
SUPPLEMENTARY MATERIALS

THE BOX COVERING METHOD

Since the box covering method is central to the understanding of the scale-invariant

properties of networks, we describe it in more detail here. Figure 1a shows the same network

as in Fig. 1a in the manuscript for the case `B = 2. We tile the system by first assigning

nodes 1 and 2 to the box colored in blue. Notice that the maximum distance between the

nodes of a given box is `B − 1. Thus, node 8 would not be in the blue box since its distance

from node 2 is ` = 2 (even though its distance from 1 is ` = 1). Then we cover the nodes 6

and 7 with the orange box, and the nodes 3, 4, and 5 with the red box. Finally, the last node

8 is assigned to the green box. The number of boxes to cover the network is then NB = 4.

The renormalization is then applied by replacing each box by a single node. Thus, nodes

1 and 2 will be combined into a single node as indicated by the arrow from the first panel

to the second panel in Fig. 1a. This renormalized node is connected with the orange and

green boxes because there is a link between nodes 2 and 7, and 1 and 8, respectively. The

same rule applies to the other boxes. The renormalized network is shown in the second

panel. The system is then tiled again with boxes; in this case two boxes (blue and red) are

needed to cover the entire network. The two boxes are then replaced by nodes and a second

renormalized network is obtained as shown in the third panel. Finally, the last two nodes

belong to the same (red) box and are replaced by a single node.

This procedure is applied to the WWW in Fig. 1b in the manuscript. The main panel

corresponds to the first stage in the renormalization of the web for `B = 3. The procedure is

applied again obtaining the remaining panels in Fig. 1b in the manuscript until the web is

reduced to a single box in the last panel. The colors of the nodes corresponds to the boxes

to which they belong.

Figure 2d in the manuscript shows the invariance of the degree distribution P (k) under the

renormalization performed as a function of the box size in the WWW. The other networks

analyzed in this study present the same invariant property. It is important to mention that

the networks are also invariant under multiple renormalizations applied for a fixed box size

`B. This corresponds, for instance, to the stages depicted in Fig. 1a in the manuscript in the
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FIG. 1: Details of the box covering method for a, `B = 2. b, A different covering for the same

network as in (a) for `B = 2. Different coverings give raise to the same exponents as explained in

the text.

FIG. 2: Invariance of the degree distribution of the WWW under multiple renormalizations done

at fixed `B = 3. The stages 1, 2, and 3 correspond to the networks depicted in the first three stages

in Fig. 1b in the manuscript.

second row for `B = 3 for the network demo. Figure 2 shows the invariance of P (k) for the

WWW after several stages of the renormalization for a fixed `B = 3, and it is the analogous

of Fig. 2d in the manuscript for different box size. The stages 1, 2, and 3 correspond to the

networks depicted in the first 3 stages in Fig. 1b in the manuscript.

From the above explanation it should be clear that there are many ways to tile the

network. For instance in Fig. 1b we show another tiling. In this case we assign nodes 4
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and 7 together in a single box instead of nodes 6 and 7 as in Fig. 1a. This tiling results in

an extra box needed to cover node 6 and therefore in a larger number of nodes to tile the

system, NB = 5.

While there are many ways to assign nodes to the boxes, we notice that the rigorous

mathematical definition of Eq. (3) corresponds to the minimum number of boxes needed to

cover the network. This minimization does not have any consequence for the determination

of the fractal dimension in homogeneous clusters. However, it may become relevant when

calculating the self-similar exponent of a complex network with a widely distributed number

of links. Finding the minimum number of boxes to cover the network is a hard optimization

problem to solve, analogous to the graph coloring problem in the NP-complete complexity

class. This minimization problem has to be solved by an exhaustive numerical search since

there is no numerical algorithm to solve this kind of problems.

We have performed the search over a limited part of the phase-space for the WWW to

obtain an estimation of the average and the minimum number of boxes needed to tile the

network for every value of `B. We find that the average value of the boxes is very close to

the estimated minimum number of boxes. Moreover, we find that the minimization is not

relevant and any covering gives rise to the same exponent.

SCALE-FREE TREE STRUCTURE

The underlying meaning of the existence of scale-free networks which are self-similar is

yet to be deciphered, but some insight can be gained by examining the simplest structure

of a known network of that kind: a tree network which has been characterized using field

theoretical arguments and fractal dimensions in [1].

The sequence of renormalization steps depicted in Fig. 1 in the manuscript suggests the

following scheme: one begins with a single node and then constructs the network by applying

the renormalization procedure in a reversed fashion. This can be achieved by following the

procedure in Fig. 1a in the manuscript for a specific value of `B.

More specifically, a single node with a large number of links is first connected to the

next generation of nodes. For every node we assign a number of links from a power-law

distribution with a given γ. The next layer of the tree is generated in the same way. A tree

structure with a power-law degree distribution and self-similar topology emerges which is
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FIG. 3: The scale-free tree structure and the random scale-free model. a, Example of a scale-

free tree structure. Nodes with a power-law degree distribution are connected in a tree structure

without loops. b, The log-log plot of NB vs `B reveals a self-similar structure for the scale-free

tree (upper panel) while s(`B) scales as in Eq. (9) (lower panel). In contrast the random scale-free

network where nodes (with a power-law distribution of links) are connected at random shows a

lack of self-similarity expressed in the exponential decrease with `B in the upper panel.

depicted in Fig. 3a.

This is corroborated numerically in Fig. 3b where we study a scale-free tree structure

with 192,827 nodes and λ = 2.3, and we find dB = 3.4 and dk = 2.5. The parallels between

the features of such a simple structured network and those discussed in this paper suggest

that this simplified view may lie at the core of more complex self-similar networks.

Moreover, we also calculate the average mass of the boxes and the mass of the clusters

in the box covering method and the cluster covering method, respectively, and we find the

power law of Eq. (5) and the exponential behaviour of Eq. (6) (see Fig. 4a) in agreement

with the results of the real networks analyzed in the main manuscript, Fig. 3a. Figure 4b

shows the probability distribution of MB (power-law) and Mc (log-normal) in agreement

with previous results as well, Fig. 3b in the manuscript.
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FIG. 4: Results for the scale-free tree model. a, Mean value of the box mass in the box counting,

〈MB〉, and mean value of the cluster mass in the cluster growing method, 〈Mc〉 versus `B . b,

Probability distribution of MB and Mc for `B = 5. The results are in agreement with the finding

of real networks in Fig. 3 in the manuscript. A power-law distribution is found for MB while a

log-normal distribution is found for Mc as shown by the fits.

INTERNET

It is interesting to note that not all complex networks show the clear self-similarity of

the networks presented so far. We analyze the Internet composed of computers and routers

linked by physical lines such as the database collected by the SCAN project (the “Mbone”,

www.isi.edu/scan/scan.html, we also analyze the database of the Internet Mapping Project

[2] and found similar results). Figure 5 shows the result of NB(`B). We fit the curve with a

modified power-law

NB(`B) ∼ (`B + `c)
−dB , (1)

with `c = 14.9 representing a cut-off and dB = 8.5, suggesting a large self-similar exponent.

The decay of NB with `B is faster than a power-law and slower than exponential as shown

in the inset of Fig. 5.

Thus these networks lack the clear self-similar structure found for the WWW, actors and

the biological networks. However, we find that the distribution of P (MB) remains a power

law and the degree distribution P (k) is invariant under the renormalization suggesting that

some self-similar properties might still be valid for the Internet. We notice that Internet

maps are made by programs that use the IP protocol to trace the connections between each
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FIG. 5: Internet. Log-log plot of NB(`B). The solid line represents the modified power law fit, Eq.

(1). The inset shows a linear-log plot indicating that the decay is slower than exponential.

registered node in the Internet. These maps are incomplete since they map a few routers

from each domain and also due to the existence of firewalls. Thus, the apparent lack of

self-similarity might be due to incomplete information of the network.

PROTEIN-PROTEIN INTERACTION NETWORKS

We also analyze the protein interaction networks of the fruit fly D. melanogaster as given

in [3], the bacterium H. pylori [4], the baker’s yeast S. cerevisiae [5], and the nematode

worm C. elegans [6], which are all available via the DIP database [7]. Figure 6 shows the

results of NB versus `B indicating that their behaviour is in between a pure power-law decay

and a pure exponential. As with the Internet data, we are able to fit the results with Eq.

(1) with `c = 7.2 and dB = 7.6 for C. elegans. For H. pylori and D. melanogaster the

fit is a pure exponential NB(`B) ∼ exp(−`B/`e) with `e ≈ 1, while for S. cerevisiae the

data could be fitted either by an exponential or by large values of `c and dB (note that the

exponential is the limit of Eq. (1) for `c → ∞, dB → ∞ and `c/dB = constant). On the

other hand, we observe that for small scales, NB seems to display the same power law found

for E. coli and H. sapiens. The lack of clear self-similarity in these networks might be due
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FIG. 6: Scaling for the protein-protein interaction networks. Log-log plot of NB versus `B for

different protein-protein interaction networks. While E. coli and H. sapiens show a clear power law

behavior, the other protein networks show a modified power-law behaviour or a pure exponential

decay. The inset shows a linear-log plot of NB(`B).

to the incompleteness of these databases which are continuously being updated with newly

discovered physical interactions [8].

RANDOM SCALE-FREE NETWORK

Next we introduce an example of a model lacking self-similarity: the random scale-free

model. This model consists of nodes to which a number of links are assigned with a power-

law degree distribution and then connected randomly. Such a network shows a small world

effect and a scale-free property but is not self-similar. We numerically find that the number

of boxes decays exponentially with the box size (see Fig. 3b). Moreover, while Eq. (8) is

still valid in this case, the power law relation in Eq. (9) is replaced by an exponential law.

We conjecture that the reason for this is a clustering of hubs; by assigning randomly the

connections between the nodes, two nodes with a large number of links will have a large

probability to be connected. This induces spatial correlations in the values of k which may
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FIG. 7: Barabási-Albert model of scale-free networks with preferential attachment for 150,000

nodes and m = m0 = 3 and m = m0 = 5. m0 is the initial number of nodes in the system and m

is the number of links of a newly created node in the dynamical growth of the network [9]. Log-log

plot of NB versus `B showing the lack of a power law behaviour. The inset shows a linear-log plot

indicating that NB decreases faster than exponential with `B.

explain the breakdown of self-similarity. In contrast, the simple tree-structure proposed

above does not cluster the hubs by construction. A summary of our results is presented in

Table I.

THE BARABÁSI-ALBERT MODEL AND THE ERDÖS-RÉNYI RANDOM

GRAPH AT CRITICALITY

We also analyzed the Barabási-Albert model of complex networks [9] (which introduces

the concepts of preferential attachment to describe the dynamics of scale-free networks).

The results of NB(`B) are shown in Fig. 7 for different parameters in the model (see [9]

for details) reveling that the structure is not self-similar; NB seems to decrease faster than

exponential with `B.

It is interesting to compare our results with the random Erdös-Rényi graph [10, 11] at

the critical percolation threshold. In this case the largest cluster has self-similar properties
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FIG. 8: Erdös-Rényi random graph at criticality. Log-log plot of NB versus `B showing the self-

similar exponent dB = 2 which is obtained for large distances.

and Eq. (5), 〈MB(`B)〉 ∼ `dB

B , is valid with dB = 2 [12]. We corroborate this result in Fig. 8

showing the scaling of the number of boxes NB with the box size `B. However, for this case

the network is not small-world since Eq. (6) is not valid— as well as Eq. (1)— but rather

the mean distance ¯̀ scales as 〈Mc〉
1/2, i.e., a power-law relation rather than the logarithmic

relation characteristic of small world networks.

9



Network dB dk 1 + dB/dk γ

Eq. (10) Eq. (2)

WWW 4.1 2.5 2.6 2.6

Actor 6.3 5.3 2.2 2.2

E. coli (PIN) 2.3 2.1 2.1 2.2

H. sapiens (PIN) 2.3 2.2 2.0 2.1

43 cellular networks 3.5 3.2 2.1 2.2

Scale-free tree 3.4 2.5 2.4 2.3

TABLE I: Summary of the exponents obtained for the scale-invariant networks studied in the

manuscript.
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CELLULAR NETWORKS

The WIT database [13] (http://igweb.integratedgenomics.com/IGwit) of cellular net-

works considers the cellular functions divided according to bioengineering principles contain-

ing datasets for intermediate metabolism and bioenergetics (core metabolism), information

pathways, electron transport, and transmembrane transport. The metabolic network is a

subset of all reactions that take place in the cell. Since this is the largest part of the network

we analyze it separately and compare it with the full biochemical reaction network. The

data presented in Fig. 2c in the main manuscript represents the full biochemical reaction

networks of only three substrates. Here we present results of the 43 different substrates

represented in the database for the metabolic and full networks. The following figures show

the results of NB vs `B. Both the metabolic and full networks display the power law re-

lationship of self-similar networks with the same exponent (within error bars) for all the

organisms considered (the metabolic networks show a finite size effect due to their smaller

size). We find an average dB = 3.5. The solid line in the figures represent the average fit.

The values are reported in Table I.

Aquifex aeolicus
Actinobacillus

actinomycetemcomitans
Archaeoglobus fulgidus

Aeropyrum pernix Arabidopsis thaliana Borrelia burgdorferi
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Bacillus subtilis Clostridium acetobutylicum Caenorhabditis elegans

Campylobacter jejuni Chlorobium tepidum Chlamydia pneumoniae

Chlamydia trachomatis Synechocystis sp. Deinococcus radiodurans

Escherichia coli Enterococcus faecalis Emericella nidulans
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Haemophilus influenzae Helicobacter pylori Mycobacterium bovis

Mycoplasma genitalium Methanococcus jannaschii Mycobacterium leprae

Mycoplasma pneumoniae Mycobacterium tuberculosis Neisseria gonorrhoeae

Neisseria meningitidis Oryza sativa Pseudomonas aeruginosa
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Pyrococcus furiosus Porphyromonas gingivalis Pyrococcus horikoshii

Streptococcus pneumoniae Rhodobacter capsulatus Rickettsia prowazekii

Saccharomyces cerevisiae Streptococcus pyogenes
Methanobacterium

thermoautotrophicum

Thermotoga maritima Treponema pallidum Salmonella typhi
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Yersinia pestis
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