
Department of Pure Mathematics and Mathematical Statistics
University of Cambridge

CODES AND CRYPTOGRAPHY

The Enigma Cryptography Machine

Notes Lent 2015
T. K. Carne.

t.k.carne@dpmms.cam.ac.uk

Last revised: 10 March, 2015

c© Copyright. Not for distribution outside Cambridge University.

CONTENTS

1: INTRODUCTION 1
1.1 Information 1
1.2 Requirements 2
1.3 Recommended Books 2
1.4 Example sheets 2

2: ENTROPY 3
Lemma 2.1 Gibbs’ inequality 5
Corollary 2.2 5

3: CODING 7
3.1 Prefix-free Codes 7
3.2 Kraft’s Inequality 8

Proposition 3.1 Kraft’s Inequality I 8
Proposition 3.2 Kraft’s Inequality II 9
Proposition 3.3 McMillan 10

4: EFFICIENT CODES 11
4.1 Shannon – Fano Codes 11

Proposition 4.1 12
Proposition 4.2 Shannon – Fano encoding 12
Theorem 4.3 Shannon’s noiseless coding theorem 13

4.2 Huffman Codes 14
Theorem 4.4 Huffman codes are optimal 15
Lemma 4.5 Optimal codes 15

5: COMPRESSION 16
5.1 Block Codes 16
5.2 Compression 17

6: NOISY CHANNELS 18
6.1 Memoryless Channels 18
6.2 The Binary Symmetric Channel 18
6.3 Check Digits 19
6.4 The Hamming Code 20

7: ERROR CORRECTING CODES 22
7.1 Decoding with Errors 22

Proposition 7.1 22
Proposition 7.2 23

7.2 Error Detecting and Error Correcting 23
Proposition 7.3 Minimum distance for a code 24

7.3 Covering Estimates 24
Proposition 7.4 Hamming’s bound 24
Proposition 7.5 Gilbert – Shannon - Varshamov bound 25
Corollary 7.6 25

7.4 Asymptotics for V (N, r) 25
Lemma 7.7 Asymptotics of binomial coefficients 26
Proposition 7.8 Asymptotics of V (N, r) 26

8: INFORMATION CAPACITY 28
8.1 Mutual Information 28

Proposition 8.1 Mutual Information 28
Proposition 8.2 Information capacity of a BSC 29
Proposition 8.3 The capacity of parallel channels 30
Proposition 8.4 Functions do not increase mutual information 31

9: FANO’S INEQUALITY 32
9.1 A Model for Noisy Coding 32

9.2 Fano’s Inequality 33
Lemma 9.1 33
Theorem 9.2 Fano’s inequality 33
Theorem 9.3 Capacity bounds the rate of transmission of information 34

10: SHANNON’S NOISY CODING THEOREM 35
10.1 Introduction 35

Theorem 10.1 Shannon’s Noisy Coding Theorem 35
10.2 Chebyshev’s Inequality 35

Theorem 10.2 Chebyshev’s inequality 36
10.3 Proof of the Noisy Coding Theorem 36
10.4 * Typical Sequences * 38

Theorem 10.3 The weak law of large numbers 38
Theorem 10.4 Asymptotic equipartition property 39

11: LINEAR CODES 40
11.1 Finite Fields 40
11.2 Linear Codes 41
11.3 The Syndrome 42
11.4 Reed – Muller Codes 44

Lemma 11.1 44
Proposition 11.2 Reed – Muller codes 45

12: CYCLIC CODES 46
Proposition 12.1 Cyclic codes 47
Corollary 12.2 Generators of cyclic codes 47
Proposition 12.3 47

13: BCH CODES 49
13.1 The Characteristic of a Field 49

Lemma 13.1 Separable fields 49
13.2 BCH codes 50

Lemma 13.2 van der Monde determinants 51
Theorem 13.3 Minimum distance for BCH codes 51

14: LINEAR FEEDBACK SHIFT REGISTERS 53
14.1 Definitions 53

Proposition 14.1 Periodicity for LFSR 54
14.2 The Berlekamp – Massey Algorithm 55
14.3 Power Series 55

15: CRYPTOGRAPHY 57
15.1 Introduction 57
15.2 Equivocation 58

Proposition 15.1 Message equivocation 6 key equivocation 58
Proposition 15.2 Perfect secrecy 59

15.3 Unicity 60

16: SYMMETRIC AND ASYMMETRIC CIPHERS 61
16.1 *Feistel Ciphers* 61
16.2 Asymmetric Ciphers 61

17: COMPLEXITY 63
17.1 Polynomial Time 63
17.2 Modular Arithmetic 64

Theorem 17.1 Chinese Remainder Theorem 65
Proposition 17.2 Quadratic residues 65
Proposition 17.3 Square roots modulo pq 66

18: PUBLIC KEY CIPHERS 67
18.1 RSA Ciphers 67

Theorem 18.1 Security of the RSA ciphers 67

18.2 Rabin Ciphers 68
Lemma 18.2 69
Theorem 18.3 Security of Rabin ciphers 69

19: DISCRETE LOGARITHM CIPHERS 70
19.1 Diffie – Hellman Key Exchange 70
19.2 The Elgamal Cipher 71

20: SIGNATURES 72
20.1 Guarantees 72
20.2 Hash Functions 73
20.3 RSA Signatures 74
20.4 The Elgamel Signature Scheme 74

21: BIT COMMITMENT 76
21.1 Bit Commitment using a Public Key Cipher 76
21.2 Bit Commitment using a Noisy Channel 76
21.3 Semantic Security 78

1: INTRODUCTION

1.1 Information

This course is about the transmission of information from a Sender to a Receiver. In order to
be transmitted via a particular channel, the information needs to be encoded in the correct form, and
possibly encrypted if it is to be kept confidential.

The chief purpose of this course is to study information and how it is transmitted from a sender
to a receiver. Understanding the amount of information a message contains will tell us how much
compression there can be when we encode it. It also gives us a measure of how much duplication of
information there is and hence the extent to which we can correct random errors that arise when the
message is transmitted.

An alphabet A is a finite set of symbols. For example we might use the usual alphabet:

{a, b, c, d, . . . , x, y, z, “space”}

(including a space). Often we use a set of digits {0, 1, 2, 3, . . . , 8, 9} or binary digits {0, 1}. The symbols
from A are called letters. A message or word is a finite sequence of letters from the alphabet and is
usually denoted by juxtaposing the letters:

m = a1a2a3 . . . aN−1aN .

The set of all messages from the alphabet A is denoted by A∗.

In order to convey the message m successfully, the sender needs to transform it into a form suitable
to transmit. For example, if the message is to be recorded digitally, it will need to be transformed into
a sequence of binary digits. So the sender encodes the message into a new alphabet B. There is a coding
function c : A → B∗ that codes each letter from A into a finite sequence from B. These finite sequences
are called the code words. The entire message m is then encoded as

c∗(m) = c(a1)c(a2)c(a3) . . . c(aN−1)c(aN) ∈ B∗ .

This is then transmitted via some channel to the receiver who needs to decode it to recover the original
message m.

The encoding function c may be chosen so that only the intended receiver can decode it. It is
then called encryption. However, this is by no means necessary. It may be encoded simply to make
transmission simpler, or to compress the message to take less space, or to reduce the likelihood of errors
being introduced in transmission. We will need to consider all of these.

SENDER

m 7→ c∗(m)

message coding

CHANNEL RECEIVER

c∗(m) 7→ m

decoding

For example, if we have a message in English m = “Call at 2pm.” that is to be sent in an e-mail. It
is first encoded as binary strings using ASCII (American Standard Code for Information Interchange).
So c(C) = 1000011, c(a) = 1100101, . . . and c∗(m) is

1000011 1100101 1101100 1101100 0100000 1100101 1110100 0100000 0110010 1110000 1101101 0101110

Lecture 1 1

(Here the spaces are not part of the encoded message but simply to make the binary string more
readable.) This binary string is then transmitted via the internet and decoded by the receiver.

Other examples of coding are:

Morse code

Bar codes

Postcodes

Audio CDs (FLAC:error correcting; MP3: compression)

Mobile ’phone text messages (compression)

Compressing computer files: zip, gz (compression)

Bank Card PINs (cryptography)

* Digital photographs: jpeg (compression with data loss)

1.2 Requirements

We will need to use a small amount from a number of earlier courses. In particular it would be
helpful if you reviewed:

PROBABILITY Finite probability spaces, expectation, the weak law of large numbers.

NUMBERS AND SETS Modulo arithmetic, Euclid’s algorithm.

LINEAR ALGEBRA Vector spaces.

GROUPS, RINGS & MODULES Finite fields Fq.

In addition, various parts of the course are linked to other courses, notably: Markov Chains;
Statistics; Probability and Measure; Linear Analysis.

1.3 Recommended Books

G.M. Goldie & R.G.E. Pinch, Communication Theory,
Cambridge University Press 1991.

D. Welsh Codes and Cryptography,
Oxford University Press 1988.

T.M. Cover & J.A. Thomas Elements of Information Theory,
Wiley 1991.

W. Trappe & L.C. Washington Introduction to Cryptography with Coding Theory,
Prentice Hall, 2002.

J.A. Buchmann, Introduction to Cryptography, (2nd Ed.)
Springer UTM, 2004

1.4 Example sheets

There will be four example sheets. The first will cover the first two weeks material.

Lecture 1 2

2: ENTROPY

Let (P,Ω) be a (discrete) probability on a sample space Ω. For each subset A of Ω, the information
of A is

I(A) = − log2 P(A) .

Here log2 is the logarithm to base 2, so log2 p = ln p/ ln 2. It is clear that I(A) > 0 with equality if and
only if P(A) = 1.

Example:
Let (Xn) be independent Bernoulli random variables that each take the values 0 and 1 with probability
1
2 . For any sequence x0x1x2 . . . xN of N values, the set A = {X1 = x1, X2 = x2, . . . , XN = xn} has

P(A) =

(
1

2

)N
and so I(A) = N .

Hence the information I(A) measures the number of binary digits (bits) that are specified. Therefore
the units for the information are ”bits”.

Exercise:
Show that two sets A,B ⊂ Ω are independent if and only if

I(A ∩B) = I(A) + I(B) .

Let X be a discrete random variable on Ω. For each value x the set {X = x} has information

I(X = x) = − log2 P(X = x) .

The expected value of this is the entropy of X:

H(X) = −
∑
x

P(X = x) log2 P(X = x) .

This is the average amount of information conveyed by the random variable X. Note that the entropy
H(X) does not depend on the particular values taken by X but only on the probability distribution of
X, that is on the values P(X = x).

This definition fails when one of the sets {X = x} has probability 0. In this case, note that
h(p) = −p log2 p tends to 0 as p ↘ 0. So we should interpret the term −P(X = x) log2 P(X = x) as 0
when P(X = x) = 0. The entropy satisfies H(X) > 0, with equality if and only if X is almost surely
constant.

0 1/e 1

p0

0.2

0.4

0.6

−p log2 p

Lecture 2 3

Example:
Let X be a random variable and consider a function f(X) of X. Then H(f(X)) 6 H(X).

For each value t taken by X set y = f(t), then

P(f(X) = y) =
∑

x:f(x)=y

P(X = x) > P(X = t) .

So we have
H(f(X)) = −

∑
P(f(X) = y) log2 P(f(X) = y)

= −
∑

P(X = x) log2 P(f(X) = f(x))

6 −
∑

P(X = x) log2 P(X = x) .

Example:
Let X : Ω→ {0, 1} be a Bernoulli random variable that takes the value 1 with probability p and 0 with
probability 1− p. Then

H(X) = −p log2 p− (1− p) log2(1− p) .
The graph of this as a function of p is concave:

0 0.5 1

p0

0.2

0.4

0.6

0.8

1

Entropy H(p, 1− p)

The entropy of X is maximal when p = 1
2 , when it is 1.

The entropy is the average amount of information that we gain by knowing the value of X. We
will see later that it is (to within 1) the expected number of yes/no questions we need to ask in order to
establish the value of X. We will use the entropy to measure the amount of information in a message
and hence to determine how much it can be compressed.

Lemma 2.1 Gibbs’ inequality
Let X be a discrete random variable that takes different values with probabilities (pk)Kk=1, so

∑
pk = 1.

If (qk)Kk=1 is another set of positive numbers with
∑
qk = 1 then

−
K∑
k=1

pk log2 pk 6 −
K∑
k=1

pk log2 qk .

There is equality if and only if qk = pk for each k.

Lecture 2 4

Proof:
The inequality is equivalent to ∑

pk ln

(
qk
pk

)
6 0 .

Now the natural logarithm function is concave, so its graph lies below the tangent line at the point
(1, 0), that is

ln t 6 t− 1 .

Indeed, the natural logarithm is strictly concave since its second derivative is strictly negative. Hence
ln t < t− 1 unless t = 1. Therefore,∑

pk ln

(
qk
pk

)
6
∑

pk

(
qk
pk
− 1

)
=
∑

(qk − pk) = 0

with equality if and only if qk/pk = 1 for each k. �

Example:
A random variable Y that takes K distinct values with equal probability 1/K has entropy log2K.

If X is any random variable that takes K different values then its entropy is at most log2K.

Thus the entropy is maximal when the values taken by X are all equally likely.
(You should compare this with the results in thermodynamics that entropy is maximal when states are
all equally likely.)

Let X,Y be two random variables, then (X,Y) is also a (vector-valued) random variable with
entropy H(X,Y). This is called the joint entropy of X and Y . Gibbs’ inequality (2.1) enables us to
prove:

Corollary 2.2
Let X,Y be discrete random variables. Then the joint entropy satisfies

H(X,Y) 6 H(X) +H(Y)

with equality if and only if X and Y are independent.

Proof:
The joint entropy is

H(X,Y) = −
∑

P(X = x, Y = y) log2 P(X = x, Y = y) .

The products P(X = x)P(Y = y) sum to 1 and so Gibbs’ inequality gives

H(X,Y) = −
∑

P(X = x, Y = y) log2 P(X = x, Y = y)

6 −
∑

P(X = x, Y = y) log2 P(X = x)P(Y = y)

= −
∑

P(X = x, Y = y) (log2 P(X = x) + log2 P(Y = y))

= −
∑

P(X = x) log2 P(X = x)−
∑

P(Y = y) log2 P(Y = y)

with equality if and only if

P(X = x, Y = y) = P(X = x)P(Y = y) for all x, y .

This is the condition that X and Y are independent random variables. �

Lecture 2 5

Example:
Let X be a random variable that takes D values each with probability 1/D. Then X has entropy log2D.
Now suppose that X1, X2, . . . , XN are independent random variables each with the same distribution
as X. Then the entropy of the sequence (X1, X2, . . . , XN) is N log2D.

We can refine the last corollary by considering conditional distributions. If x is a value taken by
the random variable X with non-zero probability, then the conditional distribution of another random
variable Y given X = x is

P(Y = y|X = x) =
P(X = x, Y = y)

P(X = x)
.

This gives a random variable (Y |X = x). Now observe that

H(X,Y) = −
∑

P(X = x, Y = y) log2 P(X = x, Y = y)

H(X) = −
∑

P(X = x, Y = y) log2 P(X = x)

so

H(X,Y)−H(X) = −
∑

P(X = x, Y = y) log2

P(X = x, Y = y)

P(X = x)

= −
∑

P(X = x)P(Y = y|X = x) log2 P(Y = y|X = x)

=
∑

P(X = x)H(Y |X = x) .

This is called the conditional entropy H(Y |X), so

H(Y |X) = H(X,Y)−H(X) .

Now observe that, for each value x, we have

H(Y |X = x) > 0

with equality if and only if (Y |X = x) is almost surely constant. Therefore,

H(X,Y)−H(X) = H(Y |X) > 0

with equality if and only if Y is almost surely a function of X. These results show that

H(X) +H(Y) > H(X,Y) > H(X) .

Lecture 2 6

3: CODING

3.1 Prefix-free Codes

Suppose that we encode a message m = a1a2a3 . . . aN using the function c : A → B∗. Each letter
a in the alphabet A is replaced by the code word c(a), which is a finite sequence of letters from the
alphabet B. The entire message m is coded as

c∗(m) = c(a1)c(a2)c(a3) . . . c(aN) .

Here c∗ is the induced map c∗ : A∗ → B∗. To be useful, it must be possible to decode c∗(m) and recover
the original message m. In this case we say that c is decodable (or decipherable). This means that c∗

must be injective.

In order for c to be decodable, the coding function c : A → B∗ must certainly be injective. However,
this is not sufficient. For example, the code c that sends the nth letter to a string of n 0s is injective
but c∗ is not injective since every coded message is a string of 0s.

Let w be a word in B∗, that is a finite sequence of letters from B. Another word w′ is a prefix of
w if w is the concatenation of w′ with another word w′′, so w = w′w′′. A code c : A → B∗ is prefix-free
if no code word c(a) is a prefix of a different code word c(a′).

Example:
The code

c : {0, 1, 2, 3} → {0, 1}∗

which maps
c : 0 7→ 0

c : 1 7→ 10

c : 2 7→ 110

c : 3 7→ 111

is prefix-free. However, if we reversed each of the code words we would not have a prefix-free code but
it would still be decadable.

Any prefix-free code is decodable. For, if we receive a message w ∈ B∗ we can decode it by looking
at the prefixes of w. One of these must be c(a1) for some letter a1 ∈ A. Since the code is prefix-free,
this letter a1 is unique. Now delete this prefix and repeat the process to find a2 etc. Not only can we
decode the message but we can decode it as it is received: We do not need to wait for the end of the
message to decode the first letter. As soon as we have received all of c(an) we can tell what an was. For
this reason, prefix-free codes are sometimes called instantaneous codes or self-punctuating codes. They
are especially convenient and we will almost always use them.

We can also think about prefix-free codes in terms of trees. For the alphabet B draw a tree with a
base vertex at the empty string ∅ and vertices labelled by words in B∗. Each vertex w is joined to the
vertices wb for each letter b ∈ B. The prefixes of a word w are then all of the vertices of the tree on the
path from the base vertex ∅ to w. So, a code is prefix-free if the path from any code word to the base
vertex contains no other code word. This is a useful way to think about prefix-free codes.

The vertices at level N in this tree are those N steps from the base vertex, so those labelled by
words of length N .

Lecture 3 7

Example:
The tree for the example code above is:

∅

0

1

00

01

11

10

000

001

010

011

111

110

101

100

c(0)

c(1)

c(2)

c(3)

Level 0 1 2 3

3.2 Kraft’s Inequality

Proposition 3.1 Kraft’s Inequality I
Let c : A → B∗ be a prefix-free code with the code word c(a) having length l(a). Then∑

a∈A
D−l(a) 6 1 (∗)

where D = |B| is the number of letters in the alphabet B.

Proof:
Let L = max{l(a) : a ∈ A}. Consider the tree constructed from the prefix-free code c. The

vertices at level L are those corresponding to words of length L, so there are DL such vertices.

A code word c(a) with length l(a) is a prefix of DL−l(a) such vertices. Moreover, since c is prefix-
free, no level L vertex can have two code words as a prefix. Hence, the total number of level L vertices
with code words as prefixes is ∑

a∈A
DL−l(a)

Lecture 3 8

and this can be at most the total number of level L vertices: DL. So∑
a∈A

D−l(a) 6 1

as required. �

The converse to this is also true.

Proposition 3.2 Kraft’s Inequality II
Let A,B be finite alphabets with B having D letters. If l(a) are positive integers for each letter a ∈ A,
satisfying ∑

a∈A
D−l(a) 6 1

then there is a prefix-free code c : A → B∗ with each code word c(a) having length l(a).

Proof:
First re-order the letters in A as a1, a2, . . . , aK so that the lengths lj = l(aj) satisfy

l1 6 l2 6 l3 6 . . . 6 lK .

We will define the code c inductively.

Choose any word of length l1 as c(a1).

Suppose that c(aj) has been chosen for j < k so that no c(ai) is a prefix of c(aj) for i < j < k.
Consider the words of length lk. There are Dlk of these. Of these, Dlk−lj have c(aj) as a prefix.
However, the given inequality shows that

1 +

k−1∑
j=1

Dlk−lj =

k∑
j=1

Dlk−lj 6 Dlk .

So we can choose a word c(ak) of length lk which does not have any c(aj) (for j < k) as a prefix.

By induction, we can construct the required prefix-free code. �

Note that the code constructed above is far from unique.

Kraft’s inequality was strengthened by McMillan who showed that it holds for any decodable code,
even if it is not prefix-free. This means that if we are concerned only with the lengths of the code words
we need only ever consider prefix-free codes.

Proposition 3.3 McMillan
Let c : A → B∗ be a decodable code with the code word c(a) having length l(a). Then∑

a∈A
D−l(a) 6 1 (∗)

where D = |B| is the number of letters in the alphabet B.

Lecture 3 9

Proof:
Let L be the maximum length of code word c(a).

Consider the power (∑
a∈A

D−l(a)
)R

for a natural number R. If we expand the bracket we obtain an expression of the form:∑
D−(l(a1)+l(a2)+...+l(aR))

where the sum is over all sequences a1, a2, a3, . . . , aR of length R. Now the word

w = c(a1)c(a2)c(a3) . . . c(aR) ∈ B∗

has length
|w| = l(a1) + l(a2) + . . .+ l(aR) 6 RL .

Since c is decodable, every word w ∈ B∗ with length |w| = m can come from at most one sequence
a1a2 . . . aR. Hence, (∑

a∈A
D−l(a)

)R
6

RL∑
m=1

n(m)D−m

where n(m) is the number of words w of length m that are of the form c(a1)c(a2)c(a3) . . . c(aR). The
total number of words of length m is at most Dm, so n(m) 6 Dm. Therefore(∑

a∈A
D−l(a)

)R
6

RL∑
m=1

DmD−m = RL .

Taking Rth roots gives ∑
a∈A

D−l(a) 6 (RL)1/R

and taking the limit as R→∞ gives the desired result. �

Lecture 3 10

4: EFFICIENT CODES

There is often a cost for each letter transmitted through a channel, either a financial cost or a cost
in terms of space or time required. So we try to find codes where the expected length of code words is
as small as possible. We will call such a code optimal.

