents as driving faster is associated with higher earnings. 

3. Data and Sample 

Our sample consists of all incorporated “places” in the U.S.6 with population greater than or 

equal to ten thousand in 2010,7 and which experienced at least one motor vehicle accident that 

results in a fatality (“fatal accident”) during the period 2001 to 2016. Our list of incorporated places 

is obtained from the Census Bureau, and covers all self-governing cities, boroughs, towns and 

villages in the U.S.8 (for ease of interpretation, we interchangeably refer to these as “cities” or 

“locations” throughout the following text). Our observations are measured at the quarterly level. 

The sample thus contains 189,120 quarterly observations on 2,955 “places” from 2001 to 2016, 

among which 1,185 adopt ridesharing prior to 2017. Figure 3 shows the diffusion of ridesharing 

across the U.S., by cities/places and by population. Diffusion of ridesharing across U.S. 

cities/places began slowly, accelerating rapidly after 2013. Diffusion by population follows a 

standard S-curve, consistent with general historical patterns of new technology diffusion.   

3.1. Fatal Accidents 

We obtain data on fatal accidents from the National Highway Traffic Safety Administration 

(NHTSA) Fatal Accident Reporting System (FARS). To qualify as a FARS case, crash has to 

involve a motor vehicle traveling on a traffic way customarily open to the public, and must have 

resulted in the death of a motorist or a non-motorist within 30 days of the crash. Importantly, the 

data identify whether any drivers involved are under the influence of alcohol. We aggregate the 

incident-level FARS data into quarterly totals for each place/city. When the data contain 

geographic coordinates, we use Google Map’s Geocoding API service to determine the 

corresponding place/city. When the coordinates are not available, we use the city and state 

                                                 
6 We use incorporated places rather than Census Designated Places (CDPs) because CDP annual population estimates 
are not readily available except by individual place download, whereas population data is available for incorporated 
places for mass download through Census.  
7 Some places in our sample had lower populations than 10K during the sample period, most notably during the period 
2001-2010. We impose the cutoff on population as measured in 2010. As an example, consider Hutto, TX, a suburb 
of the Austin-RoundRock metro area. In 2001, Hutto had a population of 3,030, the lowest population observation in 
our sample. By 2010, it had grown to over 14,000 in population, mimicking the growth of the Austin metro area. As 
it has population above 10,000 in 2010, it is included in our sample.  
8 https://www.census.gov/content/dam/Census/data/developers/understandingplace.pdf  

https://www.census.gov/content/dam/Census/data/developers/understandingplace.pdf
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identifier codes to assign observations to the appropriate place. Geographic coordinates are present 

in 98% of FARS’ observations, and we successfully match more than 99% to a city in our sample. 

We construct a number of measures of accident volume from the FARS data. Total Accidents 

is the total number of fatal accidents according to the definition used by NHTSA. Total Fatalities 

is the total number of fatalities across all fatal accidents. Total Drunk Accidents is the total number 

of fatal accidents involving any drunk drivers. Total Drunk Fatalities is the total number of 

fatalities in all drunk accidents. Total Non-Drunk Accidents is the total number of fatal accidents 

not involving any drunk drivers. Total Non-Drunk Fatalities is the total number of fatalities in all 

non-drunk accidents. We measure accident “rates” as the number of accidents per 10,000 people 

or the number of accidents per billion city VMT. 

We further classify our various categories of accidents based on their time of occurrence: (i) 

Weekday: Monday through Thursday; (ii) Weekend: Friday through Sunday; (iii) Night: After 

5pm and before 2am; (iv) Friday and Saturday night: After 5pm and before 6am on Friday and 

Saturday.  

We additionally separate out accidents involving pedestrians, and calculate three measures of 

pedestrian-involved accidents. Pedestrian-Involved Accidents is the number of fatal accidents 

involving at least one pedestrian. Pedestrian-Involved Fatalities is the total number of fatalities in 

all accidents involving at least one pedestrian. Finally, Pedestrians Involved in Fatal Accidents is 

the total number of pedestrians involved in fatal accidents. 

For all our accident measures, we use log search volume in our intensity specifications, and so 

we interpret our coefficients in terms of percentage change in search volume. 

3.2. Ridesharing Launch and Adoption Intensity 

Data on ridesharing launch dates for each city are obtained directly from Uber and Lyft.9 The 

companies provided dates of service launch for each type of service launched: (i) 

UberBlack/UberTaxi, which allows customers to hail a livery or taxi vehicle; (ii) UberX/Lyft, 

                                                 
9 In this version we use the exact cities indicated by Uber and Lyft, even if we suspect or believe that the launch 
covered adjacent cities as well (e.g. San Francisco launched in 2010, and there is no separate launch date for San Jose 
or Palo Alto). Since this means some places we include in our control may in fact be treated in later years in the sample 
as service expands slowly out beyond original boundaries, we are biasing against finding an effect of treatment. 
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which allow customers to hail regular cars driven by driver-partners; and (iii) UberPool/Lyft Line, 

which allow customers to share a hailed vehicle with others riding in the same general direction. 

We merge these dates with Census Bureau’s incorporated place directory in 2010.  

While Uber and Lyft declined to provide data on driver enrollment and usage for this project, 

other researchers have shown a strong correlation between google trends for searches for rideshare 

keywords and actual driver uptake (Cramer and Krueger, 2016). To measure of the intensity of 

rideshare adoption, we thus follow the spirit of Cramer and Krueger (2016) and Hall et al. (2018) 

and utilize Google search volume for the terms “Uber,” “Lyft,” and “Rideshare.”10 We track trends 

for these terms using the Google Health Trends API for all Nielsen Designated Market Areas 

(DMAs) at monthly frequency from January 2004 to December 2016. We aggregate the data to 

the quarter level, and match the DMAs to census incorporated places using a crosswalk provided 

to us by Nielsen. 

3.3. Other Data 

We use a number of measures to explore heterogeneity by city characteristics and as control 

variables in our models. We obtain annual city population estimates and population density from 

the U.S. Census, and annual county income per capita from the Bureau of Economic Analysis. 

Household vehicle ownership and means of transportation to work at the city level are gathered 

from the 2010 American Communities Survey. 

To explore mechanisms that may drive any change in accident rates upon arrival of 

ridesharing, we utilize a variety of data sources. We obtain data on new car registrations by zip 

code on a monthly level from Polk Automotive. We aggregate the data at city and quarter level 

using UDS Mapper’s zip code-to-ZCTA crosswalk11 and Census’ ZCTA-to-place crosswalk. We 

obtain estimates of city and freeway vehicle miles traveled, total annual excess fuel 

consumption, and total annual hours of traffic delay for a sample of 101 urban areas from the 

Texas A&M Transportation Institute Urban Mobility Scorecard, covering the period 1982-2014. 

Of the 101 urban areas covered by TAMU in their report, 99 fall into our sample of continental 

                                                 
10 We use the freebase identifiers for term “Uber” (/m/0gx0wlr) and “Lyft” (/m/0wdpqnj). Freebase identifiers denote 
all searches that were classified to be about this topic.  
11 The crosswalk can be found at https://www.udsmapper.org/zcta-crosswalk.cfm. The crosswalk is recommended by 
Missouri Census Data Center http://mcdc.missouri.edu/geography/zipcodes_2010supplement.shtml. 

https://www.udsmapper.org/zcta-crosswalk.cfm
http://mcdc.missouri.edu/geography/zipcodes_2010supplement.shtml
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U.S. cities. For a set of tests regarding road utilization and driver quality, we use census’ urban 

area-to-place crosswalk to aggregate our main sample at urban area and annual level in order to 

merge them with TAMU’s dataset. 

3.4. Summary Statistics 

Table 1 presents summary statistics for the places in our sample over the sample period. Places 

in our sample average 54.65 thousand in population, have an income per capita of $39,710, and 

population density of roughly 3000 people per square mile. Prior to the arrival of ridesharing, 

2.97% of residents in our average city/place used public transportation to commute, 10.6% 

commuted by carpool, and 33% owned vehicles. The average city in our sample had 672 new car 

registrations per year. As can be seen from the distributional statistics in the table, there is wide 

variation across all these characteristics across the sample.  

