ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Adsorption and Structure of Water on Kaolinite Surfaces: Possible Insight into Ice Nucleation from Grand Canonical Monte Carlo Calculations

View Author Information
Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
Cite this: J. Phys. Chem. A 2008, 112, 43, 10708–10712
Publication Date (Web):September 11, 2008
https://doi.org/10.1021/jp805615q
Copyright © 2008 American Chemical Society

    Article Views

    1192

    Altmetric

    -

    Citations

    68
    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    Grand canonical Monte Carlo calculations are used to determine water adsorption and structure on defect-free kaolinite surfaces as a function of relative humidity at 235 K. This information is then used to gain insight into ice nucleation on kaolinite surfaces. Results for both the SPC/E and TIP5P-E water models are compared and demonstrate that the Al-surface [(001) plane] and both protonated and unprotonated edges [(100) plane] strongly adsorb at atmospherically relevant relative humidities. Adsorption on the Al-surface exhibits properties of a first-order process with evidence of collective behavior, whereas adsorption on the edges is essentially continuous and appears dominated by strong water lattice interactions. For the protonated and unprotonated edges no structure that matches hexagonal ice is observed. For the Al-surface some of the water molecules formed hexagonal rings. However, the ao lattice parameter for these rings is significantly different from the corresponding constant for hexagonal ice (Ih). A misfit strain of 14.0% is calculated between the hexagonal pattern of water adsorbed on the Al-surface and the basal plane of ice Ih. Hence, the ring structures that form on the Al-surface are not expected to be good building-blocks for ice nucleation due to the large misfit strain.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 68 publications.

    1. Helga Tóth Ugyonka, György Hantal, Milán Szőri, Pál Jedlovszky. Computer Simulation Insights into the Chemical Origins of Life: Can HCN Enrichment on Interstellar Amorphous Ice Be a Starting Point?. ACS Earth and Space Chemistry 2024, 8 (3) , 520-532. https://doi.org/10.1021/acsearthspacechem.3c00299
    2. Yi Ren, Allan K. Bertram, G. N. Patey. Influence of pH on Ice Nucleation by Kaolinite: Experiments and Molecular Simulations. The Journal of Physical Chemistry A 2022, 126 (49) , 9227-9243. https://doi.org/10.1021/acs.jpca.2c05323
    3. Barbara Honti, Milán Szőri, Pál Jedlovszky. Description of the Interfacial Behavior of Benzonitrile at Icy Surfaces by Grand Canonical Monte Carlo Simulations. The Journal of Physical Chemistry A 2022, 126 (7) , 1221-1232. https://doi.org/10.1021/acs.jpca.1c10749
    4. Atanu K. Metya, Valeria Molinero. Is Ice Nucleation by Organic Crystals Nonclassical? An Assessment of the Monolayer Hypothesis of Ice Nucleation. Journal of the American Chemical Society 2021, 143 (12) , 4607-4624. https://doi.org/10.1021/jacs.0c12012
    5. Bálint Kiss, Milán Szőri, Pál Jedlovszky. Adsorption of Propylene Oxide on Amorphous Ice under Interstellar Conditions. A Grand Canonical Monte Carlo Simulation Study. The Journal of Physical Chemistry C 2020, 124 (30) , 16402-16414. https://doi.org/10.1021/acs.jpcc.0c03722
    6. Pál Jedlovszky, Réka A. Horváth, Milán Szőri. Computer Simulation Investigation of the Adsorption of Cyanamide on Amorphous Ice at Low Temperatures. The Journal of Physical Chemistry C 2020, 124 (19) , 10615-10626. https://doi.org/10.1021/acs.jpcc.0c02075
    7. Haoran Liang, Ottmar Möhler, Steven Griffiths, Linda Zou. Enhanced Ice Nucleation and Growth by Porous Composite of RGO and Hydrophilic Silica Nanoparticles. The Journal of Physical Chemistry C 2020, 124 (1) , 677-685. https://doi.org/10.1021/acs.jpcc.9b09749
    8. Edgar Galicia-Andrés, Drazen Petrov, Martin H. Gerzabek, Chris Oostenbrink, Daniel Tunega. Polarization Effects in Simulations of Kaolinite–Water Interfaces. Langmuir 2019, 35 (47) , 15086-15099. https://doi.org/10.1021/acs.langmuir.9b02945
    9. Bálint Kiss, Sylvain Picaud, Milán Szőri, Pál Jedlovszky. Adsorption of Formamide at the Surface of Amorphous and Crystalline Ices under Interstellar and Tropospheric Conditions. A Grand Canonical Monte Carlo Simulation Study. The Journal of Physical Chemistry A 2019, 123 (13) , 2935-2948. https://doi.org/10.1021/acs.jpca.9b00850
    10. Esther Chong, Megan King, Katherine E. Marak, Miriam Arak Freedman. The Effect of Crystallinity and Crystal Structure on the Immersion Freezing of Alumina. The Journal of Physical Chemistry A 2019, 123 (12) , 2447-2456. https://doi.org/10.1021/acs.jpca.8b12258
    11. Réka A. Horváth, György Hantal, Sylvain Picaud, Milán Szőri, Pál Jedlovszky. Adsorption of Methylamine on Amorphous Ice under Interstellar Conditions. A Grand Canonical Monte Carlo Simulation Study. The Journal of Physical Chemistry A 2018, 122 (13) , 3398-3412. https://doi.org/10.1021/acs.jpca.8b01591
    12. Daniel A. Knopf, Peter A. Alpert, Bingbing Wang. The Role of Organic Aerosol in Atmospheric Ice Nucleation: A Review. ACS Earth and Space Chemistry 2018, 2 (3) , 168-202. https://doi.org/10.1021/acsearthspacechem.7b00120
    13. Brittany Glatz and Sapna Sarupria . Heterogeneous Ice Nucleation: Interplay of Surface Properties and Their Impact on Water Orientations. Langmuir 2018, 34 (3) , 1190-1198. https://doi.org/10.1021/acs.langmuir.7b02859
    14. Valerie J. Alstadt, Joseph Nelson Dawson, Delanie J. Losey, Sarah K. Sihvonen, and Miriam Arak Freedman . Heterogeneous Freezing of Carbon Nanotubes: A Model System for Pore Condensation and Freezing in the Atmosphere. The Journal of Physical Chemistry A 2017, 121 (42) , 8166-8175. https://doi.org/10.1021/acs.jpca.7b06359
    15. Maxime Pouvreau, Jeffery A. Greathouse, Randall T. Cygan, Andrey G. Kalinichev. Structure of Hydrated Gibbsite and Brucite Edge Surfaces: DFT Results and Further Development of the ClayFF Classical Force Field with Metal–O–H Angle Bending Terms. The Journal of Physical Chemistry C 2017, 121 (27) , 14757-14771. https://doi.org/10.1021/acs.jpcc.7b05362
    16. Uday Sankar Midya and Sanjoy Bandyopadhyay . Interfacial Water Arrangement in the Ice-Bound State of an Antifreeze Protein: A Molecular Dynamics Simulation Study. Langmuir 2017, 33 (22) , 5499-5510. https://doi.org/10.1021/acs.langmuir.7b01206
    17. Ildikó Sumi, Sylvain Picaud, and Pál Jedlovszky . Adsorption of Chlorinated Methane Derivatives at the Ice Surface: A Grand Canonical Monte Carlo Simulation Study. The Journal of Physical Chemistry C 2017, 121 (14) , 7782-7793. https://doi.org/10.1021/acs.jpcc.6b11710
    18. Ildikó Sumi, Balázs Fábián, Sylvain Picaud, and Pál Jedlovszky . Adsorption of Fluorinated Methane Derivatives at the Surface of Ice under Tropospheric Conditions, As Seen from Grand Canonical Monte Carlo Simulations. The Journal of Physical Chemistry C 2016, 120 (31) , 17386-17399. https://doi.org/10.1021/acs.jpcc.6b04300
    19. Gabriele C. Sosso, Ji Chen, Stephen J. Cox, Martin Fitzner, Philipp Pedevilla, Andrea Zen, and Angelos Michaelides . Crystal Nucleation in Liquids: Open Questions and Future Challenges in Molecular Dynamics Simulations. Chemical Reviews 2016, 116 (12) , 7078-7116. https://doi.org/10.1021/acs.chemrev.5b00744
    20. Mingjin Tang, Daniel J. Cziczo, and Vicki H. Grassian . Interactions of Water with Mineral Dust Aerosol: Water Adsorption, Hygroscopicity, Cloud Condensation, and Ice Nucleation. Chemical Reviews 2016, 116 (7) , 4205-4259. https://doi.org/10.1021/acs.chemrev.5b00529
    21. Stephen A. Zielke, Allan K. Bertram, and G. N. Patey . Simulations of Ice Nucleation by Kaolinite (001) with Rigid and Flexible Surfaces. The Journal of Physical Chemistry B 2016, 120 (8) , 1726-1734. https://doi.org/10.1021/acs.jpcb.5b09052
    22. Miriam Arak Freedman . Potential Sites for Ice Nucleation on Aluminosilicate Clay Minerals and Related Materials. The Journal of Physical Chemistry Letters 2015, 6 (19) , 3850-3858. https://doi.org/10.1021/acs.jpclett.5b01326
    23. Ildikó Sumi, Sylvain Picaud, and Pál Jedlovszky . Adsorption of Methylene Fluoride and Methylene Chloride at the Surface of Ice under Tropospheric Conditions: A Grand Canonical Monte Carlo Simulation Study. The Journal of Physical Chemistry C 2015, 119 (30) , 17243-17252. https://doi.org/10.1021/acs.jpcc.5b05018
    24. Stephen A. Zielke, Allan K. Bertram, and Grenfell N. Patey . A Molecular Mechanism of Ice Nucleation on Model AgI Surfaces. The Journal of Physical Chemistry B 2015, 119 (29) , 9049-9055. https://doi.org/10.1021/jp508601s
    25. WenJuan Huang, Gustave Kenne Dedzo, Stanislav R. Stoyanov, Olga Lyubimova, Sergey Gusarov, Shashank Singh, Hayes Lao, Andriy Kovalenko, and Christian Detellier . Molecule–Surface Recognition between Heterocyclic Aromatic Compounds and Kaolinite in Toluene Investigated by Molecular Theory of Solvation and Thermodynamic and Kinetic Experiments. The Journal of Physical Chemistry C 2014, 118 (41) , 23821-23834. https://doi.org/10.1021/jp507393u
    26. Huyen Thi Nguyen and Minh Tho Nguyen . Effects of Water Molecules on Rearrangements of Formamide on the Kaolinite Basal (001) Surface. The Journal of Physical Chemistry A 2014, 118 (34) , 7017-7023. https://doi.org/10.1021/jp5053216
    27. Laura Lupi, Arpa Hudait, and Valeria Molinero . Heterogeneous Nucleation of Ice on Carbon Surfaces. Journal of the American Chemical Society 2014, 136 (8) , 3156-3164. https://doi.org/10.1021/ja411507a
    28. Milán Szőri and Pál Jedlovszky . Adsorption of HCN at the Surface of Ice: A Grand Canonical Monte Carlo Simulation Study. The Journal of Physical Chemistry C 2014, 118 (7) , 3599-3609. https://doi.org/10.1021/jp4110954
    29. Jonathan Fafard, Olga Lyubimova, Stanislav R. Stoyanov, Gustave Kenne Dedzo, Sergey Gusarov, Andriy Kovalenko, and Christian Detellier . Adsorption of Indole on Kaolinite in Nonaqueous Media: Organoclay Preparation and Characterization, and 3D-RISM-KH Molecular Theory of Solvation Investigation. The Journal of Physical Chemistry C 2013, 117 (36) , 18556-18566. https://doi.org/10.1021/jp4064142
    30. Zsuzsanna E. Mészár, György Hantal, Sylvain Picaud, and Pál Jedlovszky . Adsorption of Aromatic Hydrocarbon Molecules at the Surface of Ice, As Seen by Grand Canonical Monte Carlo Simulation. The Journal of Physical Chemistry C 2013, 117 (13) , 6719-6729. https://doi.org/10.1021/jp401532x
    31. Neil R. Haria, Gary S. Grest, and Christian D. Lorenz . Viscosity of Nanoconfined Water between Hydroxyl Basal Surfaces of Kaolinite: Classical Simulation Results. The Journal of Physical Chemistry C 2013, 117 (12) , 6096-6104. https://doi.org/10.1021/jp312181u
    32. J. Y. Yan and G. N. Patey . Molecular Dynamics Simulations of Ice Nucleation by Electric Fields. The Journal of Physical Chemistry A 2012, 116 (26) , 7057-7064. https://doi.org/10.1021/jp3039187
    33. J. Y. Yan and G. N. Patey . Heterogeneous Ice Nucleation Induced by Electric Fields. The Journal of Physical Chemistry Letters 2011, 2 (20) , 2555-2559. https://doi.org/10.1021/jz201113m
    34. Milán Szöri, Martina Roeselová, and Pál Jedlovszky . Surface Hydrophilicity-Dependent Water Adsorption on Mixed Self-Assembled Monolayers of C7–CH3 and C7–COOH Residues. A Grand Canonical Monte Carlo Simulation Study. The Journal of Physical Chemistry C 2011, 115 (39) , 19165-19177. https://doi.org/10.1021/jp201224h
    35. T. Croteau, A. K. Bertram and G. N. Patey. Observations of High-Density Ferroelectric Ordered Water in Kaolinite Trenches using Monte Carlo Simulations. The Journal of Physical Chemistry A 2010, 114 (32) , 8396-8405. https://doi.org/10.1021/jp104643p
    36. Mélanie Petitjean, György Hantal, Coline Chauvin, Philippe Mirabel, Stéphane Le Calvé, Paul N. M. Hoang, Sylvain Picaud and Pál Jedlovszky . Adsorption of Benzaldehyde at the Surface of Ice, Studied by Experimental Method and Computer Simulation. Langmuir 2010, 26 (12) , 9596-9606. https://doi.org/10.1021/la100169h
    37. T. Croteau, A. K. Bertram and G. N. Patey. Water Adsorption on Kaolinite Surfaces Containing Trenches. The Journal of Physical Chemistry A 2010, 114 (5) , 2171-2178. https://doi.org/10.1021/jp910045u
    38. Tianyu Li, Zhaoyun Chai, Zeqian Yang, Ke Yan, Xiangyu Liu, Chang Xiao. Molecular dynamics simulation of the influence of doping on the water absorption characteristics of kaolinite. Surface Science 2023, 737 , 122368. https://doi.org/10.1016/j.susc.2023.122368
    39. Abhijit H. Phakatkar, Constantine M. Megaridis, Tolou Shokuhfar, Reza Shahbazian-Yassar. Real-time TEM observations of ice formation in graphene liquid cell. Nanoscale 2023, 15 (15) , 7006-7013. https://doi.org/10.1039/D3NR00097D
    40. Jonathan Y. Mane, Stanislav R. Stoyanov. Molecular dynamics investigation of the asphaltene–kaolinite interactions in water, toluene, and water–toluene mixtures. Physical Chemistry Chemical Physics 2023, 25 (7) , 5638-5647. https://doi.org/10.1039/D1CP04060J
    41. Katherine E. Marak, Lucy Nandy, Divya Jain, Miriam Arak Freedman. Significance of the surface silica/alumina ratio and surface termination on the immersion freezing of ZSM-5 zeolites. Physical Chemistry Chemical Physics 2023, 340 https://doi.org/10.1039/D2CP05466C
    42. Mirjam Balbisi, Réka A. Horváth, Milán Szőri, Pál Jedlovszky. Computer simulation investigation of the adsorption of acetamide on low density amorphous ice. An astrochemical perspective. The Journal of Chemical Physics 2022, 156 (18) https://doi.org/10.1063/5.0093561
    43. Mirjam Balbisi, Réka A. Horváth, Milán Szőri, Pál Jedlovszky. Adsorption of acetamide on crystalline and amorphous ice under atmospheric conditions. A grand canonical Monte Carlo simulation study. Journal of Molecular Liquids 2022, 354 , 118870. https://doi.org/10.1016/j.molliq.2022.118870
    44. Elzbieta Pach, Albert Verdaguer. Studying Ice with Environmental Scanning Electron Microscopy. Molecules 2022, 27 (1) , 258. https://doi.org/10.3390/molecules27010258
    45. Hao Lu, Quanming Xu, Jianyang Wu, rongdun Hong, Zhisen Zhang. Effect of Interfacial Dipole on Heterogeneous Ice Nucleation. Journal of Physics: Condensed Matter 2021, https://doi.org/10.1088/1361-648X/ac0f2c
    46. Pavithra M. Naullage, Atanu K. Metya, Valeria Molinero. Computationally efficient approach for the identification of ice-binding surfaces and how they bind ice. The Journal of Chemical Physics 2020, 153 (17) https://doi.org/10.1063/5.0021631
    47. Anand Kumar, Claudia Marcolli, Thomas Peter. Ice nucleation activity of silicates and aluminosilicates in pure water and aqueous solutions – Part 3: Aluminosilicates. Atmospheric Chemistry and Physics 2019, 19 (9) , 6059-6084. https://doi.org/10.5194/acp-19-6059-2019
    48. S. V. Shevkunov. Water-vapor clustering on the surface of β-AgI crystal in the field of defects with a disordered structure. Colloid Journal 2017, 79 (5) , 685-700. https://doi.org/10.1134/S1061933X1705012X
    49. Liang Wang, Xing Wang, Ping Qian, Hong Guo. Theoretical study of interaction of heteroaromatic compounds with a cluster model of kaolinite tetrahedral surface. International Journal of Quantum Chemistry 2017, 117 (8) https://doi.org/10.1002/qua.25352
    50. Alexei Kiselev, Felix Bachmann, Philipp Pedevilla, Stephen J. Cox, Angelos Michaelides, Dagmar Gerthsen, Thomas Leisner. Active sites in heterogeneous ice nucleation—the example of K-rich feldspars. Science 2017, 355 (6323) , 367-371. https://doi.org/10.1126/science.aai8034
    51. Bingbing Wang, Daniel A. Knopf, Swarup China, Bruce W. Arey, Tristan H. Harder, Mary K. Gilles, Alexander Laskin. Direct observation of ice nucleation events on individual atmospheric particles. Physical Chemistry Chemical Physics 2016, 18 (43) , 29721-29731. https://doi.org/10.1039/C6CP05253C
    52. Baban Nagare, Claudia Marcolli, André Welti, Olaf Stetzer, Ulrike Lohmann. Comparing contact and immersion freezing from continuous flow diffusion chambers. Atmospheric Chemistry and Physics 2016, 16 (14) , 8899-8914. https://doi.org/10.5194/acp-16-8899-2016
    53. Jeffery A. Greathouse, Dawn L. Geatches, Darin Q. Pike, H. Christopher Greenwell, Cliff T. Johnston, Jennifer Wilcox, Randall T. Cygan. Methylene Blue Adsorption on the Basal Surfaces of Kaolinite: Structure and Thermodynamics from Quantum and Classical Molecular Simulation. Clays and Clay Minerals 2015, 63 (3) , 185-198. https://doi.org/10.1346/CCMN.2015.0630303
    54. Stephen J. Cox, Shawn M. Kathmann, Ben Slater, Angelos Michaelides. Molecular simulations of heterogeneous ice nucleation. I. Controlling ice nucleation through surface hydrophilicity. The Journal of Chemical Physics 2015, 142 (18) https://doi.org/10.1063/1.4919714
    55. X. X. Zhang, Y. J. Lü, M. Chen. Crystallisation of ice in charged Pt nanochannel. Molecular Physics 2013, 111 (24) , 3808-3814. https://doi.org/10.1080/00268976.2013.793830
    56. J. Y. Yan, G. N. Patey. Ice nucleation by electric surface fields of varying range and geometry. The Journal of Chemical Physics 2013, 139 (14) https://doi.org/10.1063/1.4824139
    57. Thomas Koop, Natalie Mahowald. The seeds of ice in clouds. Nature 2013, 498 (7454) , 302-303. https://doi.org/10.1038/nature12256
    58. Stephen J. Cox, Zamaan Raza, Shawn M. Kathmann, Ben Slater, Angelos Michaelides. The microscopic features of heterogeneous ice nucleation may affect the macroscopic morphology of atmospheric ice crystals. Faraday Discussions 2013, 167 , 389. https://doi.org/10.1039/c3fd00059a
    59. Xiandong Liu, Xiancai Lu, Rucheng Wang, Evert Jan Meijer, Huiqun Zhou, Hongping He. Atomic scale structures of interfaces between kaolinite edges and water. Geochimica et Cosmochimica Acta 2012, 92 , 233-242. https://doi.org/10.1016/j.gca.2012.06.008
    60. Stephen J. Cox, Shawn M. Kathmann, John A. Purton, Michael J. Gillan, Angelos Michaelides. Non-hexagonal ice at hexagonal surfaces: the role of lattice mismatch. Physical Chemistry Chemical Physics 2012, 14 (22) , 7944. https://doi.org/10.1039/c2cp23438f
    61. M. J. Wheeler, A. K. Bertram. Deposition nucleation on mineral dust particles: a case against classical nucleation theory with the assumption of a single contact angle. Atmospheric Chemistry and Physics 2012, 12 (2) , 1189-1201. https://doi.org/10.5194/acp-12-1189-2012
    62. V. Pinti, C. Marcolli, B. Zobrist, C. R. Hoyle, T. Peter. Ice nucleation efficiency of clay minerals in the immersion mode. Atmospheric Chemistry and Physics 2012, 12 (13) , 5859-5878. https://doi.org/10.5194/acp-12-5859-2012
    63. Roland Šolc, Martin H. Gerzabek, Hans Lischka, Daniel Tunega. Wettability of kaolinite (001) surfaces — Molecular dynamic study. Geoderma 2011, 169 , 47-54. https://doi.org/10.1016/j.geoderma.2011.02.004
    64. J. Behnsen, D. R. Faulkner. Water and argon permeability of phyllosilicate powders under medium to high pressure. Journal of Geophysical Research 2011, 116 (B12) https://doi.org/10.1029/2011JB008600
    65. Donna I. Chernoff, Allan K. Bertram. Effects of sulfate coatings on the ice nucleation properties of a biological ice nucleus and several types of minerals. Journal of Geophysical Research: Atmospheres 2010, 115 (D20) https://doi.org/10.1029/2010JD014254
    66. Xiao Liang Hu, Angelos Michaelides. The kaolinite (001) polar basal plane. Surface Science 2010, 604 (2) , 111-117. https://doi.org/10.1016/j.susc.2009.10.026
    67. Milán Szőri, Pál Jedlovszky, Martina Roeselová. Water adsorption on hydrophilic and hydrophobic self-assembled monolayers as proxies for atmospheric surfaces. A grand canonical Monte Carlo simulation study. Physical Chemistry Chemical Physics 2010, 12 (18) , 4604. https://doi.org/10.1039/b923382b
    68. T. Croteau, A. K. Bertram, G. N. Patey. Simulation of Water Adsorption on Kaolinite under Atmospheric Conditions. The Journal of Physical Chemistry A 2009, 113 (27) , 7826-7833. https://doi.org/10.1021/jp902453f

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect