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Abstract : 
 
In the marine environment, most bivalve species base their reproduction on external fertilization. Hence, 
gametes and young stages face many threats, including exposure to plastic wastes which represent 
more than 80% of the debris in the oceans. Recently, evidence has been produced on the presence of 
nanoplastics in oceans, thus motivating new studies of their impacts on marine life. Because no 
information is available about their environmental concentrations, we performed dose-response 
exposure experiments with polystyrene particles to assess the extent of micro/nanoplastic toxicity. 
Effects of polystyrene with different sizes and functionalization (plain 2-μm, 500-nm and 50-nm; COOH-
50 nm and NH2-50 nm) were assessed on three key reproductive steps (fertilization, embryogenesis 
and metamorphosis) of Pacific oysters (Crassostrea gigas). Nanoplastics induced a significant decrease 
in fertilization success and in embryo-larval development with numerous malformations up to total 
developmental arrest. The NH2-50 beads had the strongest toxicity to both gametes (EC50 = 4.9 μg/mL) 
and embryos (EC50 = 0.15 μg/mL), showing functionalization-dependent toxicity. No effects of plain 
microplastics were recorded. These results highlight that exposures to nanoplastics may have 
deleterious effects on planktonic stages of oysters, presumably interacting with biological membranes 
and causing cyto/genotoxicity with potentially drastic consequences for their reproductive success. 
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Graphical abstract 
 
 

 
 
 
 

Highlights 

► Oyster gametes, embryos and larvae were exposed to nano- and microplastics. ► Nanoplastics 
caused significant decrease in fertilization and embryogenesis success. ► Nanoplastics 
functionalization influences their behavior and toxicity. ► No effect of plain microplastics was 
demonstrated on all endpoints. 
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Introduction 35 

Mismanagement of plastic wastes is one of the major concerns of the scientific community in the 36 

21st century (Galloway et al., 2017). The exponential use of plastics by human society since 1950 37 

has led to a significant release of wastes into the environment (Cole et al., 2011; Geyer et al., 38 

2017). Between 13,200 and 34,800 tons of plastic debris were estimated to have been introduced 39 

daily into the oceans in 2010, and this amount is expected to increase by an order of magnitude 40 

by 2025 (Jambeck et al., 2015). Today, plastic debris are widespread and ubiquitous in marine 41 

environments from the sea surface (Eriksen et al., 2014) to the sediment (Van Cauwenberghe et 42 

al., 2015), including in remote areas such as polar regions (Cózar et al., 2017), deep-sediments 43 

(Bergmann et al., 2017) and desert islands (Lavers and Bond, 2017).  44 

Microplastics (MP) are defined as particles with a size less than 5 mm (Galloway et al., 2017), 45 

originating from manufactured beads/fibers (primary MP) or weathering of larger waste 46 

(secondary MP). They represent the most abundant plastic items in oceans in terms of the number 47 

of particles per unit of water (>92% of floating plastics) (Cole et al., 2011; Eriksen et al., 2014). 48 

Recently, a new class of debris was described, namely nanoplastics (NP), defined as particles 49 

<100 nm (Galloway et al., 2017) or <1000 nm (Gigault et al., 2018). The definition used in the 50 

present study (<100 nm) refers to the usual definition of nanoscale; i.e. the point where the 51 

properties of a material change (higher surface area effect and interaction with biological 52 

membranes) (Klaine et al., 2012). Their production has been demonstrated by mechanical 53 

fragmentation (Lambert and Wagner, 2016), photo-degradation (Gigault et al., 2016) or 54 

biodegradation (Dawson et al., 2018) of larger items. Likewise, similarly to MP, primary NP 55 

from cosmetics (Hernandez et al., 2017), 3D-printing wastes (Stephens et al., 2013), lubricants 56 

(Dubey et al., 2015) or drugs (Lusher et al., 2017) are suspected to enter the oceans directly. The 57 
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increase of NP used in such industries – and thus their release in environment – is suspected 58 

although very little information is available regarding the actual quantities used and discarded. At 59 

sea, the presence of plastic particles lower than 1 µm has been recently argued in the Atlantic 60 

Gyre (Ter Halle et al., 2017). However, owing to a lack of methods, no or very little information 61 

is currently available about the environmental concentrations of NP and small MP particles (<100 62 

µm), respectively (e.g. Huvet et al., 2016). Their environmental concentrations can only be 63 

estimated, for example following a power-law increase (around a 2.2 factor) from sea surface 64 

samples as recently proposed (Erni-Cassola et al., 2017). 65 

Despite the lack of knowledge concerning MP and NP distributions in the oceans, a consensus 66 

exists about the threat posed by small plastic particles for aquatic life (GESAMP, 2015). Effects 67 

of MP on feeding behavior (Cole et al., 2013; Ogonowski et al., 2016), energy balance (Wright et 68 

al., 2013; Watts et al., 2015), reproduction (Sussarellu et al., 2016; Gardon et al., 2018), and 69 

immune system (Avio et al., 2015; Paul-Pont et al., 2016) were demonstrated and ecological 70 

impacts can be discerned (Rochman et al., 2015; Green et al., 2016; Galloway et al., 2017). 71 

