Skip to main content
Log in

Optical performances of (\({\varvec{A}}{\varvec{u}},{\varvec{S}}{\varvec{n}},{\varvec{I}}\)) adsorbed phosphorene nanostructures with improved absorption in visible region: a comparative computational study

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Phosphorene is a remarkable 2D material with huge potential in photonics and optoelectronic. The influence of adsorption of \(Au, \; Sn \; \text{and} \; I\) atoms on the optical performance of phosphorene monolayer by the computational simulation based on density functional theory has been investigated. All of the nanostructures have a direct bandgap \((0.32\; \text{to} \;0.79\; {\text{eV}})\) are semiconducting in nature, allowing the development of wide range of optical semiconductor devices. The findings demonstrate that in pure phosphorene monolayer, absorption peak occurs primarily in the blue region of visible spectrum and in certain portion of ultraviolet region of spectrum. The absorption peaks move towards the red region of the visible light spectrum after the adsorption of \(Au, \; Sn \; \text{and} \; I\) metal atoms on the pristine phosphorene surface. Among them, \(Sn\) adsorbed nanostructures exhibit significantly high and stable absorption spread across the entire visible range (400–780 nm). The dielectric functions and refractive index of all nanostructures also computed. Since \(Au, \; Sn \; \text{and} \; I\) adsorbed phosphorene semiconductor nanostructures exhibit enhanced absorption in the broad usable range of visible spectrum make them the ideal choice for photonic and optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6

Similar content being viewed by others

Data availability

All data generated and analyzed during this study are included in this published article.

References

  • Chaudhary, V., Neugebauer, P., Mounkachi, O., Lahbabi, S., El Fatimy, A.: Phosphorene—an emerging two-dimensional material: recent advances in synthesis, functionalization, and applications. 2D Materials 9(3), 1–23 (2022)

  • Chen, H., Huang, P., Guo, D., Xie, G.: Anisotropic mechanical properties of black phosphorus nanoribbons. J. Phys. Chem. C 120(51), 29491–29497 (2016)

    Article  CAS  Google Scholar 

  • Fukuoka, S., Taen, T., Osada, T.: Electronic structure and the properties of phosphorene and few-layer black phosphorus. J. Phys. Soc. Jpn. 84(12), 1–41 (2015)

  • Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)

    Article  CAS  PubMed  ADS  Google Scholar 

  • Griffiths, D.J.: Introduction to electrodynamics, Prentice Hall (1999)

  • Hattori, Y., Taniguchi, T., Watanabe, K., Nagashio, K.: Layer-by-layer dielectric breakdown of hexagonal boron nitride. ACS Nano 9(1), 916–921 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Hu, T., Hong, J.: First-principles study of metal adatom adsorption on black phosphorene. J. Phys. Chem. C 119(15), 8199–8207 (2015)

    Article  CAS  Google Scholar 

  • Kong, L.J., Liu, G.H., Zhang, Y.J.: Tuning the electronic and optical properties of phosphorene by transition-metal and nonmetallic atom co-doping. RSC Adv. 6(13), 10919–10929 (2016)

    Article  CAS  ADS  Google Scholar 

  • Köpf, M., Eckstein, N., Pfister, D., Grotz, C., Krüger, I., Greiwe, M., Hansen, T., Kohlmann, H., Nilges, T.: Access and in situ growth of phosphorene–precursor black phosphorus. J. Cryst. Growth 405, 6–10 (2014)

    Article  ADS  Google Scholar 

  • Kutlu, E., Narin, P.O.L.A.T., Lisesivdin, S.B., Ozbay, E.: Electronic and optical properties of black phosphorus doped with Au, Sn and I atoms. Philos. Mag. 98(2), 155–164 (2018)

    Article  CAS  ADS  Google Scholar 

  • Lange, S., Schmidt, P., Nilges, T.: Au3SnP7@ black phosphorus: an easy access to black phosphorus. Inorg. Chem. 46(10), 4028–4035 (2007)

    Article  CAS  PubMed  Google Scholar 

  • Li, L.H., Cervenka, J., Watanabe, K., Taniguchi, T., Chen, Y.: Strong oxidation resistance of atomically thin boron nitride nanosheets. ACS Nano 8(2), 1457–1462 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Liu, H., Neal, A.T., Zhu, Z., Luo, Z., Xu, X., Tománek, D., Ye, P.D.: Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8(4), 4033–4041 (2014a)

    Article  CAS  PubMed  Google Scholar 

  • Liu, H., Neal, A.T., Zhu, Z., Tomanek, D., Ye, P.D.: Phosphorene: a new 2D material with high carrier mobility. arXiv preprint arXiv:1401.4133 (2014b).

  • Ma, Q., Ren, G., Xu, K., Ou, J.Z.: Tunable optical properties of 2D materials and their applications. Adv. Opt. Mater. 9(2), 1–26 (2021)

    Article  CAS  Google Scholar 

  • Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13(12), 5188–5192 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  • Nandee, R., Chowdhury, M.A., Shahid, A., Hossain, N., Rana, M.: Band gap formation of 2D materialin graphene: future prospect and challenges. Results Eng. 15, 1–19 (2022)

    Article  CAS  Google Scholar 

  • Ni, Z., Liu, Q., Tang, K., Zheng, J., Zhou, J., Qin, R., Gao, Z., Yu, D., Lu, J.: Tunable bandgap in silicene and germanene. Nano Lett. 12(1), 113–118 (2012)

    Article  CAS  PubMed  ADS  Google Scholar 

  • Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996)

    Article  CAS  PubMed  ADS  Google Scholar 

  • Probert, M.: Electronic Structure: Basic Theory and Practical Methods, by Richard M. Martin, Contemporary Physics 52(1), 77–77 (2011)

  • Ranjan, P., Choudhary, S.: Enhanced absorption in black phosphorene on adsorption of Li and K for use in energy conversion applications. Opt. Quant. Electron. 54(3), 1–10 (2022)

    Article  CAS  Google Scholar 

  • Saharan, S., Ghanekar, U., Meena, S.: Two-dimensional MXenes for energy storage: computational and experimental approaches. ChemistrySelect 7(48), 1–21 (2022)

    Article  CAS  Google Scholar 

  • Shanmugam, V., Mensah, R.A., Babu, K., Gawusu, S., Chanda, A., Tu, Y., Neisiany, R.E., Försth, M., Sas, G., Das, O.: A review of the synthesis, properties, and applications of 2D materials. Part. Part. Syst. Charact. 39(6), 2200031 (2022)

    Article  Google Scholar 

  • Somvanshi, D., Jit, S.: Transition metal dichalcogenides based two-dimensional heterostructures for optoelectronic applications. In: 2D Nanoscale Heterostructured Materials, pp. 125–149. Elsevier, New York (2020)

  • Sunita, Ghanekar, U., Meena, S.: Heteroatom induced tailoring electronic and optical properties of V3C2 MXene through bandgap opening: A computational insight. Chem. Phys. Lett. 799, 1–9 (2022)

  • Tian, H., Chin, M.L., Najmaei, S., Guo, Q., Xia, F., Wang, H., Dubey, M.: Optoelectronic devices based on two-dimensional transition metal dichalcogenides. Nano Res. 9, 1543–1560 (2016)

    Article  CAS  Google Scholar 

  • Zeng, Y., Guo, Z.: Synthesis and stabilization of black phosphorus and phosphorene: recent progress and perspectives. iScience 24(10), 1–25 (2021)

  • Zhao, M., Niu, X., Guan, L., Qian, H., Wang, W., Sha, J., Wang, Y.: Understanding the growth of black phosphorus crystals. CrystEngComm 18(40), 7737–7744 (2016)

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

PS contributed to the formal analysis, wrote the manuscript and performed the mathematical simulations and analytical calculations. Dr. SSC and Dr. GV participated in the supervision process. Each author added to the final draught of the manuscript by discussing the findings, offering feedback. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Priyanka Singh.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

The authors would like to clarify that there are no financial/non-financial interests that are directly or indirectly related to the work submitted for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Chauhan, S.S. & Verma, G. Optical performances of (\({\varvec{A}}{\varvec{u}},{\varvec{S}}{\varvec{n}},{\varvec{I}}\)) adsorbed phosphorene nanostructures with improved absorption in visible region: a comparative computational study. Opt Quant Electron 56, 478 (2024). https://doi.org/10.1007/s11082-023-06115-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-06115-7

Keywords

Navigation