Advertisement
No access
Research Articles

Structure of the Quaternary Complex of Interleukin-2 with Its α, β, and γc Receptors

Science
18 Nov 2005
Vol 310, Issue 5751
pp. 1159-1163

Abstract

Interleukin-2 (IL-2) is an immunoregulatory cytokine that acts through a quaternary receptor signaling complex containing alpha (IL-2Rα), beta (IL-2Rβ), and common gamma chain (gc) receptors. In the structure of the quaternary ectodomain complex as visualized at a resolution of 2.3 angstroms, the binding of IL-2Rα to IL-2 stabilizes a secondary binding site for presentation to IL-2Rβ. γc is then recruited to the composite surface formed by the IL-2/IL-2Rβ complex. Consistent with its role as a shared receptor for IL-4, IL-7, IL-9, IL-15, and IL-21, γc forms degenerate contacts with IL-2. The structure of γc provides a rationale for loss-of-function mutations found in patients with X-linked severe combined immunodeficiency diseases (X-SCID). This complex structure provides a framework for other γc-dependent cytokine-receptor interactions and for the engineering of improved IL-2 therapeutics.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

File (wangx.som.pdf)

References and Notes

1
K. A. Smith, Science240, 1169 (1988).
2
B. H. Nelson, D. M. Willerford, Adv. Immunol.70, 1 (1998).
3
J. Theze, P. M. Alzari, J. Bertoglio, Immunol. Today17, 481 (1996).
4
A. C. Church, QJM96, 91 (2003).
5
A. B. Shanafelt et al., Nat. Biotechnol.18, 1197 (2000).
6
W. J. Leonard et al., Nature311, 626 (1984).
7
T. Nikaido et al., Nature311, 631 (1984).
8
D. Cosman et al., Nature312, 768 (1984).
9
M. Hatakeyama et al., Science244, 551 (1989).
10
T. Takeshita et al., Science257, 379 (1992).
11
H. M. Wang, K. A. Smith, J. Exp. Med.166, 1055 (1987).
12
M. Rickert, M. J. Boulanger, N. Goriatcheva, K. C. Garcia, J. Mol. Biol.339, 1115 (2004).
13
Y. Nakamura et al., Nature369, 330 (1994).
14
B. H. Nelson, J. D. Lord, P. D. Greenberg, Nature369, 333 (1994).
15
K. Ozaki, W. J. Leonard, J. Biol. Chem.277, 29355 (2002).
16
W. J. Leonard, Nat. Rev. Immunol.1, 200 (2001).
17
M. Rickert, X. Wang, M. J. Boulanger, N. Goriatcheva, K. C. Garcia, Science308, 1477 (2005).
18
See supporting data on Science Online.
19
J. F. Bazan, Proc. Natl. Acad. Sci. U.S.A.87, 6934 (1990).
20
Single-letter abbreviations for amino acid residues: A, Ala; C, Cys; D, Asp; E, Glu; F, Phe; G, Gly; H, His; I, Ile; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; Y, Tyr.
21
B. Becknell, M. A. Caligiuri, Adv. Immunol.86, 209 (2005).
22
D. M. Anderson et al., J. Biol. Chem.270, 29862 (1995).
23
J. G. Giri et al., EMBO J.14, 3654 (1995).
24
N. Arima et al., J. Exp. Med.176, 1265 (1992).
25
S. F. Liparoto, T. L. Ciardelli, J. Mol. Recognit.12, 316 (1999).
26
S. Atwell, M. Ultsch, A. M. De Vos, J. A. Wells, Science278, 1125 (1997).
27
F. Olosz, T. R. Malek, J. Biol. Chem.277, 12047 (2002).
28
J. L. Zhang, M. Buehner, W. Sebald, Eur. J. Biochem.269, 1490 (2002).
29
J. L. Zhang, D. Foster, W. Sebald, Biochem. Biophys. Res. Commun.300, 291 (2003).
30
N. Raskin et al., J. Immunol.161, 3474 (1998).
31
O. Livnah et al., Science273, 464 (1996).
32
R. S. Syed et al., Nature395, 511 (1998).
33
J. M. Puck, Immunol. Today17, 507 (1996).
34
T. Hage, W. Sebald, P. Reinemer, Cell97, 271 (1999).
35
M. J. Boulanger, K. C. Garcia, Adv. Protein Chem.68, 107 (2004).
36
M. J. Boulanger, A. J. Bankovich, T. Kortemme, D. Baker, K. C. Garcia, Mol. Cell12, 577 (2003).
37
D. Chow, X. He, A. L. Snow, S. Rose-John, K. C. Garcia, Science291, 2150 (2001).
38
M. J. Boulanger, D. C. Chow, E. E. Brevnova, K. C. Garcia, Science300, 2101 (2003).
39
B. J. McFarland, R. K. Strong, Immunity19, 803 (2003).
40
J. Dutcher, Oncology (Huntingt.)16, 4 (2002).
41
K. A. Smith, B. A. Boyle, AIDS Read.13, 365 (2003).
42
K. A. Smith, Blood81, 1414 (1993).
43
W. L. DeLano, The PyMOL Molecular Graphics System (DeLano Scientific, San Carlos, CA, 2002).
44
M. R. Arkin et al., Proc. Natl. Acad. Sci. U.S.A.100, 1603 (2003).
45
D. B. McKay, Science257, 412 (1992).
46
We thank N. Goriatcheva for expert technical assistance; K. Smith, T. Springer, and W. Leonard for helpful discussions; and the Advanced Light Source (UC-Berkeley) and Stanford Synchrotron Radiation Laboratory for synchrotron beamtime. Supported by the Keck Foundation, HHMI, and NIH grant AI51321. Coordinates and structure factors have been deposited in the Protein Data Bank with accession number 2B5I.