Table 2 presents summary statistics on number and rate (per 100K population) of accidents for 

the cities in our sample over the sample period. Panel A presents accident and fatality levels, while 

Panel B presents the same measures scaled to be per 100K population. We present statistics for 

total accidents and fatalities, total drunk and non-drunk accidents and fatalities, and total pedestrian 

accidents and fatalities. Drunk accidents and fatalities represent approximately 1/3 of the total 

accidents and fatalities. Pedestrian accidents and fatalities are approximately 20% of the total. 

Precise numbers can be seen in the table.   

4. Empirical Analysis 

To assess the impact of ridesharing arrival on fatal accident rates, we employ a standard 

generalized difference-in-differences approach. We index cities by 𝑐𝑐 and time by 𝑡𝑡. We estimate 

models of the form: 

  log (1 + 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑡𝑡,𝑐𝑐) =  ∝𝑐𝑐  +  𝛾𝛾𝑡𝑡 +  𝛽𝛽′𝑋𝑋𝑡𝑡,𝑐𝑐 + 𝜃𝜃𝑐𝑐𝑡𝑡 +  𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝑇𝑇𝑡𝑡 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐷𝐷𝑐𝑐 +  𝜀𝜀𝑡𝑡,𝑐𝑐, 

where 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑡𝑡,𝑐𝑐 is our measure of accidents in city 𝑐𝑐 in quarter 𝑡𝑡, ∝𝑐𝑐 is a city fixed effect, 𝛾𝛾𝑡𝑡 

is quarter-year fixed effect, 𝑋𝑋𝑡𝑡,𝑐𝑐 is a vector of time-varying, city specific control variables, and 𝜃𝜃𝑐𝑐𝑡𝑡 

is a city-specific linear time trend. We use robust standard errors, clustered at the city level. Our 
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observations are at the quarterly level, and cover 2000Q1 through 2016Q4. Our control variables 

include the log of city population, and county income per capita.  

The inclusion of a location-specific linear time trend is motivated by descriptive evidence on 

the relation between accident trends and ridesharing entry. We document that ridesharing launched 

first in cities that had been experiencing steeper declines in (drunk) accident rates. Figure 4 shows 

drunk accidents per 100K population for early-adopter cities (2010-2011), mid-adopters (2012-

2014) and late adopter cities (2015-2016) in the five years preceding ridesharing entry. As can be 

seen from the figure, drunk accident rates had been falling in the five years preceding entry in early 

adopter cities, in contrast, they were stable (and much higher) in mid-to-late adopter cities.  

These patterns are further confirmed in an unreported multinomial logit estimation. In the 

Appendix, we estimate a multinomial logit model where the outcome variable is defined as 0 if 

the city adopted ridesharing in 2010 or 2011, 1 if the city adopted ridesharing in 2012 through 

2014 (the base outcome), and 2 if the city adopted ridesharing after 2015. We control for the natural 

logarithm of population and per capita income. Relative to the base outcome group, the estimates 

suggest that cities were more likely to be in the early launch group if they had been experiencing 

strong declines in drunk accident rates (negative drunk accident rate trends) in the five years prior, 

and were more likely to receive ridesharing services later if they were experiencing drunk accident 

rate increases. A dynamic hazard rate estimation provides qualitatively similar results.  

In the absence of accounting for these location-specific trends, a difference-in-differences 

model can erroneously estimate a negative effect on accidents; this estimate, however, will be 

driven by order of entry and the pre-existing trends, rather than an actual drop in drunk accidents. 

Thus, while it is unlikely that Uber and Lyft were specifically selecting cities to roll out services 

based on trends in fatal accident rates, what they were selecting on (which may have been 

population, density, income, or some other variable) appears to be systematically correlated with 

trends in (drunk) accident rates. As a result, we focus our discussion on models that include 

location-specific trends to get as close as possible to a quasi-experimental setting.12  

                                                 
12We stress that the staggered rollout of ridesharing across U.S. cities does not represent an ideal experiment or quasi-
experimental setting, as we have no random or exogenous assignment. We rely on a tight fixed effect structure and 
the staggered nature of the adoption to make inferences.  
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4.1. Main Results 

We use a number of measures for  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑡𝑡,𝑐𝑐. In Panel A of Table 3, we employ six measures 

of total fatal accidents. Columns (1) and (2) utilize total accidents, columns (3) and (4)  utilize total 

fatalities, columns (5) and (6) utilize drunk accidents, columns (7) and (8) utilize drunk fatalities, 

and columns (9) and (10) and (11) and (12) utilize non-drunk accidents and fatalities, respectively. 

The first column of each pair reports estimates without the inclusion of the city-specific linear time 

trend, while the second column of each pair includes the trend. For brevity, we report only the 

coefficient on the variable of interest— 𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑡𝑡 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐷𝐷𝑐𝑐 in the table. Here, we report OLS 

specifications, but our results remain robust to the use of count models instead. 

For total accidents, total fatalities, total non-drunk accidents and total non-drunk fatalities, we 

observe a consistent positive and significant coefficient on the 𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑡𝑡 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐷𝐷𝑐𝑐 variable. 

Before accounting for the location specific time trend, the effect ranges in magnitude from an 

increase of 1.31% in total fatalities (column (3)) to 3.36% increase in non-drunk fatal accidents 

(column (9)). For the measures of drunk accidents and drunk fatalities, the coefficients are 

negative. However, as demonstrated by Figure 1, (drunk) fatal accident rates had been falling 

dramatically for over a decade prior to ridesharing launching, and, more importantly, had been 

falling faster for cities in which ridesharing launched earlier. It is therefore important to account 

for location-specific time trends when estimating these models. In the second column of each pair, 

we do just that. Once we include the location-specific time trend, we observe a positive and 

significant coefficient on 𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑡𝑡 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐷𝐷𝑐𝑐 for all twelve specifications. The magnitudes of the 

increase range from 2% to 3.5%, depending on the measure of accident used, with the smallest 

magnitude increases (~2%) from drunk accidents and drunk fatalities. Figure 5, Panels A, B and 

C graphically present the difference-in-differences estimators (with each dot representing 2 

quarter-coefficients) for the eight quarters preceding and following rideshare adoption for total 

accidents and total fatalities, and drunk fatalities. In all three panels the counter-factual treatment 

effects in the pre-ridesharing periods are statistically indistinguishable from zero, providing 
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support for our inferences (parallel trends in the pre-period). 13 Similar patterns are present for our 

other outcome measures.  

In Panels B and C of Table 3, we break out weekend accidents, nighttime accidents, weekday 

accidents and weekend night accidents for total accidents (Panel B) and total fatalities (Panel C). 

We observe similar patterns to those exhibited in the models in Panel A. Accident and fatality 

increases are lowest on weekend nights (Friday and Saturday, after 5pm and before 6am) at 2.43% 

and 2.62% respectively. For total weekend and nighttime accidents and fatalities, the magnitudes 

of the estimated increases are between 3 and 4%.   

We examine the persistence of the documented ridesharing effect by breaking the post 

ridesharing variables into quarters past. Doing this allows us to examine the dynamics of the effect 

up to two years after the introduction of ridesharing in the cities.  Table 4 reports the estimates of 

the dynamics of ridesharing. It is clear from the table that ridesharing’s increase in accidents and 

fatalities persists over time, and in fact appears to be increasing after 6 quarters of being introduced 

in the city, consistent with a time gap between launch of services and widespread adoption in a 

location.   

4.2. Variation in Services 

In Table 5 Panel A, we separate out the treatment effect of the different types of services: those 

that are single rides (UberBlack/Taxi/X, Lyft) versus pooled rides (UberPool, LyftLine. We pool 

UberBlack/Taxi with UberX due to the very small number of cities that have (had) UberBlack/Taxi 

service. We thus report the treatment effect for pooled versus non-pooled service. The estimates 

in the table suggest that the rollout of pooled ride services does not reverse the overall treatment 

effect of non-pool rideshare. The coefficients for pool launch are roughly half the magnitude of 

those for single ride (non-pool) rideshare launch, but negative, and are not statistically significant 

                                                 
13 As an additional (closely related) way to assess the validity of the parallel trends assumption, we plot univariate 
trends separately for the treatment and control groups in the pre-ridesharing period (unreported, available upon 
request). A visual inspection provides no indication of differential trends between the groups for any of the four 
primary outcome variables, which provides further reassurance that the parallel trends assumption is valid in our 
analyses. 
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at conventional levels. This may be consistent with relatively low adoption rates for pooled rides, 

even in cities that often the service.   

