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Abstract

Background: A major goal of evolutionary developmental biology is to discover general models and mechanisms
that create the phenotypes of organisms. However, universal models of such fundamental growth and form are
rare, presumably due to the limited number of physical laws and biological processes that influence growth. One
such model is the logarithmic spiral, which has been purported to explain the growth of biological structures such
as teeth, claws, horns, and beaks. However, the logarithmic spiral only describes the path of the structure through
space, and cannot generate these shapes.

Results: Here we show a new universal model based on a power law between the radius of the structure and its
length, which generates a shape called a ‘power cone’. We describe the underlying ‘power cascade’ model that
explains the extreme diversity of tooth shapes in vertebrates, including humans, mammoths, sabre-toothed cats,
tyrannosaurs and giant megalodon sharks. This model can be used to predict the age of mammals with ever-
growing teeth, including elephants and rodents. We view this as the third general model of tooth development,
along with the patterning cascade model for cusp number and spacing, and the inhibitory cascade model that
predicts relative tooth size. Beyond the dentition, this new model also describes the growth of claws, horns, antlers
and beaks of vertebrates, as well as the fangs and shells of invertebrates, and thorns and prickles of plants.

Conclusions: The power cone is generated when the radial power growth rate is unequal to the length power
growth rate. The power cascade model operates independently of the logarithmic spiral and is present throughout
diverse biological systems. The power cascade provides a mechanistic basis for the generation of these pointed
structures across the tree of life.

Keywords: Shape generation, Morphogenesis, Differential growth, Vertebrates, Teeth, Logarithmic spiral, Evo-devo,
Power law, Power cascade, Power cone
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Background
The discovery of general models and mechanisms that
create the phenotypes of organisms is a major goal of
evolutionary developmental biology [1–5]. Very few
such fundamental growth patterns exist, including
logarithmic spiral growth [6, 7]. These growth pat-
terns are important because they significantly influ-
ence the diversity of life by making some phenotypes
very common while constraining or even prohibiting
others, essentially favouring specific evolutionary tra-
jectories [1, 8–13].
The vertebrate dentition, with its panoply of morpho-

logical diversity, is a superb system in which to investi-
gate models of growth. All vertebrate teeth grow from
the tip downwards towards the base to form the main
body and individual cusps of each tooth. Teeth are often
described as being ‘conical’ [14, 15]—this term may refer
to the strict mathematical shape of a cone (Fig. 1a) or
perhaps a single-pointed structure that folds down on all
sides. While we have made great strides in determining
the genetic influences on cusp formation and variation
[16, 17], currently, we do not know the main determi-
nants of cusp shape.

Following the discovery of the logarithmic spiral [18],
in 1659, Sir Christopher Wren [19] first proposed that
shells grow as a cone expanding along a logarithmic
spiral (Fig. 1a, b), so that the trajectory of the midline of
the shell forms a logarithmic spiral. This approach has
since been used to model shell growth [7, 20]. Thomp-
son [6] concluded that teeth follow this conical pattern
of growth; here, we will test the suggestion of Wren [19]
and Thompson [6] that teeth grow in the shape of a
cone. At the same time, we strive to ascertain whether
there are high-level, simple models governing how teeth
grow and to determine if these patterns extend beyond
the dentition to other pointed structures in nature.

Results
Power cascade model simulates tooth growth
We represent the shape of the tooth in the manner in
which it grows, from tip to base, by measuring the rate
of lateral expansion of the tooth as the length increases.
To measure this rate for a tooth, we take a 3D digitised
surface of the tooth and place 10 equally spaced cross-
sections perpendicular to its midline (Fig. 2a). The aver-
age radius of each cross-section is Radius = √ (cross-

Fig. 1 Generative models for shapes of teeth and other pointed structures, showing the effects of relative growth rates on shape. Logarithmic
spiral (top): if the rates of growth of the two sides of the structure (rA and rB) are equal, a symmetrical structure such as a cone is produced (a). If
the rate of growth on one side is lower (e.g. rA < rB), then the structure curves to follow a logarithmic spiral (black curved line) (b). Power cascade
(left): when the power growth rate of the distance from the tip (rD) is equal to the growth rate of the radius (rR), then a cone is produced (a).
When rR is less than rD, a power cone is generated (c). Here, rD = 2rR, generating a paraboloid. Both of these inequalities in growth rates can be
combined to form a power cone curving along a logarithmic spiral, or a power spiral (d)
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sectional area/π). We then plot log10Distance from the
tip against log10Radius. The example Tyrannosaurus rex
tooth illustrated in Fig. 2a shows a very close relation-
ship to a straight line (Fig. 2b), fitting a linear model
with R2 = 0.997.
All other teeth measured show a strong linear or close

to linear relationship between log(Distance) and log(Ra-
dius) (here termed Log Distance-Radius plots; Fig. 2b; R2

range 0.9654–0.9998; see Additional file 1: Tables S1-S5
for sample sizes). This appears to indicate a general
model of growth for single-cusped teeth, including bony
fish, sharks, amphibians, reptiles, non-avian dinosaurs,
birds, and mammals (Additional file 1: Figure S1).
The linear relationship, explicitly written log10(Ra-

dius) = Slope × log10(Distance) + Intercept, allows the
growth and shape of a tooth to be characterised by its
Slope and Intercept. This relationship can be written as
Radius = 10Intercept ×DistanceSlope. Therefore, the rela-
tionship is a ‘power law’ [21] (monomial) with varying
exponent (Slope) and multiplier (10Intercept).
When Slope = 1, there is a linear relationship between

the raw measurements of Distance and Radius. Revolv-
ing this straight line around the x-axis to form a surface
of revolution generates a cone (Fig. 1a; Additional file 1:
Figure S2a). This shape is the cone expected by Wren

[19]. When Slope = 0.5, the surface of revolution is a par-
aboloid (Fig. 1c; Additional file 1: Figure S2a). Values
below 0.5 are increasingly blunt at the very tip. The
shape of the unicuspid teeth measured above therefore
matches the surface of revolution of a power function,
which we call a ‘power cone’ and is the same as the
‘power series’ of airplane nose cone designs [22]. We will
use the term ‘cone’ to refer to only the straight-sided
conventional cone, while ‘power cone’ is the more gen-
eral shape with a profile of varying curvature. Because
Slope is always less than 1 (range 0.25–0.95), teeth are
therefore not cone-shaped and do not match the conical
model of Wren [19]. In order to describe the folding of
the tooth shape cascading down from the tip of the
tooth according to the power function, we term this
model the ‘power cascade’. The power cascade defines a
new family of shapes that vary in Slope and Intercept.
The Intercept represents a scaling factor for the width

of the tooth, with higher values resulting in wider teeth
for the same length (Additional file 1: Figure S2b). The
right-hand end of the Log Distance-Radius curve repre-
sents the maximum length of the tooth (Additional file
1: Figure S2c). Since all teeth plotted in Fig. 2 have been
measured at ten equally spaced points along the tooth,
the first distance for each tooth (x minimum) is 1/10 of

Fig. 2 Vertebrate teeth grow following the power cascade model, showing linear change in log Radius with log Distance from tip. a
Measurement of Radius and Distance for Tyrannosaurus rex (UWBM 99000) lower right tooth 2 (shown in light green in b), which fits a linear
model with R2 = 0.997. Radius = √ (cross-sectional area/π). b Teeth from all vertebrate groups show a linear pattern on log-log axes. Linear
regression gives R2 > 0.994 for all teeth shown, other than snake fang where R2 = 0.954 (R2 = 0.999 excluding base 20%). EDJ, enamel-dentine
junction. c Power cones vary depending on Slope (from conical to blunt) and Intercept (from wide to narrow) of the Log Radius-Distance plot
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the maximum distance (x maximum), and so these lines
are the same length along the log-scaled x-axis (the only
exception being the mammoth tusk; Additional file 1:
Figure S2c). Ten intervals appears to be minimally re-
quired to represent the shape of a tooth; however, more
points, whether or not equally spaced, can be used (see
Additional file 1: Figure S3 for alternative sampling in-
tervals) and do not substantially affect the calculation of
Slope or Intercept (see Supplementary Discussion).

Tooth crowns, rows, and cusps follow the power cascade
The junction between the enamel and dentine layers in a
tooth initially forms as the interface between the epithe-
lium and mesenchyme during development [23]. In most
vertebrates, the enamel or enameloid has an equal thick-
ness over the tooth surface, and so the outer enamel sur-
face is an adequate approximation of the initial shape of
the developing tooth. In some groups such as hominids,
the enamel is of uneven thickness over the tooth (mod-
elled by [24]). However, both the enamel-dentine junc-
tion (EDJ) and the outer enamel surface of the human
canine show a tight fit to the power cascade (R2 > 0.997),
although with different slopes (Fig. 3c).
Many reptiles and marine mammals have rows of

unicuspid teeth along each jaw, sometimes showing
variation in tooth shape along the row [25]. To

investigate whether the power cascade sufficiently
represents growth in all teeth within a row, we mea-
sured 11 teeth in the lower jaw of the theropod
dinosaur Tyrannosaurus rex. All teeth are repre-
sented by the power function (0.992 < R2 < 0.999; Fig.
3a), with Slope between 0.47 and 0.54.
Most mammal teeth have multiple cusps on the sur-

face. Each of these cusps is generated from the position
of an enamel knot that forms a local maximum of the
epithelium-mesenchyme interface during early tooth de-
velopment [16, 23]. Leopard seal Hydrurga leptonyx
postcanine teeth are trident-shaped, with a large cen-
tral cusp and smaller anterior and posterior cusps
(Fig. 3d). Measuring each of these cusps separately
shows a linear Log Distance-Radius relationship for
each cusp. The Slope and Intercept are similar for all
five postcanine teeth, with the central cusp tending to
have a higher Intercept but similar Slope (Fig. 3d).
More rounded cusps also show power cascade tooth
growth, as seen in the wave-like shapes of the crab-
eater seal Lobodon carcinophaga postcanine teeth
(Fig. 3b) and in the enamel-dentine junction of the
individual cusps of human molars (Fig. 3c). The en-
tire heterodont tooth row of the leopard seal shows
strong linear patterns in the incisors, canines, and
main postcanine cusps (R2 > 0.997; Fig. 3e).

Fig. 3 Teeth, tooth rows and cusps follow the power cascade. a Eleven teeth in the jaw of Tyrannosaurus rex (UWBM 99000): 0.992 > R2 > 0.999. b
Separate cusps on a crabeater seal Lobodon carcinophaga (NMV C7385) postcanine 3: 0.990 > R2 > 0.998. c Human Homo sapiens lower enamel-
dentine junction (EDJ) and outer enamel surface (OES) canine and separate EDJ cusps on three lower molars (protoconid (prd) of M2 and M3,
thin line; metaconid (med) of M1, M2 and M3, thick line): 0.984 < R2 < 0.998. d All three cusps of the postcanines (PC) 1, 3 and 5 of the leopard
seal Hydrurga leptonyx (NMV C31561): 0.995 < R2 < 1.000. e Two incisors, one canine and central cusps of all five postcanines of the leopard
seal: 0.997 < R2 < 1.000
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Power cascade model can predict tooth length and age
The attributes of the power cascade model have import-
ant implications for the growth and characterisation of
teeth. Teeth are often worn or broken at the tip through
use in life or during preservation and fossilisation. If
teeth generally show growth according to a power cas-
cade model, we can use this to estimate how much of
the tip of a tooth has been lost. By sequentially adding
length to the tip and fitting a linear model, the distance
corresponding to the original tooth length should be
closest to linear and have the highest R2 value for the re-
gression. To demonstrate this concept, we can artificially
remove part of the tip of a leopard seal canine and then
estimate how much has been lost (Additional file 1: Fig-
ure S4b,c), resulting in an overestimate of 5.8 to 8.0% of
the original length of the tooth (or less than 5% overesti-
mate if accounting for apparent minor changes in
growth early in tooth formation; see Supplementary In-
formation). This method has been used to reconstruct
the missing tip of some teeth in Fig. 2 such as the plio-
saur fossil tooth (Additional file 1: Figure S4d).
A new method for estimating the age of mammals

with ever-growing teeth, such as elephants and rodents,
can be derived from this ability to reconstruct tooth
length. Through use, a substantial amount of an ever-
growing tooth is worn away (e.g. tusk wear on trees and
gnawing in rodents), and so the complete length of the
tooth must first be estimated using the power cascade.
Then, we can use the rate of tooth growth (microns per
day, based on crown extension rate [26, 27]) to calculate
the length of time taken to grow the tooth. The result is
a minimum estimate of the age of the individual.
In African elephants Loxodonta africana [28], Radius

increases with Distance along the tusk following the
power cascade relationship. Intercept is higher in males
than females (Fig. 4a), thereby giving the ability to deter-
mine sex from an isolated tusk according to the rate of
increase in radius. As expected, Radius at the base of a
tusk increases with Age in years according to the power
cascade (Fig. 4b), therefore giving an estimated Age for a
given tusk Radius. A similar power cascade pattern is
found in the incisors of the Zaisan mole vole Ellobius
tancrei [30] during juvenile growth (Fig. 4c) but at a
much smaller scale. While incisor circumference or
width have been used to estimate age previously based
solely on regression [30, 31], the power cascade de-
scribes the underlying pattern, and allows for estimation
of age from growth parameters alone. Additional work
on the limitations and accuracy of predictions derived
from this approach is currently underway.
Close inspection of the Log Distance-Radius curves in

Fig. 2 shows some deviations from the expected linear
pattern of the power cascade. This is most obvious in
the acrodont snake teeth, where the tooth fuses to the

bone rather than sitting in a bony socket. The initial
shaft of the tooth follows the power cascade model, but
close to its base, the radius increases faster than ex-
pected, deviating from linear. This is likely due to add-
itional widening of the dental epithelium at the base of
the tooth to aid the fusion of the tooth to the bone in
these snakes. Deviation from the power cascade pattern
may also occur as the developing tooth is curved to fit
within the jaw before mineralisation has occurred.
Another apparent cause of deviation from the power

cascade is the presence of grooves running down part of
the length of the tooth, such as those found in snake
fangs (Fig. 2) and felid canines (Additional file 1: Figure
S1). The infolding of the grooves reduces the cross-
sectional area and so appears to cause deviation from
the expected linear pattern. Wear on the tip or lateral
surface of the teeth will also cause deviation, and so
slightly worn or broken teeth were only included where
they could be confidently reconstructed.

Tooth shape is defined by power cascade morphospace
of Slope and Aspect Ratio
Power cones can be considered self-similar curves in
that all curves of the same power can be stretched or
rescaled to be the same shape (using affine transforma-
tions of translation and scaling akin to self-affine frac-
tals; Additional file 1: Figure S5). Therefore, the only
distinguishing feature of teeth with the same Slope is the
relative stretching of the curve, i.e. the Aspect Ratio, cal-
culated as the maximum length divided by the max-
imum diameter (Additional file 1: Figure S2).
We can use these two key parameters of the power

cascade to define dimensions of a morphospace that
illustrates the range of combinations found in verte-
brate teeth (Fig. 5). Squat shapes are at the bottom of
the graph—these are mostly individual cusps, as well
as a marine reptile unicuspid tooth. Elongated teeth
(‘tusks’) occupy the top of the graph, where the re-
gion with the highest aspect ratio is occupied by the
tusks of the narwhal Monodon monoceros, woolly
mammoth Mammuthus primigenius, African elephant
Loxodonta africana, and walrus Odobenus rosmarus.
Most mammal canines have a Slope between 0.35 and
0.60 (with a mean standard error Slope for each tooth
of 0.011). The highest Slope is found in the human
canine EDJ. Snake fangs have a Slope between 0.4
and 0.6 and a high Aspect Ratio (above 2.5). All of
the Tyrannosaurus rex teeth along the row fall within
a small range of Aspect Ratio and Slope. Our examin-
ation of tooth shape not only includes extant organ-
isms, but also the greater morphological diversity of
extinct organisms, increasing our confidence in the
generality of the model [32].
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Fig. 4 The power cascade can predict the age of mammals with ever-growing teeth. a Tusk Radius increases with Distance for male (USNM
49759 right tusk) and female (USNM 165501 right tusk) African elephants Loxodonta africana [29] following the power cascade. Intercept differs
between male (1.229; R2 = 0.991) and female (1.050; R2 = 0.995) tusks and therefore could be used to determine sex of isolated tusks. Slope is
similar for both sexes (0.303 and 0.287, respectively). b Tusk Radius at the lip line increases with Age according to the power cascade. SlopeAge
differs between males (0.712; R2 = 0.927) and females (0.453; R2 = 0.957). Mean tusk radius in yearly age classes for 247 females and 99 males [28].
c Zaisan mole vole Ellobius tancrei incisor Radius increases with Age according to the power cascade during juvenile growth, and then
dramatically decreases growth rate in adulthood. Segmented linear regression of log variables shown as black line. Juvenile SlopeAge = 0.231, R2 =
0.875. Incisor radius for 158 mole voles with known age [30]
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Discussion
Power cascade growth is not accounted for by existing
models of tooth growth
There are currently two general models that each strive
to describe or explain various aspects of tooth develop-
ment. Enamel knots produce inhibitory signals that pre-
vent new enamel knots forming close to an existing knot
[17]. The ‘patterning cascade’ model describes how this
inhibition, along with the folding of the epithelial-
mesenchyme interface, creates limitations on the size
and position of successive cusps during development
[33]. First described in seal postcanine teeth, the pattern-
ing cascade model has since been extended to primate
molars [34, 35]. The second model, the ‘inhibitory cas-
cade’, describes the relative size of sequentially produced
teeth, such as molars, as a linear change in size along a
tooth row [2, 36]. Neither of these models addresses the
shape of cusps.
The power cascade model proposed here is a third

general model of tooth development complementary to
the two existing models, indicating how the shapes of
unicuspid teeth and individual cusps are generated. After
determination of cusp shape by the power cascade
model, we postulate that cusp spacing is dictated by in-
hibition of enamel knots according to the patterning cas-
cade [33], and number of cusps is controlled by the
number of enamel knots that can fit in the total area of

the tooth. The sizes of sequential teeth are then directed
by the inhibitory cascade [2, 36]. Therefore, cusp shape,
cusp number, and tooth size can be simulated according
to this trio of models to generate the main features of an
entire tooth row.
The power function has been used to represent or

measure a limited set of teeth in previous studies, in-
cluding the tips of shapes designed for mechanical pene-
tration testing [37], using an average Slope of 0.5. Felid
canine profiles measured using power functions [38]
showed that they generally had a Slope of ~ 0.55. Both of
these studies are consistent with the current findings in
many mammal canines, but they did not generalise this
pattern to all teeth or cusps.
Detailed developmental computer simulations of tooth

morphogenesis have used a 3D reaction-diffusion-like
model that calculates bending stresses to form cusps and
teeth [39, 40]. This model produces cusp positions that
can have morphological variation similar to biological
teeth [39, 41]. Here we tested whether the cusp shapes
produced by that model conform to the power cascade
model. Varying five parameters of the model that simu-
lates the development of ringed seal postcanine teeth
[41] shows that most of the cusp shapes produced do
not closely resemble the expected power cascade, with
R2 between 0.59 and 0.97 (Additional file 1: Figure S6).
Therefore, the power cascade model describes cusp

Fig. 5 Morphospace of vertebrate teeth based on power cascade Slope and Aspect Ratio. Slope = 1 indicates conical shape, Slope = 0.5 is a
paraboloid, while lower Slope are progressively more blunt power cones. Aspect Ratio is length of tooth divided by width at base. Colour
indicates vertebrate Class; shape indicates tooth or cusp type. Models are shown for Slope values 0.2, 0.5, and 1.0 and Aspect Ratio values 0.5, 2,
and 10

Evans et al. BMC Biology           (2021) 19:58 Page 7 of 14



shape (or cross-sectional profile) substantially better
than complex in silico models, although this may be a
result of the limited number of cells in the simulations.
Given the power of this new model to define the limits

of tooth shape in animals, we expanded our focus to
compare it with existing models of growth in other mor-
phological systems. Wren’s [19] model of shells growing
as a cone bending to form a logarithmic spiral has since
been used to model shells and teeth [6, 7, 20]. Starting
with a cone, a logarithmic spiral is generated when one
side grows faster than the other, causing the cone to
bend to one side (Fig. 1b; Additional file 1: Figure S7d).
A mechanism to generate a logarithmic spiral is the
unequal growth rates of the two sides A and B.
Logarithmic spirals have a formula in polar coordinates
S = a eb θ, where θ is the angle of rotation around the
origin, S is the resulting radius of the logarithmic spiral,
and a and b are parameters affecting the size and rate of
expansion of the spiral, respectively (Additional file 1:
Figure S7a). The radius of the shell opening expands
linearly with the angle of rotation (Radius = c θ, where c
is a parameter affecting the rate of growth of the shell
opening), which creates a cone spiralling around the
central axis (Additional file 1: Figure S7b). This model
was used to generate shell shapes of many types by
modifying relative rates of growth [7, 42, 43].
The Raup [7] shell equation describes shell growth

using a cone, which is the shape where Slope = 1 in
our Log Distance-Radius plots (Fig. 6; Additional file
1: Figure S2). If this model accurately describes shell
growth, all shells should fall on the right-hand edge
of the morphospace in Fig. 6. The shells of molluscs

(scaphopod Dentalium sp. and gastropod Bembicium
auratum) and cephalopods (nautilus Nautilus pompi-
lius and ram’s head squid Spirula spirula) each ap-
parently form logarithmic spirals, but follow the
power cascade with Slope between 0.37 and 0.88 (Fig.
6). This shows that power cones can bend to form
logarithmic spirals in an analogous manner to that
first proposed by Wren [19] for cones (a specific
power cone; Fig. 1d). It also establishes that not all
shell shapes can be generated by the existing model
of development [7]. In order to accommodate such
shapes, the Raup [7] model must have the Slope par-
ameter added, such that Radius = c θSlope. In the first
description of the shell growth model, Raup [44] as-
sumes that ‘the rate of expansion of the generating
curve is approximately constant’, i.e. Slope = 1, and so
this parameter was not included in his model. In con-
trast, Thompson [6] suggested that the growth may
not be constant in some shells but in fact vary ‘in ac-
cordance with some simple law’, and Ackerly [45]
showed that for some shells there is an allometric
component to the change in radius. Our power cas-
cade model accounts for this important feature of
growth.
The long axis of each tooth grows as a logarithmic

spiral [6, 46], which can be seen in an extreme form in
the curved upper tusks of the babirusa Babyrousa cele-
bensis. However, we find that the Slope of these tusks
(0.25) is considerably less than 1, and therefore, they are
not conical (Fig. 5): their high Aspect Ratio can make
them appear more conical. This means that teeth cannot
be modelled by the Raup [7] shell equation. The radius

Fig. 6 Pointed structures in vertebrates, invertebrates, and plants follow the power cascade model. a Log Distance vs log Radius for structures
found in animal and plant classes. b Occupation of non-tooth structures in Slope-Aspect Ratio morphospace. Note that none of the structures,
including shells, fall at Slope = 1 where the shape is a cone. Bird beak and gastropod shell labels indicate different specimens in the two graphs
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of the circle must change logarithmically with the angle
of rotation to form a power cone, rather than a straight-
sided cone with Slope = 1.

A general model of growth for horns, claws, spines,
beaks, and thorns
Thompson [6] expected that pointed and spiral struc-
tures such as horns and claws would follow the same
growth pattern as shells, which has been used to model
some horn-like structures [47]. If horns grow according
to the shell model and are spiralled cones, then their
Slope parameter will be 1. From measurements of bony
horn cores from vertebrates including mammals, non-
avian dinosaurs (referred to here as dinosaurs) and rep-
tiles, we have found that Log Distance-Radius plots are
linear and the Slope is typically between 0.4 and 0.8 (Fig.
6; Additional file 1: Figure S8), demonstrating that they
do follow the power cascade but are not growing accord-
ing to the original conical shell model.
Other structures throughout vertebrates also show

power cascade growth, including mammal, bird and
dinosaur claw and hoof bones (unguals), the bony beaks
of birds and dinosaurs, and spines of fish (Fig. 6). Out-
side vertebrates, the power cascade model is also
followed in arthropod fangs and cephalopod beaks. Be-
yond animals, it is found in thorns and prickles in plants
(Fig. 6).
The rose prickle (generally called a thorn) represents

an interesting exception. While the concave shape of a
mature prickle does not follow the power cascade

prediction, a young prickle does (Additional file 1: Figure
S9). It appears that the prickle is initially generated fol-
lowing the power cascade growth with Slope = 0.6, but
then as the stem to which it is attached grows, the base
of the prickle is stretched along the long axis of the
branch. The result is the typical concave shape of a rose
prickle, where only the top half follows the power cas-
cade, not the basal half that has been stretched (Add-
itional file 1: Figure S9). In general, it appears that
deviations from the power cascade are more likely in
pointed structures controlled by multiple growth
processes.
The power cascade model can be added to the loga-

rithmic spiral model to generate a ‘power spiral’ that can
simulate realistic shapes of pointed, curved structures
(Additional file 1: Figure S7c). Figure 7 shows some
comparisons between real teeth and power spiral
models, using both circular cross-sections that would be
generated in surfaces of revolution and other cross-
sectional shapes (elliptical, lenticular, truncated circle)
implemented in a Mathematica notebook (v. 12.0, Wol-
fram Research Inc., Champaign, IL) available in the Sup-
plementary Information (see also Additional file 1:
Figure S10).
The majority of the structures that are closely emu-

lated by the power cascade grow from tip to base, in-
cluding teeth, horns, thorns, and prickles. These shapes
are presumably formed as each addition of material in-
creases the radius by a constant proportion for a propor-
tional increase in length. For example, bovid horns grow

Fig. 7 Power spiral (power cascade with a central axis of a logarithmic spiral) can closely emulate real teeth from all vertebrate groups. 3D scan
models (grey) and simulated teeth (orange) in two views for megalodon shark Carcharocles megalodon (NMV P28786), mosasaur Globidens
alabamensis (USNM 54078), tyrannosaurid Tyrannosaurus rex (UWBM 99000), African elephant Loxodonta africana (NMV C30765), babirusa pig
Babyrousa celebensis (ZMB MAM033677), and sabre-tooth cat Smilodon fatalis (LACM HC2000R43)
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from tip to base, increasing in radius down the horn,
and they generally follow the power cascade model. In
contrast, cervid antlers grow from base to tip, with the
growing antler branching, and the antler points being
the last structures to form. Despite this directional dif-
ference in growth—and the antler starting from a wider
base and narrowing towards the tip—antler points also
follow the power cascade (Fig. 6). This shows that the
proportional growth pattern can act both when increas-
ing the radius of the structure as it cascades downwards
from the tip to the base, and also when decreasing the
radius to cascade upwards from base to tip. It appears
that only the direction of radial growth differs between
these two scenarios.
Since many of the structures examined here (including

teeth and claws) are used to penetrate food or other ma-
terials, it may be argued that selection to maximise
penetration ability or structural strength is the cause of
the underlying similarity in shape as described by the
power cascade model. However, many structures that
are not for penetration (such as shells, rounded teeth or
backward-curving horns) still follow the power cascade
pattern. Given that structures that conform to the power
cone can vary from sharp and long to blunt and short,
we argue that the most parsimonious explanation for the
model fit is an underlying biophysical or developmental
mechanism rather than strong selection for shapes that
coincidentally fit a power cascade-like pattern. The
power cascade generates a base set of allowed variations
(Fig. 5), and selection chooses from among these shapes,
as occurs with the selection of relative tooth size in
hominins according to the inhibitory cascade [36].

Mechanism and generality of power cascade
The log-log linear pattern of the power cascade can be
compared with allometric plots of the relative sizes of
body components during growth [20], such as head size
versus body size in humans. A linear allometric relation-
ship is produced when two components grow exponen-
tially at different rates. The power cascade relationship
shows that there is an allometric relationship within the
same structure due to differential growth rates of Radius
and Distance.
We can demonstrate this growth process by examining

power function growth in Distance and Radius over time
(Fig. 8a): Distance ∝ TimerD and Radius ∝ TimerR, where
rD and rR are the growth rates for Distance and Radius,
respectively. Power function growth is very common in
biology, including for human height [48] and elephant
tusks (Fig. 4b). When both axes of the growth over time
curves are logged, the plot log(Distance) vs log(Time) is
linear with slope rD (similarly for Radius and rR; Fig.
8b). By solving the log(Distance) equation for log(Time)
and substituting into the log(Radius) equation, the

relationship between log(Distance) and log(Radius)
through time becomes apparent (Fig. 8c). If rD and rR
are equal, then Radius increases linearly with Distance
(Fig. 8d) and produces a conical shape (with Log
Distance-Radius power cascade Slope of 1). If instead the
rates of growth of Distance and Radius differ (e.g. rD =
2rR), then the log-log growth over time trajectories will
not be parallel (Fig. 8e-f), and the result will be a power
cone such as a paraboloid (Fig. 8h). The Log Distance-
Radius power cascade Slope of such a structure will be
rR/rD = 0.5 (Fig. 8g).
Therefore, the power cascade is an expression of al-

lometry as a shape: power cones show unequal power
growth within the same structure, or ‘constant differen-
tial growth-ratios’ in the terminology of Huxley [20].
The cone is produced through isometric growth between
Distance and Radius, while a power cone results from
allometric growth (rD ≠ rR). The same shapes can also
be generated through exponential (as opposed to power)
growth of body parts, although this is not commonly
found in organisms. Constant differential growth of the
two sides of a structure must generate a logarithmic
spiral ([20]; Fig. 1b). In the same manner, differential
power growth of Distance and Radius must generate a
power cone (Fig. 1c). Both mechanisms could operate at
the same time, forming a power cone on a logarithmic
spiral, or a power spiral (Fig. 1d).
The power cascade, and likewise the logarithmic spiral,

