Skip to main content
Log in

Recent advances of economically synthesised polymers/composites consisting of graphene and silver nanoparticles to achieve sustainable existence

  • REVIEW PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Modified composites, blends, polymers and copolymers are some of those engineered materials which are playing a major and remarkable role in achieving our present sustainable environment. Mechanical, electrical, and biological properties of carbon and native metal nanoparticles are distinctive from others and provide plentiful scaffolds for a wide-range of applications in our lives, including medical devices, pharmaceutical, polymer industry, biomedical field, coating of kitchen appliances, food packaging, clothing, gifts, optical devices, biosensors, antimicrobial objects etc. Distinct chemical and physical properties of silver and carbon-based NPs are considered to act in this way. The antimicrobial and conducting nature of Gr and AgNPs are studied here. There is a vast history of these properties; however, beginners still have a bright future. The antimicrobial activity of these two incorporates antibacterial, antifungal, antiviral, anticancer, antioxidant, antistatic and antibiotic nature. Additionally, both nanomaterials exhibit notable thermal conductivity. Based on these characteristics novel composite/blend materials with enhanced electrical, thermal, antimicrobial, antistatic, and antibiotic effect can be engineered with innovative ideas. This paper expresses the worldwide applications of such nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

(Copyright © 2011, Springer-Verlag Berlin Heidelberg), permission granted

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

(© nanoscale research letters), Permission granted

Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Balazs DJ, Triandafillu K, Wood P, Chevolot Y, Van Delden C, Harms H, Mathieu HJ (2004) Inhibition of bacterial adhesion on PVC endotracheal tubes by RF-oxygen glow discharge, sodium hydroxide and silver nitrate treatments. Biomaterials 25(11):2139–2151

    Article  CAS  PubMed  Google Scholar 

  2. Stobie N, Duffy B, McCormack DE, Colreavy J, Hidalgo M, McHale P, Hinder SJ (2008) Prevention of Staphylococcus epidermidis biofilm formation using a low-temperature processed silver-doped phenyltriethoxysilane sol-gel coating. Biomaterial 29:963–969

    Article  CAS  Google Scholar 

  3. Paterno GM, Ross AM, Pietralunga SM, Normani S, Vedova ND, Limwongyut J, Bondelli G, Moscardi L, Bazan GC, Scotognella F, Lanzani G (2021) The impact of bacteria exposure on the plasmonic response of silver nanostructured surfaces. Chem Phys Rev 2:021401

    Article  Google Scholar 

  4. Song HY, Ko KK, Oh IH, Lee BT (2006) Fabrication of silver nanoparticles and their antimicrobial mechanisms. Eur Cells Mater 11:58

    Google Scholar 

  5. Yamanaka M, Hara K, Kudo J (2005) Bactericidal actions of a silver ion solution on escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl Environ Microbiol 71:7589–7593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lee SH, Jun BH (2019) Silver nanoparticles: synthesis and application for nanomedicine. Int J Mol Sci 20:865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hoppe CE, Lazzari M, Pardinas-Blanco I, López-Quintela MA (2006) One-step synthesis of gold and silver hydrosols using poly (N-vinyl-2-pyrrolidone) as a reducing agent. Langmuir 22:7027–7034

    Article  CAS  PubMed  Google Scholar 

  8. Shimizu KI, Tsuzuki M, Kato K, Yokota S, Okumura K, Satsuma A (2007) Reductive activation of O2 with H2-reduced silver clusters as a key step in the H2-promoted selective catalytic reduction on NO with C3H8 over Ag/Ag2O3. J Phys Chem 111:950–959

    CAS  Google Scholar 

  9. Shimizu KI, Sugino K, Kato K, Yokota S, Okumura K, Satsuma A (2007) Formation and redispersion of silver clusters in Ag-MFI zeolite as investigated by time resolved QXAFS and UV-Vis. J Phys Chem 111:1683–1688

    CAS  Google Scholar 

  10. Sharma B, Kumar P (2019) Method for preparation of amidoximated acrylic copolymer: characterizations and other study. IOSR J Appl Chem 12(3):66–72

    CAS  Google Scholar 

  11. Kalhapure RS, Sonawane SJ, Sikwal DR, Jadhav M, Rambharose S, Mocktar C, Govender T (2015) Solid lipid nanoparticles of clotrimazole silver complex: an efficient nano antibacterial against Staphylococcus aureus and MRSA. Colloids Surf B 136(65):651–658

    Article  CAS  Google Scholar 

  12. Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S (2007) Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine 3:168–171

    Article  CAS  PubMed  Google Scholar 

  13. Shirley DA, Shreedhar B, Dastager SG (2010) Antimicrobial activity of silver nanoparticles synthesized from novel streptomyces species. Dig J Nanomater Biostruct 5:447–451

    Google Scholar 

  14. Vidyasagar GM, Shankaravva B (2012) Antimicrobial activity of silver nanoparticles synthesized by streptomyces species JF714876. Int J Pharm Sci Nanotechnol 5(1):1638–1642

    Google Scholar 

  15. Kharaghani D, Jo YK, Khan MQ, Jeong Y, Cha HJ, Kim IS (2018) Electrospun antibacterial polyacrylonitrile nanofiber membranes functionalized with silver nanoparticles by a facile wetting method. Eur Polym J 108:69–75

    Article  CAS  Google Scholar 

  16. Rani S, Praveen G, Kumar G (2018) Synthesis, study and characterization of amidoximated acrylic copolymer. Int J Eng Res Appl 8(3):54–60

    Google Scholar 

  17. Rani S, Praveen G, Kumar G (2018) Synthesis and characterization of copolymer film of acrylic acid with acrylonitrile and hydroxylamine treatment of the acrylic copolymer. VSRD Int J Tech Non-Tech Res IX:83–88

    Google Scholar 

  18. Sharma BK, Walia M, Chaudhary A, Sharma Y, Thakur S (2020) Synthesis of an amidoximated acrylic copolymer membrane (AACM) treated with nano silver particles to study the antibacterial efficiency of the membrane. In: IOP conference series: materials science and engineering. 1224(2022): 012020. https://doi.org/10.1088/1757-899X/1224/1/012020

  19. Praveen G (2021) Comparative study of swelling behavior and contact angle of amidoximated polyacrylonitrile membranes. J Int Acad Phys Sci 25(2):343–351

    Google Scholar 

  20. Singh A, Gaud B, Jaybhaye S (2020) Optimization of synthesis parameters of silver nanoparticles and its antimicrobial activity. Mater Sci Energy Technol 3:232–236

    CAS  Google Scholar 

  21. Umadevi M, Rani T, Balakrishnan T, Ramanibai R (2011) Antimicrobial activity of silver nanoparticles prepared under an ultrasonic field. Int J Pharm Sci Nanotechnol 4:1491–1496

    Google Scholar 

  22. Sharma BK, Rani S, Swami A (2021) Efficacy of synthesized amidoximated acrylic copolymer membrane treated with nano silver particles for its antibacterial property. Eur J Mol Clin Med 8(3):1389–1399

    Google Scholar 

  23. Hajipour MJ, Fromm KM, Ashkarran AA, de Aberasturi DJ, de Larramendi IR, Rojo T, Serpooshan V, Parak WJ, Mahmoudi M (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30(10):499–511

    Article  CAS  PubMed  Google Scholar 

  24. Allaker RP (2010) The use of nanoparticles to control oral biofilm formation. J Dent Res 89(11):1175–1186

    Article  CAS  PubMed  Google Scholar 

  25. El-Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM (2011) Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45(1):283–287

    Article  CAS  PubMed  Google Scholar 

  26. Algotiml R, Gab-Alla A, Seoudi R, Abulreesh HH, Zaki El-Readi M, Elbanna K (2022) Anticancer and antimicrobial activity of biosynthesized red sea marine algal silver nanoparticles. Sci Rep 12:2421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ghetas HA, Abdel-Razek N, Shakweer MS, Abotaleb MM, Paray BA, Ali S, Eldessouki EA, Dawood MAO, Khalil RH (2022) Antimicrobial activity of chemically and biologically synthesized silver nanoparticles against some fish pathogens. Saudi J Biol Sci 29(3):1298–1305

    Article  CAS  PubMed  Google Scholar 

  28. Flores MZS, Autreto PAS, Legoas SB, Galvao DS (2009) Graphene to graphane: a theoretical study. Nanotechnol 20:465704

    Article  CAS  Google Scholar 

  29. Basu S, Bhattacharyya P (2012) Recent developments on graphene and graphene oxide based solid state gas sensors. Sens Actuators B: Chem 173:1–21

    Article  CAS  Google Scholar 

  30. Lu N, Li Z, Yang J (2009) Electronic structure engineering via on-plane chemical functionalization: a comparison study on two-dimensional polysilane and graphene. Phys Chem C 113(38):16741–16746

    Article  CAS  Google Scholar 

  31. Al-Jumaili A, Alancherry S, Bazaka K, Jacob MV (2017) Review on the antimicrobial properties of carbon nanostructures. Material 10(9):1066

    Article  Google Scholar 

  32. Li H, He X, Liu Y, Huang H, Lian S, Lee ST, Kang Z (2011) One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon 49(2):605–609

    Article  CAS  Google Scholar 

  33. Qian M, Feng T, Ding H, Lin L, Li H, Chen Y, Sun Z (2009) Electron field emission from screen-printed graphene films. Nanotechnology 20(42):425702

    Article  PubMed  Google Scholar 

  34. Novoselov KS, Geim AK, Morozov SV, Jiang DE, Zhang Y, Dubonos SV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  CAS  PubMed  Google Scholar 

  35. Layek RK, Nandi AK (2013) A review on synthesis and properties of polymer functionalized graphene. Polymer 54(19):5087–5103

