184
Views
107
CrossRef citations to date
0
Altmetric
Original Articles

Trichloroethylene. I. An overview

, &
Pages 671-707 | Received 01 Jun 1976, Accepted 21 Sep 1976, Published online: 20 Oct 2009
 

Abstract

Trichloroethylene (TCE) has been an industrial chemical of some importance for the past 50 years. First synthesized by Fischer in 1864, TCE has enjoyed considerable industrial usage as a degreaser and limited medical use as an inhalation anesthetic and analgesic.

This TCE overview provides a narrative survey of the reference literature. Highlights include history, nomenclature, physical and chemical properties, manufacture, analysis, uses, metabolism, toxicology, carcinogenic potential, exposure routes, recommended standards, and conclusions.

Chemically, TCE is a colorless, highly volatile liquid of molecular formula C 2 HCI 3 . Autoxidation of the unstable compound yields acidic products. Stabilizers are added to retard decomposition. TCE's multitude of industrial uses center around its highly effective fat‐solvent properties.

Metabolically, TCE is transformed in the liver to trichloroacetic acid, trichloroethanol, and trichloroethanol glucuronide; these breakdown products are excreted through the kidneys.

Most toxic responses occur as a result of industrial exposures. TCE affects principally the central nervous system (CNS). Short exposures result in subjective symptoms such as headache, nausea, and incoordination. Longer exposures may result in CNS depression, hepatorenal failure, and increased cardiac output. Cases of sudden death following TCE exposure are generally attributed to ventricular fibrillation. Current interest in TCE has focused on recent experimental data that implicate TCE as a cause of hepatocellular carcinoma in mice. No epidemiological data are available that demonstrate a similar action in humans. The overall population may be exposed to TCE through household cleaning fluids, decaffeinated coffee, and some spice extracts.

The NIOSH recommended standard for TCE is TOO ppm as a time‐weighted average for an 8‐hr day, with a maximum allowable peak concentration of 150 ppm for 10 min.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.