Advertisement

From dust to ice

How does ice form on the surfaces of aerosol particles? The process is important for climate and atmospheric properties but poorly understood at the molecular level, in part because the nature of the sites where ice growth begins is unclear. Kiselev et al. used electron microscopy and computer simulations to study the deposition of aligned ice crystals on feldspar, a major component of mineral dust (see the Perspective by Murray). Surface defects of the feldspar were responsible for its high ice-nucleation efficiency.
Science, this issue p. 367; see also p. 346

Abstract

Ice formation on aerosol particles is a process of crucial importance to Earth’s climate and the environmental sciences, but it is not understood at the molecular level. This is partly because the nature of active sites, local surface features where ice growth commences, is still unclear. Here we report direct electron-microscopic observations of deposition growth of aligned ice crystals on feldspar, an atmospherically important component of mineral dust. Our molecular-scale computer simulations indicate that this alignment arises from the preferential nucleation of prismatic crystal planes of ice on high-energy (100) surface planes of feldspar. The microscopic patches of (100) surface, exposed at surface defects such as steps, cracks, and cavities, are thought to be responsible for the high ice nucleation efficacy of potassium (K)–feldspar particles.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

Summary

Author Contributions
Materials and Methods
Supplementary Text
Figs. S1 to S9
Table S1
Movies S1 to S4
References (5063)
GROMACS Structure File of Ice on Feldspar (100)
Data Files S1 and S2

Resources

File (aai8034_supportingfile_other_seq2_v1.gz)
File (aai8034_supportingfile_other_seq3_v1.gz)
File (aai8034_supportingfile_suppl.otherfiletype_seq1_v1.zip)
File (aai8034s1.mp4)
File (aai8034s2.mp4)
File (aai8034s3.mp4)
File (aai8034s4.mp4)
File (kiselev.sm.pdf)

