Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Steam disinfection releases micro(nano)plastics from silicone-rubber baby teats as examined by optical photothermal infrared microspectroscopy

An Author Correction to this article was published on 31 May 2022

This article has been updated

Abstract

Silicone-rubber baby teats used to bottle-feed infants are frequently disinfected by moist heating. However, infant exposure to small microplastics (<10 μm) potentially released from the heated teats by hydrothermal decomposition has not been studied, owing to the limitations of conventional spectroscopy in visualizing microplastic formation and in characterizing the particles at the submicrometre scale. Here both the surfaces of silicone teats subjected to steam disinfection and the wash waters of the steamed teats were analysed using optical-photothermal infrared microspectroscopy. This new technique revealed submicrometre-resolved steam etching on and chemical modification of the teat surface. Numerous flake- or oil-film-shaped micro(nano)plastics (MNPs) (in the size range of 0.6–332 μm) presented in the wash waters, including cyclic and branched polysiloxanes or imides, which were generated by the steam-induced degradation of the base polydimethylsiloxane elastomer and the polyamide resin additive. The results indicated that by the age of one year, a baby could ingest >0.66 million elastomer-derived micro-sized plastics (MPs) (roughly 81% in 1.5–10 μm). Global MP emission from teat disinfection may be as high as 5.2 × 1013 particles per year. Our findings highlight an entry route for surface-active silicone-rubber-derived MNPs into both the human body and the environment. The health and environmental risks of the particles are as yet unknown.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Steam etching of silicone-rubber teat surface by hydrothermal decomposition.
Fig. 2: Visualization of the evolution of etching on teat surface.
Fig. 3: Characterization of the molecular structure, number and size distribution of the large PDMS elastomer-derived (type I) MPs.
Fig. 4: Release of small type I MNPs (<1.5 μm) and hydrothermal stability of a larger MP during steaming.
Fig. 5: Characterization of the morphology and molecular structures of PA-additive-derived (type II) MNPs.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the article and the Supplementary Information. Source data are provided with this paper.

Change history

References

  1. Rochman, C. M. & Hoellein, T. The global odyssey of plastic pollution. Science 368, 1184–1185 (2020).

    Article  CAS  Google Scholar 

  2. Pabortsava, K. & Lampitt, R. S. High concentrations of plastic hidden beneath the surface of the Atlantic Ocean. Nat. Commun. 11, 4073 (2020).

    Article  CAS  Google Scholar 

  3. Isobe, A., Iwasaki, S., Uchida, K. & Tokai, T. Abundance of non-conservative microplastics in the upper ocean from 1957 to 2066. Nat. Commun. 10, 417 (2019).

    Article  CAS  Google Scholar 

  4. Rillig, M. C. & Lehmann, A. Microplastic in terrestrial ecosystems. Science 368, 1430–1431 (2020).

    Article  CAS  Google Scholar 

  5. Vethaak, A. D. & Legler, J. Microplastics and human health. Science 371, 672–674 (2021).

    Article  CAS  Google Scholar 

  6. Cox, K. D. et al. Human consumption of microplastics. Environ. Sci. Technol. 53, 7068–7074 (2019).

    Article  CAS  Google Scholar 

  7. Zhang, Q. et al. A review of microplastics in table salt, drinking water, and air: direct human exposure. Environ. Sci. Technol. 54, 3740–3751 (2020).

    Article  CAS  Google Scholar 

  8. Hernandez, L. M. et al. Plastic teabags release billions of microparticles and nanoparticles into tea. Environ. Sci. Technol. 53, 12300–12310 (2019).

    Article  CAS  Google Scholar 

  9. Li, D. et al. Microplastic release from the degradation of polypropylene feeding bottles during infant formula preparation. Nat. Food 1, 746–754 (2020).

    Article  CAS  Google Scholar 

  10. Song, Y. K. et al. Horizontal and vertical distribution of microplastics in Korean coastal waters. Environ. Sci. Technol. 52, 12188–12197 (2018).

    Article  CAS  Google Scholar 

  11. Hartmann, N. B. et al. Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. Environ. Sci. Technol. 53, 1039–1047 (2019).

    Article  CAS  Google Scholar 

  12. Clarson, S. J. Advances in Silicones and Silicone-Modified Materials (American Chemical Society, 2010).

  13. Clarson, S. J. Synthesis and Properties of Silicones and Silicone-Modified Materials (American Chemical Society, 2003).

  14. How to Prepare Formula for Bottle-Feeding at Home (WHO, 2007).

  15. Fromme, H. et al. Siloxane in baking moulds, emission to indoor air and migration to food during baking with an electric oven. Environ. Int. 126, 145–152 (2019).

    Article  CAS  Google Scholar 

  16. Helling, R., Kutschbach, K. & Joachim Simat, T. Migration behaviour of silicone moulds in contact with different foodstuffs. Food Addit. Contam. A 27, 396–405 (2010).

    Article  CAS  Google Scholar 

  17. Rücker, C. & Kümmerer, K. Environmental chemistry of organosiloxanes. Chem. Rev. 115, 466–524 (2015).

    Article  Google Scholar 

  18. Polyamide resin series developed by General Mills. Chem. Eng. News 41, 58–61 (1963).

  19. ter Halle, A. et al. Understanding the fragmentation pattern of marine plastic debris. Environ. Sci. Technol. 50, 5668–5675 (2016).

    Article  Google Scholar 

  20. Dawson, A. L. et al. Turning microplastics into nanoplastics through digestive fragmentation by Antarctic krill. Nat. Commun. 9, 1001 (2018).

    Article  Google Scholar 

  21. Min, K., Cuiffi, J. D. & Mathers, R. T. Ranking environmental degradation trends of plastic marine debris based on physical properties and molecular structure. Nat. Commun. 11, 727 (2020).

    Article  CAS  Google Scholar 

  22. Landrigan, P. J., Kimmel, C. A., Correa, A. & Eskenazi, B. Children’s health and the environment: public health issues and challenges for risk assessment. Environ. Health Perspect. 112, 257–265 (2004).

    Article  CAS  Google Scholar 

  23. Song, Y. K. et al. A comparison of microscopic and spectroscopic identification methods for analysis of microplastics in environmental samples. Mar. Pollut. Bull. 93, 202–209 (2015).

    Article  CAS  Google Scholar 

  24. Ivleva, N. P., Wiesheu, A. C. & Niessner, R. Microplastic in aquatic ecosystems. Angew. Chem. Int. Ed. 56, 1720–1739 (2017).

    Article  CAS  Google Scholar 

  25. Nguyen, B. et al. Separation and analysis of microplastics and nanoplastics in complex environmental samples. Acc. Chem. Res. 52, 858–866 (2019).

    Article  CAS  Google Scholar 

  26. Bassan, P. et al. Resonant mie scattering in infrared spectroscopy of biological materials – understanding the ‘dispersion artefact’. Analyst 134, 1586–1593 (2009).

    Article  CAS  Google Scholar 

  27. Chan, K. L. A. & Kazarian, S. G. New opportunities in micro- and macro-attenuated total reflection infrared spectroscopic imaging: Spatial resolution and sampling versatility. Appl. Spectrosc. 57, 381–389 (2003).

    Article  CAS  Google Scholar 

  28. Koenig, J. L. Microspectroscopic Imaging of Polymers (American Chemical Society, 1998).

  29. Zhang, D. et al. Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution. Sci. Adv. 2, e1600521 (2016).

    Article  Google Scholar 

  30. Klementieva, O. et al. Super-resolution infrared imaging of polymorphic amyloid aggregates directly in neurons. Adv. Sci. 7, 1903004 (2020).

    Article  CAS  Google Scholar 

  31. Lo, M., Marcott, C., Kansiz, M., Dillon, E. & Prater, C. Sub-micron, non-contact, super-resolution infrared microspectroscopy for microelectronics contamination and failure analyses. In Proc. IEEE International Symposium in the Physical and Failure Analysis of Integrated Circuits 1–4 (IEEE, 2020).

  32. Diem, M., Romeo, M., Boydston-White, S., Miljkovic, M. & Matthaus, C. A decade of vibrational micro-spectroscopy of human cells and tissue (1994-2004). Analyst 129, 880–885 (2004).

    Article  CAS  Google Scholar 

  33. Danilov, V., Wagner, H. & Meichsner, J. Modification of polydimethylsiloxane thin films in H2 radio-frequency plasma investigated by infrared reflection absorption spectroscopy. Plasma Process. Polym. 8, 1059–1067 (2011).

    Article  CAS  Google Scholar 

  34. Launer, P. J. & Arkles, B. Silicon Compounds: Silanes and Silicones (Gelest, 2008).

  35. Park, E. S., Ro, H. W., Nguyen, C. V., Jaffe, R. L. & Yoon, D. Y. Infrared spectroscopy study of microstructures of poly(silsesquioxane)s. Chem. Mater. 20, 1548–1554 (2008).

    Article  CAS  Google Scholar 

  36. Song, Y. K. et al. Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type. Environ. Sci. Technol. 51, 4368–4376 (2017).

    Article  CAS  Google Scholar 

  37. Larson, G. L., Hernandez, D., Montes de Lopez-Cepero, I. & Torres, L. E. The chemistry of alpha-silyl carbonyl compounds. 11. Reaction of alpha-silyl esters with grignard reagents: a synthesis of beta-keto silanes and ketones. Preparation of the douglas fir tussock moth pheromone. J. Org. Chem. 50, 5260–5267 (1985).

    Article  CAS  Google Scholar 

  38. Charati, S. G. & Stern, S. A. Diffusion of gases in silicone polymers: molecular dynamics simulations. Macromolecules 31, 5529–5535 (1998).

    Article  CAS  Google Scholar 

  39. Heo, Y. S. et al. Characterization and resolution of evaporation-mediated osmolality shifts that constrain microfluidic cell culture in poly(dimethylsiloxane) devices. Anal. Chem. 79, 1126–1134 (2007).

    Article  CAS  Google Scholar 

  40. Skrovanek, D. J., Painter, P. C. & Coleman, M. M. Hydrogen bonding in polymers. 2. Infrared temperature studies of nylon 11. Macromolecules 19, 699–705 (1986).

    Article  CAS  Google Scholar 

  41. Patsyk, A., Sivan, U., Segev, M. & Bandres, M. A. Observation of branched flow of light. Nature 583, 60–65 (2020).

    Article  CAS  Google Scholar 

  42. Hamdani, S., Longuet, C., Lopez-Cuesta, J. & Ganachaud, F. Calcium and aluminium-based fillers as flame-retardant additives in silicone matrices. I. Blend preparation and thermal properties. Polym. Degrad. Stabil. 95, 1911–1919 (2010).

    Article  CAS  Google Scholar 

  43. Bartels, T. T. The Sadtler handbook of infrared spectra. J. Chromatogr. Sci. 16, 21A (1978).

    Article  Google Scholar 

  44. Stock, V. et al. Uptake and effects of orally ingested polystyrene microplastic particles in vitro and in vivo. Arch. Toxicol. 93, 1817–1833 (2019).

    Article  CAS  Google Scholar 

  45. Tan, H., Yue, T., Xu, Y., Zhao, J. & Xing, B. Microplastics reduce lipid digestion in simulated human gastrointestinal system. Environ. Sci. Technol. 54, 12285–12294 (2020).

    Article  CAS  Google Scholar 

  46. Magrì, D. et al. Laser ablation as a versatile tool to mimic polyethylene terephthalate nanoplastic pollutants: characterization and toxicology assessment. ACS Nano 12, 7690–7700 (2018).

    Article  Google Scholar 

  47. Luo, T. et al. Maternal polystyrene microplastic exposure during gestation and lactation altered metabolic homeostasis in the dams and their F1 and F2 offspring. Environ. Sci. Technol. 53, 10978–10992 (2019).

    Article  CAS  Google Scholar 

  48. Jacob, H., Besson, M., Swarzenski, P. W., Lecchini, D. & Metian, M. Effects of virgin micro- and nanoplastics on fish: trends, meta-analysis, and perspectives. Environ. Sci. Technol. 54, 4733–4745 (2020).

    Article  CAS  Google Scholar 

  49. Gu, W. et al. Single-cell RNA sequencing reveals size-dependent effects of polystyrene microplastics on immune and secretory cell populations from zebrafish intestines. Environ. Sci. Technol. 54, 3417–3427 (2020).

    Article  CAS  Google Scholar 

  50. Mahler, G. J. et al. Oral exposure to polystyrene nanoparticles affects iron absorption. Nat. Nanotechnol. 7, 264–271 (2012).

    Article  CAS  Google Scholar 

  51. Barness, L. A. The importance of fats and fatty acids in infant nutrition. Curr. Med. Res. Opin. 4, 28–32 (1976).

    Article  CAS  Google Scholar 

  52. Clemente, JoseC. et al. The impact of the gut microbiota on human health: an integrative view. Cell 148, 1258–1270 (2012).

    Article  CAS  Google Scholar 

  53. Nowarski, R., Jackson, R. & Flavell, R. A. The stromal intervention: regulation of immunity and inflammation at the epithelial-mesenchymal barrier. Cell 168, 362–375 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key-Area Research and Development Program of Guangdong Province (grant no. 2020B1111380003 to R.J.) and the National Natural Science Foundation of China (grant nos. 31861133003 to R.J. and 21607072 to Y.S.). We thank C. Wang (Nanjing University) for his assistance with the IR spectra analysis and M. K. F. Lo (Photothermal Spectroscopy Corp.) for technical support. B.X. acknowledges the UMass Amherst Conti Faculty Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Y.S. carried out the experiments and wrote the original manuscript. X.H. and H.T. supported the O-PTIR and low-voltage SEM analyses. K.L. supported ESEM/EDS collection and XPS spectra analysis. H.L. supported MP counting. S.L. contributed to experimental planning and data interpretation. Y.S., B.X. and R.J. contributed to experimental planning, data analysis and interpretation, and manuscript revision. All authors reviewed and approved the paper.

Corresponding authors

Correspondence to Baoshan Xing or Rong Ji.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Ji-Xin Cheng, Oxana Klementieva and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–7, Tables 1–4 and Figs. 1–13.

Supplementary Data

Data for Supplementary Figs. 2b, 3b, 3d, 5a, 5b, 6b, 8c, 9c and 12b.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Y., Hu, X., Tang, H. et al. Steam disinfection releases micro(nano)plastics from silicone-rubber baby teats as examined by optical photothermal infrared microspectroscopy. Nat. Nanotechnol. 17, 76–85 (2022). https://doi.org/10.1038/s41565-021-00998-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-021-00998-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing