ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Ozonolysis of Mixed Oleic-Acid/Stearic-Acid Particles:  Reaction Kinetics and Chemical Morphology

View Author Information
Division of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138; Department of Geological Sciences and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287; Chemistry Department, Boston College, Chestnut Hill, Massachusetts 02467; Aerodyne Research, Inc., Billerica, Massachusetts 08121; and Institute of Low-Temperature Science, Hokkaido University, Sapporo, 060-0819, Japan
Cite this: J. Phys. Chem. A 2005, 109, 48, 10910–10919
Publication Date (Web):November 10, 2005
https://doi.org/10.1021/jp054714d
Copyright © 2005 American Chemical Society

    Article Views

    1059

    Altmetric

    -

    Citations

    98
    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    The ozonolysis of mixed oleic-acid/stearic-acid (OL/SA) aerosol particles from 0/100 to 100/0 wt % composition is studied. The magnitude of the divergence of the particle beam inside an aerosol mass spectrometer shows that, in the concentration range 100/0 to 60/40, the mixed OL/SA particles are liquid prior to reaction. Upon ozonolysis, particles having compositions of 75/25 and 60/40 change shape, indicating that they have solidified during reaction. Transmission electron micrographs show that SA(s) forms needles. For particles having compositions of 75/25, 60/40, and greater SA content, the reaction kinetics exhibit an initial fast decay of OL for low O3 exposure with no further loss of OL at higher O3 exposures. For compositions from 50/50 to 10/90, the residual OL concentration remains at 28 ± 2% of its initial value. The initial reactive uptake coefficient for O3, as determined by OL loss, decreases linearly from 1.25 (±0.2) × 10-3 to 0.60 (±0.15) × 10-3 for composition changes of 100/0 to 60/40. At 50/50 composition, the uptake coefficient drops abruptly to 0.15 (±0.1) × 10-3, and there are no further changes with increased SA content. These observations can be explained with a combination of three postulates:  (1) Unreacted mixed particles remain as supersaturated liquids up to 60/40 composition, and the OL in this form rapidly reacts with O3. (2) SA, as it solidifies, locks into its crystal structure a significant amount of OL, and this OL is completely inaccessible to O3. (3) Accompanying crystallization, some stearic acid molecules connect as a filamentous network to form a semipermeable gel containing liquid OL but with a reduced uptake coefficient because of the decrease in molecular diffusivity in the gel. An individual particle of 50/50 to 90/10 is hypothesized as a combination of SA crystals having OL impurities (postulate 2) that are partially enveloped by an SA/OL gel (postulate 3) to explain (a) the abrupt drop in the uptake coefficient from 60/40 to 50/50 and (b) the residual OL content even after high ozone exposure. The results of this study, pointing out the important effects of particle phase, composition, and morphology on chemical reactivity, contribute to an improved understanding of the aging processes of atmospheric aerosol particles.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     Harvard University.

     Arizona State University.

    §

     Boston College.

     Aerodyne Research, Inc.

     Institute of Low-Temperature Science.

    *

     To whom correspondence should be addressed. E-mail:  [email protected]. Web:  www.deas.harvard.edu/environmental-chemistry.

    Cited By

    This article is cited by 98 publications.

    1. Huifan Deng, Jia Qiu, Runqi Zhang, Jinli Xu, Yuekun Qu, Jixuan Wang, Yingjun Liu, Sasho Gligorovski. Ozone Chemistry on Greasy Glass Surfaces Affects the Levels of Volatile Organic Compounds in Indoor Environments. Environmental Science & Technology 2024, 58 (19) , 8393-8403. https://doi.org/10.1021/acs.est.3c08196
    2. Ryan Reynolds, Musahid Ahmed, Kevin R. Wilson. Constraining the Reaction Rate of Criegee Intermediates with Carboxylic Acids during the Multiphase Ozonolysis of Aerosolized Alkenes. ACS Earth and Space Chemistry 2023, 7 (4) , 901-911. https://doi.org/10.1021/acsearthspacechem.3c00026
    3. Adam Milsom, Adam M. Squires, Isabel Quant, Nicholas J. Terrill, Steven Huband, Ben Woden, Edna R. Cabrera-Martinez, Christian Pfrang. Exploring the Nanostructures Accessible to an Organic Surfactant Atmospheric Aerosol Proxy. The Journal of Physical Chemistry A 2022, 126 (40) , 7331-7341. https://doi.org/10.1021/acs.jpca.2c04611
    4. Emily-Jean E. Ott, Theresa M. Kucinski, Joseph Nelson Dawson, Miriam Arak Freedman. Use of Transmission Electron Microscopy for Analysis of Aerosol Particles and Strategies for Imaging Fragile Particles. Analytical Chemistry 2021, 93 (33) , 11347-11356. https://doi.org/10.1021/acs.analchem.0c05225
    5. Jienan Li, Daniel A. Knopf. Representation of Multiphase OH Oxidation of Amorphous Organic Aerosol for Tropospheric Conditions. Environmental Science & Technology 2021, 55 (11) , 7266-7275. https://doi.org/10.1021/acs.est.0c07668
    6. Michael I. Jacobs, Bo Xu, Oleg Kostko, Aaron A. Wiegel, Frances A. Houle, Musahid Ahmed, Kevin R. Wilson. Using Nanoparticle X-ray Spectroscopy to Probe the Formation of Reactive Chemical Gradients in Diffusion-Limited Aerosols. The Journal of Physical Chemistry A 2019, 123 (28) , 6034-6044. https://doi.org/10.1021/acs.jpca.9b04507
    7. Pengfei Liu, Yong Jie Li, Yan Wang, Adam P. Bateman, Yue Zhang, Zhaoheng Gong, Allan K. Bertram, and Scot T. Martin . Highly Viscous States Affect the Browning of Atmospheric Organic Particulate Matter. ACS Central Science 2018, 4 (2) , 207-215. https://doi.org/10.1021/acscentsci.7b00452
    8. Dhruv Mitroo, Jiewei Wu, Peter F. Colletti, Seung Soo Lee, Michael J. Walker, William H. Brune, Brent J. Williams, and John D. Fortner . Atmospheric Reactivity of Fullerene (C60) Aerosols. ACS Earth and Space Chemistry 2018, 2 (2) , 95-102. https://doi.org/10.1021/acsearthspacechem.7b00116
    9. MingYi Wang, Lei Yao, Jun Zheng, XinKe Wang, JianMin Chen, Xin Yang, Douglas R. Worsnop, Neil M. Donahue, and Lin Wang . Reactions of Atmospheric Particulate Stabilized Criegee Intermediates Lead to High-Molecular-Weight Aerosol Components. Environmental Science & Technology 2016, 50 (11) , 5702-5710. https://doi.org/10.1021/acs.est.6b02114
    10. Yong Jie Li, Pengfei Liu, Zhaoheng Gong, Yan Wang, Adam P. Bateman, Clara Bergoend, Allan K. Bertram, and Scot T. Martin . Chemical Reactivity and Liquid/Nonliquid States of Secondary Organic Material. Environmental Science & Technology 2015, 49 (22) , 13264-13274. https://doi.org/10.1021/acs.est.5b03392
    11. Ulrich Pöschl and Manabu Shiraiwa . Multiphase Chemistry at the Atmosphere–Biosphere Interface Influencing Climate and Public Health in the Anthropocene. Chemical Reviews 2015, 115 (10) , 4440-4475. https://doi.org/10.1021/cr500487s
    12. Maxence Mendez, Nicolas Visez, Sylvie Gosselin, Vincent Crenn, Veronique Riffault, and Denis Petitprez . Reactive and Nonreactive Ozone Uptake during Aging of Oleic Acid Particles. The Journal of Physical Chemistry A 2014, 118 (40) , 9471-9481. https://doi.org/10.1021/jp503572c
    13. Katheryn R. Kolesar, Gina Buffaloe, Kevin R. Wilson, and Christopher D. Cappa . OH-Initiated Heterogeneous Oxidation of Internally-Mixed Squalane and Secondary Organic Aerosol. Environmental Science & Technology 2014, 48 (6) , 3196-3202. https://doi.org/10.1021/es405177d
    14. Yongchun Liu, John Liggio, Tom Harner, Liisa Jantunen, Mahiba Shoeib, and Shao-Meng Li . Heterogeneous OH Initiated Oxidation: A Possible Explanation for the Persistence of Organophosphate Flame Retardants in Air. Environmental Science & Technology 2014, 48 (2) , 1041-1048. https://doi.org/10.1021/es404515k
    15. Guang Zeng, Sara Holladay, Danielle Langlois, Yunhong Zhang, and Yong Liu . Kinetics of Heterogeneous Reaction of Ozone with Linoleic Acid and its Dependence on Temperature, Physical State, RH, and Ozone Concentration. The Journal of Physical Chemistry A 2013, 117 (9) , 1963-1974. https://doi.org/10.1021/jp308304n
    16. Lindsay Renbaum-Wolff and Geoffrey D. Smith . “Virtual Injector” Flow Tube Method for Measuring Relative Rates Kinetics of Gas-Phase and Aerosol Species. The Journal of Physical Chemistry A 2012, 116 (25) , 6664-6674. https://doi.org/10.1021/jp303221w
    17. Benjamin J. Dennis-Smither, Kate L. Hanford, Nana-Owusua A. Kwamena, Rachael E. H. Miles, and Jonathan P. Reid . Phase, Morphology, and Hygroscopicity of Mixed Oleic Acid/Sodium Chloride/Water Aerosol Particles before and after Ozonolysis. The Journal of Physical Chemistry A 2012, 116 (24) , 6159-6168. https://doi.org/10.1021/jp211429f
    18. Hui-Ming Hung and Chen-Wei Tang. Effects of Temperature and Physical State on Heterogeneous Oxidation of Oleic Acid Droplets with Ozone. The Journal of Physical Chemistry A 2010, 114 (50) , 13104-13112. https://doi.org/10.1021/jp105042w
    19. Bryan R. Bzdek, Douglas P. Ridge, and Murray V. Johnston. Size-Dependent Reactions of Ammonium Bisulfate Clusters with Dimethylamine. The Journal of Physical Chemistry A 2010, 114 (43) , 11638-11644. https://doi.org/10.1021/jp106363m
    20. Scott Geddes, Brian Nichols, Stevenson Flemer, Jr., Jessica Eisenhauer, James Zahardis, and Giuseppe A. Petrucci. Near-Infrared Laser Desorption/Ionization Aerosol Mass Spectrometry for Investigating Primary and Secondary Organic Aerosols under Low Loading Conditions. Analytical Chemistry 2010, 82 (19) , 7915-7923. https://doi.org/10.1021/ac1013354
    21. Scott A. Epstein and Neil M. Donahue. The Kinetics of Tetramethylethene Ozonolysis: Decomposition of the Primary Ozonide and Subsequent Product Formation in the Condensed Phase. The Journal of Physical Chemistry A 2008, 112 (51) , 13535-13541. https://doi.org/10.1021/jp807682y
    22. Elias P. Rosen, Eva R. Garland and Tomas Baer. Ozonolysis of Oleic Acid Adsorbed to Polar and Nonpolar Aerosol Particles. The Journal of Physical Chemistry A 2008, 112 (41) , 10315-10324. https://doi.org/10.1021/jp8045802
    23. Emily A. Weitkamp, Kara E. Huff Hartz, Amy M. Sage, Neil M. Donahue and Allen L. Robinson. Laboratory Measurements of the Heterogeneous Oxidation of Condensed-Phase Organic Molecular Makers for Meat Cooking Emissions. Environmental Science & Technology 2008, 42 (14) , 5177-5182. https://doi.org/10.1021/es800181b
    24. Anthony L. Gomez, Tanza L. Lewis, Stacy A. Wilkinson and Sergey A. Nizkorodov. Stoichiometry of Ozonation of Environmentally Relevant Olefins in Saturated Hydrocarbon Solvents. Environmental Science & Technology 2008, 42 (10) , 3582-3587. https://doi.org/10.1021/es800096d
    25. J. E. Shilling,, S. M. King,, M. Mochida,, D. R. Worsnop, and, S. T. Martin. Mass Spectral Evidence That Small Changes in Composition Caused by Oxidative Aging Processes Alter Aerosol CCN Properties. The Journal of Physical Chemistry A 2007, 111 (17) , 3358-3368. https://doi.org/10.1021/jp068822r
    26. Hui-Ming Hung and, Parisa Ariya. Oxidation of Oleic Acid and Oleic Acid/Sodium Chloride(aq) Mixture Droplets with Ozone:  Changes of Hygroscopicity and Role of Secondary Reactions. The Journal of Physical Chemistry A 2007, 111 (4) , 620-632. https://doi.org/10.1021/jp0654563
    27. Laura Mitchem,, Jariya Buajarern,, Rebecca J. Hopkins,, Andrew D. Ward,, Richard J. J. Gilham,, Roy L. Johnston, and, Jonathan P. Reid. Spectroscopy of Growing and Evaporating Water Droplets:  Exploring the Variation in Equilibrium Droplet Size with Relative Humidity. The Journal of Physical Chemistry A 2006, 110 (26) , 8116-8125. https://doi.org/10.1021/jp061135f
    28. Ravleen Kaur Kohli, Ryan S. Reynolds, Kevin R. Wilson, James F. Davies. Exploring the influence of particle phase in the ozonolysis of oleic and elaidic acid. Aerosol Science and Technology 2024, 58 (4) , 356-373. https://doi.org/10.1080/02786826.2023.2226183
    29. Wenli Liu, Longkun He, Yingjun Liu, Keren Liao, Qi Chen, Mikinori Kuwata. Suppressed atmospheric chemical aging of cooking organic aerosol particles in wintertime conditions. Atmospheric Chemistry and Physics 2024, 24 (9) , 5625-5636. https://doi.org/10.5194/acp-24-5625-2024
    30. Wenli Liu, Keren Liao, Qi Chen, Longkun He, Yingjun Liu, Mikinori Kuwata. Existence of Crystalline Ammonium Sulfate Nuclei Affects Chemical Reactivity of Oleic Acid Particles Through Heterogeneous Nucleation. Journal of Geophysical Research: Atmospheres 2023, 128 (12) https://doi.org/10.1029/2023JD038675
    31. Adam Milsom, Shaojun Qi, Ashmi Mishra, Thomas Berkemeier, Zhenyu Zhang, Christian Pfrang. Technical note: In situ measurements and modelling of the oxidation kinetics in films of a cooking aerosol proxy using a quartz crystal microbalance with dissipation monitoring (QCM-D). Atmospheric Chemistry and Physics 2023, 23 (19) , 10835-10843. https://doi.org/10.5194/acp-23-10835-2023
    32. Aisling C. Stewart, Martin J. Paterson, Stuart J. Greaves. The influence of saturation on the surface structure of mixed fatty acid-on-water aerosol: a molecular dynamics study. Environmental Science: Atmospheres 2022, 2 (6) , 1516-1525. https://doi.org/10.1039/D2EA00089J
    33. Adam Milsom, Adam M. Squires, Maximilian W. A. Skoda, Philipp Gutfreund, Eleonore Mason, Nicholas J. Terrill, Christian Pfrang. The evolution of surface structure during simulated atmospheric ageing of nano-scale coatings of an organic surfactant aerosol proxy. Environmental Science: Atmospheres 2022, 44 https://doi.org/10.1039/D2EA00011C
    34. Runhua Wang, Yajuan Huang, Qian Hu, Gang Cao, Rongshu Zhu. In-Situ FTIR Study of Heterogeneous Oxidation of SOA Tracers by Ozone. Frontiers in Environmental Chemistry 2021, 2 https://doi.org/10.3389/fenvc.2021.732219
    35. Qiongqiong Wang, Jian Zhen Yu. Ambient Measurements of Heterogeneous Ozone Oxidation Rates of Oleic, Elaidic, and Linoleic Acid Using a Relative Rate Constant Approach in an Urban Environment. Geophysical Research Letters 2021, 48 (19) https://doi.org/10.1029/2021GL095130
    36. Martin D. King, Stephanie H. Jones, Claire O. M. Lucas, Katherine C. Thompson, Adrian R. Rennie, Andrew D. Ward, Amelia A. Marks, Fleur N. Fisher, Christian Pfrang, Arwel V. Hughes, Richard A. Campbell. The reaction of oleic acid monolayers with gas-phase ozone at the air water interface: the effect of sub-phase viscosity, and inert secondary components. Physical Chemistry Chemical Physics 2020, 22 (48) , 28032-28044. https://doi.org/10.1039/D0CP03934A
    37. Annemarie Winters, Fook Chiong Cheong, Mary Ann Odete, Juliana Lumer, David B. Ruffner, Kimberly I. Mishra, David G. Grier, Laura A. Philips. Quantitative Differentiation of Protein Aggregates From Other Subvisible Particles in Viscous Mixtures Through Holographic Characterization. Journal of Pharmaceutical Sciences 2020, 109 (8) , 2405-2412. https://doi.org/10.1016/j.xphs.2020.05.002
    38. Jienan Li, Seanna M. Forrester, Daniel A. Knopf. Heterogeneous oxidation of amorphous organic aerosol surrogates by O3, NO3, and OH at typical tropospheric temperatures. Atmospheric Chemistry and Physics 2020, 20 (10) , 6055-6080. https://doi.org/10.5194/acp-20-6055-2020
    39. Hanyu Fan, Fabien Goulay. Effect of Bulk Composition on the Heterogeneous Oxidation of Semi-Solid Atmospheric Aerosols. Atmosphere 2019, 10 (12) , 791. https://doi.org/10.3390/atmos10120791
    40. Leonid Nichman, Martin Wolf, Paul Davidovits, Timothy B. Onasch, Yue Zhang, Doug R. Worsnop, Janarjan Bhandari, Claudio Mazzoleni, Daniel J. Cziczo. Laboratory study of the heterogeneous ice nucleation on black-carbon-containing aerosol. Atmospheric Chemistry and Physics 2019, 19 (19) , 12175-12194. https://doi.org/10.5194/acp-19-12175-2019
    41. Elizabeth Pillar-Little, Marcelo Guzman. An Overview of Dynamic Heterogeneous Oxidations in the Troposphere. Environments 2018, 5 (9) , 104. https://doi.org/10.3390/environments5090104
    42. Rui Li, Xinfeng Wang, Rongrong Gu, Chunying Lu, Fanping Zhu, Likun Xue, Huijun Xie, Lin Du, Jianmin Chen, Wenxing Wang. Identification and semi-quantification of biogenic organic nitrates in ambient particulate matters by UHPLC/ESI-MS. Atmospheric Environment 2018, 176 , 140-147. https://doi.org/10.1016/j.atmosenv.2017.12.038
    43. Dhruv Mitroo, Yujian Sun, Daniel P. Combest, Purushottam Kumar, Brent J. Williams. Assessing the degree of plug flow in oxidation flow reactors (OFRs): a study on a potential aerosol mass (PAM) reactor. Atmospheric Measurement Techniques 2018, 11 (3) , 1741-1756. https://doi.org/10.5194/amt-11-1741-2018
    44. Xiang He, Chunbo Leng, Shufeng Pang, Yunhong Zhang. Kinetics study of heterogeneous reactions of ozone with unsaturated fatty acid single droplets using micro-FTIR spectroscopy. RSC Advances 2017, 7 (6) , 3204-3213. https://doi.org/10.1039/C6RA25255A
    45. Christos Kaltsonoudis, Evangelia Kostenidou, Evangelos Louvaris, Magda Psichoudaki, Epameinondas Tsiligiannis, Kalliopi Florou, Aikaterini Liangou, Spyros N. Pandis. Characterization of fresh and aged organic aerosol emissions from meat charbroiling. Atmospheric Chemistry and Physics 2017, 17 (11) , 7143-7155. https://doi.org/10.5194/acp-17-7143-2017
    46. Suad S. Al-Kindi, Francis D. Pope, David C. Beddows, William J. Bloss, Roy M. Harrison. Size-dependent chemical ageing of oleic acid aerosol under dry and humidified conditions. Atmospheric Chemistry and Physics 2016, 16 (24) , 15561-15579. https://doi.org/10.5194/acp-16-15561-2016
    47. Juan J. Nájera, Carl J. Percival, Andrew B. Horn. Infrared Spectroscopic Evidence for a Heterogeneous Reaction between Ozone and Sodium Oleate at the Gas–Aerosol Interface: Effect of Relative Humidity. International Journal of Chemical Kinetics 2015, 47 (4) , 277-288. https://doi.org/10.1002/kin.20907
    48. Michał Piotr Kwiatkowski, Saburoh Satoh, Chobei Yamabe, Satoshi Ihara, Masanori Nieda. Study of the Sonication/Ozone/Argon Process for Saturated Free Fatty Acids Degradation in Aqueous Solution. Ozone: Science & Engineering 2015, 37 (2) , 93-105. https://doi.org/10.1080/01919512.2014.918501
    49. Chunbo Leng, Joseph Hiltner, Hai Pham, Judas Kelley, Mindy Mach, Yunhong Zhang, Yong Liu. Kinetics study of heterogeneous reactions of ozone with erucic acid using an ATR-IR flow reactor. Physical Chemistry Chemical Physics 2014, 16 (9) , 4350. https://doi.org/10.1039/c3cp54646b
    50. Y. Liu, L. Huang, S.-M. Li, T. Harner, J. Liggio. OH-initiated heterogeneous oxidation of tris-2-butoxyethyl phosphate: implications for its fate in the atmosphere. Atmospheric Chemistry and Physics 2014, 14 (22) , 12195-12207. https://doi.org/10.5194/acp-14-12195-2014
    51. Manabu Shiraiwa, Andreas Zuend, Allan K. Bertram, John H. Seinfeld. Gas–particle partitioning of atmospheric aerosols: interplay of physical state, non-ideal mixing and morphology. Physical Chemistry Chemical Physics 2013, 15 (27) , 11441. https://doi.org/10.1039/c3cp51595h
    52. L. Renbaum-Wolff, J. W. Grayson, A. K. Bertram. Technical Note: New methodology for measuring viscosities in small volumes characteristic of environmental chamber particle samples. Atmospheric Chemistry and Physics 2013, 13 (2) , 791-802. https://doi.org/10.5194/acp-13-791-2013
    53. Benjamin J. Dennis‐Smither, Rachael E. H. Miles, Jonathan P. Reid. Oxidative aging of mixed oleic acid/sodium chloride aerosol particles. Journal of Geophysical Research: Atmospheres 2012, 117 (D20) https://doi.org/10.1029/2012JD018163
    54. Mikinori Kuwata, Scot T. Martin. Phase of atmospheric secondary organic material affects its reactivity. Proceedings of the National Academy of Sciences 2012, 109 (43) , 17354-17359. https://doi.org/10.1073/pnas.1209071109
    55. S. Decesari, E. Finessi, M. Rinaldi, M. Paglione, S. Fuzzi, E. G. Stephanou, T. Tziaras, A. Spyros, D. Ceburnis, C. O'Dowd, M. Dall'Osto, R. M. Harrison, J. Allan, H. Coe, M. C. Facchini. Primary and secondary marine organic aerosols over the North Atlantic Ocean during the MAP experiment. Journal of Geophysical Research: Atmospheres 2011, 116 (D22) , n/a-n/a. https://doi.org/10.1029/2011JD016204
    56. Ulrich Pöschl. Gas–particle interactions of tropospheric aerosols: Kinetic and thermodynamic perspectives of multiphase chemical reactions, amorphous organic substances, and the activation of cloud condensation nuclei. Atmospheric Research 2011, 101 (3) , 562-573. https://doi.org/10.1016/j.atmosres.2010.12.018
    57. A. N. Schwier, N. Sareen, T. L. Lathem, A. Nenes, V. F. McNeill. Ozone oxidation of oleic acid surface films decreases aerosol cloud condensation nuclei activity. Journal of Geophysical Research 2011, 116 (D16) https://doi.org/10.1029/2010JD015520
    58. S. Xiao, A. K. Bertram. Reactive uptake kinetics of NO3 on multicomponent and multiphase organic mixtures containing unsaturated and saturated organics. Physical Chemistry Chemical Physics 2011, 13 (14) , 6628. https://doi.org/10.1039/c0cp02682d
    59. M. J. Cubison, A. M. Ortega, P. L. Hayes, D. K. Farmer, D. Day, M. J. Lechner, W. H. Brune, E. Apel, G. S. Diskin, J. A. Fisher, H. E. Fuelberg, A. Hecobian, D. J. Knapp, T. Mikoviny, D. Riemer, G. W. Sachse, W. Sessions, R. J. Weber, A. J. Weinheimer, A. Wisthaler, J. L. Jimenez. Effects of aging on organic aerosol from open biomass burning smoke in aircraft and laboratory studies. Atmospheric Chemistry and Physics 2011, 11 (23) , 12049-12064. https://doi.org/10.5194/acp-11-12049-2011
    60. A. T. Lambe, A. T. Ahern, L. R. Williams, J. G. Slowik, J. P. S. Wong, J. P. D. Abbatt, W. H. Brune, N. L. Ng, J. P. Wright, D. R. Croasdale, D. R. Worsnop, P. Davidovits, T. B. Onasch. Characterization of aerosol photooxidation flow reactors: heterogeneous oxidation, secondary organic aerosol formation and cloud condensation nuclei activity measurements. Atmospheric Measurement Techniques 2011, 4 (3) , 445-461. https://doi.org/10.5194/amt-4-445-2011
    61. I. J. George, J. P. D. Abbatt. Heterogeneous oxidation of atmospheric aerosol particles by gas-phase radicals. Nature Chemistry 2010, 2 (9) , 713-722. https://doi.org/10.1038/nchem.806
    62. C. E. Kolb, R. A. Cox, J. P. D. Abbatt, M. Ammann, E. J. Davis, D. J. Donaldson, B. C. Garrett, C. George, P. T. Griffiths, D. R. Hanson, M. Kulmala, G. McFiggans, U. Pöschl, I. Riipinen, M. J. Rossi, Y. Rudich, P. E. Wagner, P. M. Winkler, D. R. Worsnop, C. D. O' Dowd. An overview of current issues in the uptake of atmospheric trace gases by aerosols and clouds. Atmospheric Chemistry and Physics 2010, 10 (21) , 10561-10605. https://doi.org/10.5194/acp-10-10561-2010
    63. M. Shiraiwa, C. Pfrang, U. Pöschl. Kinetic multi-layer model of aerosol surface and bulk chemistry (KM-SUB): the influence of interfacial transport and bulk diffusion on the oxidation of oleic acid by ozone. Atmospheric Chemistry and Physics 2010, 10 (8) , 3673-3691. https://doi.org/10.5194/acp-10-3673-2010
    64. C. Pfrang, M. Shiraiwa, U. Pöschl. Coupling aerosol surface and bulk chemistry with a kinetic double layer model (K2-SUB): oxidation of oleic acid by ozone. Atmospheric Chemistry and Physics 2010, 10 (10) , 4537-4557. https://doi.org/10.5194/acp-10-4537-2010
    65. I.J. George, R.Y.-W. Chang, V. Danov, A. Vlasenko, J.P.D. Abbatt. Modification of cloud condensation nucleus activity of organic aerosols by hydroxyl radical heterogeneous oxidation. Atmospheric Environment 2009, 43 (32) , 5038-5045. https://doi.org/10.1016/j.atmosenv.2009.06.043
    66. P. Laj, J. Klausen, M. Bilde, C. Plaß-Duelmer, G. Pappalardo, C. Clerbaux, U. Baltensperger, J. Hjorth, D. Simpson, S. Reimann, P.-F. Coheur, A. Richter, M. De Mazière, Y. Rudich, G. McFiggans, K. Torseth, A. Wiedensohler, S. Morin, M. Schulz, J.D. Allan, J.-L. Attié, I. Barnes, W. Birmili, J.P. Cammas, J. Dommen, H.-P. Dorn, D. Fowler, S. Fuzzi, M. Glasius, C. Granier, M. Hermann, I.S.A. Isaksen, S. Kinne, I. Koren, F. Madonna, M. Maione, A. Massling, O. Moehler, L. Mona, P.S. Monks, D. Müller, T. Müller, J. Orphal, V.-H. Peuch, F. Stratmann, D. Tanré, G. Tyndall, A. Abo Riziq, M. Van Roozendael, P. Villani, B. Wehner, H. Wex, A.A. Zardini. Measuring atmospheric composition change. Atmospheric Environment 2009, 43 (33) , 5351-5414. https://doi.org/10.1016/j.atmosenv.2009.08.020
    67. O. Vesna, M. Sax, M. Kalberer, A. Gaschen, M. Ammann. Product study of oleic acid ozonolysis as function of humidity. Atmospheric Environment 2009, 43 (24) , 3662-3669. https://doi.org/10.1016/j.atmosenv.2009.04.047
    68. Deborah J. Last, Juan J. Nájera, Ruth Wamsley, Gareth Hilton, Max McGillen, Carl J. Percival, Andrew B. Horn. Ozonolysis of organic compounds and mixtures in solution. Part I: Oleic, maleic, nonanoic and benzoic acids. Physical Chemistry Chemical Physics 2009, 11 (9) , 1427. https://doi.org/10.1039/b815425b
    69. Christina S. Maksymiuk, Chakicherla Gayahtri, Roberto R. Gil, Neil M. Donahue. Secondary organic aerosol formation from multiphase oxidation of limonene by ozone: mechanistic constraints via two-dimensional heteronuclear NMR spectroscopy. Physical Chemistry Chemical Physics 2009, 11 (36) , 7810. https://doi.org/10.1039/b820005j
    70. Deborah J. Last, Juan J. Nájera, Carl J. Percival, Andrew B. Horn. A comparison of infrared spectroscopic methods for the study of heterogeneous reactions occurring on atmospheric aerosol proxies. Physical Chemistry Chemical Physics 2009, 11 (37) , 8214. https://doi.org/10.1039/b901815h
    71. Amy M. Sage, Emily A. Weitkamp, Allen L. Robinson, Neil M. Donahue. Reactivity of oleic acid in organic particles: changes in oxidant uptake and reaction stoichiometry with particle oxidation. Physical Chemistry Chemical Physics 2009, 11 (36) , 7951. https://doi.org/10.1039/b904285g
    72. Dung L. Che, Jared D. Smith, Stephen R. Leone, Musahid Ahmed, Kevin R. Wilson. Quantifying the reactive uptake of OH by organic aerosols in a continuous flow stirred tank reactor. Physical Chemistry Chemical Physics 2009, 11 (36) , 7885. https://doi.org/10.1039/b904418c
    73. Simone Gross, Richard Iannone, Song Xiao, Allan K. Bertram. Reactive uptake studies of NO3 and N2O5 on alkenoic acid, alkanoate, and polyalcohol substrates to probe nighttime aerosol chemistry. Physical Chemistry Chemical Physics 2009, 11 (36) , 7792. https://doi.org/10.1039/b904741g
    74. J. D. Smith, J. H. Kroll, C. D. Cappa, D. L. Che, C. L. Liu, M. Ahmed, S. R. Leone, D. R. Worsnop, K. R. Wilson. The heterogeneous reaction of hydroxyl radicals with sub-micron squalane particles: a model system for understanding the oxidative aging of ambient aerosols. Atmospheric Chemistry and Physics 2009, 9 (9) , 3209-3222. https://doi.org/10.5194/acp-9-3209-2009
    75. E. Mikhailov, S. Vlasenko, S. T. Martin, T. Koop, U. Pöschl. Amorphous and crystalline aerosol particles interacting with water vapor: conceptual framework and experimental evidence for restructuring, phase transitions and kinetic limitations. Atmospheric Chemistry and Physics 2009, 9 (24) , 9491-9522. https://doi.org/10.5194/acp-9-9491-2009
    76. Eva R. Garland, Elias P. Rosen, Laura I. Clarke, Tomas Baer. Structure of submonolayer oleic acid coverages on inorganic aerosol particles: evidence of island formation. Physical Chemistry Chemical Physics 2008, 10 (21) , 3156. https://doi.org/10.1039/b718013f
    77. Kaori Kunisawa, Kohei Urasaki, Yumi Otsu, Shigeru Kato, Toshinori Kojima, Shigeo Satokawa. Decomposition of Tristearin by Ozonolysis over Heterogeneous Catalyst under Moderate Condition. Journal of the Japan Petroleum Institute 2008, 51 (3) , 186-189. https://doi.org/10.1627/jpi.51.186
    78. J. Zahardis, S. Geddes, G. A. Petrucci. The ozonolysis of primary aliphatic amines in fine particles. Atmospheric Chemistry and Physics 2008, 8 (5) , 1181-1194. https://doi.org/10.5194/acp-8-1181-2008
    79. V. F. McNeill, R. L. N. Yatavelli, J. A. Thornton, C. B. Stipe, O. Landgrebe. Heterogeneous OH oxidation of palmitic acid in single component and internally mixed aerosol particles: vaporization and the role of particle phase. Atmospheric Chemistry and Physics 2008, 8 (17) , 5465-5476. https://doi.org/10.5194/acp-8-5465-2008
    80. Yinon Rudich, Neil M. Donahue, Thomas F. Mentel. Aging of Organic Aerosol: Bridging the Gap Between Laboratory and Field Studies. Annual Review of Physical Chemistry 2007, 58 (1) , 321-352. https://doi.org/10.1146/annurev.physchem.58.032806.104432
    81. Trudi A. Semeniuk, Matthew E. Wise, Scot T. Martin, Lynn M. Russell, Peter R. Buseck. Hygroscopic behavior of aerosol particles from biomass fires using environmental transmission electron microscopy. Journal of Atmospheric Chemistry 2007, 56 (3) , 259-273. https://doi.org/10.1007/s10874-006-9055-5
    82. M.R. Canagaratna, J.T. Jayne, J.L. Jimenez, J.D. Allan, M.R. Alfarra, Q. Zhang, T.B. Onasch, F. Drewnick, H. Coe, A. Middlebrook, A. Delia, L.R. Williams, A.M. Trimborn, M.J. Northway, P.F. DeCarlo, C.E. Kolb, P. Davidovits, D.R. Worsnop. Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. Mass Spectrometry Reviews 2007, 26 (2) , 185-222. https://doi.org/10.1002/mas.20115
    83. Kara E. Huff Hartz, Emily A. Weitkamp, Amy M. Sage, Neil M. Donahue, Allen L. Robinson. Laboratory measurements of the oxidation kinetics of organic aerosol mixtures using a relative rate constants approach. Journal of Geophysical Research: Atmospheres 2007, 112 (D4) https://doi.org/10.1029/2006JD007526
    84. V. Faye McNeill, Glenn M. Wolfe, Joel A. Thornton. The Oxidation of Oleate in Submicron Aqueous Salt Aerosols:  Evidence of a Surface Process. The Journal of Physical Chemistry A 2007, 111 (6) , 1073-1083. https://doi.org/10.1021/jp066233f
    85. J. Zahardis, G. A. Petrucci. The oleic acid-ozone heterogeneous reaction system: products, kinetics, secondary chemistry, and atmospheric implications of a model system – a review. Atmospheric Chemistry and Physics 2007, 7 (5) , 1237-1274. https://doi.org/10.5194/acp-7-1237-2007
    86. I. J. George, A. Vlasenko, J. G. Slowik, K. Broekhuizen, J. P. D. Abbatt. Heterogeneous oxidation of saturated organic aerosols by hydroxyl radicals: uptake kinetics, condensed-phase products, and particle size change. Atmospheric Chemistry and Physics 2007, 7 (16) , 4187-4201. https://doi.org/10.5194/acp-7-4187-2007
    87. L. Smoydzin, R. von Glasow. Do organic surface films on sea salt aerosols influence atmospheric chemistry? – a model study. Atmospheric Chemistry and Physics 2007, 7 (21) , 5555-5567. https://doi.org/10.5194/acp-7-5555-2007
    88. John D. Hearn, Geoffrey D. Smith. Reactions and mass spectra of complex particles using Aerosol CIMS. International Journal of Mass Spectrometry 2006, 258 (1-3) , 95-103. https://doi.org/10.1016/j.ijms.2006.05.017
    89. Brian W. LaFranchi, Giuseppe A. Petrucci. A comprehensive characterization of photoelectron resonance capture ionization aerosol mass spectrometry for the quantitative and qualitative analysis of organic particulate matter. International Journal of Mass Spectrometry 2006, 258 (1-3) , 120-133. https://doi.org/10.1016/j.ijms.2006.06.013
    90. David G. Nash, Tomas Baer, Murray V. Johnston. Aerosol mass spectrometry: An introductory review. International Journal of Mass Spectrometry 2006, 258 (1-3) , 2-12. https://doi.org/10.1016/j.ijms.2006.09.017
    91. J. C. Reynolds, D. J. Last, M. McGillen, A. Nijs, A. B. Horn, C. Percival, L. J. Carpenter, A. C. Lewis. Structural Analysis of Oligomeric Molecules Formed from the Reaction Products of Oleic Acid Ozonolysis. Environmental Science & Technology 2006, 40 (21) , 6674-6681. https://doi.org/10.1021/es060942p
    92. James Zahardis, Brian W. LaFranchi, Giuseppe A. Petrucci. Photoelectron resonance capture ionization mass spectrometry of fatty acids in olive oil. European Journal of Lipid Science and Technology 2006, 108 (11) , 925-935. https://doi.org/10.1002/ejlt.200600143
    93. Jieyuan Zhang, Kara E. Huff Hartz, Spyros N. Pandis, Neil M. Donahue. Secondary Organic Aerosol Formation from Limonene Ozonolysis:  Homogeneous and Heterogeneous Influences as a Function of NO x . The Journal of Physical Chemistry A 2006, 110 (38) , 11053-11063. https://doi.org/10.1021/jp062836f
    94. John D. Hearn, Geoffrey D. Smith. A mixed‐phase relative rates technique for measuring aerosol reaction kinetics. Geophysical Research Letters 2006, 33 (17) https://doi.org/10.1029/2006GL026963
    95. James Zahardis, Brian W. LaFranchi, Giuseppe A. Petrucci. The heterogeneous reaction of particle-phase methyl esters and ozone elucidated by photoelectron resonance capture ionization: Direct products of ozonolysis and secondary reactions leading to the formation of ketones. International Journal of Mass Spectrometry 2006, 253 (1-2) , 38-47. https://doi.org/10.1016/j.ijms.2006.02.010
    96. N. M. Donahue, A. L. Robinson, C. O. Stanier, S. N. Pandis. Coupled Partitioning, Dilution, and Chemical Aging of Semivolatile Organics. Environmental Science & Technology 2006, 40 (8) , 2635-2643. https://doi.org/10.1021/es052297c
    97. David G. Nash, Michael P. Tolocka, Tomas Baer. The uptake of O 3 by myristic acid–oleic acid mixed particles: evidence for solid surface layers. Phys. Chem. Chem. Phys. 2006, 8 (38) , 4468-4475. https://doi.org/10.1039/B609855J
    98. M. Mochida, Y. Katrib, J. T. Jayne, D. R. Worsnop, S. T. Martin. The relative importance of competing pathways for the formation of high-molecular-weight peroxides in the ozonolysis of organic aerosol particles. Atmospheric Chemistry and Physics 2006, 6 (12) , 4851-4866. https://doi.org/10.5194/acp-6-4851-2006

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect