Supplementary Material

То

Two different mechanisms mediate chemotaxis to inorganic phosphate in *Pseudomonas aeruginosa*

Miriam Rico-Jiménez, Jose Antonio Reyes-Darias, Álvaro Ortega, Ana Isabel Díez Peña, Bertrand Morel and Tino Krell

CtpH

MPASPGHRDVLGCLVAACVPVQPGNPSRRSMLQQSLRAQILVLLGGSLAALLLIALACFG<mark>SLTGDVR AYRELLGGPVRAAQLIDEANLQFRGQVQEWKNVLLRGRQTEAQTKYWSQFEAQERAVQDILGRLGSV AEGELKDRVERLREEHRRLGTAYRQGRQRFLEAGADPIAGDQAVTGIDRATTAQMQTLRDELHQASD LHSSSISAEARRTMLLGSLVLIGASLAVALLSLWLVNRNLVRPVQRLIEHIAQLSHGDFGERIEIRR KDELGKLALAANTLRDFLVDIFDRLRRSTRDLDSASGSLNAIASLMAAGTREQFSRTDQVATAMQEM SATAQEVARYAGDAARAADEADDSAQRGEDVMEETIRSIGEMRKEIDHTVEVIRQLESDSGRIGKVL DVIRGIAEQTNLLALNAAIEAARAGDAGRGFAVVADEVRTLAQRTAESIAEIHQIIDTVQNGAVNAA RAIESGQSRSEAGAEQVANAGAMLRQITASVESIRDMNRQIATAAEEQTAVAEEISRNLTEIASIAS SNQEQVEQTEAASRDLHGLSAQLGDALQRLRA</mark>

CtpL

MRLKQLTNLNTLLLLTVCLALGI<mark>TLWWSQRAMERPFQLLDQYLELSQRFDEQVARNIRQYLGSGDAV</mark> RQQAALQALESLAEALPELPPDLARTLAPSLAELREFSAGDLLAAGKLAGDPQGLLLQAERDLTGNL EQWSAYLDAAAGQPQAGAYRTPLLLASLHLTRLSLARAKLVESANPALAGDVERELANLREQAGRIE ALPLLGVLDEQRSASDDFAAMMGLAGDAEAGAGNAEDRGVALRRELASLLQRYPDELRRTRDLIERR QQLSADTGARLDAVRQALATLEPQVRGERQRLQGQVRLIQGGMIALILLIALAIDSLQRRLARVLGQ LVPALSAWADGDFSRPISLRTRTEDLRNLEDSLNRLRSFLAELVGAIHRRAEQVAGSSQTLAEVSSG LHAGVERQAGDTGQIRDALGDMEAAIQQVAGDASQTADASRSAGQAVEHGQRVIGESLGGLRELVDE VQGNAQSIERLAEESATIGSVLTVIRSIAEQTNLLALNAAIEAARAGDQGRGFAVVAEEVRSLAQRT AGATEEIQQLIGRLQQAARQSVEAMRSQVEHAERTAEQAGAAEGALDEVVAAIHTIGVMAERIAEGS TQQSQAVGEIRSHSERIHALGGENLRLIGHSREQGEQLRQLGGDLRTTVQAFRL

Fig. S1) Prediction of CtpH and CtpL transmembrane regions (in red) via the dense alignment surface method ¹. The ligand binding domains of CtpH and CtpL (155 and 286 amino acids, respectively) are shaded in yellow.

CtpH-LBD

	10	20	30	40	50	60	70
			1	1	1	1	- I
UNK 14480	SLTGDVRAYRELL(GGPVRAAQLII	DEANLQFRGQV	QEWKNVLLRG	RQTEAQTKYW:	SQFEAQERAV	QDILGR
DSC	cccchhhhhhhh	hhhhhhhhh	հհհհհհհհ	hhhhhhhhc	cchhhhhhhh	hhhhhhhh	hhhhhh
MLRC	cccchhhhhhhh	ccchhhhhhh	հիհիհիհի	hhhhhhhcc	ccchhhhhhh	hhhhhhhh	hhhhhh
PHD	cccchhhhhhhhh	heechhhhhh	հիրերերեր	hhhhhhhcc	ccchhhhhhh	hhhhhhhh	hhhhhh
Sec.Cons.	cccchhhhhhhhh	hcchhhhhhh	հիրերերեր	hhhhhhhcc	ccchhhhhhh	hhhhhhhhh	hhhhhh
	80	90	100	110	120	130	140
		1	1	1	1	1	- E
UNK 14480	LGSVAEGELKDRV	ERLREEHRRLG	TAYROGRORI	LEAGADPIAG	DQAVTGIDRA	TTAQMQTLRD	ELHQAS
DSC	cccccchhhhhh	hhhhhhhhh	հհհհհհհհ	hhhccccchh	hhhhhhhhh	hhhhhhhh	hhhhhh
MLRC	hhccchhhhhhhh	հհհհհհհհ	հիհիհիհի	hhccccccc	cccccccccl	hhhhhhhh	hhhhhh
PHD	hhcccccchhhhhl	hhhhhhhhh	հիհիհիհի	hhhcccccc	cccccccccl	hhhhhhhh	hhhhhh
Sec.Cons.	hhccccchhhhhh	հհհհհհհհ	հիրերերեր	hhhcccccc	cccccccccl	hhhhhhhhh	hhhhh
	150						
UNK_14480	DLHSSSISAEARR	ГM					
DSC	hhhhhhhhhhhc	cc					
MLRC	hhhhhhhhhhhh	cc					

MLRC	nnnnnnnnnncc
PHD	hhhhhhhhhhccc
Sec.Cons.	hhhhhhhhhhccc

CtpL-LBD

	10	20	30	40	50	60	70
			- I -			1	
UNK_28340	TLWWSQRAMERP	FOLLDOYLELS	SQRFDEQVAR	NIRQYLGSGD	AVRQQAALQA	LESLAEALPE	LPPDLART
DSC	ccchhhhhhhh	hhhhhhhhh	hhhhhhhhh	hhhhccccc	hhhhhhhhh	hhhhhhccc	ccchhhhh
MLRC	cccchhhhhhh	hhhhhhhhh	hhhhhhhhh	hhhhhcccc	hhhhhhhhh	hhhhhhhhh	cchhhhhh
PHD	cchhhhhhhhh	hhhhhhhhh	hhhhhhhhh	hhhhhccch	hhhhhhhhh	hhhhhhhhc	cchhhhhh
Sec.Cons.	ccchhhhhhhh	hhhhhhhhh	hhhhhhhhh	hhhhhcccc	hhhhhhhhh	hhhhhhhhc	cchhhhhh
	80	90	100	110	120	130	140
			1.1			1	
UNK 28340	LAPSLAELREFS.	AGDLLAAGKL	AGDPQGLLLQ	AERDLTGNLE	QWSAYLDAAA	GOPOAGAYRT	PLLLASLH
DSC	hhhhhhhhhhh	hhhhhhhhc	ccchhhhhh	hhhhhhhhh	hhhhccccc	ccchhhhhh	hhhhhhh
MLRC	hhhhhhhhh	cchhhhhhhc	cccchhhhh	hhhhhhhhh	hhhhhhhc	ccccchhhhh	hhhhhhh
PHD	hhhhhhhhcc	cchhhhhccco	cchhhhhh	hhhhhhhhh	hhhhhhhh	cccchhhhhh	hhhhhhh
Sec.Cons.	hhhhhhhhhc	cchhhhhhhc	ccchhhhhh	hhhhhhhhh	hhhhhhhco	cccchhhhhh	hhhhhhh
	150	160	170	180	190	200	210
	1	1	1.1	1		1	1
UNK 28340	LTRLSLARAKLV	ESANPALAGD	VERELANLRE	QAGRIEALPL	LGVLDEQRSA	SDDFAAMMGI	AGDAEAGA
DSC	hhhhhhhhhhh	hhcchhhhhh	hhhhhhhhh	hhhhhhhhh	cccccccc	hhhhhhhhc	ccccccc
MLRC	hhhhhhhhhhh	heecchhhhhl	hhhhhhhhh	hhhhhhccc	ceeccocccc	chhhhhhhc	ccccccc
PHD	hhhhhhhhhhh	hhhchhhhhh	hhhhhhhhh	hhhhhhccc	ccceccccd	hhhhhhccc	ccccccc
Sec.Cons.	hhhhhhhhhhh	hhechhhhhh	hhhhhhhhh	hhhhhhccc	cccccccct	hhhhhhhhc	ccccccc
	220	230	240	250	260	270	280
			1.1			1	
UNK 28340	GNAEDRGVALRR	ELASLLORYPI	DELRRTRDLI	ERROQLSADT	GARLDAVROA	LATLEPQVRG	ERQRLQGQ
DSC_	ccchhhhhhhh	hhhhhhhhh	hhhhhhhhh	hhhhhhhhh	hhhhhhhhh	hhhhhhhhh	hhhhhhh
MLRC	cccchhhhhhh	hhhhhhhchl	hhhhhhhhh	hhhhhhhhh	hhhhhhhhh	hhhhhhhhh	hhhhhhh
PHD	cchhhhchhhhh	hhhhhhhhh	hhhhhhhhh	hhhhhhhhh	hhhhhhhhh	hhhhhhhhhh	hhhhhhh
Sec.Cons.	ccchhhhhhhh	hhhhhhhhh	hhhhhhhh	hhhhhhhhh	hhhhhhhhh	hhhhhhhhh	hhhhhhh