4.1 Shannon – Fano Codes

Let c : A → B∗ be a code. We will assume that this code is decodable and, indeed, prefix-free. For
each letter a ∈ A, the code word c(a) has length |c(a)|. We wish to find codes where the expected value
of this length is as small as it can be. To find an expected value we need to fix a probability distribution
on A. Let p(a) be the probability of choosing the letter a ∈ A. Then the expected length of a code word
is ∑

a∈A
p(a)|c(a)| .

It is convenient to let A be a random variable that takes values in A with P(A = a) = p(a). Then
the expected length of a code word is

E|c(A)| .

Kraft’s inequality (3.1) shows that the lengths of the code words l(a) = |c(a)| must satisfy∑
D−l(a) 6 1 . (∗)

Moreover, Proposition 3.2 shows that if we have any positive integers l(a) which satisfy (∗), then there
is a prefix-free code with code word lengths l(a). Hence we need to solve the optimisation problem:

Minimize
∑

p(a)l(a) subject to
∑

D−l(a) 6 1 and each l(a) an integer.

It is informative to first solve the simpler optimization problem where we do not insist that the
values l(a) are all integers.

Example:
Show that the minimum value of

∑
p(a)l(a) subject to

∑
D−l(a) 6 1 occurs when

l(a) = − logD p(a) = − log2 p(a)

log2D
.

If we define l(a) by this formula then we certainly have∑
D−l(a) =

∑
p(a) = 1

and the expected length of code words becomes∑
p(a)l(a) =

−∑ p(a) log2 p(a)

log2D
=

H(A)

log2D
.

We need to show that for any values l(a) that satisfy
∑
D−l(a) 6 1 we have

−∑ p(a) log2 p(a)

log2D
6
∑

p(a)l(a) .

Set S =
∑
D−l(a) and q(a) = D−l(a)/S. Then

∑
q(a) = 1 and Gibbs’ inequality (2.1) shows that

−
∑

p(a) log2 p(a) 6 −
∑

p(a) log2 q(a) =
∑

p(a) (l(a) log2D + log2 S)

=
(∑

p(a)l(a)
)

log2D + log2 S 6
(∑

p(a)l(a)
)

log2D

as required.

Lecture 4 11

Proposition 4.1
Let A be a random variable that takes values in a finite alphabet A. For any decodable code c : A → B∗
the expected length of code words satisfies

E|c(A)| > H(A)

log2D

where D is the number of letters in B.

Proof:
Kraft’s inequality (3.1) shows that the lengths l(a) = |c(a)| must satisfy

∑
D−l(a) 6 1. Hence,

we see as in the example above, that

∑
p(a)l(a) >

H(A)

log2D

as required. �

We can not always find a code that achieves equality in Proposition 4.1. However, a very simple
argument shows that we can get close.

Proposition 4.2 Shannon – Fano encoding
Let A be a random variable that takes values in a finite alphabet A. There is a prefix-free code
c : A → B∗ for which the expected length of code words satisfies

E|c(A)| < 1 +
H(A)

log2D

where D is the number of letters in B.

Proof:
Kraft’s inequality shows that we only need to find integers l(a) that satisfy

∑
p(a)l(a) < 1 +

H(A)

log2D
and

∑
D−l(a) 6 1 .

If the lengths l(a) are to be integers, then we can not always take l(a) = − logD p(a). However, we can
set

l(a) = d− logD p(a)e .

For this choice of l(a) we have

− logD p(a) 6 l(a) so p(a) > D−l(a) .

This certainly implies that
∑
D−l(a) 6 1, so there is a prefix-free code with these word lengths. More-

over, ∑
p(a)l(a) <

∑
p(a) (1− logD p(a)) = 1−

∑
p(a) logD p(a) = 1 +

H(A)

log2D
.

Given the word lengths l(a), we can now use Proposition 3.2 to construct the desired code c. �

Lecture 4 12

The code produced in this way is called a Shannon – Fano code. It is not quite optimal but is easy
to construct and has expected word lengths very close to the optimal value.

Example:
The elements of the alphabet A = {0, 1, 2, 3} are taken with probabilities 0.4, 0.3, 0.2, 0.1. So we find:

a p(a) − log2 p(a) d− log2 p(a)e
0 0.4 1.32 2
1 0.3 1.74 2
2 0.2 2.32 3
3 0.1 3.32 4

Hence we see that a Shannon – Fano code is

c :0 7→ 00

c :1 7→ 01

c :2 7→ 100

c :3 7→ 1100

This code has E|c(A)| = 2.4 while the entropy is H(A) = 1.85. So we have, as expected,

H(A) 6 E|c(A)| < H(A) + 1 .

This code does not achieve the smallest possible value for E|c(A)|. For the code

h :0 7→ 0

h :1 7→ 10

h :2 7→ 110

h :3 7→ 111

has E|h(A)| = 1.9. (This is indeed the optimal value and h is a Huffman code.)

The two propositions 4.1 and 4.2 together give:

Theorem 4.3 Shannon’s noiseless coding theorem
Let A be a random variable that takes values in a finite alphabet A. An optimal code c : A → B∗ for
an alphabet B of size D satisfies

H(A)

log2D
6 E|c(A)| < H(A)

log2D
+ 1 .

Example:
We can ask any questions with a yes or no answer about the value taken by the random variable A.
What is the average number of questions we need to ask to determine the value of A?

Each question gives a map

A → {0, 1} ; a 7→
{

1 if the answer is yes for a;
0 if the answer is no for a.

The sequence of these questions thus gives a code c : A → {0, 1}∗. The sequence of answers determines
the value of a if and only if this code is decodable.

So Shannon’s noiseless coding theorem shows that it is possible to choose the questions with

H(A) 6 E|c(A)| < H(A) + 1 .

Thus the average number of questions required is within 1 of the entropy H(A).

Lecture 4 13

4.2 Huffman Codes

We need to work a little harder to obtain a code that is actually optimal. For simplicity we will
only do this in the case where B is the binary alphabet {0, 1}. Huffman gave an inductive definition of
codes that we can prove are optimal. When Huffman was a graduate student his teacher, Fano, offered
students a chance to avoid the examination at the end of the course by finding an algorithm for optimal
codes. Huffman duly did this.

Let A be a finite alphabet with probabilities p(a). We will label the elements of A as a1, a2, . . . , aK
so that the probabilities pk = p(ak) satisfy

p1 > p2 > p3 > . . . > pK .

When K = 2 the Huffman code is simply

h : {a1, a2} → {0, 1} ; h(a1) = 0 , h(a2) = 1 .

This is clearly optimal. Suppose that a Huffman code has been defined for alphabets of size K − 1.
Choose the two letters in A that have the smallest probabilities: pK−1 and pK . Form a new alphabet

Ã = {a1, a2, . . . , aK−2, aK−1∪aK} by combining the letters aK−1 and aK to give a new letter aK−1∪aK
in Ã that is given the probability pK−1 + pK . Let h̃ : Ã → {0, 1}∗ be a Huffman code for this new

alphabet. Then the Huffman code for A is obtained by adding a 0 or a 1 to the end of the h̃ code words
for aK−1 and aK :

h(aj) =


h̃(aj) for j = 1, 2, . . . ,K − 2;

h̃(aK−1 ∪ aK)0 for j = K − 1;

h̃(aK−1 ∪ aK)1 for j = K .

This defines the Huffman code. It is clearly prefix-free.

Example:
Consider the alphabet A = {0, 1, 2, 3, 4} with probabilities 0.4, 0.2, 0.15, 0.15, 0.1. The letters with the
smallest probabilities are 3 and 4, so combine these to form 3 ∪ 4. This gives {0, 1, 2, 3 ∪ 4} with
probabilities 0.4, 0.2, 0.15, 0.25.

The letters with the smallest probabilities are now 1 and 2, so combine these to form 1 ∪ 2. This
gives 0, 1 ∪ 2, 3 ∪ 4 with probabilities 0.4, 0.35, 0.25.

The letters with the smallest probabilities are now 1∪2, 3∪4, so combine these to form (1∪2)∪(3∪4)
with probability 0.6.

Hence we see that a Huffman code is:

h : 0 7→ 0

h : 1 7→ 100

h : 2 7→ 101

h : 3 7→ 110

h : 4 7→ 111

This has expected code length E|h(A)| = 0.4 + 3× 0.6 = 2.2 compared with an entropy H(A) = 2.15.

What is the Shannon – Fano code? Is it optimal?

We will now prove that Huffman codes are optimal.

Theorem 4.4 Huffman codes are optimal
A Huffman code is optimal. That is, its average length of code words is as small as possible for any
decodable code from the alphabet A into {0, 1}∗.

Lecture 4 14

As above, we label the letters in A as a1, a2, . . . , aK with probabilities p1 > p2 > p3 > . . . > pK > 0.
The random variable A takes the value aj with probability pj . So the average code length is E|c(A)|.

Lemma 4.5 Optimal codes
There is an optimal code c : A → {0, 1}∗ that satisfies:

(a) The lengths lj = |c(aj)| are ordered inversely to the probabilities, so l1 6 l2 6 . . . 6 lK .

(b) The code words c(aK−1) and c(aK) have the same length and differ only in the last bit.

Proof:
We know that there is some prefix-free code for A. Let its expected code length be C. Then

there are only a finite number of codes c with
∑
pklk 6 C. So there must be a prefix-free code that

achieves the minimum value for
∑
pklk. This is an optimal code.

(a) If pi > pj but li > lj , then we could reduce
∑
pklk by interchanging the code words c(ai) and

c(aj). Hence we must have l1 6 l2 6 l3 6 . . . 6 lK .

(b) Let L be the maximum code word length, so L = lK . Write the code word c(aK) as wb where w
is a word of length L− 1 and b is the final bit. Consider the new code we obtain by changing the
single code word c(aK) to w. This reduces the length and so reduces

∑
pj lj . Since c was optimal,

this new code can not be prefix-free. Hence there must be another code word c(aj) that has w as
a prefix. This means that c(aj) and c(aK) are both of length L and differ only in their last bit.

Permute the code words of length L so that c(aK−1) and c(aK) differ only in their last bit. �

We now return to the proof of Theorem 4.4: Huffman codes are optimal. We will prove this by
induction on the size K of A. The result is clear for K = 2. Assume that the result is true for alphabets
with size K − 1.

Let h : A → {0, 1}∗ be a Huffman code and c : A → {0, 1}∗ an optimal code. The construction of

the Huffman code shows that there is a Huffman code h̃ on the new alphabet

Ã = {a1, a2, . . . , aK−2, aK−1 ∪ aK}
of size K − 1. The letters here have probabilities p1, p2, . . . , pK−2, pK−1 + pK respectively and we will

write Ã for a random variable that takes the letters in Ã with these probabilities.. The code h is then
given by

h(aj) =


h̃(aK−1 ∪ aK)0 if j = K − 1;

h̃(aK−1 ∪ aK)1 if j = K;

h̃(aj) if j 6 K − 2.

This means that the expected code length for h and h̃ satisfy

E|h(A)| = E|h̃(Ã)| + (pK−1 + pK) .

For the optimal code c, we apply the lemma (4.5) . So choose c with c(aK−1) and c(aK) differing
only in their last bit, say c(aK−1) = w0 and c(aK) = w1 for a word w ∈ {0, 1}∗. Define a new code on

Ã by setting c̃(aK−1 ∪ aK) = w and c̃(aj) = c(aj) for j 6 K − 2. This is readily seen to be prefix-free
and has

E|c(A)| = E|c̃(Ã)| + (pK−1 + pK) .

The inductive hypothesis shows that h̃ is optimal. So

E|h̃(Ã)| 6 E|c̃(Ã)| .
Therefore,

E|h(A)| 6 E|c(A)| .
However, E|c(A)| is the minimal average code length, so we must have equality and hence h is itself
optimal. �

Lecture 4 15

5: COMPRESSION

Throughout this section A will be an alphabet of K letters. We wish to send messages m =
a1a2a3 . . . with each aj ∈ A. We will let Aj be a random variable that gives the jth letter and we will
assume that each Aj is identically distributed with P(Aj = a) = p(a). We wish to encode the message
by strings in an alphabet B of size D = |B|.

5.1 Block Codes

In the last section we considered a code c : A → B∗. The expected code length for this code is

E|c(A1)| =
∑

p(a)|c(a)| .

The noiseless coding theorem (4.3) showed that there was an optimal code c for which

H(A1)

log2D
6 E|c(A1)| < 1 +

H(A1)

log2D
.

However, rather than encoding the message one letter at a time we could divide it into blocks and
encode each block. Divide the message m into blocks of length r:

m = (a1a2 . . . ar)(ar+1ar+2 . . . a2r)(a2r+1a2r+2 . . . a3r) . . .

Each block is in the new alphabet Ar and we can find an optimal code for this:

cr : Ar → B∗ with
H(A1, A2, . . . , Ar)

log2D
6 E|cr(A1, A2, . . . , Ar)| < 1 +

H(A1, A2, . . . , Ar)

log2D
.

We call this a block code. Of course, such a block code deals with r letters of A at a time and so the

average code length per letter is
E|cr(A1, A2, . . . , Ar)|

r
. This satisfies

H(A1, A2, . . . , Ar)

r log2D
6

E|cr(A1, A2, . . . , Ar)|
r

<
1

r
+
H(A1, A2, . . . , Ar)

r log2D
.

Thus the expected code length per letter is approximately
H(A1, A2, . . . , Ar)

r log2D
.

In Corollary 2.2 we saw that

H(A1, A2, . . . , Ar) 6 H(A1) +H(A2) + . . .+H(Ar)

with equality when the letters A1, A2, . . . are independent. The random variables (Aj) all have the same
distribution so we see that

H(A1, A2, . . . , Ar) 6 rH(A1) .

Consider first the case where the letters (Aj) are independent. Then H(A1, A2, . . . , Ar) = rH(A1)
and so we see that the optimal block code satisfies

H(A1)

log2D
6

E|cr(A1, A2, . . . , Ar)|
r

<
1

r
+
H(A1)

log2D
.

So the expected code length per letter tends to H(A1)/ log2D as the block length r increases to infinity.

We can also deal with more complicated cases where the letters (Aj) are not independent. In
English the letters are far from independent; for example the letter following q is very likely to be u.

Lecture 5 16

As a simple model we will assume that the probability that Aj takes a value aj depends only on the
previous letter Aj−1, so

P(Aj = aj |a1 = a1, A2 = a2, . . . , Aj−1 = aj−1) = P(Aj = aj |Aj−1 = aj−1)

and that this is independent of j. This implies that

H(Aj |A1, A2, . . . , Aj−1) = H(Aj |Aj−1) = H(A2|A1) .

Now we know that

H(A1, A2, . . . , Ar) = H(Ar|A1, A2, . . . , Ar−1) +H(A1, A2, . . . , Ar−1)

so we see that

H(A1, A2, . . . , Ar) = H(Ar|Ar−1)+H(Ar−1|Ar−2)+. . .+H(A2|A1)+H(A1) = (r−1)H(A2|A1)+H(A1).

Hence we see that the expected code length per letter tends to H(A2|A1)/ log2D as r increases to
infinity.

(In the situation described here, the successive letters Aj form a Markov chain with the probability
distribution p(a) as the invariant measure.)

5.2 Compression

The maximum value for the entropy H(A1) arises when all the K letters are equally likely and is
log2K. In this case, the optimal code satisfies

logDK =
H(A1)

log2D
6 E|c(A1)| < 1 +

H(A1)

log2D
= logD(DK) .

There are K possibilities for letters from A. Each letter in the code word c(a) has D possibilities so the
number of code words of length L is DL and this is K when L = logDK, which is approximately the
expected code length. Hence, in this case we do not get any compression of the message.

However, if the distribution of the letters is not uniform, then the entropy H(A1) is strictly less
than log2K and so the optimal code does compress the message.

If we use block codes and the letters in our messages are not independent then there is much greater
scope for compression. For then we know that

H(A1, A2, . . . , Ar)

r
< H(A1)

so the expected code length per letter will be strictly smaller than

1

r
+
H(A1, A2, . . . , Ar)

r log2D
<

1

r
+
H(A1)

log2D
.

The entropy
H(A1, A2, . . . , Ar)

r log2D
measures the amount of information per letter in a block of length

r. This gives us an upper limit on the amount by which we can compress the message (on average)
without loosing information.

Lecture 5 17

6: NOISY CHANNELS

So far we have assumed that each coded message is transmitted without error through the channel
to the receiver where it can be decoded. In many practical applications, there is a small but appreciable
probability of error, so a letter may be altered in the channel. We want to devise codes that detect, or
even correct, such errors.

6.1 Memoryless Channels

A coded message b1b2b3 . . . bN ∈ B∗ is sent through a channel C where each letter bn may be altered
to another. We will assume that any changes to one letter are independent of the other letters and what
happens to them. In this case we say the channel is memoryless. So, if we write Bn for the random
variable that gives the nth letter of the message and B′n for the random variable giving the nth letter
received, then

P(b′1b
′
2b
′
3 . . . b

′
N received |b1b2b3 . . . bN sent) =

N∏
n=1

P(B′n = b′n|Bn = bn) .

This gives a transition matrix
P(B′n = i|Bn = j) for i, j ∈ B

describing how the nth letter is altered. We expect the probability of error to be small, so the probability
P(B′n = i|Bn = i) should be close to 1.

We will also assume that the chances of a particular alteration does not depend on the index n, so
the channel is time independent. Then the transition matrices do not change with n.

Example:
Let B = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and the transition matrix be

P(j received |i sent) =

{ 3
4 when j = i;
1
4 when j = i+ 1;
0 otherwise.

If I send a word b1b2b3 . . . bN , the probability that it is received without error is only (3
4)N .

I can improve the chances of receiving the message without error by sending each letter 3 times in
succession. The probability that at least 2 of the 3 are received without error is then(

3
4

)3
+ 3

(
1
4

) (
3
4

)2
= 27

32 = 0.84375

which is larger than 3
4 . So we have increased the probability of decoding the message without error to(

27
32

)N
albeit at the price of sending a message three times as long.

We can do much better than this. For suppose that we first recode our message using the shorter
alphabet E = {0, 2, 4, 6, 8}. If a letter i ∈ E is sent, then either i or i + 1 is received. In either case we
can tell with certainty that i was sent. So we can decode the message perfectly.

6.2 The Binary Symmetric Channel

For most of this course we will use binary codes for simplicity. When B = {0, 1}, the binary
symmetric channel (BSC) is a time independent, memoryless channel with transition matrix(

1− p p
p 1− p

)
.

Here p is the probability of error in a single bit. Usually it is small. Note that if p = 1
2 then no

information is transmitted, everything is noise. When p = 0 there is no noise and no errors to be
corrected.

Exercise:
In a binary symmetric channel we usually take the probability p of error to be less than 1/2. Why do
we not consider 1 > p > 1/2?

Lecture 6 18

Example:
Punched computer tapes traditionally had 8 spaces per row and used holes to indicate the 1 bit. Of
these bits the first 7 (x1, x2, . . . , x7) carried information while the last x8 was a check digit satisfying:

x1 + x2 + . . . x7 + x8 ≡ 0 (mod 2) . ∗

We can model the chances of errors in the punched tape using a binary symmetric channel with error
probability p. Then the probability of receiving the information x1x2 . . . x7 without error is (1− p)7. If
there is a one error in the 8 bits x1x2 . . . x7x8 then (∗) will not hold for the received message and this
will show that there was an error. In this case the information could be sent again.

Note that, when 2 errors occur, (∗) remains true and we do not know that there has been an error.

For instance, if p = 0.1, then the probability of 0 errors in x1x2 . . . x7 is 0.48, the probability of 1
error that is detected by the check digit is 0.33.

Exercise:
Show that the probability of detecting errors at all using (∗) is 1

2 (1− (1− 2p)8).

6.3 Check Digits

Check digits are used very widely to detect errors.

Example:
University Candidate Numbers are of the form

1234A, 1235B, 1236C, 1237D,

The first 4 digits identify the candidate, while the final letter is a check digit. If a candidate writes one
letter incorrectly, then he or she will produce an invalid candidate number. The desk number can then
be used to correct the error.

Exercise:
Books are identified by the ISBN-10 code. For example:

ISBN 0-521-404568

This consists of 9 decimal digits x1-x2x3x4-x5x6x7x8x9 which identify the publisher, author and title.
The final digit x10 ∈ {0, 1, 2, . . . , 9, X} is a check digit which satisfies

10x1 + 9x2 + 8x3 + . . .+ 2x9 + x10 ≡ 0 (mod 11) .

Check the ISBN number above is valid. Show that altering any single digit or transposing any two
adjacent digits in an ISBN-10 code will always result in an invalid code. Hence such errors can be
detected.

How do check digits work in ISBN-13? Do they detect all single digit errors?

Lecture 6 19

6.4 The Hamming Code

In the earlier lectures we saw that, when there was redundant information in a message, we could
compress it. Alternatively, we can expand a code to add redundant information. This gives us the
possibility of detecting errors or even correcting them.

Hamming produced a binary code that can correct a single error. This code takes a binary word
of length 4 and codes it as a binary word of length 7. When we receive a word we look for the closest
possible code word. Provided that there has been no more than one error in the 7 bits, we can always
find that code word correctly and hence decode it.

The integers modulo 2 form a field F2 and we can use these to represent binary bits. So a binary
string of length N is represented by a vector in the N -dimensional vector space FN2 over F2. Hamming’s
code is given by a linear map C : F4

2 → F7
2. This map is given by the matrix:

C =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 1 1
1 0 1 1
1 1 0 1


.

So a word x ∈ F4
2 is coded as

Cx =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 1 1
1 0 1 1
1 1 0 1



x1
x2
x3
x4

 =



x1
x2
x3
x4

x2 + x3 + x4
x1 + x3 + x4
x1 + x2 + x4


.

The first 4 bits carry the information and the remaining 3 are check digits.

