ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

In Vivo Compatibility of Graphene Oxide with Differing Oxidation States

View Author Information
† ‡ § ⊥ Koch Institute for Integrative Cancer Research, Department of Chemical Engineering, §Institute for Medical Engineering and Science, and Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
Department of Anesthesiology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
*Address correspondence to [email protected]
Cite this: ACS Nano 2015, 9, 4, 3866–3874
Publication Date (Web):April 7, 2015
https://doi.org/10.1021/acsnano.5b01290
Copyright © 2015 American Chemical Society

    Article Views

    3349

    Altmetric

    -

    Citations

    190
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Graphene oxide (GO) is suggested to have great potential as a component of biomedical devices. Although this nanomaterial has been demonstrated to be cytocompatible in vitro, its compatibility in vivo in tissue sites relevant for biomedical device application is yet to be fully understood. Here, we evaluate the compatibility of GO with two different oxidation levels following implantation in subcutaneous and intraperitoneal tissue sites, which are of broad relevance for application to medical devices. We demonstrate GO to be moderately compatible in vivo in both tissue sites, with the inflammatory reaction in response to implantation consistent with a typical foreign body reaction. A reduction in the degree of GO oxidation results in faster immune cell infiltration, uptake, and clearance following both subcutaneous and peritoneal implantation. Future work toward surface modification or coating strategies could be useful to reduce the inflammatory response and improve compatibility of GO as a component of medical devices.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Elemental analysis of graphene oxide via low-resolution XPS, TGA, TEM, and SEM of graphene oxides, MTT assay, characterization of graphene oxides using Raman and FTIR, H&E, and Masson’s Trichrome stains of subcutaneous tissue implanted with graphene oxide, flow cytometry gating strategy, cytokine and chemokines secreted by IP cells, images of IP exudate, liver and spleen histology, table of p values for data presented in Figure 4B. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 190 publications.

    1. Lingling Ou, Xiner Tan, Shijia Qiao, Junrong Wu, Yuan Su, Wenqiang Xie, Nianqiang Jin, Jiankang He, Ruhui Luo, Xuan Lai, Wenjing Liu, Yanli Zhang, Fujian Zhao, Jia Liu, Yiyuan Kang, Longquan Shao. Graphene-Based Material-Mediated Immunomodulation in Tissue Engineering and Regeneration: Mechanism and Significance. ACS Nano 2023, 17 (19) , 18669-18687. https://doi.org/10.1021/acsnano.3c03857
    2. Jason D. Orlando, Ravi M. A. P. Lima, Li Li, Stefanie A. Sydlik, Helinando P. de Oliveira. Electrochemical Performance of N-Doped Carbon-Based Electrodes for Supercapacitors. ACS Applied Electronic Materials 2022, 4 (10) , 5040-5054. https://doi.org/10.1021/acsaelm.2c01059
    3. André F. Girão, María Concepcion Serrano, António Completo, Paula A. A. P. Marques. Is Graphene Shortening the Path toward Spinal Cord Regeneration?. ACS Nano 2022, 16 (9) , 13430-13467. https://doi.org/10.1021/acsnano.2c04756
    4. Jie Li, Huamin Zeng, Zhaowu Zeng, Yiying Zeng, Tian Xie. Promising Graphene-Based Nanomaterials and Their Biomedical Applications and Potential Risks: A Comprehensive Review. ACS Biomaterials Science & Engineering 2021, 7 (12) , 5363-5396. https://doi.org/10.1021/acsbiomaterials.1c00875
    5. Sedigheh Borandeh, Vahid Alimardani, Samira Sadat Abolmaali, Jukka Seppälä. Graphene Family Nanomaterials in Ocular Applications: Physicochemical Properties and Toxicity. Chemical Research in Toxicology 2021, 34 (6) , 1386-1402. https://doi.org/10.1021/acs.chemrestox.0c00340
    6. André F. Girão, Joana Sousa, Ana Domínguez-Bajo, Ankor González-Mayorga, Igor Bdikin, Eulalia Pujades-Otero, Nieves Casañ-Pastor, María Jesús Hortigüela, Gonzalo Otero-Irurueta, António Completo, María Concepción Serrano, Paula A.A.P. Marques. 3D Reduced Graphene Oxide Scaffolds with a Combinatorial Fibrous-Porous Architecture for Neural Tissue Engineering. ACS Applied Materials & Interfaces 2020, 12 (35) , 38962-38975. https://doi.org/10.1021/acsami.0c10599