Furthermore, at the nanoscale, specific effects are expected as result of the physico-chemical 72 

properties of NP (Mattsson et al. 2015a; da Costa et al., 2016). Nanoparticles have a much greater 73 

surface/volume ratio than microparticles – the number of surface atoms increases when size 74 

decreases – which enhances their reactivity in aquatic environments (Mattsson et al. 2015a, 75 

Rocha et al. 2015). Likewise, the risk of translocation and overall transfer into the tissues of 76 

organisms increases at the nanoscale. For instance, fluorescent nano-polystyrene beads (NP-PS; 77 

50 nm) seemed dispersed in the body of Paracyclopina nana after ingestion, while MP (500 nm 78 

and 6 µm) remained in the digestive tract with a shorter retention time (Jeong et al., 2017). Initial 79 

assessments of NP toxicity highlighted risks to survival, feeding activity, embryogenesis, the 80 
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immune system, fecundity (number of offspring and/or pregnancy rate), metabolism (changes in 81 

amino acid composition, liver dysfunctions and energy balance) and behavior at a wide range of 82 

trophic levels including phytoplankton (Besseling et al., 2014), echinoderms (Della Torre et al., 83 

2014), rotifers (Jeong et al., 2016), crustaceans (Cui et al., 2017; Jeong et al., 2017), bivalves 84 

(Wegner et al., 2012 ; Canesi et al., 2016) and fish (Mattsson et al. 2015b, Mattsson et al. 2017).  85 

In the adult Pacific oyster Crassostrea gigas (Bayne et al., 2017), polystyrene microbeads of 2 86 

and 6 µm were shown to interfere considerably with gametogenesis, in terms of quantity and 87 

quality of produced gametes, leading to undesirable effects on the performance of offspring 88 

despite no direct exposure (Sussarellu et al., 2016). Because C. gigas has external fertilization, 89 

the free-living stages (i.e. gametes, embryos and larvae) must cope with the stress occurring in 90 

estuarine and coastal marine habitats where oysters live. To date only one study has investigated 91 

the impacts of plastic debris exposure to Pacific oyster larvae using 1 and 10 µm MP with no 92 

effect on their growth rate or survival (Cole and Galloway, 2015). These authors also studied the 93 

ingestion of polystyrene particles spanning 70 nm to 20 µm in size, but no toxic endpoint was 94 

monitored following exposure to this size class. For gametes, carboxylic nanoplastics (100 nm) 95 

induced oxidative stress in oyster spermatozoa linked to an increase in ROS production 96 

(González-Fernández et al., 2018). In this context, the present study aims to assess the potential 97 

adverse effects of plastic items on Pacific oyster free-living stages, targeting specifically the 98 

essential steps of fertilization, embryo-larval development and metamorphosis, so as to provide a 99 

view over the complete life cycle in addition to the adult exposure of Sussarellu et al. (2016) (Fig. 100 

1). Here, oyster gametes, embryos and larvae were exposed to five types of polystyrene particles, 101 

varying in size from NP to MP (50 nm; 500 nm; 2 µm) and in functionalization (no functional 102 

group, or presence of carboxyl or amine groups) to examine a size effect between MP and NP 103 
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(plain particles), as well as a surface properties effect between NP exhibiting different 104 

functionalization. The behavior of the particles was measured in seawater using Dynamic Light 105 

Scattering (DLS) to assess particle aggregation and modifications of the mean surface charge.  106 

Materials and methods 107 

Micro- and nanoplastic  108 

Five commercially available polystyrene (PS) beads were purchased from Polysciences/Bangs 109 

Laboratories and stored at 4°C prior to experiments: 50-nm, 500-nm and 2-µm beads without 110 

functionalization (Plain), and 50-nm beads coated with carboxyl (COOH-50) or amine groups 111 

(NH2-50). Before each handling, particles were vortexed to prevent particle aggregation and 112 

insure good suspension homogenization. Commercial suspensions were in ultrapure water (UW) 113 

with Tween-20© surfactant (<0.1%) to limit aggregation; Tween-20© had previously been 114 

demonstrated to be innocuous for marine invertebrates at this dose (Ostroumov, 2003). Raman 115 

microspectroscopy analysis confirmed the PS nature of the polymer for all beads and no 116 

additional features were observed in the PS spectra across all particles. (Fig. S1). All tests (DLS 117 

and exposures) were performed with the same batch of particles. 118 

Dynamic Light Scattering (DLS) analysis 119 

DLS (Zetasizer NanoZS; Malvern Instruments; United Kingdom) was used to determine the 120 

aggregation state (polydispersity index – PDI; Arbitrary Units (A.U.)), the mean size of 121 

particles/aggregates (hydrodynamic diameter; nm) and the mean surface charge (ζ-potential; mV) 122 

of MP/NP in two media: UW, as delivered by the supplier, and natural filtered seawater collected 123 

from the Bay of Brest (FSW; 1-µm filtered and UV-treated; pH 8.1 and 34 PSU). When PDI 124 

exceeds 0.2, particles were considered to be aggregated. Measurements were performed in 125 
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triplicate at 20°C (similar to the T°C used for bioassays) and a concentration of 100 µg/mL at T0 126 

and T24h, each containing 13 runs (10 sec.measure-1) for PDI and hydrodynamic diameter, and 127 

