Free access
Research Article
1 February 1992

The bvgAS locus negatively controls motility and synthesis of flagella in Bordetella bronchiseptica

Abstract

The products of the bvgAS locus coordinately regulate the expression of Bordetella virulence factors in response to environmental conditions. We have identified a phenotype in Bordetella bronchiseptica that is negatively controlled by bvg. Environmental signals which decrease (modulate) the expression of bvg-activated genes lead to flagellum production and motility in B. bronchiseptica. Wild-type (Bvg+) strains are motile and produce peritrichous flagella only in the presence of modulating signals, whereas Bvg- (delta bvgAS or delta bvgS) strains are motile in the absence of modulators. The bvgS-C3 mutation, which confers signal insensitivity and constitutive activation of positively controlled loci, eliminates the induction of motility and production of flagellar organelles. The response to environmental signals is conserved in a diverse set of clinical isolates of both B. bronchiseptica and B. avium, another motile Bordetella species; however, nicotinic acid induced motility only in B. bronchiseptica. Purification of flagellar filaments from B. bronchiseptica strains by differential centrifugation followed by CsCl equilibrium density gradient centrifugation revealed two classes of flagellins of Mr 35,000 and 40,000. A survey of clinical isolates identified only these two flagellin isotypes, and coexpression of the two forms was not detected in any strain. All B. avium strains tested expressed a 42,000-Mr flagellin. Amino acid sequence analysis of the two B. bronchiseptica flagellins revealed 100% identity in the N-terminal region and 80% identity with Salmonella typhimurium flagellin. Monoclonal antibody 15D8, which recognizes a conserved epitope in flagellins in members of the family Enterobacteriaceae, cross-reacted with flagellins from B. bronchiseptica and B. avium. Our results highlight the biphasic nature of the B. bronchiseptica bvg regulon and provide a preliminary characterization of the Bvg-regulated motility phenotype.

Formats available

You can view the full content in the following formats:

Information & Contributors

Information

Published In

cover image Journal of Bacteriology
Journal of Bacteriology
Volume 174Number 3February 1992
Pages: 980 - 990
PubMed: 1370665

History

Published online: 1 February 1992

Permissions

Request permissions for this article.

Contributors

Authors

B J Akerley
Department of Microbiology and Immunology, School of Medicine, University of California, Los Angeles 90024.
D M Monack
Department of Microbiology and Immunology, School of Medicine, University of California, Los Angeles 90024.
S Falkow
Department of Microbiology and Immunology, School of Medicine, University of California, Los Angeles 90024.
J F Miller
Department of Microbiology and Immunology, School of Medicine, University of California, Los Angeles 90024.

Metrics & Citations

Metrics

Note:

  • For recently published articles, the TOTAL download count will appear as zero until a new month starts.
  • There is a 3- to 4-day delay in article usage, so article usage will not appear immediately after publication.
  • Citation counts come from the Crossref Cited by service.

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. For an editable text file, please select Medlars format which will download as a .txt file. Simply select your manager software from the list below and click Download.

View Options

Figures and Media

Figures

Media

Tables

Share

Share

Share the article link

Share with email

Email a colleague

Share on social media

American Society for Microbiology ("ASM") is committed to maintaining your confidence and trust with respect to the information we collect from you on websites owned and operated by ASM ("ASM Web Sites") and other sources. This Privacy Policy sets forth the information we collect about you, how we use this information and the choices you have about how we use such information.
FIND OUT MORE about the privacy policy