We can check that each column y of the matrix C satisfies

y1 + y3 + y5 + y7 = 0

y2 + y3 + y6 + y7 = 0

y4 + y5 + y6 + y7 = 0 .

†

Hence each code word y = Cx must also satisfy these conditions (†). The converse is also true. Suppose
that y satisfies (†). Then the equations determine y5, y6, y7 in terms of y1, y2, y3, y4. So we see that

y = Cx where x =


y1
y2
y3
y4

 ∈ F4
2 .

Hence the equations (†) determine precisely when y is a code word or not.

We can rewrite the linear equations (†) in matrix terms as

Sy =

 1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

y =

 0
0
0

 .

This matrix S is called the syndrome matrix. We have seen that SCx = 0 for every string x ∈ F4
2.

Indeed, S ◦ C = 0 and the image C(F4
2) is equal to the kernel kerS.

Lecture 6 20

Suppose that the string x ∈ F4
2 is encoded as Cx but an error occurs in the jth bit and nowhere

else. Then we receive
y = Cx + ej

where ej is the vector with 1 in the jth place and 0s elsewhere. We know that Cx satisfies (†) but ej
does not. Hence

Sy = SCx + Sej ,

which is the jth column of the syndrome matrix S. Note that this jth column is simply the bits of j
expanded in binary and reversed. For example

Se6 =

 0
1
1

 corresponds to 1102 = 6 .

In this way we can tell where the error occurred. Since the error is a change from 0 to 1 or 1 to 0, we
can then correct it.

If I receive a message y in which two bits have errors, say y = Cx + ei + ej , then the syndrome is

Sy = Sei + Sej .

Since i and j are different, the syndromes Sei and Sej are also different. So their sum Sei +Sej is not
zero. Hence Sy is non-zero and tells us that there have been errors. However, it does not tell us what
those errors are. For example, if we receive the string 1000000, then the syndrome is 100. This may
have arisen from the code word 0000000 with one error or the code word 1000011 with two errors.

To summarise, the Hamming code detects 2 errors and can correct 1 error.

We can measure the distance between two vectors y and z in FN2 by counting the number of places
where they differ. This gives

d(y, z) = |{j : yj 6= zj}| ,
which is called the Hamming distance. So the Hamming distance is the number of bit errors required
to change y to z. It is simple to see that this is a metric on FN2 and we will always use this metric.

Let x and x′ be two different strings in F4
2, and Cx, Cx′ the corresponding code words. Their

difference
Cx′ − Cx = C(x′ − x)

is the sum of some of the columns of the matrix C. It is easy to check that each such sum has at least
3 non-zero bits. So d(Cx′, Cx) must be at least 3. It can be 3, for example d(1000011, 0001111) = 3.

Suppose that we receive a string y ∈ F7
2 and wish to decode it. If y is a code word Cx then we

decode it as x. If there is one error in y, we can use the syndrome to find and correct that error. So
we find a string x ∈ F4

2 with d(y, Cx) = 1. If there are two errors, it is natural to look for the string
x ∈ F4

2 for which Cx is closest to y, that is

d(y, Cx)

is minimal. We would then guess that y arose from x with d(y, Cx) errors. The guess may not be
unique. For example, if we receive 0000001, this is at distance 2 from both 1000011 = C(1000) and
0100101 = C(0100).

Lecture 6 21

7: ERROR CORRECTING CODES

In this lecture we will consider only codes c : A → BN of constant length N . We will use the
discrete metric on B:

d(b, v) =

{
0 when b = v;
1 when b 6= v .

The Hamming distance on BN is then

d(b,v) =

N∑
j=1

d(bj , vj) .

It is clear that this is a metric on BN . Note that the Hamming distance d(c,v) counts the number of
co-ordinates where b and v differ. When a word b ∈ BN is transmitted through a noisy channel, we
receive an altered word v. The Hamming distance d(b,v) counts the number of letters that have been
altered.

7.1 Decoding with Errors

Suppose that a word b ∈ BN is sent through a noisy channel and received as v ∈ BN . We then
wish to decode this. Because of the errors introduced by the channel, the word we receive may not be
a code word at all and certainly not the code word b that was sent. How should we guess b when we
know v?

We will consider, briefly, three possible decoding rules. Suppose that v ∈ BN has been received.

Ideal Observer
Decode v as the word b with P(b sent | v received) maximal. This is a sensible choice if we know
enough to find the maximum. In most cases we do not.

Maximum Likelihood
Decode v as the word b with P(v received | b sent) maximal. This is usually easier to find.

Minimum Distance
Decode v as the word b with d(b,v) minimal.

Proposition 7.1
If all the code words are equally likely, then the ideal observer and maximum likelihood rules give the
same result.

Proof:
We know that

P(v received | b sent) =
P(v received and b sent)

P(b sent)
= P(b sent | v received)

P(v received)

P(b sent)
.

So, if all the code words are equally likely, then the ideal observer rule and the maximum likelihood rule
give the same result. �

Proposition 7.2
If letters are transmitted through a binary symmetric channel with error probability p < 1

2 , then the
maximum likelihood and minimum distance rules give the same result.

Lecture 7 22

Proof:

P(v received | b sent) =

N∏
j=1

P(vj received |bj sent) = pd(1− p)N−d = (1− p)N
(

p

1− p

)d

where d is the number of terms where vj 6= bj . Hence d is the Hamming distance d(v, b). Since
0 6 p/(1− p) < 1 we see that P(v received | b sent) is maximal when d(b,v) is minimal. �

We will generally use the minimum distance decoding rule.

7.2 Error Detecting and Error Correcting

Throughout this section we will use binary codes c : A → {0, 1}N . This is for simplicity since the
results can easily be adapted to more general alphabets. Recall that the code words are the words c(a)
for a ∈ A. We will write K for the number of these K = |A|. If a word b = c(a) is sent, then we
receive a word v ∈ {0, 1}N . We decode this by finding the code word c(a′) closest to v, so d(c(a′),v) is
minimal.

The ball of radius r centred on b ∈ {0, 1}N is

B(b, r) = {v ∈ {0, 1}N : d(b,v) < r} .

Its volume is the number of points that it contains:

|B(b, r)| =
∑

06k<r

(
N

k

)
.

This is clearly independent of the centre b and we will denote it by V (N, r). It is reasonably simple to
estimate the size of V (N, r) and we will do so later.

The code c : A → {0, 1}N is e-error detecting if, whenever no more than e letters in a code word
c(a) are altered, the received word is not a different code word c(a′). This means that we can tell if
there have been errors, provided that there are at most e of them.

The code c : A → {0, 1}N is e-error correcting if, whenever no more than e letters in a code word
c(a) are altered, the received word is still decoded as a using the minimum distance decoding rule.

The minimum distance for a code c : A → {0, 1}N is

δ = min {d(c(a), c(a′)) : a, a′ ∈ A with a 6= a′} .

For this we immediately have:

Proposition 7.3 Minimum distance for a code
Let the code c : A → {0, 1}N have minimum distance δ > 0.

(a) c is (δ − 1)-error detecting and not δ-error detecting.

(b) c is b 12 (δ − 1)c-error correcting but not b 12 (δ + 1)c-error correcting

Lecture 7 23

Note that b 12 (δ + 1)c = b 12 (δ − 1)c + 1.

Proof:

(a) Clearly no code word other than c(a) can lie within a distance δ − 1 of c(a). However, there are
two letters a1, a2 ∈ A with d(c(a1), c(a2)) = δ, so c is not δ-error detecting.

(b) If a′ 6= a, and d(c(a),v) 6 b 12 (δ − 1)c, then the triangle inequality gives

d(c(a′),v) > d(c(a′), c(a))− d(c(a),v) > δ − b 12 (δ − 1)c > b 12 (δ − 1)c .

So c is b 12 (δ−1)c-error detecting. However, there are two letters a1, a2 ∈ A with d(c(a1), c(a2)) = δ,
so c(a1) and c(a2) differ in exactly δ places. Choose b 12 (δ + 1)c of these places and change c(a1) in
these to get a word v with

d(v, c(a1)) = b 12 (δ + 1)c and d(v, c(a2)) = δ − b 12 (δ + 1)c 6 b 12 (δ + 1)c .

So c can not be b 12 (δ + 1)c-error correcting. �

Example:
For the repetition code, where each letter is repeated m-times, the minimum distance is m, so this code
is (m− 1)-error detecting and b 12 (m− 1)c-error correcting.

For a code A → {0, 1}N where the Nth bit is a check digit, the minimum distance is 2, so this code
is 1-error detecting and 0-error correcting.

For the Hamming code h : {0, 1}4 → {0, 1}7, the minimum distance is 3, so the Hamming code is
2-error detecting and 1-error correcting.

7.3 Covering Estimates

Observe that the code c : A → {0, 1}N is e-error correcting precisely when the balls B(c(a), e+ 1)
for a ∈ A are disjoint. We can use this to estimate the number of code words for such a code.

Proposition 7.4 Hamming’s bound
If c : A → {0, 1}N is an e-error correcting code, then the number of code words K = |A| must satisfy

K 6
2N

V (N, e+ 1)
.

Proof:
First note that

B(c, e+ 1) = {v ∈ {0, 1}N : d(c,v) < e+ 1} = {v ∈ {0, 1}N : d(c,v) 6 e}

so the open ball B(c, e+ 1) is the closed ball of radius e.

When c is e-error correcting, the balls B(c(a), e+ 1) for a ∈ A must be disjoint. Hence their total
volume KV (N, e+ 1) is at most equal to the volume of all of {0, 1}N , which is 2N . �

Lecture 7 24

A code is said to be perfect if it is e-error correcting for some e and the balls B(c(a), e + 1) cover
all of {0, 1}N . This is the case when there is equality in Hamming’s bound. For example, Hamming’s
code is 1-error correcting, K = 24, N = 7 and

V (7, 2) =

(
7

0

)
+

(
7

1

)
= 8 .

So K = 24 = 27/8 = 2N/V (7, 2) and the code is perfect.

We can also use a similar idea to give a lower bound.

Proposition 7.5 Gilbert – Shannon - Varshamov bound
There is an e-error detecting code c : A → {0, 1}N with the number of code words K = |A| satisfying

K >
2N

V (N, e+ 1)
.

Proof:
For an e-error detecting code, no code word other than c(a) can lie within the ball B(c(a), e+1).

Choose a maximal set C of code words satisfying this condition and let K = |C|. If there were any word
v not in the union ⋃

c∈C
B(c, e+ 1)

then we could add it to C, contradicting maximality. Therefore,⋃
c∈C

B(c, e+ 1) = {0, 1}N .

The volume of each ball is V (N, e + 1), so the volume of their union is no more than KV (N, e + 1).
Hence KV (N, e+ 1) > 2N . �

Corollary 7.6
Let c : A → {0, 1}N be a code with minimum distance δ. Then

K = |A| 6 2N

V (N, b 12 (δ + 1)c) .

Moreover, there is a code with minimum distance δ and

K = |A| > 2N

V (N, δ)
.

�

7.4 Asymptotics for V (N, r)

We wish to use the Hamming and Gilbert – Shannon – Varshamov bounds of the last section to
give asymptotic estimates on how large error correcting codes are. To do this we need to determine the
asymptotic behaviour of the volumes V (N, r). It will be useful to describe this in terms of the entropy
of a Bernoulli random variable that takes two values with probability q and 1− q. We will denote this
by

h(q) = −q log2 q − (1− q) log2(1− q) .

Lemma 7.7 Asymptotics of binomial coefficients
For natural numbers 0 6 r 6 N we have

1

N + 1
2Nh(q) 6

(
N

r

)
6 2Nh(q)

where q = r/N .

Lecture 7 25

Proof:
Let X be a Bernoulli B(N, q) random variable, so

P(X = k) =

(
N

k

)
qk(1− q)N−k .

(The entropy of X is H(X) = Nh(q).) It is simple to check that this probability is maximal when
k = r = qN . Therefore,

P(X = r) 6
N∑
k=0

P(X = k) = 1 6 (N + 1)P(X = r) .

This means that

1

N + 1
6 P(X = r) =

(
N

r

)
qr(1− q)N−r =

(
N

r

)
2−Nh(q) 6 1 .

The result follows when we observe that

2−Nh(q) = qNq(1− q)N(1−q) = qr(1− q)N−r .
�

Exercise:

Use Stirling’s formula

[
n! ∼

√
2πn

nn

en

]
to describe the behaviour of

(
N

r

)
in terms of the entropy

h(r/N).

Proposition 7.8 Asymptotics of V (N, r)
For a natural number N and 0 < r < 1

2N

V (N, r) 6 2Nh(q)

for q = r/N and
1

N + 1
2Nh(q

′) 6 V (N, r)

for q′ = (dre − 1)/N .

Proof:
V (N, r) is the number of points in an open ball of radius r in {0, 1}N , so

V (N, r) =
∑

06k<r

(
N

k

)
.

Since q = r/N 6 1
2 , we have qk(1− q)N−k 6 qr(1− q)N−r for 0 6 k < r. So

1 =
∑

06k6N

(
N

k

)
qk(1− q)N−k >

∑
06k<r

(
N

k

)
qk(1− q)N−k

>

 ∑
06k<r

(
N

k

) qr(1− q)N−r = V (N, r)qr(1− q)N−r .

This shows that V (N, r) 6 2Nh(q).

For the other inequality, let k = dre − 1 so k is the largest integer strictly smaller than r. Then

V (N, r) >

(
N

k

)
>

1

N + 1
2Nh(q

′)

because of Lemma 7.7 . �

Lecture 7 26

Consider a code c : A → {0, 1}N . If A is a a random variable taking values in the alphabet A then
information is transmitted through the channel at a rate

H(A)

N
.

This is largest when A is equally distributed over the K possible values. Then it is

log2K

N
.

Choose q with 0 < q < 1
2 . Hamming’s bound (Proposition 7.4) shows that

log2K

N
6 1− log2 V (N, qN)

N

for (qN −1)-error correcting codes. The last proposition now shows that the right side tends to 1−h(q)
as N →∞.

Similarly, the Gilbert – Shannon – Varshamov bound Proposition 7.5 shows that there are (qN−1)-
error detecting codes with information rate

log2K

N
> 1− log2 V (N, qN)

N

and the right side tends to 1− h(q) as N →∞.

Lecture 7 27

8: INFORMATION CAPACITY

8.1 Mutual Information

We wish to determine how much information can be passed successfully through a noisy channel
for each bit that is transmitted. Consider a time-independent, memoryless channel. If a random letter
B ∈ B is sent through the channel, then a new random letter B′ is received. Because the channel is
noisy, B′ may differ from B.

The average amount of information given by B is the entropy H(B), while the average amount of
information received is H(B′). The information received is partly due to B and partly due to the noise.
The conditional entropy H(B′|B) is the amount of information in B′ conditional on the value of B, so
it is the information due to the noise in the channel. The remaining information

H(B′)−H(B′|B)

is the part that is due to the letter B that was sent. It is the amount of uncertainty about B′ that is
removed by knowing B. We therefore define the mutual information of B and B′ to be

I(B′, B) = H(B′)−H(B′|B) .

Proposition 8.1 Mutual Information
The mutual information satisfies:

I(B′, B) = H(B′) +H(B)−H(B′, B) = I(B,B′) .

Furthermore,

(a) I(B′, B) > 0 with equality if and only if B′ and B are independent.

(b) I(B′, B) 6 H(B′) with equality if and only if B′ is a function of B.

(c) I(B′, B) 6 H(B) with equality if and only if B is a function of B′.

Proof:
Recall from Lecture 2 that the conditional entropy satisfies H(B′|B) = H(B′, B)−H(B), so

I(B′, B) = H(B′)−H(B′|B) = H(B′)−H(B′, B) +H(B)

and the left side is clearly symmetric.

(a) Corollary 2.2 shows that I(B′, B) > 0 with equality if and only if B and B′ are independent.

(b) We always have H(B′|B) > 0 with equality if and only if B′ is a function of B.

(c) Since I(B′, B) = I(B,B′) part (c) follows from (b). �

Lecture 8 28

In our case, the distribution P(B = b) is known as are the transition probabilities P(B′ = b′|B = b).
From these we can calculate both

P(B′ = b′, B = b) = P(B′ = b′|B = b)P(B = b)

and

P(B′ = b′) =
∑
b∈B

P(B′ = b′|B = b)P(B = b) .

Thence we can find the entropies H(B), H(B′), H(B′, B) and the mutual information. If the channel
has no noise, then B′ = B and the proposition shows that the mutual information is just the entropy
H(B).

The information capacity of the channel is the supremum of the mutual information I(B′, B)
over all probability distributions for B. The probability distribution of B is given by a point p =
(p(a1), p(a2), . . . , p(AK)) in the compact set {p ∈ [0, 1]K :

∑
pk = 1}. The mutual information is

a continuous function of p, so we know that the supremum is attained for some distribution. This
information capacity depends only on the transition probabilities P(B′|B).

Proposition 8.2 Information capacity of a BSC
A binary symmetric channel with probability p of error has information capacity 1− h(p).

Proof:
Suppose that the letter B has the distribution P(B = 1) = t , P(B = 0) = 1 − t. Then the

entropy of B is

H(B) = H(1− t, t) = −t log2 t− (1− t) log2(1− t) = h(t) .

The conditional entropy is

H(B′|B) = P(B = 1)H(B′|B = 1) + P(B = 0)H(B′|B = 0)

= tH(1− p, p) + (1− t)H(p, 1− p) = h(p) .

The distribution of B′ is

P(B′ = 1) = t(1− p) + (1− t)p = t+ p− 2tp , P(B′ = 0) = tp+ (1− t)(1− p) = 1− t− p+ 2tp

so its entropy is

H(B′) = h(t+ p− 2tp) .

Therefore the mutual information is

I(B′, B) = H(B′)−H(B′|B) = h(t+ p− 2tp)− h(p) .

We can choose any distribution for B and so take any t between 0 and 1. The maximum value for
h(t+ p− 2tp) is 1 which is attained when t = 1

2 and t+ p− 2tp = 1
2 . So the information capacity of the

binary symmetric channel is 1− h(p). �

Lecture 8 29

0 0.5 1

p0

0.2

0.4

0.6

0.8

1

Capacity of a BSC(p)

Note that, when p = 0 or 1, the channel transmits perfectly and the information capacity is 1.
When p = 1

2 , no information is transmitted and the capacity is 0.

We often wish to consider using the same channel repeatedly, for example, when we wish to transmit
a word in {0, 1}N by sending the N bits one at a time through a binary symmetric channel. We can
also think of this as having N copies of the channel in parallel and sending the jth bit through the jth
channel. It is simple to compute the capacity in such a situation.

Proposition 8.3 The capacity of parallel channels
Let Q be a channel that transmits letters from the alphabet B and has capacity Cap(Q). Form a new
channel QN that transmits an N -tuple (b1, b2, . . . , bN) ∈ BN one letter at a time through the channel
Q with each use being independent of the others. Then the capacity of QN is NCap(Q).

Proof:
Let B = (B1, B2, . . . , BN) be a random variable taking values in the product alphabet BN and

let B′ = (B′1, B
′
2, . . . , B

′
N) be the random variable we receive after sending B through the channel QN .

For each vector b = (b1, b2, . . . , bN) we know that

H(B′|B = b) =
∑

H(B′j |Bj = bj)

because, once we condition on the B, each B′j is independent of all the other letters received. Therefore,

H(B′|B) =
∑

H(B′j |Bj) .

Also,

H(B′) 6
∑

H(B′j)

with equality if and only if the (B′j) are independent.

Thus

I(B′,B) = H(B′)−H(B′|B) 6
N∑
j=1

H(B′j)−H(B′j |Bj) =

N∑
j=1

I(B′j , Bj)

Lecture 8 30

and there is equality if and only if the (B′j) are independent. This shows that Cap(QN) 6 NCap(Q).

Now choose the distribution of Bj so that Cap(Q) = I(B′j , Bj) and the (Bj) are independent. Then
the (B′j) are also independent and

I(B′,B) = NCap(Q)

so the product channel QN has capacity NCap(Q). �

Exercise:
Use a similar argument to show that the capacity of independent channels Qj in parallel is

∑
Cap(Qj).

Suppose that we send a random variable X through a channel and receive Y with mutual informa-
tion I(X,Y). If we apply a function f to Y then it is intuitively clear that the information transmitted
from X to f(Y) is no larger than that transmitted from X to Y . The next Proposition proves this
rigorously.

Proposition 8.4 Functions do not increase mutual information
Let X,Y be random variable and f a function defined on the values taken by Y , then

I(X, f(Y)) 6 I(X,Y) .

Similarly, I(f(Y), X) 6 I(Y,X).

Proof:
We know from Corollary 2.2 that H(A,B) 6 H(A) + H(B). Applying this to the random

variables conditioned on the value of Z gives

H(X,Y |Z) 6 H(X|Z) +H(Y |Z) .

This is equivalent to

H(X,Y, Z)−H(Z) 6 H(X,Z)−H(Z) +H(Y,Z)−H(Z)

⇔ H(X) +H(Z)−H(X,Z) 6 H(X) +H(Y,Z)−H(X,Y, Z)

⇔ I(X,Z) 6 I(X, (Y,Z))

If we set Z = f(Y), then H(Y, Z) = H(Y) and H(X,Y, Z) = H(X,Y) so I(X, (Y, Z)) = I(X,Y). Thus
we have

I(X, f(Y)) 6 I(X,Y)

as required.

Since I(X,Y) is symmetric (Proposition 8.1), we also have I(X, f(Y)) 6 I(X,Y). �

Exercise:
Data Processing Inequality
Consider two independent channels in series. A random variable X is sent through channel 1 and
received as Y . This is then sent through channel 2 and received as Z. Prove that I(X,Z) 6 I(X,Y),
so the further processing of the second channel can only reduce the mutual information. (The last
proposition established this when the second channel has no noise.)

The independence of the channels means that, if we condition on the value of Y , then (X|Y = y)
and (Z|Y = y) are independent. Deduce that

H(X,Z|Y) = H(X|Y) +H(Z|Y) .

By writing the conditional entropies as H(A|B) = H(A,B)−H(B), show that

H(X,Y, Z) +H(Z) = H(X,Y) +H(Y,Z) .

Define I(X,Z|Y) as H(X|Y) +H(Z|Y)−H(X,Z|Y) and show that

I(X,Z|Y) = I(X,Y)− I(X,Z) .

Deduce from this the data processing inequality:

I(X,Z) 6 I(X,Y) .

When is there equality?

Lecture 8 31

9: FANO’S INEQUALITY

9.1 A Model for Noisy Coding

We will, eventually, prove Shannon’s Coding Theorem which shows that we can find codes that
transmit messages through a noisy channel with small probability of error and at a rate close to the
information capacity of the channel. These are very good codes. Unfortunately, Shannon’s argument is
not constructive and it has proved very difficult to construct such good codes. In the remainder of this
section we will show that the rate at which a code transmits information can not exceed the information
capacity of the channel without the probability of error being large.

The situation we face is as follows. We wish to transmit a message written in the alphabet A of
size K. Let A be a random variable that takes values in A. Then H(A) 6 log2K with equality when
all K letters in A are equally likely. We will assume that this is the case.

We choose a constant length code c : A → BN to encode the message, one letter at a time. This
gives a random variable B = c(A) taking values in BN . Since c is assumed to be invertible, A determines
B and vice versa. Therefore H(A) = H(B).

Each bit of c(a) is then passed through a channel where errors may arise. This results in a new
string c(a)′ ∈ BN and we set B′ = c(A)′. The closest code word to c(a)′ will be denoted by c(a′) for
some a′ ∈ A and we then decode it as a′. The random variable A′ results from decoding B′. Since A′

is a function of B′, we certainly have H(A′) 6 H(B′).

The probability of error when the letter a is sent is

P(error | a sent)

and the total probability of error is

P(error) =
∑
a∈A

P(error | a sent)P(A = a) .

We would like this to be small. Indeed, we would really like the probability to be small over all choices
of a ∈ A. So we want the maximum error

ê(c) = max {P(error | a sent) : a ∈ A}
to be small.

The rate of transmission for c is

ρ(c) =
H(A)

N
=

log2K

N
.

We want this to be as large as possible. Our aim is to relate this to the information capacity of the
channel.

SENDER CHANNEL RECEIVER

A c
−→ BN - - - - - - - - - - - → BN −→ A

Random
Variables A B Cap B′ A′

Entropy H(A) = H(B) H(B′) > H(A′)

log2K

Note that the particular code c : A → BN does not really matter. We can permute the code
words {c(a) : a ∈ A} in any way we wish and not alter the rate of tranmission or the maximum error
probability. So, the set of code words is really more important than the actual alphabet or code we
choose. We sometimes refer to the set of code words {c(a) : a ∈ A} as the code book.

Lecture 9 32

9.2 Fano’s Inequality

Lemma 9.1
Let X be a random variable that takes values in a finite alphabet A of size K. Then, for any fixed letter
a ∈ A, we have

H(X) 6 p log2(K − 1) + h(p)

where p = P(X 6= a).

Proof:
Recall that

H(X, I) = H(X|I) +H(I) .

Let I be the indicator random variable

I =
{

1 when X 6= a;
0 when X = a.

Then we see that:
H(X, I) = H(X)

because I is determined by the values of X.

H(X|I) = P(I = 0)H(X|I = 0) + P(I = 1)H(X|I = 1)

= (1− p)0 + pH(X|I = 1)

6 p log2(K − 1)

because, if I = 0 then X = a and so H(X|I = 0) = 0, while if I = 1, there are only K − 1 possible
values for X.

Therefore, we have
H(X) = H(X|I) +H(I)

6 p log2(K − 1) + h(p)

because H(I) = H(1− p, p) = h(p). �

Theorem 9.2 Fano’s inequality
Let X,Y be two random variables that take values in a finite alphabet A of size K. Then

H(X|Y) 6 p log2(K − 1) + h(p)

where p = P(X 6= Y).

We will apply this where X takes values in the alphabet A and Y is the result of passing the code word
c(X) through a channel and decoding it. The probability p is then the probability of error.

Proof:
Condition the inequality in the Lemma on the value of Y to obtain

H(X|Y = y) 6 P(X 6= y|Y = y) log2(K − 1) +H(I|Y = y)

where I is given by

I =
{

1 when X 6= Y ;
0 when X = Y .

If we multiply this by P(Y = y) and sum over all values for y we obtain

H(X|Y) 6 P(X 6= Y) log2(K − 1) +H(I|Y) = p log2(K − 1) +H(I|Y) .

Finally, recall that H(I|Y) = H(I, Y)−H(Y) 6 H(I) by Corollary 2.2 . �

Lecture 9 33

We can think of the two terms of Fano’s inequality as h(p) = H(I) measuring the information given
by knowing whether there is an error and p log2(K − 1) measuring the information on what that error
is, when it occurs.

We can use Fano’s inequality to compare the rate of transmission of information to the capacity of
the channel. As always we will use our model for a noisy channel. A random letter A is chosen from
A and encoded as the BN -valued random variable B = c(A). This is transmitted, one letter at a time,
through the noisy channel and received as the BN -valued random variable B′ which is decoded to give
A′. The rate of transmission is ρ(c) = log2K/N .

Choose A so that each letter in A has probability 1/K. Fano’s inequality gives

H(A|A′) 6 h(p) + p log2(K − 1) < h(p) + p log2K .

So we have
I(A′, A) = H(A)−H(A|A′) > log2K − (h(p) + p log2K) .

Now the code c : A → BN is injective, so A is a function of B. Therefore, Proposition 8.4 show that

I(A′, A) 6 I(A′,B) .

Similarly, A′ is a function of B′ — the decoding function. So

I(A′,B) 6 I(B′,B) .

Therefore, I(A′, A) 6 I(B′,B) 6 NCap and hence

NCap > (1− p) log2K − h(p) .

Dividing by N we obtain

Cap(Q) +
h(p)

N
> (1− p)ρ(c) .

Theorem 9.3 Capacity bounds the rate of transmission of information
Let c : A → BN where each letter of a code word is transmitted through a time-independent memo-
ryless channel with capacity Cap. Let p be the probability of decoding incorrectly. Then the rate of
transmission satisfies

ρ(c) 6
log2K

N
6

Cap

1− p +
h(p)

N(1− p) .

�

As we let the probability of error decrease to 0, so 1− p↗ 1 and h(p)↘ 0. Therefore

Cap

1− p +
h(p)

N(1− p) ↘ Cap .

Hence, if we find codes cj with probabilities of error pj that decrease to 0, and rates of tranmission that
tend to a limit ρ, then ρ must be at most the information capacity of the channel.

Lecture 9 34

10: SHANNON’S NOISY CODING THEOREM

10.1 Introduction

In this section we will prove Shannon’s Noisy Coding Theorem, which shows that we can find codes
with rate of tranmission close to the capacity of a channel and small probability of error. We will do
this only in the case of a binary symmetric channel. The arguments are simpler in this case but the
principles apply more generally.

Theorem 10.1 Shannon’s Noisy Coding Theorem
For ε > 0 and a binary symmetric channel with capacity Cap there are codes

cN : AN → {0, 1}N

for N sufficiently large with rate of tranmission

ρ(cN) =
log2 |AN |

N
> Cap− ε

and maximum error
ê(cN) < ε .

Example:
We wish to send a message m from an alphabet A of size K through a binary symmetric channel with
error probability p = 0.1. What rate of transmission can we achieve with small probability of error?

Cap = 1−h(0.1) = 0.53, so Shannon’s Theorem shows that we can achieve any rate of tranmission
strictly less than this with arbitrarily small probability of error. For example, suppose that we want a rate
of tranmission ρ > 0.5 and ê < 0.01. Shannon’s Theorem shows that there are codes cN : AN → {0, 1}N
that achieve this provided that N is large enough, say N > No.

Suppose that we know such a code cN . How do we encode the message m? First divide m into
blocks of length B where

B =

⌊
0.5N

log2K

⌋
so that |AB | = KB 6 20.5N .

Then we can embed the blocks from AB in the alphabet AN and so encode the blocks. The rate of
tranmission is

log2 |AB |
N

∼ 0.5 .

Unfortunately, Shannon’s Theorem tells us that there are such codes but does not tell us how to
find them and it is very difficult to do so.

10.2 Chebyshev’s Inequality

Theorem 10.2 Chebyshev’s inequality
Let X be a real-valued, discrete random variable with mean EX and variance var(X). Then

P (|X − EX| > t) 6 var(X)

t2
.

Lecture 10 35

(The inequality is true whenever the variance of X exists, even if X is not discrete.)

Proof:
We have

var(X) = E|X − EX|2 =
∑

P(X = x)|x− EX|2

>
∑{

P(X = x)t2 : |x− EX| > t
}

= t2P(|X − EX| > t) .

So we obtain the result. �

10.3 Proof of the Noisy Coding Theorem

To prove Shannon’s Theorem (Theorem 10.1) we need to find code words in {0, 1}N . Choose these
at random and independently of one another and of the channel. We will prove that, on average, this
gives the inequalities we want. Then there must be at least some of the choices for code words that also
give the inequalities.

Let the binary symmetric channel have error probability p with 0 6 p < 1
2 . Then Cap = 1− h(p).

Set

KN =
⌊
2N(Cap−ε)

⌋
� 2N

and let AN be an alphabet with KN letters.

Choose a letter ao ∈ AN and then choose a random code word as cN (ao) uniformly from the 2N

words in {0, 1}N . These choices must be independent for each different letter and also independent of
the channel. When a fixed word co = cN (ao) is sent through the channel, it is corrupted and a new
word c′o is received. We want this received word to be close to co.

The Hamming distance d(c, c′) is a Bernoulli B(N, p) random variable, so it has mean Np and
variance Np(1− p). Therefore Chebyshev’s inequality gives

P(d(co, c
′
o) > r) 6

Np(1− p)
(r −Np)2

for r > Np. Take q > p and set r = Nq, then

P(d(co, c
′
o) > r) 6

p(1− p)
N(q − p)2 (1).

Now consider another code word c = cN (a) for a letter a 6= ao. This is chosen uniformly and
randomly from the 2N words in {0, 1}N , so Proposition 7.8 shows that

P(d(c, c′o) < r) = P(c ∈ B(c′o, r)) =
V (N, r)

2N
6

2Nh(q)

2N
= 2−N(1−h(q)) .

The probability that d(c, c′o) < r for at least one of the KN −1 code words c not equal to co is therefore
at most

KN2−N(1−h(q)) = 2N(Cap−ε−(1−h(q))) .

Now Cap = 1− h(p), so this gives

P(there exists a 6= ao with d(cN (a), c′o) < r) 6 2N(h(q)−h(p)−ε) (2).

Lecture 10 36

We will use the minimum distance decoding rule. So we make an error and decode co = cN (ao) as
another letter a 6= ao only when either d(co, c

′
o) > r or d(cN (a), c′o) < r for some a 6= ao. Hence the

probability of an error is

P(error) 6
p(1− p)
N(q − p)2 + 2N(h(q)−h(p)−ε)

because of (1) and (2). Choose q with

p < q < 1
2 and h(q) < h(p) + ε .

This is certainly possible for 0 6 p < 1
2 . Then

p(1− p)
N(q − p)2 6

1
2ε and 2N(h(q)−h(p)−ε) 6 1

2ε

for all sufficiently large N . For such N we see that the probability of error is strictly less than ε.

This is the error averaged over all of the random choices of code words. This means that there
must be at least one choice of the code words that also has P(error) < ε. Take this as the code cN .

We have almost proved the result we sought except that we have proved that the mean error
P(error) rather than that the maximum error ê(cN) = max{P(error | a sent) : a ∈ A} is less than ε.

For our code cN the average error probability satisfies

1

|AN |
∑
a∈AN

P(error | a sent) < ε

so, for at least half of the letters in AN we must have

P(error | a sent) < 2ε .

Choose a new alphabet A′N that consists just of these 1
2KN letters. Then we certainly have

P(error | a sent) < 2ε for a ∈ A′N

so the maximum error is at most 2ε. Furthermore,

|A′N | = 1
2 |AN | = 2N(Cap−ε)−1,

so the rate of transmission is
log2 |A′N |

N
= Cap− ε− 1

N
.

�

Lecture 10 37

10.4 * Typical Sequences *

In this section we want to reinterpret the entropy H(A) in terms of the probability of a “typical
sequence” of values arising from a sequence of independent random variables (An) all with the same
distribution as A.

As a motivating example, consider tossing an unfair coin with probability p of heads. Let A,An
be the results of independent coin tosses. If we toss this coin a large number N times, we expect to get
approximately pN heads and (1 − p)N tails. The probability of any particular sequence of pN heads
and (1− p)N tails is

ppN (1− p)(1−p)N = 2N(p log2 p+(1−p) log2(1−p)) = 2−NH(A) .

Of course not every sequence of coin tosses will be like this. It is quite possible to get extraordinary
sequences like all N heads. However, there is only a small probability of getting such an atypical
sequence. With high probability we will get a typical sequence and its probability will be close to
2−NH(A).

To make this precise we need to recall the weak law of large numbers from the probability course.
This follows from Chebyshev’s inequality.

We say that a sequence of random variables Sn converge to a random variable L in probability if

P (|Sn − L| > ε)→ 0 as n→∞

for every ε > 0. This means that Sn and L can still take very different values for large n but only on a
set with small probability.

Theorem 10.3 The weak law of large numbers
Let X be a discrete real-valued random variable. Let (Xn) be independent random variables each with
the same distribution as X. The averages:

Sn =
X1 +X2 + . . .+Xn

n

then converge in probability to the constant EX as n→∞.

Proof:
We need to show that

P (|Sn − EX| > t)→ 0 as n→∞ .

Note that

ESn =
EX1 + EX2 + . . .+ EXn

n
= EX

and

var(Sn) =
var(X1) + var(X2) + . . .+ var(Xn)

n2
=

var(X)

n
.

Chebyshev’s inequality gives

P (|Sn − ESn| > t) 6
var(Sn)

t2

so we have

P (|Sn − EX| > t) 6 varX

nt2

which certainly tends to 0 as n→∞. �

Lecture 10 38

Let A be a random variable that takes values in the finite set A. Let (An) be a sequence of
independent random variables each with the same distribution as A. Recall that the entropy of A is

H(A) = −
∑
a∈A

P(A = a) log2 P(A = a) .

This is the expectation of the real-valued random variable:

X(ω) = − log2 P(A = A(ω)) .

(In other words, if A takes the values ak with probabilities pk, then X takes the values − log2 pk with the
same probabilities.) In a similar way we define Xn from An, so the random variables Xn are independent
and each has the same distribution as X.

The weak law of large numbers Theorem 10.3 shows that

X1 +X2 + . . . Xn

n
→ EX in probability as n→∞ .

Hence, for any ε > 0, there is an N(ε) with

P
(∣∣∣∣X1 +X2 + . . . Xn

n
− EX

∣∣∣∣ > ε) 6 ε
for n > N(ε).

Consider a particular sequence of values (aj)
n
j=1 from A. The probability of obtaining this sequence

as (Aj) is

P (Aj = aj for j = 1, 2, . . . , n) =

n∏
j=1

P(A = aj) .

Also, if we do have Aj = aj , then

X1 +X2 + . . . Xn

n
= −

n∑
j=1

log2 P(A = aj) = − log2

n∏
j=1

P(A = aj)

and therefore, ∣∣∣∣X1 +X2 + . . . Xn

n
− EX

∣∣∣∣ < ε

is equivalent to
2−n(H(A)+ε) < P (Aj = aj for j = 1, 2, . . . , n) < 2−n(H(A)−ε) . ∗

Thus we see that the probability of obtaining a sequence (aj) for which (∗) holds is at least 1 − ε for
n > N(ε). These are the “typical sequences”. Thus we have proved:

Theorem 10.4 Asymptotic equipartition property
Let A be a random variable taking values in the finite set A and with entropy H(A). Let (An) be a
sequence of independent random variables each with the same distribution as A. For each ε > 0, there
is a natural number N(ε) such that the following conditions hold for any n > N(ε).

There is a set T of sequences in An with

P((Aj)
n
j=1 ∈ T) > 1− ε

and, for each sequence (aj) ∈ T ,

2−n(H(A)+ε) < P (Aj = aj for j = 1, 2, . . . , n) < 2−n(H(A)−ε) . ∗

We call the sequences in T the “typical ones” while those outside are “atypical”. The sequences
in T all have approximately the same probability 2−nH(A) of arising, so we say that the sequence of
random variable (An) has the asymptotic equipartition property.

Lecture 10 39

11: LINEAR CODES

It is useful to use the algebra you have learnt in earlier courses to describe codes. In particular, if
we are dealing with an alphabet of size q = pk for some prime number p, then there is a field Fq with
exactly q elements and we can use this to represent the alphabet. The most important case is when
q = 2, or a power of 2, and we have seen this already when we looked at Hamming’s code.

11.1 Finite Fields

In this section we will recall results from the Numbers and Sets, Linear Algebra, and Groups, Rings
and Modules courses. For this course, it will be sufficient to use only the integers modulo 2, F2 or
occasionally the fields F2K for K > 1.

There are fields with a finite number q of elements if and only if q is a prime power q = pr. These
fields are unique, up to isomorphism, and will be denoted by Fq.

Example:
For each prime number p, the integers modulo p form a field. So Fp = Z/pZ.

The non-zero elements of a finite field Fq form a commutative group denoted by F×q . This is a cyclic
group of order q − 1. Any generator of F×q is called a primitive element for Fq. Let α be a primitive

element. Then the other elements of the group F×q are the powers αk for k = 1, 2, 3, . . . , q − 1. These

are all distinct. The order of the element αk is
q − 1

(q − 1, k)
, so the number of primitive elements is given

by Euler’s totient function

ϕ(q − 1) = |{k : k = 1, 2, 3, . . . , q − 1 and (q − 1, k) = 1}| .

Example:
For the integers modulo 7 we have 3 and 5 as the only primitive elements.

We will want to work with alphabets that are finite dimensional vector spaces over the finite fields
Fq. For example, FNq is an N dimensional vector space over Fq. Any N -dimensional vector space has

qN vectors. The scalar product on FNq is given by

x · y =

N∑
n=1

xnyn .

(Every linear map A : FNq → Fq is of the form x 7→ x · y for some y ∈ FNq . So the scalar product

gives us a way to identify the dual space (FNq)∗ with FNq .) For any finite set S, the set of all functions

V = FSq = {f : S → Fq} is a vector space over Fq with dimension |S|.

A polynomial over Fq is a formal expression:

A(X) = a0 + a1X + a2X
2 + . . .+ aDX

D

with the coefficients an ∈ Fq. In this expression, X is an indeterminate or formal parameter rather than
an element of the field. The degree deg(A) of the polynomial A is the largest n with an 6= 0. The degree
of the 0 polynomial is defined to be −∞. Define addition and multiplication of polynomials as usual.
This makes the set Fq[X] of all polynomials over Fq a ring. The degree is an Euclidean function for this
ring and makes it an Euclidean domain: For polynomials A,D ∈ Fq[X] with D 6= 0, there are uniquely
determined polynomials Q and R with

A = Q.D +R and deg(R) < deg(D) .

Lecture 11 40

This has many useful consequences. We have the division criterion:

(X − α)|A ⇔ A(α) = 0

for an element α ∈ Fq. Furthermore, the polynomial ring is a principal ideal domain. For, if I is an ideal
in Fq[X] (written I / Fq[X]), then either I = {0} or there is a non-zero polynomial D ∈ I of smallest
degree. For any other polynomial A ∈ I we can write

A = Q.D +R with deg(R) < deg(D) .

However, R ∈ I, so R must be the 0 polynomial. Therefore A = Q.D. Hence every ideal is of the form
DFq[X] for some polynomial D. We will denote this ideal by (D).

For any ideal I = DFq[X], the quotient Fq[X]/I is a ring and there is a quotient ring homomorphism
Fq[X]→ Fq[X]/I. The quotient is a vector space over Fq with dimension deg(D).

A very important example of this is when D is the polynomial Xn−1 and we consider the quotient
Fq[X]/(Xn − 1). If we divide any polynomial A ∈ Fq[X] by Xn − 1 we obtain a remainder of degree
strictly less than n. So each coset A + (Xn − 1)Fq[X] contains an unique polynomial R of degree at
most n− 1. Hence we can represent the quotient Fq[X]/(Xn − 1) by

{a0 + a1X + . . .+ an−1X
n : a0, a1, . . . , an−1 ∈ Fq} .

Multiplication in the quotient Fq[X]/(Xn − 1) then corresponds to multiplying the polynomials and
reducing the result modulo Xn − 1, that is replacing any power Xk for k > n by Xm where k ≡ m
(mod n). Note that, in this case, the quotient Fq[X]/(Xn − 1) is a vector space of degree n.

11.2 Linear Codes

Suppose that we are looking at codes c : A → BM . If both of the alphabets A and B have orders
that are powers of the same prime power q, then we can represent both as vector spaces over Fq. So c
is a map FKq → FNq for suitable dimensions K,N . Such a map is much easier to specify if it is linear,

for then we need only give the images of a basis for FKq . This is in itself a considerable advantage and
makes it much simpler to implement the encoding and decoding of messages.

We will write F for any finite field, so F = Fq for some prime power q. A code is linear if it is an
injective linear map c : FK → FN . The image of c is then a vector subspace of FN , called the code book
of c. Its dimension is the rank of c.

Example:
Hamming’s code was a linear map F4

2 → F7
2.

A linear code c : FK → FN is given by an N ×K matrix C with entries in F. So c : x 7→ Cx. Since
c is injective, the matrix C has nullity 0 and rank K. As usual, we are really only interested in the code
book. This can be specified by giving any basis for the image.

The columns of the matrix C are one basis of code words for the code book. We can apply column
operations to these to reduce the matrix to echelon form. For example

1 0 0 0
∗ 0 0 0
∗ 1 0 0
∗ ∗ 0 0
∗ ∗ 0 0
∗ ∗ 1 0
∗ ∗ ∗ 1


Lecture 11 41

where ∗ denotes an arbitrary but unimportant value. Applying column operations to this we can obtain
a matrix: 

1 0 0 0
∗ 0 0 0
0 1 0 0
∗ ∗ 0 0
∗ ∗ 0 0
0 0 1 0
0 0 0 1


.

The columns of this matrix are still a basis for the code book. If we re-order the rows of this matrix,
which corresponds to re-ordering the components of FN , then we obtain a matrix of the form

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗


.

In general, when we apply these operations to our code matrix C we change it to the form

C =

(
I
A

)
where I is the K×K identity matrix and A is an arbitrary (N −K)×K matrix. Whenever we need to
we can reduce our linear code to this standard form. When we have a matrix of this form, the code is


x1
x2
...
xK

 7→



x1
x2
...
xK∑
a1jxj
...∑

a(N−K)jxj


or, more concisely, x 7→

(
x
Ax

)
.

So the first K terms carry the information about the vector x while the remainder are check digits.

11.3 The Syndrome

Let c : FK → FN be a linear code. Its image is a vector subspace of FN with dimension K. So we
can construct a linear map

s : FN → FN−K with ker(s) = Im(c) .

Such a linear map is called a syndrome of c.

For example, if we write the matrix C for c in the standard form C =

(
I
A

)
, then the matrix

S = (−A I) satisfies

ker(S) =

{(
u
v

)
: −Au + v = 0

}
=

{(
u
Au

)
: u ∈ FK

}
= Im(C) .

So S is a syndrome for the code.

Lecture 11 42

The syndrome gives an easy way to check whether a vector x ∈ FN is a code word, for we simply
compute Sx and see whether it is 0. We can also define a code by giving a syndrome, for the code book
is then ker(s).

Exercise:
For a natural number d there are N = 2d − 1 non-zero vectors in Fd2. Take these as the columns of an
d×N matrix S. The kernel of S is then the code book for a Hamming code

c : FN−d2 → FN2 .

Check that the case d = 3 gives the Hamming code we constructed earlier.

Show that each of these Hamming codes is a perfect 1-error correcting code.

(The code c : FK → FN and the syndrome s : FN → FN−K are really dual to one another. For the
dual maps are

s∗ : FN−K → FN and c∗ : FN → FK

with ker(c∗) = Im c⊥ = ker(s)⊥ = Im(s∗). So s∗ is a linear code with c∗ as its syndrome. These
correspond to transposing the matrices. So S> is the matrix for a linear code with C> its syndrome.)

The minimum distance for a code is the minimum Hamming distance between two different code
words. When the code is linear we have d(c′, c) = d(0, c− c′). So the minimum distance is

min {d(0, c) : c is a non-zero code word } .

The weight of a code word x is the Hamming distance of x from 0. So the minimum distance for a
linear code is the minimum weight for non-zero code words.

We will use minimum distance decoding. Suppose that we receive a word x ∈ FN . We compute its
syndrome s(x). If this is 0 then we know that x is a code word. Otherwise there have been errors in
transmission and we need to find the code word closest to x.

We proceed as follows. For each vector y ∈ FN−K , find a vector z ∈ s−1(y) with minimum weight
and call this u(y). Note that we can do this for every vector y ∈ FN−K in advance of receiving any
message, at least when FN−K is not too large. It is clear that s(u(y)) = y.

Now we decode the received vector x as co = x− u(s(x)). Since

s(x− u(s(x))) = s(x)− s(u(s(x))) = 0

we see that co is indeed a code word. For any other code word c, we have d(c,x) = d(0,x−c). However,
s(x− c) = s(x), so the definition of u ensures that

d(0,x− c) > d(0, u(s(x))) = d(0,x− co)

and hence that

d(c,x) > d(co,x) .

So co is the code word closest to x.

Lecture 11 43

11.4 Reed – Muller Codes

In this section we will construct linear codes that have proved useful in dealing with very noisy
channels.

Let S be the finite dimensional vector space FM2 over the field F2 of integers modulo 2. This is
itself a finite set with 2M elements. Let V be the set of all functions from S to F2:

V = FS2 = {f : S → F2} .

The functions
1y(x) =

{
1 when x = y;
0 otherwise

are the standard basis for V , so V has dimension 2M . We will use this basis to determine the Hamming
distance in V , so it is

d(f, g) = |{x ∈ S : f(x) 6= g(x)}| .

Let πi be the function x 7→ xi that maps each vector in S to its ith component. Let I be a subset
{i(1), i(2), . . . , i(r)} of {1, 2, 3, . . . ,M} and write πI as an abbreviation for the function

x 7→ πi(1)(x)πi(2)(x) . . . πi(r)(x) =
∏
i∈I

xi .

This is a function in V . In particular the empty sequence ∅ has π∅ equal to the constant function 1.

Lemma 11.1
The functions πI for I ⊂ {1, 2, 3, . . . ,M} are a basis for V .

Proof:
We can write the value of 1y(x) as the product

1y(x) =

M∏
i=1

(xi − yi + 1) .

Now expand this product to get

1y(x) =
∑
I

αI

(∏
i∈I

xi

)
for some scalar coefficients αI ∈ F2 that depend on y. This shows that 1y is the linear combination
1y =

∑
I αIπI of the functions πI .

Since (1y) is a basis for V , we see that the functions πI span V . There are 2M = dimV of the πI ,
so they must form a basis for V . �

The lemma shows that we can write any function f ∈ V as a linear combination

f =
∑
I

aIπI .

The Reed – Muller code RM(M, r) has a code book equal to{∑
(αIπI : |I| 6 r) : αI ∈ F2

}
.

This code book is a vector subspace with dimension(
M

0

)
+

(
M

1

)
+ . . .

(
M

r

)
Lecture 11 44

so it gives a linear code of this rank and length dimV = 2M .

Example:
The RM(M, 0) code has only two code words 0 and 1 so it is the repetition code that repeats each bit
2M times. The Hamming distance d(0, 1) is 2M , so this is also the minimum distance for RM(M, 0).

RM(M, 1) has dimension 1 + M and has the functions πj for j = 1, 2, 3, . . . ,M as a basis. The
Hamming distance satisfies

d(0, πj) = 2M−1

and it is easy to see that this is the minimum distance for RM(M, 1).

Proposition 11.2 Reed – Muller codes
The Reed – Muller code RM(M, r) has minimum distance 2M−r for 0 6 r 6M .

Proof:
We need to show that the minimum weight of a non-zero code word in RM(M, r) is 2M−r. We

will do this by induction on M . We already know the result for M = 1.

Suppose that we have already established the result for M − 1 and all r.

Note first that, for the set J = {1, 2, . . . , r} we have d(0, πJ) = 2M−r so the minimum distance is
at most this large. Let f =

∑
I αIπI be a non-zero function in RM(M, r). We split this into two parts

depending on whether I contains M or not. So

f =

(∑
M/∈I

αIπI

)
+

(∑
M∈I

αIπI\{M}

)
πM = f0 + f1.πM .

The functions f0 and f1 do not depend on xM so we think of them as functions on FM−12 . The sum f0
is in RM(M − 1, r) while f1 ∈ RM(M − 1, r − 1).

Denote by dM the Hamming distance in V = FM2 and dM−1 the Hamming distance in FM−12 .
Observe that

f(x1, x2, . . . , xM−1, 0) = f0(x1, x2, . . . , xM−1) on the set where xM = 0;
f(x1, x2, . . . , xM−1, 1) = (f0 + f1)(x1, x2, . . . , xM−1) on the set where xM = 1.

Since f is non-zero, either f0 or f0 + f1 must be non-zero. If f0 = 0, then f1 is non-zero and

dM (0, f) = dM−1(0, f1) > 2(M−1)−(r−1) .

If f0 6= 0 and f1 = −f0, then f0 = −f1 ∈ RM(M − 1, r − 1) so we have

dM (0, f) = dM−1(0, f0) > 2(M−1)−(r−1) .

Finally, if f0 6= 0 and f1 6= −f0, then

dM (0, f) = dM−1(0, f0) + dM−1(0, f0 + f1) > 2× 2M−1−r

since both f0 and f0 + f1 are non-zero elements of RM(M − 1, r). In all cases we have

dM (0, f) > 2M−r

which completes the inductive step. �

The Reed – Muller RM(5, 1) code was used by NASA in the Mariner mission to Mars. This code
has rank 1 + 5 = 6 and length 25 = 32. So its rate of tranmission is 6

32 = 3
16 . The last proposition show

that it has minimum distance 24 = 16. So it is 15-error detecting and 7-error correcting.

Lecture 11 45

12: CYCLIC CODES

A linear code is cyclic if cNc1c2 . . . cN−2cN−1 is a code word whenever c1c2c3 . . . cN−1cN is a code
word. This means that the shift map:

T : FN → FN ;


x1
x2
x3
...
xN

 7→


xN
x1
x2
...

xN−1


maps the code book into itself.

Example:
The matrix

C =



1 0 0 0
1 1 0 0
0 1 1 0
1 0 1 1
0 1 0 1
0 0 1 0
0 0 0 1


defines a cyclic code over F2 since, if we label the columns of C as c1, c2, c3 and c4, then

T (c4) =



1
0
0
0
1
1
0


= c1 + c2 + c3 .

It is easier to describe cyclic codes if we identify FN with the quotient F[X]/(XN − 1). Recall that
F[X]/(XN − 1) is the set of equivalence classes of polynomials modulo XN − 1. Given a polynomial
P (X), divide it by XN − 1 to get P (X) = Q(X)(XN − 1) +R(X) with degR(X) < N . Then P (X) is
equivalent modulo XN − 1 to

R(X) = r0 + r1X + r2X
2 + . . .+ rN−1X

N−1 ∈ {A(X) ∈ F[x] : degA(X) < N} .
We will write [P (X)] for the equivalence class of P (X) modulo XN −1. So we have seen how to identify
[P (X)] with [R(X)] and hence with the vector

r0
r1
r2
...

rN−2
rN−1

 ∈ FN .

The shift map corresponds to

T : F[X]/(XN − 1)→ F[X]/(XN − 1) ; [P (X)] 7→ [X.P (X)]

because X.XN−1 = XN ≡ 1 (mod XN − 1). The quotient homomorphism will be denoted by

q : F[X]→ F[X]/(XN − 1) ; P (X) 7→ [P (X)] .

Proposition 12.1 Cyclic codes
Let W be a vector subspace of F[X]/(XN − 1) and let J = q−1(W). Then W is the code book for a
cyclic code if and only if J is an ideal of F[X].

Lecture 12 46

Proof:
The quotient map q is linear, so J is certainly a vector subspace of F[X]. Suppose that W is

cyclic. Then [P (X)] ∈W ⇒ [X.P (X)] ∈W for any polynomial P (X). This means that

P (X) ∈ J ⇒ X.P (X) ∈ J .

Therefore, if P (X) ∈ J , then

A(X)P (X) =
(∑

akX
k
)
P (X) =

∑
akX

K .P (X) ∈ J

for any polynomial A(X). Hence J is an ideal of F[X]: J / F[X].

Conversely, suppose that J / F[X] and that [P (X)] ∈ W . Then P (X) ∈ J and so X.P (X) ∈ J .
This means that [X.P (X)] ∈W . So W is cyclic. �

Corollary 12.2 Generators of cyclic codes
Let W be the code book for a cyclic code in F[X]/(XN − 1). Then

W = {[A(X)G(X)] : A(X) ∈ F[X]}
for a generator polynomial G(X) ∈ F[X]. Moreover, G(X) is a divisor of XN − 1.

Proof:
The proposition shows that J = q−1(W) is an ideal of F[X]. Since F[X] is a principal

ideal domain, this ideal must be of the form G(X)F[X] for some polynomial G(X). Therefore, W =
{[A(X)G(X)] : A(X) ∈ F[X]}.

Now 0 = q(XN − 1) is in W , so XN − 1 ∈ J . Hence G(X) must divide XN − 1. �

We may always multiply the generator polynomial G(X) by a scalar to ensure that it has leading
coefficient 1. Then the generator polynomial is uniquely determined by the cyclic code book W . Since
G(X) divides XN − 1, we may write XN − 1 = G(X)H(X). We call H(X) the check polynomial for
the code. Once again, it is unique up to a scalar multiple.

Proposition 12.3
Let G(X) be the generator of a cyclic code of length N over F. Then the vectors

[G(X)], [X.G(X)], [X2.G(X)], . . . , [XN−D−2.G(X)], [XN−D−1.G(X)]

are a basis for the code book in F[X]/(XN − 1). Hence the code book has rank N − D where D =
degG(X).

Proof:
We know that each of the products Xk.G(X) is in the ideal J , so the vectors [Xk.G(X)] must

lie in the code book W for the cyclic code.

Every vector in W is of the form [G(X)P (X)] for some polynomial P (X) ∈ F[X]. By reducing
G(X).P (X) modulo XN − 1 we may ensure that degP (X) < N −D. So any vector in W is of the form

p0[G(X)] + p1[X.G(X)] + p2[X2.G(X)] + . . .+ pN−D−1[XN−D−1.G(X)] .

Thus the vectors [G(X)], [X.G(X)], [X2.G(X)], . . . , [XN−D−2.G(X)], [XN−D−1.G(X)] span W .

Suppose that these vectors were linearly dependent, say

p0[G(X)] + p1[X.G(X)] + p2[X2.G(X)] + . . .+ pN−D−1[XN−D−1.G(X)] = 0 .

Then
[(p0 + p1X + p2X

2 + . . .+ pN−D−1X
N−D−1)G(X)] = [P (X)G(X)] = 0

so (XN − 1)|P (X)G(X). This means that H(X)|P (X). Since degP (X) < N − D = degH(X),
this implies that P (X) = 0. Hence the vectors [G(X)], [X.G(X)], [X2.G(X)], . . . , [XN−D−2.G(X)],
[XN−D−1.G(X)] are linearly independent. �

Lecture 12 47

Using the basis for the code book in this proposition, we see that a matrix for the code is the
N × (N −D) matrix:

C =



g0 0 0 . . . 0
g1 g0 0 . . . 0
g2 g1 g0 . . . 0
...

...
...

...
gD gD−1 gD−2 . . .
0 gD gD−1 . . .
0 0 gD . . .
...

...
...

...
0 0 0 . . . gD


where G(X) = g0 + g1X + g2X

2 + . . .+ gDX
D.

Let S be the D ×N matrix:

S =



0 0 0 . . . h2 h1 h0
0 0 0 . . . h1 h0 0
0 0 0 . . . h0 0 0
...

...
...

...
...

0 hN−D hN−D−1 . . . 0 0
hN−D hN−D−1 hN−D−2 . . . 0 0


where H(X) = h0 + h1X + h2X

2 + . . . + hN−DXN−D. Then hN−D 6= 0, so the rows of S are linearly
independent. So its rank is D and its nullity must be N − D. However, it is easy to check that each
column of the matrix C lies in the kernel of S, because G(X)H(X) = XN − 1 so∑

j

hm−jgj = 0 for 0 < m < N .

This means that the kernel of S is spanned by the columns of C. So kerS = W = Im(C) and S is a
syndrome matrix for the cyclic code.

Example:
Over the field F2 of integers modulo 2 we have

X7 − 1 = ((1 +X +X3)(1 +X +X2 +X4) .

Let G(X) = 1 +X +X3. This generates a cyclic binary code of length 7. A syndrome matrix is 0 0 1 0 1 1 1
0 1 0 1 1 1 0
1 0 1 1 1 0 0

 .

All of the non-zero vectors in F3
2 occur as columns in this matrix, so the code is Hamming’s code with

the terms of the code re-ordered.

1

Lecture 12 48

13: BCH CODES

13.1 The Characteristic of a Field

Let K be a finite field and consider the sequence

0K , 1K , 1K + 1K , 1K + 1K + 1K , 1K + 1K + 1K + 1K ,

Eventually this sequence must repeat, so we obtain a first natural number p with the sum of p terms
1K + 1K + . . . + 1K equal to 0. If p factorised, then one of the factors would also have this property,
so p must be a prime number. It is the characteristic of K. The set of p elements 0K , 1K , 1K + 1K ,
1K + 1K + 1K , . . . is then a subfield of K which is isomorphic to the integers modulo p. Hence K
contains Fp. (K is then a vector space over Fp of some dimension r, so it has pr elements. Thus K has
characteristic p when it is one of the fields Fpr .)

We will only consider fields with characteristic 2 in this section, so they are all fields of order 2r

and will give us binary codes. The arguments readily extend to other characteristics.

We know that any cyclic code has a generator polynomial G(X) with G(X)|(XN − 1) where N is
the length of the code. We will assume that N is odd. It can be shown (in the Galois Theory course)
that there is some finite field K containing F in which XN − 1 factorises completely into linear factors
(or “splits”). The next lemma shows when these factors are all distinct.

Lemma 13.1 Separable fields
LetN be an odd natural number andK a field with characteristic 2 in which XN−1 factorises completely
into N linear factors. Then XN − 1 has N distinct roots in K. These form a cyclic group.

Proof:
Suppose that XN − 1 had a repeated root α in K. Then

XN − 1 = (X − α)2P (X)

for some polynomial P (X) ∈ K[X]. Now if we differentiate this formally we obtain

NXN−1 = 2(X − α)P (X) + (X − α)2P ′(X) = (X − α) (2P (X) + (X − α)P ′(X)) .

So X − α divides both XN − 1 and NXN−1. Since N is odd, N1K 6= 0K . So X − α must divide the
highest common factor of XN−1 and XN−1. This highest common factor is 1, so we get a contradiction.

We have now shown that the set S of roots of XN − 1 in K contains N distinct elements. It is
clearly a subgroup of the group K×. We know that K× is cyclic, so the subgroup S must be also. �

The lemma shows that we can find a primitive root α of XN − 1 in the field K with the other roots
being

α, α2, α3, . . . , αN−1 .

The lemma is not true if N is even. For example, X2 − 1 = (X − 1)2.

Lecture 13 49

13.2 BCH codes

Let F be a finite field with characteristic 2. Choose an odd integer N and let K be a field containing
F in which XN − 1 factorises completely into linear factors. Take α as a primitive root of XN − 1 in the
field K. The Bose - Ray Chaudhuri – Hocquenghem (BCH) code with design distance δ is the cyclic
code of length N over F defined by the ideal

J = {P (X) ∈ F[X] : P (α) = P (α2) = P (α3) = . . . = P (αδ−1) = 0} .

Here δ is a natural number with 1 6 δ 6 N .

The generating polynomial G(X) for this code is the minimal polynomial in F[X] that is 0 at each
of the points α, α2, . . . , αδ−1 in K. It is thus the least common multiple of the minimal polynomials for
these points. It is clearly a factor of XN − 1. So the BCH code is a cyclic linear code of length N .

Example:
Consider the polynomial X7− 1 over F2. The roots of this form a cyclic group of order 7, so every root
is a primitive root. We can factorise X7 − 1 over F2 as

X7 − 1 = (X − 1)(X3 +X2 + 1)(X3 +X + 1) .

The cubic factors are irreducible over F2 since, if they factorized further, then one of the factors would
be linear and so give a root in F2.

Let α be one of the roots of X3 +X + 1 in K. Then α7 = 1 and so

(α2)3 + (α2) + 1 = α6 + α2 + 1 = α6(1 + α3 + α) = 0 .

This shows that α2 is also a root of X3 + X + 1. Repeating the argument shows that α4 = (α2)2 is a
root. These roots are distinct, so

X3 +X + 1 = (X − α)(X − α2)(X − α4) .

Similarly we see that
X3 +X2 + 1 = (X − α3)(X − α5)(X − α6) .

The BCH code with design distance 3 is given by the ideal

J = {P (X) ∈ F2[X] : P (α) = P (α2) = 0} .

The generating polynomial for this ideal is X3 +X + 1. We saw at the end of lecture 12 that this gave
a rearrangement of Hamming’s code.

We want to prove that the minimum distance for a BCH code is at least as big as the design distance
δ. To do this we need to recall a result about determinants.

Lemma 13.2 van der Monde determinants
The determinant

∆(X1, X2, . . . , XK) =

∣∣∣∣∣∣∣∣∣∣

X1 X2 X3 . . . XK

X2
1 X2

2 X2
3 . . . X2

K

X3
1 X3

2 X3
3 . . . X3

K
...

...
...

...
XK

1 XK
2 XK

3 . . . XK
K

∣∣∣∣∣∣∣∣∣∣
satisfies

∆(X1, X2, . . . , XK) =

(
K∏
k=0

Xk

)∏
i<j

(Xj −Xi)

 .

Lecture 13 50

Proof:
We will treat the (Xk) as independent indeterminants and prove the lemma by induction on

K. The result is clearly true for K = 1.

Consider ∆(X1, X2, . . . , XK) as a polynomial of degree K in XK with coefficients that are poly-
nomials in X1, X2, . . . , XK−1. When XK = 0 or X1 or X2 or . . . or XK−1, then the determinant is
obviously 0, so

XK

(∏
i<K

(XK −Xi)

)
must divide the determinant. Hence

∆(X1, X2, . . . , XK) = c(X1, X2, . . . , XK−1)XK

(∏
i<K

(XK −Xi)

)

for some polynomial c(X1, X2, . . . , XK−1). The leading coefficients of both sides of this equation are

∆(X1, X2, . . . , XK−1) and c(X1, X2, . . . , XK−1) .

So we see that

∆(X1, X2, . . . , XK) = ∆(X1, X2, . . . , XK−1)XK

(∏
i<K

(XK −Xi)

)

which completes the induction. �

Theorem 13.3 Minimum distance for BCH codes
The minimum distance for a BCH code with design distance δ is at least δ.

Proof:
Let P (X) = p0 + p1X + . . . + pN−1XN−1 be a non-zero polynomial in the code book. Then

we have 
1 α α2 α3 . . . αN−1

1 α2 α4 α6 . . . α2(N−1)

1 α3 α6 α9 . . . α3(N−1)
...

...
...

...
...

1 αδ−1 α2(δ−1) α3(δ−1) . . . α(N−1)(δ−1)





p0
p1
p2
...

pN−2
pN−1

 =


0
0
0
...
0

 .

Call the matrix above A. Lemma 13.1 shows that any δ − 1 columns of A are linearly independent
because no two of the N powers of α are equal or 0. This means that there must be at least δ non-zero
coefficients (pk) in order for Ap to be 0. Hence the minimum distance is at least δ. �

It remains for us to consider how to decode a message. Since our BCH code is a linear code, we
can use the general methods for finding the closest code word to any message we receive. However, we
can also exploit the algebraic definition of BCH codes to find more efficient ways to do this.

We know from Proposition 7.3 that our BCH code is t-error correcting, where t = b 12 (δ − 1)c. So
suppose that a code word c is sent and we receive r = c + e where the error vector e has at most t
non-zero entries. How do we find e and thence recover the sent code word c?

Let C(X), R(X) and E(X) be the polynomials with degree less than N that correspond to the
vectors c, r and e. We know that the code word C(X) satisfies

C(α) = C(α2) = . . . = C(αδ−1) = 0 .

Lecture 13 51

So
R(α) = E(α) , R(α2) = E(α2) , . . . , R(αδ−1) = E(αδ−1) .

First calculate R(αj) for j = 1, 2, . . . , δ − 1. If these are all 0 then R(X) is a code word and there
have been no errors (or at least δ of them).

Otherwise let E = {i : ei 6= 0} be the set of indices at which errors occur and assume that 0 < |E| 6 t.
The error locator polynomial is

σ(X) =
∏
i∈E

(1− αiX) .

This is a polynomial (over K) of degree |E| with constant term 1. If we know σ(X) then we can easily
find which powers α−i are roots of σ(X) and hence find the indices where errors have occurred. We
could then correct the errors by changing those entries. So we need to calculate σ(X).

Consider the formal power series

η(X) =

∞∑
j=1

E(αj)Xj .

(Since αN = 1, the coefficients of this power series repeat.) Note that, for the first few coefficients,
E(αj) = R(αj) for j = 1, 2, . . . , δ − 1. So we can calculate these coefficients in terms of the received
word r. These are the only coefficients we will use.

η(X) =

∞∑
j=1

E(αj)Xj =

∞∑
j=1

∑
i∈E

αijXj =
∑
i∈E

∞∑
j=1

αijXj =
∑
i∈E

αiX

1− αiX

Write this as
ω(X)

σ(X)
for the polynomial

ω(X) =
∑
i∈E

αiX
∏
j:j 6=i

(1− αjX) .

Note that both σ(X) and ω(X) have degree |E| 6 t.

We have shown that σ(X)η(X) = ω(X). Writing this out explicitly and using E(αk) = R(αk) for
k = 1, 2, . . . , 2t we obtain(
σ0 + σ1X + . . .+ σtX

t
) (
R(α)X +R(α2)X2 + . . .+R(α2t)X2t + E(α2t+1)X2t+1 + . . .

)
=

= ω0+ω1X+. . .+ωtX
t .

The coefficients of Xn for t < n 6 2t are

t∑
j=0

σjR(αn−j) = 0

which do not involve any of the terms E(αk)Xk. So we get equations
R(αt+1) R(αt) . . . R(α)
R(αt+2) R(αt+1) . . . R(α2)

...
...

...
R(α2t) R(α2t−1) . . . R(αt)



σ0
σ1
σ0
...
σt

 =


0
0
0
...
0

 .

The matrix above is a t × (t + 1) matrix, so there is always a vector σ 6= 0 in its kernel. This tells us
what the error locator polynomial σ(X) is and hence what the errors are that we should correct.

The special case of a BCH code where the field F is Fq and N = q − 1 is also called a Reed –
Solomon code. These are very widely used. In particular, CDs are encoded using two interleaved Reed
– Solomon codes. Both are defined over F28 = F256 with δ = 5. They have lengths N = 32 and 28
respectively. The interleaving spreads the information physically on the disc so that bursts of successive
errors, as caused by a scratch, can be corrected more reliably. A CD can correct a burst of about 4, 000
binary errors.

Lecture 13 52

14: LINEAR FEEDBACK SHIFT REGISTERS

14.1 Definitions

Suppose that we have K registers each of which can contain one value from the finite field F = Fq
with q elements. Initially these contain the values x0, x1, . . . , xK−1, which is called the initial fill. At
each time step, the values in the registers are shifted down and the final register is filled by a new value
determined by the old values in all of the registers.

Denote the values in the registers at time t = 0, 1, 2, . . . by X0(t), X1(t), . . . , XK−1(t). Then we
have

X0(t+ 1) = X1(t)

X1(t+ 1) = X2(t)

...

XK−2(t+ 1) = XK−1(t)

XK−1(t+ 1) = f(X0(t), X1(t), . . . , XK−1(t)) .

The function f is called the feedback function. The system is called a linear feedback shift register (LFSR)
when the feedback function is linear, say f(X0, X1, . . . , XK−1) = −c0X0 − c1X1 − . . . − cK−1XK−1 so
that

c0X0(t) + c1X1(t) + . . . cK−1XK−1(t) +XK(t) = 0

for each t.

Such a linear feedback shift register gives an infinite stream of values

X0(0), X0(1), X0(2), , . . . , X0(t),

The values in register r are just these values with the first r − 1 discarded and the others shifted back.
This stream of values begins with the initial fill

X0(0) = x0, X0(1) = x1, X0(2) = x2, . . . , X0(K − 1) = xK−1

and satisfies the recurrence relation

c0X0(t) + c1X0(t+ 1) + c2X0(t+ 2) + . . . cK−1X0(t+K − 1) +X0(t+K) = 0 .

The polynomial C(X) = c0 + c1X + c2X
2 + . . .+ cK−1XK−1 +XK is the feedback polynomial. It is the

characteristic polynomial for the recurrence relation and so determines the solutions.

It is simple to produce such feedback shift registers using computers and so to produce such streams.
In superficial ways the stream of values appears random but we will see that this is not the case.

We will always assume that the first coefficient c0 for the feedback function is not zero. For, if
c0 = 0, then the value in the 0th register does not affect any later values and we should consider the
remaining K − 1 registers as a simpler LFSR.

Proposition 14.1 Periodicity for LFSR
A linear feedback shift register is periodic.

Lecture 14 53

This means that there is an integer N with X0(t + N) = X0(t) for each time t. The smallest such
integer N > 0 is the period for the LFSR.

Proof:
For each time t, let V (t) be the vector

V (t) =


X0(t)

X0(t+ 1)
X0(t+ 2)

...
X0(t+K − 1)

 ∈ FK .

There are only a finite number qK of vectors in FK so the sequence (V (t))t∈N must eventually repeat
a value taken earlier. Suppose that this first occurs at V (N) with V (N) = V (j) for some 0 6 j < N .

The definition of the LFSR shows that

V (t+ 1) =



0 1 0 . . . 0
0 0 1 . . . 0
0 0 0 . . . 0
...

...
...

...
0 0 0 . . . 1
−c0 −c1 −c2 . . . −cK−1

V (t) .

Write this as V (t + 1) = MV (t). The matrix M has determinant ±c0, which we are assuming to be
non-zero. So M is invertible.

We have V (t) = M tV (0), so the first repeat gives

MNV (0) = M jV (0) .

If j were not 0, then we could multiply by M−1 to get an earlier repeat. Hence we must have j = 0 and
so MNV (0) = V (0). Consequently, the sequence of vectors (V (t)) is periodic with period N . Looking
at the first entry in these vectors shows that (X0(t)) is also periodic. �

Exercise:
What happens when the coefficient c0 is allowed to be 0? Do we still get periodicity when the feedback
function f is not assumed to be linear? Is the matrix M in the proof periodic? What is its characteristic
polynomial?

The matrix M in the proof above clearly maps 0 to itself. Hence, the largest the period can be is
N = qK−1. In this case the sequence V (0),V (1), . . . ,V (N − 2), V (N−1) takes every value in FK \{0}
exactly once. In one period of length qK − 1, we then see that 0 occurs qK−1 − 1 times while every
other number in F occurs qK−1 times. In this, rather weak, sense the sequence is random. However,
the sequence is periodic so it becomes entirely predictable once we have at least one period of data.

Let N be the period for a linear feedback shift register and set

W (t) =


X0(t)

X0(t+ 1)
X0(t+ 2)

...
X0(t+N − 1)

 ∈ FN .

Then the vectors W (t+ 1) is a cyclic shift of W (t) because X0(t+N) = X0(t). Also,

c0W (0) + c1W (1) + . . .+ cK−1W (K − 1) + W (K) = 0 .

So we see that the vectors W (0),W (1), . . . ,W (K − 1) span the code book for a cyclic code of length
N .

Lecture 14 54

14.2 The Berlekamp – Massey Algorithm

Suppose that you receive a sequence of values (at)t∈N from the finite field F that you believe has
come from a linear feedback shift register. Can you determine which linear feedback shift register has
produced it?

This is simply a matter of solving linear equations to find the coefficients in the feedback polynomial.
Suppose that the sequence came from a linear feedback shift register with K registers and feedback
polynomial

C(X) = c0 + c1X + c2X
2 + . . .+ cK−1X

K−1 +XK .

Then we would have
c0at + c1at+1 + . . .+ cK−1at+K−1 + at+K = 0

for every t. Consequently,

a0 a1 a2 . . . aK−2 aK−1
a1 a2 a3 . . . aK−1 aK
a2 a3 a4 . . . aK aK+1

...
...

...
...

...
aK−2 aK−1 aK . . . a2K−4 a2K−3
aK−1 aK aK+1 . . . a2K−3 a2K−2





c0
c1
c2
...

cK−1
1

 =



0
0
0
...
0
0

 . (∗)

Hence the matrix above must have determinant 0.

Berlekmap and Massey formalised this as an algorithm to find the linear feedback shift register that
generated (at). Begin with the smallest value of K that might be possible for the number of registers
and compute the determinant∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 a2 . . . aK−2 aK−1
a1 a2 a3 . . . aK−1 aK
a2 a3 a4 . . . aK aK+1

...
...

...
...

...
aK−2 aK−1 aK . . . a2K−4 a2K−3
aK−1 aK aK+1 . . . a2K−3 a2K−2

∣∣∣∣∣∣∣∣∣∣∣∣
.

If this is non-zero, then we can not solve the problem using K registers. So increase K by 1 and
repeat the process. If the determinant is 0, then solve (∗) above to find the coefficients cj . Then set
up a linear feedback shift register with initial fill a0, a1, . . . , aK−1 and feedback polynomial C(X) =
c0 + c1X+ c2X

2 + . . .+ cK−1XK−1 +XK . check if the stream produced by this agrees with the original
stream. If it does we are finished. If it does not, then consider other solutions (cj) or increase K.

14.3 Power Series

Let A(X) = a0 + a1X + . . . + aDX
D and B(X) = 1 + b1X + . . . + bKX

K be two polynomials in
F[X]. If we write B(X) = 1− β(X), then we have

1

B(X)
=

1

1− β(X)
=

∞∑
j=0

β(X)j .

Expanding the powers of β(X) gives a formal power series for 1/B(X). Multiplying this by A(X) we
obtain a formal power series for A(X)/B(X), say

A(X)

B(X)
=

∞∑
j=0

ujX
j .

Lecture 14 55

In these formal power series we are not concerned about convergence but merely wish the coefficients
of each power of X on each side of the equation to match. Hence we need

A(X) = B(X)

 ∞∑
j=0

ujX
j


which is equivalent to

an =

n∑
j=0

bjun−j for n = 0, 1, 2,

Thus the sequence (uj) satisfies

un = an −
n∑
j=1

bjun−j for n = 0, 1, . . . , D;

un = −
n∑
j=1

bjun−j for n > D .

This shows that the sequence (uj) is the stream produced by a linear feedback shift register with feedback
polynomial

C(X) = bK + bK−1X + bK−2X
2 + . . .+ b1X

K−1 +XK .

This shows that determining whether a stream of numbers from F is the output of a LFSR is the
same as determining whether a formal power series is the quotient of two polynomials. You should
compare this to the method used to decode a BCH code in the previous lecture.

Exercise:
You learnt at school that a decimal repeats if and only if it represents a rational number. How does
this relate to LFSRs and the periodicity proved in Proposition 14.1?

Lecture 14 56

15: CRYPTOGRAPHY

15.1 Introduction

In many circumstances we want to send a message so that it can only be read by the intended
recipient. In this case we talk about the message being encrypted or enciphered. This is an important
and very actively studied area. As computers grow more powerful we need to devise ciphers that are
more difficult to break.

We wish to transmit a message or plaintext which consists of a string of letters taken from a finite
alphabet A. Usually there are a variety of different methods to encode or encipher the message, each
depending on a key taken from a finite set K of possible keys. We will write ek : A → B for the encoding
function or encrypting function corresponding to the key k. When the plain text is encrypted in this way
we obtain the ciphertext. We must be able to decode or decipher the message, so there is a decrypting
function dk : B → A with dk(ek(a)) = a for every letter a.

Example:
In a substitution cipher the key is a permutation κ of the alphabet A. So each letter a is encrypted as
κ(a). This is deciphered by applying the inverse permutation.

For messages in English, where the alphabet is the usual Latin alphabet, it is generally easy to
decipher such a code. For we look at the frequency of letters in English and compare this with the
frequencies in the ciphertext. Using this, and the fact that the message should make sense, it is easy to
find the permutation used and so decipher messages.

Example:
A more secure cipher is the Vigenère cipher, named after a French Diplomat, 1523. In this the key is a
string k1k2 . . . kD of letters from the alphabet A. This string is repeated to give an infinite sequence

k1k2k3 . . . kDkD+1kD+2 . . . k2Dk2D+1k2D+2 . . .

with kqD+r = kr. Now a plaintext a1a2 . . . aN is encrypted as b1b2 . . . bN where

bj ≡ aj + kj (mod |A|) .

If the key is only one letter long, D = 1, then this is a particularly simple substitution cipher,
called the Caesar cipher. When the key is longer, a given letter is encrypted differently depending on
its place in the message. So simple frequency analysis will not work. Of course we could consider more
complicated frequency analysis as was done by Babbage, who showed how to break the cipher provided
we have access to a long enough ciphertext.

Babbage observed that common patterns of letters (words) will be enciphered in exactly the same
way when the distance between their starting points is a multiple of D the length of the key. So we
should look for reasonably long words that repeat in the ciphertext and then D must divide the distance
between those repeats. (“The Code Book”, by Simon Singh has a lot of similar historical information.)

Lecture 15 57

What do mean by breaking a cipher? We will assume that our enemies know the methods we are
using to encrypt messages but not the particular key we are using. So they know the possible functions
ek and dk but not the value of k. If they intercept a piece of ciphertext, they will want to decode it or,
even more damagingly, to work out the key so that they can decode any future ciphertexts.

There are various levels of attack we might protect against.

1. Ciphertext only attack
The enemies have a single piece of ciphertext.

2. Known Plaintext attack
The enemies have a piece of plaintext and the corresponding ciphertext.

3. Chosen Plaintext attack
The enemies can obtain arbitrary plaintexts of their choice and the corresponding ciphertexts.

A substitution cipher is vulnerable to an attack at level 1, provided that the ciphertext is reasonably
long and the message is in English. The Vigenère cipher is also insecure at level 1, although a much
longer ciphertext is required and the enemies need to work harder to break the cipher. In both cases
the enemies will be able not simply to find the original message but to find the key and so decipher
other messages. For modern ciphers, we would want them to be secure against a level 3 attack. So we
need to devise better ciphers.

Note that every cipher will be vulnerable to a level 3 attack in some sense. For the system is finite:
there are only finitely many letters and finitely many keys. So the enemies could carry out an exhaustive
search. For each key k ∈ K they could encipher a fixed plaintext using that key and check if it agreed
with the known ciphertext. To have a secure cipher, we want the amount of work involved in doing
such an exhaustive search, or the time it would take, to be prohibitively large.

15.2 Equivocation

Suppose that a random plaintext message M is chosen from the set M of possible messages, with
a certain probability distribution. Then we choose a random key K ∈ K independently of M . The
ciphertext is then a random variable C = cK(M) in the set C of all possible ciphertexts.

We can think of this as transmitting the message M through a noisy channel to produce C. The
noise comes from the choice of the key. The entropy H(M |C) is the message equivocation. It measures
the amount of uncertainty there is about the plaintext once we know the ciphertext. Similarly, the key
equivocation H(K|C) measures the amount of uncertainty about the key when we know the ciphertext.
Unsurprisingly we have

Proposition 15.1 Message equivocation 6 key equivocation
The message equivocation is no larger than the key equivocation.

Proof:
We have

H(K|C) = H(K,C)−H(C) = H(K,M,C)−H(C)

since M = dK(C) so M is a function of (K,C). Therefore,

H(K|C) = H(K,M,C)−H(M,C) +H(M,C)−H(C)

= H(K|M,C) +H(M |C)

and so H(K|C) > H(M |C). �

Lecture 15 58

We say that a cipher has perfect secrecy if the ciphertext gives us no information about the plaintext,
so H(M |C) = H(M). This means that

H(M,C) = H(M) +H(C)

so M and C are independent. (Equivalently the mutual information I(M,C) = H(C) − H(C|M) =
H(C) +H(M)−H(M,C) = 0.)

Proposition 15.2 Perfect secrecy
If a cipher has perfect secrecy, then there must be at least as many possible keys as there are possible
plaintext messages.

Proof:
When we say “possible keys” or “possible messages” we mean that the probability is strictly

positive.

Fix a message mo ∈M and a key ko ∈ K, both with strictly positive probability. Then co = eko(mo)
also has strictly positive probability. For any possible message m ∈M we have

P(C = co) = P(C = co|M = m) .

So there must exist some key k ∈ K with co = ek(m). If two messages m1,m2 give the same key k, then
ek(m1) = co = ek(m2) and so m1 = m2. Hence the map m 7→ k is injective. �

This means that it is usually impractical to have perfect secrecy. However,there is a simple example
that does give perfect secrecy. G. S. Vernam (1890 - 1960) and J. O. Mauborgne (1881 - 1971) proposed
using a random key. We use a random number generator to produce a sequence

k1k2k3 . . .

of letters from the alphabet A. Each letter kj is chosen uniformly from the q = |A| letters of the
alphabet A and the choices are independent for each position j. Then a message m = a1a2 . . . aN is
enciphered as b1b2 . . . bN where

bj ≡ aj + kj (mod q) .

Each random letter kj is only used once, so this cipher is called a one-time pad.

A one-time pad has perfect secrecy. For we have

P(M = m, C = c) = P(M = m,K = c−m) = P(M = m)P(K = c−m) = P(M = m)
1

qN

where the subtraction c−m is done modulo q. Therefore, M and C are independent.

It is believed that a one-time pad is used to encrypt the Washington – Kremlin hotline. However,
there are major problems with a one-time pad. First we need a way to produce genuinely random
sequences of letters. This is not straightforward. Secondly, if the cipher is to be deciphered by the
intended recipient, he or she needs to know the key sequence. So a key, just as long as the message,
needs to be sent to the receiver in a secure way. In this way we have replaced the problem of transmitting
a message securely by another — transmitting the key — of the same difficulty.

Various people have been tempted to replace the random key by a suitable pseudo-random sequence.
For example we might use a linear feedback shift register to produce a sequence of supposedly random
letters. This is vulnerable to a level 2 attack. For, if we know a piece of plaintext and the corresponding
ciphertext, then we can compute the key sequence from their difference. Now the Berlekamp – Massey
algorithm gives us a simple way to find the feedback polynomial and hence to find the key.

Lecture 15 59

15.3 Unicity

If we try to break a simple substitution cipher by examining letter frequencies we are helped by the
fact that we know the original message makes sense and that, for a reasonable length message, there is
only one key that gives a sensible message from the ciphertext. We might ask how long a message we
need for this argument to apply. This length is the idea behind the unicity.

Suppose that our message m = a1a2a3 . . . aN is of length N . The letters are random variables
Aj giving a random message M = A1A2A3 . . . AN . We will assume that the entropy of this random
sequence is NH for a constant H, the entropy per letter for our message. (Compare Lecture 5.) When
this message is enciphered we get a ciphertext C = C1C2C3 . . . CN . The unicity is the least value of N
for which the conditional entropy H(K|C) is 0.

Since K and M determine C and, conversely, K and C determine M , we have

H(K|C) = H(K,C)−H(C)

= H(M ,K,C)−H(C)

= H(M ,K)−H(C)

= H(M) +H(K)−H(C)

We are already assuming that H(M) = NH. For most useful ciphers we have the ciphertext uniformly
distributed, so H(C) = N log2 |C|. Finally, we choose the key K uniformly from K, so H(K) = log2 |K|.
Therefore, the unicity N satisfies 0 = NH + log2 |K| −N log2 |C|. So

N =
log2 |K|

log2 |C| −H
.

If we wish to be secure, we should not use a single key for more letters than the unicity.

Example:
For English a reasonable estimate of the entropy per letter is 1.2 bits. Suppose we use a substitution
cipher where the key is a permutation of the 26 letters and the space. Then |K| = 27! so log2 |K| = 93.14,
|C| = 27 and so the unicity is

N =
log2 27!

log2 27− 1.2
=

93.14

4.75− 1.2
= 26.2 .

So we expect to be able to find the key letter uniquely if the ciphertext is longer than 26 letters.

Lecture 15 60

16: SYMMETRIC AND ASYMMETRIC CIPHERS

The ciphers that we have considered so far are symmetric in the sense that both the sender and the
receiver need to know the key in order to encrypt or decrypt the message. Such ciphers are useful but
require that the key is kept securely and can be securely communicated from the sender to the receiver.
If there are many people I wish to communicate with, then I will need a different key for each and need
to keep all these keys secure.

16.1 *Feistel Ciphers*

Suppose that we have some simple (non-linear) functions fk : FN2 → FN2 for keys k ∈ K. Then we
can construct a more complicated and more secure cipher by using these functions in sequence.