    7. Leon Newman, Dhifaf A. Jasim, Eric Prestat, Neus Lozano, Irene de Lazaro, Yein Nam, Bakri M. Assas, Joanne Pennock, Sarah J. Haigh, Cyrill Bussy, Kostas Kostarelos. Splenic Capture and In Vivo Intracellular Biodegradation of Biological-Grade Graphene Oxide Sheets. ACS Nano 2020, 14 (8) , 10168-10186. https://doi.org/10.1021/acsnano.0c03438
    8. Michelle M. Karpinsky, Anne M. Arnold, Jaejun Lee, Genell Jasper, Michael R. Bockstaller, Stefanie A. Sydlik, Edward P. Zovinka. Acid Mine Drainage Remediation: Aluminum Chelation Using Functional Graphenic Materials. ACS Applied Materials & Interfaces 2020, 12 (29) , 32642-32648. https://doi.org/10.1021/acsami.0c06958
    9. M. Mugnano, G. C. Lama, R. Castaldo, V. Marchesano, F. Merola, D. del Giudice, A. Calabuig, G. Gentile, V. Ambrogi, P. Cerruti, P. Memmolo, V. Pagliarulo, P. Ferraro, S. Grilli. Cellular Uptake of Mildly Oxidized Nanographene for Drug-Delivery Applications. ACS Applied Nano Materials 2020, 3 (1) , 428-439. https://doi.org/10.1021/acsanm.9b02035
    10. Sunho Park, Teayeop Kim, Yonghyun Gwon, Sujin Kim, Daun Kim, Hyun-Ha Park, Ki-Taek Lim, Hoon Eui Jeong, Kyunghoon Kim, Jangho Kim. Graphene-Layered Eggshell Membrane as a Flexible and Functional Scaffold for Enhanced Proliferation and Differentiation of Stem Cells. ACS Applied Bio Materials 2019, 2 (10) , 4242-4248. https://doi.org/10.1021/acsabm.9b00525
    11. Nilkamal Pramanik, Santhalakshmi Ranganathan, Sunaina Rao, Kaushik Suneet, Shilpee Jain, Annapoorni Rangarajan, Siddharth Jhunjhunwala. A Composite of Hyaluronic Acid-Modified Graphene Oxide and Iron Oxide Nanoparticles for Targeted Drug Delivery and Magnetothermal Therapy. ACS Omega 2019, 4 (5) , 9284-9293. https://doi.org/10.1021/acsomega.9b00870
    12. Rossana Rauti, Manuela Medelin, Leon Newman, Sandra Vranic, Giacomo Reina, Alberto Bianco, Maurizio Prato, Kostas Kostarelos, Laura Ballerini. Graphene Oxide Flakes Tune Excitatory Neurotransmission in Vivo by Targeting Hippocampal Synapses. Nano Letters 2019, 19 (5) , 2858-2870. https://doi.org/10.1021/acs.nanolett.8b04903
    13. Abhik Mallick, Aditi Nandi, Sudipta Basu. Polyethylenimine Coated Graphene Oxide Nanoparticles for Targeting Mitochondria in Cancer Cells. ACS Applied Bio Materials 2019, 2 (1) , 14-19. https://doi.org/10.1021/acsabm.8b00519
    14. Bengt Fadeel, Cyrill Bussy, Sonia Merino, Ester Vázquez, Emmanuel Flahaut, Florence Mouchet, Lauris Evariste, Laury Gauthier, Antti J. Koivisto, Ulla Vogel, Cristina Martín, Lucia G. Delogu, Tina Buerki-Thurnherr, Peter Wick, Didier Beloin-Saint-Pierre, Roland Hischier, Marco Pelin, Fabio Candotto Carniel, Mauro Tretiach, Fabrizia Cesca, Fabio Benfenati, Denis Scaini, Laura Ballerini, Kostas Kostarelos, Maurizio Prato, Alberto Bianco. Safety Assessment of Graphene-Based Materials: Focus on Human Health and the Environment. ACS Nano 2018, 12 (11) , 10582-10620. https://doi.org/10.1021/acsnano.8b04758
    15. Xuecheng Ding, Qi Rui, Yunli Zhao, Huimin Shao, Yiping Yin, Qiuli Wu, Dayong Wang. Toxicity of Graphene Oxide in Nematodes with a Deficit in the Epidermal Barrier Caused by RNA Interference Knockdown of unc-52. Environmental Science & Technology Letters 2018, 5 (11) , 622-628. https://doi.org/10.1021/acs.estlett.8b00473
    16. Krishanu Ghosal, Kishor Sarkar. Biomedical Applications of Graphene Nanomaterials and Beyond. ACS Biomaterials Science & Engineering 2018, 4 (8) , 2653-2703. https://doi.org/10.1021/acsbiomaterials.8b00376
    17. Ruibin Li, Linda M. Guiney, Chong Hyun Chang, Nikhita D. Mansukhani, Zhaoxia Ji, Xiang Wang, Yu-Pei Liao, Wen Jiang, Bingbing Sun, Mark C. Hersam, Andre E. Nel, and Tian Xia . Surface Oxidation of Graphene Oxide Determines Membrane Damage, Lipid Peroxidation, and Cytotoxicity in Macrophages in a Pulmonary Toxicity Model. ACS Nano 2018, 12 (2) , 1390-1402. https://doi.org/10.1021/acsnano.7b07737
    18. Shervin Kabiri, Fien Degryse, Diana N. H. Tran, Rodrigo C. da Silva, Mike J. McLaughlin, and Dusan Losic . Graphene Oxide: A New Carrier for Slow Release of Plant Micronutrients. ACS Applied Materials & Interfaces 2017, 9 (49) , 43325-43335. https://doi.org/10.1021/acsami.7b07890