40 runs (10 sec.measure-1) for ζ-potential as conducted by González-Fernández et al. (2018). This 128 

concentration was used for DLS analysis owing to the presence of artifacts at lower 129 

concentrations. 130 

Suspensions of MP/NP for bioassays 131 

MP and NP stock suspensions were prepared in UW at 1,000 µg/mL, while working suspensions 132 

were prepared in FSW. Four concentrations of plastic were tested: 0.1, 1, 10 and 25 µg/mL, plus 133 

a control group (0 µg/mL), in order to identify toxicity thresholds. A total of 25 treatments (5 134 

particle types × 5 concentrations) were then tested on the three early stages (gametes, embryos 135 

and larvae; see below).  136 

Biological material 137 

Oysters from 2 cohorts, produced in 2014 and 2015 according to Petton et al. (2015), were 138 

deployed in 2016 in the bay of Brest and in the Marennes-Oléron basin (France). In the summer 139 

of 2017, oysters were randomly sampled to collect their gametes for assays on gametes and 140 

embryo-larval development. For the metamorphosis assay, pediveliger larvae (21 days old) were 141 

purchased from a commercial hatchery (Société Atlantique de Mariculture, France). 142 

Gamete assay 143 

Sperm from two males and oocytes from three females were collected by stripping the gonad. 144 

This was repeated in five replicates, involving a total of 10 males and 15 females. Sperm were 145 

then sieved at 100 µm, and oocytes at 100 µm then 20 µm to eliminate debris (Steele and 146 

Mulcahy, 1999). Oocytes were diluted in 2 L and sperm in 100 mL of FSW maintained at 21°C ± 147 
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1°C (mean ± SD). Spermatozoa mobility and round shape of oocytes, used as proxies of gamete 148 

quality, were checked by microscopy (Olympus BX51; ×10-20 magnification with phase contrast 149 

for sperm) (Fabbri et al., 2014). Spermatozoa and oocyte concentrations were estimated by flow 150 

cytometry (EasyCyte Plus cytometer; Millipore Corporation; USA) (Le Goïc et al., 2014, 2013). 151 

Gametes (1,000 oocytes/mL; 100:1 spermatozoa:oocyte ratio) were placed at the same time in 40 152 

mL glass vials filled with 30 mL of FSW at 21°C ± 1°C, containing the MP or NP suspensions (5 153 

particle types × 5 concentrations; 5 replicates per treatment).  154 

After 1.5 h, samples were fixed with a formaldehyde-seawater solution (0.1% final) to estimate 155 

the fertilization yield under a microscope (Zeiss Axio Observer Z1; ×10-40 magnification; 156 

observation of 150 oocytes per vial). The fertilization yield was defined as: (number of fertilized 157 

oocytes / [number of fertilized and unfertilized oocytes]) × 100 (Martínez-Gómez et al., 2017). 158 

An oocyte was considered to be fertilized when polar bodies and cell divisions were observed.  159 

Embryo-larval assay 160 

The standardized AFNOR procedure (AFNOR XP-T-90-382) was used to perform this assay. 161 

Fertilization was achieved in five replicates with gametes collected from five males and five 162 

females per replicate (total: 25 males and 25 females) following the procedure described above. 163 

Once fertilization was achieved in a 2-L glass beaker filled with 1.5 L of FSW with high 164 

fertilization yields (>90%; verified under a Zeiss Axio Observer Z1; ×10-40 magnification), 165 

1,500 embryos were collected per replicate and diluted at a concentration of 60 embryos/mL in 166 

40 mL glass vials filled with 25 mL of FSW (21°C ± 1°C) containing the MP or NP suspensions 167 

(5 particle types × 5 concentrations; 5 replicates per treatment). After 36 h in dark conditions, 168 

samples were fixed with a formaldehyde-seawater solution (0.1% final) to evaluate the D-larval 169 
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yield under a microscope (Zeiss Axio Observer Z1; ×10-63 magnification; observation of 100 170 

larvae per vial). The D-larval yield was defined as: (number of normal D-larvae / number of 171 

normal and abnormal D-larvae) × 100 (Di Poi et al., 2014). A normal D-larvae indicated 172 

embryogenic success, while an abnormal larva presented mantle, shell and/or hinge 173 

malformations, or developmental arrest at the embryonic stage (Mottier et al., 2013). 174 

Metamorphosis assay 175 

The bioassay at the metamorphosis stage was performed as described in Di Poi et al. (2014). 176 

Briefly, a total of 65 ± 15 pediveliger larvae per treatment were exposed to plastic particles in 12-177 

well microplates (NUNC© with the Nunclon™ Delta surface treatment) filled with 1.5 mL of 178 

FSW containing the MP or NP suspensions (5 particle types × 5 concentrations; 6 replicates per 179 

treatment) for 24 h at 21°C ± 1°C. Metamorphosis of oyster larvae was stimulated by adding 10-4 180 

M epinephrine (Sigma-Aldrich; CAS number: 51-43-4) (Coon et al., 1990) immediately after the 181 

start of the exposure (Di Poi et al., 2014). After the 24 h incubation, samples were fixed with a 182 

formaldehyde-seawater solution (0.1% final) to determine the metamorphosis yield under a 183 

microscope (Leica DM-IRB; ×10 magnification; all larvae were observed). The metamorphosis 184 

yield was defined as: (number of metamorphosed larvae / total number of larvae) × 100. A 185 

metamorphosed larva is characterized by a significant growth of shell and gills, and loss of the 186 

velum and foot (Di Poi et al., 2014). 187 

Statistical analyses 188 

Statistical analyses and graphical representations were produced using the R software. 189 

Percentages were analyzed after angular transformation. Normality and homogeneity of variance 190 

were verified by the Shapiro-Wilk and Levene methods, respectively. The Student’s t-test was 191 
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used to compare particle behavior (size and ζ-potential) between UW and FSW. For effects of 192 

particle concentrations on fertilization, embryo-larval development and metamorphosis success, 193 

parametric (ANOVA) or non-parametric (Kruskal-Wallis) analyses of variance were followed by 194 

post-hoc methods (Tukey or Conover) for pairwise comparisons when differences were detected. 195 

Whenever a dose-response pattern was observed, the package “DRC” was used to determine the 196 

half maximal effective concentration (EC50), defined as the concentration of a substance leading 197 

to a significant effect in 50% of the population. All data are represented by means ± standard 198 

deviation (SD). 199 

Results 200 

Particle characterization 201 

The 2-µm and 500-nm beads formed small aggregates in UW (PDI>0.2), whereas all NP 202 

remained in their original form (PDI<0.2; Table 1). For all particles, the aggregation state or size 203 

of aggregates increased significantly when added to seawater (p<0.01). Only the NH2-50 formed 204 

aggregates at the nanometer scale (mean ± SD; 96.5 ± 2.0 nm) in FSW. The Plain-50 (5951.0 ± 205 

264.3 nm) and COOH-50 (3735.0 ± 443.8 nm) formed larger aggregates than the 2-µm (3113.7 ± 206 

32.3 nm) and 500-nm (1620.7 ± 188.8 nm) beads in FSW. All particles presented a negative 207 

surface charge in UW and FSW, with the exception of NH2-50 that exhibited a positive surface 208 

charge in all media. The seawater systematically buffered the charge of all MP/NP with mean 209 

surface charge values decreasing towards zero in seawater compared to UW (p<0.01; Table 1). 210 

No significant changes (p>0.05) of charge and aggregation were observed between T0 and T24h 211 

in FSW for all particles except the Plain-50 which formed bigger aggregates exceeding 10 µm in 212 

FSW (p<0.05; Table S1). 213 
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Gamete assay 214 

The control treatment (0 plastic) presented a high fertilization yield (mean ± SD; 92.3 ± 1.0%), 215 

demonstrating the good quality/maturity of the gametes and the quality of the FSW. The 2-µm 216 

(Fig. 2A) and 500-nm (Fig. 2B) particles had no effect on the fertilization yield relative to the 217 

control group (p>0.05). All NP significantly impaired the fertilization yield in a dose-response 218 

manner between 1 and 25 µg/mL. Exposure to Plain-50 (Fig. 2C) led to significant reductions in 219 

fertilization (p<0.05) of 2.7, 55.7 and 72.7% for 1, 10 and 25 µg/mL, respectively, associated 220 

with an EC50 value of 12.3 ± 7.5 µg/mL. The COOH-50 particles (Fig. 2D) induced significant 221 

decreases (p<0.05) of 3.8, 65.7 and 93.0% with an EC50 value of 7.8 ± 1.1 µg/mL. The NH2-50 222 

exhibited the strongest toxicity inducing significant decreases (p<0.05) in the fertilization yield of 223 

6.3, 75.4 and 91.2% for increasing doses of NP associated with an EC50 value of 4.9 ± 0.9 µg/mL 224 

(Fig. 2E; Fig. S2).  225 

Embryo-larval assay 226 

Exposure to 2-µm (Fig. 3A) and 500-nm (Fig. 3B) did not cause any significant effect on 227 

embryo-larval development compared with the control treatment (mean ± SD; 93.3 ± 1.5%) at 36 228 

hours post-fertilization (hfp). The D-larval yield was significantly reduced (p<0.01) by exposure 229 

to 10 and 25 µg/mL of Plain-50 (Fig. 3C) leading to a mean reduction of 9.2 and 16.9%, 230 

respectively. This was insufficient to estimate a robust EC50 value for the Plain-50 (Fig. S3). 231 

Exposure to COOH-50 led to a mean reduction of 32.2 and 100% after exposure to 10 and 25 232 

µg/mL, respectively (Fig. 3D) with an EC50 value of 11.60 ± 10.5 µg/mL. The highest toxicity 233 

was observed for the NH2-50 with a significant decrease of 6.4% (p<0.05) in the D-larval yield at 234 

the lowest concentration (0.1 µg/mL), followed by a total inhibition (100% reduction) of the 235 
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embryo-larval development success for higher doses giving an EC50 value of 0.15 ± 0.4 µg/mL 236 

(Fig. 3E; Fig. S3).  237 

Compared to the control group where D-larvae appeared healthy (Fig. 4A), Plain-50 (10 and 25 238 

µg/mL) and COOH-50 (10 µg/mL) caused numerous mantle or/and shell malformations (Fig. 239 

4A-B). Only dead embryos/larvae were observed at the highest concentration of COOH-50 (Fig. 240 

4D) whereas mainly cell debris were observed upon exposure to the three highest doses of NH2-241 

50 (Fig. 4E-F). In both cases, this represents evidence of developmental arrest. 242 

Metamorphosis assay 243 

A high metamorphosis yield was observed in all treatments, ranging from 81.5 ± 9.0 to 90.8 ± 2.4 244 

(mean ± SD = 86.6 ± 3.6%), and no significant effect of MP/NP exposure (p>0.05) on 245 

metamorphosis success of C. gigas was demonstrated, regardless of particle type or 246 

concentration. Furthermore, no abnormalities were observed under a microscope for any of the 247 

treatments tested. 248 

Discussion 249 

Strong effects of NP were observed on the success of fertilization and embryogenesis of C. gigas 250 

depending on particle dose and functionalization. Based on the commercial size, a higher toxicity 251 

of NP compared to MP was demonstrated here, in agreement with previous observations across a 252 

range of species, including copepods (Jeong et al., 2017, 2016; Lee et al., 2013), crustaceans (Ma 253 

et al., 2016) and fish (Mattsson et al., 2017). This comparison was only done for plain particles, 254 

and the functionalization-dependent toxicity remains to be tested for MP, especially using amine 255 

groups displaying the strongest toxicity at the nanoscale. These insights support the purpose that 256 

risks of NP may be higher than microscale counterparts (Wright and Kelly, 2017). Indeed, there 257 
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is a consensus concerning the risk of nanomaterials as a result of their high reactivity and their 258 

capacity to cross biological membranes (Nel et al., 2006). It is noteworthy that the short term 259 

exposure to plain 500-nm and 2-µm beads did not show any effect on the two essential planktonic 260 

stages of oyster reproduction and development (gametes and embryos), whereas deleterious 261 

effects after 2-months of exposure to 2 and 6-µm plain PS beads were previously demonstrated 262 

on gametogenesis of adult oysters leading to subsequent negative impacts on unexposed gametes 263 

and offspring (Sussarellu et al., 2016).  264 

The dose-response exposure experiments performed here, which are the recommended approach 265 

when environmental concentrations are unknown (e.g. Paul-Pont et al., 2018), allowed the 266 

estimation of the half maximal effective concentration (EC50) indicating the concentration of a 267 

compound when 50% of its maximal effect is observed. The lowest EC50 was observed for the 268 

NH2-50, which was 1.6 to 77 times more toxic for gametes and embryos, respectively, than the 269 

COOH-50. The highest EC50 in NP exposures was observed for the Plain-50 particles presumably 270 

due to a decrease of their bioavailability owing to the presence of aggregates higher than 10 µm 271 

observed in seawater at T24h. Oyster embryos exhibited similar sensitivity as mussel embryos 272 

(48h exposures; EC50 NH2-50: 0.14 µg/mL)(Balbi et al., 2017), but their sensitivity was higher 273 

than that of sea urchin embryos (48h exposures; EC50 NH2-50: 2.61 µg/mL)(Della Torre et al., 274 

2014), suggesting inter-species variability. Additionally, biological stage within the same species 275 

appears to be an important factor in determining effects, considering the absence of NP toxicity 276 

on metamorphosis success. As demonstrated here, oyster larvae seem to withstand MP/NP 277 

exposures, in agreement with a previous study showing no effect on growth rate or survival of 278 

oyster larvae upon exposure to 1 and 10 µm PS particles for 8 days (Cole and Galloway, 2015). 279 

The absence of toxicity of MP/NP on pediveliger oyster larvae is probably linked to a decrease in 280 
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the larvae surface/volume ratio, and/or the appearance of a shell protecting larvae from 281 

polystyrene particles (Hickman, 1999; Liebig and Vanderploeg, 1995; Schiaparelli et al., 2004). 282 

The potential underlying mechanisms of NP toxicity include impairment of biological 283 

membranes, sub-cellular toxicity or physical blockages, notably for spermatozoa. These 284 

explanatory hypotheses, discussed below, are not mutually exclusive and could all play a role in 285 

the observed adverse effects of NH2-50, Plain-50 and COOH-50 on oyster planktonic stages.  286 

The observed toxicity of nano-PS on gametes and embryos may be related to damage caused by 287 

membrane breakages (Nel et al., 2009). Indeed, adhesion of nanoplastics on oyster gametes, both 288 

oocytes and spermatozoa (González-Fernández et al., 2018), and sea urchin and mussel embryos 289 

(Della Torre et al., 2014; Balbi et al., 2017) was recently demonstrated. We can rely on these 290 

published data from different models and particles to suggest that NP have stuck on oyster’s 291 

gametes and embryos. Consequences might be significant for biological membranes: molecular 292 

simulations have demonstrated the capacity of nano-PS to perturb lipid membranes (Rossi et al., 293 

2014). Even if metallic and plastic nanoparticles cannot be directly compared, nickel and iron 294 

nanoparticles reduced the membrane integrity of Ciona instinalis (Gallo et al., 2016) and Mytilus 295 

edulis spermatozoa, leading to a decrease in fertilization success (Kadar et al., 2011). Interactions 296 

between nanoparticles and biological membranes are driven by particle aggregation and size. 297 

Here, the most toxic nanoplastics (NH2-50) remained at the nanometer size in seawater and were 298 

thus expected to interact more with biological membranes through their higher reactivity and 299 

capacity to cross biological membranes (Nel, 2006; Verma and Stellacci, 2010). Similarly, 300 

exposure to NH2-50 led to higher toxicity in sea urchin embryos and shrimp larvae (Bergami et 301 

al., 2016; Della Torre et al., 2014), compared to COOH-40 nm forming approximatively 1 µm 302 

aggregates in seawater. The major differences in aggregation observed for the different 303 
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nanobeads in ultrapure water and filtered seawater are a result of the characteristics of the 304 

nanobeads themselves and the surrounding medium (Nel et al., 2009; Rocha et al., 2015). The 305 

high aggregation of COOH-50 and Plain-50 observed here in filtered seawater can be explained 306 

by a strong interaction between the negative surface charge of these NP and the abundant cationic 307 

ions such as Ca2+ in seawater. It is noteworthy that Plain-50 forming micrometric sized 308 

aggregates led to significant toxicity on gametes and embryos while plain MP exhibiting lower 309 

micrometric size (2µm) seemed innocuous. This suggests that nanoparticles remain highly 310 

reactive with biological membrane even in the form of large aggregates.  311 

The differential interactions between cells and nanoparticles may also be linked to their surface 312 

properties, notably the net surface charge (Nel et al., 2009). The so-called buffering effect 313 

observed on the net surface charge of MP/NP incubated in filtered seawater compared to 314 

ultrapure water is also related to the presence of anions and cations in seawater that would have 315 

interacted with their surface layer. The ions brought the ζ-Potential to a neutral surface charge, 316 

and as a result, decreased NP stability (El Badawy et al., 2010; Lin et al., 2010). The lowest 317 

surface charge observed for the Plain-50 may lead to reduced interaction with gamete and 318 

embryo membranes, explaining their lower toxicity compared to other NP. Cationic nanoparticles 319 

interact with negative membrane residuals more easily than anionic ones, and this interaction 320 

triggers internalization to maintain the overall negative membrane charge, which may eventually 321 

induce membrane disruptions (Cho et al., 2009; Fröhlich, 2012). Furthermore, a chemical effect 322 

of the functionalization cannot be excluded and will be dependent on the commercial products 323 

and their manufacturers.  324 

Impairment of membrane integrity during cell divisions can lead to developmental arrest during 325 

embryogenesis (Rossi et al., 2014), in agreement with the numerous malformations we observed 326 
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upon NP exposure. These results call for detailed microscopic analyses of exposed cell 327 

membranes, coupled with lipidomic approaches to assess lipid membrane composition upon NP 328 

exposure, in order to better understand the effects of NP on membrane integrity.  329 

Given the high aggregation (3–10µm) observed in our data for the Plain-50 and COOH-50, 330 

congestion of gametes is a possibility; our previous study demonstrated the adhesion of 331 

carboxylic nanopolystyrene (100 nm) on oyster spermatozoa (González-Fernández et al., 2018). 332 

This congestion may hamper spermatozoa internalization into oocytes, leading to negative effects 333 

on the fertilization yield as observed upon exposure to Plain-50 and COOH-50.   334 

Among the numerous physicochemical properties of the particles, including size, surface charge, 335 

aspect ratio, porosity that impact in vivo behavior of MP and NP, surface corona is of real 336 

importance (e.g. Galloway et al., 2017). Indeed, corona formation on nano-PS can fluctuate 337 

depending on the surface properties of the particle, i.e. functionalization and charge (Lundqvist et 338 

al., 2008).  It can affect the particle chemical identity with significant consequences on ingestion 339 

and interaction with cells and organs (Hristov et al., 2015; Canesi et al., 2016; Nasser & Lynch, 340 

2016). Further studies are required to characterize the NP-cell interactions (entry, adhesion and 341 

membrane impairments) in oyster gametes and embryos and to understand the toxic pathways 342 

involved.  343 

At the same time, the NP toxicity observed here could be related to sub-cellular toxicity upon 344 

internalization and/or membrane disruption of gametes/embryos. For instance, NH2-50 was better 345 

internalized in human cell lines representing various organs, and led to more cytotoxic effects 346 

than COOH-50 and Plain-50 (Anguissola et al., 2014; Bannunah et al., 2014). Similar 347 

mechanisms, involving NP entry leading to sub-cellular toxicity, could also be hypothesized here 348 

requiring fine microscopical observations using fluorescent NP. In the present study, the 349 
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exclusive occurrence of developmental arrest during exposure at the highest concentrations of 350 

NH2-50 and COOH-50 could indicate the involvement of apoptosis pathways, as described in the 351 

sea urchin Paracentrotus lividus (Della Torre et al., 2014; Pinsino et al., 2017). The intermediate 352 

situation, where malformed larvae (mantle, shell and hinge malformations) were observed upon 353 

exposure to Plain-50, intermediate concentrations of COOH-50 and the lowest concentration of 354 

NH2-50, could be a result of dysregulation of genes involved in shell mineralization, as 355 

previously demonstrated by transcriptional analysis in mussel embryos exposed to 0.15 µg/mL of 356 

NH2-50. Another toxic effect, previously characterized during exposure to chemical agents and 357 

nanoplastics, involves a decrease in DNA integrity or a disruption of the cell oxidative balance of 358 

oyster gametes and embryos (Akcha et al., 2012; Behrens et al., 2016; Vignier et al., 2017; 359 

González-Fernández et al., 2018). Nanoparticles can interfere with electron transfer of the 360 

intracellular medium, inducing a production of ROS (superoxide anion / hydroxyl radical, 361 

hydrogen peroxide) and generating disruption of redox functions (Fu et al., 2014). This 362 

overproduction of ROS results in several types of damage, such as lipid peroxidation or DNA 363 

breakages leading to embryotoxicity (Xie et al., 2017). In agreement with these observations we 364 

previously suggested that spermatozoa may lose their ability to fertilize oocytes as a consequence 365 

of an oxidative stress induced by exposure of oyster spermatozoa to carboxylic nanopolystyrene 366 

(100 nm) (González-Fernández et al., 2018).  367 

The lowest concentration (0.1 µg/mL) used here was five times higher than the mass 368 

concentration of MP used in the study of Sussarellu et al. (2016) based on equivalent mass 369 

concentration of >333µm plastics debris hotspots. At this concentration, only exposure of oyster 370 

embryos to NH2-50 had a significant effect, which suggests that the probability of oyster 371 

planktonic stages suffering fertilization and embryo-larval development disruptions due to NP 372 
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exposure is low in nature at the present time. However, taking into account the calculations of 373 

Besseling et al. (2014), the toxic effects observed here began at lower concentrations than the 374 

highest mass concentration of plastic debris (16.9 µg/mL) estimated at the water-sediment 375 

interface. This location is known for its high plastic contamination and where wild adult oysters 376 

live and spawn (Martin et al., 2017). Furthermore, the power-law increase in MP concentration 377 

with decreasing particle size in sea surface samples suggests that small MP are increasingly 378 

abundant, and that MP concentrations will be underestimated if the smallest fraction is not 379 

properly quantified (Bergmann et al., 2017; Erni-Cassola et al., 2017).  380 

With regards to the increase of (nano)plastics used in industry (GESAMP 2015), the recent 381 

estimation of their mismanagement and release into oceans worldwide, as well as the continuous 382 

breakdown of plastic waste at the nanometer scale, better management of end-of-life plastics is 383 

should be strongly recommend to enable a transition to a circular economy (Brink et al. 2017) 384 

and limit or prevent accidental releases. For instance, nano-TiO2 levels are expected to reach up 385 

to 1 µg/mL in nature (Holden et al., 2014), although its estimated accidental release in the marine 386 

environment is much lower (between 2 and 6 million tons over the next 10 years (Haynes et al., 387 

2017)) than that estimated for plastic wastes. The latter were estimated between 4.8 and 12.7 388 

million tons in 2010 alone, with an expected increase of an order of magnitude by 2025 (Jambeck 389 

et al., 2015). 390 

Conclusion 391 

Our study is the first demonstration of adverse effects of nanoplastics on oyster early-life stages, 392 

with the fertilization/embryogenesis steps being particularly sensitive. The combination of fine 393 

microscopy and Omics (lipidomics, transcriptomics) tools is now needed to fully understand the 394 

underlying toxicity mechanisms that likely include both membrane disruption and sub-cellular 395 
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toxicity. Significant ecological implications can be expected as effects on gametes, fertilization 396 

and embryo-larval development determine recruitment, population stability and ecosystem 397 

structure. Indeed, oysters sustain the formation of reefs providing micro-habitats for a large 398 

community of invertebrates and nursery areas for pelagic organisms (Bayne, 2017). We suggest 399 

that direct effects on early-life stages should be integrated into the “adverse outcome pathway” 400 

(AOP) scheme describing microplastic toxicity pathways in aquatic organisms (Galloway and 401 

Lewis, 2016). Indeed, this additional pathway may influence the offspring viability and the 402 

overall reproductive output. In this context, our work highlights the interest of using oysters as a 403 

model to describe the risk of plastic debris in coastal and estuarine areas where a high spatial 404 

variability of contamination is expected.  405 
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Table legend 720 

Table 1. Mean size (in nm), aggregation state (PDI in arbitrary units, A.U.) and charge (ζ-721 
Potential in mV) of polystyrene particles in ultrapure water (UW), and UV-treated 1-µm filtered 722 
seawater (FSW). Analyses were performed by Dynamic Light Scattering (DLS) at 20°C in 723 
triplicate and data are represented as means ± SD. Comparisons were made between media using 724 
the Student’s t-test; * : p<0.05, ** p<0.01, *** p<0.001. 725 

Figure legends 726 

Fig. 1 Life cycle of oyster showing the results of exposures on different stages to MP/NP. This 727 
scheme was modified from Vogeler et al. (2016). 728 

Fig. 2 Fertilization yield (%) after 1.5 h exposure of oyster gametes (1,000 oocytes.mL-1; 100:1 729 
spermatozoa:oocyte ratio) to (A) 2-µm, (B) 500-nm, (C) Plain-50 nm, (D) COOH-50 nm, (E) 730 
NH2-50 nm polystyrene beads at five concentrations: 0, 0.1, 1, 10 and 25 µg/mL. The assay was 731 
replicated five times and data are represented as means ± SD. Multiple comparisons were made 732 
between treatments using Tukey’s HSD (500-nm, NH2-50) or Conover (Plain-50, COOH-50) 733 
methods at the 5% alpha level; homogeneous groups are indicated by the same letter. 734 

Fig. 3 D-larval yield (%) after 36 h exposure of fertilized eggs to (A) 2-µm, (B) 500-nm, (C) 735 
Plain-50 nm, (D) COOH-50 nm, (E) NH2-50 nm polystyrene beads at five concentrations: 0, 0.1, 736 
1, 10 and 25 µg/mL. The assay was replicated five times and data are represented as mean ± SD. 737 
Multiple comparisons were made between treatments using Tukey’s HSD (Plain-50, COOH-50) 738 
or Conover (NH2-50) methods at the 5% alpha level; homogeneous groups are indicated by the 739 
same letter. 740 

Fig. 4 Microscopy panel of embryo-larval development success after 36 h exposure to 741 
polystyrene nanobeads compared with normal D-larvae observed in the control treatment (A), 742 
larvae with shell and/or mantle malformations after exposure to Plain-50 (25 µg/mL) (B), and 743 
COOH-50 (10 µg/mL) (C). Only developmental arrest, dead larvae and cell debris were observed 744 
for all embryos following exposure to 25 µg/mL of COOH-50 (D) and from 1 to 25 µg/mL of 745 
NH2-50 (E and F). Size in µm is represented by the scale bar.  746 
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Table 1 747 

Media Particles Commercial 
Size (nm) 

Particle/Aggregate Size 
(nm) 

PDI (A.U.) ζ-Potential (mV) 

 2-µm 2,000 2681.0 ± 50.5 0.35 ± 0.01 -44.8 ± 0.9 

 500-nm 500 774.3 ± 29.3 0.46 ± 0.05 -67.8 ± 7.0 

UW COOH-50 50 55.9 ± 0.4 0.06 ± 0.01 -62.1 ± 0.4 

 Plain-50 50 49 ± 0.4 0.03 ± 0.02 -70.1 ± 1.4 

 NH2-50 50 53.3 ± 2.3 0.12 ± 0.02 44.0 ± 1.5 

 2-µm 2,000 3113.7 ± 32.3*** 0.42 ± 0.02 -30.5 ± 1.5***  

 500-nm 500 1620.7 ± 188.8* 0.66 ± 0.08 -28.3 ± 0.6**  

FSW COOH-50 50 3735.0 ± 443.8** 0.48 ± 0.01 -13.8 ± 0.8***  

 Plain-50 50 5951.0 ± 264.3***  0.60 ± 0.05 -31.3 ± 4.4**  

 NH2-50 50 96.5 ± 2.0***  0.52 ± 0.01 15.6 ± 2.7***  

  748 
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Fig. 1  750 
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Fig. 2  752 
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Fig. 3  754 
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Fig. 4 756 




