
En Route with

Part 3: A Mysterious Downloader

Version 1.0  •  October 2016

En Route with Sednit
Part 3: A Mysterious Downloader

Version 1.0  •  October 2016

Table of Content

Executive Summary	 5

Introduction	 6

The Sednit Group	 6

The Third Part of the Trilogy	 7

Attribution	 8

Publication Strategy	 8

Downdelph	 9

Identikit	 9

Timeline	 10

Deployment	 11

Core Behavior	 12

Persistence Mechanisms	 15

Conclusion and Open Questions	 24

Indicators of Compromise	 25

Downdelph	 25

References	 26

List of Figures

Figure 1.	 Timeline of 0-day vulnerabilities exploited by the Sednit group in 2015.	 6

Figure 2.	 Main attack methods and malware used by the Sednit group since 2014,
and how they are related	 7

Figure 3.	 Downdelph major events	 10

Figure 4.	 Downdelph deployments, with the purpose and name of each file	 11

Figure 5.	 Decoy document used in Case 7 (September 2015)	 12

Figure 6.	 Downdelph communication workflow	 13

Figure 7.	 Downdelph request to download main configuration file	 14

Figure 8.	 Beginning of infected hard drive layout	 16

Figure 9.	 MBR opening code, as seen in a decompiler	 17

Figure 10.	 Startup process of a Windows 7 machine infected by the bootkit	 18

Figure 11.	 Hook code in ACPI.sys resources section (.rsrc)	 19

Figure 12.	 User mode bootkit component attempts to set an exported Boolean variable
in Downdelph, after having loaded it	 20

Figure 13.	 Hook code for ZwSetInformationFile to hide files	 22

Figure 14.	 Preoperation callback for IRP_MJ_CREATE
(the creation or opening of files and directories)	 23

Figure 15.	 Kernel mode APC registration, FN_ApcNormalRoutine being the shellcode
address in the target process	 23

List of Tables

Table 1.	 Downdelph main configuration file extended.ini	 14

Table 2.	 Downdelph server configuration file pinlt.ini	 15

En Route with Sednit

5

Executive Summary
The Sednit group — also known as APT28, Fancy Bear and Sofacy — is a group of attackers
operating since 2004 if not earlier and whose main objective is to steal confidential information
from specific targets.

This is the third part of our whitepaper “En Route with Sednit”, which covers the Sednit group
activities since 2014. Here, we describe a special downloader named Downdelph.

The key points described in this third installment are the following:

•	 Downdelph was used only seven times over the past two years, according to our telemetry
data: we believe this to be a deliberate strategy formulated in order to avoid attracting
attention

•	 Downdelph has been deployed on a few occasions with a never-previously-documented
Windows bootkit, which shares some code with the infamous BlackEnergy malware

•	 Downdelph has been deployed on a few occasions with a previously undocumented
Windows rootkit

For any inquiries related to this whitepaper, contact us at: threatintel@eset.com

mailto:threatintel@eset.com

En Route with Sednit

6

Introduction
Readers who have already read the first parts of our Sednit trilogy might want to skip the following section
and go directly to the specific introduction of this third part.

The Sednit Group
The Sednit group — variously also known as APT28, Fancy Bear, Sofacy, Pawn Storm, STRONTIUM
and Tsar Team — is a group of attackers operating since 2004 if not earlier, whose main objective
is to steal confidential information from specific targets. Over the past two years, this group’s activity
has increased significantly, with numerous attacks against government departments and embassies
all over the world.

Among their most notable presumed targets are the American Democratic National Committee [1],
the German parliament [2] and the French television network TV5Monde [3]. Moreover, the Sednit
group has a special interest in Eastern Europe, where it regularly targets individuals and organizations
involved in geopolitics.

One of the striking characteristics of the Sednit group is its ability to come up with brand-new 0-day [4]
vulnerabilities regularly. In 2015, the group exploited no fewer than six 0-day vulnerabilities, as shown
in Figure 1.

	 Figure 1.	 Timeline of 0-day vulnerabilities exploited by the Sednit group in 2015.

This high number of 0-day exploits suggests significant resources available to the Sednit group,
either because the group members have the skills and time to find and weaponize these vulnerabilities,
or because they have the budget to purchase the exploits.

Also, over the years the Sednit group has developed a large software ecosystem to perform its espionage
activities. The diversity of this ecosystem is quite remarkable; it includes dozens of custom programs,
with many of them being technically advanced, like the Xagent and Sedreco modular backdoors
(described in the second part of this whitepaper), or the Downdelph bootkit and rootkit (described
in the third part of this whitepaper).

We present the results of ESET’s two-year pursuit of the Sednit group, during which we uncovered
and analyzed many of their operations. We split our publication into three independent parts:

1.	 “Part 1: Approaching the Target” describes the kinds of targets the Sednit group is after, and the
methods used to attack them. It also contains a detailed analysis of the group’s most-used
reconnaissance malware.

2.	 “Part 2: Observing the Comings and Goings” describes the espionage toolkit deployed on some
target computers, plus a custom network tool used to pivot within the compromised
organizations.

CVE-2015-2424
O�ce RCE

CVE-2015-3043
Flash

CVE-2015-1701
Windows LPE

CVE-2015-2590
Java

CVE-2015-4902
Java click-to-play bypass

CVE-2015-7645
Flash

APR MAY JUN JUL AUG SEP OCT

En Route with Sednit

7

3.	 “Part 3: A Mysterious Downloader” describes a surprising operation run by the Sednit group,
during which a lightweight Delphi downloader was deployed with advanced persistence
methods, including both a bootkit and a rootkit.

Each of these parts comes with the related indicators of compromise.

The Third Part of the Trilogy
Figure 2 shows the main components that the Sednit group has used over the last two years,
with their interrelationships. It should not be considered as a complete representation of their arsenal,
which also includes numerous small, custom tools.

	 Figure 2.	 Main attack methods and malware used by the Sednit group since 2014,
and how they are related

We divide Sednit’s software into three categories: the first-stage software serves for reconnaissance
of a newly compromised host, then comes the second-stage software intended to spy on machines
deemed interesting, while the pivot software finally allows the operators to reach other computers.

In this third part, we describe the first-stage software named Downdelph, outlined in Figure 2.
This software was deployed only seven times by the Sednit operators, according to our telemetry
data. Interestingly, some of these deployments were made with advanced persistence methods:
a Windows bootkit and a Windows rootkit.

	 All the components shown in Figure 2 are described in this whitepaper,
with the exception of Usbstealer, a tool to exfiltrate data from air-gapped
machines that we have already described at WeLiveSecurity [5]. Recent
versions have been documented by Kaspersky Labs [6] as well.

Readers who have already read the first parts of our Sednit trilogy may skip the following sections
and go directly to Downdelph’s analysis.

FIRST-STAGE
MALWARE

ATTACK
METHODS

SECOND-STAGE
MALWARE

PIVOT
MALWARE

Fake webmail
login panels

Sedkit

Seduploader
dropper

Seduploader
payload

Downdelph

Usbstealer

Xtunnel

Xagent

Email
attachments

Sedreco
dropper

Sedreco
payload

En Route
with Sednit

Part 1

En Route
with Sednit

Part 2

En Route
with Sednit

Part 3

En Route with Sednit

8

Attribution
One might expect this reference whitepaper to add new information about attribution. A lot has
been said to link the Sednit group to some Russian entities [7], and we do not intend to add anything
to this discussion.

Performing attribution in a serious, scientific manner is a hard problem that is out of scope
of ESET’s mission. As security researchers, what we call “the Sednit group” is merely a set of software
and the related network infrastructure, which we can hardly correlate with any specific organization.

Nevertheless, our intensive investigation of the Sednit group has allowed us to collect numerous
indicators of the language spoken by its developers and operators, as well as their areas of interest,
as we will explain in this whitepaper.

Publication Strategy
Before entering the core content of this whitepaper, we would like to discuss our publication
strategy. Indeed, as security researchers, two questions we always find difficult to answer when
we write about an espionage group are “when to publish?”, and “how to make our publication useful
to those tasked with defending against such attacks?”.

There were several detailed reports on the Sednit group published in 2014, like the Operation Pawn
Storm report from Trend Micro [8] and the APT28 report from FireEye [9]. But since then the public
information regarding this group has mainly came in the form of blog posts describing specific
components or attacks. In other words, no public attempts have been made to present
the big picture on the Sednit group since 2014.

Meanwhile, the Sednit group’s activity has significantly increased, and its arsenal differs
from those described in previous whitepapers.

Therefore, our intention here is to provide a detailed picture of the Sednit group’s activities
over the past two years. Of course, we have only partial visibility into those activities, but we believe
that we possess enough information to draw a representative picture, which should in particular
help defenders to handle Sednit compromises.

We tried to follow a few principles in order to make our whitepaper useful to the various types
of readers:

•	 Keep it readable: while we provide detailed technical descriptions, we have tried to make
them readable, without sacrificing precision. For this reason we decided to split our whitepaper
into three independent parts, in order to make such a large amount of information easily
digestible. We also have refrained from mixing indicators of compromise with the text.

•	 Help the defenders: we provide indicators of compromise (IOC) to help detect current Sednit
infections, and we group them in the IOC section and on ESET’s GitHub account [10]. Hence,
the reader interested only in these IOCs can go straight to them, and find more context
in the whitepaper afterwards.

•	 Reference previous work: a high profile group such as Sednit is tracked by numerous
entities. As with any research work, our investigation stands on the shoulders of the previous
publications. We have referenced them appropriately, to the best of our knowledge.

•	 Document also what we do not understand: we still have numerous open questions
regarding Sednit, and we highlight them in our text. We hope this will encourage fellow
malware researchers to help complete the puzzle.

We did our best to follow these principles, but there may be cases where we missed our aim.
We encourage readers to provide feedback at threatintel@eset.com, and we will update
the whitepaper accordingly.

mailto:threatintel@eset.com

En Route with Sednit

9

Downdelph

Identikit
Downdelph is a lightweight downloader developed
in the Delphi programming language

Alternative Names

Delphacy

Usage

Downdelph is a first-stage component deployed only in very rare
cases by the Sednit operators. Over the past two years this low-
profile approach has been combined with advanced persistence
methods — a bootkit and a rootkit — probably in order to spy
on special targets for long periods of time. Downdelph was used
to deploy Xagent and Sedreco on infected machines.

Known period of activity

November 2013 to September 2015.

Known deployment methods

•	 Targeted phishing emails

Distinguishing characteristics

•	 Downdelph was deployed with a Windows bootkit infecting
the Master Boot Record (MBR). To the best of our knowledge,
the bootkit has not been previously documented. Interestingly,
this bootkit shares some code with some earlier samples
of the infamous BlackEnergy malware [11].

•	 Downdelph was deployed with a Windows rootkit named
HIDEDRV by its developers. To the best of our knowledge,
the rootkit has not been previously documented.

•	 One Downdelph C&C server, intelmeserver.com, was active
for nearly two years, from November 2013 to August 2015,
and is currently sinkholed by Kaspersky Labs.

En Route with Sednit

10

Timeline
The dates presented in this timeline refer to when we believe Downdelph was deployed with
a specific persistence method, possibly against several different targets, and are based on ESET’s
LiveGrid® [12] telemetry data.

	 Figure 3.	 Downdelph major events

	 As shown in the timeline, Downdelph operators abandoned more complex
persistence methods over time, probably due to new security features intro-
duced in Windows.

2013
November

Oldest observed
Downdelph deploy-
ment. Persistence is
ensured by a bootkit
infecting the Master
Boot Record (MBR) of
the hard drive (labeled
Case 1 in Figure 3).

2014
February

Three Downdelph
deployments. Persis-
tence is ensured by a
kernel mode rootkit
installed as a Windows
service (Cases 2, 3 and 4).

2014
March

Downdelph deploy-
ment. Persistence is
ensured by a bootkit
infecting the MBR
of the hard drive (Case 5).

2015
September

Most recently observed
Downdelph deploy-
ment. Persistence is
ensured by registering
an auto-start entry in
the Windows Registry
(Case 7).

2014
May

Downdelph deploy-
ment. Persistence is
ensured by registering
an auto-start entry in
the Windows Registry
(Case 6).

bootkit
bootkit

kernel mode rootkit

En Route with Sednit

11

Deployment
As mentioned in the timeline, we were able to find only seven deployments of Downdelph.
Such deployments start with a dropper, which contains Downdelph and some additional binaries,
as depicted in Figure 4.

	 Figure 4.	 Downdelph deployments, with the purpose and name of each file

Rootkit
(FsFlt.sys)

Downdelph
(x32.exe)

Rootkit
(FsFlt.sys)

Helper
(dnshlp.dll)

Downdelph
(dnscli1.dll)

Case 3
Dropper

(serviceinstallx32.exe)

UAC bypass

Helper
(explorer_install_shell.exe)

Downdelph
(userinit.exe)

Decoy document
(EU_Eastern_

Europe_agenda_
BA_3_Nov_2015.pdf)

Cleaner
(ose000000.exe)

Helper
(winUproll.exe)

Case 1
Dropper

(unknown name)

Helper
(kb0004542.exe)

Bootkit installer
(bk.exe)

Cleaner
(ose000000.exe)

Downdelph
(shcore.dll)

Case 5
Dropper

(syscfg.exe)

UAC bypass

Helper
(inst32.exe)

Bootkit installer
(bk.exe)

Downdelph
(install_com_x32_LL_full.dll)

Bootkit-based
persistence

Case 2
Dropper

(WinXP1.exe)

Case 4
Dropper

(serviceinstall.exe)

UAC bypass

Rootkit
(FsFlt.sys)

Downdelph
(dnscli1.dll)

Rootkit-based
persistence

Case 6
Dropper

(fs6na.exe)

UAC bypass
Case 7

Dropper
(EU_Eastern_

Europe_agenda_
BA_3_Nov_2015.pif)

Downdelph
(apisvcd.dll)

Registry-based
persistence

Files shown in
the same color
serve the same
purpose

En Route with Sednit

12

In Cases 3 to 6, the deployed binaries used a User Account Control (UAC) bypass technique, as mentioned
in Figure 4. Two different UAC bypass techniques were employed; the first one relying on a custom
“RedirectEXE” shim database [13], while the second one is based on a DLL load order hijacking of the
Windows executable sysprep.exe, which possesses the property to auto-elevate its privileges [14].

In Case 7, the dropper was deployed through a targeted phishing email. We do not have any evidence
of this deployment method for the other cases. In this particular case, the dropper opens a decoy
document when executed, to reinforce the illusion the email was legitimate. Figure 5 shows this
decoy document, an invitation to a conference organized by the Slovak Foreign Policy Association
in November 2015 regarding Russia-Ukraine relations [15].

	 Figure 5.	 Decoy document used in Case 7 (September 2015)

Core Behavior
Downdelph’s core logic is implemented in one Delphi class, named TMyDownloader by its developers,
and remained the same in all samples we analyzed. Roughly summarized, Downdelph first downloads
a main configuration file, which allows extending the list of C&C servers, and then fetches a payload
from each of these C&C servers.

En Route with Sednit

13

The whole process is pictured in Figure 6, and is detailed thereafter for the most recent Downdelph
sample known (Case 7 in Figure 4).

	 Figure 6.	 Downdelph communication workflow

Download payload from
initial C&C server

Download payload from
additional C&C server 1

Download payload from
additional C&C server 2

[...]

Downdelph
infected computer

Initial C&C server Additional
C&C server 1

Additional
C&C server 2

Fetches main
configuration file
(extended.ini)

Sends machine ID

Fetches server
configuration file
(pinlt.ini)

Downloads payload

Sends machine ID

Fetches server
configuration file
(pinlt.ini)

Downloads payload

Sends machine ID

Fetches server
configuration file
(pinlt.ini)

Downloads payload

En Route with Sednit

14

Extend C&C servers List
First, Downdelph downloads a main configuration file named extended.ini from the initial
C&C server, whose address is hardcoded in the binary. The network request is an HTTP POST with
a URI containing the file name to fetch encoded with a custom algorithm, as pictured in Figure 7.

	 Figure 7.	 Downdelph request to download main configuration file

	 The encoding algorithm was designed to make writing signatures on Down-
delph network requests difficult. To do so, pseudo-randomly generated
characters are inserted between each original character during the encoding,
such that the same input text will be encoded differently each time.

The response from the server is an RC4-encrypted configuration file following the INI format [16],
and composed of a single section named [options], which contains the key-value pairs described
in Table 1.

	 Table 1.	 Downdelph main configuration file extended.ini

Key Value

Servers Comma-separated list of additional C&C server addresses (can be NULL)

Crypt
Defines whether server configuration files — described below — will
be RC4-encrypted or not

Sleep Time to wait before contacting C&C servers again

Key Cryptographic key to replace the default key (can be NULL)

If the Servers key is not empty, Downdelph adds the C&C server addresses to its list of servers
to contact to download payloads.

	 The RC4 algorithm uses by default a 50-byte hardcoded value, to which
the last two bytes of the input text are appended to form the key, before
decrypting. This 50-byte value is present in other Sednit components,
such as Seduploader and Xagent.

En Route with Sednit

15

Payload Download
For each known C&C server — the initial one and the additional ones possibly provided
in extended.ini — Downdelph performs three steps leading to the download of a payload.

First, it sends a machine ID, which was previously generated from the hard drive serial number.

Second, it downloads a configuration file named pinlt.ini describing the payload to fetch
from this particular C&C server (if any). The network request follows a format similar to the one
shown in Figure 7. The possible key-value pairs of the received file are described in Table 2.

	 Table 2.	 Downdelph server configuration file pinlt.ini

Key Value

Sleep
Time to wait before contacting C&C servers again (if present, overrides
value provided in extended.ini)

Crypt Defines whether or not the payload will be RC4-encrypted

Key
Cryptographic key to replace the default key (if present, overrides value provided
in extended.ini)

FileName Name of the payload to fetch

PathToSave
Location in which to save the payload on the local machine, or alternatively
shell to indicate the payload is a shellcode to execute in memory

Execute Defines whether the payload will be executed, or simply dropped on the machine

RunApp Command line to run the payload (for example rundll32.exe for a DLL payload)

Parameters Parameters to pass to the payload

Delete
Defines whether or not the payload will be deleted from the local machine
after being executed

DelSec Time to wait before trying to delete the file

Finally, if the previous configuration file is non-empty, Downdelph downloads a payload from
this C&C server, and processes it according to the configuration.

Once all C&C servers have been contacted, Downdelph sleeps for a certain amount of time (defined
by the Sleep key in its configuration), and then re-starts the whole workflow from the beginning,
including downloading the main configuration file from the initial C&C server.

We do not have in-the-wild examples of Downdelph configuration files. Nevertheless, we know
that in a few cases this component eventually downloaded Sedreco and Xagent.

Persistence Mechanisms
In most of the deployments we analyzed, Downdelph was dropped with a companion binary taking
charge of its persistence, as pictured in Figure 4. This section describes the two most interesting
persistence methods employed, respectively with a bootkit and a rootkit, leaving aside the classic
and more common Windows Registry modification methods.

En Route with Sednit

16

Bootkit
Interestingly, we observed Downdelph deployment with a bootkit on two occasions, Cases 1 and 5
in Figure 4. As defined in ESET’s VirusRadar® [17], a bootkit is “A type of rootkit that infects the Master
Boot Record or Volume Boot Record (VBR) on a hard disk drive in order to ensure that its code will be run
each time the computer boots. […​]”.

In recent years, bootkits have become popular as a way to load unsigned malicious Windows drivers,
which is normally prevented by the OS in 64-bit versions of Windows. But in the present case the bootkit
serves as a stealthy persistence method for the user-mode downloader Downdelph — although
for this purpose an unsigned driver will indeed be loaded, as we will describe later. Persistence through
a bootkit makes detection harder, as its code is executed before the operating system is fully loaded.

The bootkit in question has the ability to infect Microsoft Windows versions from Windows XP
to Windows 7, on both 32-bit and 64-bit architectures. To the best of our knowledge the bootkit used
by Downdelph has never been documented, even though it belongs to the well-known category
of bootkits infecting the Master Boot Record (MBR) — first sector of the hard drive — to take control
of the startup process.

We will now describe the various components installed on the machine during the infection
by the bootkit, and then how those components cooperate during startup to eventually
execute Downdelph.

Installation Process

The bootkit installation process varies depending on the Windows version, and whether
the machine is 32-bit or 64-bit. In all cases the bootkit installer starts by overwriting the hard
drive’s first sectors — a sector being the basic hard drive storage unit, resulting in a new hard drive
layout as shown in Figure 8 and described in the following.

Sector 1

Bootkit MBR

Sector 2

Original MBR
(XOR-encrypted)

Sector 3

Bootkit Code
(XOR-encrypted)

Bootkit Driver
(XOR-encrypted,
RC4-encrypted)

Legitimate
data

	 Figure 8.	 Beginning of infected hard drive layout

First things first: the MBR is overwritten with a custom version, while an encrypted copy
of the original MBR code is stored in the second sector. Starting in the third sector comes the core
bootkit code, encrypted with a simple XOR-based algorithm. This core code will be slightly different
depending on the operating system versions, as the hooks — described later — put in place at startup
will vary. Finally comes an RC4-encrypted Windows driver, which depending on the architecture will
be a 32-bit or 64-bit binary.

En Route with Sednit

17

In order to access the first sectors of the hard drive, the installer employs a technique previously
seen in the infamous TDL4 bootkit [18], whose code is shown in Figure 9.

	 Figure 9.	 MBR opening code, as seen in a decompiler

Once this device access is established, the installer simply calls the Windows API function WriteFile
to overwrite the hard drive’s first sectors. It should be noted that this method requires administrative
rights on the system.

Second, the installer stores a DLL in the newly created Windows Registry key HKLM\SYSTEM\
CurrentControlSet\Control\Lsa\Core Packages. As we will explain later, this binary
is the user mode component of the bootkit. Additionally, Downdelph itself is stored in the same
registry path, but in the key named Impersonation Packages.

These two files are stored in Windows’ Registry following a custom-encrypted data format that
is also used for the bootkit code initially contained in the installer. More precisely, the data are
aPLib-compressed [19], then RC4-encrypted, and begin with the following header:

	 The magic 4-byte value “ :3 “ is also written by the bootkit installer at offset
0x19B of the MBR, as a marker to indicate that the hard drive has already
been infected in the event that the installer is re-executed.

struct PackedChunkHeader
{
				 DWORD magic; // set to `0x203a3320` (` :3 ` in ASCII)
				 DWORD packed_size;
				 DWORD unpacked_size;
				 DWORD key_size;
				 BYTE rc4_key[16];
};

En Route with Sednit

18

Startup Process
Once installed, the bootkit takes control of the machine during the next system startup. The startup
process is detailed in Figure 10 for Windows 7, where only the steps involving the bootkit are shown.

Boot loader
(winload.exe)

Hooks ACPI.sys
entry point

Bootkit MBR

Hooks interruption 13h

Decrypts bootkit code
at physical address
0x97C00

Decrypts and executes
original MBR

Original MBR

Hooks bootmgr

ACPI.sys

Decrypts and executes
bootkit driver

Bootkit driver

Decrypts and injects
bootkit user-mode
component in
explorer.exe

Downdelph
Bootkit user mode
component

Loads Downdelph in
explorer.exe process

Boot Manager
(bootmgr)

Hooks function
OSIArchTransferToKernel

in winload.exe

CPU in real mode

CPU in
protected
mode

	 Figure 10.	 Startup process of a Windows 7 machine infected by the bootkit

Roughly summarized, a bootkit’s objective is to “survive” Windows’ startup and eventually to execute
a payload once the operating system is fully running. Such survival is made difficult by the strong
modifications of the machine state at each step of the startup process (for example by reorganizing
memory or switching the CPU mode). Hence, starting from the initially infected MBR, the bootkit
ensures at each step that it will regain control at the next step, mainly by setting hooks.

While the bootkit workflow described in Figure 10 bears some similarities with other known MBR-
infected bootkits (see “Bootkits: Past, Present & Future” [20] for some examples), there are certain
particularities that we would like to point out:

•	 The bootkit MBR decrypts the bootkit code and the bootkit driver initially stored from
the third sector (see Figure 8) into a memory buffer. On the system we used for analysis,
the buffer was located at physical memory address 0x97C00. This memory area therefore
contains the bulk of the bootkit code, and the hooks in bootmgr, winload.exe and ACPI.
sys re-route the execution flow to this buffer. It is more common for bootkits to copy
their code at each step into a new memory area, in order to survive memory re-organization
during startup.

En Route with Sednit

19

•	 This is the first use of the genuine Windows driver ACPI.sys in a bootkit, to the best
of our knowledge. More precisely, the entry-point of this driver is patched to redirect
to a small snippet of code written in its resources section, as shown in Figure 11.

	 Figure 11.	 Hook code in ACPI.sys resources section (.rsrc)

This code receives as an input parameter the memory address of the Windows kernel ntoskrnl.
exe, where the bootkit stores some crucial data in unused PE header fields. Using these data,
it first restores the first five bytes of the original ACPI.sys entry-point, and then redirects to bootkit
code stored at physical memory address 0x97C00, mapped in the virtual memory space using the
Windows API MmMapIoSpace [21]. This bootkit code will decrypt and execute the bootkit driver.

	 The modifications to the ACPI.sys driver bypass Windows’ bootloader
integrity checks, because those checks are done on the hard-drive version
of the file, not on the in-memory version.

En Route with Sednit

20

•	 The bootkit driver injects the bootkit user-mode component into the explorer.exe
process by patching its entry-point before it is executed. The user mode component then
loads Downdelph and, interestingly, it tries to set an exported global Boolean variable named
m_bLoadedByBootkit in Downdelph to TRUE, as shown in Figure 12.

	 Figure 12.	 User mode bootkit component attempts to set an exported Boolean variable
in Downdelph, after having loaded it

As this global variable is absent in all Downdelph binaries, we speculate that the bootkit was
originally intended to be used with a different payload, and was repurposed by Sednit’s operators.

Moreover, the user-mode component of the bootkit exports two functions named Entry and ep_data.
Those two export names are also present in early samples of the infamous BlackEnergy malware [11].
Also, we found several cases of code sharing between the bootkit components and the same
BlackEnergy samples. These hints lead us to speculate that the developers may be related.

Kernel Mode Rootkit
Another interesting Downdelph persistence method we analyzed relies on a Windows driver,
used during deployments in February 2014. Once loaded at startup as a Windows service, this driver
executes and hides Downdelph, effectively acting as a rootkit [22]. We were able to dig up only four
samples of this rootkit: three 32-bit versions, corresponding to Cases 2, 3 and 4 in Figure 3,
and an additional 64-bit version for which we do not have any context.

Roughly summarized, the rootkit hides certain operating system artifacts (files, registry keys, folders)
whose location matches a rule in a set of so-called Hide rules. Those rules are set by the dropper
and stored in the Windows Registry, making the rootkit a flexible tool able to hide any given artifacts.

Interestingly, numerous debug messages were left by the developers in the rootkit, which allow
those Hide rules in particular to be clearly seen. For example, here are the rules used with
one sample, as output in debug logs during execution:

HIDEDRV: >>>>>>>>Hide rules>>>>>>>> rules
HIDEDRV: File rules: \Device\HarddiskVolume1\Windows\system32\mypathcom\dnscli1.dll
HIDEDRV: File rules: \Device\HarddiskVolume1\Windows\system32\drivers\FsFlt.sys
HIDEDRV: Registry rules: \REGISTRY\MACHINE\SYSTEM\ControlSet002\services\FsFlt
HIDEDRV: Registry rules: \REGISTRY\MACHINE\SYSTEM\ControlSet001\services\FsFlt
HIDEDRV: Registry rules: \REGISTRY\MACHINE\SYSTEM\CurrentControlSet\services\FsFlt
HIDEDRV: Inject dll: C:\Windows\system32\mypathcom\dnscli1.dll
HIDEDRV: Folder rules: \Device\HarddiskVolume1\Windows\system32\mypathcom
HIDEDRV: <<<<<<<<XXXXX<<<<<<<< rules
HIDEDRV: <<<<<<<<Hide rules<<<<<<<< rules

En Route with Sednit

21

We can observe here the three types of artifacts possibly hidden by the rootkit:

•	 Some specific files, whose paths are given in the File rules. In this case, two such rules
are present and respectively serve to hide the Downdelph file ([…​]\dnscli1.dll)
and the rootkit itself ([…​]\FsFlt.sys).

•	 Some specific Windows Registry keys, whose paths are given in the Registry rules.
In this case, three such rules are present, to hide registry keys related to the rootkit’s Windows
service, and also to hide the configuration itself, which is stored in this particular place.

•	 Some specific folders, whose paths are given in the Folder rules. In this case, one such
rule is present, to hide the Downdelph folder ([…​]\mypathcom).

Finally, the Inject dll rule contains the path of a DLL that the rootkit will inject into
the explorer.exe process. In this case, it points to Downdelph.

	 The debug messages all start with HIDEDRV, which is apparently the name
the developers gave to this rootkit. The developers also forgot to remove
some program database (PDB) [23] file paths from the samples:

To summarize, the rootkit is configured to hide Downdelph and itself from the user, and also
to inject Downdelph into explorer.exe. We are now going to describe how those two operations
are implemented.

Hiding Artifacts

We have identified two different implementations of the concealment mechanism, depending
on the samples. The first one installs hooks in the System Service Descriptor Table (SSDT) [24],
while the second one relies on the Windows filter manager [25].

SSDT Hooking
The SSDT is an internal Windows table containing addresses of core kernel routines, in such
a way that hooking them allows the interception of data received by user mode programs.
This rootkit hooks three SSDT entries, corresponding to the functions ZwSetInformationFile,
ZwQueryDirectoryFile and ZwEnumerateKey.

d:\!work\etc\hi\Bin\Debug\win7\x86\fsflt.pdb
d:\!work\etc\hideinstaller_kis2013\Bin\Debug\win7\x64\fsflt.pdb
d:\new\hideinstaller\Bin\Debug\wxp\x86\fsflt.pdb

En Route with Sednit

22

These three functions are called by Windows processes to access files, directories and registry keys
respectively. The logic inserted by the rootkit is pretty simple: if the accessed artifact path matches
one of the Hide rules, then the function returns as if the artifact does not exist on the system.
On the other hand, if the accessed artifact path is not rootkit-protected, the original SSDT function
is executed. For example, the hook code for ZwSetInformationFile to hide files is presented
in Figure 13.

	 Figure 13.	 Hook code for ZwSetInformationFile to hide files

With the arrival of 64-bit versions of Windows, the SSDT became protected by Kernel Patch
Protection [26], preventing the insertion of hooks into this table. This probably explains why
a different implementation of the concealment functionality was introduced in the rootkit,
as described below.

Minifilter Driver
The Windows filter manager [25] allows registering a driver as a minifilter, so that its code will
be called on certain I/O operations. Such a minifilter driver can register a pre-operation callback
or a post-operation callback on each I/O operation it registers to filter.

Minifilter drivers are ordered based on a value called “altitude”: the filter manager executes driver
callbacks registered for an I/O operation in the descending order of altitude. This ordering allows,
for example, prioritizing anti-virus minifilters over data-processing minifilters, in order to detect
malicious files before opening them.

In our case, the rootkit driver registers itself as a minifilter of altitude 370030. This altitude
is normally associated with a Windows legacy driver named passThrough.sys [27], which
is an example of a minifilter open-sourced by Microsoft [28]. Thus, the rootkit takes the place
of passThrough.sys in the minifilter stack, and provides callbacks for hiding.

En Route with Sednit

23

The concealment functionality is mainly implemented as a pre-operation callback on the IRP_MJ_
CREATE [29] I/O operation, which corresponds to the creation or opening of files and directories.
The callback code is shown in Figure 14.

	 Figure 14.	 Preoperation callback for IRP_MJ_CREATE
(the creation or opening of files and directories)

Regarding hiding registry keys, the developers simply re-used the code of another minifilter
example [30] released by Microsoft for that purpose.

As a final note on this rootkit’s concealment mechanisms, we would like to mention that we found
a 64-bit version of the minifilter-based rootkit made to run on Windows 7 (according to its PDB path
[…​]win7\x64\fsflt.pdb). Loading such unsigned driver is normally prevented on this operating
system, and we do not know if the attackers may have actually loaded it.

DLL Injection
Once the hiding mechanisms have been put in place, the rootkit injects the DLL whose path is in the
Inject dll rule (Downdelph in our case) into explorer.exe. To do so, it first copies a shellcode
into explorer.exe, which simply calls Windows API LoadLibraryW on Downdelph path.

To execute the shellcode, the rootkit then queues a kernel asynchronous procedure call (APC) [31],
a little-known code injection technique. The code responsible for the injection is pictured in Figure 15.

	 Figure 15.	 Kernel mode APC registration, FN_ApcNormalRoutine being the shellcode
address in the target process

En Route with Sednit

24

Conclusion and Open Questions
Deploying a component as simple as Downdelph with a bootkit or a rootkit may seem excessive.
But given the apparent rarity of Downdelph deployments over the last two years, we are inclined
to speculate this is a deliberate strategy.

By rarely deploying it, Sednit operators apparently kept it out of the hands of malware researchers
for almost two years, which, combined with advanced persistence methods, ensured that they were
able to maintain the monitoring of selected targets over the long term.

Still, we are certainly missing parts of the picture concerning Downdelph, and we hope this report
will encourage other researchers to contribute further pieces to the puzzle.

En Route with Sednit

25

Indicators of Compromise

Downdelph

ESET Detection Names
Win32/Rootkit.Agent.OAW
Win32/Rootkit.Agent.OAY
Win32/Sednit.AZ
Win32/Sednit.BA
Win32/Sednit.BB
Win32/Sednit.K
Win64/Sednit.J

Hashes
1cc2b6b208b7687763659aeb5dcb76c5c2fbbf26
49acba812894444c634b034962d46f986e0257cf
4c9c7c4fd83edaf7ec80687a7a957826de038dd7
4f92d364ce871c1aebbf3c5d2445c296ef535632
516ec3584073a1c05c0d909b8b6c15ecb10933f1
593d0eb95227e41d299659842395e76b55aa048d
5c132ae63e3b41f7b2385740b9109b473856a6a5
5fc4d555ca7e0536d18043977602d421a6fd65f9
669a02e330f5afc55a3775c4c6959b3f9e9965cf
6caa48cd9532da4cabd6994f62b8211ab9672d9e
7394ea20c3d510c938ef83a2d0195b767cd99ed7
9f3ab8779f2b81cae83f62245afb124266765939
e8aca4b0cfe509783a34ff908287f98cab968d9e
ee788901cd804965f1cd00a0afc713c8623430c4

File Names
apivscd.dll
install_com_x32_LL_full.dll
shcore.dll
userinit.exe

Registry Keys
HKCU\Software\Microsoft\Windows\CurrentVersion\Run\LastEnum
SOFTWARE\Microsoft\Windows\CurrentVersion\policies\system\shell

C&C server Domain Names
intelmeserver.com

C&C server IP addresses
104.171.117.216
141.255.160.52

PDB Paths
d:\\!work\\etc\\hideinstaller_kis2013\\Bin\\Debug\\win7\\x64\\fsflt.pdb
d:\\new\\hideinstaller\\Bin\\Debug\\wxp\\x86\\fsflt.pdb
d:\\!work\\etc\\hi\\Bin\\Debug\\win7\\x86\\fsflt.pdb

En Route with Sednit

26

References
	1.	 The Washington Post, Russian government hackers penetrated DNC, stole opposition research on Trump,

https://www.washingtonpost.com/world/national-security/russian-government-hackers-penetrated-dnc-
stole-opposition-research-on-trump/2016/06/14/cf006cb4-316e-11e6-8ff7-7b6c1998b7a0_story.html, June 2016

	2.	 The Wall Street Journal, Germany Points Finger at Russia Over Parliament Hacking Attack, http://www.wsj.com/
articles/germany-points-finger-at-russia-over-parliament-hacking-attack-1463151250, May 2016

	3.	 Reuters, France probes Russian lead in TV5Monde hacking: sources, http://www.reuters.com/article/us-france-
russia-cybercrime-idUSKBN0OQ2GG20150610, June 2015

	4.	 ESET VirusRadar, Zero-day, http://www.virusradar.com/en/glossary/zero-day

	5.	 ESET, Sednit Espionage Group Attacking Air-Gapped Networks, http://www.welivesecurity.com/2014/11/11/sednit-
espionage-group-attacking-air-gapped-networks/, November 2014

	6.	 Kaspersky, Sofacy APT hits high profile targets with updated toolset, https://securelist.com/blog/research/72924/
sofacy-apt-hits-high-profile-targets-with-updated-toolset/, December 2015

	7.	 CrowdStrike, Bears in the Midst: Intrusion into the Democratic National Committee,
https://www.crowdstrike.com/blog/bears-midst-intrusion-democratic-national-committee/, June 2016

	8.	 Trend Micro, Pawn Storm Espionage Attacks Use Decoys, Deliver SEDNIT, https://www.trendmicro.com/vinfo/us/
security/news/cyber-attacks/pawn-storm-espionage-attacks-use-decoys-deliver-sednit, October 2014

	9.	 FireEye, APT28: A Window into Russia’s Cyber Espionage Operations?, https://www.fireeye.com/blog/threat-
research/2014/10/apt28-a-window-into-russias-cyber-espionage-operations.html

	10.	 GitHub, ESET Indicators of Compromises, https://github.com/eset/malware-ioc/sednit

	11.	 ESET, Back in BlackEnergy *: 2014 Targeted Attacks in Ukraine and Poland, http://www.welivesecurity.
com/2014/09/22/back-in-blackenergy-2014/, September 2014

	12.	 ESET, ESET LiveGrid®, https://www.eset.com/us/about/eset-advantage/

	13.	 Digital Defense, Shimming Your Way Past UAC, https://www.digitaldefense.com/using-application-compatibility-
fixes-to-bypass-user-account-control/, May 2014

	14.	 GreyHatHacker, Bypassing Windows User Account Control (UAC) and mitigation,
https://www.greyhathacker.net/?p=796, December 2014

	15.	 Slovak Foreign Policy Association, EU Eastern Policy: shaping relations with Russia and Ukraine,
http://www.sfpa.sk/event/eu-eastern-policy-shaping-relations-with-russia-and-ukraine/, November 2015

	16.	 Wikipedia, INI file, https://en.wikipedia.org/wiki/INI_file

	17.	 Virus Radar, Bootkit, http://www.virusradar.com/en/glossary/bootkit

	18.	 ESET, TDL4 Bootkit,
http://www.welivesecurity.com/media_files/white-papers/The_Evolution_of_TDL.pdf, March 2011

	19.	 Ibsen Software, aPLib - Compression Library, http://ibsensoftware.com/products_aPLib.html

	20.	 ESET, Bootkits: Past, Present & Future,
https://www.virusbtn.com/pdf/conference/vb2014/VB2014-RodionovMatrosov.pdf, September 2014

	21.	 MSDN, MmMapIoSpace routine (Windows Drivers),
https://msdn.microsoft.com/en-us/library/windows/hardware/ff554618

	22.	 Virus Radar, Rootkit, http://www.virusradar.com/en/glossary/rootkit

	23.	 PDB Files, https://github.com/Microsoft/microsoft-pdb#what-is-a-pdb

	24.	 Wikipedia, System Service Descriptor Table, https://en.wikipedia.org/wiki/System_Service_Descriptor_Table

	25.	 MSDN, Filter Manager Concepts,
https://msdn.microsoft.com/windows/hardware/drivers/ifs/filter-manager-concepts

	26.	 Microsoft Technet, Kernel Patch Protection for x64 Based Operating Systems,
https://technet.microsoft.com/en-us/library/cc759759(v=ws.10).aspx

https://www.washingtonpost.com/world/national-security/russian-government-hackers-penetrated-dnc-stole-opposition-research-on-trump/2016/06/14/cf006cb4-316e-11e6-8ff7-7b6c1998b7a0_story.html
https://www.washingtonpost.com/world/national-security/russian-government-hackers-penetrated-dnc-stole-opposition-research-on-trump/2016/06/14/cf006cb4-316e-11e6-8ff7-7b6c1998b7a0_story.html
https://www.washingtonpost.com/world/national-security/russian-government-hackers-penetrated-dnc-stole-opposition-research-on-trump/2016/06/14/cf006cb4-316e-11e6-8ff7-7b6c1998b7a0_story.html?hpid=hp_rhp-banner-main_dnc-hackers-1145a-banner%3Ahomepage%2Fstory,
http://www.wsj.com/articles/germany-points-finger-at-russia-over-parliament-hacking-attack-1463151250
http://www.wsj.com/articles/germany-points-finger-at-russia-over-parliament-hacking-attack-1463151250
http://www.reuters.com/article/us-france-russia-cybercrime-idUSKBN0OQ2GG20150610
http://www.reuters.com/article/us-france-russia-cybercrime-idUSKBN0OQ2GG20150610
http://www.virusradar.com/en/glossary/zero-day
http://www.welivesecurity.com/2014/11/11/sednit-espionage-group-attacking-air-gapped-networks/
http://www.welivesecurity.com/2014/11/11/sednit-espionage-group-attacking-air-gapped-networks/
https://securelist.com/blog/research/72924/sofacy-apt-hits-high-profile-targets-with-updated-toolset/
https://securelist.com/blog/research/72924/sofacy-apt-hits-high-profile-targets-with-updated-toolset/
https://www.crowdstrike.com/blog/bears-midst-intrusion-democratic-national-committee/
https://www.trendmicro.com/vinfo/us/security/news/cyber-attacks/pawn-storm-espionage-attacks-use-decoys-deliver-sednit
https://www.trendmicro.com/vinfo/us/security/news/cyber-attacks/pawn-storm-espionage-attacks-use-decoys-deliver-sednit
https://www.fireeye.com/blog/threat-research/2014/10/apt28-a-window-into-russias-cyber-espionage-operations.html
https://www.fireeye.com/blog/threat-research/2014/10/apt28-a-window-into-russias-cyber-espionage-operations.html
https://github.com/eset/malware-ioc/sednit
http://www.welivesecurity.com/2014/09/22/back-in-blackenergy-2014/
http://www.welivesecurity.com/2014/09/22/back-in-blackenergy-2014/
https://www.eset.com/us/about/eset-advantage/
https://www.digitaldefense.com/using-application-compatibility-fixes-to-bypass-user-account-control/
https://www.digitaldefense.com/using-application-compatibility-fixes-to-bypass-user-account-control/
https://www.greyhathacker.net/?p=796
http://www.sfpa.sk/event/eu-eastern-policy-shaping-relations-with-russia-and-ukraine/
https://en.wikipedia.org/wiki/INI_file
http://www.virusradar.com/en/glossary/bootkit
http://www.welivesecurity.com/media_files/white-papers/The_Evolution_of_TDL.pdf
http://ibsensoftware.com/products_aPLib.html
https://www.virusbtn.com/pdf/conference/vb2014/VB2014-RodionovMatrosov.pdf
https://msdn.microsoft.com/en-us/library/windows/hardware/ff554618
http://www.virusradar.com/en/glossary/rootkit
https://github.com/Microsoft/microsoft-pdb#what-is-a-pdb
https://en.wikipedia.org/wiki/System_Service_Descriptor_Table
https://msdn.microsoft.com/windows/hardware/drivers/ifs/filter-manager-concepts
 26.
https://technet.microsoft.com/en-us/library/cc759759%28v=ws.10%29.aspx

En Route with Sednit

27

	27.	 MSDN, Allocated Altitudes, https://msdn.microsoft.com/windows/hardware/drivers/ifs/allocated-altitudes

	28.	 Microsoft, Windows Driver Samples - passThrough, https://github.com/Microsoft/Windows-driver-samples/blob/
master/filesys/miniFilter/passThrough/

	29.	 MSDN, IRP_MJ_CREATE, https://msdn.microsoft.com/en-us/library/windows/hardware/ff548630(v=vs.85).aspx

	30.	 Microsoft, Windows Driver Samples - regfltr,
https://github.com/Microsoft/Windows-driver-samples/tree/master/general/registry/regfltr

	31.	 MSDN, Asynchronous Procedure Calls,
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681951(v=vs.85).aspx

Last updated 2016-09-11 17:16:51 EDT

https://msdn.microsoft.com/windows/hardware/drivers/ifs/allocated-altitudes
https://github.com/Microsoft/Windows-driver-samples/blob/master/filesys/miniFilter/passThrough/
https://github.com/Microsoft/Windows-driver-samples/blob/master/filesys/miniFilter/passThrough/
https://msdn.microsoft.com/en-us/library/windows/hardware/ff548630%28v=vs.85%29.aspx
https://github.com/Microsoft/Windows-driver-samples/tree/master/general/registry/regfltr
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681951%28v=vs.85%29.aspx

		Table 1.	Downdelph main configuration file extended.ini
		Table 2.	Downdelph server configuration file pinlt.ini

		Figure 1.	Timeline of 0-day vulnerabilities exploited by the Sednit group in 2015.
		Figure 2.	Main attack methods and malware used by the Sednit group since 2014,
and how they are related

		Figure 3.	Downdelph major events
		Figure 4.	Downdelph deployments, with the purpose and name of each file
		Figure 5.	Decoy document used in Case 7 (September 2015)
		Figure 6.	Downdelph communication workflow
		Figure 7.	Downdelph request to download main configuration file
		Figure 8.	Beginning of infected hard drive layout
		Figure 9.	MBR opening code, as seen in a decompiler
		Figure 10.	Startup process of a Windows 7 machine infected by the bootkit
		Figure 11.	Hook code in ACPI.sys resources section (.rsrc)
		Figure 12.	User mode bootkit component attempts to set an exported Boolean variable in Downdelph, after having loaded it

		Figure 13.	Hook code for ZwSetInformationFile to hide files
		Figure 14.	Preoperation callback for IRP_MJ_CREATE
(the creation or opening of files and directories)
		Figure 15.	Kernel mode APC registration, FN_ApcNormalRoutine being the shellcode address in the target process