    19. Meng Qi, Jiawei Huang, Hui Wei, Chaomin Cao, Shilun Feng, Qing Guo, Ewa M. Goldys, Rui Li, and Guozhen Liu . Graphene Oxide Thin Film with Dual Function Integrated into a Nanosandwich Device for in Vivo Monitoring of Interleukin-6. ACS Applied Materials & Interfaces 2017, 9 (48) , 41659-41668. https://doi.org/10.1021/acsami.7b10753
    20. Bryan Ronain Smith and Sanjiv Sam Gambhir . Nanomaterials for In Vivo Imaging. Chemical Reviews 2017, 117 (3) , 901-986. https://doi.org/10.1021/acs.chemrev.6b00073
    21. Chong Cheng, Shuang Li, Arne Thomas, Nicholas A. Kotov, and Rainer Haag . Functional Graphene Nanomaterials Based Architectures: Biointeractions, Fabrications, and Emerging Biological Applications. Chemical Reviews 2017, 117 (3) , 1826-1914. https://doi.org/10.1021/acs.chemrev.6b00520
    22. Jason N. Belling, Joshua A. Jackman, Saziye Yorulmaz Avsar, Jae Hyeon Park, Yan Wang, Michael G. Potroz, Abdul Rahim Ferhan, Paul S. Weiss, and Nam-Joon Cho . Stealth Immune Properties of Graphene Oxide Enabled by Surface-Bound Complement Factor H. ACS Nano 2016, 10 (11) , 10161-10172. https://doi.org/10.1021/acsnano.6b05409
    23. Srivathsan V. Ranganathan, Ken Halvorsen, Chris A. Myers, Neil M. Robertson, Mehmet V. Yigit, and Alan A. Chen . Complex Thermodynamic Behavior of Single-Stranded Nucleic Acid Adsorption to Graphene Surfaces. Langmuir 2016, 32 (24) , 6028-6034. https://doi.org/10.1021/acs.langmuir.6b00456
    24. Madhumita Patel, Hyo Jung Moon, Du Young Ko, and Byeongmoon Jeong . Composite System of Graphene Oxide and Polypeptide Thermogel As an Injectable 3D Scaffold for Adipogenic Differentiation of Tonsil-Derived Mesenchymal Stem Cells. ACS Applied Materials & Interfaces 2016, 8 (8) , 5160-5169. https://doi.org/10.1021/acsami.5b12324
    25. Chunchun Meng, Xiao Zhi, Chao Li, Chuanfeng Li, Zongyan Chen, Xusheng Qiu, Chan Ding, Lijun Ma, Hongmin Lu, Di Chen, Guangqing Liu, and Daxiang Cui . Graphene Oxides Decorated with Carnosine as an Adjuvant To Modulate Innate Immune and Improve Adaptive Immunity in Vivo. ACS Nano 2016, 10 (2) , 2203-2213. https://doi.org/10.1021/acsnano.5b06750
    26. Hui Li, Kaat Fierens, Zhiyue Zhang, Nane Vanparijs, Martijn J. Schuijs, Katleen Van Steendam, Natàlia Feiner Gracia, Riet De Rycke, Thomas De Beer, Ans De Beuckelaer, Stefaan De Koker, Dieter Deforce, Lorenzo Albertazzi, Johan Grooten, Bart N. Lambrecht, and Bruno G. De Geest . Spontaneous Protein Adsorption on Graphene Oxide Nanosheets Allowing Efficient Intracellular Vaccine Protein Delivery. ACS Applied Materials & Interfaces 2016, 8 (2) , 1147-1155. https://doi.org/10.1021/acsami.5b08963
    27. Juan Ma, Rui Liu, Xiang Wang, Qian Liu, Yunan Chen, Russell P. Valle, Yi Y. Zuo, Tian Xia, and Sijin Liu . Crucial Role of Lateral Size for Graphene Oxide in Activating Macrophages and Stimulating Pro-inflammatory Responses in Cells and Animals. ACS Nano 2015, 9 (10) , 10498-10515. https://doi.org/10.1021/acsnano.5b04751
    28. Jinhua Li, Gang Wang, Hao Geng, Hongqin Zhu, Miao Zhang, Zengfeng Di, Xuanyong Liu, Paul K Chu, and Xi Wang . CVD Growth of Graphene on NiTi Alloy for Enhanced Biological Activity. ACS Applied Materials & Interfaces 2015, 7 (36) , 19876-19881. https://doi.org/10.1021/acsami.5b06639
    29. Kest Verstappen, Alexey Klymov, Mónica Cicuéndez, Daniela M. da Silva, Nathalie Barroca, Francisco-Javier Fernández-San-Argimiro, Iratxe Madarieta, Laura Casarrubios, María José Feito, Rosalía Diez-Orejas, Rita Ferreira, Sander C.G. Leeuwenburgh, María Teresa Portolés, Paula A.A.P. Marques, X. Frank Walboomers. Biocompatible adipose extracellular matrix and reduced graphene oxide nanocomposite for tissue engineering applications. Materials Today Bio 2024, 26 , 101059. https://doi.org/10.1016/j.mtbio.2024.101059
    30. Shubhi Joshi, Jatin Chadha, Kusum Harjai, Gaurav Verma, Avneet Saini. Synthetic peptide (DP1) functionalized graphene oxide: A biocompatible nanoformulation with broad-spectrum antibacterial and antibiofilm activity. FlatChem 2024, 44 , 100626. https://doi.org/10.1016/j.flatc.2024.100626
    31. Li Li, Fengting Xiang, Fan Wang, Yu Liu. Preparation and antitumor study of intelligent injectable hydrogel: Carboxymethyl chitosan–aldehyde gum Arabic composite graphene oxide hydrogel. International Journal of Biological Macromolecules 2024, 259 , 129429. https://doi.org/10.1016/j.ijbiomac.2024.129429
    32. Yuanyuan Zhao, Yang Liu, Cheng Lu, Daokuan Sun, Shiqi Kang, Xin Wang, Laijin Lu. Reduced Graphene Oxide Fibers Combined with Electrical Stimulation Promote Peripheral Nerve Regeneration. International Journal of Nanomedicine 2024, Volume 19 , 2341-2357. https://doi.org/10.2147/IJN.S449160
    33. Patricia Mazón, Jeevithan Elango, José Eduardo Maté-Sánchez de Val, Piedad N. De Aza. Enhancing bone tissue regeneration with rGO-coated Si-Ca-P bioceramic scaffold. Boletín de la Sociedad Española de Cerámica y Vidrio 2024, 63 (1) , 59-71. https://doi.org/10.1016/j.bsecv.2023.05.002
    34. Moon Sung Kang, Hee Jeong Jang, Hyo Jung Jo, Iruthayapandi Selestin Raja, Dong-Wook Han. MXene and Xene: promising frontier beyond graphene in tissue engineering and regenerative medicine. Nanoscale Horizons 2023, 9 (1) , 93-117. https://doi.org/10.1039/D3NH00428G
    35. Na Li, Junkui Cui, Minghan Chi, Florian M. Thieringer, Neha Sharma. Building a better bone: The synergy of 2D nanomaterials and 3D printing for bone tissue engineering. Materials & Design 2023, 234 , 112362. https://doi.org/10.1016/j.matdes.2023.112362
    36. Rajesh Kumar, Dinesh Pratap Singh, Romina Muñoz, Mongi Amami, Rajesh Kumar Singh, Shipra Singh, Vinod Kumar. Graphene-based materials for biotechnological and biomedical applications: Drug delivery, bioimaging and biosensing. Materials Today Chemistry 2023, 33 , 101750. https://doi.org/10.1016/j.mtchem.2023.101750
    37. Fatemeh Edrisi, Nafiseh Baheiraei, Mehdi Razavi, Kaveh Roshanbinfar, Rana Imani, Negin Jalilinejad. Potential of graphene-based nanomaterials for cardiac tissue engineering. Journal of Materials Chemistry B 2023, 11 (31) , 7280-7299. https://doi.org/10.1039/D3TB00654A
    38. Qiying Lv, Xiaoye Li, Xin Tian, Da‐an Fu, Huan Liu, Jia Liu, Yu Song, Bo Cai, Jian Wang, Qiangfei Su, Wei Chen, Meizhen Zou, Fei Xiao, Shuai Wang, Zheng Wang, Lin Wang. A Degradable and Biocompatible Supercapacitor Implant Based on Functional Sericin Hydrogel Electrode. Advanced Energy Materials 2023, 13 (16) https://doi.org/10.1002/aenm.202203814
    39. Lizhen Wang, Yang Zhang, Linhao Li, Xuezheng Geng, Dandan Dou, Lu Yu, Haoyu Jing, Yubo Fan. Graphdiyne oxide elicits a minor foreign-body response and generates quantum dots due to fast degradation. Journal of Hazardous Materials 2023, 445 , 130512. https://doi.org/10.1016/j.jhazmat.2022.130512
    40. Andreea-Isabela Lazăr, Kimia Aghasoleimani, Anna Semertsidou, Jahnavi Vyas, Alin-Lucian Roșca, Denisa Ficai, Anton Ficai. Graphene-Related Nanomaterials for Biomedical Applications. Nanomaterials 2023, 13 (6) , 1092. https://doi.org/10.3390/nano13061092
    41. Mohammad Karbalaei Akbari, Nasrin Siraj Lopa, Marina Shahriari, Aliasghar Najafzadehkhoee, Dušan Galusek, Serge Zhuiykov. Functional Two-Dimensional Materials for Bioelectronic Neural Interfacing. Journal of Functional Biomaterials 2023, 14 (1) , 35. https://doi.org/10.3390/jfb14010035
    42. Tiago José Marques Fraga, Marcos Gomes Ghislandi, Jorge Vinicius Fernandes Lima Cavalcanti, Maurício Alves da Motta Sobrinho, Marie-Odile Simonnot. The use of graphene nanocomposites in the remediation of contaminated soils: Synergies, effectiveness, and liabilities. 2023, 299-326. https://doi.org/10.1016/B978-0-323-91894-7.00020-7
    43. Fu-Cheng Kao, Hsin-Hsuan Ho, Ping-Yeh Chiu, Ming-Kai Hsieh, Jen‐Chung Liao, Po-Liang Lai, Yu-Fen Huang, Min-Yan Dong, Tsung-Ting Tsai, Zong-Hong Lin. Self-assisted wound healing using piezoelectric and triboelectric nanogenerators. Science and Technology of Advanced Materials 2022, 23 (1) , 1-16. https://doi.org/10.1080/14686996.2021.2015249
    44. Leila Daneshmandi, Brian D. Holt, Anne M. Arnold, Cato T. Laurencin, Stefanie A. Sydlik. Ultra-low binder content 3D printed calcium phosphate graphene scaffolds as resorbable, osteoinductive matrices that support bone formation in vivo. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-10603-3
    45. M. Connolly, G. Moles, F. Candotto Carniel, M. Tretiach, G. Caorsi, E. Flahaut, B. Soula, E. Pinelli, L. Gauthier, F. Mouchet, J.M. Navas. Applicability of OECD TG 201, 202, 203 for the aquatic toxicity testing and assessment of 2D Graphene material nanoforms to meet regulatory needs. NanoImpact 2022, 22 , 100447. https://doi.org/10.1016/j.impact.2022.100447
    46. Harshdeep Kaur, Rahul Garg, Sajan Singh, Atanu Jana, Chinna Bathula, Hyun-Seok Kim, Sangamesh G. Kumbar, Mona Mittal. Progress and challenges of graphene and its congeners for biomedical applications. Journal of Molecular Liquids 2022, 368 , 120703. https://doi.org/10.1016/j.molliq.2022.120703
    47. Asif Mohd Itoo, Sree Lakshmi Vemula, Mahima Tejasvni Gupta, Mahesh Vilasrao Giram, Sangishetty Akhil Kumar, Balaram Ghosh, Swati Biswas. Multifunctional graphene oxide nanoparticles for drug delivery in cancer. Journal of Controlled Release 2022, 350 , 26-59. https://doi.org/10.1016/j.jconrel.2022.08.011
    48. Tais Monteiro Magne, Thamires de Oliveira Vieira, Luciana Magalhães Rebelo Alencar, Francisco Franciné Maia Junior, Sara Gemini-Piperni, Samuel V. Carneiro, Lillian M. U. D. Fechine, Rafael M. Freire, Kirill Golokhvast, Pierangelo Metrangolo, Pierre B. A. Fechine, Ralph Santos-Oliveira. Graphene and its derivatives: understanding the main chemical and medicinal chemistry roles for biomedical applications. Journal of Nanostructure in Chemistry 2022, 12 (5) , 693-727. https://doi.org/10.1007/s40097-021-00444-3
    49. Shizhou Wu, Tingjiang Gan, Liwei Xie, Shu Deng, Yunjie Liu, Hui Zhang, Xuefeng Hu, Lei Lei. Antibacterial performance of graphene oxide/alginate-based antisense hydrogel for potential therapeutic application in Staphylococcus aureus infection. Biomaterials Advances 2022, 141 , 213121. https://doi.org/10.1016/j.bioadv.2022.213121
    50. Francine Côa, Fabrício de Souza Delite, Mathias Strauss, Diego Stéfani Teodoro Martinez. Toxicity mitigation and biodistribution of albumin corona coated graphene oxide and carbon nanotubes in Caenorhabditis elegans. NanoImpact 2022, 27 , 100413. https://doi.org/10.1016/j.impact.2022.100413
    51. Preeti Sharma, Alakesh Alakesh, Siddharth Jhunjhunwala. The consequences of particle uptake on immune cells. Trends in Pharmacological Sciences 2022, 43 (4) , 305-320. https://doi.org/10.1016/j.tips.2022.01.009
    52. Neha S. Ekal, Rahul Patil, Nihar Ranjan, Pratap Bahadur, Sanjay Tiwari. Oxidation state of graphene oxide nanosheets drives their interaction with proteins: A case of bovine serum albumin. Colloids and Surfaces B: Biointerfaces 2022, 212 , 112367. https://doi.org/10.1016/j.colsurfb.2022.112367
    53. Herdeline Ann M. Ardoña, John F. Zimmerman, Kevin Shani, Su-Hwan Kim, Feyisayo Eweje, Dimitrios Bitounis, Dorsa Parviz, Evan Casalino, Michael Strano, Philip Demokritou, Kevin Kit Parker. Differential modulation of endothelial cytoplasmic protrusions after exposure to graphene-family nanomaterials. NanoImpact 2022, 26 , 100401. https://doi.org/10.1016/j.impact.2022.100401
    54. Nastaran Hadizadeh, Saba Zeidi, Helia Khodabakhsh, Samaneh Zeidi, Aram Rezaei, Zhuobin Liang, Mojtaba Dashtizad, Ehsan Hashemi. An overview on the reproductive toxicity of graphene derivatives: Highlighting the importance. Nanotechnology Reviews 2022, 11 (1) , 1076-1100. https://doi.org/10.1515/ntrev-2022-0063
    55. Fatemeh S. Hosseini, Cato T. Laurencin. Advanced graphene ceramics and their future in bone regenerative engineering. International Journal of Applied Ceramic Technology 2022, 19 (2) , 893-905. https://doi.org/10.1111/ijac.13999
    56. Vitalii A. Bunyaev, Alexey V. Shnitko, Maria G. Chernysheva, Alexander L. Ksenofontov, Gennadii A. Badun. Structural peculiarities of lysozyme-graphene oxide adsorption complexes. Fullerenes, Nanotubes and Carbon Nanostructures 2022, 30 (1) , 99-105. https://doi.org/10.1080/1536383X.2021.1988574
    57. Sangiliyandi Gurunathan, Jin Hoi Kim. Graphene Oxide Enhances Biogenesis and Release of Exosomes in Human Ovarian Cancer Cells. International Journal of Nanomedicine 2022, Volume 17 , 5697-5731. https://doi.org/10.2147/IJN.S385113
    58. Bing Guo, Xiaodong Feng, Yun Wang, Xiansong Wang, Yue He. Biomimetic and immunomodulatory baicalin-loaded graphene oxide-demineralized bone matrix scaffold for in vivo bone regeneration. Journal of Materials Chemistry B 2021, 9 (47) , 9720-9733. https://doi.org/10.1039/D1TB00618E
    59. Muhammad Amir Yunus, Muhammad Mahyiddin Ramli, Nurul Huda Osman, Rafeezul Mohamed. Stimulation of Innate and Adaptive Immune Cells with Graphene Oxide and Reduced Graphene Oxide Affect Cancer Progression. Archivum Immunologiae et Therapiae Experimentalis 2021, 69 (1) https://doi.org/10.1007/s00005-021-00625-6
    60. Cui Guo, Ran Lu, Xin Wang, Su Chen. Antibacterial activity, bio-compatibility and osteogenic differentiation of graphene oxide coating on 3D-network poly-ether-ether-ketone for orthopaedic implants. Journal of Materials Science: Materials in Medicine 2021, 32 (11) https://doi.org/10.1007/s10856-021-06614-7
    61. Krishanu Ghosal, Pritiranjan Mondal, Sumanta Bera, Santanu Ghosh. Graphene family nanomaterials- opportunities and challenges in tissue engineering applications. FlatChem 2021, 30 , 100315. https://doi.org/10.1016/j.flatc.2021.100315
    62. Hossein Jodati, Bengi Yilmaz, Zafer Evis. In vitro and in vivo properties of graphene-incorporated scaffolds for bone defect repair. Ceramics International 2021, 47 (21) , 29535-29549. https://doi.org/10.1016/j.ceramint.2021.07.136
    63. Tao Jiang, Carlo Alberto Amadei, Yishan Lin, Na Gou, Sheikh Mokhlesur Rahman, Jiaqi Lan, Chad D. Vecitis, April Z. Gu. Dependence of Graphene Oxide (GO) Toxicity on Oxidation Level, Elemental Composition, and Size. International Journal of Molecular Sciences 2021, 22 (19) , 10578. https://doi.org/10.3390/ijms221910578
    64. María Cámara-Torres, Ravi Sinha, Siamak Eqtesadi, Rune Wendelbo, Marco Scatto, Paolo Scopece, Alberto Sanchez, Sara Villanueva, Ainhoa Egizabal, Noelia Álvarez, Alessandro Patelli, Carlos Mota, Lorenzo Moroni. Effect of the reduced graphene oxide (rGO) compaction degree and concentration on rGO–polymer composite printability and cell interactions. Nanoscale 2021, 13 (34) , 14382-14398. https://doi.org/10.1039/D1NR02927D
    65. F.S. Hosseini, L.S. Nair, C.T. Laurencin. Inductive Materials for Regenerative Engineering. Journal of Dental Research 2021, 100 (10) , 1011-1019. https://doi.org/10.1177/00220345211010436
    66. En Zhang, Lydia Galle, Stefanie Lochmann, Julia Grothe, Stefan Kaskel. Nanoporous carbon architectures for iontronics: Ion-based computing, logic circuits and biointerfacing. Chemical Engineering Journal 2021, 420 , 130431. https://doi.org/10.1016/j.cej.2021.130431
    67. Huey-Shan Hung, Mei-Lang Kung, Fang-Chung Chen, Yi-Chun Ke, Chiung-Chyi Shen, Yi-Chin Yang, Chang-Ming Tang, Chun-An Yeh, Hsien-Hsu Hsieh, Shan-hui Hsu. Nanogold-Carried Graphene Oxide: Anti-Inflammation and Increased Differentiation Capacity of Mesenchymal Stem Cells. Nanomaterials 2021, 11 (8) , 2046. https://doi.org/10.3390/nano11082046
    68. Lorenzo Vannozzi, Enrico Catalano, Madina Telkhozhayeva, Eti Teblum, Alina Yarmolenko, Efrat Shawat Avraham, Rajashree Konar, Gilbert Daniel Nessim, Leonardo Ricotti. Graphene Oxide and Reduced Graphene Oxide Nanoflakes Coated with Glycol Chitosan, Propylene Glycol Alginate, and Polydopamine: Characterization and Cytotoxicity in Human Chondrocytes. Nanomaterials 2021, 11 (8) , 2105. https://doi.org/10.3390/nano11082105
    69. Nabira Fatima, Umair Yaqub Qazi, Asim Mansha, Ijaz Ahmad Bhatti, Rahat Javaid, Qamar Abbas, Nimra Nadeem, Zulfiqar Ahmad Rehan, Saima Noreen, Muhammad Zahid. Recent developments for antimicrobial applications of graphene-based polymeric composites: A review. Journal of Industrial and Engineering Chemistry 2021, 100 , 40-58. https://doi.org/10.1016/j.jiec.2021.04.050
    70. Ana M. Díez-Pascual, José A. Luceño-Sánchez. Antibacterial Activity of Polymer Nanocomposites Incorporating Graphene and Its Derivatives: A State of Art. Polymers 2021, 13 (13) , 2105. https://doi.org/10.3390/polym13132105
    71. Tais Monteiro Magne, Thamires de Oliveira Vieira, Bianca Costa, Luciana Magalhães Rebelo Alencar, Eduardo Ricci-Junior, Rui Hu, Junle Qu, Camilo Zamora-Ledezma, Frank Alexis, Ralph Santos-Oliveira. Factors affecting the biological response of Graphene. Colloids and Surfaces B: Biointerfaces 2021, 203 , 111767. https://doi.org/10.1016/j.colsurfb.2021.111767
    72. Zhuolong Tu, Mi Chen, Min Wang, Zhenxuan Shao, Xiaoqi Jiang, Kangyan Wang, Zhe Yao, Shiwei Yang, Xingxing Zhang, Weiyang Gao, Cai Lin, Bo Lei, Cong Mao. Engineering Bioactive M2 Macrophage‐Polarized Anti‐Inflammatory, Antioxidant, and Antibacterial Scaffolds for Rapid Angiogenesis and Diabetic Wound Repair. Advanced Functional Materials 2021, 31 (30) https://doi.org/10.1002/adfm.202100924
