
Articles
https://doi.org/10.1038/s41567-020-0990-x

A strong no-go theorem on the Wigner’s 
friend paradox

In the format provided by the 
authors and unedited

Supplementary information

Article
https://doi.org/10.1038/s41567-020-0990-x

Nature Physics | www.nature.com/naturephysics



Supplementary Information:
A strong no-go theorem on the Wigner’s friend paradox

Kok-Wei Bong, Aníbal Utreras-Alarcón, Farzad Ghafari, Yeong-Cherng Liang,
Nora Tischler, Eric G. Cavalcanti, Geoff J. Pryde, Howard M. Wiseman

A. WIGNER’S FRIEND THOUGHT EXPERIMENT

In the Wigner’s friend thought experiment1 an observer, whom we call the friend, performs a
measurement on a quantum system S. The friend is in a laboratory that can be coherently
controlled by a second experimenter called Wigner. As a superobserver, Wigner has the
ability to implement arbitrary quantum operations on the friend’s laboratory and everything
it contains.

Wigner initially assigns a product quantum state |φ0〉F ⊗ |ψ0〉S to the overall system com-
posed of the friend, F , and the system, S. For example, the system may be a spin-1/2
particle, and the friend measures the operator corresponding to spin projection along the z
direction, with eigenstates |↑〉S and |↓〉S.
From Wigner’s perspective, the friend’s measurement in the z basis is described as a unitary
evolution UZ that correlates the friend (and the display on her measurement apparatus,
etc.) to system S in the appropriate way. That is, if the initial state of S is |↑〉S, the final
state of the joint system is UZ(|φ0〉F ⊗|↑〉S) = |up〉F ⊗|↑〉S, and likewise UZ(|φ0〉F ⊗|↓〉S) =
|down〉F ⊗ |↓〉S.
An interesting scenario occurs when S is prepared in a superposition state, for example
1√
2
(|↑〉S + |↓〉S). Then standard textbook quantum mechanics predicts that the friend will

observe one or another outcome with equal probability, and the state of the system after
measurement (and that of the friend) will be one or another of the corresponding states
above. On the other hand, due to the linearity of the unitary map, fromWigner’s perspective
the final joint state will be |Φ+〉FS = 1√

2
(|up〉F |↑〉S + |down〉F |↓〉S). This entangled state

does not assign well-defined values to the states of S or F separately, and therefore seems to
be in direct contradiction with standard textbook quantum mechanics. This contradiction
is called the measurement problem.

Indeed, if Wigner had the control over F that quantum mechanics in principle allows, then
he could measure the POVM {|Φ+〉〈Φ+|FS, IFS − |Φ+〉〈Φ+|FS}, and he would always get
the outcome corresponding to state |Φ+〉FS, confirming Wigner’s state assignment. Had the
state of FS before this measurement been an equal mixture of the post-measurement states
|up〉F ⊗|↑〉S and |down〉F ⊗|↓〉S, Wigner would have obtained, with equal probability, either
of the above outcomes.

The contradiction arises from the assumptions that (i) quantum theory is universal and can
be applied at any scale, even to a macroscopic observer, and that (ii) there is an objective
collapse after a measurement2. Thus no contradiction arises if quantum mechanics does not
describe objects as large as the friend, or if the collapse of system S is not an objective
physical process affecting the wavefunction described by Wigner.
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The latter case poses new questions, however. If wavefunction collapse is not objective, is
there nevertheless an objective fact corresponding to the friend’s observed outcome? Our
Theorem 1 demonstrates a contradiction between the (metaphysical) assumptions of No-
Superdeterminism, Locality and Absoluteness of Observed Events, and the
(empirical) hypothesis that quantum mechanics is valid, and in principle allows coherent
operations (such as the above measurements by Wigner) to be implemented, on the scale of
a friend F .

B. MAXIMAL QUANTUM VIOLATIONS OF THE GENUINE LF INEQUALITIES

By implementing a see-saw type algorithm (see, e.g., refs.3–5 and references therein), one finds
that the Genuine LF inequality 1 (13), with an LF upper bound of 0, can be violated by
quantum correlations up to 1.345 using a partially entangled two-qubit state (with Schmidt
coefficients approximately given by 0.776 and 0.631) and rank-1 projective measurements.
Moreover, it can be verified by solving a converging hierarchy6–8 of semidefinite programs
that this quantum violation is (within a numerical precision of 10−7) the maximum allowed
in quantum theory. In terms of noise robustness, this quantum strategy can tolerate up to
18.3% of white noise before it stops beating the LF bound.

For Genuine LF inequality 2 (14) (with an LF upper bound of 0), the best quantum violation
that we have found is 0.880, which apparently can only be achieved using a partially entan-
gled two-qutrit state (with Schmidt coefficients approximately given by 0.645, 0.570, and
0.509) and a combination of rank-2 and rank-1 projectors in the optimal measurements. As
with the case of Genuine LF inequality 1, this quantum violation is provably optimal (within
a numerical precision of 10−7) using the solution obtained from solving some semidefinite
programs. The white-noise tolerance of this inequality is somewhat worse than the other
Genuine LF inequality, giving approximately 18.0%.

C. FURTHER INFORMATION ABOUT FIGURE 3

Here, we provide further details on the 2-dimensional slice of the space of correlations pre-
sented in Fig. 3. A variant of this figure containing the same slice, but with further salient
features added, is shown in Fig. S.1. Any such 2-dimensional slice is spanned by three
affinely-independent correlations in this space (see, e.g., ref.9). In our case, the chosen slice
is spanned by the uniform (white-noise) distribution ~℘0

℘0(ab|xy) = 1
4
, ∀ a, b, x, y, (S.1)

an extreme point of the LF polytope:

℘Ext
LF (ab|xy) =δxy,1δa,−1δb,1

+1
2

[δx,1δa,−1(1− δy,1) + δy,1δb,1(1− δx,1)]
+1

4

[
1 + (−1)xy−x−yab

]
(1− δx,1)(1− δy,1),

(S.2)
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and a symmetrical quantum correlation, written in the Collins-Gisin form (see, e.g., Eq. (9)
of ref.10):

℘Max
Q :


0.554 0.409 0.537

0.554 0.197 0.021 0.150
0.409 0.021 0.311 0.040
0.537 0.150 0.040 0.109

 , (S.3)

i.e., the i-th row of the left-most column represent Alice’s marginal probability ℘Max
Q (+1|x =

i−1), the j-column of the top row represent Bob’s marginal probability ℘Max
Q (+1|y = j−1),

while the remaining entries at the i-th and j-th column represent the joint probability
℘Max
Q (+1,+1|x = i− 1, y = j− 1). The quantum correlation ~℘Max

Q is the one that maximally
violates Genuine LF inequality 1 (13), giving a value of 1.345, as explained in Sec. B.

In our plot, we have chosen the left-hand side of Eq. (13) to label our horizontal axis, while
the vertical axis is labelled by the left-hand side of the Semi-Brukner inequality −〈A2B1〉 −
〈A2B2〉 − 〈A3B1〉 + 〈A3B2〉 ≥ −2. Different choices would lead to affine transformations
of the plot. Also shown in the figure are a dashed vertical line and a dashed horizontal
line intersecting at ~℘Ext

LF . These dashed lines mark a projection of the boundary of the LF
polytope—as given by inequality (13) and a relabeling of inequality (18) to give a lower
bound of −2 as allowed by LF correlations—on the plane that we have chosen. Note also
that the set of LHV correlations (coloured green in the figure) could also touch this boundary
of −2, but this does not take place on the 2-dimensional plane that we have chosen.
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Fig.S.1. Detailed version of Fig. 3 from the main text. The 2-dimensional slice of the space
of correlations is the same as in Fig. 3. This slice is spanned by the three points ℘0, ℘Ext

LF , and ℘Max
Q ,

defined in Eqs. (S.1), (S.2), and (S.3), respectively. The horizontal axis labels the left-hand side of
Eq. (13) whereas the vertical axis denoted by CHSH(2,3);(1,2) is a short hand for the Bell expression
appearing in a Semi-Brukner inequality −〈A2B1〉 − 〈A2B2〉 − 〈A3B1〉 + 〈A3B2〉. Accordingly, the
blue dashed lines demarcate the intersection of the boundary of these facets (each representing
a half space) with this 2-dimensional slice. In other words, the LF polytope (even beyond this
2-dimensional slice) has to lie above the horizontal dashed line and to the left of the vertical dashed
line.
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D. EXPERIMENTAL QUANTUM STATES

We obtain the experimental quantum states through tomographic state reconstruction based
on maximum-likelihood estimation. For each experimental state ρexp, the highest Uhlmann–
Jozsa fidelity11

[
Tr
(√√

ρexpρµ
√
ρexp

)]2 with the family of states ρµ is provided in Table S.I,
along with the corresponding best µ value. Uncertainties represent ±1 standard deviations,
estimated based on Monte Carlo simulations using 100 samples of Poisson-distributed photon
counts.

µ-parameter Fidelity
0.992 ± 0.002 0.9789 ± 0.0007
0.921 ± 0.002 0.9883 ± 0.0007
0.866 ± 0.002 0.9887 ± 0.0007
0.809 ± 0.002 0.9868 ± 0.0007
0.798 ± 0.002 0.9873 ± 0.0007
0.744 ± 0.002 0.9824 ± 0.0007

TABLE S.I. Characterization of the six experimental states with respect to the family
of target states.
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