can be seen as ‘dynamical patterning modules’ [49] that
generate patterns and structures in metazoans and
plants. Despite over three centuries of research [19], the
specific molecules driving logarithmic spiral growth are
not known (although recent work has begun to reveal
some components in gastropod shells [50]). Likewise,
the identity of signalling molecules and genes that influ-
ence the differential growth of the power cascade very
likely must vary widely across animals and plants. Here
we show that common growth patterns in animals and
plants generate power cones. These shapes may be con-
sidered the default family of shapes for pointed struc-
tures, meaning they are more likely to independently
evolve multiple times and will be a likely source of ho-
moplasy in evolution.

Conclusions
Since the time of Wren [19], the logarithmic spiral has
been considered a fundamental pattern of biological
growth, generated by differential growth rates [20]. The
power cascade directs the shape of an immense range of
structures and likely is as widespread and elementary as
the logarithmic spiral in nature. Due to the huge breadth
of structures and taxa in which this pattern is found, it
appears that the power cascade is a fundamental pattern
of growth in myriad organisms [6, 51].
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Materials and methods
Specimens and 3D scanning
Specimens scanned for this study were sourced from the
following institutions or private collections: Museums
Victoria, Melbourne, Australia (NMV); Monash Univer-
sity Zoology Research Collection, Melbourne, Australia
(MZRC); Australian Museum, Sydney, Australia (AM);
American Museum of Natural History, New York, NY,
USA (AMNH); Evans EvoMorph Collection, Monash
University, Melbourne, Australia (EEM); Natural History
Museum of Los Angeles County, Los Angeles, CA, USA
(LACM); Natural History Museum UK, London, UK
(NHMUK); John Canning, Victoria, Australia (JC); Mon-
ash University Integrated Morphology and Palaeontology
Laboratory, Melbourne, Australia (MU-IMP); South
Australian Museum, Adelaide, Australia (SAMA); Judith

Pollock, Melbourne, Australia (JFP); Tasmanian Mu-
seum and Art Gallery, Hobart, Australia (TMAG). 3D
surface models of teeth were generated using microCT
(Zeiss Xradia 520 Versa XRM, Monash University
XMFIG X-ray Microscopy Facility for Imaging Geomate-
rials; Skyscan 1174, Monash University), medical CT
(Siemens, Monash Biomedical Imaging), or 3D surface
scanning (Laser Design Surveyor 2025; Artec Space
Spider). Scans of specimens from the following museums
were obtained from researchers or online databases such
as MorphoSource and Aves3D: Alabama Museum of
Natural History, Tuscaloosa, AL, USA (ALMNH); Dit-
song National Museum of Natural History, Pretoria,
South Africa (DNMNH); Kronosaurus Korner, Rich-
mond, Queensland, Australia (KK); Museum für Natur-
kunde, Berlin, Germany (ZMB); Museum of

Fig. 8 Generation of power cones through allometric growth of Distance and Radius. From power function growth of both Distance and Radius
(with growth rates rD and rR, respectively) through time (a, b, e, f), the shape of the structure is determined by the ratio of the growth rates (c,
g). Where rD = rR, a cone is formed (d), while where rD > rR, a curved-sided power cone is generated (h). The general equations are shown on
the left, while example parameters are shown in the graphs and accompanying equations. See Additional file 1: Supplementary Equations for
mathematical derivation
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Comparative Zoology, Harvard, MA, USA (MCZ); Nat-
ural History Museum, London, UK (NHMUK); Ohio
University Vertebrate Collection, Athens, Ohio, USA
(OUVC); Royal Ontario Museum, Ontario, Canada
(ROM); Smithsonian Institution, Washington, D.C., USA
(USNM); Stony Brook University, NY, USA (SBU); Uni-
versity of Leipzig Anatomical Collection, Leipzig,
Germany (ULAC); University of Washington Burke Mu-
seum, Seattle, USA (UWBM); Yale Peabody Museum,
Newhaven, CT, USA (YPM). A total of 200 teeth/cusps
from 120 specimens were examined, and 46 specimens
for non-tooth structures (see Additional file 1: Tables
S1-S5 for sample sizes). CT data were thresholded and/
or segmented in Avizo v. 9.6 (Thermo Scientific, Wal-
tham, MA, USA). Surface files were processed in Geo-
magic Wrap v. 2015 (3D Systems, Rock Hill, SC, USA).
The dataset includes all structures that were measured
and considered sufficiently complete (essentially unworn
and not broken), and no measured structures were ex-
cluded from the study for any other reason. We strove
to include as wide a taxonomic range as possible, such
as teeth from all orders of vertebrates, and from as many
families of mammals as possible. Where permitted by in-
stitutions/individuals, 3D models are available at [52] on
MorphoSource (https://www.morphosource.org/).

Power cascade shape analysis
For each 3D surface model of a tooth, we estimated a
3D midline through the centre of the tooth from tip to
base. First, the midline was approximated by eye in
Rhinoceros 3D v. 5.0 or 6.0 (Robert McNeel & Associ-
ates, Seattle, WA, USA). At 10 equally spaced locations
along the estimated midline, test cross-sections through
the tooth surface were generated perpendicular to the
estimated midline. The centroid of each test cross-
section was calculated, and the final midline was fit as a
3D spline running through these centroids. To measure
the rate of radius increase, we placed 10 equally spaced
cross-sections perpendicular to its midline (Fig. 2a) and
calculated the average radius of each cross-section (Ra-
dius = √ [cross-sectional area/π]) using Rhinoceros 3D.
Cross-sectional area includes all area interior to the ex-
ternal surface of the tooth, including pulp cavity. The
use of tooth cross-sectional area perpendicular to the
midline essentially removes the effect of the spiral (loga-
rithmic or otherwise) so that our measurements concen-
trate on the rate of expansion of the radius of the tooth,
not the trajectory of the midline in 3D space. All meas-
urement data are included in Additional file 2: Data S1.
Circumferential measurements of elephant and mam-
moth tusks were obtained from the literature [28, 53]
and transformed to radius (Radius = [circumference/
(2π)]). We then plotted log10 Distance from tip vs log10
Radius. An ordinary least squares (OLS) linear model

was fit to each log Distance vs log Radius plot, with the
R2 of the regression indicating goodness of fit to the pre-
dicted linear power cascade pattern using R Statistical
Computing v. 3.5.0 [54] and RStudio v. 1.1.447. Tooth
development simulations were generated using the
ToothMaker model [40, 41], and parameters and meas-
urement data are in Additional file 3: Data S2. Non-
tooth structures were scanned and measured in an
analogous manner to teeth, and the measurement data
are in Additional file 4: Data S3. The power cascade
model was implemented with a logarithmic spiral
growth pattern (forming a power spiral) in Mathematica
v. 12.0 (Wolfram Research Inc., Champaign, IL), incorp-
orating various cross-sectional shapes (circle, ellipse,
lens, truncated circle)—see Fig. 7, Additional file 1: Sup-
plementary Equations and Figure S10.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12915-021-00990-w.

Additional file 1: Figure S1. Vertebrate teeth show power cascade
growth. Figure S2. Power cascade shapes are characterized as surfaces
of revolution for power functions, with variables Slope, Intercept and
MaxDistance. Figure S3. Alternative sampling intervals along an elephant
Loxodonta africana NMV C30765 tusk. Figure S4. Two ways in which
tooth can deviate from linear power cascade: tip offset and missing tip.
Figure S5. Power cascade shapes are self-similar curves. Figure S6. In
silico tooth development models do not produce cusps that closely ap-
proximate power cascade found in natural teeth. Figure S7. Logarithmic
spiral, shell model, power cascade model and power spiral model. Figure
S8. Pointed structures in vertebrates, invertebrates and plants show
power cascade growth. Figure S9. Prickle growth in roses causes devi-
ation from power cascade growth. Figure S10. Power cascade interface
implemented in Mathematica for generating biological shapes using
power cascade and logarithmic spiral. Figure S11. Graphical abstract –
Power cascade combined with the logarithmic spiral can generate many
biological shapes. Table S1. Number of species, specimens and struc-
tures in each class for all structures (teeth and non-teeth) measured in
this study. Table S2. Number of species, specimens and teeth/cusps in
each class for all teeth measured in this study. Table S3. Number of spe-
cies, specimens and teeth/cusps in each mammalian order for all teeth
measured in this study. Table S4. Number of species, specimens and
non-tooth structures in each class for all non-tooth structures measured
in this study. Table S5. Number of species, specimens and structures for
each type of structure measured in this study. Supplementary Discus-
sion. Resampling of power cascade variables. Effect of tip offset on
power cascade linear pattern. Supplementary Equations. Derivation of
power cascade growth mechanism. Mathematica implementation of
power cascade model.

Additional file 2: Data S1. Distance and cross-sectional area data for
vertebrate teeth, cusps and tooth rows. Taxonomy, specimen number, in-
stitution, tooth type/position and measurements of cross-sectional area
for 10 distances from tip of tooth.

Additional file 3: Data S2. Distance and cross-sectional area data for
developmental simulations of seal teeth from model by Savriama et al.
[41]. Model parameters and measurements of cross-sectional area for 10
distances from tip of tooth. Starting from the ringed seal model of Sav-
riama et al. [41], parameters were increased and decreased to show the
effect of each parameter on tooth shape. The central cusp on each
model was measured for the power cascade. Parameters: Act, activator;
Boy, buoyancy; Deg, degradation of activator; Egr, epithelial growth; Inh,
inhibitor.
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Additional file 4: Data S3. Distance and cross-sectional area data for
non-tooth structures: antlers, beaks, chelicera, claws, hooves, horns,
prickles, shells, spine and thorn. Taxonomy, specimen number, institution,
structure type and measurements of cross-sectional area for 10 distances
from tip of structure.
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