
Supplementary Note 1

Interpretations Dependent on Model Assumptions Network controllability differs significantly
from the static graph theoretical approaches that are increasingly used in studies of human brain
connectivity. Network controllability models brain dynamics based on two features: (i) a struc-
tural connectivity matrix and (ii) an equation of state defining the dynamics that occur on top
of that structure. The theoretical predictions of network controllability diagnostics are therefore
dependent on the accuracy of these two features. Here we utilize state-of-the art DSI imaging tech-
niques 1 and tractography reconstruction algorithms 2 to estimate white matter streamlines from the
medial to lateral surfaces, and to distinguish their crossings 3. An underlying assumption of this
approach is that the number of streamlines is proportional to the strength of structural connectivity;
this assumption has important exceptions but is most reasonable for cortico-cortical control, which
is the primary area of investigation here (see SI for results from alternative weighting schemes).
The equation of state that we utilize is based on extensive prior work demonstrating its utility in
predicting resting state functional connectivity 4 and in providing similar brain dynamics to more
complicated models 5. Nevertheless, this model is simple, and our interpretations are dependent
on its assumptions.

Considerations in the Use of Linear Models to Probe Nonlinear Neural Dynamics Controlling
neural dynamics is a complex problem for many reasons. These include the facts that (i) neural
systems exhibit nonlinear and stochastic dynamics, and (ii) neural systems arise from the intricate
interconnection of a large number of components. Because the above two aspects of complexity
are rather independent, in our work we focus on the complexity due to the interconnection structure
of neural systems, and focus on linear dynamics only. This assumption of linear dynamics is com-
monly accepted in the study of network systems, and particularly when a graph-theoretic interpre-
tation of certain dynamical properties is preferred; e.g., see 6–11. Using this approach, we are able
to identify important relationships between the interconnection structure (estimated from white
matter tractography) and the evolution of neural dynamics at the level of the activity of large-scale
brain regions from a control-theoretic perspective. These results are consistent with prior work
providing evidence that the large-scale structural connectivity of neural systems is tightly tied to
its dynamics as measured by fMRI 4, 12. In addition, these results are consistent with prior work
providing evidence that structural connectivity is tightly tied to the brain’s functionality as mea-
sured by cognitive scores and behavior: for example, properties of structural connectivity provide
a prediction of intelligence 13, an understanding of cognitive disfunction in disease 14, 15, a putative
mechanism for Alzheimer’s disease and fronto-temporal dementia 16, a correlate of inattention and
hyperactivity in adolescent boys 17, a prediction of resting-state function 4, 18, 19, a genetic basis of
memory deficits in Alzheimer’s disease 20, and an understanding of working memory development
in infants 21.

Role of Directionality in Brain Network Controllability The linear model of brain dynamics
provided in Equation 1 in the main manuscript requires the definition of an adjacency matrix sum-
marizing the structural connectivity between network nodes. We utilize a symmetric, undirected
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adjacency matrix extracted from state-of-the-art diffusion spectrum imaging, a modality which
does not establish directional flow between brain regions. Based on prior evidence from tract trac-
ing studies in the macaque monkey 22, it is possible that white matter connections contain some
unidirectional connections, in which either (i) region A projects to region B but region B does not
project to region A, or (ii) region A projects to region B with a different strength than region B
projects to region A. In the seminal work by Felleman and Van Essen (1991), it was estimated that
unidirectional connections make up approximately 4% of the total number of connections. Thus,
even in the case of structural connectivity in macaque monkeys, models which assume bidirection-
ality are arguably accurate to first order. In the case of the human, we do not have tract tracing
data and instead rely on recent advances in diffusion imaging tractography which does not estab-
lish directionality, and therefore leads to a symmetric adjacency matrix. Nevertheless, should an
imaging technique become available that would provide directional information between regions
of interest, this information could be incorporated into the adjacency matrix used in Equation 1.
Based on work in other control domains 23, the incorporation of directed structural connections
may provide additional insight into control strategies available to or utilized by the human brain.

Implications of Weak Global Controllability The smallest eigenvalues of the controllability
Gramian provide a mathematical measurement of how easy or difficult it is to move the system
into any state, but do not provide any measurement of how easy or difficult it is to move the sys-
tem into a specific state. It is possible for a system to be easy to move to the set of X states, but
impossible to move to the set of Y states, and in this case the system would display some small
eigenvalues (in fact of zero magnitude) of the controllability Gramian indicating that the system
is difficult to control. The fact that there are states in which the human brain can move with ease
(e.g., wakefulness, sleep, anesthesia, multiple task states, etc.) is fully consistent with low global
controllability, and instead suggests that there are certain transitions between states that the brain
has been optimized to perform with ease, potentially at the cost of making other transitions more
difficult or impossible.

Supplementary Methods

Controllability of Network Systems Consider a network represented by the directed graph G =
(V , E), where V and E are the vertex and edge sets, respectively. Let aij be the weight associated
with the edge (i, j) ∈ E , and define the weighted adjacency matrix of G asA = [aij], where aij = 0
whenever (i, j) 6∈ E . We associate a real value (state) with each node, collect the nodes states into
a vector (network state), and define the map x : N≥0 → Rn to describe the evolution (network
dynamics) of the network state over time. In particular, the network dynamics are described by the
discrete time, linear, and time-invariant recursion

x(t+ 1) = Ax(t). (1)

Let a subset of nodes K = {k1, . . . , km} be independently controlled, and let

BK :=
[
ek1 · · · ekm

]
(2)
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be the input matrix, where ei denotes the i-th canonical vector of dimension n. The network with
control nodes K reads as

x(t+ 1) = Ax(t) +BKuK(t), (3)

where uK : N≥0 → R is the control signal injected into the network via the nodes K. The network
(3) is controllable in T steps by the nodes K if, for every state xf, there exists a control input uK
such that x(T ) = xf with x(0) = 0 24. Controllability of dynamical systems can be ensured by
different structural conditions 24, 25. For instance, let CK,T be the controllability matrix defined as

CK,T :=
[
BK ABK · · · AT−1BK

]
.

The network (3) is controllable in T steps by the nodes K if and only if CK,T is of full row rank. A
different condition for controllability with an infinite number of steps is presented in the main text.

In our context, the network (3) describes the evolution of a neural process of interest, where
the network matrix A is constructed from diffusion spectrum imaging data, the state x contains
the status of the brain regions throughout the process, and the control input uK corresponds to
the stimulations of the controlled regions K. Our objective is to quantify the possibility and the
difficulty to control the neural process between different states via external stimulation, and to
identify the brain regions that are primarily involved in the control task.

Continuous and Discrete-Time Controllability Our controllability analysis can be applied to
both continuous-time and discrete-time systems. In this paper, we opted for a discrete-time repre-
sentation to emphasize the tight relationship and dependency between the interconnection structure
and the system dynamics. But more generally, we believe that continuous-time and discrete-time
representations are equally valid and applicable. In fact, we expect to obtain equivalent results
for a continuous-time description such as ẋ = Lx + Bu, with L = A − I , and A our (normal-
ized) adjacency matrix. In this case, L is a weighted Laplacian matrix. To test the validity of this
expectation, we use the MATLAB function lyap to compute the controllability Gramian of sta-
ble continuous-time systems. We observe that the controllability Gramian of the continuous-time
system is significantly correlated with the controllability Gramian of the discrete-time system, as
measured by a Pearson correlation coefficient between the elements of the two matrices. The av-
erage Pearson correlation between continuous-time and discrete-time controllability Gramians is
r = 0.99 (STD over subjects and scans 0.0015). These results indicate that we obtain equivalent
results for continuous-time and discrete-time representations.

Correlation Between Degree and Average Controllability In the main manuscript, we describe
a strong correlation between node degree and average controllability for the networks that we
study. Here we provide a possible explanation for this effect. Due to the property Trace(ABC) =
Trace(BCA), the average controllability with a single control node j equals the j-th diagonal
elements of (I−A2)−1. Since A is stable, a first order approximation yields

(I−A2)−1 ≈ I + A2, (4)
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and the j-th diagonal element of (I − A2)−1 is 1 +
∑N

i=1A
2
ij . Since the degree of the j-th node

equals dj =
∑N

i=1Aij , a positive correlation between node degree and average controllability is
mathematically expected in the networks that we study here.

Lower Bound on the Largest Eigenvalue of the Controllability Gramian In the main manuscript,
we show that the smallest eigenvalue of the controllability Gramian is in fact much smaller than its
largest counterpart. In fact, the largest eigenvalue of the controllability Gramian is lower bounded
by 1. To see this, notice that

λmax(WK) = λmax

(
∞∑
τ=0

AτBKB
T
KA

τ

)
≥ λmax

(
0∑

τ=0

AτBKB
T
KA

τ

)
= λmax(BKB

T
K) = 1, (5)

where the inequality follows from the fact that AτBKB
T
KA

τ is positive semi-definite for all τ .

Additional Details for Control Methods Let the network be controllable in T steps, and let xf
be the desired final state in time T , with ||xf ||2 = 1. Define the energy of the control input uK as

E(uK, T ) = ||uK||22,T =
T∑
τ=0

||uK(τ)||22, (6)

where T is the control horizon. The unique control input that steers the network state from x(0) = 0
to x(T ) = xf with minimum is 26

u∗K(t) = BT
K(AT )T−t−1W−1K,Txf (7)

with t ∈ {0, . . . , T − 1}. Then it can be seen that

E(uK∗ , T ) =
T−1∑
τ=0

||u∗K(τ)||22 = xTfW−1K,Txf ≤ λ−1min(WK,T ), (8)

where equality is achieved whenever xf is an eigenvector of WK,T associated with λmin(WK,T ).
Because the control energy is limited in practical applications, controllable networks featuring
small Gramian eigenvalues cannot be steered to certain states.

Average Controllability Average controllability of a network – formally defined as Trace(W−1
K )

– equals the average input energy from a set of control nodes and over all possible target states
27, 28. Motivated by the relation Trace(W−1

K ) ≥ N2/Trace(WK), recent results in the control of
networked systems 29, and the fact that WK is close to singularity even for networks of small
cardinality (see paragraph “Global Controllability” in the manuscript). It should be noticed that
Trace(WK) encodes a well-defined control metric, namely the energy of the network impulse re-
sponse or, equivalently, the network H2 norm 24. Regions with high average controllability are
most influential in the control of network dynamics over all different target states.
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Modal Controllability The behavior of a dynamical system is fully determined by the eigenval-
ues (modes) and eigenvectors of its system matrix. Regarding controllability, the PBH test ensures
that a system with matrix A is controllable by an input matrix B if and only if all its modes are
controllable or, equivalently, if and only if there exists no left eigenvector of A orthogonal to the
columns of B 26. In particular, the ith mode is controllable by the matrix B if and only if wiB 6= 0,
where wi is a left eigenvector of A associated with its ith mode.

In our setting, because the network matrix A is symmetric and the input matrix B is a collec-
tion of canonical vectors, the PBH test implies that the ith mode of the networkA is not controllable
by the ith node if and only if the ith entry of the ith eigenvector is zero. Let V = [vij] be the ma-
trix of eigenvectors of A. By extension from the PBH test, if the entry vij is small, than the jth

mode is poorly controllable by node i. Following 30, we define φi =
∑N

j=1(1 − λ2j(A))v2ij as a
scaled measure of the controllability of all N modes λ1(A), . . . , λN(A) from the brain region i.
Regions with high modal controllability are able to control all the dynamic modes of the network,
and hence to drive the dynamics towards hard-to-reach configurations. We note that our method to
find influential “modal control” nodes is exact (non-heuristic) with respect to our definition 23.

Boundary Controllability In the main manuscript, we briefly describe our method for detecting
boundary control points. This method is largely based on the algorithm proposed in 30. However,
for the application to brain networks derived from diffusion tractography, we have made two im-
portant modifications to more accurately estimate the initial partition and constrain the boundary
point criteria as described in detail below.

Initial Partition The first modification concerns the definitions of the first level subnetworks
for which we compute a two-partition based on the Fiedler eigenvector. In initial work, Pasqualetti
et al. 30 suggest computing the Fiedler eigenvector of the adjacency matrix to create first level
subnetworks defined by a two-partition. In contrast, we define this first level of subnetworks as
composed of network communities, identified by maximizing the modularity quality function 31

using a Louvain-like 32 locally greedy algorithm 33. Our choice is based on extensive recent litera-
ture demonstrating that the brain is composed of many subnetworks (not just 2) 34, 35, which can be
extracted using modularity maximization approaches 36–38, and which correspond to sets of brain
areas performing related functions 37, 39.

The modularity quality function provides an estimate of the quality of a hard partition of the
N × N adjacency matrix A into network communities (whereby each brain region is assigned to
exactly one network community) 31, 40–43

Q0 =
∑
ij

[Aij − γPij]δ(gi, gj) , (9)

where brain region i is assigned to community gi, brain region j is assigned to community gj ,
δ(gi, gj) = 1 if gi = gj and it equals 0 otherwise, γ is a structural resolution parameter, and Pij
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is the expected weight of the edge connecting node i and node j under a specified null model.
Maximization of Q0 yields a hard partition of a network into communities such that the total edge
weight inside of communities is as large as possible (relative to the null model and subject to the
limitations of the employed computational heuristics, as optimizing Q0 is NP-hard 42–44).

Because the modularity quality function has many near-degeneracies, it is important to per-
form the optimization algorithm multiple times 45. We perform 100 optimizations of the Louvain-
like locally greedy algorithm 33 for each adjacency matrix corresponding to a single scan. To dis-
till a single representative partition, we create a consensus partition from these 100 optimizations
based on statistical comparison to an appropriate null model 35.

In a final consideration, we choose a value for the structural resolution parameter γ. The
choice γ = 1 is very common, but it is important to consider multiple values of γ to examine
community structure at multiple scales 42, 46, 47. Indeed, recent work has demonstrated that in some
networks, a structural resolution parameter value that accurately captures the underlying commu-
nity structure can be identified by the γ value at which the 100 optimizations produce similar
partitions 35. To quantitatively estimate similarity in partitions, we adopt the z-score of the Rand
coefficient 48. For each pair of partitions α and β, we calculate the Rand z-score in terms of the
total number of pairs of nodes in the network M , the number of pairs Mα that are in the same
community in partition α, the number of pairs Mβ that are in the same community in partition β,
and the number of pairs of nodes wαβ that are assigned to the same community both in partition α
and in partition β. The z-score of the Rand coefficient comparing these two partitions is

zαβ =
1

σwαβ
wαβ −

MαMβ

M
, (10)

where σwαβ is the standard deviation of wαβ . Let the mean partition similarity denote the mean
value of zαβ over all possible partition pairs for α 6= β. Let the variance of the partition similarity
denote the variance of zαβ over all possible partition pairs for α 6= β.

Empirically, we calculated a group adjacency matrix by averaging the adjacency matrices of
all subjects and scans. We optimized the modularity quality function 100 times and we computed
the mean and variance of the partition similarity for a range of γ values and for all 5 spatial
resolutions. Across all atlases, we observed that the mean partition similarity was high and the
variance of the partition similarity was low for values of γ ranging between 1.5 and 2. For Scale
125 (the atlas for which we report results in the main manuscript), we observed a maximum mean
partition similarity and a minimum variance of partition similarity at γ = 1.6. We therefore chose
to set γ = 1.6 for the remainder of the analysis in this study.

Boundary Point Criteria The second modification concerns the definition of a boundary
point. After calculating the Fiedler eigenvector of a subnetwork to determine a partition of the
subnetwork into two communities, we must identify “boundary points”, which are nodes that con-
tain connections to both communities. In the original work by Pasqualetti and colleagues, it was
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Supplementary Figure 1: Partition Similarity As a Function of the Resolution Parameter Mean (left) and
variance (right) of the partition similarity estimated using the z-score of the Rand coefficient as a function
of the structural resolution parameter γ, varies from 0.5 to 2 in increments of 0.1, for the 5 spatial scales of
the Lausanne atlas 49 (rows).
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suggested that a boundary point was a node with any number of connections to both communities.
However, in weighted brain networks we suggest that a more stringent definition is more appropri-
ate for the following reason: practically all nodes in the brain have non-zero weighted connections
to both identified communities. Therefore, we instead set a threshold ratio ρ to identify boundary
points. Considering the adaptivity to the local measure, we set a threshold ratio ρ instead of a
global threshold value. In detail, for a network G = (V,E) with partition P = (V1, · · · , Vn), a
node i ∈ Vk is called a boundary node if∑

l 6=k

akl ≥ ρ ·max(A) (11)

where A is the adjacency matrix. Here, max(A) can be replaced with other statistics and ρ needs
to be chosen carefully. If ρ is too small, there will be no effect and the algorithm tends to add the
total subnetwork as the set of boundary points. If ρ is too large, there will be only a few points
recognized as the boundary points.

In the results described in the main manuscript, we set the threshold ratio to ρ = 0.2. To
determine whether our results are robust to this choice, we calculate boundary controllability values
across all regions in the Scale 125 atlas, for each scan using ρ values that vary between 0.15 and
0.25 in increments of 0.01. We then asked how similar regional control values were for different
choices of ρ. Specifically, for any pair of ρ values, we computed the Pearson correlation coefficient
between the vectors of regional control values for the two ρ values. We show the results of this
analysis in Fig. 2. We observe that the boundary control values are highly similar across choices
of ρ (minimum Pearson correlation approximately 0.68, corresponding to a p = 0, indicating that
our results are robust to small variation in the boundary point criteria threshold.

Final Algorithm Thus, the final algorithm used in the calculation of boundary controllabil-
ity in this paper can be summarized as follows. We begin with the application of a community
detection method to the brain network to extract a partition of brain regions into network commu-
nities. We then recursively apply a Fiedler bipartition to add boundary nodes within communities,
with the goal of improving the local controllability of the network. At each stage of the algorithm,
we define the boundary nodes of the network as the nodes that maintain edges to nodes in other
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Supplementary Figure 2: Effect of Boundary Point Criteria Threshold Color indicates Pearson correlation
coefficient, r, between the vectors of boundary controllability values estimated for pairs of ρ values in the
range 0.15− 0.25 in increments of 0.01.

communities. Algorithmically, we can write:

Algorithm 1: Algorithm for the Selection of Boundary Control Nodes
Data: Network G = (V,E) with adjacency matrix A = (aij), Number of control nodes

m, threshold ratio ρ;
Result: Control Nodes Index Set K;

1 Define an empty set of control nodes K = ∅;
2 Initialize the partition P with the result of a community detection algorithm and initialize

the boundary nodes set B = ∅;
3 Add the boundary points of the initial partition;
4 while |K| < m do
5 Select least controllable community l = arg min{λmin(Wi,∞), i = 1, ..., |P|};
6 Compute Fiedler two-partition Pf of l-th community;
7 Compute boundary nodes Bf of Pf with the given threshold ratio ρ;
8 Update partition P with Pf ;
9 Update control nodes with boundary nodes K = K ∪Bf ;

10 end
11 return K.

Association of Brain Regions to Cognitive Systems To examine the relationship between con-
trollability diagnostics and cognitive systems, we developed a map of brain areas to a set of cog-
nitive systems previously defined in the literature: the fronto-parietal, cingulo-opercular, dorsal
attention, ventral attention, default mode, motor and somatosensory, auditory, visual, subcortical
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systems 39. Such a mapping was inspired by a recent paper from Power et al. (2012) who as-
sociated 264 brain areas to these cognitive systems, defined by a clustering technique applied to
functional brain networks 39. Similar to previous work 39, our association of areas to systems is a
gross approximation and it should not be interpreted as indicating that areas have single functions.
We use this association only as a pragmatic means to assess whether controllability diagnostics are
differentially identified in distributed neural circuits.

The 234 areas examined in the main manuscript were drawn from 42 cortical structures. Here
we associate these 42 structures to the set of 9 cognitive systems:

• Lateral Orbitofrontal In the Power et al. (2012) decomposition, portions of lateral or-
bitofrontal cortex (or BA 47) are assigned to default mode, salience, and ventral attention
systems. To choose a single association for this region, we turned to the wider literature.
In a recent meta-analysis, Zald and colleagues examined the role of medial and lateral
orbitofrontal cortex in widespread functional networks 50. The lateral orbitofrontal cortex
showed co-activations with prefrontal regions and areas involved in cognitive functions in-
cluding language and memory but not with areas of the default mode, autonomic, and limbic
systems. Rothkirch et al. (2012) similarly demonstrated that lateral orbitofrontal cortex
appears to be modulated by implicit motivational value, rather than salience 51, arguing
against its inclusion in the salience system. Anderson and colleagues suggest that lateral
orbitofrontal cortex provides a specificity in top-down control of attention in collaboration
with dorsolateral prefrontal cortex 52. Cognitive system assignment: “Ventral Attention”.

• Pars Orbitalis In the Power et al. (2012) decomposition, portions of pars orbitalis (or BA
47) are assigned to default mode, salience, and ventral attention systems. To choose a single
association for this region, we turned to the wider literature. The pars orbitalis is a part of the
ventrolateral prefrontal cortex, and is known to play a role in cognitive control processes 53,
particularly in conflict adaptation 54, inhibition 55, which differ significantly from those en-
abled by the fronto-parietal network 56. Cognitive system assignment: “Cingulo-Opercular”.

• Frontal Pole In this parcellation scheme, the frontal pole corresponds to portions of BA 9
and 10. These areas form hubs of the fronto-parietal cognitive control system 57. Cognitive
system assignment: “Fronto-parietal”.

• Medial Orbitofrontal. The medial frontal cortex is one of the key hubs of the fronto-parietal
network 57, 58. Cognitive system assignment: “Fronto-parietal”.

• Pars Triangularis In this parcellation scheme, the pars triangularis corresponds to portions
of BA 45, and therefore maps to the fronto-parietal cognitive control system 56. Cognitive
system assignment: “Fronto-parietal”.

• Pars Opercularis The pars of opercularis (corresponding roughly to BA 44) forms a hub of
the cingulo-opercular cognitive control system 56. Cognitive system assignment: “Cingulo-
Opercular”.
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• Rostral Middle Frontal The rostral middle frontal cortex, corresponding roughly to BA
10, forms a hub of the cingulo-opercular cognitive control system 56. Cognitive system
assignment: “Cingulo-Opercular”.

• Superior Frontal. In the Power et al. (2012) decomposition, portions of the superior frontal
cortex are predominantly affiliated with the default mode system, consistent with previous
literature 59–62. Cognitive system assignment: “Default Mode”.

• Caudal Middle Frontal The caudal middle frontal cortex is a prefrontal cortical structure
broadly associated with executive function 63, 64, top-down control 65, and secondary motor
processes 66, 67. Cognitive system assignment: “Fronto-parietal”.

• Precentral The precentral cortex is part of the somatosensory system. Cognitive system
assignment: “Somatosensory”.

• Paracentral The paracentral cortex is part of the somatosensory system. Cognitive system
assignment: “Somatosensory”.

• Rostral Anterior Cingulate The anterior cingulate is a hub of the cingulo-opercular net-
work 68–73. Cognitive system assignment: “Cingulo-Opercular”.

• Caudal Anterior Cingulate The anterior cingulate is a hub of the cingulo-opercular network
68–73. Cognitive system assignment: “Cingulo-Opercular”.

• Posterior Cingulate. The posterior cingulate is a known hub of the default mode system
58, 74, 75. Cognitive system assignment: “Default Mode”.

• Isthmus Cingulate The isthmus cingulate is thought to be a hub of the default mode system
76 and of the limbic system 77. Cognitive system assignment: “Default Mode”.

• Post Central The postcentral cortex is part of the somatosensory system. Cognitive system
assignment: “Somatosensory”.

• Supramarginal The supramarginal gyrus appears to play a role in the dorsal 78 and ventral
79 attention networks, and executive function more broadly 80, 81. In the Power et al. (2012)
decomposition, this area was assigned to the cingulo-opercular system 39. Cognitive system
assignment: “Cingulo-Opercular”.

• Superior Parietal The superior parietal cortex plays a role in both the dorsal attention sys-
tem 82, 83 and the somatosensory-motor system 84. Cognitive system assignment: “Dorsal
Attention”.

• Inferior Parietal. The inferior parietal cortex is one of the key hubs of the fronto-parietal
network 57, 58. Cognitive system assignment: “Fronto-parietal”.

• Precuneus The precuneus is a hub of the default mode system 85, 86. Cognitive system as-
signment: “Default Mode”.
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• Cuneus The cuneus is a part of the visual system 82, 87, 88. Cognitive system assignment:
“Visual”.

• Pericalcarine The pericalcarine is a part of the visual system 87, 89. Cognitive system assign-
ment: “Visual”.

• Lateral Occipital The lateral occipital cortex is a part of the visual system 90. Cognitive
system assignment: “Visual”.

• Lingual The lingual gyrus is a part of the visual system 87, 91. Cognitive system assignment:
“Visual”.

• Fusiform The lingual gyrus is a part of the visual system 82. Cognitive system assignment:
“Visual”.

• Parahippocampal The parahippocampal cortex has been associated with many cognitive
processes including visuospatial processing and episodic memory 92. Cognitive system as-
signment: “Other”.

• Entorhinal cortex The entorhinal cortex encodes visual information 93. Cognitive system
assignment: “Visual”.

• Temporal Pole The temporal pole plays a role in language processing, including naming 94,
and in social and emotional processing 95. Cognitive system assignment: “Other”.

• Inferior Temporal The inferior temporal cortex is associated with visual processing 96, emo-
tion perception of visual objects 97, and shape recognition 98. Cognitive system assignment:
“Visual”.

• Middle Temporal The middle temporal cortex is associated with cognitive control processes
99, theory of mind 100, and social cognition 101. Cognitive system assignment: “Other”.

• Bank of the Superior Temporal Sulcus The bank of the superior temporal sulcus forms a
part of the early cortical auditory network 102. Cognitive system assignment: “Auditory”.

• Superior Temporal The superior temporal cortex forms a part of the auditory system 103.
Cognitive system assignment: “Auditory”.

• Transverse Temporal The transverse temporal cortex forms a part of the auditory system
104. Cognitive system assignment: “Auditory”.

• Insula. The insula is one of the key hubs of the fronto-parietal network 57, 58. Cognitive
system assignment: “Fronto-parietal”.

• Thalamus. Cognitive system assignment: “Subcortical”.

• Caudate. Cognitive system assignment: “Subcortical”.
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• Putamen. Cognitive system assignment: “Subcortical”.

• Pallidum. Cognitive system assignment: “Subcortical”.

• Nucleus Accumbens. Cognitive system assignment: “Subcortical”.

• Hippocampus. Cognitive system assignment: “Subcortical”.

• Amygdala. Cognitive system assignment: “Subcortical”.

• Brainstem. Cognitive system assignment: “Other”.

Methodological Considerations and Checks In the main manuscript, we utilize a parcellation of
the cortical and subcortical tissue into N = 234 different brain regions. This parcellation is in fact
part of a wider family of Lausanne atlas parcellations that include the following:

• Scale 33: N = 83 brain regions

• Scale 60: N = 129 brain regions

• Scale 125: N = 234 brain regions

• Scale 250: N = 463 brain regions

• Scale 500: N = 1015 brain regions

This multi-scale atlas has previously been used to examine the hierarchical nature of brain network
topography 49. In this and the following sections of this supplement, we examine the reproducibil-
ity of our results obtained using Scale 125 (described in the main manuscript) across the remaining
spatial resolutions provided by the other 4 atlases.

Global Controllability Across Spatial Scales We calculated the global controllability of each
node in each atlas for each person and scan. We observed that the mean global controllability
(averaged across subjects, scans, and nodes) decreases with the spatial scale of the atlas: see
Table1. Note: here we report the mean and STD of global controllability diagnostics over brain
regions.

13



Supplementary Table 1: Global Controllability Diagnostic Values (GC) over the 5 Scales of the Lausanne
Atlas Family.

Scale Number of Nodes mean GC STD GC
33 83 2.55× 10−21 1.61× 10−21

60 129 5.78× 10−22 3.88× 10−22

125 234 4.52× 10−23 3.59× 10−23

250 463 7.10× 10−25 7.65× 10−25

500 1015 2.09× 10−27 7.23× 10−27

Reproducibility of Controllability Diagnostics Across Spatial Scales In the main manuscript,
we show the anatomical distribution of the 3 controllability diagnostics over the N = 234 brain
regions of the Scale 125 atlas. In Fig. 3 of this supplement, we show that the anatomical distribution
of average controllability is visually similar across all 5 spatial scales assessed with the entire
Lausanne atlas family. In Fig. 4 and Fig. 5, we show a similar reproducibility of the anatomical
distribution of modal and boundary controllability, respectively.

Reproducibility of Degree-Controllability Correlations Across Spatial Scales In the main
manuscript, we observed that for Scale 125 (N = 234) the degree was strongly positively corre-
lated with the average controllability, strongly negatively correlated with the modal controllability,
and neither strongly positively nor strongly negatively correlated with the boundary controllabil-
ity. In Table 2, we report the correlations between degree and the 3 controllability diagnostics as a
function of spatial resolution: from Scale 33 (N = 83) to Scale 500 (N = 1015). We observe that
the degree-controllability correlations reported for Scale 125 are reproducibly observed across the
remaining 4 spatial scales, comprising both higher and lower spatial resolutions.

Test-Retest Reliability of Controllability Diagnostics When proposing a new diagnostic of
brain network architecture, it is critical to determine the reliability of those diagnostic values across
iterative measurement. Here we capitalize on the fact that the same 8 subjects whose data are
reported in the main manuscript were imaged over 3 different days. We utilize these iterative scans
to assess the test-retest reliability of the 3 controllability diagnostics.

To compare the results among different scans and subjects, we consider the average corre-
lation. Suppose we have n subjects and for each of them we have K scans with corresponding
controllability values ci1, · · · , ciK . The averaged correlation between controllability diagnostic val-
ues for subject i and subject j is defined as

RB
ij =

∑K
s=1

∑K
t=1 corr(cis, c

j
t)

K2
(12)
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Supplementary Figure 3: Average Controllability Across Spatial Scales Surface visualizations of the
ranked average controllability (AC) values over the 5 spatial scales of the Lausanne atlas 49.
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Supplementary Figure 4: Modal Controllability Across Spatial Scales Surface visualizations of the ranked
modal controllability (MC) values over the 5 spatial scales of the Lausanne atlas 49.
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Supplementary Figure 5: Boundary Controllability Across Spatial Scales Surface visualizations of the
ranked boundary controllability (BC) values over the 5 spatial scales of the Lausanne atlas 49.
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Supplementary Table 2: Pearson correlation coefficients r between rank degree, average controllability
(AC), boundary controllability (BC), and modal controllability (MC).

Degree AC BC MC
Scale 33

Degree 1.0000 0.9764 0.5225 -0.9923
AC 0.9764 1.0000 0.6302 -0.9688
BC 0.5225 0.6302 1.0000 -0.5120
MC -0.9923 -0.9688 -0.5120 1.0000

Scale 60
Degree 1.0000 0.9429 0.4733 -0.9912

AC 0.9429 1.0000 0.6262 -0.9320
BC 0.4733 0.6252 1.0000 -0.4806
MC -0.9912 -0.9320 -0.4806 1.0000

Scale 125
Degree 1.0000 0.9205 0.1385 -0.9937

AC 0.9205 1.0000 0.1461 -0.9125
BC 0.1385 0.1461 1.0000 -0.1270
MC -0.9937 -0.9125 -0.1270 1.0000

Scale 250
Degree 1.0000 0.9114 0.3310 -0.8626

AC 0.9114 1.0000 0.4785 -0.7822
BC 0.3310 0.4785 1.0000 -0.2968
MC -0.8626 -0.7822 -0.2968 1.0000

Scale 500
Degree 1.0000 0.9122 0.2709 -0.9962

AC 0.9122 1.0000 0.3637 -0.9042
BC 0.2709 0.3637 1.0000 -0.2366
MC -0.9962 -0.9042 -0.2366 1.0000
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for subject i 6= j and where s and t index scanning sessions, and corr indicates the calculation of a
Pearson correlation coefficient. The average correlation between controllability diagnostic values
for the same subject across scanning sessions is defined as

RW
ii =

∑
s 6=t corr(cis, c

i
t)

K(K − 1)
(13)

for i = j. We refer to the quantity RB
ij as the average between-subject correlation and to the

quantity RW
ii as the average within-subject correlation.

We report the within- and between-subject correlations for all 3 controllability diagnostics
and for global controllability across all 5 spatial scales of the Lausanne atlas family in Tab. 3. We
observe that all 3 controllability diagnostics display significantly greater within-subject correlation
than between-subject correlation, indicating that these diagnostics are statistically reproducible
across scanning sessions and significantly different across individuals. The average and modal
controllability display a relatively high mean R (approximately 0.90) and relatively low standard
error. While still statistically reproducible across scanning sessions, the boundary controllability
displays a lower mean R than the average and modal controllability, and a higher standard error.
The global controllability is not reproducible across scanning sessions. These observations are
consistently observed across the 5 spatial scales of the Lausanne atlas family of parcellations.

Reproducibility of Control Roles of Cognitive Systems In the main text, we observed that
30% of average control hubs lie in the default mode system, 32% of modal control hubs lie in
the fronto-parietal and cingulo-opercular cognitive control systems, and 34% of boundary control
hubs lie in the ventral and dorsal attention systems. Here we demonstrate that these results are
qualitatively reproduced for different definitions of control hubs: namely, the 25 nodes with the
highest control values (out of a possible 234 nodes), the 30 nodes with the highest control values
(as shown in the main manuscript), or the 35 nodes with the highest control values. When control
hubs are defined as the top 25 nodes, we observe that 32% of average control hubs lie in the default
mode system, 33% of modal control hubs lie in the fronto-parietal and cingulo-opercular systems,
and 33% of boundary control hubs lie in the ventral and dorsal attentional systems. When control
hubs are defined as the top 35 nodes, we observe that 28% of average control hubs lie in the default
mode system, 31% of modal control hubs lie in the fronto-parietal and cingulo-opercular systems,
and 32% of boundary control hubs lie in the ventral and dorsal attentional systems. These results
demonstrate that the presence of a controllability-by-system interaction is robust to small variation
in the choice of the size of the control hub set.

Reproducibility of Differential Recruitment of Cognitive Systems to Network Control In
the main text, we observed the presence of a controllability-by-system interaction, and interpreted
this as indicative of the possibility that certain types of controllability may be utilized or enabled
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Supplementary Table 3: Test-Retest Reliability of Controllability Diagnostics: average controllability (AC),
boundary controllability (BC), modal controllability (MC) and global controllability (GC).

AC BC MC GC
Scale 33

Mean Within 0.9642 0.7250 0.9708 0.0674
Mean Between 0.8966 0.3436 0.9191 0.0501

STE Within 0.0222 0.1279 0.0119 0.0527
STE Between 0.0227 0.2014 0.0168 0.0426

p-value 5.7e-11 2.5e-6 9.2e-12 0.4626
Scale 60

Mean Within 0.9510 0.6146 0.9519 0.0662
Mean Between 0.8449 0.3465 0.8544 0.0501

STE Within 0.0283 0.1552 0.0199 0.0590
STE Between 0.0333 0.1351 0.0261 0.0387

p-value 4.0e-12 2.8e-6 9.5e-15 0.3076
Scale 125

Mean Within 0.9404 0.5147 0.9348 0.0782
Mean Between 0.8036 0.1954 0.7900 0.0527

STE Within 0.0298 0.1311 0.0234 0.0508
STE Between 0.0383 0.1638 0.0350 0.0449

p-value 5.3×10−14 1.8×10−6 1.1×10−16 0.1442
Scale 250

Mean Within 0.9320 0.5192 0.9230 0.0481
Mean Between 0.7751 0.2208 0.7451 0.0391

STE Within 0.0256 0.2012 0.0227 0.0383
STE Between 0.0332 0.2077 0.0267 0.0286

p-value 4.5e-19 4.1e-6 7.8e-26 0.4268
Scale 500

Mean Within 0.9090 0.4990 0.8982 0.0395
Mean Between 0.7261 0.2367 0.6909 0.0229

STE Within 0.0280 0.1373 0.0263 0.0327
STE Between 0.0338 0.1290 0.0224 0.0241

p-value 1.0e-21 1.4e-6 4.6e-33 0.0864
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Supplementary Figure 6: Control Roles of Cognitive Systems. Cognitive control hubs are differentially
located across cognitive systems. (Left) Hubs of average controllability are preferentially located in the
default mode system. (Middle) Hubs of modal controllability are predominantly located in cognitive con-
trol systems, including both the fronto-parietal and cingulo-opercular systems. (Right) Hubs of boundary
controllability are distributed throughout all systems, with the two predominant systems being ventral and
dorsal attention systems. These anatomical distributions are consistent across different definitions of control
hubs as either (Top) the 25 nodes with the highest control values, (Middle) the top 30 nodes with the highest
control values, or (Bottom) the 35 nodes with the highest control values.
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by different cognitive systems. In particular, we observed that regions of the default mode system
form strong average controllability hubs but weaker modal and boundary controllability hubs. Re-
gions of the cognitive control networks (fronto-parietal and cingulo-opercular) form strong modal
controllability hubs and regions of the attentional control networks (ventral and dorsal) form strong
boundary controllability hubs. Here we demonstrate that these results are qualitatively reproduced
for different definitions of control hubs: namely, the 25 nodes with the highest control values, the
30 nodes with the highest control values (as shown in the main manuscript), or the 35 nodes with
the highest control values; see Fig. 7.

In the main text, we validate this finding by performing a repeated measures 2-way Analysis
of Variance (ANOVA) with system and controllability diagnostic as categorical factors, and with
scan replicate as a repeated measure. Here, we performed the same ANOVA for the case in which
control nodes are defined as the 25 nodes with the highest control values or the 35 nodes with
the highest control values, and found similar results in both cases: (i) for top 25 nodes, the main
effect of system is F (9) = 43.7716 (p = 0), the main effect of diagnostic is F (2) = 16.5413
(p = 2.0553e−4), and the interaction between system and diagnostic is F (18) = 42.1475 (p = 0);
(ii) for the top 35 nodes, the main effect of system is F (9) = 34.3787 (p = 0), the main effect
of diagnostic is F (2) = 9.7420 (p = 0.0022), and the interaction between system and diagnostic
is F (18) = 36.9762 (p = 0). Consistent with the results reported in the main manuscript, these
statistics indeed suggest that structural differences between the default mode, cognitive control,
and attentional control systems may facilitate their distinct roles in controlling dynamic trajectories
of brain network function. We observe that as the number of weaker control hubs we include in
the analysis is increased (i.e., larger number of control hubs), the less significant the relationship
to cognitive systems. This suggests that the strong control hubs are significantly associated with
cognitive systems but that weak control nodes may not be.

Robustness of Results to Alternative Weighting Schemes There is currently no accepted weight-
ing scheme for constructing anatomical networks from diffusion imaging data. Weighting connec-
tions between ROIs based on the number of streamlines connecting them (as estimated by diffusion
tractography algorithms) is the most commonly utilized scheme. However, it has been argued that
these estimates can be biased by variation in the sizes of the regions under study 49: large regions
may have a higher probability of displaying more streamlines than smaller regions. While this
potential bias does not appear to drastically alter large-scale topological properties of anatomi-
cal networks, its local effects are not well characterized 105. Our results, based on the number of
streamlines, are unlikely to be affected by this potential bias for one key reason: the Lausanne atlas
family purposefully attempts to equalize region size, particularly in the higher scales 106. Never-
theless, to confirm that our results were robust to an alternative weighting scheme that accounts for
region size, we divided each ijth element in the adjacency matrix A in Scale 125 (N=234) by the
sum of the sizes of the two regions that it connects to create an alternative adjacency matrix A′. We
then computed the controllability diagnostics and rank degree of A′ for each scan. Similar to our
results obtained with the original weighting scheme, we observed that (i) the mean average con-
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Supplementary Figure 7: Differential Recruitment of Cognitive Systems to Network Control. Average
controllability (AC), modal controllability (MC), and boundary controllability (BC) hubs are differentially
located in default mode (A), fronto-parietal and cingulo-opercular cognitive control (B), and attentional
control (C) systems. These results are consistently observed whether we define control hubs as the 25 nodes
with the highest control values (Top Row), the 30 nodes with the highest control values (Middle Row), or the
35 nodes with the highest control values (Bottom Row). Values are averaged over the 3 replicates for each
individual; error bars indicate standard deviation of the mean over subjects.
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Supplementary Figure 8: Differential Recruitment of Cognitive Systems to Network Control Average
controllability (AC), modal controllability (MC), and boundary controllability (BC) hubs are differentially
located in default mode (A), fronto-parietal and cingulo-opercular cognitive control (B), and attentional con-
trol (C) systems. Values are averaged over the 3 replicates for each individual; error bars indicate standard
deviation of the mean over subjects.

trollability across the scans is strongly and positively correlated with mean rank degree (r = 0.97,
p = 1.43× 10−150), (ii) the mean modal controllability across the scans is strongly and negatively
correlated with mean rank degree (r = −0.96, p = 2.51 × 10−130), and (iii) the mean boundary
controllability is not significantly correlated with mean rank degree (r = −0.01, p = 0.32). Fur-
thermore, the three network controllability diagnostics are again differentially recruited to known
cognitive systems in the same manner as they were for the original weighting scheme (Compare
Fig. 8 to Fig. 5 in the main manuscript). Together, these findings indicate that the results reported
in the main manuscript are robust to variations in weighting scheme that include a correction for
region size.

There are two additional considerations that further support the claim that our results cannot
be attributed to region size. First, we examine the robustness of our findings across a family of
parcellations that vary both in coarseness and in the similarity/disimilarity of region size. The
smallest scale Lausanne atlas has some differences in region size, while the finer scale atlases
increasingly subdivide larger areas in an effort to create parcellations with similarly sized regions
106. The robustness of our results in the finer atlases suggests that our results are unlikely to be
driven by region size. Second, we directly calculated the Pearson correlation r-squared values
between controllability diagnostics and region size (in terms of number of voxels). In scale 125
(N = 234 regions) where we report the majority of our results in the main manuscript, we observed
that region size accounted for 5.65% of the variability in average controllability, 6.89% of the
variability in modal controllability, and 1.17% of the variability in boundary controllability. These
results again suggest that region size is not an appreciable driver of controllability diagnostics.

In addition to clarifying that the results reported using the number of streamlines are unlikely
to be driven by the size of regions, it is of interest to consider other potential definitions of edge
weight. Here we examine two additional edge weight definitions and show that our results are
robustly observed in these other weighting schemes. We examine generalized fractional anisotropy
(GFA) and quantitative anisotropy (QA). GFA was defined by Tuch et al. (2004) as an anisotropy

24



Supplementary Table 4: Reliability of Controllability Diagnostics Across Edge Weight Definitions Pear-
son correlation coefficients between controllability diagnostics extracted for structural brain networks whose
edges are weighted by the number of streamlines (SL) and controllability diagnostics extracted for struc-
tural brain networks whose edges are weighted by either quantitative anisotropy (QA) or generalized frac-
tional anisotropy (GFA). Controllability diagnostics are abbreviated as follows: average controllability (AC),
boundary controllability (BC), modal controllability (MC). Note that for the small system sizes (Scale 33
and Scale 60), all regions are identified as having the same boundary controllability for the choice of pa-
rameters γ = 1.6 and ρ = 2; therefore, correlations between these variables in the different edge weighting
schemes are not estimable (N/A).

AC MC BC
Scale 33

SL vs. QA r = 0.67, p = 1.2× 10−11 r = 0.66, p = 1.23× 10−11 NA
SL vs. GFA r = 0.67, p = 5.3× 10−12 r = 0.68, p = 1.93× 10−12 NA

Scale 60
SL vs. QA r = 0.64, p = 4.0× 10−16 r = 0.57, p = 1.7× 10−12 NA
SL vs. GFA r = 0.64, p = 4.1× 10−16 r = 0.59, p = 3.0× 10−13 NA
Scale 125
SL vs. QA r = 0.64, p = 6.1× 10−28 r = 0.56, p = 4.3× 10−21 r = 0.25, p = 1.1× 10−4

SL vs. GFA r = 0.62, p = 1.2× 10−26 r = 0.58, p = 4.5× 10−22 r = 0.25, p = 1.4× 10−4

Scale 250
SL vs. QA r = 0.59, p = 5.4× 10−45 r = 0.49, p = 5.1× 10−29 r = 0.12, p = 0.0085
SL vs. GFA r = 0.58, p = 9.0× 10−43 r = 0.50, p = 1.4× 10−30 r = 0.17, p = 1.78× 10−4

Scale 500
SL vs. QA r = 0.58, p = 7.3× 10−92 r = 0.58, p = 5.9× 10−92 r = 0.19, p = 1.6× 10−9

SL vs. GFA r = 0.57, p = 5.0× 10−88 r = 0.59, p = 7.6× 10−96 r = 0.13, p = 2.3× 10−5

measure on an ODF Ψ:

GFA =
std (Ψ)

rms (Ψ)
=

√
n
∑n

i=1 (Ψ (ui)− 〈Ψ〉)2

(n− 1)
∑n

i=1 Ψ (ui)
2 (14)

where 〈Ψ〉 is the mean of the ODF 107. This measurement produces a single value between [0,1]
for each voxel and does not reflect any specific ODF peak. For each streamline, we extracted the
average gfa value from all of the voxels the streamline passed through. We then averaged this
value over all streamlines that connected a pair of regions, and used this quantity to weight the
edge connecting those regions. On the resultant N × N GFA matrix, we computed the average,
modal, and boundary controllability. We observed that the controllability values extracted from the
GFA matrix are significantly correlated with the controllability values extracted from the matrices
weighted by the number of streamlines (see Table 4). These results indicate that weighting edges
by number of streamlines and weighting edges by GFA provide consistent estimates of regional
controllability diagnostic values.
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Next, we examined the effects of weighting edges by the quantitavive anisotropy. QA is
described by Yeh et. al (2010) as a measurement of the signal strength for a specific fiber population
â in an ODF Ψ(â) 108. QA is given by the difference between Ψ(â) and the isotropic component
of the spin density function (SDF, ψ) ISO (ψ) scaled by the SDF’s scaling constant. QA differs
from GFA in two important ways. First, QA is extracted from the SDF, which is not normalized
like the ODF to sum to 1. Therefore QA will be impacted by scanning choices such as echo time.
Second, along-streamline QA was calculated based on the angles actually used when tracking each
streamline, whereas along-streamline GFA averages values based on the entire ODF which may or
may not reflect the signal strength corresponding to the peak used during tracking. Although along-
streamline QA is more specific to the anatomical structure being tracked, QA is more sensitive to
MRI artifacts such as B1 inhomogeneity.

QA is calculated for each streamline. We then averaged values over all streamlines connect-
ing a pair of regions, and used this value to weight the edge between the regions. On the resultant
N × N QA matrix, we computed the average, modal, and boundary controllability. We observed
that the controllability values extracted from the QA matrix are significantly correlated with the
controllability values extracted from the matrices weighted by the number of streamlines (see Ta-
ble 4). These results indicate that weighting edges by number of streamlines and weighting edges
by QA provide consistent estimates of regional controllability diagnostic values.

Robustness of Results to Alternative Imaging Acquisitions and Independent Subject Cohorts
In the main manuscript, we show that average control hubs are differentially associated with the
default mode system, modal control hubs are differentially associated with fronto-parietal and
cingulo-opercular systems, and boundary control hubs are differentially associated with dorsal and
ventral attention systems. Here we show that these observations are robust to the choice of imaging
acquisition and to independent subject cohorts. Using a diffusion tensor imaging data set of 85
healthy adult human subjects (see Supplementary Methods), we again find that regions of high
controllability are differentially associated with the 8 cognitive systems (see Fig. 9). Consistent
with the analysis outlined in the main manuscript, we define the set of high control hubs as the
30 regions with the largest controllability values (averaged over all scans), and we calculate the
percent of hubs present from each of the 8 cognitive systems. To correct for system size, we
normalize the raw percentage of hubs present in a given cognitive system by the number of regions
in a cognitive system. By applying this normalization, systems composed of a larger number of
regions do not have a greater or lesser chance of housing one of the top 30 control hubs than
systems composed of a smaller number of regions. Consistent with the results obtained from DSI
data, 32% of average control hubs lie in the default mode system (compare to 30% reported in
the main manuscript), 31% of modal control hubs lie in the fronto-parietal and cingulo-opercular
cognitive control systems (compare to 32% reported in the main manuscript), and 33% of boundary
control hubs lie in the ventral and dorsal attention systems (compare to 34% reported in the main
manuscript). These results demonstrate that the differential association of control hubs to these
systems is consistent in both diffusion spectrum imaging and diffusion tensor imaging, and is
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robustly observed across independent samples of drastically different sizes (N = 8 for the DSI
data and N = 85 for the DTI data).
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Supplementary Figure 9: Control Roles of Cognitive Systems Extracted from DTI Data Cognitive con-
trol hubs are differentially located across cognitive systems. (A) Hubs of average controllability are pref-
erentially located in the default mode system. (B) Hubs of modal controllability are predominantly located
in cognitive control systems, including both the fronto-parietal and cingulo-opercular systems. (C) Hubs
of boundary controllability are distributed throughout all systems, with the two predominant systems being
ventral and dorsal attention systems. Control hubs have been identified at the group level as the 30 regions
with the highest controllability values (averaged over subjects). Raw percentages of control hubs present
in each system have been normalized by the number of regions in the cognitive system. By applying this
normalization, systems composed of a larger number of regions have the same chance of housing one of the
top 30 control hubs as systems composed of a smaller number of regions.

In the main manuscript, we further show that there is a significant controllability-by-system
interaction using structural brain networks extracted from DSI data in 8 healthy controls. Here
we show that these results are robustly observed in a different imaging scheme and in a large
independent subject cohort. Using a diffusion tensor imaging data set of 85 healthy adult human
subjects (see Supplementary Methods), we again extract control hubs for each scan, determine their
association with the three hypothesized control systems (default mode, fronto-parietal and cingulo-
opercular cognitive control, and attentional control), and quantify the mean controllability value
for all hubs in each system (Fig 10). We again observe that regions of the default mode system
form strong average controllability hubs but weaker modal and boundary controllability hubs. Re-
gions of the cognitive control networks (fronto-parietal and cingulo-opercular) form strong modal
controllability hubs and regions of the attentional control networks (ventral and dorsal) form strong
boundary controllability hubs. These results confirm in a different imaging acquisition and large
independent cohort of subjects that structural differences between the default mode, cognitive con-
trol, and attentional control systems may facilitate their distinct roles in controlling trajectories of
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brain network function.
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Supplementary Figure 10: Differential Recruitment of Cognitive Systems to Network Control Extracted
from DTI Data Average controllability (AC), modal controllability (MC), and boundary controllability
(BC) hubs are differentially located in default mode (A), fronto-parietal and cingulo-opercular cognitive
control (B), and attentional control (C) systems. Error bars indicate standard deviation of the mean over
subjects.

Controllability in Cortical vs. Whole-Brain Circuitry In the main manuscript, we describe
results for a whole-brain network that includes cortical and subcortical structures. It is of interest
to also examine the controllability of cortical circuitry alone, as this is a common object of interest
in some areas of systems neuroscience. Moreover, it remains an open question whether subcortical
structures are best included in whole-brain parcellations as single entities (as utilized in this work
and other recent studies), or subdivided into relevant nuclei (which trades the benefits of anatomi-
cal specificity for the disadvantages of signal-to-noise ratio). To examine controllability in cortical
circuitry, we therefore removed subcortical regions of interest from our analysis (thalamus, cau-
date, putamen, pallidum, nucleus accumbens, hippocampus, and amygdala), and computed a new
adjacency matrix Acortical. Using this adjacency matrix, we recalculated the values of controlla-
bility diagnostics for the Scale 125 Lausanne atlas, and show results of this analysis in Fig. 11.
We observe that the results reported in the main manuscript remain qualitatively conserved: aver-
age controllability is positively correlated with weighted degree, modal controllability is negatively
correlated with weighted degree, and boundary controllability is less well correlated with weighted
degree.

We also identify the control roles of cognitive systems estimated by this cortical circuitry
(see Fig. 12). Here we observe, similarly to the results reported in the main manuscript for the
whole-brain circuitry, that control hubs are distributed throughout cortical systems, but are over-
represented in a few specific systems. Modal control hubs, defined as the 30 regions with the
highest modal controllability, are over-represented in cognitive control systems – fronto-parietal
and cingulo-opercular – which account for 32% of the control hubs, identical to the 32% observed
in the whole-brain circuitry. Boundary control hubs are over-represented in the attentional control
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Supplementary Figure 11: Brain Network Control Properties for Cortical Circuitry (A) Average control-
lability quantifies control to many states. Here we show average controllability values ranked for all brain
regions plotted on a surface visualization. Warmer colors indicate larger values of average controllability.
(B) Scatter plot of weighted degree (ranked for all brain regions) versus average controllability (Pearson cor-
relation r = 0.88, p = 2 × 10−73). (C) Modal controllability quantifies control to difficult-to-reach states.
Here we show modal controllability values ranked for all brain regions plotted on a surface visualization.
(D) Scatter plot of weighted degree (ranked for all brain regions) versus modal controllability (r = −0.99,
p = 1× 10−180). (E) Boundary controllability quantifies control to decouple or integrate network modules.
Here we show boundary controllability values ranked for all brain regions plotted on a surface visualization.
(F) Scatter plot of weighted degree (ranked for all brain regions) versus boundary controllability (r = 0.27,
p = 6× 10−5). In panels (A), (C), and (E), warmer colors indicate larger controllability values, which have
been averaged over both replicates and subjects.
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Supplementary Figure 12: Control Roles of Cognitive Systems for Cortical Circuitry Cognitive control
hubs are differentially located across cognitive systems. (A) Hubs of average controllability are preferen-
tially located in the default mode system. (B) Hubs of modal controllability are predominantly located in
cognitive control systems, including both the fronto-parietal and cingulo-opercular systems. (C) Hubs of
boundary controllability are distributed throughout all systems, with the two predominant systems being
ventral and dorsal attention systems. Control hubs have been identified at the group level as the 30 regions
with the highest controllability values (averaged over replicates and subjects).

systems – dorsal and ventral attention systems – which account for 30% of control hubs compared
with 34% in the whole-brain circuitry. These results confirm the findings reported in the main
manuscript for the whole-brain circuitry. The top 30 average control hubs, however, show a dif-
ferent distribution across cognitive systems in the cortical circuitry as opposed to the whole-brain
circuitry. Specifically, in the whole-brain circuitry, we observed an over-representation of the de-
fault mode system in average control hubs (30% of top 30) which is not conserved in the cortical
circuitry alone (10% of top 30). However, if we examine the strongest average control hubs (5
regions with the highest average controllability values), we observe that 25% of them lie in the
default mode system.

Finally, we also examined the differential recruitment of cognitive systems to network control
in the cortical versus whole-brain circuitry. In Fig. 13, we show the controllability values of control
hubs in the default mode, cognitive control, and attentional control systems. Consistent with the
results reported in the main manuscript for the whole-brain circuitry, the cortical circuitry shows
that regions of the cognitive control systems form strong modal controllability hubs, while regions
of the attentional control systems form strong boundary controllability hubs. In contrast to the
results reported in the main manuscript for whole-brain circuitry, the cortical circuitry alone shows
that regions of the default mode system are not the strongest average controllability hubs when
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hubs are defined as the 30 regions with the largest values of controllability. However, if we confine
ourselves to examining only the 5 strongest average controllability hubs, we recover the finding that
regions of the default mode system form strong average controllability hubs (mean controllability
value 0.24, STD 0.10). These results indicate that the strongest average controllability hubs remain
in the default mode system, consistent with the results reported in the main manuscript.
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Supplementary Figure 13: Differential Recruitment of Cognitive Systems to Network Control for Cor-
tical Circuitry Average controllability (AC), modal controllability (MC), and boundary controllability (BC)
hubs are differentially located in default mode (A), fronto-parietal and cingulo-opercular cognitive control
(B), and attentional control (C) systems. Values are averaged over the 3 replicates for each individual; error
bars indicate standard deviation of the mean over subjects.

Relationships Between Controllability Diagnostics and Other Network Variables In the main
manuscript, we examine the relationship between controllability diagnostics and the weighted de-
gree (also often referred to as strength). Degree is more generally thought of as a measure of
centrality, influence, or importance and it may be of interest to examine how controllability diag-
nostics relate to other measures of centrality. Here, we compare controllability diagnostic values
to a second common measure of centrality: the betweenness centrality 109. The betweenness cen-
trality for a node v in a network was originally defined for binary networks, and measures the
proportion of shortest paths between any two nodes i and j that must pass through node v. Here
we use a fast algorithm 110 to calculate the weighted betweenness centrality for consistency with
the weighted analyses utilized in the remainder of our work. As shown in the left-most panels of
Fig. 14, the average and boundary controllability are positively correlated with the betweenness
centrality (Pearson correlation coefficient r = 0.42, p = 1 × 10−11 and r = 0.28, p = 1 × 10−5,
respectively), while the modal controllability is negatively correlated with the betweenness cen-
trality (r = −0.33, p = 1 × 10−7). The direction of these relationships is consistent with those
reported in the main manuscript for degree, although the strength of the relationships is diminished
for modal and average controllability, and increased for boundary controllability, in comparison.
These results indicate that different centrality measures (which take into account only structural in-
formation in the network) may be differentially correlated with controllability diagnostics (which
take into account both structural and dynamic information in the network).
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It is also interesting to compare boundary controllability and the participation coefficient 111.
The boundary controllability identifies control nodes present at the boundaries between commu-
nities, and does so in a hierarchically descending manner from the largest scale partition of the
network into a few communities, to the smallest scale partition of the network into N communi-
ties. The participation coefficient measures – for a single large scale partition – the participation
of a node in different communities, and takes a value of 1 when the node’s links are uniformly
distributed among all the communities and a value of 0 when the node’s links are all within
its own community 111. In Fig. 14F, we show that the boundary controllability is significantly
positively correlated with the participation coefficient (Pearson correlation coefficient r = 0.39,
p = 6× 10−10). However, there is significant scatter in this plot, which is consistent with the fact
that the participation coefficient examines the community structure at one scale of network orga-
nization (a single large scale partition of the network into a few communities), while the boundary
controllability examines the community structure across the full hierarchy of scales of network
organization. For completeness, relationships between average and modal controllability and par-
ticipation coefficient are also shown in Fig. 14B and D.

In the context of these results that highlight the relationships between static graph theoretical
diagnostics and network controllability diagnostics, it is important to affirm that the two methods
differ from one another significantly. While graph statistics utilize only structural connectivity
information, network controllability diagnostics utilize both (i) a structural connectivity matrix
and (ii) an equation of state defining the dynamics that occur on top of that structure. Therefore,
observed relationships between the diagnostics extracted from the two approaches (graph theory
and network controllability) cannot be postulated to hold for any dynamical system in any context.
Our results must therefore be interpreted solely in the context of the specific structural connectivity
and dynamics that we utilize in Equation 1 in the main manuscript.

Common Graphical Metrics of Brain Networks While the focus of this paper lies in exam-
ining controllability diagnostics of structural brain networks and their theoretical implications for
cognition, it is also of interest to describe the basic architectural properties of these networks.
In Table 6, we provide mean and standard error of common graph diagnostics, including degree,
path length, clustering coefficient, modularity index, global efficiency, and density calculated for
the DSI-based structural networks weighted by the number of white matter streamlines across the
Lausanne atlas parcellation family. For comparison, we also provide a similar table (Table 4) con-
taining the mean and standard error of the same graph diagnostics calculated for random network
controls that maintain the same strength distribution as the real networks. We observe that these
networks (i) are on average quite sparse, with weighted densities ranging from 0.6 (Scale 33) to 0.1
(Scale 500), and (ii) display a longer path length, greater clustering, decreased global efficiency,
and greater modularity than their random network counterparts. These results are consistent with
previous studies in similar structural brain networks 49, 105.
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Supplementary Table 5: Means and Standard Errors of Common Graph Diagnostics Estimated on
Structural Brain Networks Graph diagnostic values are calculated on structural brain networks estimated
from DSI data, and weighted by number of streamlines. Values are averaged over brain regions, subjects,
and scans; standard errors are normalized by

√
number of subjects. Diagnostics include degree (DG),

path length (PL), clustering coefficient (CC), modularity index (MD), global efficiency (GE), and density
(DS). Calculations are performed using the Brain Connectivity Toolbox 112.

DG PL CC MD GE DS
Scale 33 49.27± 1.65 3.07± 0.03 195.12± 4.04 0.33± 0.01 735.55± 10.69 0.60± 0.02
Scale 60 61.03± 2.23 3.51± 0.03 122.87± 3.92 0.38± 0.01 508.49± 6.68 0.48± 0.02
Scale 125 74.92± 3.06 4.00± 0.02 73.71± 2.41 0.43pm0.01 325.92± 4.77 0.32± 0.01
Scale 250 87.08± 4.17 4.44± 0.02 43.48± 1.67 0.48± 0.01 191.41± 3.93 0.19± 0.01
Scale 500 97.80± 5.59 4.77± 0.03 25.30± 0.88 0.55± 0.01 101.96± 3.01 0.10± 0.01

Supplementary Table 6: Means and Standard Errors of Common Graph Diagnostics Estimated on
Random Null Model Networks The connections in true brain networks are redistributed throughout the
network while maintaining the strength distributions using the code randmiound.m in the Brain Connec-
tivity Toolbox 112. Graph diagnostic values are then calculated and averaged over brain regions, subjects,
and scans; standard errors are normalized by

√
number of subjects. Diagnostics include degree (DG),

path length (PL), clustering coefficient (CC), modularity (MD), global efficiency (GE), and density (DS).
Calculations are performed using the Brain Connectivity Toolbox 112.

DG PL CC MD GE DS
Scale 33 49.27± 1.65 2.58± 0.02 133.52± 1.99 0.21± 0.01 947.88± 10.14 0.60± 0.02
Scale 60 61.03± 2.23 2.83± 0.02 72.86± 1.01 0.21± 0.01 648.97± 7.93 0.48± 0.02
Scale 125 74.92± 3.06 3.19± 0.02 34.48± 0.27 0.21± 0.01 423.17.92± 5.34 0.32± 0.01
Scale 250 87.08± 4.17 3.56± 0.02 15.50± 0.19 0.21± 0.01 262.23± 3.23 0.19± 0.01
Scale 500 97.80± 5.58 3.86± 0.03 6.58± 0.11 0.20± 0.01 155.60± 2.44 0.10± 0.01
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Supplementary Figure 14: Controllability Diagnostics versus Betweenness Centrality and Participation
Coefficient Scatterplots of regional values of average controllability (top panels (A,B)), modal controlla-
bility (middle panels (C,D)), and boundary controllability (bottom panels (E,F)) versus regional values of
betweenness centrality (left panels (A,C,E)) and participation coefficient (right panels (B,D,F)). Values are
averaged over the 3 replicates for each individual.
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