UNK_28340	VRLIQG
DSC	hhhccc
MLRC	hhhhcc
PHD	hhhhcc
Sec.Cons.	hhhcc

Fig. S2) Secondary structure prediction of the ligand binding domains of CtpH and CtpL using the consensus method from the Network Protein Sequence Analysis (NPSA) ². $h = \alpha$ -helix, c=coil, e= β -strand.

	10	20	30	40	50	60
CtpL-LBD	TLWWSQRAMERPF)LLDQYLELS(QRFDEQVARNI	RQYLGSGDAV	RQQAALQALE	SLAEAL
стрн-твр						
	70	80	90	100	110	120
CtpL-LBD	PELPPDLARTLAPS	LAELREFSA(G DLL <mark>AA</mark> GKLAG	DPQG <mark>L</mark> LLQ <mark>A</mark> E	RDLT <mark>G</mark> NLEQ <mark>V</mark>	SAYLDA
CtpH-LBD	SLTGI	OVRAY <mark>RELLG</mark>	GPVRAA	QLIDEAN	ILQFR <mark>G</mark> QVQE <mark>V</mark>	KNVLLR
	1 2 0	140	1 5 0	1.0	170	100
	130	140	120	TOO	170	190
CtpL-LBD		TTASTHUTRI	I STARAKIVES	I Sanpatja g dvf	RELANTREOZ	AGRIEAT.
CtpH-LBD	GROTEAOTKYWS	OFEA(DERAVODILGR	LGSVAEGELK	DRVERLREEH	IRRLGTA
L		~ ~				_
	190	200	210	220	230	240
CtpL-LBD	PLL <mark>G</mark> VLDEQRSASI	DFAAMMGLA(GDAEAGAGNAE	DRGVALR <mark>R</mark> EI	ASLL <mark>Q</mark> RYP <mark>DE</mark>	LRRTRD
CtpH-LBD	YRQ <mark>G</mark> RQRFL <mark>EAGAI</mark>	OPIAGDQAVT(3	ID <mark>R</mark> AI	TAQMQTLRDE	LHQASD
	250	260	270	200		
	∠50 	200	270	200		
CtpL-LBD			۱ ۵۳۱.F.POVRGF.R		OG	
CtpH-LBD	LHSSSISAEARF	RTM				
-						

Fig. S3) Sequence alignment of the ligand binding domains of the CtpH and CtpL receptors.Alignment was carried out using default parameters in CLUSTALW from the Network ProteinSequenceAnalysissuite(http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_clustalw.html).

Fig. S4) Reversibility of the CtpH-LBD unfolding process. (a) DSC thermogram of CtpH-LBD (black line) and second consecutive up-scan of the same sample (grey line). (b) Far UV CD spectra of CtpH-LBD before (black line) and after heat treatment at 85°C for 5 minutes (grey line).

Fig. S5) Sedimentation equilibrium analytical ultracentrifugation analysis of CtpH-LBD. Gradients recorded using absorbance at 280 nm for 45 μ M CtpH-LBD in the absence (A) or in the presence (B) of 0.5 mM Pi. Measurements were made at 6 °C and at velocities of 11800 rpm (cyan), 18100 rpm (blue) and 31000 rpm (purple). The lines represent best fits obtained with the SEDPHAT single species of interacting system model. The residuals for the fits are shown in the lower panel.

Fig. S6) **Structures of periplasmic ligand binding proteins in complex with their cognate ligands (in yellow)**. PstS of *P. aeruginosa* in complex with Pi ³(pdb ID: 4OMB), Ribose Binding Protein (pdb ID: 2GX6), Galactose Binding Protein (pdb ID: 2GBP) ⁴, Maltose Binding Protein (pdb ID: 2MV0) ⁵, Dipeptide binding protein DppA (pdb ID: 1DPP) ⁶ and the LsrB protein in complex with an AI-2 homologue (pdb ID: 1TJY) ⁷.

Fig. S7) Far UV circular dichroism spectra of PstS obtained after affinity purification (native PstS), unfolded protein (PstS in 6M GdnHCl) and after refolding (refolded PstS). Proteins were at a concentration of 10 μ M in 10 mM Tris/HCl, pH 8.0 (native and refolded PstS) or in 10 mM Tris/HCl, pH 8.0, containing 6 M guanidine hydrochloride. The derived percentages of secondary structure elements are shown in Table S1.

Fig. S8) Intrinsic fluorescence emission spectra of native PstS, unfolded protein (in 6 M guanidine hydrochloride) and after refolding. The wavelengths of the maximum fluorescence intensity are indicated. Proteins were at a concentration of 10 μ M in 10 mM Tris/HCl, pH 8.0 (native and refolded PstS) or in 10 mM Tris/HCl, pH 8.0, containing 6 M guanidine hydrochloride.

Fig. S9) Dynamic light scattering measurements of PstS in its native, unfolded (in guanidine hydrochloride) and refolded forms. For clarity traces have been moved arbitrarily on the y-axis. The following hydrodynamic radii were determined: *refolded PstS:* Rh=4.5 nm (92.7 %) and 35.3 nm (7.3 %); *unfolded PstS:* Rh=8.2 nm (94.1 %) and 54.6 nm (5.9 %); *native PstS:* Rh=4.4 nm (88.1 %) and 25.1 nm (11.9 %).

Table S1 : Secondary structure contents of native, unfolded and refolded PstS as determined by the deconvolution of the far UV CD dichroism spectra shown in Fig. S7. Spectra were deconvoluted using the CDNN program ⁸ and the errors were obtained using the deconvolution results obtained in the 260-205 nm range and those in the 260-210 nm range.

	Native PstS (%)	Unfolded PstS [*]	Refolded PstS (%)
α -helix	19.1 ± 1.4	n.a.	18.4 ± 1.0
β -antiparallel	10.3 ± 0.6	n.a.	10.9 ± 0.9
β -parallel	10.8 ± 0.7	n.a.	11.0 ± 0.7
β -turn	12.7 ± 0.1	n.a.	12.4 ± 0.1
random coil	47.1 ± 1.0	n.a.	47.3±1.0

*Not analysed. Data could not be deconvoluted due to reduced wavelength range.

Table S2) Strains and Plasmids used in this study.

Bacterial strains	Relevant characteristics ^a	Reference
Escherichia coli		
DH5a	$supE44$ lacU169 (Ø80lacZ Δ M15) hsdR17 ($r_k m_k$) recA1 endA1 gvrA96 thi-1 relA1	9
BL21 (DE3)	$F^{-} ompI hsdS_{B} (r_{B}^{-} m_{B}^{-})$	10
HB101	$F^{-}mcrB mrr hsdS20(r_{B}^{-}m_{B}^{-}) recA13 leuB6 ara-14 proA2 lacY1 galK2 xvl-5 mtl-1 rpsL20(SmR) glnV44 \lambda^{-}$	11,12
CC118\lpir	Rif ^R ; Δ (ara-leu) araD Δ lacX74 galE galK phoA20 thi-1 rpsE rpoB argE(Am) recA1 Tn7 λ pir	13
Pseudomonas aeruginosa		
PAO1	Wild type	14
сtpH	PAO1, <i>ctpH</i> ::Km; Km ^R	15
pstS	PAO1 in-frame $\Delta pstS$	This study
ctpHpstS	PAO1 in-frame $\Delta pstS$, <i>ctpH</i> ::Km; Km ^R	This study
Plasmids		
pET28b(+)	Km ^R ; protein expression vector	Novagen
pET28b-CtpH-LBD	Km ^R ; pET28b(+) derivative encoding CtpH-LBD (amino acids 60-214)	This work
pET28b-CtpL-LBD	Km ^R ; pET28b(+) derivative encoding CtpL-LBD (amino acids 27-324)	This work
pET28b-PstS-LBD	Km ^R ; pET28b(+) derivative with <i>pstS</i> gene	This work
pRK600	Cm ^R ; <i>mob tra</i>	12
pUC18NotI	Ap ^R ; <i>ori</i> pMB1, pUC18 derivative but with NotI sites flanking the MCS; cloning vector	Biomedal
pUC18NotI-Up	Ap ^R ; pUC18NotI derivative containing a 0.35-kb HindIII-XbaI fragment of the upstream region of $pstS$	This study
pUC18NotI-Dw	Ap ^R ; pUC18NotI derivative containing a 0.35-kb EcoRI-XbaI fragment of the downstream region of <i>pstS</i>	
pUC18NotI-5369UpDw	Ap ^R ; a 0.7-kb HindIII-EcoRI fragment containing fused up- and downstream regions of <i>pstS</i> cloned in pUC18NotI	This study
pKNG101	Sm ^R ; <i>ori</i> R6K <i>mob sacBR</i> ; suicide vector	16
pKNG101-UpDw	Sm ^R ; pKNG101derivative containing a 0.7-Kb NotI fragment from pUC18NotI-5369UpDw cloned into pKNG101	This study
pRK600	Cm^{R} ; <i>ori</i> ColE1 RK2 <i>mob</i> ⁺ <i>tra</i> ⁺ ; helper plasmid	17
pBBR1MCS-5	Gm^{R} ; <i>ori</i> RK2 <i>mob</i> ⁺	18
pBBR1MCS-5-pstS	Gm ^R ; pBBR1MCS-5 derivative containing <i>pstS</i>	This study

^{*a*}Cm, chloramphenicol; Ap, ampicillin; Sm, streptomycin; Km, kanamycin; Gm, gentamycin; Rif, rifampicin

Name	Sequence	Purpose
CtpH-LBD-f	5'-AA <u>CATATG</u> ATGTCGCTGACCGGCGACGTACGCG-3'	Construction of pET28b-CtpH-LBD
CtpH-LBD-r	5'-AA <u>GGATCC</u> TCAGGTGCGCCGGGCCTCCGCGCTG-3'	Construction of pET28b-CtpH-LBD
CtpL-LBD-f	5'-AA <u>CATATG</u> ATGTCGCAACGCGCCATGGAGCGGC-3'	Construction of pET28b-CtpL-LBD
CtpL-LBD-r	5'-AA <u>GGATCC</u> TCACTGGATCAGGCGTACCTGGCCT-3'	Construction of pET28b-CtpL-LBD
PstS-f	5'-AA <u>CATATG</u> AAACTCAAGCGTTTGATGG-3'	Construction of pET28b-PstS-LBD
PstS-r	5'-AA <u>GAATTC</u> TTACAGGCCCAGTTCCTTG-3'	Construction of pET28b-PstS-LBD
PA5369 Upf	5'-AA <u>AAGCTT</u> GTCAGCGATGACCGGG-3'	Construction of pUC18NotI-5369Up
PA5369 Upr	5'-AA <u>TCTAGA</u> GCCAGTATCGTCAGGCCG-3'	Construction of pUC18NotI-5369Up
PA5369 Dwf	5'-AA <u>TCTAGA</u> TCCAGTGACTTGAGCGGAT-3'	Construction of pUC18NotI-5369Dw
PA5369 Dwr	5'-AA <u>GAATTC</u> TAGGCCAGGTAGAAGAAGATCA-3'	Construction of pUC18NotI-5369Dw
pstS- pBBRMCS5-f	5'-AGA <u>ATCGCA</u> TATGAAACTCAAGCGTTTGATGGC-3'	Construction of pBBR1MCS-5-pstS
pstS- pBBRMCS5-r	5'-AA <u>GAATTC</u> TTACAGGCCCAGTTCCTTGATCGC-3'	Construction of pBBR1MCS-5-pstS

 Table S3) Oligonucleotides used in this study. Restriction sites are underlined.

References

- Cserzo, M., Wallin, E., Simon, I., von Heijne, G. & Elofsson, A. Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: the dense alignment surface method. *Protein Eng.* 10, 673-676 (1997).
- 2 Deleage, G., Blanchet, C. & Geourjon, C. Protein structure prediction. Implications for the biologist. *Biochimie* **79**, 681-686 (1997).
- 3 Neznansky, A., Blus-Kadosh, I., Yerushalmi, G., Banin, E. & Opatowsky, Y. The Pseudomonas aeruginosa phosphate transport protein PstS plays a phosphate-independent role in biofilm formation. *FASEB J.* **28**, 5223-5233 (2014).
- 4 Vyas, N. K., Vyas, M. N. & Quiocho, F. A. Sugar and signal-transducer binding sites of the *Escherichia coli* galactose chemoreceptor protein. *Science* **242**, 1290-1295 (1988).
- 5 Shilton, B. H., Shuman, H. A. & Mowbray, S. L. Crystal structures and solution conformations of a dominant-negative mutant of *Escherichia coli* maltose-binding protein. *J. Mol. Biol.* 264, 364-376 (1996).
- 6 Dunten, P. & Mowbray, S. L. Crystal structure of the dipeptide binding protein from *Escherichia coli* involved in active transport and chemotaxis. *Protein Sci.* **4**, 2327-2334 (1995).
- 7 Miller, S. T. *et al.* Salmonella typhimurium recognizes a chemically distinct form of the bacterial quorum-sensing signal AI-2. *Mol. Cell* **15**, 677-687 (2004).
- 8 Bohm, G., Muhr, R. & Jaenicke, R. Quantitative analysis of protein far UV circular dichroism spectra by neural networks. *Protein Eng.* **5**, 191-195 (1992).
- 9 Woodcock, D. M. *et al.* Quantitative evaluation of *Escherichia coli* host strains for tolerance to cytosine methylation in plasmid and phage recombinants. *Nucleic Acids Res.* 17, 3469-3478 (1989).
- 10 Studier, F. W. & Moffatt, B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. *J. Mol. Biol.* **189**, 113-130 (1986).
- 11 Boyer, H. W. & Roulland-Dussoix, D. A complementation analysis of the restriction and modification of DNA in *Escherichia coli*. *J. Mol. Biol.* **41**, 459-472 (1969).
- 12 Kessler, B., de Lorenzo, V. & Timmis, K. N. A general system to integrate *lacZ* fusions into the chromosomes of gram-negative eubacteria: regulation of the P_m promoter of the TOL plasmid studied with all controlling elements in monocopy. *Mol. Gen. Genet.* 233, 293-301 (1992).

- 13 Herrero, M., de Lorenzo, V. & Timmis, K. N. Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J. Bacteriol. 172, 6557-6567 (1990).
- 14 Stover, C. K. *et al.* Complete genome sequence of *Pseudomonas aeruginosa* PAO1, an opportunistic pathogen. *Nature* **406**, 959-964 (2000).
- 15 Wu, H. *et al.* Identification and characterization of two chemotactic transducers for inorganic phosphate in *Pseudomonas aeruginosa*. *J Bacteriol* **182**, 3400-3404 (2000).
- 16 Kaniga, K., Delor, I. & Cornelis, G. R. A wide-host-range suicide vector for improving reverse genetics in gram-negative bacteria: inactivation of the *blaA* gene of *Yersinia enterocolitica*. *Gene* **109**, 137-141 (1991).
- 17 de Lorenzo, V., Herrero, M., Jakubzik, U. & Timmis, K. N. Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. *J. Bacteriol.* **172**, 6568-6572 (1990).
- 18 Kovach, M. E. *et al.* Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. *Gene* **166**, 175-176 (1995).