References and Notes

1
T. W. Wilson, L. A. Ladino, P. A. Alpert, M. N. Breckels, I. M. Brooks, J. Browse, S. M. Burrows, K. S. Carslaw, J. A. Huffman, C. Judd, W. P. Kilthau, R. H. Mason, G. McFiggans, L. A. Miller, J. J. Nájera, E. Polishchuk, S. Rae, C. L. Schiller, M. Si, J. V. Temprado, T. F. Whale, J. P. S. Wong, O. Wurl, J. D. Yakobi-Hancock, J. P. D. Abbatt, J. Y. Aller, A. K. Bertram, D. A. Knopf, B. J. Murray, A marine biogenic source of atmospheric ice-nucleating particles. Nature 525, 234–238 (2015).
2
J. D. Atkinson, B. J. Murray, M. T. Woodhouse, T. F. Whale, K. J. Baustian, K. S. Carslaw, S. Dobbie, D. O’Sullivan, T. L. Malkin, The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds. Nature 498, 355–358 (2013).
3
N. Hiranuma, O. Möhler, K. Yamashita, T. Tajiri, A. Saito, A. Kiselev, N. Hoffmann, C. Hoose, E. Jantsch, T. Koop, M. Murakami, Ice nucleation by cellulose and its potential contribution to ice formation in clouds. Nat. Geosci. 8, 273–277 (2015).
4
M. A. Freedman, Potential sites for ice nucleation on aluminosilicate clay minerals and related materials. J. Phys. Chem. Lett. 6, 3850–3858 (2015).
5
N. Hiranuma, M. Paukert, I. Steinke, K. Zhang, G. Kulkarni, C. Hoose, M. Schnaiter, H. Saathoff, O. Möhler, A comprehensive parameterization of heterogeneous ice nucleation of dust surrogate: Laboratory study with hematite particles and its application to atmospheric models. Atmos. Chem. Phys. 14, 13145–13158 (2014).
6
C. Hoose, O. Möhler, Heterogeneous ice nucleation on atmospheric aerosols: A review of results from laboratory experiments. Atmos. Chem. Phys. 12, 9817–9854 (2012).
7
B. J. Murray, D. O’Sullivan, J. D. Atkinson, M. E. Webb, Ice nucleation by particles immersed in supercooled cloud droplets. Chem. Soc. Rev. 41, 6519–6554 (2012).
8
J. D. Yakobi-Hancock, L. A. Ladino, J. P. D. Abbatt, Feldspar minerals as efficient deposition ice nuclei. Atmos. Chem. Phys. 13, 11175–11185 (2013).
9
G. P. Schill, K. Genareau, M. A. Tolbert, Deposition and immersion-mode nucleation of ice by three distinct samples of volcanic ash. Atmos. Chem. Phys. 15, 7523–7536 (2015).
10
A. D. Harrison, T. F. Whale, M. A. Carpenter, M. A. Holden, L. Neve, D. O’Sullivan, J. Vergara Temprado, B. J. Murray, Not all feldspar is equal: A survey of ice nucleating properties across the feldspar group of minerals. Atmos. Chem. Phys. 16, 10927–10940 (2016).
11
A. Hodgson, S. Haq, Water adsorption and the wetting of metal surfaces. Surf. Sci. Rep. 64, 381–451 (2009).
12
J. Carrasco, A. Hodgson, A. Michaelides, A molecular perspective of water at metal interfaces. Nat. Mater. 11, 667–674 (2012).
13
N. H. Fletcher, Active sites and ice crystal nucleation. J. Atmos. Sci. 26, 1266–1271 (1969).
14
N. H. Fletcher, Nucleation and growth of ice crystals upon crystalline substrates. Aust. J. Phys. 13, 408–418 (1960).
15
P. J. Connolly, O. Möhler, P. R. Field, H. Saathoff, R. Burgess, T. Choularton, M. Gallagher, Studies of heterogeneous freezing by three different desert dust samples. Atmos. Chem. Phys. 9, 2805–2824 (2009).
16
W. Cantrell, A. Heymsfield, Production of ice in tropospheric clouds: A Review. Bull. Am. Meteorol. Soc. 86, 795–807 (2005).
17
H. R. Pruppacher, J. D. Klett, Microphysics of Clouds and Precipitation (Kluwer Academic Publishers, ed. 2, 2004).
18
G. Vali, Ice nucleation theory. Molecules 1999, 1–22 (1999).
19
S. J. Cox, Z. Raza, S. M. Kathmann, B. Slater, A. Michaelides, The microscopic features of heterogeneous ice nucleation may affect the macroscopic morphology of atmospheric ice crystals. Faraday Discuss. 167, 389–403 (2013).
20
M. Fitzner, G. C. Sosso, S. J. Cox, A. Michaelides, The many faces of heterogeneous ice nucleation: Interplay between surface morphology and hydrophobicity. J. Am. Chem. Soc. 137, 13658–13669 (2015).
21
G. W. Bryant, J. Hallett, B. J. Mason, The epitaxial growth of ice on single-crystalline substrates. J. Phys. Chem. Solids 12, 189–195 (1960).
22
J. L. Caslavsky, K. Vedam, Epitaxial growth of ice crystals on the muscovite cleavage plane and their relation to partial dislocations. J. Appl. Phys. 42, 516–520 (1971).
23
N. Cho, J. Hallett, Epitaxial ice crystal growth on covellite (CuS) I. Influence of misfit strain on the growth of non-thickening crystals. J. Cryst. Growth 69, 317–324 (1984).
24
T. Kobayashi and the growth of ice crystals on covellite and lead iodide surfaces, Contrib. from Inst. Low Temp. Sci. A20, 1–22 (1965).
25
B. Vonnegut, The nucleation of ice formation by silver iodide. J. Appl. Phys. 18, 593–595 (1947).
26
D. Turnbull, B. Vonnegut, Nucleation catalysis. Ind. Eng. Chem. 44, 1292–1298 (1952).
27
T. Croteau, A. K. Bertram, G. N. Patey, Adsorption and structure of water on kaolinite surfaces: Possible insight into ice nucleation from grand canonical monte carlo calculations. J. Phys. Chem. A 112, 10708–10712 (2008).
28
T. Croteau, A. K. Bertram, G. N. Patey, Simulation of water adsorption on kaolinite under atmospheric conditions. J. Phys. Chem. A 113, 7826–7833 (2009).
29
X. L. Hu, A. Michaelides, Ice formation on kaolinite: Lattice match or amphoterism? Surf. Sci. 601, 5378–5381 (2007).
30
X. L. Hu, A. Michaelides, Water on the hydroxylated (0 0 1) surface of kaolinite: From monomer adsorption to a flat 2D wetting layer. Surf. Sci. 602, 960–974 (2008).
31
S. A. Zielke, A. K. Bertram, G. N. Patey, Simulations of ice nucleation by kaolinite (001) with rigid and flexible surfaces. J. Phys. Chem. B 120, 1726–1734 (2016).
32
H. K. Christenson, Two-step crystal nucleation via capillary condensation. CrystEngComm 15, 2030 (2013).
33
C. Marcolli, Deposition nucleation viewed as homogeneous or immersion freezing in pores and cavities. Atmos. Chem. Phys. 14, 2071–2104 (2014).
34
B. Federer, Über den Einfluss der Oberflächeneigenschaften von Halbleitern auf ihre Eiskeimfähigkeit. Z. Angew. Math. Phys. 19, 637–665 (1968).
35
J. Hallett, S. K. Shrivastava, Nucleation of supercooled water by large single crystals of silver iodide. J. Rech. Atmos. 5, 223–236 (1973).
36
B. J. Anderson, J. Hallett, Supersaturation and time dependence of ice nucleation from the vapor on single crystal substrates. J. Atmos. Sci. 33, 822–832 (1976).
37
S. J. Cox, S. M. Kathmann, J. A. Purton, M. J. Gillan, A. Michaelides, Non-hexagonal ice at hexagonal surfaces: The role of lattice mismatch. Phys. Chem. Chem. Phys. 14, 7944–7949 (2012).
38
L. Lupi, V. Molinero, Does hydrophilicity of carbon particles improve their ice nucleation ability? J. Phys. Chem. A 118, 7330–7337 (2014).
39
L. Lupi, A. Hudait, V. Molinero, Heterogeneous nucleation of ice on carbon surfaces. J. Am. Chem. Soc. 136, 3156–3164 (2014).
40
A. Peckhaus, A. Kiselev, T. Hiron, M. Ebert, T. Leisner, A comparative study of K-rich and Na/Ca-rich feldspar ice nucleating particles in a nanoliter droplet freezing assay. Atmos. Chem. Phys. 16, 11477–11496 (2016).
41
J. V. Smith, Feldspar Minerals 2 Chemical and Textural Properties (Springer, Berlin, Heidelberg, ed. 1, 1974).
42
K. G. Libbrecht, On the equilibrium shape of an ice crystal. Proc. R. Soc. London 49, 323–343 (2012).
43
P. Pedevilla, S. J. Cox, B. Slater, A. Michaelides, Can ice-like structures form on non-ice-like substrates? The example of the K-feldspar microcline. J. Phys. Chem. C 120, 6704–6713 (2016).
44
I. Parsons, Ed., Feldspars and Their Reactions (Kluwer Academic Publishers, Series C, 1994), vol. 421.
45
J. V. Smith, Atmospheric weathering and silica-coated feldspar: Analogy with zeolite molecular sieves, granite weathering, soil formation, ornamental slabs, and ceramics. Proc. Natl. Acad. Sci. U.S.A. 95, 3366–3369 (1998).
46
H. Behrens, An infrared spectroscopic study of hydrogen feldspar HA1Si3O8. Mineral. Mag. 59, 15–24 (1995).
47
R. T. Cygan, J.-J. Liang, A. G. Kalinichev, Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. J. Phys. Chem. B 108, 1255–1266 (2004).
48
H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, J. Hermans, in Intermolecular Forces, B. Pullman, Ed. (Springer Netherlands, 1981), pp. 331–342.
49
N. Fukuta, B. Mason, Epitaxial growth of ice on organic crystals. J. Phys. Chem. Solids 24, 715–718 (1963).
50
F. Zimmermann, S. Weinbruch, L. Schütz, H. Hofmann, M. Ebert, K. Kandler, A. Worringen, Ice nucleation properties of the most abundant mineral dust phases. J. Geophys. Res. 113, D23204 (2008).
51
M. Ebert, M. Inerle-Hof, S. Weinbruch, Environmental scanning electron microscopy as a new technique to determine the hygroscopic behaviour of individual aerosol particles. Atmos. Environ. 36, 5909–5916 (2002).
52
F. Zimmermann, M. Ebert, A. Worringen, L. Schütz, S. Weinbruch, Environmental scanning electron microscopy (ESEM) as a new technique to determine the ice nucleation capability of individual atmospheric aerosol particles. Atmos. Environ. 41, 8219–8227 (2007).
53
O. J. Schumann, Cologne Laue Indexation Program; http://clip4.sourceforge.net.
54
E. Yokoyama, T. Kuroda, Pattern formation in growth of snow crystals occurring in the surface kinetic process and the diffusion process. Phys. Rev. A 41, 2038–2049 (1990).
55
K. G. Libbrecht, The physics of snow crystals. Rep. Prog. Phys. 68, 855–895 (2005).
56
K. G. Libbrecht, Growth rates of the principal facets of ice between -10C and -40C. J. Cryst. Growth 247, 530–540 (2003).
57
K. W. Kolasinski, Surface Science: Foundations of Catalysis and Nanoscience (Wiley, ed. 3, 2012).
58
P. V. Hobbs, Ice Physics (Oxford Univ. Press, New York, 2010).
59
K. G. Libbrecht, A critical look at ice crystal growth data. https://arxiv.org/abs/cond-mat/0411662 (2004).
60
S. K. Sihvonen, G. P. Schill, N. A. Lyktey, D. P. Veghte, M. A. Tolbert, M. A. Freedman, Chemical and physical transformations of aluminosilicate clay minerals due to acid treatment and consequences for heterogeneous ice nucleation. J. Phys. Chem. A 118, 8787–8796 (2014).
61
D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, H. J. C. Berendsen, GROMACS: Fast, flexible, and free. J. Comput. Chem. 26, 1701–1718 (2005).
62
B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435–447 (2008).
63
S. Kerisit, C. Liu, E. S. Ilton, Molecular dynamics simulations of the orthoclase (001)- and (010)-water interfaces. Geochim. Cosmochim. Acta 72, 1481–1497 (2008).

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 355 | Issue 6323
27 January 2017

Article versions

You are viewing the most recent version of this article.

Submission history

Received: 13 August 2016
Accepted: 23 November 2016
Published in print: 27 January 2017

Permissions

Request permissions for this article.

Acknowledgments

The preparation and x-ray diffraction characterization of feldspar samples at the Institute of Applied Geosciences of TU Darmstadt (M. Ebert) as a part of cooperation within the Deutsche Forschungsgemeinschaft (DFG)–funded research unit INUIT (DFG-FOR-1525-6343) is greatly acknowledged. This work was also partly supported by KIT Startup Budget 2011 (2066992441-Start-Up-Eisbildung-ESEM GG 507). A.K and F.B. thank V. Zibat (KIT LEM) and J. Nadolny (KIT IMK-AAF) for technical and programming support. A.M. is supported by the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013)–European Research Council Grant Agreement no. 616121 (HeteroIce project). A.M. is also supported by the Royal Society through a Royal Society Wolfson Research Merit Award. P.P. and A.M. are grateful for computational resources provided by the Materials Chemistry Consortium through the Engineering and Physical Sciences Research Council grant no. EP/L000202, UCL Research Computing, and the London Centre for Nanotechnology. A.K. and T.L. are supported by the Helmholtz Association under Atmosphere and Climate Programme (ATMO). D.G. and F.B. were supported by the Karlsruhe Institute of Technology. The experimental and computational data sets used in this work are available as supplementary materials.

Authors

Affiliations

Alexei Kiselev* [email protected]
Atmospheric Aerosol Research Department, Institute for Meteorology and Climate Research (IMK-AAF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
Felix Bachmann
Atmospheric Aerosol Research Department, Institute for Meteorology and Climate Research (IMK-AAF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
Laboratory for Electron Microscopy (LEM), KIT, Engesserstrasse 7, 76131 Karlsruhe, Germany.
Present address: Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
Philipp Pedevilla
London Centre for Nanotechnology, Thomas Young Centre, and Department of Chemistry, University College London (UCL), 17-19 Gordon Street, London WC1H 0AH, UK.
Stephen J. Cox
London Centre for Nanotechnology, Thomas Young Centre, and Department of Chemistry, University College London (UCL), 17-19 Gordon Street, London WC1H 0AH, UK.
Angelos Michaelides
London Centre for Nanotechnology, Thomas Young Centre, and Department of Physics and Astronomy, UCL, 17-19 Gordon Street, London WC1H 0AH, UK.
Dagmar Gerthsen
Laboratory for Electron Microscopy (LEM), KIT, Engesserstrasse 7, 76131 Karlsruhe, Germany.
Thomas Leisner
Atmospheric Aerosol Research Department, Institute for Meteorology and Climate Research (IMK-AAF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
Institut für Umweltphysik, Universität Heidelberg, Im Neuenheimer Feld 229, Heidelberg, Germany.

Notes

*
Corresponding author. Email: [email protected]

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Single-scattering properties of ellipsoidal dust aerosols constrained by measured dust shape distributions, Atmospheric Chemistry and Physics, 23, 4, (2557-2577), (2023).https://doi.org/10.5194/acp-23-2557-2023
    Crossref
  2. Role of K-feldspar and quartz in global ice nucleation by mineral dust in mixed-phase clouds, Atmospheric Chemistry and Physics, 23, 3, (1785-1801), (2023).https://doi.org/10.5194/acp-23-1785-2023
    Crossref
  3. Comparing the ice nucleation properties of the kaolin minerals kaolinite and halloysite, Atmospheric Chemistry and Physics, 23, 2, (1579-1598), (2023).https://doi.org/10.5194/acp-23-1579-2023
    Crossref
  4. Inhibition of Defect-Induced Ice Nucleation, Propagation, and Adhesion by Bioinspired Self-Healing Anti-Icing Coatings, Research, 6, (2023)./doi/10.34133/research.0140
    Abstract
  5. A highly active mineral-based ice nucleating agent supports in situ cell cryopreservation in a high throughput format , Journal of The Royal Society Interface, 20, 199, (2023).https://doi.org/10.1098/rsif.2022.0682
    Crossref
  6. Different roles of surfaces’ interaction on lattice mismatched/matched surfaces in facilitating ice nucleation, Chinese Physics B, 32, 2, (028202), (2023).https://doi.org/10.1088/1674-1056/aca202
    Crossref
  7. CVD Growth of a Horizontally Aligned One-Dimensional Van der Waals Material, Nb 2 Se 9 , Crystal Growth & Design, 23, 2, (946-953), (2023).https://doi.org/10.1021/acs.cgd.2c01144
    Crossref
  8. Observational evidence for the non-suppression effect of atmospheric chemical modification on the ice nucleation activity of East Asian dust, Science of The Total Environment, 861, (160708), (2023).https://doi.org/10.1016/j.scitotenv.2022.160708
    Crossref
  9. Effects of heterogeneous reaction with NO2 on ice nucleation activities of feldspar and Arizona Test Dust, Journal of Environmental Sciences, 127, (210-221), (2023).https://doi.org/10.1016/j.jes.2022.04.034
    Crossref
  10. Connecting soils to life in conservation planning, nutrient cycling, and planetary science, Earth-Science Reviews, 237, (104247), (2023).https://doi.org/10.1016/j.earscirev.2022.104247
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media