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 310 | Issue 5751
18 November 2005

Submission history

Received: 25 July 2005
Accepted: 14 October 2005
Published in print: 18 November 2005

Permissions

Request permissions for this article.

Notes

Supporting Online Material
www.sciencemag.org/cgi/content/full/310/5751/1159/DC1
Materials and Methods
Figs. S1 to S3
Tables S1 and S2
References

Authors

Affiliations

Xinquan Wang*
Howard Hughes Medical Institute, Department of Microbiology and Immunology, and Department of Structural Biology, Stanford University School of Medicine, 299 Campus Drive, Fairchild D319, Stanford, CA 94305, USA.
Mathias Rickert*
Howard Hughes Medical Institute, Department of Microbiology and Immunology, and Department of Structural Biology, Stanford University School of Medicine, 299 Campus Drive, Fairchild D319, Stanford, CA 94305, USA.
K. Christopher Garcia [email protected]
Howard Hughes Medical Institute, Department of Microbiology and Immunology, and Department of Structural Biology, Stanford University School of Medicine, 299 Campus Drive, Fairchild D319, Stanford, CA 94305, USA.

Notes

To whom correspondence should be addressed. E-mail: [email protected]

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. A CD25-biased interleukin-2 for autoimmune therapy engineered via a semi-synthetic organism, Communications Medicine, 4, 1, (2024).https://doi.org/10.1038/s43856-024-00485-z
    Crossref
  2. Structural insights into IL-11-mediated signalling and human IL6ST variant-associated immunodeficiency, Nature Communications, 15, 1, (2024).https://doi.org/10.1038/s41467-024-46235-6
    Crossref
  3. Regulatory T cells use heparanase to access IL-2 bound to extracellular matrix in inflamed tissue, Nature Communications, 15, 1, (2024).https://doi.org/10.1038/s41467-024-45012-9
    Crossref
  4. i-shaped antibody engineering enables conformational tuning of biotherapeutic receptor agonists, Nature Communications, 15, 1, (2024).https://doi.org/10.1038/s41467-024-44985-x
    Crossref
  5. Overview of tumor immunotherapy based on approved drugs, Life Sciences, 340, (122419), (2024).https://doi.org/10.1016/j.lfs.2024.122419
    Crossref
  6. Tumor-activated IL-2 mRNA delivered by lipid nanoparticles for cancer immunotherapy, Journal of Controlled Release, 368, (663-675), (2024).https://doi.org/10.1016/j.jconrel.2024.03.016
    Crossref
  7. Interleukin-2 signaling in the regulation of T cell biology in autoimmunity and cancer, Immunity, 57, 3, (414-428), (2024).https://doi.org/10.1016/j.immuni.2024.02.001
    Crossref
  8. Engineering cytokines for cancer immunotherapy: a systematic review, Frontiers in Immunology, 14, (2023).https://doi.org/10.3389/fimmu.2023.1218082
    Crossref
  9. Immune cells and their related genes provide a new perspective on the common pathogenesis of ankylosing spondylitis and inflammatory bowel diseases, Frontiers in Immunology, 14, (2023).https://doi.org/10.3389/fimmu.2023.1137523
    Crossref
  10. PEGylation Strategy for Improving the Pharmacokinetic and Antitumoral Activity of the IL-2 No-alpha Mutein, Current Pharmaceutical Design, 29, 44, (3579-3588), (2023).https://doi.org/10.2174/0113816128279062231204110410
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Purchase digital access to this article

Download and print this article for your personal scholarly, research, and educational use.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media