In Panel B of Table 5, we explore the intensity of service adoption. In the main models we just 

discussed, we employ the first launch of a ridesharing service, irrespective of type of service, as 

our treatment date. Take up on these services, however, is likely to intensify over time. To explore 

this issue, we now interact our 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 indicator with the intensity of Google searches 

measure, and re-estimate our models. Table 5 Panel A presents the results of this estimation where 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is measures as total accidents in column (1), total fatalities in column (2), total drunk 

accidents in column (3), total drunk fatalities in column (4) and total non-drunk accidents and non-

drunk fatalities in columns (5) and (6), respectively. For brevity, we display only the estimates 

from models including the location-specific trends. The estimates are consistent with an increase 

in accidents following an increase in our Google Trends intensity measure. For all six models, the 

coefficient estimate on 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 is positive and statistically significant. Thus, as our 

proxy for adoption intensity (Google trends search intensity) increases, so do fatal accidents.  

4.3. Pedestrians versus Vehicle Occupants 

An important question is whether the increase in accidents and fatalities suggested by the 

estimates in Table 3 are concentrated in vehicle occupants, versus the alternative of potentially 

imposing an externality on pedestrians (non-vehicle occupants). The increase in accidents could 

primarily affect vehicle occupants, or it could additionally affect bystanders. The FARS data 

allows us to separate out accidents in which pedestrians were involved. We code an accident as 

pedestrian-involved if the FARS database indicates it involves persons that are not motor vehicle 

occupants or riders (motorcycle).14 

In Table 6, we present the estimates from models similar to those in Table 3, substituting our 

measures of total accidents with similar measures that solely count accidents in which a pedestrian 

was involved. Our 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 measure in columns (1) and (2) is the total number of accidents in 

which a pedestrian was involved, in columns (3) and (4) it is the total number of fatalities in 

accidents that involved a pedestrian, and in columns (5) and (6) it is the number of pedestrians 

involved in fatal accidents. The estimates from these models follow the same pattern as the 

                                                 
14 FARS defines a pedestrian as “Any Person Not In Or Upon A Motor Vehicle Or Other Vehicle.” 
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estimates in our main models, suggesting that the increase in accidents following rideshare entry 

imposes an externality on non-vehicle occupants, not just on occupants of vehicles. The 

magnitudes of these increases mirror those in our main models, ranging from a 2.5% increase in 

total accidents involving a pedestrian and in fatalities in accidents involving a pedestrian, to an 

increase of 2.8% in the number of pedestrians that are involved in fatal accidents. The magnitudes 

of the coefficients are higher, in the range of 3.2%, if we do not account for the location-specific 

trends.  

Figure 5 Panel D graphically presents the difference-in-differences estimators (with each dot 

representing 2 quarter-coefficients) for the eight quarters preceding and following rideshare 

adoption for pedestrian fatalities. As in our main models for total fatalities and accidents, the 

counter-factual treatment effects in the pre-ridesharing periods are statistically indistinguishable 

from zero, again providing support for our inferences (parallel trends in the pre-period). 

4.4. Heterogeneity of effects 

In Table 7, we break out our results across a variety of city characteristics: population, income, 

and population density, as well as by ex-ante vehicle ownership, ex ante public transport usage, 

and ex ante car pool usage, as reported by the American Community Survey. For each 

characteristic, we divide cities into quartiles, and re-estimate our models, interacting 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 with the four quartile indicators for the city characteristic. For each city 

characteristic, we estimate four models, in which the 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 measures are total accidents, total 

fatalities, total accidents involving a pedestrian, and total fatalities in accidents involving a 

pedestrian. As before, all models include location and year-quarter fixed effects, a location-specific 

linear time trend, and control variables.  

Panel A presents the estimates for the models using quartiles of city characteristics. Column 

(1) presents the estimates where the city characteristic of interest is city population. For both 

measures of total accidents and fatalities and for measures of pedestrian accidents and fatalities, 

the estimates suggest that the increase in accidents observed in our main models is concentrated in 

large cities (Q4). The estimates for 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ∗ 𝑄𝑄4 are significant and range from 6.5% 

to 7.5%; in contrast, the estimates for the bottom three quartiles of city population are an order of 

magnitude smaller and insignificant at conventional levels. 
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Column (2) repeats this exercise breaking cities into quartiles by income per capita. Here, we 

see limited heterogeneity across income per capita quartiles for total accidents and fatalities, 

whereas for pedestrian-involved accidents and fatalities, the effect appears to be concentrated in 

the top three quartiles of city income per capita.  

In column (3), we break cities into quartiles by population density. Here, we observe no clear 

pattern; the only outliers are the estimates for the coefficients for the least dense cities in the models 

for pedestrian accidents and fatalities, which, unlike the rest of the coefficients, are insignificant 

and much smaller in magnitude.   

Panel B turns to measures of ex ante vehicle ownership, public transport usage and car pool 

usage from the ACS. Some interesting patterns emerge. First, from column (1), we see that the 

increase in accidents following the launch of ridesharing services appear to be concentrated in 

cities in the top quartile of ex ante vehicle ownership. This is consistent with a lower cost of driving 

for those individuals that already had a car with which to drive for ridesharing. This is also 

consistent with many of the rideshare firms’ arguments that ridesharing allows for better utilization 

of cars already present in the cities, inducing those cars to be on the road instead of sitting idle. 

Second, in column (2), we see that the increase in accidents is concentrated in cities with higher 

ex ante usage of public transportation; the coefficients of interest are positive and significant for 

the top two quartiles of public transport use, are insignificant for Q2, and are even negative and 

significant at the 5% level for cities in the lowest quartile of public transport use when the 

dependent variable is calculated using pedestrian accidents or pedestrian accident fatalities. 

Finally, consistent with the estimates for the prior two columns, column (3) suggests that the 

increase in accidents post-ridesharing is concentrated in cities that ex ante had above-median 

carpool usage. These estimates would be consistent with a substitution effect: to ridesharing, away 

from public transport and away from carpooling.   

5. Mechanisms: Quantity 

Having established a robust pattern of estimates consistent with an increase in fatal accidents 

and fatalities following the launch of ridesharing services in a city, we turn now to consideration 

of one of the two mechanisms discussed in our conceptual framework: increases in quantity (road 

utilization in the form of VMT).  
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Road utilization data and congestion data for city roads are not readily available for most cities 

(in contrast to highway VMT, which are readily available from the department of transportation). 

To examine this channel, first, on the intensive margin, we utilize annual estimates of Arterial 

Vehicle Miles Traveled, Excess Gas Consumption and Hours Delay in Traffic for 99 urban areas 

reported by the TAMU Transportation Institute for the years 2000-2014.  

In Table 8, we estimate similar models to our main specification, replacing the 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 

variable as our dependent variable with Arterial Street Daily VMT (column (1)), Annual Excess 

Fuel Consumption (column (2)), and Annual Hours of Delay (column (3)). Due to the limited 

availability of data relative to the full sample, the models in table 7 aggregates locations up to the 

urban area.15 Moreover, we can estimate only for the years up to 2014, for these 99 urban areas, 

leaving us with 1,386 observations (as compared to 189,120 in our other models). Still, for all three 

models, we obtain a positive and significant estimate for the coefficient on our variable of interest, 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, though with lower statistical significance levels (5%). The economic 

magnitudes vary from a roughly 3% increase in daily VMT to a 1.7% increase in excess fuel 

consumption and annual hours of delay.   

Next, in Table 9 we examine the extensive margin in usage by estimating similar models to 

those on Table 8, but where the dependent variable is the logarithm of new car registrations as 

reported by Polk Automotive. Both Lyft and Uber often report numbers from surveys of users 

suggesting some of their riders forgo owning their own cars, and thus argue that they are removing 

vehicles from the road. These surveys, however, do not account for the possibility that at the same 

time as some of the rider population is forgoing owning a vehicle, others may be purchasing cars 

in order to work as a driver of the ridesharing platform. Which effect ultimately dominates is an 

empirical question. Panel A reports the estimates from models with and without the location-

specific linear trend. The estimates suggest that the initiation of ridesharing leads to an increase in 

                                                 
15 TAMU uses the Department of Transportation (DOT) urban area boundaries. DOT urban areas were adopted 

from Census urban areas but have slight adjustments for transportation purposes. See e.g.  
https://www.fhwa.dot.gov/planning/census_issues/archives/metropolitan_planning/faqa2cdt.cfm#q24 and 
https://www.fhwa.dot.gov/legsregs/directives/fapg/g406300.htm. 

 

https://www.fhwa.dot.gov/legsregs/directives/fapg/g406300.htm
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new car registrations, rather than an overall decrease. This increase is in the range of 5% when 

including the location-specific time trend.  

In Panel B, we further the intuition of this extensive margin effect  by examining how new car 

registrations respond to the interaction of ridesharing intensity as proxied by the Google search 

intensity variable used in Section 4.2. The estimates suggest that new car registrations increase in 

the intensity of Google searches for Uber/Lyft/Rideshare. This relationship intensifies upon the 

entry of ridesharing into a treated city. These results suggest that there is an increase in new vehicle 

purchases as ridesharing services become more intensely used.  

Turning to Panel C of the table, the heterogeneity in this increase along city characteristics 

lines up with the heterogeneity in the increase in accidents documented in Section 4.4: the new car 

registrations are concentrated in cities with above median population and in cities with above 

median ex ante vehicle ownership. Moreover, the increase in new car registrations is larger in cities 

with high ex ante public transport usage and car pool usage. They are decreasing only in the cities 

with the lowest quartile of ex ante carpool usage. These results further reinforce the likelihood that 

ridesharing serves to substitute riders away from other non-car forms of transportation. 

Interestingly, the estimates in Panel C of Table 9 suggest that the increase in new car 

registrations is higher in cities with high population density: the estimates imply a 9.6% increase 

in new registrations in the cities in the highest quartile of density, a 5.8% increase in cities in Q3 

of density, a 2% increase for cities in Q2, and a statistically insignificant 2% decrease in cities in 

the lowest quartile of population density. Overall, this fact pattern is suggestive of increases in 

congestion driven by ridesharing. 

6. Discussion and Welfare 

Up until this point, our study has documented the cost associated with the introduction of 

ridesharing. In order to make a welfare calculation, we must consider not only the costs that 

ridesharing imposes but also its benefits.  Benefits come from, for example, the consumer surplus 

gained by the convenience of ridesharing. Cohen et al. 2018 use Uber’s “surge” pricing algorithm 

and the richness of its individual-level data to estimate demand elasticities at several points along 

the demand curve, and then use these elasticity estimates to estimate consumer surplus. They 

estimate that in 2015 the UberX service generated about $2.9 billion in consumer surplus in the 
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four U.S. cities they examine. Moreover, their back-of-the-envelope calculations suggest that the 

overall consumer surplus generated by the UberX service in the United States in 2015 was $6.8 

billion. Here, we use their measure of consumer surplus to examine potential welfare effects. 

First, we quantify the cost of ridesharing’s increase in fatal accidents using estimates of the 

value of a statistical life. Assuming ridesharing services are eventually made available across the 

entire U.S., we can do a back-of-the-envelope calculation of the costs of the increase in accidents 

we document. In 2010, the year before ridesharing began, there were 32,885 motor vehicle 

fatalities in the U.S.16 The 3% annual increase associated with the introduction of ridesharing in 

fatalities represents an additional 987 lives lost each year.17 The U.S. Department of 

Transportation estimates the Value of a Statistical Life (VSL) at $9.6 million for 2015; the DOT 

recommends analysts use a test range of $5.4 million (low) to $13.4 million (high) in 2015 dollars. 

Applying the VSL and assuming an annual increase of 987 lives lost per year, the annual cost of 

the increase in fatalities associated with ridesharing can be estimated as roughly $9.48 billion per 

year, with a range of $5.33 billion (low) to $13.24 billion (high).  

A comparison of our cost estimate with Cohen et al. (2018)’s estimates of consumer surplus 

generated by ridesharing services suggests that the costs of the new technology from fatal accident 

increases match or surpass the benefits to direct consumers of ridesharing. Our estimates, 

moreover, do not include the costs imposed by non-fatal accidents, for which data is not readily 

available. We can assume that the pattern for fatal accidents is also repeated for non-fatal accidents, 

leading to costs in material and healthcare which may dwarf these VSL estimates. The incremental 

cost derives from the externalities associated with driving and traffic congestion where riders of 

ridesharing due not bear the full cost of being on the road—some of this cost is borne by 

pedestrians, as we document above. Overall, these welfare calculations suggest the need for more 

research on the overall impact of ridesharing technology in the economy. 

7. Conclusion 

Beginning in the mid -1980s the United States experienced a dramatic decrease in fatal 

accidents per capita and per vehicle mile driven. In 2010, 32,885 people died in motor vehicle 

                                                 
16 https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/811552  
17 We round the estimated number of fatalities to the nearest whole number.  

https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/811552
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traffic crashes in the United States—the lowest number of fatalities since 1949 (NHTSA, 2012). 

This decline halted and then reversed shortly after the introduction of ridesharing into U.S. cities. 

In 2017, the NHTSA noted that: 

“There were 37,461 people killed in crashes on U.S. roadways during 2016, an 
increase from 35,485 in 2015.….Fatalities increased from 2015 to 2016 in almost 
all segments of the population—passenger vehicle occupants, occupants of large 
trucks, pedestrians, pedal cyclists, motorcyclists, alcohol-impaired driving, 
male/female, and daytime/nighttime….with the large increases in fatalities in 2015 
and 2016, [the] decade-long downward trend of 21 percent has been reduced by 
more than one-third.”  

In this paper, we provide evidence consistent with ridesharing imposing an increase in fatal 

accidents and fatalities on the motor vehicle occupants and pedestrians of the cities it serves. We 

document a roughly 2 to 4% increase in the number of fatal accidents: throughout the week, on 

weekends, at night, and on weekend nights. We develop a conceptual framework for thinking about 

how the introduction of ridesharing may affect accident rates, which model’s accidents as a 

function of vehicle miles traveled and average driver quality. We document increases in the 

intensive margin of quantity. For example, VMT, measures of excess gas consumption, and annual 

hours spent in traffic go up following the entry of ridesharing. Furthermore, at the extensive 

margin, we find a 3% increase in new car registrations. Consistent with our estimates for fatal 

accident rates, this increase in new car registrations is more substantial in cities with high ex-ante 

use of public transportation, further strengthening the evidence for substitution away from public 

transport. 

While our documented effects alone are unlikely to fully explain the reversal of accident rate 

trends in recent years, it is a component worth more investigation and discussion. Moreover, while 

ridesharing appears to be associated with an increase in motor vehicle deaths, it is important to 

note that this cost comes with many benefits that accrue from the presence of ridesharing in a city. 

These include improved mobility for the disabled and for minorities, flexible job opportunities that 

are especially valuable to those otherwise at high risk of unemployment, and customer 

convenience and resulting consumer surplus. The annual cost in human lives is non-trivial, and it 

is higher than estimates for annual consumer surplus generated. Our estimates, moreover, do not 

include the costs imposed by non-fatal accidents, for which data is not readily available. We can 
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assume that the pattern for fatal accidents is also repeated for non-fatal accidents, leading to costs 

in material and healthcare which may dwarf the costs in human lives. An essential contribution of 

our study is to point to the need for further research and debate about the overall cost-benefit 

tradeoff of ridesharing services and further mechanisms to increase the benefits or reduce the costs.   

Finally, given the relatively short period in which ridesharing has been in effect, our results 

are short-term in nature. The long-term consequences of ridesharing may differ, as individuals may 

change behavior in the long term. For example, drivers may learn the realized price for their 

driving, causing some to exit the market. Moreover, those that stay may gain knowledge over time 

and improve their driving quality with the platform. Additionally, as competition increases in the 

market, the massive subsidies provided by ridesharing companies for drivers and riders may 

decline, reducing the number of riders. If usage of pooled ride services increase, car utilization 

may rise, lowering the number of vehicle miles traveled overall. Thus, any regulatory actions must 

consider the documented short-term effects and advance further research on the outcomes of 

ridesharing.     
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Figure 1: U.S. Motor Vehicle Death per VMT, Death per Capita, Total Death, VMT and Population 
This figure was produced by Dennis Bratland and is reproduced here under creative commons license. The 
figure uses NHTSA FARS and CrashStats data to depict total U.S. motor vehicle deaths, deaths per VMT, 
deaths per capita, VMT and population for the period 1920-2017.  
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Figure 2: Accidents for Treated Cities in Event Time  
This figure shows the trend of accidents for treated cities in the eight quarters preceding and after 
ridesharing entry. The red vertical line at event time zero indicates the quarter of ridesharing entry.
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Figure 3 Rideshare Diffusion  
This figure shows the diffusion of ridesharing across the U.S. by cities and by population. The sample 
consists of all census incorporated places in the United States. The green (orange) line graphs the percentage 
of cities (population) that adopted ridesharing in each quarter between the fourth quarter of 2010 and fourth 
quarter of 2017.  
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Figure 4 Drunk Accident Rate for Treated Cities Before Rideshare Adoption 
This figure shows the trend of drunk accidents per 100K population in the five years preceding ridesharing 
entry. Early-adopter cities are cities that adopted ridesharing in 2010 or 2011, mid-adopters are cities that 
adopted ridesharing in 2012-2014, and late-adopter cities are cities that adopted ridesharing in 2015-2016. 
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Panel A: Log Total Accidents Panel B: Log Total Fatalities 

  
Panel C: Log Drunk Fatalities Panel D: Log Pedestrian-Involved Accidents  

  
 
Figure 5 Difference-in-Differences Estimators  
This figure displays the regression coefficient estimates and two-tailed 90% confidence intervals based on 
standard errors clustered at the city level. To map out the pattern in the counterfactual treatment effects we 
regress the various outcome measures on lag and lead indicators (bunched by 2 quarters) for the entry of 
rideshare. We provide a description of the variables in section 2. 
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Notes: The sample contains 189,120 quarterly observations on 2,955 census incorporated places from 2001 to 2016. 
Population density measures population per square mile. Carpool usage measures the percentage of population 
commuting to work using carpool. Public transportation usage measures the percentage of population commuting to 
work using public transportation. Household vehicle ownership measures the total number of available vehicles in 
households. New car registration measures the total number of new vehicle registrations. 

Table 1: Summary Statistics: City Characteristics

City characteristic Mean Std. Dev. Min. Median Max. Number of cities

Population (thousands) 54.65 200.48 3.03 23.58 8,537.67 2,955
Income per capita (thousands $) 39.71 12.17 12.24 37.47 156.05 2,955
Population density 2,998.42 3,161.15 11.60 2,169.80 57,116.00 2,955
Carpool usage 10.63 3.98 1.52 10.06 48.23 2,955
Public transportation usage 2.97 4.97 0.00 1.19 56.30 2,955
Household vehicle onwership (thousands) 32.81 80.81 1.67 15.54 2,074.43 2,955
New car registration 672 2,346 0 265 181,433 2,955
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Notes: The sample contains 189,120 quarterly observations on 2,955 census incorporated places from 2001 to 2016. 
All rates are measured as of per 100,000 populations. Accident is the number of fatal accidents according to the 
definition used by NHTSA.  Fatality is the total number of fatalities across all fatal accidents. Drunk accident is the 
number of fatal accidents involving any drunk drivers. Drunk fatality is the total number of fatalities in all drunk 
accidents. Non-drunk accident is the number of fatal accidents not involving any drunk drivers. Non-drunk fatality is 
the total number of fatalities in all non-drunk accidents. Pedestrian-involved accident is the number of fatal accidents 
involving at least one pedestrian. Pedestrian-involved fatalities is the total number of fatalities in all accidents 
involving at least one pedestrian. Pedestrians involved in fatal accidents is the total number of pedestrians involved in 
fatal accidents. 

Table 2: Summary Statistics: Accidents and Fatality Rates

Accident and fatality rates Mean Std. Dev. Min. Median Max. Number of cities

Accident rate 3.51 1.00 5.67 0.00 99.11 2,955
Fatality rate 3.86 1.02 6.52 0.00 122.05 2,955
Drunk accident rate 1.10 0.00 2.72 0.00 61.72 2,955
Drunk fatality rate 1.23 0.00 3.20 0.00 81.23 2,955
Drunk driver rate 1.21 0.00 3.11 0.00 69.44 2,955
Non-drunk accident rate 2.40 0.00 4.43 0.00 67.46 2,955
Non-drunk fatality rate 2.62 0.00 5.08 0.00 122.05 2,955
Pedestrian-involved accident rate 0.58 0.00 1.80 0.00 37.35 2,955
Pedestrian-involved fatality rate 0.60 0.00 1.86 0.00 38.64 2,955
Pedestrians Involved in Fatal Accidents 0.64 0.00 2.11 0.00 97.99 2,955
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Notes: This table presents results from generalized difference-in-difference regressions.  The dependent variables are the natural logarithm of various traffic safety measures listed at the top of each column. 
𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑𝑐𝑐  is a dummy variable that equals one if city c adopted at least one rideshare service at time t. City-specific linear trends are excluded in odd-numbered columns and included in even-
numbered columns. Panel A presents the overall effect of ridesharing on 6 traffic safety measures. Total Accidents is the number of fatal accidents according to the definition used by NHTSA.  Total 
Fatalities is the total number of fatalities across all fatal accidents. Drunk accident is the number of fatal accidents involving any drunk drivers. Drunk fatality is the total number of fatalities in all drunk 
accidents. Non-drunk accident is the number of fatal accidents not involving any drunk drivers. Non-drunk fatality is the total number of fatalities in all non-drunk accidents. Panel B and C presents the 
effect of ridesharing on accidents and fatalities, respectively, by day and time. Weekday is defined as Monday through Thursday. Weekend is defined as Friday through Sunday. Night is defined as 5pm 
through 2am. Friday and Saturday Night is defined as 5pm through 6am on Friday and Saturday.  Control variables in all regressions include the natural logarithm of population and the level of income 
per capita. Standard errors, adjusted for clustering at the city level, are reported in parentheses. ∗∗∗, ∗∗, and ∗ represent statistical significance at the 1%, 5%, and 10% levels, respectively. 

Table 3 Effect of Ridesharing on Traffic Safety

Panel A: Overall Effect
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Log Total 
Accidents

Log Total 
Accidents

Log Total 
Fatalities

Log Total 
Fatalities

Log Drunk 
Accidents

Log Drunk 
Accidents

Log Drunk 
Fatalities

Log Drunk 
Fatalities

Log Non-
Drunk 

Log Non-
Drunk 

Log Non-
Drunk 

Log Non-
Drunk 

0.0141** 0.0356*** 0.0131** 0.0354*** -0.0302*** 0.0201*** -0.0315*** 0.0200*** 0.0336*** 0.0309*** 0.0332*** 0.0309***
(0.0064) (0.0075) (0.0067) (0.0079) (0.0055) (0.0061) (0.0059) (0.0065) (0.0063) (0.0074) (0.0065) (0.0077)

City and Quarter Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
City Linear Trend No Yes No Yes No Yes No Yes No Yes No Yes
Control Variables Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 189,120 189,120 189,120 189,120 189,120 189,120 189,120 189,120 189,120 189,120 189,120 189,120 
R2 0.61 0.62 0.59 0.60 0.47 0.49 0.46 0.47 0.55 0.56 0.54 0.55 

Panel B: Effect on Total Accidents by Day and Time
(1) (2) (3) (4) (5) (6) (7) (8)

Log Weekday 
Accidents

Log Weekday 
Accidents

Log Weekend 
Accidents

Log Weekend 
Accidents

Log Accidents 
at Night

Log Accidents 
at Night

Log Accidents 
at Fri. and Sat. 

Night

Log Accidents 
at Fri. and Sat. 

Night
0.0103* 0.0277*** 0.0122** 0.0340*** 0.0225*** 0.0387*** 0.0113** 0.0243***
(0.0057) (0.0070) (0.0056) (0.0066) (0.0058) (0.0066) (0.0047) (0.0055)

City and Quarter Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes
City Linear Trend No Yes No Yes No Yes No Yes
Control Variables Yes Yes Yes Yes Yes Yes Yes Yes
Observations 189,120 189,120 189,120 189,120 189,120 189,120 189,120 189,120 
R2 0.51 0.52 0.52 0.53 0.54 0.55 0.44 0.45 

Panel C: Effect on Total Fatalities by Day and Time
(1) (2) (3) (4) (5) (6) (7) (8)

Log Weekday 
Total Fatalities

Log Weekday 
Total Fatalities

Log Weekend 
Total Fatalities

Log Weekend 
Total Fatalities

Log Total 
Fatalities at 

Night

Log Total 
Fatalities at 

Night

Log Total 
Fatalities at 
Fri. and Sat. 

Night

Log Total 
Fatalities at 
Fri. and Sat. 

Night
0.0122** 0.0340*** 0.0111* 0.0345*** 0.0211*** 0.0398*** 0.0108** 0.0262***
(0.0056) (0.0066) (0.0059) (0.0070) (0.0061) (0.0070) (0.0049) (0.0059)

City and Quarter Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes
City Linear Trend No Yes No Yes No Yes No Yes
Control Variables Yes Yes Yes Yes Yes Yes Yes Yes
Observations 189,120 189,120 189,120 189,120 189,120 189,120 189,120 189,120 
R2 0.52 0.53 0.51 0.52 0.53 0.54 0.43 0.44 

𝛿𝛿𝑃𝑃𝑠𝑠𝑡𝑡𝑡𝑡 ∗ 𝑉𝑉𝑇𝑇𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎𝑐𝑐

𝛿𝛿𝑃𝑃𝑠𝑠𝑡𝑡𝑡𝑡 ∗ 𝑉𝑉𝑇𝑇𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎𝑐𝑐

𝛿𝛿𝑃𝑃𝑠𝑠𝑡𝑡𝑡𝑡 ∗ 𝑉𝑉𝑇𝑇𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎𝑐𝑐
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Notes: This table presents the dynamic effects of ridesharing on traffic safety. The dependent variables are the natural logarithm of 
various traffic safety measures listed at the top of each column. Total Accidents is the number of fatal accidents according to the 
definition used by NHTSA.  Total Fatalities is the total number of fatalities across all fatal accidents. Drunk accident is the number 
of fatal accidents involving any drunk drivers. Drunk fatality is the total number of fatalities in all drunk accidents. Non-drunk 
accident is the number of fatal accidents not involving any drunk drivers. Non-drunk fatality is the total number of fatalities in all 
non-drunk accidents.  Rideshare tenure variables are dummy variables that take the value of one if rideshare has been in effect for 
the specified periods of time. All columns include city-specific linear trends. Control variables in all regressions include the natural 
logarithm of population and the level of income per capita. Standard errors, adjusted for clustering at the city level, are reported in 
parentheses. ∗∗∗, ∗∗, and ∗ represent statistical significance at the 1%, 5%, and 10% levels, respectively. 

Table 4 Dynamic Effect of Ridesharing on Traffic Safety

(1) (2) (3) (4) (5) (6)
Log Total 
Accidents

Log Total 
Fatalities

Log Drunk 
Accidents

Log Drunk 
Fatalities

Log Non-Drunk 
Accidents

Log Non-Drunk 
Fatalities

Rideshare Tenure
1 - 2 Quarters 0.0326*** 0.0323*** 0.009 0.0092 0.0291*** 0.0291***

(0.0101) (0.0105) (0.0085) (0.0091) (0.0098) (0.0102)

3 - 4 Quarters 0.0375*** 0.0359*** 0.0295*** 0.0309*** 0.0265** 0.0236**
(0.0114) (0.0119) (0.0091) (0.0098) (0.0111) (0.0115)

5 - 6 Quarters 0.0329*** 0.0356*** 0.0149 0.0154 0.0354*** 0.0370***
(0.0128) (0.0135) (0.0095) (0.0103) (0.0126) (0.0132)

7 - 8 Quarters 0.0409*** 0.0421*** 0.0231** 0.0215* 0.0384*** 0.0419***
(0.0132) (0.0139) (0.0107) (0.0114) (0.0131) (0.0137)

9 - 10 Quarters 0.0372** 0.0332** 0.0440*** 0.0391*** 0.0251 0.0249 
(0.0157) (0.0164) (0.0126) (0.0134) (0.0154) (0.0161)

11 - 12 Quarters 0.0466** 0.0475* 0.0263 0.0277 0.0500** 0.0501**
(0.0232) (0.0243) (0.0204) (0.0222) (0.0216) (0.0223)

> 12 Quarters 0.0838** 0.0826** 0.0545* 0.0557* 0.0829** 0.0807**
(0.0358) (0.0367) (0.0314) (0.0332) (0.0340) (0.0346)

City and Quarter Fixed Effects Yes Yes Yes Yes Yes Yes
City Linear Trend Yes Yes Yes Yes Yes Yes
Control Variables Yes Yes Yes Yes Yes Yes
Observations 189,120 189,120 189,120 189,120 189,120 189,120
R2 0.62 0.60 0.49 0.47 0.56 0.55
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Notes: This table shows how the effect of ridesharing on traffic safety varies with the intensity of service. In all panels, the dependent variables are the natural 
logarithm of various traffic safety measures listed at the top of each column. Total Accidents is the number of fatal accidents according to the definition used by 
NHTSA. Total Fatalities is the total number of fatalities across all fatal accidents. Drunk accident is the number of fatal accidents involving any drunk drivers. 
Drunk fatality is the total number of fatalities in all drunk accidents. Non-drunk accident is the number of fatal accidents not involving any drunk drivers. Non-
drunk fatality is the total number of fatalities in all non-drunk accidents.  In Panel A, Single (Pooled) Ride Service is a dummy variable that takes the value of one 
if any single (pooled) ride services is adopted. In Panel B, Log Rideshare-Related Google Search Volume is the natural logarithm of Google search volume for the 
terms “Uber,” “Lyft,” and “Rideshare.” All columns include city-specific linear trends. Control variables in all regressions include the natural logarithm of 
population and the level of income per capita. Standard errors, adjusted for clustering at the city level, are reported in parentheses. ∗∗∗,∗∗, and ∗ represent statistical 
significance at the 1%, 5%, and 10% levels, respectively.

Table 5 Variation of Ridesharing Service

Panel A: Single Ride Services vs. Pooled Ride Services
(1) (2) (3) (4) (5) (6)

Log Total 
Accidents

Log Total 
Fatalities

Log Drunk 
Accidents

Log Drunk 
Fatalities

Log Non-Drunk 
Accidents

Log Non-Drunk 
Fatalities

Single Ride Service (UberBlack/Taxi/X, Lyft) 0.0368*** 0.0365*** 0.0214*** 0.0214*** 0.0312*** 0.0310***
(0.0077) (0.0080) (0.0062) (0.0067) (0.0075) (0.0078)

Pooled Ride Service (Uber Pool, Lyft Line) -0.0140 -0.0128 -0.0113 -0.0123 -0.0064 -0.0046
(0.0151) (0.0159) (0.0127) (0.0134) (0.0148) (0.0155)

City and Quarter Fixed Effects Yes Yes Yes Yes Yes Yes
City Linear Trend Yes Yes Yes Yes Yes Yes
Control Variables Yes Yes Yes Yes Yes Yes
Observations 189,120 189,120 189,120 189,120 189,120 189,120
R2 0.62 0.60 0.49 0.47 0.56 0.55

Panel B: Google Trends Intensity
(1) (2) (3) (4) (5) (6)

Log Total 
Accidents

Log Total 
Fatalities

Log Drunk 
Accidents

Log Drunk 
Fatalities

Log Non-Drunk 
Accidents

Log Non-Drunk 
Fatalities

0.0049*** 0.0050*** 0.0035*** 0.0034*** 0.0039*** 0.0041***
(0.0010) (0.0010) (0.0008) (0.0008) (0.0009) (0.0010)

City and Quarter Fixed Effects Yes Yes Yes Yes Yes Yes
City Linear Trend Yes Yes Yes Yes Yes Yes
Control Variables Yes Yes Yes Yes Yes Yes
Observations 153,660 153,660 153,660 153,660 153,660 153,660
R2 0.62 0.61 0.49 0.48 0.57 0.56

𝛿𝛿𝑃𝑃𝑠𝑠𝑡𝑡𝑡𝑡 ∗ 𝑉𝑉𝑇𝑇𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎𝑐𝑐 ∗  𝐿𝑃𝑃𝑔 𝑇𝑇𝑖𝑖𝑎𝑎𝑎𝑎𝑠𝑠ℎ𝑎𝑎𝑇𝑇𝑎𝑎 − 𝑇𝑇𝑎𝑎𝑙𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎  𝐺𝑃𝑃𝑃𝑃𝑔𝑙𝑎𝑎 𝛿𝛿𝑎𝑎𝑎𝑎𝑇𝑇𝑐𝑐ℎ 𝑉𝑉𝑃𝑃𝑙𝑢𝑚𝑎𝑎𝑐𝑐𝑡𝑡
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Notes: This table presents results from generalized difference-in-difference regressions. The dependent variables are the natural logarithm of pedestrian-related 
traffic safety measures listed at the top of each column. Pedestrian-involved accident measures the number of fatal accidents involving at least one pedestrian. 
Pedestrian-involved fatalities measures the total number of fatalities in all accidents involving at least one pedestrian. Pedestrians involved in fatal accidents 
measures the total number of pedestrians involved in fatal accidents. 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑𝑐𝑐 is a dummy variable that equals one if city c adopted at least one rideshare 
service at time t. City-specific linear trends are excluded in odd-numbered columns and included in even-numbered columns.  Control variables in all regressions 
include the natural logarithm of population and the level of income per capita. Standard errors, adjusted for clustering at the city level, are reported in parentheses. 
∗∗∗, ∗∗, and ∗ represent statistical significance at the 1%, 5%, and 10% levels, respectively. 

Table 6 Externality of Ridesharing on Pedestrians

(1) (2) (3) (4) (5) (6)

Log Pedestrian-
Involved Accident

Log Pedestrian-
Involved Accident

Log Pedestrian-
Involved Fatalities

Log Pedestrian-
Involved Fatalities

Log Pedestrians 
Involved in Fatal 

Accidents

Log Pedestrians 
Involved in Fatal 

Accidents
0.0318*** 0.0249*** 0.0319*** 0.0250*** 0.0325*** 0.0280***
(0.0051) (0.0058) (0.0052) (0.0059) (0.0054) (0.0063)

City and Quarter Fixed Effects Yes Yes Yes Yes Yes Yes
City Linear Trend No Yes No Yes No Yes
Control Variables Yes Yes Yes Yes Yes Yes
Observations 189,120 189,120 189,120 189,120 189,120 189,120 
R2 0.53 0.54 0.53 0.54 0.51 0.52 

𝛿𝛿𝑃𝑃𝑠𝑠𝑡𝑡𝑡𝑡 ∗ 𝑉𝑉𝑇𝑇𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎𝑐𝑐
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Notes: This table presents heterogeneous effects of ridesharing on traffic safety. In all panels, the dependent variables are the natural logarithm of various traffic safety and externality measures listed at the top of each column. Panel 
A and Panel B breaks out results across a variety of city characteristics and ex-ante behaviors, respectively. The variables used for sample cut is listed at the top of each panel. Population density measures population per square mile. 
Vehicle ownership measures the total number of available vehicles in households. Public transportation usage measures the percentage of population commuting to work using public transportation. Carpool usage measures the 
percentage of population commuting to work using carpool. Total Accidents is the number of fatal accidents according to the definition used by NHTSA.  Total Fatalities is the total number of fatalities across all fatal accidents.  
Pedestrian-involved accident measures the number of fatal accidents involving at least one pedestrian. Pedestrian-involved fatalities measures the total number of fatalities in all accidents involving at least one pedestrian. The 
independent variables of interest are the interaction of 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑𝑐𝑐, a dummy variable that equals one if city c adopted at least one rideshare service at time t, and an indicator for the quartile the observation falls in. Apart from 
the natural logarithm of population and the level of income per capita, all interacted variables are included separately as control variables. All columns include city-specific linear trends.  Standard errors, adjusted for clustering at the 
city level, are reported in parentheses. ∗∗∗,∗∗, and ∗ represent statistical significance at the 1%, 5%, and 10% levels, respectively.

Panel A: City Characteristics

(1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4)

Log Total 
Accidents

Log Total 
Fatalities

Log Pedestrian-
Involved 
Accident

Log Pedestrian-
Involved 
Fatalities

Log Total 
Accidents

Log Total 
Fatalities

Log Pedestrian-
Involved 
Accident

Log Pedestrian-
Involved 
Fatalities

Log Total 
Accidents

Log Total 
Fatalities

Log Pedestrian-
Involved 
Accident

Log Pedestrian-
Involved 
Fatalities

0.0752*** 0.0775*** 0.0649*** 0.0655*** 0.0375*** 0.0372*** 0.0261*** 0.0274*** 0.0364*** 0.0358*** 0.0178** 0.0178*
(0.0115) (0.0119) (0.0102) (0.0103) (0.0114) (0.0119) (0.0088) (0.0090) (0.0111) (0.0114) (0.0091) (0.0092)

0.0032 0.0032 -0.0065 -0.0071 0.0126 0.0122 0.0214** 0.0206** 0.0263* 0.0263* 0.0328*** 0.0320***
(0.0138) (0.0146) (0.0095) (0.0097) (0.0116) (0.0121) (0.0092) (0.0093) (0.0141) (0.0148) (0.0111) (0.0112)

0.0025 -0.0021 -0.0144 -0.0152* 0.0539*** 0.0552*** 0.0385*** 0.0381*** 0.0507*** 0.0491*** 0.0513*** 0.0524***
(0.0159) (0.0168) (0.0091) (0.0092) (0.0144) (0.0151) (0.0121) (0.0121) (0.0164) (0.0171) (0.0133) (0.0136)

0.0036 0.0009 -0.0031 -0.0025 0.0525*** 0.0512*** 0.0118 0.0121 0.0307* 0.0332* -0.0020 -0.0014
(0.0131) (0.0136) (0.0077) (0.0079) (0.0178) (0.0186) (0.0140) (0.0142) (0.0167) (0.0179) (0.0117) (0.0119)

City and Quarter Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
City Linear Trend Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Control Variables Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 189,120 189,120 189,120 189,120 189,120 189,120 189,120 189,120 189,120 189,120 189,120 189,120 
R2 0.62 0.60 0.54 0.54 0.62 0.60 0.54 0.54 0.62 0.60 0.54 0.54 

Panel B: Ex-ante Behavior

(1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4)

Log Total 
Accidents

Log Total 
Fatalities

Log Pedestrian-
Involved 
Accident

Log Pedestrian-
Involved 
Fatalities

Log Total 
Accidents

Log Total 
Fatalities

Log Pedestrian-
Involved 
Accident

Log Pedestrian-
Involved 
Fatalities

Log Total 
Accidents

Log Total 
Fatalities

Log Pedestrian-
Involved 
Accident

Log Pedestrian-
Involved 
Fatalities

0.0781*** 0.0803*** 0.0678*** 0.0683*** 0.0367*** 0.0364*** 0.0432*** 0.0428*** 0.0467*** 0.0466*** 0.0317** 0.0319**
(0.0113) (0.0117) (0.0100) (0.0102) (0.0115) (0.0119) (0.0096) (0.0097) (0.0153) (0.0164) (0.0128) (0.0129)

-0.0003 -0.0023 -0.0084 -0.0091 0.0517*** 0.0548*** 0.0267** 0.0280*** 0.0624*** 0.0611*** 0.0482*** 0.0480***
(0.0147) (0.0155) (0.0108) (0.0109) (0.0126) (0.0132) (0.0104) (0.0105) (0.0136) (0.0138) (0.0115) (0.0116)

-0.0051 -0.0068 -0.0100 -0.0102 0.0194 0.0143 0.0211* 0.0194 0.0184 0.0210 0.0140 0.0144
(0.0152) (0.0162) (0.0098) (0.0100) (0.0158) (0.0166) (0.0118) (0.0120) (0.0131) (0.0135) (0.0095) (0.0097)

0.0113 0.0090 -0.0096 -0.0094 0.0207 0.0219 -0.0284** -0.0264** 0.0087 0.0071 0.0002 0.0002
(0.0141) (0.0146) (0.0072) (0.0073) (0.0192) (0.0202) (0.0117) (0.0121) (0.0131) (0.0139) (0.0095) (0.0097)

City and Quarter Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
City Linear Trend Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Control Variables Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 189,120 189,120 189,120 189,120 189,120 189,120 189,120 189,120 189,120 189,120 189,120 189,120 
R2 0.62 0.60 0.54 0.54 0.62 0.60 0.54 0.54 0.62 0.60 0.54 0.54 

Table 7 Heterogeneous Effects

Population Per Capita Income Population Density

 Ex Ante Vehicle Ownership Ex Ante Car Pool UsageEx Ante Public Transportation Usage

𝛿𝛿𝑃𝑃𝑠𝑠𝑡𝑡𝑡𝑡 ∗ 𝑉𝑉𝑇𝑇𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎𝑐𝑐 ∗ 𝑄𝑄4

𝛿𝛿𝑃𝑃𝑠𝑠𝑡𝑡𝑡𝑡 ∗ 𝑉𝑉𝑇𝑇𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎𝑐𝑐 ∗ 𝑄𝑄3

𝛿𝛿𝑃𝑃𝑠𝑠𝑡𝑡𝑡𝑡 ∗ 𝑉𝑉𝑇𝑇𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎𝑐𝑐 ∗ 𝑄𝑄2

𝛿𝛿𝑃𝑃𝑠𝑠𝑡𝑡𝑡𝑡 ∗ 𝑉𝑉𝑇𝑇𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎𝑐𝑐 ∗ 𝑄𝑄1

𝛿𝛿𝑃𝑃𝑠𝑠𝑡𝑡𝑡𝑡 ∗ 𝑉𝑉𝑇𝑇𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎𝑐𝑐 ∗ 𝑄𝑄4

𝛿𝛿𝑃𝑃𝑠𝑠𝑡𝑡𝑡𝑡 ∗ 𝑉𝑉𝑇𝑇𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎𝑐𝑐 ∗ 𝑄𝑄3

𝛿𝛿𝑃𝑃𝑠𝑠𝑡𝑡𝑡𝑡 ∗ 𝑉𝑉𝑇𝑇𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎𝑐𝑐 ∗ 𝑄𝑄2

𝛿𝛿𝑃𝑃𝑠𝑠𝑡𝑡𝑡𝑡 ∗ 𝑉𝑉𝑇𝑇𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎𝑐𝑐 ∗ 𝑄𝑄1
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Notes: The sample contains 1,386 annual observations on 99 urban areas from 2001 to 2014.  The dependent variables 
are the natural logarithm of congestion-related measures listed at the top of each column. Arterial Street VMT 
measures the total number of vehicle-miles-traveled in arterial streets in an urban area. Excess fuel consumption 
measures the extra fuel consumed due to inefficient operation in slower stop-and-go traffic. Hours of delay measures 
the amount of extra time spent traveling due to congestion. 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑𝑢𝑢 is a dummy variable that equals one if 
urban area u adopted at least one rideshare service at year t. Urban area-specific linear trends are included in all 
regressions. Control variables include the natural logarithm of population and the level of income per capita. Standard 
errors, adjusted for clustering at the urban area level, are reported in parentheses. ∗∗∗, ∗∗, and ∗ represent statistical 
significance at the 1%, 5%, and 10% levels, respectively. For more detailed information on the dependent variables, 
please refer to https://static.tti.tamu.edu/tti.tamu.edu/documents/mobility-scorecard-2015-wappx.pdf.       

Table 8 Effect of Ridesharing on Road Utilization and Congestion
(1) (2) (3)

Log Arterial Street VMT Log Excess Fuel Consumption Log Hours of Delay
0.0296* 0.0170** 0.0170**
(0.0158) (0.0075) (0.0075)

Urban Area and Year Fixed Effects Yes Yes Yes
Urban Area Linear Trend Yes Yes Yes
Control Variables Yes Yes Yes
Observations 1,386 1,386 1,386 
R2 0.998 0.999 0.999 

𝛿𝛿𝑃𝑃𝑠𝑠𝑡𝑡𝑡𝑡 ∗ 𝑉𝑉𝑇𝑇𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎𝑢𝑢
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Notes: This table presents the effect of ridesharing on new car registrations.  In all panels, the dependent variables are the natural logarithm of 
new car registrations. 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑𝑐𝑐 is a dummy variable that equals one if city c adopted at least one rideshare service at time t. Panel A 
presents results from generalized difference-in-difference regressions. Panel B shows how the effect varies with the intensity of rideshare service. 
Log Rideshare-Related Google Search Volume is the natural logarithm of Google search volume for the terms “Uber,” “Lyft,” and “Rideshare.” 
Single (Pooled) Ride Service is a dummy variable that takes the value of one if any single (pooled) ride services is adopted. Panel C breaks out 
results across a variety of city characteristics and ex-ante behaviors. The variables used for sample cut is listed at the top of each column. Pop 
density measures population per square mile. Public transportation usage measures the percentage of population commuting to work using public 
transportation. Carpool usage measures the percentage of population commuting to work using carpool. Household vehicle ownership measures 
the total number of available vehicles in households. Apart from the natural logarithm of population and the level of income per capita, all 
interacted variables are included separately as control variables. All columns include city-specific linear trends.  Standard errors, adjusted for 
clustering at the city level, are reported in parentheses. ∗∗∗,∗∗, and ∗ represent statistical significance at the 1%, 5%, and 10% levels, respectively. 

Table 9 The Effect of Rideshare on New Car Registrations
Panel A: Overall Effect

(1) (2)
Log New Car 
Registrations

Log New Car 
Registrations

0.0205** 0.0518***
(0.0083) (0.0070)

Quarter and City Fixed Effects Yes Yes
City Linear Trend No Yes
Control Variables Yes Yes
Observations 189,120 189,120
R2 0.94 0.97

Panel B: Intensity
(1) (2)

Log New Car 
Registrations

Log New Car 
Registrations

Google Search Volume
0.0083***
(0.0009)

Rideshare Service Type
Single Ride Service (UberBlack/Taxi/X, Lyft) 0.0496***

(0.0069)

Pooled Ride Service (Uber Pool, Lyft Line) 0.0294***
(0.0106)

Quarter and City Fixed Effects Yes Yes
City Linear Trend Yes Yes
Control Variables Yes Yes
Observations 153,660 189,120
R2 0.97 0.97

Panel C: Heterogeneous Effects
(1) (2) (3) (4) (5)

Dep: Log New Car Registration Population Pop Density Public Transport Carpool Vehicle 
Ownership

0.0873*** 0.0958*** 0.0624*** 0.1612*** 0.0832***
(0.0099) (0.0119) (0.0110) (0.0148) (0.0095)

0.0371** 0.0575*** 0.0737*** 0.0707*** 0.0484***
(0.0146) (0.0113) (0.0127) (0.0111) (0.0135)

0.0204 0.0207* 0.0334** 0.0238** 0.0034
(0.0170) (0.0121) (0.0145) (0.0112) (0.0197)

0.0077 -0.0239 0.0024 -0.0580*** 0.0254
(0.0150) (0.0191) (0.0201) (0.0128) (0.0157)

City and Quarter Fixed Effects Yes Yes Yes Yes Yes
City Linear Trend Yes Yes Yes Yes Yes
Control Variables Yes Yes Yes Yes Yes
Observations 189,120 189,120 189,120 189,120 189,120
R2 0.97 0.97 0.97 0.97 0.97

Postt ∗ Treatedc

Postt ∗ Treatedc ∗  Log Rideshare − Related Google Search Volumect
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