    73. Gang Chen, Yuna Qian, Hang Zhang, Aftab Ullah, Xiaojun He, Zaigang Zhou, Hicham Fenniri, Jianliang Shen. Advances in cancer theranostics using organic-inorganic hybrid nanotechnology. Applied Materials Today 2021, 23 , 101003. https://doi.org/10.1016/j.apmt.2021.101003
    74. Sandeep Keshavan, Fernando Torres Andón, Audrey Gallud, Wei Chen, Knut Reinert, Lang Tran, Bengt Fadeel. Profiling of Sub-Lethal in Vitro Effects of Multi-Walled Carbon Nanotubes Reveals Changes in Chemokines and Chemokine Receptors. Nanomaterials 2021, 11 (4) , 883. https://doi.org/10.3390/nano11040883
    75. Brian D. Holt, Anne M. Arnold, Stefanie A. Sydlik. The Blanket Effect: How Turning the World Upside Down Reveals the Nature of Graphene Oxide Cytocompatibility. Advanced Healthcare Materials 2021, 10 (7) https://doi.org/10.1002/adhm.202001761
    76. Grecia Guadalupe Montes-Duarte, Guillermo Tostado-Blázquez, K. L. S. Castro, Joyce R. Araujo, C. A. Achete, José Luis Sánchez-Salas, Jessica Campos-Delgado. Key parameters to enhance the antibacterial effect of graphene oxide in solution. RSC Advances 2021, 11 (12) , 6509-6516. https://doi.org/10.1039/D0RA07945F
    77. Vien T. Huynh, Duc Nguyen, Liwen Zhu, Nguyen T. H. Pham, Pramith Priyananda, Brian S. Hawkett. Ultra-thin patchy polymer-coated graphene oxide as a novel anticancer drug carrier. Polymer Chemistry 2021, 12 (1) , 92-104. https://doi.org/10.1039/D0PY00769B
    78. Jun Zhao, Xin Long, Min Zhou. Clearable Nanoparticles for Cancer Photothermal Therapy. 2021, 121-134. https://doi.org/10.1007/978-3-030-58174-9_6
    79. Shabnam Sattari, Mohsen Adeli, Siamak Beyranvand, Mohammad Nemati. Functionalized Graphene Platforms for Anticancer Drug Delivery. International Journal of Nanomedicine 2021, Volume 16 , 5955-5980. https://doi.org/10.2147/IJN.S249712
    80. Zhiwei Zheng, Yahong Chen, Hao Hong, Yi Shen, Yun Wang, Jian Sun, Xiansong Wang. The “Yin and Yang” of Immunomodulatory Magnesium‐Enriched Graphene Oxide Nanoscrolls Decorated Biomimetic Scaffolds in Promoting Bone Regeneration. Advanced Healthcare Materials 2021, 10 (2) https://doi.org/10.1002/adhm.202000631
    81. Zoe M. Wright, Avanti M. Pandit, Michelle M. Karpinsky, Brian D. Holt, Edward P. Zovinka, Stefanie A. Sydlik. Bioactive, Ion‐Releasing PMMA Bone Cement Filled with Functional Graphenic Materials. Advanced Healthcare Materials 2021, 10 (2) https://doi.org/10.1002/adhm.202001189
    82. Leila Daneshmandi, Mohammed Barajaa, Armin Tahmasbi Rad, Stefanie A. Sydlik, Cato T. Laurencin. Graphene‐Based Biomaterials for Bone Regenerative Engineering: A Comprehensive Review of the Field and Considerations Regarding Biocompatibility and Biodegradation. Advanced Healthcare Materials 2021, 10 (1) https://doi.org/10.1002/adhm.202001414
    83. Mohammad Joghataei, Fatemeh Ostovari, Samira Atabakhsh, Nafiseh Tobeiha. Heterogeneous Ice Nucleation by Graphene Nanoparticles. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-66714-2
    84. Shuai Wang, Xinwen Ou, Yanee Wutthinitikornkit, Ming Yi, Jingyuan Li. Effects of the surface polarity of nanomaterials on their interaction with complement protein gC1q. RSC Advances 2020, 10 (69) , 41993-42000. https://doi.org/10.1039/D0RA05493C
    85. Amjad Ali Khan, Khaled S. Allemailem, Ahmad Almatroudi, Saleh A. Almatroodi, Ali Mahzari, Mohammed A. Alsahli, Arshad Husain Rahmani. Endoplasmic Reticulum Stress Provocation by Different Nanoparticles: An Innovative Approach to Manage the Cancer and Other Common Diseases. Molecules 2020, 25 (22) , 5336. https://doi.org/10.3390/molecules25225336
    86. Shalini Pandey, Aditi Nandi, Sudipta Basu, Nirmalya Ballav. Inducing endoplasmic reticulum stress in cancer cells using graphene oxide-based nanoparticles. Nanoscale Advances 2020, 2 (10) , 4887-4894. https://doi.org/10.1039/D0NA00338G
    87. Changhoon Sung, Woojin Jeon, Kum Seok Nam, Yeji Kim, Haider Butt, Seongjun Park. Multimaterial and multifunctional neural interfaces: from surface-type and implantable electrodes to fiber-based devices. Journal of Materials Chemistry B 2020, 8 (31) , 6624-6666. https://doi.org/10.1039/D0TB00872A
    88. Zhuping Shen, Jiawei Huang, Hui Wei, Huan Niu, Bitong Li, Rui Li, Guozhen Liu. Validation of an in vivo electrochemical immunosensing platform for simultaneous detection of multiple cytokines in Parkinson’s disease mice model. Bioelectrochemistry 2020, 134 , 107532. https://doi.org/10.1016/j.bioelechem.2020.107532
    89. Ying-hu Zhao, Fu-de Ren, Li Gao, Ying-xin Tan, Ying-yong Wang. Theoretical explanation for the DNA cleavage by GO with cation: anti-cooperativity effect among the π⋯π, cation⋯π/σ and H-bonding interactions in cytosine⋯GO⋯M n+ (M n+  = Na + , Mg 2+ , Al 3+ ). Molecular Physics 2020, 118 (13) , e1692149. https://doi.org/10.1080/00268976.2019.1692149
    90. Elham Ghasemipour Afshar, Ali Zarrabi, Ali Dehshahri, Milad Ashrafizadeh, Gholamreza Dehghannoudeh, Behzad Behnam, Ali Mandegary, Abbas Pardakhty, Reza Mohammadinejad, Shima Tavakol. Graphene as a promising multifunctional nanoplatform for glioblastoma theranostic applications. FlatChem 2020, 22 , 100173. https://doi.org/10.1016/j.flatc.2020.100173
    91. Linhao Li, Yanbing Liang, Guohang Wang, Peng Xu, Lingbing Yang, Sen Hou, Jin Zhou, Lizhen Wang, Xiaoming Li, Li Yang, Yubo Fan. In Vivo Disintegration and Bioresorption of a Nacre-Inspired Graphene-Silk Film Caused by the Foreign-Body Reaction. iScience 2020, 23 (6) , 101155. https://doi.org/10.1016/j.isci.2020.101155
    92. Mateusz Wierzbicki, Anna Hotowy, Marta Kutwin, Sławomir Jaworski, Jaśmina Bałaban, Malwina Sosnowska, Barbara Wójcik, Aleksandra Wędzińska, André Chwalibog, Ewa Sawosz. Graphene Oxide Scaffold Stimulates Differentiation and Proangiogenic Activities of Myogenic Progenitor Cells. International Journal of Molecular Sciences 2020, 21 (11) , 4173. https://doi.org/10.3390/ijms21114173
    93. Alexandra Dreanca, Codruta Sarosi, Alina Elena Parvu, Mihai Blidaru, George Enacrachi, Robert Purdoiu, Andras Nagy, Bogdan Sevastre, Nechita Adrian Oros, Ioan Marcus, Marioara Moldovan. Systemic and Local Biocompatibility Assessment of Graphene Composite Dental Materials in Experimental Mandibular Bone Defect. Materials 2020, 13 (11) , 2511. https://doi.org/10.3390/ma13112511
    94. Feng Xiaoli, Chen Qiyue, Guo Weihong, Zhang Yaqing, Hu Chen, Wu Junrong, Shao Longquan. Toxicology data of graphene-family nanomaterials: an update. Archives of Toxicology 2020, 94 (6) , 1915-1939. https://doi.org/10.1007/s00204-020-02717-2
    95. Thiers M. Uehara, Ieda M. M. Paino, Fabricio A. Santos, Vanessa P. Scagion, Daniel S. Correa, Valtencir Zucolotto. Fabrication of random and aligned electrospun nanofibers containing graphene oxide for skeletal muscle cells scaffold. Polymers for Advanced Technologies 2020, 31 (6) , 1437-1443. https://doi.org/10.1002/pat.4874
    96. Shahid A. Malik, Zinia Mohanta, Chandan Srivastava, Hanudatta S. Atreya. Modulation of protein–graphene oxide interactions with varying degrees of oxidation. Nanoscale Advances 2020, 2 (5) , 1904-1912. https://doi.org/10.1039/C9NA00807A
    97. Shanmuga Sharan Rathnam Vuppaladadium, Tarun Agarwal, Senthilguru Kulanthaivel, Biswaranjan Mohanty, Chandra Sekhar Barik, Tapas K. Maiti, Sumit Pal, Kunal Pal, Indranil Banerjee. Silanization improves biocompatibility of graphene oxide. Materials Science and Engineering: C 2020, 110 , 110647. https://doi.org/10.1016/j.msec.2020.110647
    98. Yulong Zhang, Cong Ma, Zhengjun Wang, Qianqian Zhou, Sujing Sun, Ping Ma, Liping Lv, Xinquan Jiang, Xiaohui Wang, Linsheng Zhan. Large-sized graphene oxide synergistically enhances parenchymal hepatocyte IL-6 expression monitored by dynamic imaging. Nanoscale 2020, 12 (15) , 8147-8158. https://doi.org/10.1039/C9NR10713D
    99. Laura Fusco, Elisabetta Avitabile, Valentina Armuzza, Marco Orecchioni, Akcan Istif, Davide Bedognetti, Tatiana Da Ros, Lucia Gemma Delogu. Impact of the surface functionalization on nanodiamond biocompatibility: a comprehensive view on human blood immune cells. Carbon 2020, 160 , 390-404. https://doi.org/10.1016/j.carbon.2020.01.003
    100. Valentina Palmieri, Wanda Lattanzi, Giordano Perini, Alberto Augello, Massimiliano Papi, Marco De Spirito. 3D-printed graphene for bone reconstruction. 2D Materials 2020, 7 (2) , 022004. https://doi.org/10.1088/2053-1583/ab6a5d
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect