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SUPPLEMENTARY FIGURE 1
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Supplementary Fig. 1: Kinetic wetting phase diagram for the ice/vapor surface with linear growth (u = 0). On the left
is the equilibrium phase diagram of water in the neighborhood of the triple point. The solid lines are the melting (black), vaporization

(blue) and sublimation (red) lines. The dashed lines are metastable prolongations of the melting and vaporization lines. Dotted red and
blue lines are kinetic transition lines which describe the transitions observed in experiments between the states illustrated on the right,
namely (I) a spreading film below a droplet, (II) a droplet on top of a homogeneous surface and (III) a homogeneous surface [1]. The

green dotted line is the kinetic spinodal line where quasi-stationary states are no longer stable. The kinetic transition lines shown here
have been calculated using the model in Eqs. (3) and (4) of the main text, assuming linear growth (w = 0). The interface potential is
scaled by a factor of 30 in order to illustrate how the separation between kinetic phase lines increases as the depth of the minima in the

interface potential increase (See Fig. 3 of the main text with the associated discussion and Supplementary Note 3 below).
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SUPPLEMENTARY FIGURE 2
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Supplementary Fig. 2: Surface dynamics for an initial droplet at a state point above the kinetic
liquid-vapor coexistence line, (p, T ) =(517.5 Pa, 269.5 K), corresponding to the triangle (4) symbol in Fig. 3

(main text). The color/style code of the lines is as explained in captions to Fig. 4 (main text). Compared to Fig. 4
(f-j) (main text) for the dynamics of the same droplet right below the kinetic liquid-vapor coexistence, the droplet is

now stabilized for a long period, and a crater is formed below.
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SUPPLEMENTARY FIGURE 3
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Supplementary Fig. 3: Surface dynamics for a system with an initial terrace at a state point above the
kinetic spinodal line, (p, T ) =(535 Pa, 269.5 K), corresponding to the lozenge (♦) symbol in Fig. 3 (main text).
The color/style code of the lines is as explained in captions to Fig. 4 (main text). Compared to Fig. 4 (b-e) (main
text) for the dynamics of the same initial terrace, the flat liquid-vapor surface becomes unstable and forms satellite

droplets that grow and aggregate over time to leave the ice surface covered in a thick film of liquid.
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SUPPLEMENTARY TABLE 1

Property Value

C1 3.143× 10−3 J m−2

C2 4.116× 10−2 J m−2

κ1 2.043× 109 m−1

q0 7.148× 109 m−1

α 5.144

B 7.875× 10−31 Jm

f 1.106 (unitless)

a 3.03× 107 m−1

b 5.0× 108 m−1

α-minimum 1.6 nm

β-minimum 2.4 nm

Π∗, α− β transition −4.60× 104 Pa

Π∗, β spinodal −1.02× 105 Pa

Supplementary Table 1: Parameters used in the interface potential, g(h) with details on the locations of the α
and β minima and spinodals. Further details of the fitting procedure may be found in Supplementary Note 3 below.
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SUPPLEMENTARY TABLE 2

Property Value Reference

Tt 273.16 K [2]

Tt 0.1 ◦C [2]

pt 611.65 Pa [2]

ρl 55 498 mol m−3 [2]

ρs 50 888 mol m−3 [3]

ρv 0.2694 mol m−3 [2]

∆Hsv 51 059 J mol−1 [4]

∆H lv 45 051 J mol−1 [4]

∆Hsl 6 008 J mol−1 [4]

Supplementary Table 2: Triple point data of water. These results are used for the calculation of thermodynamic
functions described in the Supplementary Note 6. Conversion from mass to molar units performed assuming

Mw = 18.015 g/mol.
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SUPPLEMENTARY TABLE 3

Property Value Source

dB 0.37× 10−9 m [5]

ρlv plv/(RcT ) ideal gas law

Tc T − 273.15 ◦C Celsius scale

ρl
55502 + 3.4549Tc − 0.44461T 2

c . . .

. . .+ 0.0028885T 3
c − 0.00031898T 4

c mol m−3
[6, 7]

ρs 50885− 9.71Tc − 0.03T 2
c mol m−3 [5]

γsl (28 + 0.25Tc)× 10−3 J m−2 [5]

γlv (75.7− 0.1775Tc)× 10−3 J m−2 [8]

η 1.39× 10−4(T/225− 1)−1.64 kg m−1 s−1 [9]

u 1.3× 10−4 J m−2 This work

klv 3.4× 10−10ρlvT
−1/2 × 10−3 m s−1 Pa−1 Knudsen-Hertz law

ksl 6.4klv Slope of phase line

Supplementary Table 3: Temperature dependent coefficients for use in the mesoscopic calculations. T
refers to absolute temperature in K. Tc refers to temperature in the Celsius scale. Further details on the derivation

of these coefficients may be found in Supplementary Note 7 below.
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SUPPLEMENTARY NOTE 1: NUMERICAL CALCULATION OF THE INTERFACE POTENTIAL

Definition of the interface potential

The excess grand potential Ω (Landau free energy) per unit area for a liquid film of thickness h on a planar solid
surface in equilibrium with a bulk vapor phase with chemical potential µ and temperature T is

Ω + pvV

A
= γsl + γlv + g(h;T )−∆plv(T, µ)h (1)

≡ γsl + γlv + ω(h;T, µ), (2)

where V is the volume of the system, A is the area of the surface, γsl is the solid/liquid interfacial tension, γlv is the
liquid/vapor interfacial tension, g(h) is the interface potential for the film at liquid-vapor coexistence, often referred
to as the binding potential, and ∆plv(T, µ) = pl(T, µ)−pv(T, µ) is the pressure difference of the bulk liquid and vapor
phases at the chemical potential of the bulk vapor. The potential ω(h;T, µ) is the effective interface potential that
determines the interfacial phase behavior.

In relevant previous work, the interface potential of liquid films adsorbed on an inert substrate was calculated by
performing grand-canonical simulations at liquid-vapor coexistence [10, 11]. In that case, ω(h;T, µ) = g(h;T ), and
the free energy may be evaluated from Aω(h;T, µ) = −kBT lnP (h), where P (h) is the probability distribution of h,
collected during the grand canonical simulation with enhanced sampling techniques and kB is Boltzmann’s constant.
Effectively, the procedure is equivalent to performing a series of canonical simulations at different film thicknesses
[12].

For the case of a one component system with liquid adsorbed at the solid/vapor interface, the above method
cannot be applied, because the three phase system at fixed temperature only exists at equilibrium at the solid/vapor
coexistence chemical potential. Instead, we perform a set of fixed-NV T simulations at different temperatures (N
is the number of molecules), similar to previous calculations in studies of the interface potential for grain boundary
premelting [13, 14].

For a liquid film adsorbed at the solid/vapor interface along the sublimation line (T, µsv(T )), Supplementary Eq. (1)
gives

ω(h;T, µsv) = g(h;T )−∆plv(T )|svh, (3)

where g(h;T ) is the interface free energy for the film along the liquid-vapor coexistence line, and ∆plv(T )|sv =
pl(T, µsv)− pv(T, µsv) is the pressure difference between liquid and vapor bulk phases at the solid-vapor coexistence
chemical potential.

Performing simulations of the solid phase at constant temperature, initiated in a vacuum, the system equilibrates
into a state of solid/vapor coexistence, with a premelting liquid film at the interface with thickness dictated by imposed
thermodynamic conditions. At this temperature, the film thickness fluctuates according to a probability distribution
P (h;T, µsv), which can easily be collected during the course of the simulation, as shown in Supplementary Fig. 4.

The interface potential in the range of observed film thicknesses may be calculated as

g(h;T ) = −kBT
A

lnP (h;T, µsv) + ∆plv(T )|svh+ CT , (4)

where CT is an arbitrary constant. By performing a sequence of simulations at different temperatures, one obtains
a set of piecewise potentials g(h;Ti), which overlap for small ranges of h, provided the simulations are performed
at sufficiently close temperature intervals. The right hand panel of Supplementary Fig. 4 shows the set of piecewise
functions obtained at a series of different temperatures, with values as indicated in the key. Since the temperature
dependence of g(h;T ) is small, the piecewise function can be combined into a single continuous interface potential by
choosing suitable constants CTi . The resulting function is continuous and shows no apparent singularities, consistent
with the assumption of weak temperature dependence of the various piecewise terms g(h;Ti).

Calculation of the pressure difference ∆plv(T )|sv

In order to evaluate the interface potential, we must first determine ∆plv(T )|sv. We start from the Gibbs-Duhem
thermodynamic relation

Ndµ = −SdT + V dp, (5)



8

2 4 6 8 10 12
h=8A

0

0.05

0.1

0.15

0.2

0.25

P
(h

)
210
220
230
235
240
245
250
255
260
262
264
266
267
268
270
271

2 4 6 8 10 12
h=8A

-0.025

-0.02

-0.015

-0.01

-0.005

0

g
(h

)=
J
m
!

2

210
220
230
235
240
245
250
255
260
262
264
266
267
268
270
271

Supplementary Fig. 4: Left: The global film height probability distribution, obtained from a sequence of
independent simulations at fixed NV T and for a range of different temperatures (210-271 K), as given in the key.

Right: The corresponding piecewise interface potentials.

where S is the entropy. From this we obtain the following equivalent pair of relations

dµ = −sdT +
1

ρ
dp, (6)

dp = ρsdT + ρdµ, (7)

where s = S/N is the entropy per particle and ρ = N/V is the number density. At phase coexistence, µ, p and T
are equal in the two coexisting phases. Hence, along the the solid (subscript s) and vapor (v) coexistence line we
have dµs = dµv, dps = dpv and dTs = dTv. Therefore, from the first of these together with Supplementary Eq. (6) we
obtain the familiar Clausius-Clapeyron equation for the variation of the vapor pressure along the sublimation line

dp

dT

∣∣∣∣
sv

= ρsρv
ss − sv
ρv − ρs

. (8)

Similarly, from Supplementary Eq. (7) we obtain

dµ

dT

∣∣∣∣
sv

=
ρvsv − ρsss
ρs − ρv

. (9)

Thus, from Supplementary Eq. (8) the variation of vapor pressure along the sublimation line is

dpv|sv = ρsρv
ss − sv
ρv − ρs

dT, (10)

whereas the pressure variations of the liquid phase is given more generally by Supplementary Eq. (7) as

dpl = ρlsldT + ρldµ. (11)

However, we must evaluate the liquid pressure along the sublimation line, so µ is not an independent variable. Rather,
it is given by the Clausius-Clapeyron type Supplementary Eq. (9), and thus

dpl|sv = ρlsldT + ρl
ρvsv − ρsss
ρs − ρv

dT. (12)

Therefore, the variation of d(pl − pv)|sv along the sublimation line is obtained from Supplementary Eqs. (10) and
(12) after some rearrangements, as

d(pl − pv)|sv =
ρsρlsl − ρvρlsl + ρlρvsv − ρlρsss + ρsρvss − ρsρvsv

ρs − ρv

∣∣∣∣
sv

dT. (13)

In principle, this equation could be integrated starting from the triple point, where pl − pv = 0, down to lower
temperatures, by using experimental or simulation data for entropies and densities along the sublimation line. A
zeroth order integrated form of this equation may be found in Elbaum and Schick [15].



9

Here, we take a different more convenient approach by expressing this equation in terms of liquid-vapor and solid-
vapor coexistence pressures, which are known from experiments with great accuracy. To achieve this, we first notice
ρv � ρl and ρv � ρs. Therefore, the exact result in Supplementary Eq. (13) can be greatly simplified with only a
very small loss in accuracy, to

d(pl − pv)|sv = −ρl(ss − sl)dT |sv. (14)

Now, we write

(ss − sl)|sv = [(ss − sv)− (sl − sv)]sv . (15)

Furthermore, assuming the vapor behaves as an ideal gas so that (i) s = −kB(ln(Λ3ρ)− 1), where Λ is the thermal
de Broglie wavelength, and (ii) ρ = p/kBT , we can write the vapor entropy at the sublimation line in terms of the
vapor entropy at the condensation line as

sv|sv = sv|lv + kB ln
plv
psv

. (16)

Substituting this into Supplementary Eq. (15) and noting that the entropy of the incompressible liquid phase hardly
changes at all, which means that we may approximate sl|sv = sl|lv, so that from Supplementary Eq. (15) and
Supplementary Eq. (16) we can write

(ss − sl)|sv = (ss − sv)|sv − (sl − sv)|lv + kB ln
plv
psv

. (17)

Substituting this into Supplementary Eq. (14) then yields:

d(pl − pv)|sv = −ρl
[
(ss − sv)|sv − (sl − sv)|lv + kB ln

plv
psv

]
dT, (18)

where now both (ss − sv)|sv and (sl − sv)|lv are actual entropies of phase change. Invoking the Clausius-Clapeyron
Supplementary Eq. (8) for these two quantities, assuming ρv � ρs, ρv � ρl and making the ideal gas approximation
p = kBTρ, we obtain

−(ss − sv)|sv =
kBT

psv

dp

dT

∣∣∣∣
sv

, (19)

and a similar expression for (sl − sv)|lv. Substituting these into Supplementary Eq. (18), we obtain the sought
expression for d(pl − pv)|sv explicitly in terms of vapor pressures along sublimation and condensation lines as

d(pl − pv)|sv = ρld

(
kBT ln

psv
plv

)
. (20)

Integrating this equation from the triple point to a desired arbitrary temperature, we obtain

∆plv(T )|sv = ρlkBT ln
psv
plv

. (21)

This is the same result obtained in [16] by alternative means. We use explicit expressions obtained for the vapor
pressures of the TIP4P/Ice model to calculate the required pressure difference for use in Supplementary Eq. (4).
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SUPPLEMENTARY NOTE 2: ANALYTICAL FORMULA FOR THE SURFACE VAN DER WAALS
FORCES

Elbaum and Schick calculated the van der Waals force contributions to the interface potential using Lifshitz theory
[15]. The results are obtained only in numerical form from quadrature, which is not convenient for numerical purposes.
Here we derive an accurate analytical approximation, along the lines of Ref. [17].

Quite generally, the van der Waals forces between two media, 1 and 2, across a media m enclosed between infinite
slabs of media 1 and 2, give rise to an interface potential of the form

gvdw(h) = − A(h)

12πh2
, (22)

where A(h) is the Hamaker function. In a well known approximation to Lifshitz theory, this is given as

A(h) =
3

2
kBT

∞′∑
n=0

R(ωn)[1 + rn]e−rn , (23)

where the prime indicates that the first term is weighted by a factor of 1/2, rn = 2ε
1/2
m ωnh/c, ωn = ωTn, ωT =

2πkBT/~, and εm is the dielectric constant of the layer of thickness h. The function R(ωn) is a complicated expression
that depends on the frequency dependent dielectric constants of the material and the film thickness h [17]. For practical
purposes, it can be approximated via the simpler expression

R(ωn) =

(
ε1 − εm
ε1 + εm

)(
ε2 − εm
ε2 + εm

)
, (24)

where ε1 and ε2 are the frequency dependent dielectric constants of the media enclosing the layer of thickness h. At
this stage it is convenient to single out the n = 0 term in Supplementary Eq. (23), and to further approximate the
remaining sum into an integral. Then

gvdw(h) = − Aω=0

12πh2
− Aω>0(h)

12πh2
, (25)

where

Aω=0 =
3

4

(
ε1 − εm
ε1 + εm

)(
ε2 − εm
ε2 + εm

)
kBT, (26)

and

Aω>0(h) =
3~c

8πε
1/2
m

∫ ∞
νT

R(ν)[1 + νh]e−νhdν, (27)

where the sum over angular frequencies has been transformed into an integral over wavenumbers ν = 2ε
1/2
m ω/c and

νT = 2ε
1/2
m ωT /c.

Elbaum and Schick parametrized the dielectric properties of water and ice, and argued that the term (εi − εw) of
the function R(ν) changes sign at ultra-violet frequencies, such that R(ν) < 0 in the infra-red, but R > 0 at the
extreme ultra-violet and beyond. In view of this, we split the integral of Supplementary Eq. (27) and write:

Aω>0(h) =
3~c

8πε
1/2
m

∫ νUV

νT

R(ν)[1 + νh]e−νhdν +
3~c

8πε
1/2
m

∫ ∞
νUV

R(ν)[1 + νh]e−νhdν, (28)

where νUV is the frequency at which R(ν) is maximum. The first integral can now be evaluated using the first mean
value theorem, and the second using the second mean value theorem, yielding

Aω>0(h) = 3~c
8πε

1/2
m h

R(νIR)[(2 + νTh)e−νTh − (2 + νUVh)e−νUVh]

+ 3~c
8πε

1/2
m h

R(νUV)[(2 + νUVh)e−νUVh − (2 + ν∞h)e−ν∞h].
(29)

This is an exact quadrature for suitably chosen frequencies νIR and ν∞, satisfying νT < νIR < νUV, and νUV < ν∞ <
∞. Collecting terms, the above expression simplifies to

Aω>0(h) =
3~c

8πε
1/2
m h

R(νIR)
[
(2 + νTh)e−νTh + (f − 1)(2 + νUVh)e−νUVh − f(2 + ν∞h)e−ν∞h

]
, (30)
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where f = R(νUV)/R(νIR). Supplementary Eq. (30) provides a simple analytic expression which properly captures
the crossover from retarded to non retarded interactions, as well as the suppression of retarded interactions at large
distances and the temperature dependence of the van der Waals forces.

Assuming that the relevant wave-numbers are well separated, such that νT � νUV � ν∞, we find the following
four distinct regimes as h increases:

• The subnanometer range, ν∞h� 1, describes either the h→ 0 or T → 0 behavior of Aω>0. Expanding all the
exponentials in Supplementary Eq. (30), one finds that the terms of order h0 inside the square brackets cancel
exactly. Retaining then the leading order terms in h, one finds

Aω>0(h) =
3~ω∞

4π
R(νUV). (31)

In this regime Aω>0 recovers the standard low temperature asymptotic limit that is well known in the literature.
In particularly, Aω>0 is independent of h and one can talk appropriately of a Hamaker constant.

• For νUVh� 1� ν∞h, the last term in Supplementary Eq. (30) is exponentially suppressed, and Aω>0 develops
an explicit h dependence

Aω>0(h) =
3~c

4πε
1/2
m h

R(νUV). (32)

Using this expression in Supplementary Eq. (22), we recover the standard result for retarded van der Waals
interactions. In this range, the free energy has naturally shifted from an h−2 to an h−3 dependence, while the
sign of the interactions remains dominated by the UV dielectric response.

• For νTh� 1� νUVh, the last two terms of Supplementary Eq. (30) are suppressed, and the retarded interactions
cross over from an ultraviolet dominated regime, to an infrared dominated regime

Aω>0(h) =
3~c

4πε
1/2
m h

R(νIR), (33)

since R(νIR) and R(νUV) have opposite signs, the Hamaker function changes sign from positive to negative as
the film thickness becomes larger than the cross-over wave-length νUV lying in the nanometer length scale.

• Finally, for νTh � 1, only the first term of Supplementary Eq. (30) remains. This results in an exponentially
decaying retarded interaction corresponding to the expected suppression of Aν>0 at microwave distances [18, 19],
with

Aω>0(h) = 3kBTR(νIR)e−νTh. (34)

For practical purposes, we are only interested in modeling van der Waals forces out to distances of the order of
decades of nanometers from the surface, so we assume νTh� 1, and simplify Supplementary Eq. (30) to

gvdw(h) = − B
h3

[1− f exp(−νUVh)− (1− f) exp(−ν∞h)] , (35)

where now B, f , νUV and ν∞ are parameters chosen to best model the results of Elbaum and Schick in the range
of 1 to 10 nm. For sufficiently large f > 1, this equation gives the expected crossover in the decay form of g(h) from
∼ h−2 to ∼ h−3 dominated regimes found for the ice/water/air interface.

Supplementary Fig. 5 shows a comparison of the exact results from Lifshitz theory together with the fit to Supple-
mentary Eq. (35), showing excellent agreement for the set of parameters displayed in Supplementary Table 1. Since
we find that gvdw(h) is a factor of 1/100 smaller than gsr(h) in the range h < 10 Å, the van der Waals forces therefore
only become relevant at large distances, where gsr(h) becomes negligible due to the exponential decay form that it
has.
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Supplementary Fig. 5: Van der Waals interface potential, as calculated numerically by Elbaum and Schick
(symbols), compared with the analytical approximation in Supplementary Eq. (35).
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SUPPLEMENTARY NOTE 3: FIT TO THE INTERFACE POTENTIAL

The computer simulation results for the interface potential are fitted to the expression g(h) = gsr(h) + gvdw(h),
with gsr(h), the structural short range contribution:

gsr(h) = C2 exp(−κ2h)− C1 exp(−κ1h) cos(q0h+ α) (36)

We use the coefficients Ci, κ2, κ1, q0 and α as fitting parameters, setting κ2 = 2κ1, for simplicity. Since the interface
potential obtained from simulation is exact up to an additive constant, we seek parameters by minimizing the least
square deviations from the corresponding disjoining pressure Π(h) = −∂hg(h). We include also a constraint in the
minimization to force the minimum of the interface potential to be at gmin = −5.9× 10−5 J/m2, consistent with the
observed contact angle of a droplet on an α film. The parameter values obtained from this fitting may be found in
the Supplementary Table 1. The value found for q0 is consistent with a strong renormalization away from the value
one would expect from mean field theory [20–22]. In our fits we find that the target depth of the primary minimum
of the interface potential could not be reached. Since the separation between the kinetic phase lines is dictated by
the depth and free energy difference of the minima, the phase lines in Fig. 4 (main text) appear very close to each
other. To illustrate the role of the well depth in separating the phase lines, Supplementary Fig. 1 uses an interface
potential blown up by a factor of 30. The resulting phase lines very much resemble the kinetic phase diagram observed
experimentally [23]. A recent study indicates that the van der Waals forces estimated by Elbaum and Schick used here
suffer from insufficient optical data and predict interactions that are one order of magnitude too weak [24, 25]. This
explains why the energy minima of our model interface potential are so shallow and produce such a small separation
between the kinetic phase lines.
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SUPPLEMENTARY NOTE 4: STOCHASTIC DYNAMICS OF THE SINE GORDON + CAPILLARY
WAVE MODEL

Consider a microscopic realization of the premelting film at a given instant, obtained with atomistic detail e.g.
in a Molecular Dynamics simulation. The detailed state of this system, as given by the atomic positions, may be
conveniently described by two interface profiles L̂sl(x, t) and L̂lv(x, t) of the solid/liquid and liquid/vapor interfaces
by using a suitable coarse-graining on the scale of a few molecular diameters [16, 26–28]. Thus, these profiles are still
microscopic scale quantities.

In the spirit of the Langevin equation, we expect that the time evolution of the interface profiles will be dic-
tated by two different processes. First, a deterministic evolution that is driven by a coarse-grained Hamiltonian,
H[L̂sl, L̂lv]. Second, a Gaussian random evolution that describes the thermal fluctuations of the coarse-grained de-
grees of freedom. Such a dynamical equation for a thin liquid film on an inert substrate was derived in [29]. Here,
using heuristic arguments we generalise this to the present case of a water film on ice with evaporation/condensation
and freezing/melting.

The time evolution at the solid/liquid surface is the result of freezing and melting events, which can be described

by a non-conserved dynamics of L̂sl(x, t) as:

∂L̂sl

∂t
= −ksl

δH
δL̂sl

+R
sl

(x, t) (37)

where R
sl

(x, t) is a white noise field that accounts for microscopic detailed balance at equilibrium.
Similarly, the time evolution at the liquid/vapor surface is the result of condensation and evaporation of the liquid

film, which is conventionally described in terms of a non-conserved dynamics. However, since the premelting film
is fluid, we must also account for the spreading dynamics of the film, which we can describe using the thin film
approximation. Taking together the two processes, this leads to a generalization of the stochastic thin film equation
in the presence of evaporation/condensation:

∂L̂lv

∂t
=

[
∇ · ĥ

3

3η
∇− klv

]
δH
δL̂lv

+R
lv

(x, t) (38)

where we have introduced ĥ = L̂lv − L̂sl for short, while R
lv

(x, t) is a noise field that accounts for random stress
fluctuations within the premelting film, together with random evaporation and condensation events at the liquid/vapor
surface [29]. Notice the model assumes the lubrication approximation for the advective dynamics of the thin liquid film,
which is accurate provided the characteristic wavelength of the lateral height variations is larger than the thickness
of the liquid layer. This condition is obeyed for the very small contact angle droplets which is certainly the case for
the system of interest here.

Of course, the evolution of the two surfaces is not independent, and leads to a pair of coupled stochastic differential
equations for the dynamics of the premelting film:

∂L̂sl

∂t
= −ksl

δH
δL̂sl

+
√

2kBTksl ξsl(x, t), (39)

∂L̂lv

∂t
= ∇ ·

 ĥ3
3η
∇ δH
δL̂lv

+

√
2kBT ĥ3

η
ξtf(x, t)

− klv δH
δL̂lv

+
√

2kBTklv ξlv(x, t)− ∆ρ

ρl

∂L̂sl

∂t
. (40)

Notice that, on account of the premelting film’s incompressibility, changes in L̂sl are conveyed into L̂lv, so that the
full dynamics of L̂lv is dictated both by condensation/evaporation and freezing/melting rates. The stochastic nature
of the growth process is described by spatially and temporal uncorrelated white noise fields, ξ

sl
, ξ

lv
and ξtf that

describe coarse-grained thermal fluctuations at the solid/liquid surface, the liquid/vapor surface and the premelting
film, respectively. Finally, the amplitude of the random noise is chosen such that linearized forms of Eq. (37) and
Eq. (38) at equilibrium satisfy the fluctuation-dissipation theorem exactly (i.e. obey detailed balance).

In order to be more specific, we now consider an explicit form for the Hamiltonian, based on the sine Gordon
model for the description of the solid/liquid surface, and the capillary wave Hamiltonian for the description of the
liquid/vapor surface [26–28]:

H[L̂sl, L̂lv] =

∫ [γsl
2

(∇L̂sl)
2 +

γlv
2

(∇L̂lv)2 − u cos(qzL̂sl) + g(L̂lv − L̂sl)−∆pslL̂sl −∆plvL̂lv

]
dx, (41)
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where γsl, the solid/liquid stiffness coefficient and γlv, the water/vapor surface tension penalize the increase of surface
area; the cosine term favors solid/liquid film heights that are congruent with the crystal lattice spacing as dictated

by the wave-vector qz; u dictates the energy cost for excursions away from the preferred spacing; g(L̂lv − L̂sl) is the
interface potential, which sets the equilibrium film height at coexistence; and finally, ∆psl = p

s
−p

l
and ∆plv = p

l
−p

v
,

with pα the bulk pressure of phase α are fields which account for the free energy cost of forming a liquid film at the
expense of solid and vapor phases, respectively. Notice however that the coefficients of this Hamiltonian are ‘bare’ or
mean field parameters obtained from a microscopic theory averaged on the scale of the bulk correlation length.

Using the above Hamiltonian together with Eqs. (39) and (40), we obtain the following explicit equation for the
stochastic evolution of the coupled sine Gordon + Capillary Wave model:

∂L̂sl

∂t
= −ksl[γsl∇2L̂sl + w sin(qzL̂sl)− φsl] +

√
2kBTkslξsl(x, t), (42)

∂L̂lv

∂t
= (∇ · ĥ

3

3η
∇+ klv)[γlv∇2L̂lv + φlv] +∇ ·

√
2kBT ĥ3

3η
ξtf(x, t) +

√
2kBTklvξlv(x, t)− ∆ρ

ρl

∂L̂sl

∂t
, (43)

where w = qzu, φsl = ∆psl −Π and φlv = ∆plv + Π, with Π the disjoining pressure, defined as Π(h) = −dg(h)/dh.
This result may be considered as a generalized stochastic thin film equation [29–31] that accounts also for variations

of the underlying substrate by means of the sine Gordon model [32–34], and condensation/evaporation by means of
a growth equation for rough surfaces [35]. For inert substrates and non volatile liquids (ksl = klv = 0), it reduces
exactly to the stochastic thin film equation [29–31]. For the buried solid substrate below an infinitely thick liquid

film in equilibrium (L̂lv = D, with the constant D → ∞), it reduces exactly to the stochastic sine Gordon equation
[32–34, 36] and for an infinitely viscous premelting film (η =∞) under a flat inert substrate (ksl = 0) it recovers the
stochastic growth equation of rough interfaces [35]. In each of these limiting cases, the amplitude of the noise is set
such that the fluctuation-dissipation theorem is obeyed exactly.

Obviously, the model does not incorporate any effects related to thermal gradients. However, it is believed that for
films less than approximately 100 nm, disjoining pressure effects largely dominate over thermo-capillary forces [37].
Furthermore, the experiments we describe appear to fulfil local thermal equilibrium, since growth and evaporation
events appear to be reversible and reproducible [1].

Within this premise, the above result incorporates many details of the physics. For equilibrium systems, with no
forcing, the stochastic dissipative equations serves as a starting point for renormalization of the bare Hamiltonian [34,
38, 39]. For systems out of equilibrium, it describes correctly purely dissipative processes that occur deterministically
when very large free energy gradients are present. Thanks to the stochastic term, it can also describe excursions away
from the deterministic path when thermal fluctuations are comparable to the energy gradients, and is also able to
describe uphill activated processes against the free energy gradients. In particular, the stochastic thin film equation
is able to predict the nucleation of metastable thin films [29], while the stochastic sine Gordon model can describe
terrace nucleation and activated crystal growth of faceted surfaces [33, 36], as well as spiral growth [40].

Unfortunately, this detailed stochastic description can be in practice rather cumbersome, as very lengthy simulations
are required to observe activated processes, while the stochastic nature of the dynamics implies the need to collect
averages over a large ensemble of trajectories.

For this reason, it is convenient to perform an average of Eqs. (42) and (43) over the set of all random realizations of
the noise subject to a given initial condition, in a manner similar to that performed in Dynamical Density Functional
Theory [41, 42]. The reward for this additional averaging is that the resulting evolution equation becomes determin-
istic, and we can then avoid studying a large number of trajectories and implementing the cumbersome details of
stochastic differential equations.

To see this, assume that Lsl(x, t) and Llv(x, t) are the noise averaged film profiles. Then, a given realization of
the stochastic evolution as described by Eqs. (42) and (43) may be expressed in terms of deviations away from the

averaged profile as L̂sl(x, t) = Lsl(x, t) + δL̂sl(x, t), and likewise for L̂lv(x, t). Plugging these into Eqs. (42) and (43),

and performing an average over all realizations of the noise, linear terms in L̂sl are immediately transformed into
terms with exactly the same form in Lsl, by definition, while the random noise terms vanish. Therefore:

∂Lsl

∂t
= −ksl[γsl∇2Lsl + w〈sin(qzL̂sl)〉ξ − 〈φsl〉ξ], (44)

∂Llv

∂t
= 〈(∇ · ĥ

3

3η
∇+ klv)[γlv∇2L̂lv + φlv]〉ξ −

∆ρ

ρl

∂Lsl

∂t
, (45)
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where 〈〉ξ stands here for the average over the random trajectories. In the spirit of the Smoluchowski equation, the

ensemble average over trajectories can be replaced by an ensemble average over the film fluctuations, δL̂sl(x, t) and

δL̂lv(x, t). Then, assuming local thermal equilibrium during the time evolution of the averaged profile, the random film

height deviations δL̂sl(x, t) and δL̂lv(x, t) are Gaussian distributed, with a variance that is given by the equilibrium
thermal fluctuations. Accordingly, the ensemble over trajectories may be replaced by a canonical ensemble over
fluctuations 〈〉ξ → 〈〉T .

In this approximation, we can readily interpret the first of the coupled equations. The exact Gaussian average of
sin(qzL̂sl) readily yields:

〈sin(qzL̂sl)〉T = e−
1
2 q

2
z〈δL̂

2
lv〉T sin(qzLsl). (46)

Accordingly, the sinusoidal term w sin qzL̂sl of the original Hamiltonian, that is a function of the microscopic film
profile L̂sl, is transformed exactly into a sinusoidal term that is a function of the averaged film profile Lsl, albeit with

a renormalized amplitude we−
1
2 q

2
z〈δL̂

2
lv〉 [34, 43, 44]. At a higher level of approximation, also the surface tension γsl

is renormalized [32, 38], but this difficulty need not concern us here since this level of renormalization predicts the
location of the roughening transition exactly.

On the other hand, the Gaussian average of φ
sl

(ĥ) = ∆psl −Π(ĥ) yields:

〈φ
sl

(ĥ)〉T = ∆psl − 〈Π(ĥ)〉T (47)

where 〈Π(ĥ)〉 is the Gaussian renormalized disjoining pressure. In our model, the disjoining pressure consists of
short ranged (exponentially decaying) terms, and an algebraically decaying term. The latter does not renormalize,
because of the long range nature, and need not concern us any longer [45] while the former can be worked out exactly
under Gaussian renormalization [20, 22]. The result is again formally equal to the bare disjoining pressure of the
Hamiltonian, albeit with renormalized coefficients, as discussed in the main text.

It follows that the dynamics of Lsl may be cast as:

∂Lsl

∂t
= −ksl[γsl∇2Lsl + wR sin(qzLsl)−∆psl + ΠR(h)] (48)

where the subscript R stands for Gaussian renormalized quantities. This equation is formally identical to Eq. (42),
albeit with the microscopic film heights replaced by average film heights, and the bare parameters of the Hamiltonian
replaced by renormalized coefficients.

A similar result for the time evolution of Llv cannot be readily obtained, because the mobility coefficient in the
lubrication approximation depends on the film thickness. Hence, the Gaussian average of the Hamiltonian couples

with the ĥ3 term in the mobility coefficient. However, in our system the fluctuations of L̂sl are smaller than one lattice
spacing because the surface is smooth, while the fluctuations of L̂lv are limited by the long range van der Waals tail

and increase logarithmically with the film height. Accordingly, we expect that the fluctuations of ĥ away from the

mean value h will be small. This allows us to expand the mobility in powers of δĥ and retain only the leading order
term. The time evolution of Llv is then given as:

∂Llv

∂t
= (∇ · h

3

3η
∇+ klv)[γlv∇2Llv + ∆plv + ΠR(h)] (49)

where again the subscript R stands for Gaussian renormalized quantities.
Eq. (48) and Eq. (49) provide a system of deterministic coupled differential equations for the average dynamics of

the coupled stochastic sine Gordon and stochastic thin film equations:

∂Lsl

∂t
= −ksl[γsl∇2Lsl + w sin(qzLsl)− φsl], (50)

∂Llv

∂t
= (∇ · h

3

3η
∇+ klv)[γlv∇2Llv + φlv]− ∆ρ

ρl

∂Lsl

∂t
. (51)

From Eqs. (50) and (51) we can readily see that the trajectory averaged film profiles Lsl and Llv follow a time

evolution that is exactly the same as that for the microscopic profiles L̂sl and L̂lv given in Eqs. (42) and (43), albeit
with renormalized parameters of the Hamiltonian.
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In view of this, we can write the coupled time evolution of Lsl and Llv as in Eq. (3) of the main manuscript, with
the understanding that the free energy, Ω is a Gaussian renormalized Hamiltonian Ω = 〈H〉ξ ≈ 〈H〉T , which adopts
the same form as the mean field Hamiltonian, Eq. (41), albeit with renormalized coefficients.

This interpretation is very much analogous to the similar results found in Dynamic Density Functional Theory
[41, 42, 46], which is a theory for the dynamics of the density distribution of Brownian stochastic particles (i.e.
colloids). There, the resulting deterministic equation is an evolution equation for the average density profile, obtained
by averaging over all realizations of the noise, while the stochastic equation describes the evolution of the microscopic
density for one particular realization of the noise. The input to the deterministic equation is the free energy functional
known from equilibrium Density Functional Theory [21]. In this picture, the deterministic evolution of the microscopic
density can also be interpreted to describe the most likely path of the stochastic process when the fluctuations are
small [46, 47]. In this case, the microscopic Hamiltonian does not deviate significantly from the renormalized free
energy, and then the average evolution is essentially the same as that of the most likely path, as expected in mean
field.
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SUPPLEMENTARY NOTE 5: MEAN FIELD DYNAMICS AND KINETIC PHASE DIAGRAM

The dynamics of the premelting film, i.e. of the solid/liquid and liquid/vapor interfaces Lsl and Llv respectively, is
governed by the free energy in Eq. (3) of the main text, together with the gradient dynamics equations in Eq. (4) of
the main text.

The dynamics exhibited by this pair of coupled partial differential equations is very rich, and the full gamut can
only be found by solving numerically. However, analytic results can be obtained for the long-time average behavior,
i.e. for the growth speeds. For φ2sl < w2, ice growth (corresponding to Lsl increasing) cannot occur, because the
thermodynamic force φsl is not sufficient to overcome the sinusoidal pinning potential. Therefore, growth proceeds
by the horizontal spread of terraces with velocity π

4 ksl(
γsl
u )1/2φsl [34, 38]. For φ2sl > w2, the driving potential φsl

overcomes the sinusoidal potential, and uniform growth can occur. However, if φsl is only marginally larger than
w, the process occurs in a stepwise fashion, with a long interval in which there is almost no growth, followed by
fast growth over a short time period, as observed in computer simulations [48]. This leads to a height increment of

≈ 2π/qz, i.e. of one ice lattice spacing. The process repeats recursively with a period τ = 2π/qz
√
φ2sl − w2, so that the

average growth rate is ksl
√
φ2sl − w2. For large φsl, this provides the usual ‘linear growth’ mode of rough interfaces,

but in the limit φsl ≈ w, the linear growth mode can be much slower than the horizontal translation of terraces.
For flat films, the average growth rate over time scales much larger than τ is then given by

〈∂Lsl

∂t
〉 = ±ksl

√
φ2sl − w2 (52)

〈∂Llv

∂t
〉 = klvφlv −

∆ρ

ρl
〈∂Lsl

∂t
〉 (53)

where the plus sign stands for freezing, and the minus sign for sublimation. Subtracting one from the other, we
obtain the average speed of the liquid film thickness growth

〈∂h
∂t
〉 = klvφlv ∓

ρs
ρl
ksl
√
φsl2 − w2. (54)

This result becomes particularly simple for the case when w = 0, as discussed in the text. In the general case
where w 6= 0 and p > psv so that the height of the ice grows, the condition that the liquid thickness is stationary
〈∂th〉 = 0 is achieved for φlv ≥ 0, φsl ≥ 0, and φ2sl − w2 ≥ 0. In the marginal case where φsl = w, then we need
φlv = 0. Solving these two conditions simultaneously corresponds to ∆psl + ∆plv = ±w. Using the approximate but
nonetheless accurate thermodynamic relations for the pressure differences given below in Eqs. (68) and (69), these
condition may be solved as a function of T , yielding the following equation for the boundary

pns(T ) = psv(T )e
± w
ρskBT . (55)

States between the sublimation line psv(T ) and the boundary line pns(T ) neither grow nor sublimate because the
surface Lsl can not grow in the absence of thermal activation.

For the more general case when φ2sl − w2 ≥ 0, the stationarity condition is achieved as a solution of the equation

klvφlv ∓
ρs
ρl
ksl

√
φ2sl − w2 = 0. (56)

It corresponds to the condition that the liquid/vapor and solid/liquid surfaces grow at the same rate. Only one
solution exists, given that the surface growth rates are monotonic. However, in order to solve explicitly we need to
square each term. The resulting equation then has two solutions, each of the same magnitude but with opposite sign.
Of course, one is unphysical. Therefore, squaring in Eq. (56) we obtain

ρ2sk
2
slφ

2
sl − ρ2l k2lvφ2lv = ρ2sk

2
slw

2, (57)

under the condition that pv > psl(T ). This provides a quadratic equation for Π as a function of pv and T , so one
obtains

Π = −∆pk, (58)

with

∆pk = −
f2s ∆psl + f2l ∆plv ± fs

[
f2l (∆psl + ∆plv)2 + (f2s − f2l )w2

]1/2
(f2s − f2l )

, (59)



19

where fs = ρsksl and fl = ρlklv. Thus, the solution may formally be written in exactly the same form as the
equilibrium condition for the adsorption on an inert substrate, with the Laplace pressure difference ∆p = pl − pv
replaced by a kinetic pressure difference ∆pk which depends on the growth mechanism and rate constants. Likewise,
an effective potential exists whose extrema are stationary states of the underlying dynamics.

Alternatively, Eq. (57) may be solved for pv as a function of Π and T , with the result:

ρlkBT ln
p

plv
+ Π = −

∆ρC ±
[
κ2ρ2l C

2 + ρ2l w
2(∆ρ2 − κ2ρ2l )

]1/2
∆ρ2 − κ2ρ2l

, (60)

where κ = ρlklv/ρsksl and C = ρsρlkBT ln plv
psv
− ρsΠ. In this case, the result corresponding to w = 0 and Π = 0 (for

a rough ice surface) is obtained for the ‘+’ root. Three kinetic transition lines in the phase diagram can be identified
from the numerical solution of these equations as discussed in the main text. Particularly, the kinetic coexistence
line between α and β states obeys a double tangent construction of wetting phase diagrams, albeit with the kinetic
overpressure replacing the equilibrium value:

ωk(h1) = ωk(h2) (61)

Π(h1) = −∆pk (62)

Π(h2) = −∆pk (63)

The first condition imposes equal effective free energy for both films, and the other two impose that both states obey
the quasi-stationary condition at equal kinetic overpressure −∆pk. Alternatively, these equations may be written
more concisely as:

g(h1) + Π(h1)h1 = g(h2) + Π(h2)h2 (64)

Π(h1) = Π(h2) (65)

Once the value of Π that satisfies the condition is known, the pressure pv at which the condition is met can be
obtained by solving Eq. (57) for pv(T ) using the appropriate value of Π in Eq. (60).

From these observations we are able to construct the highly detailed kinetic phase-diagram shown in Fig. 4 of the
main text, which is an essential tool for understanding at different state points the numerical results obtained from
the coupled gradient dynamics partial differential equations in Eq. (4) of the main text.
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SUPPLEMENTARY NOTE 6: THERMODYNAMIC FUNCTIONS AND THE EQUILIBRIUM PHASE
DIAGRAM

The pressure differences between solid/liquid and liquid/vapor phases are the thermodynamic driving forces that
lead to the growth of the ice and the liquid from the vapor. To determine these differences requires knowledge of the
equilibrium phase diagram, i.e. to know the pressure as a function of temperature along the condensation and subli-
mation lines, psl(T ) and psv(T ), respectively. We obtain these by assuming they follow from the Clausius-Clapeyron
equation. This approximation is excellent for the sublimation line [49], and remains good for the vaporization line
down to 260 K [4]. They are given by

ln
psv
pt

=
∆Hsv

R

(
1

Tt
− 1

T

)
, (66)

ln
plv
pt

=
∆H lv

R

(
1

Tt
− 1

T

)
, (67)

where Tt and pt are the temperature and pressure at the triple point, R is the gas constant, ∆Hsv is the molar
enthalpy change for sublimation and ∆Hlv is the molar enthalpy change for condensation.

Since ice and water can both be treated as effectively being incompressible, the pressure changes which are relevant
to this study are very small. Therefore, the pressure differences can accurately be approximated by

pl − pv = ρlRT ln
pv

plv(T )
, (68)

ps − pv = ρsRT ln
pv

psv(T )
. (69)

Using Eqs. (66)–(69), we obtain explicit expressions for the liquid-vapor and ice-liquid overpressures as

pl − pv = ρlRT ln
pv
pt
− ρl∆H lv(T − Tt)

Tt
, (70)

ps − pl = (ρs − ρl)RT ln
pv
pt

+
(ρl∆H lv − ρs∆Hsv)(T − Tt)

Tt
. (71)

Notice that the pressure difference between the solid and liquid phases decreases as the ambient vapor pressure
increases. The triple point data required for the implementation of Eqs. (66)–(71) may be found in Supplementary
Table 2.
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SUPPLEMENTARY NOTE 7: KINETIC COEFFICIENTS FOR THE GROWTH RATE LAWS

Growth of the liquid/vapor surface

For an infinitely thick premelting film with a flat liquid-vapor surface, Eq. (50) for the growth rate of the surface
becomes

∂Llv

∂t
= klv∆plv. (72)

Replacing pl − pv ≈ ρlkBT (p− plv)/plv in the term for condensation/evaporation rate, we find

∂Llv

∂t
≈ klvρlkBT (p− plv)/plv. (73)

This result can be compared to the Knudsen-Hertz law, which reads

∂Llv

∂t
= kKH(p− plv), (74)

where kKH = αlv/ρl(2πmwkBT )1/2, and where αlv is the sticking coefficient, or fraction of vapor molecules that stick
to the interface upon collision and mw is the mass of a water molecule. Therefore, we find

klv =
plv

ρlkBT
kKH. (75)

We calculate klv using the thermodynamic data reported in Supplementary Table 2. We also assume αlv = 1 for the
attachment of pure water vapor onto the ice surface, consistent with all current molecular simulation studies [50–53].

Growth of the solid/liquid surface

For an infinitely thick premelting film with flat solid-liquid interface, Eq. (50) for the growth rate of the surface
becomes

∂Lsl

∂t
= ksl∆psl. (76)

Replacing ps − pv ≈ ρs∆Hsl
T−Tt

Tt
in the term for the freezing/melting rate we find

dLsl

dt
≈ kslρs∆Hsl

Tt − T
Tt

. (77)

This result can be compared to the law of linear growth for a crystal from the melt which holds at large undercooling
[5],

dLsl

dt
= kLG(Tt − T ). (78)

The result for the rate constant suggested by Librecht [54], kLG = 0.07 cm/s K, leads to ksl = 6 × 10−10 m/s Pa.
However, the slope of the kinetic coexistence line is determined by the ratio ksl/klv, and we find that the slopes
observed in experiments can only be reproduced for ksl/klv ≈ 6.4, which is about a factor of 10 smaller. It seems
likely that the kinetic coefficient for growth from the premelting film could be significantly smaller than that from
the melt, since the interface is considerably smoother [26]. Therefore, in our calculations we set ksl = 6.4klv.

Size of the region where nucleated dynamics occurs

For h → ∞, our model gives an equation for the dynamics of Lsl that corresponds to the growth of ice within
supercooled water. This is

∂Lsl

∂t
= ksl(γsl∇2Lsl − uqz sin(qzLsl) + ∆psl), (79)
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which is a forced overdamped sine-Gordon equation. The growth is nucleated for uqz > ∆psl, and otherwise linear
in time [36, 55]. Therefore, we can obtain an order of magnitude estimate for the parameter u from the value of the
temperature where there is a crossover from nucleated to linear growth of ice in supercooled water. According to
Pruppacher [5], this occurs at about T − Tt ≈ 2 K. Using ps − pl = ρ

s
∆H

sl
∆T/Tt, we find

u =
dB
2π
ρs∆Hsl

∆T ∗

Tt
. (80)

Using ∆T ∗ = 2 K as suggested from results in Ref. [56], and dB = 0.37 nm, we find u = 1.3 × 10−4 J/m2. This is
about five times larger than the results obtained from computer simulations, which yield u = 2.8×10−5 J/m2 [26–28].
The value we use is given in Supplementary Table 3.

Viscosity

In principle, the lubrication approximation on which our thin film dynamics model is based on uses as input the
bulk liquid viscosity. Some studies suggest there is a large enhancement of the viscosity of premelting films (c.f. [57])
over the bulk value. However, this appears to remain as an unsolved issue, with very recent high-profile studies being
published [58]. Thus, here we use the viscosity of supercooled bulk water as reported in Supplementary Table 3.
Changing the value of the viscosity in our model will not qualitatively change our results.

Data for all the parameters used in the Singe Gordon + Capillary Wave dynamical model may be found in Supple-
mentary Table 3.
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SUPPLEMENTARY NOTE 8: NUMERICAL SOLUTION OF THE GRADIENT DYNAMICS

Numerical computations of the dynamics of the interfaces predicted by our coupled partial differential equation
model in Eqs. (50) and (51) (i.e. Eqs. (3) and (4) of the main text) are performed using a method of lines technique
similar to that used in Ref. [59]. The method is extended to evolve the two interfaces (solid-liquid, and liquid-vapor),
with coupling terms involving mass transfer and the two interface potentials naturally included. However, we evaluate
the spatial derivatives in a different manner, which significantly increases the rate of numerical convergence. This
was done because for the evolution of the solid-liquid interface, a pinning effect in the horizontal direction can occur
if too few mesh points are used. Consequently, rather than using an extremely large number of points in the finite
difference scheme used in [59], here we implement a periodic pseudospectral method.

The numerical method uses results from Ref. [60], discretising on a regular (periodic) grid and uses a band-limited
interpolant derived using the discrete Fourier transform and its inverse to form the differentiation matrices which act
in real space (see chapter 3 of [60] for details). The periodicity enabled by the premelting film avoids the need to
evolve actual contact lines, in comparison to some of our previous work using pseudospectral discretisation [61, 62].
For the time stepping, the ode15s Matlab variable-step, variable-order solver is used [63]. Our numerical calculations
are performed on the nondimensionalised version of the model equations. We find that choosing κ−11 ≈ 0.49 nm and
3η/(κ1γlv) ≈ 0.11 ns as our units of length and time in the nondimensionalisation works well.

To explore the effectiveness of our model to at least qualitatively reproduce the phenomena observed in the ex-
periments and to confirm the validity of the analytical predictions for the different behaviors in the different (pv, T )
regions of the phase diagram, we perform an extensive set of full numerical simulations, for a range of state points
covering all the different growth regimes. Of course, the observed behavior also depends on the effective surface
free energy ωk(h), which includes ice surface effects on the evolution of the interfaces, and on the initial conditions.
A comprehensively large variety of initial conditions (i.e. the t/τ = 1 profiles of the two interfaces) have also been
trialled, especially for planar interfaces (at different separations, usually based on the heights corresponding to the α
or β minima) with either small imperfections in the solid, or an initial perturbation of the liquid surface, or both. The
results presented in the paper are drawn from the following three different initial condition types: Firstly, a planar
solid-liquid surface with a Gaussian droplet shaped perturbation in the liquid-vapor interface, given by

Llv = dB + h0 +Af exp[−((x− xL/2)/xwf)
2], (81)

Lsl = dB, (82)

where h0 is an initial separation (such as the height of the α minimum), xL is the size of the periodic domain (taken
as xL = 2500κ−11 ) in all simulations presented here, Af = 17κ−11 is the height of the Gaussian perturbation and xwf is
a measure of its width. We typically set xwf = 450κ−11 for the results presented here.

The other two forms for the initial conditions are

Lsl = dB ±
Ai

2
dB

[
tanh

(
x− (xL − xwi)/2

10κ−11

)
− tanh

(
x− (xL + xwi)/2

10κ−11

)]
, (83)

Llv = dB + h0, (84)

which corresponds to a planar liquid-vapor surface, together with an ice-liquid interface that has on it a small
imperfection of hight Ai that is an integer multiple of the height of a single ice terrace, that protrudes either into or
away from the liquid, and has width xwi. Values used in the work presented here are {Ai, xwi} = {1, xwi = xL/16}
and {Ai, xwi} = {10, xwi = 9xL/16}.

Fig. 4 and 5 of the main text displays snapshots from four typical simulations, and here we show snapshots from
two additional simulations in Figs. 2–3. The full time evolutions of all six simulations can be seen in the movies
included as supplementary material, named Movies S1–S6.



24

SUPPLEMENTARY REFERENCES

[1] Murata, K.-i., Asakawa, H., Nagashima, K., Furukawa, Y. & Sazaki, G. Thermodynamic origin of surface melting on ice
crystals. Proc. Natl. Acad. Sci. U.S.A. 113, E6741–E6748 (2016).

[2] Wagner, W. & Pruß, A. The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for
general and scientific use. J. Phys. Chem. Ref. Data 31, 387–535 (2002).

[3] Feistel, R. & Wagner, W. A new equation of state for H2O ice Ih. J. Phys. Chem. Ref. Data 35, 1021–1047 (2006).
[4] Murphy, D. M. & Koop, T. Review of the vapour pressures of ice and supercooled water for atmospheric applications. Q.

J. R. Meteorol. Soc. 131, 1539–1565 (2005).
[5] Pruppacher, H. R. & Klett, J. D. Microphysics of Clouds and Precipitation (Springer, Heidelberg, 2010).
[6] Hare, D. E. & Sorensen, C. M. The density of supercooled water. II. bulk samples cooled to the homogeneous nucleation

limit. J. Chem. Phys. 87, 4840–4845 (1987).
[7] Tanaka, M., Girard, G., Davis, R., Peuto, A. & Bignell, N. Recommended table for the density of water between 0◦C and

40◦C based on recent experimental reports. Metrologia 38, 301–309 (2001).
[8] Fletcher, N. H. The Chemical Physics of Ice (Cambridge University Press, 1970). Cambridge Books Online.
[9] Taborek, P., Kleiman, R. N. & Bishop, D. J. Power-law behavior in the viscosity of supercooled liquids. Phys. Rev. B 34,

1835–1840 (1986).
[10] MacDowell, L. G. & Müller, M. Observation of autophobic dewetting on polymer brushes from computer simulation. J.

Phys.: Condens. Matter 17, S3523–S3528 (2005).
[11] Grzelak, E. M. & Errington, J. R. Computation of interfacial properties via grand canonical transition matrix Monte Carlo

simulation. J. Chem. Phys. 128, 014710 (2008).
[12] Benet, J., Palanco, J. G., Sanz, E. & MacDowell, L. G. Disjoining pressure, healing distance, and film height dependent

surface tension of thin wetting films. J. Phys. Chem. C 118, 22079–22089 (2014).
[13] Hoyt, J. J., Olmsted, D., Jindal, S., Asta, M. & Karma, A. Method for computing short-range forces between solid-liquid

interfaces driving grain boundary premelting. Phys. Rev. E 79, 020601 (2009).
[14] Hickman, J. & Mishin, Y. Disjoining potential and grain boundary premelting in binary alloys. Phys. Rev. B 93, 224108

(2016).
[15] Elbaum, M. & Schick, M. Application of the theory of dispersion forces to the surface melting of ice. Phys. Rev. Lett. 66,

1713–1716 (1991).
[16] Llombart, P., Noya, E. G., Sibley, D. N., Archer, A. J. & MacDowell, L. G. Rounded layering transitions on the surface

of ice. Phys. Rev. Lett. 124, 065702 (2020).
[17] MacDowell, L. G. Surface van der waals forces in a nutshell. J. Chem. Phys. 150, 081101 (2019).
[18] Parsegian, V. A. & Ninham, B. W. Temperature-dependent van der waals forces. Biophys. J. 10, 664–674 (1970).
[19] Parsegian, V. A. Van der Waals Forces (Cambridge University Press, Cambridge, 2006).
[20] Chernov, A. A. & Mikheev, L. V. Wetting of solid surfaces by a structured simple liquid: Effect of fluctuations. Phys.

Rev. Lett. 60, 2488–2491 (1988).
[21] Evans, R. Density functionals in the theory of nonuniform fluids. In Henderson, D. (ed.) Fundamentals of Inhomogenous

Fluids, chap. 3, 85–175 (Marcel Dekker, New York, 1992).
[22] Henderson, J. R. Wetting phenomena and the decay of correlations at fluid interfaces. Phys. Rev. E 50, 4836–4846 (1994).
[23] Asakawa, H., Sazaki, G., Nagashima, K., Nakatsubo, S. & Furukawa, Y. Two types of quasi-liquid layers on ice crystals

are formed kinetically. Proc. Natl. Acad. Sci. U.S.A. 113, 1749–1753 (2016).
[24] Luengo, J. & MacDowell, L. Van der Waals Forces at Ice Surfaces with Atmospheric Interest. Master’s thesis, Facultad

de Ciencias (2020).
[25] Fiedler, J. et al. Full-spectrum high-resolution modeling of the dielectric function of water. J. Phys. Chem. B 124,

3103–3113 (2020). PMID: 32208624.
[26] Benet, J., Llombart, P., Sanz, E. & MacDowell, L. G. Premelting-induced smoothening of the ice-vapor interface. Phys.

Rev. Lett. 117, 096101 (2016).
[27] Benet, J., Llombart, P., Sanz, E. & MacDowell, L. G. Structure and fluctuations of the premelted liquid film of ice at the

triple point. Mol. Phys. 117, 2846–2864 (2019).
[28] Llombart, P., Noya, E. G. & MacDowell, L. G. Surface phase transitions and crystal habits of ice in the atmosphere. Sci.

Adv. 6 (2020).
[29] Grün, G., Mecke, K. & M., R. Thin–film flow influenced by thermal noise. J. Stat. Phys. 122, 1261–1291 (2006).
[30] Davidovitch, B., Moro, E. & Stone, H. A. Spreading of viscous fluid drops on a solid substrate assisted by thermal

fluctuations. Phys. Rev. Lett. 95, 244505 (2005).
[31] Mecke, K. & Rauscher, M. On thermal fluctuations in thin film flow. J. Phys.: Condens. Matter 17, S3515–S3522 (2005).
[32] Chui, S. T. & Weeks, J. D. Dynamics of the roughening transition. Phys. Rev. Lett. 40, 733–736 (1978).
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