    Article  CAS  Google Scholar 

  36. Geim AK, Novoselov KS (2007) The rise of grapheme. Nat Mater 6(3):183–191

    Article  CAS  PubMed  Google Scholar 

  37. Hill EW, Vijayaragahvan A, Novoselov K (2011) Graphene sensors. IEEE Sens J 11(12):3161–3170

    Article  CAS  Google Scholar 

  38. Si Y, Samulski ET (2008) Synthesis of water-soluble grapheme. Nano Lett 8(6):1679–1682

    Article  CAS  PubMed  Google Scholar 

  39. Choi W, Lahiri I, Seelaboyina R, Kang YS (2010) Synthesis of graphene and its applications: a review. Crit Rev Solid State Mater Sci 35(1):52–71

    Article  CAS  Google Scholar 

  40. Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S (2011) Graphene based materials: past, present and future. Prog Mater Sci 56(8):1178–1271

    Article  CAS  Google Scholar 

  41. Neto AHC, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81(1):109–162

    Article  Google Scholar 

  42. Pumera M (2009) Electrochemistry of graphene: new horizons for sensing and energy storage. Chem Rec 9(4):211–223

    Article  CAS  PubMed  Google Scholar 

  43. Casolo S, Martinazzo R (2011) Band engineering in graphene with superlattices of substitutional defects. J Phys Chem C 115(8):3250–3256

    Article  CAS  Google Scholar 

  44. Schwierz F (2010) Graphene transistors. Nat Nanotechnol 5:487–496

    Article  CAS  PubMed  Google Scholar 

  45. Boukhvalov DW, Katsnelson MI, Lichtenstein AI (2008) Hydrogen on graphene: electronic structure, total energy, structural distortions and magnetism from first-principles calculations. Phys Rev B 77(3):035427

    Article  Google Scholar 

  46. Wen XD, Yang T, Hoffmann R, Ashcroft NW, Martin RL, Rudin SP, Zhu JX (2012) Graphane nanotubes. ACS Nano 6(8):7142–7150

    Article  CAS  PubMed  Google Scholar 

  47. Zhou C, Chen S, Lou J, Wang J, Yang Q, Liu C, Huang D, Zhu T (2014) Graphene’s cousin: the present and future of graphene. Nanoscale Res Lett 9:26

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gurunathan S, Han JW, Dayem AA, Eppakayala V, Kim JH (2012) Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. Int J Nanomed 7:5901–5914

    Article  CAS  Google Scholar 

  49. Tu Y, Lv M, Xiu P, Huynh T, Zhang M, Castelli M, Liu Z, Huang Q, Fan C, Fang H, Zhou R (2013) Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat Nanotechnol 8:594–601

    Article  CAS  PubMed  Google Scholar 

  50. Zhao C, Deng B, Chen G, Lei B, Hua H, Peng H, Yan Z (2016) Large-area chemical vapor deposition-grown monolayer graphene-wrapped silver nanowires for broad-spectrum and robust antimicrobial coating. Nano Res 9:963–973

    Article  CAS  Google Scholar 

  51. Bharech S, Kumar R (2015) A review on the properties and applications of graphene. J Mater Sci Mech Eng 2:70–73

    Google Scholar 

  52. Alabdullah NM, Hasan MdM (2021) Plant-based green synthesis of silver nanoparticles and its effective role in abiotic stress tolerance in crop plants. Saudi J Biol Sci 28:5631–5639

    Article  Google Scholar 

  53. Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275(2):496–502

    Article  CAS  PubMed  Google Scholar 

  54. https://nanografi.com/blog/60-uses-of-graphene/

  55. Kittler S, Greulich C, Diendorf J, Köller M, Epple M (2010) Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem Mater 22(16):4548–4554

    Article  CAS  Google Scholar 

  56. AshaRani PV, Munand GLK, Hande MP (2009) Cytotoxicity and genotoxicity of silver nanoparticle in human cells. ACS Nano 3(2):279–290

    Article  CAS  PubMed  Google Scholar 

  57. Lalwani G, D’Agati M, Khan AM, Sitharaman B (2016) Toxicology of graphene-based nanomaterials. Adv Drug Deliv Rev 105(Pt B):109–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cooper RD, D’Anjou B, Ghattamaneni N, Harack B, Hilke M, Horth A, Majlis N, Massicotte M, Vandsburger L, Whiteway E, Yu V (2012) Experimental review of graphene. ISRN Condens Matter Phys 501686:1–56

    Article  Google Scholar 

  59. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless dirac fermions in graphene. Nature 438:197–200

    Article  CAS  PubMed  Google Scholar 

  60. Zhang Y, Tan Y-W, Stormer HL, Kim P (2005) Experimental observation of the quantum hall effect and berry’s phase in graphene. Nature 438:201–204

    Article  CAS  PubMed  Google Scholar 

  61. Morozov SV, Novoselov KS, Katsnelson MI, Schedin F, Elias FD, Jaszczak JA, Geim AK (2008) Giant Intrinsic carrier mobilities in graphene and its bilayer. Phys Rev Lett 100(1):016602

    Article  CAS  PubMed  Google Scholar 

  62. Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110(1):132–145

    Article  CAS  PubMed  Google Scholar 

  63. McCann E (2011) Electronic properties of monolayer and bilayer graphene. Springer Berlin Heidelberg. Chapter. 8(7):237–275

  64. Gilje S, Han S, Wang M, Wangand KL, Kaner RB (2007) A Chemical Route to graphene for device application. Nano Lett 7(11):3394–3398

    Article  CAS  PubMed  Google Scholar 

  65. Jung I, Dikin DA, Piner RD, Ruoff RS (2008) Tunable electrical conductivity of individual graphene oxide sheets reduced at “low” temperatures. Nano Lett 8(12):4283–4287

    Article  CAS  PubMed  Google Scholar 

  66. Balan L, Malval JP, Malval JP, Schneider R, Burget D (2007) Silver nanoparticles: new synthesis, characterization and photophysical properties. Mater Chem Phys 104(2–3):417–421

    Article  CAS  Google Scholar 

  67. Jiang ZJ, Liu CY, Sun LW (2005) Catalytic properties of silver nanoparticles supported on silica spheres. J Phys Chem B 109(5):1730–1735

    Article  CAS  PubMed  Google Scholar 

  68. Lei Y, Mehmood F, Lee S, Greeley JP, Lee B, Seifertr S, Winans RE, Elam JW, Meyer RJ, Redfern PC, Teschner D, Schlögl R, Pellin MJ, Curtiss LA, Vajda S (2010) Increased silver activity for direct propylene epoxidation via sub nanometer size effects. Science 328(5975):224–228

    Article  CAS  PubMed  Google Scholar 

  69. Liu N, Tang ML, Hentschel M, Giessen H, Alivisatos AP (2011) Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat Mater 10:631–636

    Article  CAS  PubMed  Google Scholar 

  70. Lin JC, Wang CY (1996) Effects of surfactant treatment of silver powder on the rheology of its thick-film paste. Mater Chem Phys 45(2):136–144

    Article  CAS  Google Scholar 

  71. Park K, Seo D, Lee J (2008) Conductivity of silver paste prepared from nanoparticles. Colloids Surf A: Physicochem Eng Aspects 313–314:351–354

    Article  Google Scholar 

  72. Chen D (2009) Synthesis and electrical properties of uniform silver nanoparticles for electronic applications. J Mater Sci 44:1076–1081

    Article  CAS  Google Scholar 

  73. Liu J, Li X, Zeng X (2010) Silver nanoparticles prepared by chemical reduction-protection method, and their application in electrically conductive silver nanopaste. J Alloys Compd 494(1–2):84–87

    Article  CAS  Google Scholar 

  74. Groep JVD, Spinelli P, Polman A (2012) Transparent conducting silver nanowire networks. Nano Lett 12(6):3138–3144

    Article  PubMed  Google Scholar 

  75. Xin F, Li L (2011) Decoration of carbon nanotubes with silver nanoparticles for advanced CNT/polymer nanocomposites. Compos A Appl Sci Manuf 42(8):961–967

    Article  Google Scholar 

  76. Nam S, Cho HW, Lim S, Kim D, Kimand SBJ (2013) Enhancement of electrical and thermomechanical properties of silver nanowire composites by the introduction of nonconductive nanoparticles: experiment and simulation. ACS Nano 7(1):851–856

    Article  CAS  PubMed  Google Scholar 

  77. Vilela D, González MC, Escarpa A (2012) Sensing colorimetric approaches based on gold and silver nanoparticles aggregation: chemical creativity behind the assay: a review. Anal Chim Acta 751:24–43

    Article  CAS  PubMed  Google Scholar 

  78. Rivero PJ, Urrutia A, Goicoechea J, Matias IR, Arregui FJ (2013) A lossy mode resonance optical sensor using silver nanoparticles-loaded films for monitoring human breathing. Sens Actuators B:Chem 187:40–44

    Article  CAS  Google Scholar 

  79. Shoaib AM, El-Adly RA, Hassanean MHM, Youssry A, Bhran AA (2018) Developing a free-fall reactor for rice straw fast pyrolysis to produce bio-products. Egypt J Petrol 27(4):1305–1311

    Article  Google Scholar 

  80. Khalil AM, Hassan ML, Ward AA (2017) Novel nanofibrillated cellulose/polyvinylpyrrolidone/silver nanoparticles films with electrical conductivity properties. Carbohyd Polym 157:503–511

    Article  CAS  Google Scholar 

  81. Hang NV, Concepcion M, Detras M, Migo MV, Chivenge P, Gummert M (2020) Rice straw overview: availibility, properties, and management practices. In: Sustainable rice straw management. Springer, pp 1–13

  82. Wise LE, Murphy M, D’Addieco AA (1946) Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on hemicelluloses. Pap Trade J 122:35–43

    CAS  Google Scholar 

  83. Hassan A, Hassan ML, Abou-Zeid RE, El-Wakil NA (2016) Novel nanofibrillated cellulose/chitosan nanoparticles nanocomposites films and their use for paper coating. Ind Crops Prod 93:219–226

    Article  CAS  Google Scholar 

  84. Browning BL (1967) Determination of lignin. Methods of wood chemistry, pp. 33–61

  85. Algotiml R, Gab-Alla A, Seoudi R, Abulreesh HH, El-Readi MZ, Elbanna K (2022) Anticancer and antimicrobial activity of biosynthesized Red Sea marine algal silver nanoparticles. Sci Rep 12(1):2421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. He M, Chen M, Dou Y, Ding J, Yue H, Yin G, Chen X, Cui Y (2020) Electrospun silver nanoparticles-embedded feather keratin/poly(vinyl alcohol)/poly(ethylene oxide) antibacterial composite nanofibers. Polymers 12(2):305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Velmurugan P, Lee SM, Iydroose M, Lee KJ, Oh BT (2013) Pine cone-mediated green synthesis of silver nanoparticles and their antibacterial activity against agricultural pathogens. Appl Microbial Biotechnol 97:361–368

    Article  CAS  Google Scholar 

  88. Bhakya S, Muthukrishnan S, Sukumaran M, Muthukumar M (2016) Biogenic synthesis of silver nanoparticles and their antioxidant and antibacterial activity. Appl Nanosci 6(5):755–766

    Article  CAS  Google Scholar 

  89. Das D, Ghosh R, Mandal P (2019) Biogenic synthesis of silver nanoparticles using s1 genotype of Morus alba leaf extract: characterization, antimicrobial and antioxidant potential assessment. SN Appl Sci 1:498

    Article  CAS  Google Scholar 

  90. Saxena A, Tripathi RM, Singh RP (2010) Biological synthesis of silver nanoparticles by using onion (Allium cepa) extract and their antibacterial activity. Dig J Nanomater Bios 5:427–432

    Google Scholar 

  91. Azmath P, Baker S, Rakshith D, Satish S (2016) Mycosynthesis of silver nanoparticles bearing antibacterial activity. Saudi Pharm J 25(1):140–146. https://doi.org/10.1016/j.jsps.2015.01.008

    Article  Google Scholar 

  92. Paulkumar K, Gnanajobitha G, Vanaja M, Rajeshkumar S, Malarkodi C, Pandian K, Annadura G (2014) Piper nigrum leaf and stem assisted green synthesis of silver nanoparticles and evaluation of its antibacterial activity against agricultural plant pathogens. Sci World J. https://doi.org/10.1155/2014/829894

    Article  Google Scholar 

  93. Arokiyaraj S, Arasu MV, Vincent S, Prakash NU, Choi SH, Oh YK, Choi KC, Kim KH (2014) Rapid green synthesis of silver nanoparticles from Chrysanthemum indicum L and its antibacterial and cytotoxic effects: an in vitro study. Int J Nanomed 2014:379–88. https://doi.org/10.2147/IJN.S53546,2014

    Article  Google Scholar 

  94. Żarowska B, Koźlecki T, Piegza M, Jaros-Koźlecka K, Robak M (2019) New look on antifungal activity of silver nanoparticles (AgNPs). Pol J Microbiol 68(4):515–525

    Article  PubMed  PubMed Central  Google Scholar 

  95. Le TTH, Ngo TT, Nguyen THH, Pham TD, Vu TXH, Tran QV (2022) Green nanoarchitectonics using cleistocalyx operculatus leaf extract in the preparation of multifunctional graphene oxide/Fe3O4/Ag nanomaterials for water decontamination and disinfection. J Inorg Organometal Polym Mater 32(2):547–559

    Article  CAS  Google Scholar 

  96. Dat NM, Tai LT, Khang PTT, Anh TNM, Nguyet DM, Quan TH, Thinh DB, Thien DT, Nam HM, Phong MT, Hieu NM (2021) Synthesis, characterization, and antibacterial activity investigation of silver nanoparticle-decorated graphene oxide. Mater Lett 285:128993

    Article  Google Scholar 

  97. Maruthupandy M, Rajivgandhi G, Muneeswaran T, Anand M, Quero F (2021) Highly efficient antibacterial activity of graphene/chitosan/magnetite nanocomposites against ESBL-producing Pseudomonas aeruginosa and Klebsiella pneumonia. Colloids Surf B 202:111690

    Article  CAS  Google Scholar 

  98. Akhavan O, Ghaderi E (2012) Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4:5731–5736

    Article  Google Scholar 

  99. Wang G, Qian F, Saltikov CW, Jiao Y, Li Y (2011) Microbial reduction of graphene oxide by Shewanella. Nano Res 4:563–570

    Article  CAS  Google Scholar 

  100. Ruiz ON, Fernando KAS, Wang B, Brown NA, Luo PG, McNamara ND, Vangsness M, Sunand YP, Bunker CE (2011) Graphene oxide: a nonspecific enhancer of cellular growth. ACS Nano 5:8100–8107

    Article  CAS  PubMed  Google Scholar 

  101. Zhang B, Wei P, Zhou Z, Wei T (2016) Interactions of graphene with mammalian cells: molecular mechanisms and biomedical insights. Adv Drug Deliv Rev 105:145–162

    Article  CAS  PubMed  Google Scholar 

  102. Palmieri V, Bugli F, Lauriola MC, Cacaci M, Torelli R, Ciasca G, Conti C, Sanguinetti M, Papi M, Spirito MD (2017) Bacteria meet graphene: modulation of graphene oxide nanosheet interaction with human pathogens for effective antimicrobial therapy. ACS Biomater Sci Eng 3:619–627

    Article  CAS  PubMed  Google Scholar 

  103. Kim TY, Park CH, Marzari N (2016) The electronic thermal conductivity of graphene. Nano Lett 16(4):2439–2443

    Article  CAS  PubMed  Google Scholar 

  104. Chen S, Moore AL, Cai W, Suk JW, An J, Mishra C, Amos C, Magnuson CW, Kang J, Shi L, Ruoff RS (2011) Raman measurements of thermal transport in suspended monolayer graphene of variable sizes in vacuum and gaseous environments. ACS Nano 5(1):321–328

    Article  PubMed  Google Scholar 

  105. Cai W, Moore AL, Zhu Y, Li X, Chen S, Shi L, Ruoff RS (2010) Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett 10(5):1645–1651

    Article  CAS  PubMed  Google Scholar 

  106. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single layer graphene. Nano Lett 8:902–907

    Article  CAS  PubMed  Google Scholar 

  107. Nika DL, Pokatilov EP, Askerov AS, Balandin AA (2009) Phonon thermal conduction in graphene: role of umklapp and edge roughness scattering. Phys Rev B 79(15):155413

    Article  Google Scholar 

  108. Ghosh S, Calizo I, Teweldebrhan D, Pokatilov EP, Nika DL, Balandin AA, Bao W, Miao F, Lau CN (2009) Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl Phys Lett 92:151911

    Article  Google Scholar 

  109. Klemens PG (2000) Theory of the A-plane thermal conductivity of graphite. J Wide Bandgap Mater 7:332–339

    Article  CAS  Google Scholar 

  110. Ghosh S, Bao W, Nika DL, Subrina S, Pokatilov EP, Lau CN, Balandin AA (2010) Dimensional crossover of thermal transport in few-layer graphene. Nat Mater 9:55–558

    Article  Google Scholar 

  111. Berber S, Kwon YK, Tomanek D (2000) Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 84:4613–4616

    Article  CAS  PubMed  Google Scholar 

  112. Evans WJ, Hu L, Keblinski P (2010) Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: effect of ribbon width, edge roughness, and hydrogen termination. Appl Phys Lett 96:203112

    Article  Google Scholar 

  113. Munoz E, Lu J, Yakobson BI (2010) Ballistic thermal conductance of graphene ribbons. Nano Lett 10:1652–1656

    Article  CAS  PubMed  Google Scholar 

  114. Savin AV, Kivshar YS, Hu B (2010) Suppression of thermal conductivity in graphene nanoribbons with rough edges. Phys Rev B 82:195422

    Article  Google Scholar 

  115. Freitag M, Steiner M, Martin Y, Perebeinos V, Chen Z, Tsang JC, Avouris P (2009) Energy dissipation in graphene field effect transistors. Nano Lett 9:1883–1888

    Article  CAS  PubMed  Google Scholar 

  116. Chen Z, Jang W, Bao W, Lau CN, Dames C (2009) Thermal contact resistance between graphene and silicon dioxide. Appl Phys Lett 95(16):161910

    Article  Google Scholar 

  117. Mak KF, Liu CH, Heinz TF (2010) Thermal conductance at the graphene-SiO2 interface measured by optical pump-probe spectroscopy. arXiv: Material Sciences

  118. Koh YK, Bae MH, Cahill DG, Pop E (2010) Heat conduction across monolayer and few-layer graphenes. Nano Lett 10:4363–4368

    Article  CAS  PubMed  Google Scholar 

  119. Persson BNJ, Ueba H (2010) Heat transfer between weakly coupled systems: graphene on a-SiO2. Europhys Lett 91:56001

    Article  Google Scholar 

  120. Konatham D, Striolo A (2009) Thermal boundary resistance at the graphene-oil interface. Appl Phys Lett 95:163105

    Article  Google Scholar 

  121. Schmidt AJ, Collins KC, Minnich AJ, Chen G (2010) Thermal conductance and phonon transmissivity of metal-graphite interfaces. J Appl Phys 107:104907

    Article  Google Scholar 

  122. Kim K, Regan W, Geng B, Alemán B, Kessler B, Wang F, Crommie M, Zettl A (2010) High-temperature stability of suspended single-layer graphene. Phys Status Solidi 4(11):302–304

    CAS  Google Scholar 

  123. Lotya M, Hernandez Y, King PJ, Smith RJ, Nicolosi V, Karlsson LS, Coleman JN (2009) Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J Am Chem Soc 131(10):3611–3620

    Article  CAS  PubMed  Google Scholar 

  124. Segal M (2009) Selling graphene by the ton. Nat Nanotech 4:612–614

    Article  CAS  Google Scholar 

  125. Checkelsky JG, Ong NP (2009) Thermopower and nernst effect in graphene in a magnetic field. Phys Rev B 80:081413(R)

    Article  Google Scholar 

  126. Teweldebrhan D, Balandin AA (2009) Modification of graphene properties due to electron-beam irradiation. Appl Phys Lett 94:013101

    Article  Google Scholar 

  127. Wang D, Shi J (2011) Effect of charged impurities on the thermoelectric power of graphene near the Dirac point. Phys Rev B 83:113403

    Article  Google Scholar 

  128. Mahanta NK, Abramson AR (2012) Thermal conductivity of graphene and graphene oxide nanoplatelets. 13th inter society conference on thermal and thermomechanical phenomena in electronic systems (ITHERM). 1–6:2012

  129. Patel HE, Das SK, Sundararajan T (2003) Thermal conductivity of naked and monolayer protected metal nanoparticles based nanofluids: manifestation of anomalous enhancement and chemical effects. Appl Phys Lett 83:2931

    Article  CAS  Google Scholar 

  130. Jana S, Salehi-Khojin A, Zhong WH (2007) Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives. Thermochim Acta 462:45–55

    Article  CAS  Google Scholar 

  131. Nath P, Chopra KL (1974) Thermal conductivity of copper films. Thin Solid Films 20:53–61

    Article  Google Scholar 

  132. Uher C (2004) Thermal conductivity of metals, physics of solids and liquids. Springer. Boston, pp 221–91

  133. Warrier P, Teja A (2011) Effect of particle size on the thermal conductivity of nanofluids containing metallic nanoparticles. Nanoscale Res Lett 6(1):247. https://doi.org/10.1186/1556-276X-6-247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Iyahraja S, Rajadurai JS (2015) Study of thermal conductivity enhancement of aqueous suspensions containing silver nanoparticles. AIP Adv 5(5):057103. https://doi.org/10.1063/1.4919808

    Article  CAS  Google Scholar 

  135. Fortunati E, D’angelo F, Martino S, Orlacchio A, Kenny JM, Armentano I (2011) Carbon nanotubes and silver nanoparticles for multifunctional conducting biopolymer composites. Carbon 49(7):2370–2379

    Article  CAS  Google Scholar 

  136. Godson L, Raja B, Lal DM, Wongwises S (2010) Experimental investigation on the thermal conductivity and viscosity of silver-deionized water nanofluid. Exp Heat Transf 23(4):317–332

    Article  CAS  Google Scholar 

  137. Seyhan M, Altan CL, Gurten B, Bucak S (2017) The effect of functionalized silver nanoparticles over the thermal conductivity of base fluids. AIP Adv 7(4):045101

    Article  Google Scholar 

  138. Walshe J, McCarron P, McLoughlin C, McCormack SJ, Doran J, Amarandei G (2020) Ethylene glycol based silver nanoparticles synthesized by polyol process: characterization and thermophysical profile. J Mol Liq Nanomater 10:1201

    Article  CAS  Google Scholar 

  139. Zeroual S, Estellé P, Cabaleiro D, Vigolo B, Emo M, Halim W, Ouaskit S (2020) Ethylene glycol based silver nanoparticles synthesized by polyol process: characterization and thermophysical profile. J Mol Liq 310:113229

    Article  CAS  Google Scholar 

  140. Tien HW, Huang YL, Yang SY, Wang JY, Ma CCM (2011) The production of graphene nanosheets decorated with silver nanoparticles for use in transparent, conductive films. Carbon 49(5):1550–1560

    Article  CAS  Google Scholar 

  141. Zhong Z, Gong X, Wang L, Bai G, Wei H, Yang W (2020) A facile way for fabrication of silver nanoparticle decorated graphene composites. Mater Chem Phys 241:122344

    Article  CAS  Google Scholar 

  142. Karim N, Afroj S, Tan S, Novoselov KS, Yeates SG (2019) All inkjet-printed graphene-silver composite ink on textiles for highly conductive wearable electronics applications. Sci Rep 9:8035

    Article  PubMed  PubMed Central  Google Scholar 

  143. Amoli BM, Trinidad J, Hu A, Zhou YN, Zhao B (2015) Highly electrically conductive adhesives using silver nanoparticle (Ag NP)-decorated graphene: the effect of NPs sintering on the electrical conductivity improvement. J Mater Sci Mater Electron 26:590–600

    Article  Google Scholar 

  144. Ma H, Zeng J, Harrington S, Ma L, Ma M, Guo X, Ma Y (2016) Hydrothermal fabrication of silver nanowires-silver nanoparticles-graphene nanosheets composites in enhancing electrical conductive performance of electrically conductive adhesives. Nanomaterials 6:119. https://doi.org/10.3390/nano6060119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Yu L, Zhang Y, Zhang B, Liu J (2014) Enhanced antibacterial activity of silver nanoparticles/halloysite nanotubes/ graphene nanocomposites with sandwich-like structure. Sci Rep 4:4551

    Article  PubMed  PubMed Central  Google Scholar 

  146. Das MR, Sarma RK, Saikia R, Kale VS, Shelke MV, Sengupta P (2011) Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity. Colloids Surf B 83:16–22

    Article  CAS  Google Scholar 

  147. Newton SM, Lau C, Gurcha SS, Besra GS, Wright (2002) The evaluation of forty-three plant species for in vitro antimycobacterial activities; isolation of active constituents from Psoralea corylifolia and Sanguinaria Canadensis. J Ethnopharmacol 79:57–67

    Article  PubMed  Google Scholar 

  148. Li P, You Z, Haugstad G, Cui T (2011) Graphene fixed-end beam arrays based on mechanical exfoliation. Appl Phys Lett 98:253105

    Article  Google Scholar 

  149. Wei Z, Yang J, Bi K, Chen Y (2014) Mode dependent lattice of thermal conductivity of single layer graphene. J Appl Phys 116(15):153503

    Article  Google Scholar 

  150. Rollings E, Gweon GH, Zhou SY, Mun BS, McChesney JL, Hussain BS, Fedorov AV, First PN, de Heer WA, Lanzara A (2006) Synthesis and characterization of atomically thin graphite films on a silicon carbide substrate. J Phys Chem Solids 67(9–10):2172–2177

    Article  CAS  Google Scholar 

  151. Zhang W, Cui J, Tao CA, Wu Y, Li Z, Ma L, Wen Y, Li G (2009) A strategy for producing pure single-layer graphene sheets based on a confined self-assembly approach. Angew Chem Int Ed 48(32):5864–5868

    Article  CAS  Google Scholar 

  152. Li N, Wang Z, Zhao K, Shi Z, Gu Z, Xu S (2009) Large scale synthesis of n-doped multi-layered graphene sheets by simple arc-discharge method. Carbon 48(1):255–259

    Article  Google Scholar 

  153. Wu ZS, Ren W, Gao L, Zhao J, Chen Z, Liu B, Tang D, Yu B, Jiang C, Cheng HM (2009) Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano 3(2):411–417

    Article  CAS  PubMed  Google Scholar 

  154. Behabtu N, Lomeda JR, Green MJ, Higginbotham AL, Sinitskii A, Kosynkin DV, Tsentalovich D, Parra-Vasquez ANG, Schmidt J, Kesselman E, Cohen Y, Talmon Y, Pasquali TJM (2010) Spontaneous high-concentration dispersions and liquid crystals of grapheme. Nat Nanotechnol 5:406–411

    Article  CAS  PubMed  Google Scholar 

  155. Liu N, Luo F, Wu H, Liu Y, Zhang C, Chen J (2008) One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv Funct Mater 18(10):1518–1525

    Article  CAS  Google Scholar 

  156. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339

    Article  CAS  Google Scholar 

  157. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39(1):228–240

    Article  CAS  PubMed  Google Scholar 

  158. Schwamb T, Burg BR, Schirmer NC, Poulikakos D (2009) An electrical method for the measurement of the thermal and electrical conductivity of reduced graphene oxide nanostructures. Nanotechnology 20(40):405704

    Article  PubMed  Google Scholar 

  159. Tan S, Wu X, Xing Y, Lilak S, Wu M, Zhao JX (2020) Enhanced synergetic antibacterial activity by a reduce graphene oxide/Ag nanocomposite through the photothermal effect. Colloids Surf B: Biointerfaces 185:110616

    Article  CAS  PubMed  Google Scholar 

  160. Barua S, Thakur S, Aidew L, Buragohain AK, Chattopadhyay P, Karak N (2014) One step preparation of biocompatible, antimicrobial reduced graphene oxide-silver nanohybrid as a topical antimicrobial agent. RSC Adv 4(19):9777–9783

    Article  CAS  Google Scholar 

  161. Farouk A, El-Sayed Saeed S, Sharafa S, Abd El-Hady MM (2020) Photocatalytic activity and antibacterial properties of linen fabric using reduced graphene oxide/silver nanocomposite. RSC Adv 10:41600–41611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Faria AF, Martinez DST, Meira SMM, de Moraes ACM, Brandelli A, Filho AGS, Luiz Alves O (2014) Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets. Colloids Surf B Biointerfaces 113:115–124

    Article  PubMed  Google Scholar 

  163. Prasad K, Lekshmi GS, Ostrikov K et al (2017) Synergic bactericidal effects of reduced graphene oxide and silver nanoparticles against Gram-positive and Gram-negative bacteria. Sci Rep 7:1591. https://doi.org/10.1038/s41598-017-01669-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Memon H, Wang H, Yasin S, Halepolo A (2018) Influence of incorporating silver nanoparticles in protease treatment of fiber friction antistatic and antibacterial properties of wool fibers. J Chem. https://doi.org/10.1155/2018/4845687

    Article  Google Scholar 

  165. Praveen G, Akshay B, Joshi V, Bhardwaj SK, Agarwal S (2023) Conducting & antimicrobial behaviour of graphene and silver based nano-particles. Res J Chem Environ 27(6):96111. https://doi.org/10.25303/2706rjce0960111

    Article  CAS  Google Scholar 

  166. Praveen G (2019) Surface characterization of amidoximated acrylic copolymer membrane. J Int Acad Phys Sci 23(2):177–184

    Google Scholar 

Download references

Funding

No funding is provided for this research article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gazala Praveen.

Ethics declarations

Conflict of interest

The authors report no declarations of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Praveen, G., Rajkhowa, S. Recent advances of economically synthesised polymers/composites consisting of graphene and silver nanoparticles to achieve sustainable existence. Polym. Bull. (2024). https://doi.org/10.1007/s00289-024-05199-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00289-024-05199-9

Keywords

Navigation