Let k = (k1, k2, . . . , kR) be a vector of R keys and consider a plaintext (a0, a1) ∈ FN2 × FN2 . From
these we construct a sequence of letters a0, a1, a2, . . . , aR−1, aR, aR+1 so that:

(a0, a1) 7→ (a1, a0 + fk1(a1)) = (a1, a2) 7→ (a2, a1 + fk2(a2)) = (a2, a3) 7→ . . .

. . . 7→ (aR, aR−1 + fkR(aR)) = (aR, aR+1)

Then the cipher text is (aR, aR+1). This is called a Feistel cipher.

Deciphering is done by using the keys in reverse order:

(aR, aR+1) 7→ (aR+1 − fkR(aR), aR) = (aR−1, aR) 7→ . . .

. . . 7→ (a3 − fk2(a2), a2) = (a1, a2) 7→ (a2 − fk1(a1), a1) = (a0, a1)

and is equally easy to compute.

Many practical ciphers use this idea. For example, the DES (Data Encryption Standard, of the US
National Bureaus of Standards, 1977 – 1988) uses Feistel ciphers. In this case N = 32 so we encipher
binary strings of 64 bits. The transformation is repeated R = 16 times. Despite this complexity, it is
possible to break such ciphers. Using a reasonably large parallel computing network it can be broken
in a few days. Now more secure symmetric ciphers, such as the AES (Advanced Encryption Standard)
are used.

16.2 Asymmetric Ciphers

We can also consider asymmetric ciphers where there are two keys, one for encrypting and the
other for decrypting. For this to be sensible, it must be difficult to find the deciphering key from the
enciphering one.

A particularly useful version of asymmetric ciphers is public key cryptography. Here, the receiver
publishes for everyone to see the public key that should be used to encrypt messages intended for her.
This enables anyone to compute the encrypting function and so to encrypt a message. Thus I can
encrypt my plaintext message and send it to the receiver. She has a private key that enables her to
decipher this encrypted message and so recover the plaintext. The private key is kept secure by the
receiver, so that no one else can decipher the message.

For this idea to work, it must be hard to decipher a ciphertext without knowing the private key, even
though we already know the public key. So, it should be simple to encrypt a message m as c = ek(m)
using the function ek that we know from the public key. However, if we are given the ciphertext c it
should be very hard to find which plaintext m has c = ek(m). The function ek is a “one-way function”
where it is easy to compute ek(m) but difficult to find e−1k (c).

Lecture 16 61

Public key cryptography has the great advantage that we do not need to send the public key
securely since it can be published for everyone to see. Also, the private key is kept securely by the
receiver and does not need to be sent to anyone else. Even if we wish to use a symmetric cipher to
exchange information, it may be useful to use a public key cryptogram to send the symmetric key
securely.

The most commonly used public key cryptography relies on mathematical problems that are difficult
to solve quickly. So the RSA cipher and the Rabin cipher rely on it being hard to factorise large integers.
The ElGamal cipher relies on it being hard to find which power of a primitive root modulo N gives
a particular integer. These problems have been found to be very difficult to solve, so we hope that
breaking the ciphers is equally difficult. Of course, if there is a breakthrough and someone discovers
a very fast method to solve these problems, then the ciphers will immediately become insecure. Even
without this, as computers become faster the size of integers that can be factorised in a reasonable time
grows larger, so we need to move to more complicated ciphers of the same type.

Before we look at examples of public key cryptography we need to think about what makes a
computation hard or lengthy.

Lecture 16 62

17: COMPLEXITY

All of the problems that we are considering are finite and so could be solved simply by considering
all of the possibilities. However, some are much easier to solve than others. Consider for example:

“Factorise 20, 989” compared with “Show that 139× 151 = 20, 989.”

or

“Find n with 2n ≡ 5 (mod 211)” compared with “Verify that “2132 ≡ 5 (mod 211)”.

In each case it takes a long time to do the first and is quick to check the second. We will consider
this relationship by asking how long it takes to perform certain calculations.

17.1 Polynomial Time

How long will it take to compute the value f(n) of some function f? This is likely to depend on the
value of n and, in particular, on how big it is. We will suppose that n is written in binary and has B
digits (so n < 2B). Each elementary operation, such as adding two binary bits, or comparing two bits,
takes a maximum time τ . So the time to compute f(n) will be at most the time τ multiplied by the
number of elementary operations required to do the computation. We will say that f can be computed
in polynomial time if there is an algorithm to compute f(n) that takes at most time cBk for all natural
numbers n with B bits. Here c and k are some constants independent of n. Similarly, a function of
several variables f(n1, n2, . . . , nr) can be computed in polynomial time if there is an algorithm that
computes f(n1, n2, . . . , nr) in at most time cBk where B = B1 + B2 + . . . + Br is the sum of the bit
lengths of the numbers n1, n2, . . . , nr.

It is easy to give examples of functions that can be computed in polynomial time.

(a) Adding or subtracting binary integers.

(b) Multiplying binary integers.

(c) Division of binary integers to give a quotient and remainder.

(d) Computing highest common factors, using Euclid’s algorithm.

(e) Modular arithmetic (addition, subtraction, multiplication, division) modulo N .

(f) Exponentiation modulo N . To compute αn, expand n in binary as
∑
nj2

j with each nj = 0 or 1.

Then compute the powers α, α2, α4, . . . , α2j , . . . , α2B by repeated squaring and

αn =
∏
nj=1

α2j

as a product.

(g) Testing primality. Agrawal, Kayal and Saxena (2002) gave a polynomial time algorithm to test
primality.

However, there are functions for which polynomial time algorithms are not known. For example:

1. Factoring
An integer N is known to be the product of two primes p and q. Find these primes.

Lecture 17 63

2. Discrete Logarithm
Let α be a primitive root modulo the prime p., so α is a generator of the cyclic group F×p . Given
x ∈ F×p , find n with αn ≡ x (mod p). We call n the logarithm of x to base α and denote it by
logα x.

The elementary methods for computing 1 and 2 take much longer than polynomial time. To factor
N we could try dividing by successive primes up to N1/2. This takes time O(N1/2) = O(2B/2). To
compute the discrete logarithm logα x, set m = dp1/2e and write n = qm+ r with 0 6 q, r < m. Then

αn ≡ x (mod p) ⇔ (αm)q ≡ xα−r (mod p) .

So compute (αm)q and xα−r for all 0 6 q, r < m and see where they agree. This takes time
O(p1/2 log p) = O(2B/2B).

Significantly better methods are known but these are still well short of polynomial time. Using
number field sieves we can achieve a time

O
(

exp(cB1/3(logB)2/3)
)
.

In practice, it seems to take a long time to solve either 1 or 2 for random large values of p, q and x. We
will describe various ciphers based on the difficulty of solving these problems.

The RSA cipher relies on factoring being difficult. Up until 2007 the RSA laboratories offered
rewards for factoring large challenge numbers. The RSA-B challenge involves factoring a number with
B binary bits. Although the prizes have now ceased, this is still used as a test of computing power. The
recent successes were

Challenge Number Decimal digits Factored Prize

RSA-576 174 December, 2003 $10,000
RSA-640 193 November, 2005 $20,000
RSA-704 212 July, 2012 ($30,000)
RSA-768 232 December, 2009 ($50,000)
RSA-896 270 ($75,000)
RSA-1024 309 ($100,000)

(See http://www.emc.com/emc-plus/rsa-labs/historical/ the-rsa-factoring-challenge-faq.htm or http://en.wikipedia.org/wiki/RSA Factoring Challenge
.)

17.2 Modular Arithmetic

For each natural number N , the integers modulo N will be denoted by ZN . The set of integers
modulo N that are coprime to N :

Z×N = {a = 0, 1, 2, . . . , N − 1 : (a,N) = 1}

is a multiplicative group of order ϕ(N) — the Euler totient function. Hence Lagrange’s theorem shows
that

aϕ(N) ≡ 1 (mod N) for each a with (a,N) = 1 .

This is the Euler – Fermat theorem.

When N is a prime p we know that ϕ(p) = p−1, and Z×p = F×p consists of all the non-zero elements
in the field Fp. The set Z×p = F×p is a cyclic group of order ϕ(p) = p − 1. An integer a is a primitive
root modulo p if a is a generator of this cyclic group. The Euler – Fermat theorem gives Fermat’s little
theorem:

ap ≡ a (mod p) for all integers a .

Lecture 17 64

When N is a product of two distinct primes, say N = pq, then ϕ(N) = (p − 1)(q − 1). Fermat’s
little theorem shows that, for each integer k,

ak(p−1)+1 ≡ a (mod p) for all intgers a .

So, in particular, akϕ(N)+1 ≡ a (mod p). Similarly, akϕ(N)+1 ≡ a (mod q). So we obtain

akϕ(N)+1 ≡ a (mod N) for all integers a .

We will also need:

Theorem 17.1 Chinese Remainder Theorem
Let p, q be two coprime integers, so there are integers a, b with ap+ bq = 1.
The equations x ≡ c (mod p) and x ≡ d (mod q) are equivalent to

x ≡ c+ ap(d− c) (mod pq) .

Proof:
If x = c+ ap(d− c) = c+ (1− bq)(d− c) = d− bq(d− c), then it is clear that x ≡ c (mod p)

and x ≡ d (mod q).

Conversely, suppose that x ≡ c (mod p) and x ≡ d (mod q), so p|(x− c) and q|(x− d). Then

p|(x− c− ap(d− c)) and q|(x− d− bq(d− c)) .

This shows that pq divides x− d− bq(d− c) = x− c− ap(d− c), so

x ≡ c+ ap(d− c) (mod pq) .

�

The Chinese Remainder theorem shows that the multiplicative group homomorphism

Z×pq → Z×p × Z×q ; a 7→ (a (mod p), a (mod q))

is an isomorphism. In particular, ϕ(pq) = ϕ(p)ϕ(q) for coprime integers p and q.

Proposition 17.2 Quadratic residues
Let p be an odd prime. In the field Fp, the only square root of 0 is 0; precisely 1

2 (p− 1) elements have
no square root and the remaining 1

2 (p− 1) have exactly two square roots.

Proof:
Since Fp is a field, we have

x2 ≡ y2 (mod p) ⇔ (x− y)(x+ y) ≡ 0 (mod p) .

Hence, the squaring map s : Fp → Fp; x 7→ x2 (mod p) has s(x) = s(y) if and only if y = ±x. This
means that s−1(0) = {0} and every other square has two square roots. Hence there must be 1

2 (p − 1)
squares. �

Lecture 17 65

Proposition 17.3 Square roots modulo pq
Let N be the product of two distinct, odd primes p and q. Suppose that the integer a is a square modulo
N . Then either:

(a) (a,N) = 1 and there are exactly 4 square roots of a modulo N .

(b) (a,N) = p or q and there are exactly 2 square roots of a modulo N .

(c) a ≡ 0 (mod N) and 0 is the only square root of 0 modulo N .

Proof:
For an integer x we have

x2 ≡ a (mod N) ⇔ x2 ≡ a (mod p) and x2 ≡ a (mod q) .

When (a,N) = 1, we have 2 solutions to x2 ≡ a (mod p). Similarly, there are 2 solutions to x2 = a
(mod q). Now the Chinese remainder theorem shows that there are 4 solutions to x2 ≡ a (mod N).

When p|a there is only one solution to x2 ≡ a (mod p). This gives parts (b) and (c). �

Lecture 17 66

18: PUBLIC KEY CIPHERS

18.1 RSA Ciphers

The Rivest – Shamir – Adelman (RSA) ciphers are our first example of public key ciphers. They
are very widely used and rely on the difficulty in factoring products N = pq of two large primes.

To make an RSA cipher, I first choose two large primes p, q and set N = pq. (Typically these
are primes with at least 800 binary bits.) Then I choose an exponent e randomly with e coprime to
ϕ(N) = (p − 1)(q − 1). I can always ensure that (e, ϕ(N)) = 1 by taking e as a prime number larger
than both p and q. This number e is called the encrypting exponent. Euclid’s algorithm allows me to
find integers d, k with

de− kϕ(N) = 1

(in polynomial time). The integer d is called the decrypting exponent.

The public key will be (N, e). The encrypting function is

a 7→ ae (mod N) .

The private key will be d. The decrypting function is

c 7→ cd (mod N) .

The Euler – Fermat theorem shows that

(ae)d ≡ ade ≡ akϕ(N)+1 ≡ a (mod N) .

So the decrypting function is inverse to the encrypting function.

An enemy who intercepts a ciphertext needs to find the plaintext knowing only the public key. This
appears to be tantamount to finding the factors p and q of N so that ϕ(N) can be computed.

Theorem 18.1 Security of the RSA ciphers
Suppose that we have an algorithm to determine the private key for an RSA cipher when we are given the
public key. Then the algorithm permits us to factorise products of two distinct primes, with probability
arbitrarily close to 1.

If we can do this in polynomial time, then we have a very effective way to break RSA ciphers but the
theorem shows that this would also give us an equally effective way to factorise. No such algorithm is
known.

Proof:
We are assuming that we have an algorithm that gives the decrypting exponent d in terms of

N and e. Then ade ≡ a (mod N) for every a ∈ ZN .

Write de − 1 = 2sr for some odd integer r. Let ordp(x) denote the order of an element x in the
group Z×p . Set X = {x ∈ Z×N : ordp(x

r) 6= ordq(x
r)}. We will prove various properties of X that

eventually prove our theorem.

Lemma A

If x ∈ X, then we can factorise N .

Proof:
If x ∈ X, then y = xr satisfies y2

s

= x2
sr = xde−1 = 1 in Z×N , so ordp(y) and ordq(y) must be

powers of 2. Suppose that ordp(y) = 2t < ordq(y). Then y2
t ≡ 1 (mod p) but y2

t 6≡ 1 (mod q). So

(y2
t − 1, N) = p .

We could therefore use Euclid’s algorithm to find one of the factors of N .

Thus, to factorise N when we have x ∈ X, we compute (y2
t − 1, N) for t = 0, 1, 2, . . . , s. We know

that it must be p for one of these choices and so we obtain a factor of N . �

Lecture 18 67

Now we wish to count how may elements there are in X.

Lemma B

For the prime p and the exponent r as above we have

|{x ∈ Z×p : ordp(x
r) = c}| 6 1

2 (p− 1)

for every possible order c.

Proof:
Let α be a primitive root modulo p. So Z×p is the cyclic group generated by α. Then α2sr ≡ 1

(mod N) so we certainly have ordp(α
r)|2s. Let ordp(α

r) = 2t for some 0 6 t 6 s.

If x = αk, then xr = (αr)k and so

ordp(x
r) =

2t

(2t, k)
.

Hence, ordp(x
r) = 2t if and only if k is odd. There are 1

2 (p− 1) such values for x in Z×p . The remaining
1
2 (p − 1) values for x have ordp(x

r) < 2t. So no more than 1
2 (p − 1) elements from Z×p can have

ordp(x
r) = c. �

Lemma C

|X| > 1
2 (p− 1)(q − 1) = 1

2ϕ(N).

Proof:
The Chinese remainder theorem Theorem 17.1 shows that |X| is

|{(x, y) ∈ Z×p × Z×q : ordp(x
r) 6= ordq(y

r)}| .

For each y ∈ Z×q we have shown that

{x ∈ Z×p : ordp(x
r) 6= ordq(y

r)}

has at least 1
2 (p− 1) elements. Therefore |X| > 1

2 (p− 1)(q − 1) = 1
2ϕ(N). �

Proof of Theorem 18.1 (continued)
Choose an integer x randomly from Z×N . The probability that x ∈ X is at least 1

2 . When x ∈ X we
know how to find a factor of N . When x /∈ X, choose another random value for x. After k such random

choices we will have found a factor of N with probability at least 1−
(
1
2

)k
.

�

Note that the theorem shows that finding the private key is as hard as factoring N . There might
well be other ways to decipher a particular ciphertext without finding the private key d. Rivest, Shamir
and Adelman conjectured that any algorithm that allows us to decipher messages would also allow us
to factorise N . However, this has not been proved.

18.2 Rabin Ciphers

The Rabin cipher is another public key cipher that relies on the difficulty of factoring products
N = pq of two large primes. For this we need to consider finding square roots modulo a prime.

Lemma 18.2
Let p be a prime of the form 4k − 1. If c ≡ a2 (mod p) then a ≡ ±ck (mod p).

Lecture 18 68

Proof:
If c ≡ a2 (mod p), then Fermat’s little theorem gives

c2k ≡ a4k ≡ a(p−1)+2 ≡ a2 (mod p) .

So ck ≡ ±a (mod p). �

To make a Rabin cipher I first choose two large primes p, q of the form p = 4k− 1 and q = 4m− 1.
Set N = pq. Then I will create a cipher for the alphabet Z×N .

The public key will be N and the encrypting function is

a 7→ a2 (mod N) .

(Usually we restrict the alphabet so that (a,N) = 1 and a > N1/2.) The private key will be (p, q).

Suppose that we have received a ciphertext c ≡ a2 (mod N) and know the private key. Then
Lemma 18.2 shows that

a ≡ δck (mod p) and a ≡ εcm (mod q)

where δ, ε are each ±1. Find integers u, v with up + vq = 1. Then the Chinese remainder theorem
shows that

a ≡ δck + up(εcm − δck) (mod N) .

All four of these possible values can occur and are distinct by Proposition 17.3 . To decipher c we find
all four square roots modulo N and choose the one that makes sense. Our messages should contain
enough redundancy for only one of the four choices to make sense.

When we do not know the private key, breaking the Rabin cipher is as hard as factorising N .

Theorem 18.3 Security of Rabin ciphers
An algorithm to decipher the Rabin cipher gives an algorithm to factorise N .

Proof:
An algorithm to decipher the Rabin cipher must give one of the four square roots of a ciphertext

c modulo N which we obtain as c ≡ x2 (mod N).

Choose a ∈ Z×N at random. This algorithm gives a particular square root x of c ≡ a2 (mod N), so
x2 ≡ a2 (mod N). There are 4 distinct choices for a that give the same value for c. Two of these give
x ≡ ±a but the other two do not. For these other two we must have

x2 − a2 ≡ (x+ a)(x− a) ≡ 0 (mod N)

but neither x+ a nor x− a is divisible by N . Therefore, (N, x− a) 6= 1.

This means that, with probability 1
2 , we find a non-trivial factor (N, x− a) of N . If we repeat this

r times, the chance of finding a factor of N is at least 1−
(
1
2

)r
. �

Lecture 18 69

19: DISCRETE LOGARITHM CIPHERS

In this lecture we will look at some ciphers founded on the difficulty of solving the discrete logarithm
problem. Throughout, p will be a large prime number and γ will be a primitive root modulo p. So all
of the non-zero elements of Zp are powers of γ. We will assume that the values of p and γ are published
and known to everyone.

19.1 Diffie – Hellman Key Exchange

First we look at how to establish a common secret key so two people can use a symmetric cipher
to communicate securely. The method described is the Diffie – Hellman key exchange.

Let Alice and Bob be the two people. They wish to agree on a key k ∈ Zp to use. Alice chooses a
random a ∈ Zp−1; computes A = γa; and then publishes A. Similarly, Bob chooses a random b ∈ Zp−1;
computes B = γb ; and publishes B. Then they take the key to be

k ≡ Ba ≡ Ab (mod p) .

Alice knows the value of a and the published number B so she can compute Ba. Bob knows b and the
published number A so he can compute Ab. However,

Ba ≡ (γb)a = (γa)b ≡ Ab (mod p)

so Alice and Bob may take the common value of Ba and Ab as their common key.

If an enemy can compute discrete logarithms efficiently, then he can find a = logγ A from the
published values of p, γ and A. Then he can compute the key as Ba. Diffie and Hellman conjectured
but did not prove that finding the value of this key from the published values A and B is equivalent to
the discrete logarithm problem.

Shamir showed how we can use this idea to communicate securely without any public keys. Alice
and Bob take Zp as their alphabet. As in the Diffie – Hellman key exchange, Alice chooses a random
a ∈ Zp−1 and computes A = γa. Alice also finds an integer a′ with aa′ ≡ 1 (mod p−1) by using Euclid’s
algorithm. Alice keeps both numbers a and a′ securely. Similarly, Bob chooses a random b ∈ Zp−1;
computes B = γb; and finds an integer b′ with bb′ ≡ 1 (mod p− 1). He keeps both b and b′ securely.

To send a message m ∈ Zp from Alice to Bob, Alice computes c ≡ ma (mod p) and sends c to Bob.

Then Bob computes d ≡ cb (mod p) and sends d back to Alice. Alice now computes e ≡ da
′

(mod p)
and sends e to Bob. Finally, Bob computes eb

′
(mod p). Fermat’s little theorem shows that

eb
′ ≡ da′b′ ≡ cba′b′ ≡ ca′ ≡ maa′ ≡ m (mod p) .

So Bob has recovered the plaintext m.

Alice Bob
Private a b
Private a′ with aa′ ≡ 1 (mod p− 1) b′ with bb′ ≡ 1 (mod p− 1)

m
↓

c = ma (mod p) −→ c
↓

d ←− d ≡ cb (mod p)
↓

e ≡ da′ (mod p) −→ e
↓

f ≡ eb′ (mod p)

This method has the advantage that no keys have to be published in order for Alice and Bob to
communicate. However, it takes three times as long to transmit a message.

Lecture 19 70

19.2 The Elgamal Cipher

Elgamal showed how to adapt the Diffie – Hellman key exchange to give a cipher.

Bob wishes to send encrypted messages to Alice. So Alice chooses a random private key a ∈ Zp−1;
computes A ≡ γa (mod p); and publishes A as her public key. To send a message m ∈ Zp, Bob first
chooses a random number b ∈ Zp−1 and sends the pair

(c0, c1) = (γb, Abm) ∈ Zp × Zp .

Alice can decipher this by computing c1c
−a
0 (mod p). For we have

cao ≡ (γb)a ≡ γab ≡ (γa)b ≡ Ab (mod p) .

So c1c
−a
0 ≡ m (mod p).

If an enemy knows one plaintext m and the corresponding ciphertext (c0, c1), then he can find
the two public keys A ≡ γa (mod p) and B ≡ γb (mod p) used in the Diffie – Hellman key exchange.
Breaking the Elgamal cipher is equivalent to breaking the Diffie – Hellman key exchange. We hope that
both are as hard as computing discrete logarithms.

Lecture 19 71

20: SIGNATURES

So far we have been concerned with how to send messages securely from one person to another. By
encrypting the message we try to ensure that, if the message is intercepted, no-one except the intended
recipient can decipher it. However, there are many other security concerns. When we receive a message
we might want to know who sent it to protect us from forgeries. We might need to know that it has not
been altered. We might need to prove that it came from a particular person. For all of these we can
adapt the ciphers we have studied to give us the required reassurance.

20.1 Guarantees

Bob sends Alice a message. They may both be concerned about:

Secrecy
No third party can read their message. The ciphers we described in the past two lectures achieve this.

Integrity
No third party has altered the message. For example, if Bob is the customer of the bank owned by
Alice, and sends an encrypted instruction to pay £100 to Charles, then Alice needs to be sure that the
amount and recipient have not been altered.

The ciphers we have used do not automatically achieve this. For example, suppose that the message
to the bank consisted of two numbers (a,m) the first specifying the recipient and the second being the
number of pounds to pay them. These are encrypted using the RSA algorithm as (c0, c1) = (ae,me). If
this message is intercepted, it may be impossible to decipher but it can still be sent again requesting
further payments. Even more worryingly, the message could be altered to (c0, c

3
1) and then sent. This

last is called a homomorphism attack. It uses knowledge of the form of the cipher.

Authenticity
Alice can be sure that Bob sent the message. The usual signatures at the bottom of letters are intended
to ensure that the recipient knows who sent it. We want to develop similar signatures for encrypted
messages.

For example, if an enemy intercepts messages that end with a signature identifying the sender, he
can swap the signatures to create chaos even if he can not understand the messages. We would like a
signature that guarantees that the particular message comes from an identified sender.

Non-repudiation
Alice can prove that Bob sent a particular message. This is the role played by signatures on legal
documents. A court can be convinced that a particular person signed the document and so accepted its
contents. If electronic communications are to be used in law they require a similar guarantee.

All of these problems are interrelated and we may well require a combination of the guarantees
described above.

Lecture 20 72

20.2 Hash Functions

Suppose that we have a function h : A∗ → B from all messages using the alphabet A into another
alphabet B. There are infinitely many messages but B is finite, so there are necessarily many messages
with the same h-values Nonetheless, it should be hard to find two messages with the same h-value —
a collision. If it is simple to compute h(m) for any message m but hard to find a collision, then h is
called a hash function.

Hash functions are similar to ciphers but they compress the information. They reduce any message
to a letter in a fixed alphabet. If the message is changed then it is very likely that the hash value will
also change. So we can use the hash value to test the integrity of a message. In this sense it acts as a
digest or summary of the message.

Example:
The md5sum of a computer file is a 128 bit binary sequence computed for a file. The value is usually
represented as a hexadecimal string of length 32. For instance the md5sum of a text file containing the
sentence “The quick brown fox jumped over the lazy dog’s back.” is

ed6761a9a0d26cbe6c7a9666e07bf08d .

Changes to the file will, with very high probability change the md5sum. For example, if we change the
capital letter to a small letter we get:

9c9d6b537e1ccc8623ee953bb442d147

which is very different.

The md5sum is used to check the integrity of computer files. If I download a large file over the
internet, it may be corrupted either accidentally or maliciously. So I compute its md5sum and compare
it with the md5sum published by the provider of the file.

It is often simple to produce hash functions from ciphers. Consider, for example, the RSA cipher
with public key (N, e) and private key d. For any letter a I can compute ae (mod N) and then apply a
permutation to the binary bits of ae to give σ(ae). For a message m = a1a2a3 . . . aK I compute σk(aek)
for a sequence of different permutations σk, and then add the results modulo N . Changes to letters
have an effect on the hash value that is difficult to predict so it appears to be difficult to find collisions.

In practice hash functions tend to be produced by less algebraic means. A message is first broken
up into blocks of fixed length M , say B1, B2, B3, . . . , BK , padding the last block if necessary. Then we
choose a compression function (or a sequence of compression functions) C : AM ×AM → AM . Starting
with an fixed initial block J , we compute successively:

C1 = J, C2 = C(C1, B1), C3 = C(C2, B2), . . . , Cn+1 = C(Cn, Bn), . . . , CK+1 = C(CK , BK) .

The final value CK+1 when we have processed the entire message is the hash value.

We will see that hash functions provide a convenient way to guarantee messages.

Lecture 20 73

20.3 RSA Signatures

Bob wishes to sign a message to show that he sent it. To do this he can use his public key cipher.
Suppose that eB is his encrypting function, which is published for everyone, and dB his decrypting
function, which he keeps private. For simplicity we will suppose that we are dealing with a cipher where
the encrypting function and the decrypting function are inverses of each other. So eB ◦ dB = I as well
as dB ◦ eB = I. This is true, for example, for the RSA cipher.

For a simple signature, Bob just takes his name n, computes s = dB(n) using his private decrypting
function, and appends s to his message. Anyone receiving this signature can calculate eB(s) using Bob’s
public encrypting function and this is Bob’s name eB(dB(n)) = n. No one else has access to Bob’s private
decrypting function, so they would find it very hard to sign the message in this way. Note, however,
that there is nothing to prevent an enemy from separating Bob’s signature from a message he intercepts
and attaching it to others spuriously. To avoid this we need a signature that guarantees the integrity
of the message.

Bob wishes to send the message m. He adds to this a signature s = dB(h(m)) where h is a publicly
known hash function. So he sends (m, s).

When Alice receives a message (m, s) she can confirm that Bob sent it by using his public key to
compute eB(s). Then she checks that h(m) = eB(s). Only Bob has the decrypting function dB so only
he could have signed the message with a signature satisfying eB(s) = h(m). Alice can also be confident
that the message has not been altered since any alteration to m would require a corresponding alteration
to dB(h(m)).

Bob’s signature can also be used to prove to a third party that the message was indeed from Bob.
For, if we believe that the cipher we are using is secure, then no one except Bob could have sent a
signed message (m, s) with eB(s) = h(m) without knowing Bob’s private decrypting function dB . Note,
however, that Bob can invalidate this by telling others his private key and so allowing them to forge his
signature. Furthermore, Alice can not alter the message m that she received without discovering how
to make the corresponding change to dB(h(m)).

The message in this example is not encrypted but, if it needs to be, we could use Alice’s public key
and send (eA(m), dB(eA(m))).

The hash function plays two important roles in this signature scheme. It reduces the length of
the signature but it also makes it hard to forge. Suppose, for example, that Bob simply signed the
message m with s = dB(m) and sent (m, dB(m)). It is still possible for Alice to verify that the message
is unaltered and came from Bob. However, any enemy can send (eB(c), c) using Bob’s public key and
these also appear to be correctly signed by Bob. However, the enemy has no way of knowing what the
“message” eB(c) says or, indeed, if it makes any sense. (Such forged messages are known as existential
forgeries.) The hash functions defeats this sort of forgery.

We also need to be confident that the message was signed and sent at the correct time, so we should
insist that all messages are time stamped. This prevents messages being resent as if they were new.

20.4 The Elgamel Signature Scheme

The Elgamal cipher can also be used to sign messages. Let p be a large prime and γ a primitive
root modulo p. Bob chooses b ∈ Zp−1 and publishes his public key B = γb ∈ Z×p . Let h be a hash
function that takes values in Zp−1. To send a message m Bob chooses a random exponent k coprime to
p− 1 and puts

r ≡ γk ∈ Z×p s ≡ h(m)− br
k

(mod p− 1) .

(Since (k, p − 1) = 1, we know that k is invertible modulo p − 1.) Bob’s signature is (r, s) so he sends
the message (m, r, s) to Alice.

Lecture 20 74

When Alice receives a triple (m, r.s) she checks whether γh(m) ≡ Brrs (mod p). If the triple is the
message (m, r, s) from Bob then we have

γh(m) ≡ γbr+ks = (γb)r(γk)s ≡ Brrs (mod p)

so Alice’s check succeeds. It is believed that the only way to forge this signature is to solve the discrete
logarithm problem.

In the Elgamal signature scheme it is vital that a different random exponent k is chosen for each
message. For suppose that two messages m1,m2 are signed using the same value for k, giving (m1, r, s1)
and (m2, r, s2). Then

h(m1)− h(m2) = k(s1 − s2) (mod p− 1) .

Recall that xs ≡ h (mod m) has either no solutions for x or else (m, s) solutions modulo m. Hence,
there are (p− 1, s1 − s2) solutions for k modulo p− 1. Choose the one that gives the correct value for

r ≡ γk (mod p). Then s1 ≡
h(m1)− br

k
(mod p− 1) implies that

br ≡ h(m1)− ks1 (mod p− 1) .

This gives (p − 1, r) solutions for b. Choose the one that gives B ≡ γb (mod p). In this way we have
found Bob’s private key b as well as the exponent k that he is using for signatures.

Lecture 20 75

21: BIT COMMITMENT

Alice and Bob agree to decide some matter by tossing a coin. Alice tosses the coin and Bob calls.
Suppose, however, they they are in different rooms and so Bob can not see Alice tossing the coin. If
they do not trust one another then they need a way to ensure that Bob does not change his call when
he hears the result, nor Alice change the reported result when she knows Bob’s guess.

One way to do this is for Bob to write down his guess and put it in a sealed envelope, which he
gives to Alice. Then Alice tosses the coin and reports the result. Together they open the envelope and
see if Bob’s guess was correct. This is called a commit and reveal process. Bob commits his guess to
paper and then, after Alice has announced the result, he reveals it to Alice.

Similar problems arise when sending messages. For example, if someone is selling racing tips but
needs to ensure that he is paid before revealing the tip. Or if a poll is being conducted online where
the results will be revealed to all participants but only after everyone has voted. We can use a similar
commit and reveal process. It is usually called bit commitment. Bob chooses a bit 0 or 1 and commits
this to a message sent to Alice. However the message is sent in such a way that Alice can not read it
without further information and yet Bob can not alter his choice. There are a variety of methods for
achieving this.

21.1 Bit Commitment using a Public Key Cipher

Let eB and dB be the encrypting and decrypting functions for a public key cipher used by Bob.
The encrypting function eB is published but the decrypting function dB is kept secret by Bob. Now
Bob makes his choice m from some large alphabet A to indicate his guess, and commits to Alice the
encrypted message c = eB(m). Provided that the cipher is secure, Alice can not decipher this. When
the time comes to reveal his choice, Bob sends to Alice his private key so that she can find the decrypting
function dB . Now she can compute

dB(c) = dB(eB(m)) = m

and find out what Bob’s choice was. She can also check that dB and eB are inverse functions so she can
be confident that Bob has not sent the wrong private key so as to pretend his choice was different.

Note that Bob should not simply use m = 1 for a head and m = 0 for a tail. If he did this, Alice
could simply calculate eB(0) and eB(1) and see which Bob had sent. This is a dictionary attack, where
Alice can simply find all possible messages and compute the corresponding ciphertexts using the public
key eB . Instead, Bob should introduce some randomness. For example, he can pad the message 0 or
1 by following it with a large number of random bits. Then there are a very large number of possible
messages and an equally large number of possible ciphertexts for Alice to decipher.

21.2 Bit Commitment using a Noisy Channel

We can also use our earlier work on noisy channels to give an alternative method for bit commitment.
Suppose that Alice and Bob have two ways to communicate. They can use a clear channel or a noisy
channel. The clear channel transmits without errors but the noisy channel is a binary symmetric channel
with error probability 0 < p < 1

2 . We assume that the noisy channel corrupts bits independently of any
action by Alice or Bob, so neither can affect its behaviour.

Now Alice chooses a linear binary code with codebook C ⊂ FN2 and minimum distance d. Bob
chooses a random, non-trivial, linear map θ : C → F2. Both publish their choices. In order to send a
bit m ∈ F2, Bob chooses a random code word c ∈ C with θ(c) = m and sends this to Alice via the noisy
channel. So Alice receives a vector r = c + e in which certain components of c have been altered.

Lecture 21 76

The expected value for d(e,0) is Np and N is chosen so that this is very much larger than d. This
means that Alice can not tell what the original codeword c was and hence can not find θ(c) = m and
determine Bob’s choice.

When the time comes for Bob to reveal his choice, he sends the codeword c to Alice via the clear
channel. Alice can now check that d(c, r) is close to the expected value Np. If it is, she accepts that
θ(c) was Bob’s choice. If not, then she rejects it. There is, of course, a small chance that many more or
many fewer bits of c were corrupted by the noisy channel and so Alice rejects Bob’s choice even though
he has not cheated. We choose the parameters N, d so that the probability of this occurring is very
small. If it does occur, Alice and Bob should just repeat the entire process.

We have seen that Alice can not read Bob’s guess until he has revealed it. We also want to show
that Bob can not cheat by changing his guess and sending a different code word c′ 6= c to Alice via the
clear channel. Bob knows the code word c that he originally chose but he does not know how it was
corrupted by the noisy channel. So, all he knows is that the vector r received by Alice is at a Hamming
distance of about Np from c. If he sends c′, then he must ensure that d(r, c′) ≈ Np. The probability
that this happens is small unless he chooses c′ very close to c. However, any two codewords are at least
distance d apart, so we see that Bob can not cheat.

Now let us prove these results more carefully. First fix a small number q that is an acceptable
probability of error. We will choose the linear code at random by specifying its syndrome matrix. Let S
be an (N −K)×N matrix over F2 with each column chosen independently and uniformly from FN−K2 .
There are (2N−K)N = 2(N−K)N choices for S. Let C be the linear code book given by

C = {x ∈ FN2 : Sx = 0} .

Consider a non-zero vector c ∈ FN2 with weight d(c,0) = w. Then c is in the code C when the w columns
of S corresponding to the non-zero entries of c sum to 0. Hence there are (2N−K)N−1 = 2(N−K)(N−1)

such matrices S. The number of vectors c with d(c,0) < d is V (N, d) =
∑
j<d

(
N

j

)
. So the probability

that our random code has minimum distance at least d exceeds

2(N−K)N − V (N, d)2(N−K)(N−1)

2(N−K)N
= 1− V (N, d)

2N−K
.

Proposition 7.8 shows that we can find a linear code with minimum distance d provided that

h(d/N) < 1− K

N
.

This means that we can find codes with minimum distance at least δN for 0 < δ < 1
2 .

The code word c was sent by Bob but r = c + e was received. Here the entries (ei) of e are
independent random variables each taking the value 1 with probability p and 0 with probability 1− p.
So

d(c,0) =

N∑
i=1

ei ∼ Ber(N, p)

is a Bernoulli random variable with mean Np and variance Np(1− p). Chebyshev’s inequality gives

P (|d(c, r)−Np| > Nε) 6 p(1− p)
Nε2

.

We will choose N and ε so that this is less than q. Hence

P (|d(c, r)−Np| > Nε) < q .

Alice will accept Bob’s choice provided that |d(c, r)−Np| < Nε. So the probability of Alice incorrectly
rejecting the choice is at most q.

Lecture 21 77

Suppose that Bob tried to send another code word c′ in place of c with d(c, c′) = u. Let

U = {i : ci 6= c′i} and V = {i : ci = c′i}

so that
|U | = d(c, c′) = u and |V | = N − u .

Then we have r − c′ = e + (c− c′) so

d(c′, r) =
∑
i∈U

(1− ei) +
∑
i∈V

ei ∼ Ber(u, 1− p) + Ber(N − u, p) .

This is a random variable with mean u(1− p) + (N − u)p = Np+ u(1− 2p) and variance
u(1− p)p+ (N − u)p(1− p) = Np(1− p). Hence we have

P (|d(c′, r)−Np− u(1− 2p)| > Nε) < q . (∗)

Choose ε so that
2ε

1− 2p
< δ

and then choose N so large that
p(1− p)
Nε2

< q .

Alice will only accept the code word c′ if |d(c′, r)−Np| < Nε. Inequality (∗) shows that the probability
this happens is less than q unless

u(1− 2p) < 2Nε .

Hence we must have

d(c, c′) = u <
2Nε

1− 2p
< δN .

Since the code words c and c′ are different, we must have

d(c, c′) > δN

so we have a contradiction. This shows that Alice will correctly accept Bob’s choice and Bob will be
unable to cheat except with a very small probability q.

21.3 Semantic Security

We have shown how to produce ciphers that are secure in the sense that an enemy who knows
the ciphertext can not find the corresponding plaintext in polynomial time. However, we have not
considered whether the enemy can, nonetheless, obtain some partial information about the plaintext.
When this too is impossible, then the cipher is semantically secure. This means, in particular, that it
is impossible to decipher even a single bit of the ciphertext.

Semantically secure ciphers have been produced in recent years by encrypting the plaintext ran-
domly. So, rather than replacing a single letter a ∈ A by a fixed codeword c(a), we choose from a large
set of possible codewords for a. This makes it very much harder to find a and hence to break the cipher.

Goldwasser and Micali gave an example of such a scheme that uses quadratic residues. Recall that
a number k with (k,N) = 1 is a quadratic residue modulo N if k ≡ x2 (mod N) for some x. It is
a quadratic non-residue modulo N when there is no such x. For a prime p, we know that there is a
primitive root γ modulo N , so k is a quadratic residue modulo p when k = γ2r for some integer r. This
gives Euler’s criterion: k is a quadratic residue modulo the prime p if and only if k(p−1)/2 ≡ 1 (mod p).
Now consider N = pq the product of two distinct primes, p and q. The Chinese remainder theorem
shows that k is a quadratic residue modulo N if and only if it is a quadratic residue modulo p and

Lecture 21 78

modulo q. This means that it is simple to determine whether k is a quadratic residue provided that we
know how to factorize N .

Bob wishes to send to Alice a binary message m = a1a2 . . . aK where each aj ∈ F2. First Alice
needs to set a key. She selects two different large primes p, q and sets N = pq. Then she chooses a
random integer y modulo N with y a quadratic non-residue modulo N . It is easy to find such a y since
Alice knows the factors of N . She publishes (N, y) as her public key.

Now Bob encrypts his message m as e(a1)e(a2) . . . e(aK) where

e(aj) ≡
{
x2j (mod N) when ai = 0

yx2j (mod N) when ai = 1 .

Here xj is coprime to N and is chosen randomly for each letter aj . Note that the length of the ciphertext
is very much longer than that of the plaintext, since each bit of m is encrypted as a string of log2N
bits.

To decrypt the ciphertext, we need to decide if each letter cj = e(aj) is a quadratic residue modulo
N , in which case aj = 0, or a quadratic non-residue, in which case aj = 1. This is simple for Alice since
she knows the factors p and q of N . Using Euler’s criterion she can determine whether cj is a quadratic
residue or non-residue modulo p and q. Then it is only a quadratic residue modulo N if it is a quadratic
residue modulo both p and q.

If an enemy tries to decipher the ciphertext without knowing the factors p and q, then the problem
becomes very hard. It is thought that this is as hard as finding the factors. Goldwasser and Micali proved
that this scheme is semantically secure against an enemy who has polynomially bounded resources, at
least provided that there is no polynomial time algorithm for determining whether a number is a
quadratic residue modulo N .

Random encryption like the Goldwasser – Micali scheme gives greatly improved security but also
greatly expands the length of the ciphertexts.

Lecture 21 79

	1: {INTRODUCTION}
	1.1 Information
	1.2 Requirements
	1.3 Recommended Books
	1.4 Example sheets
	2: {ENTROPY}
	3: {CODING}
	3.1 Prefix-free Codes
	3.2 Kraft's Inequality
	4: {EFFICIENT CODES}
	4.1 Shannon -- Fano Codes
	4.2 Huffman Codes
	5: {COMPRESSION}
	5.1 Block Codes
	5.2 Compression
	6: {NOISY CHANNELS}
	6.1 Memoryless Channels
	6.2 The Binary Symmetric Channel
	6.3 Check Digits
	6.4 The Hamming Code
	7: {ERROR CORRECTING CODES}
	7.1 Decoding with Errors
	7.2 Error Detecting and Error Correcting
	7.3 Covering Estimates
	7.4 Asymptotics for $V(N, r)$
	8: {INFORMATION CAPACITY}
	8.1 Mutual Information
	9: {FANO'S INEQUALITY}
	9.1 A Model for Noisy Coding
	9.2 Fano's Inequality
	10: {SHANNON'S NOISY CODING THEOREM}
	10.1 Introduction
	10.2 Chebyshev's Inequality
	10.3 Proof of the Noisy Coding Theorem
	10.4 * Typical Sequences *
	11: {LINEAR CODES}
	11.1 Finite Fields
	11.2 Linear Codes
	11.3 The Syndrome
	11.4 Reed -- Muller Codes
	12: {CYCLIC CODES}
	13: {BCH CODES}
	13.1 The Characteristic of a Field
	13.2 BCH codes
	14: {LINEAR FEEDBACK SHIFT REGISTERS}
	14.1 Definitions
	14.2 The Berlekamp -- Massey Algorithm
	14.3 Power Series
	15: {CRYPTOGRAPHY}
	15.1 Introduction
	15.2 Equivocation
	15.3 Unicity
	16: {SYMMETRIC AND ASYMMETRIC CIPHERS}
	16.1 *Feistel Ciphers*
	16.2 Asymmetric Ciphers
	17: {COMPLEXITY}
	17.1 Polynomial Time
	17.2 Modular Arithmetic
	18: {PUBLIC KEY CIPHERS}
	18.1 RSA Ciphers
	18.2 Rabin Ciphers
	19: {DISCRETE LOGARITHM CIPHERS}
	19.1 Diffie -- Hellman Key Exchange
	19.2 The Elgamal Cipher
	20: {SIGNATURES}
	20.1 Guarantees
	20.2 Hash Functions
	20.3 RSA Signatures
	20.4 The Elgamel Signature Scheme
	21: {BIT COMMITMENT}
	21.1 Bit Commitment using a Public Key Cipher
	21.2 Bit Commitment using a Noisy Channel
	21.3 Semantic Security

