
IEEE 802.3ae, Albuquerque, 3/6/00 64b/66b coding update

Rick Walker, Birdy Amrutur, Tom Knotts
Agilent Laboratories, Palo Alto, CA

rick_walker@agilent.com

Richard Dugan
Agilent Technologies, Integrated Circuits Business Division, San Jose, CA

richard_dugan@agilent.com

 64b/66b coding update

IEEE 802.3ae, Albuquerque, 3/6/00 64b/66b coding update

Topics

• Code update

• Mean Time to False Packet Acceptance

• Coder Block Diagram and Gate Count

• Scrambler design

• Summary

IEEE 802.3ae, Albuquerque, 3/6/00 64b/66b coding update

Building frames with XAUI (HARI) mapping

K R K R K R K R D D D D D D D D D R K R K R
S,T = SOP, EOP
K,R = control words (Z)

D = Data octets

D D
D D
D D
D D

D D
D D
D D
D T

D D
D D
D T
D Z

D D
D T
D Z
D Z

D T
D Z
D Z
D Z

D Z
D Z
T Z
Z Z

D Z
T Z
Z Z
Z Z

Z Z
Z Z
Z Z
Z Z

Z S
Z D
Z D
Z D

S D
D D
D D
D D

T Z
Z Z
Z Z
Z Z

K R K R K R K R S D D D D D D D D R K R K R

K R K R K R K R D D D D D D D D K R K R K R
K R K R K R K R D D D D D D D D T R K R K R

pure data pure control two possible packet startings

eight possible packet endings

D Z
D Z
D Z
T Z

time

lane 0
lane 1
lane 2
lane 3

D S

T

Z

IEEE 802.3ae, Albuquerque, 3/6/00 64b/66b coding update

Code Overview

64 bit data field (scrambled)

Data Codewords have “01” sync preamble

a “10” sync preamble. Both the coded 56-bit
Mixed Data/Control frames are identified with

combined 56 bit data/control field (scrambled)

00,11 preambles are considered code errors and

8-bit TYPE

payload and TYPE field are scrambled

0 1

1 0

cause the packet to be invalidated by forcing
an error (E) symbol on the HARI output

IEEE 802.3ae, Albuquerque, 3/6/00 64b/66b coding update

Code Summary

There are three choices per bit, so frames can be composed with
64, 4:1 multiplexors controlled according to 1 of 12 frame types

Hari Pattern Sync Bit fields 0-63

DDDD/ DDDD 0 1 D0 D1 D2 D3 D4 D5 D6 D7

ZZZZ/ ZZZZ 1 0 0x1e Z0 Z1 Z2 Z3 Z4 Z5 Z6 Z6

ZZZZ/S DDD 1 0 0x33 Z0 Z1 Z2 Z3 D5 D6 D7

SDDD/ DDDD 1 0 0x78 D1 D2 D3 D4 D5 D6 D7

TZZZ/ ZZZZ 1 0 0x87 Z1 Z2 Z3 Z4 Z5 Z6 Z7

DTZZ/ ZZZZ 1 0 0x99 D0 Z2 Z3 Z4 Z5 Z6 Z7

DDTZ/ ZZZZ 1 0 0xaa D0 D1 Z3 Z4 Z5 Z6 Z7

DDDT/ ZZZZ 1 0 0xb4 D0 D1 D2 Z4 Z5 Z6 Z7

DDDD/T ZZZ 1 0 0xcc D0 D1 D2 D3 Z5 Z6 Z7

DDDD/ DTZZ 1 0 0xd2 D0 D1 D2 D3 D4 Z6 Z7

DDDD/ DDTZ 1 0 0xe1 D0 D1 D2 D3 D4 D5 Z7

DDDD/ DDDT 1 0 0xff D0 D1 D2 D3 D4 D5 D6

IEEE 802.3ae, Albuquerque, 3/6/00 64b/66b coding update

Control code mapping

• The 7-bit line codes representing 8B/10B control
characters have 4-bit minimum hamming distance.

8B/10B name shorthand 7-bit line code

K28.0 idle1 R 0x00
K28.1 busy idle0 Kb 0x1e
K28.2 reserved0 - 0x2d
K23.7 busy idle1 Rb 0x33
K27.7 start S encoded by TYPE byte
K29.7 terminate T encoded by TYPE byte
K28.4 reserved1 - 0x4b
K28.5 idle0 K 0x55
K30.7 error E 0x66
K28.7 reserved2 - 0x78

IEEE 802.3ae, Albuquerque, 3/6/00 64b/66b coding update

False Packet Acceptance Rate

• A key parameter of any code is the rate at which “damaged”
packets are accepted as valid. In general, such a failure is
capable of hard crashing a computer system.

• For 1Gb Ethernet the Mean Time to False Packet
Acceptance (MTTFPA) was calculated to be approximately
60 billion years.

• Because 64b/66b has a uniform 4-bit Hamming protection,
a conservative estimate can be made. Assume that
packets with four or more errors will generate a false packet
acceptance event. In practice, this overestimates the failure
rate by about 232 .

IEEE 802.3ae, Albuquerque, 3/6/00 64b/66b coding update

False Packet Acceptance Rate

• P = coded packet size = 58+1526*8*66/64

• pe = bit error rate, N = number of errors, tb = bit time
(1/10.3125G).

• probability of N errors in packet of size P:

• expected time for 4 or more errors:

p N P pe, ,() 1 pe–()P N–
pe()N P

N 
 =

MTTFPA
tbitP

1 p N P 0, ,() p N P 1, ,()– p N P 2, ,()– p N P 3, ,()––
--->

IEEE 802.3ae, Albuquerque, 3/6/00 64b/66b coding update

10-12 10-11 10-10 10-9 10-8 10-7 10-6

Link Bit Error Rate

10-5

1

105

1010

1015

1020

1025
M

T
T

F
PA

 [y
ea

rs
] MTTFPA conservative lower bound

lifetime of the Universe

False Packet Acceptance Rate

IEEE 802.3ae, Albuquerque, 3/6/00 64b/66b coding update

False Packet Acceptance Rate
Summary

• At a 10e-9 BER and 10.3Gb/s, the MTTFPA of 64b/66b
is approximately equal to the 1Gb Ethernet 8b/10b
performance at 10e-11 BER

• If 10G Ethernet maintains the same 10e-11 specification
for PMD raw error rate, then 64/66b gives 7 orders of
magnitude improvement in MTTFPA compared to coding
used for 1G Ethernet

IEEE 802.3ae, Albuquerque, 3/6/00 64b/66b coding update

Coder Block Diagram

S
T

Z
pr

ec
od

e

36 41

41

41

compose

frame

64

18

TYPE pattern
generate

64
 b

it
pa

ra
lle

l
sc

ra
m

bl
er

64

2 sync bits

8 type bits

66 to 16
gearbox64

16

clock
generator

Gate count

• Logic: 731 logic cells + 234 flops

• Gearbox + clock generator: ~1400 flops

IEEE 802.3ae, Albuquerque, 3/6/00 64b/66b coding update

Decoder Block Diagram

S
T

Z
decode 36

36

36

de
co

m
po

se
fr

am
e

72

TYPE decoder
state machine

6
4

 b
it p

a
ra

lle
l

d
e

scra
m

ble
r 66

16 to 66
gearbox

66
16

clock
generator

bit slip

10 4 control bits

error feedforward

Gate count

• Logic: 706 logic cells + 144 flops

• Gearbox + clock generator: ~1400 flops

IEEE 802.3ae, Albuquerque, 3/6/00 64b/66b coding update

TX Clock synthesis I

33:32 Gearbox
33 32

10.3125G
33

10.3125G
32phase

detector
divide
by 32

divide
by 33

• PLL locks to received XAUI clock

• PLL provides clock to 16:1 MUX

10.3125/(33*32) 10.3125/(32*33)

32
:1

6

66
:3

3

66 16

divide
by 2

~644.5 MHz

fr
om

 X
A

U
I

to
 M

U
X

IEEE 802.3ae, Albuquerque, 3/6/00 64b/66b coding update

TX Clock synthesis II

33:32 Gearbox
33 32

10.3125G
33

10.3125G
32phase

detector
divide
by 32

divide
by 33

• PLL locks to MUX clock output

• PLL provides clock to XAUI output FIFO

10.3125/(33*32) 10.3125/(32*33)

32
:1

6

66
:3

3

66 16

divide
by 2

divide
by 2

625 MHz

fr
om

 X
A

U
I

to
 M

U
X

IEEE 802.3ae, Albuquerque, 3/6/00 64b/66b coding update

Scrambling principle

210 012

x4

x5

x6

x7

x0

x1

x2

x3

D8

D9

D10

D11

x8

x9

x10

x11 C
od

ed
 o

ut
pu

t d
at

a

U
nc

od
ed

 in
pu

t d
at

a

Data
output

descramblerscrambler

Data
input scrambled data

parallel form:

An example 3-bit scrambler/descrambler in serial form:

• Self synchronizing scrambler

• Can be parallelized for efficient
implementation

• Using along pattern length reduces

possibility of jamming (eg: x58+x19+1=0)

• Long pattern length self-synchronizing
scramblers exist that do not compromise
Ethernet CRC coverage

IEEE 802.3ae, Albuquerque, 3/6/00 64b/66b coding update

Derivation of Parallel Scrambler

S0 S1 S2 S19 S57

D58 S58

CLOCK

S58 = D58 + S19 +S0 or D58 = S58 + S19 +S0

Start with the Serial form of the Scrambler:

Write the recursion equation:

notice that if we set the data input == 0, then we get
0 = S58 + S19 + S0, which is often written as: X58 + X19 + 1 = 0

scrambled
data output

raw
data input

IEEE 802.3ae, Albuquerque, 3/6/00 64b/66b coding update

Derivation of Parallel Scrambler

S58 = D58 + S19 +S0, so

Use recursion equation to write terms for all parallel bits:

S128 = D128 + S89 + S70
S127 = D127 + S88 + S69
S126 = D126 + S87 + S68

S66 = D66 + S27 + S8
S65 = D65 + S26 + S7

...

...

These equations are easily implemented with a parallel
register and a handful of XOR gates.

Latency is equal to 2-cascaded, 3-input XOR delays, and
64 scrambled bits are computed all at once.

IEEE 802.3ae, Albuquerque, 3/6/00 64b/66b coding update

D65

78

S1

S65

D66

S2

S66

D88

S24

S88

D89

S25

S89

D127

S63

S127

D128

S64

S128

S26

S7

S27

S8

S89S88

S70S69

S50S49

S30 S31

D65

S1

D66

S2

D88

S24

D89

S25

D127

S63

D128

S64

S26

S7

S27

S8

S89S88

S70S69

S50S49

S30 S31

S
C

R
A

M
B

LE
R

D
E

S
C

R
A

M
B

LE
R

IEEE 802.3ae, Albuquerque, 3/6/00 64b/66b coding update

Summary

• Since the last meeting, we’ve finished a gate level
implementation and folded the results back into
simplifying the code definition

• An analysis of Mean Time to False Packet Acceptance
(MTTFPA) shows acceptable performance with 10e-9
BERs.

• Gate counts for 64/66 are reasonable and on par with the
complexity of the four 8b/10b decoders need for XAUI

• Clock Generation is straightforward and easy in any
process capable of XAUI PLL performance

1/14/2018 Re: 850 nm solutions

http://grouper.ieee.org/groups/802/3/10G_study/email/save/msg02385.html 1/3

Thread Links Date Links
Thread Prev Thread Next Thread Index Date Prev Date Next Date Index

Re: 850 nm solutions

To: "THALER,PAT (A-Roseville,ex1)" <pat_thaler@agilent.com>, "Rick Walker" <walker@cutter.hpl.hp.com>, <stds-802-3-
hssg@ieee.org>
Subject: Re: 850 nm solutions
From: "Roy Bynum" <rabynum@mindspring.com>
Date: Sat, 29 Apr 2000 18:05:54 -0500
References: <1BEBA5E8600DD4119A50009027AF54A0C5F0EB@axcs04.cs.itc.hp.com>
Reply-To: "Roy Bynum" <rabynum@mindspring.com>
Sender: owner-stds-802-3-hssg@ieee.org

Pat,

What I am curious about what you say is that it is "different" "groups" that came up with "Hari" and "XAUI", but those "groups" seem
to contain the same "people", and are representing the same "vendors" in the "different" "groups". If it is the same "people" then
it is effectively the same "group" in the different organizations. Technical details aside, it is the massive similarities that
demonstrate the "commonality" and the repeated efforts to insert it into an "unrelated" standard. When an organization is then
formed that has limited closed membership with the effective purpose of creating voting blocks within the open organizations then
the process of creating "open" standards becomes skewed. As a potential customer of the results of the IEEE P802.3ae TF, I find
this disturbing.

Thank you,
Roy Bynum

----- Original Message -----
From: THALER,PAT (A-Roseville,ex1) <pat_thaler@agilent.com>
To: Roy Bynum <rabynum@mindspring.com>; THALER,PAT (A-Roseville,ex1) <pat_thaler@agilent.com>; Rick Walker
<walker@cutter.hpl.hp.com>; <stds-802-3-hssg@ieee.org>
Sent: Friday, April 28, 2000 6:40 PM
Subject: RE: 850 nm solutions

> Roy,
>
> Your note seems to imply that Hari was developed within Infiniband and then
> introduced from
> there into 802.3. This is not my understanding of its history. The
> Infiniband group developed/
> is developing a 2.5 Gbaud/s serial link for use in 1-wide, 4-wide, and
> 12-wide configurations
> using the 8B/10B code. Somewhat in parallel with this, people from the Fibre
> Channel and
> Ethernet communitties got together to look at what might be good interfaces
> to use between
> physical layer chips for 10 Gbit/s implementations and came up with Hari and
> Sali which
> are roughly equivalent to the current proposals for XAUI and XGMII. These
> people also
> chose the 8B/10B code for Hari. Since one 4x2.5 Gbit'isn 8B/10B interface is
> pretty much
> like another, there is similarity between Hari and the Infiniband x4
> interface though
> there is a 25% speed difference.
>
> The interfaces were each developed by communities focused on their market's
> needs. In my
> opinion, the decision to use different speeds was driven by differences in
> the respective
> market needs.
>
> An interface at these speeds is analog. This is particularly true if it is
> to serve the
> length of traces likely to be found between transceivers and switch chips.
> Taking analog
> considerations into account when we develop the standard will enable
> cost-effective,
> robust designs. XAUI is very suitable to the use for which it has been
> proposed.
>
> The point of my note was: if we were going to standardize a short run copper
> link, it
> would make sense to look at what could be done on a 4-wide connection vs. a

http://grouper.ieee.org/groups/802/3/10G_study/email/save/msg02383.html
http://grouper.ieee.org/groups/802/3/10G_study/email/save/msg02388.html
http://grouper.ieee.org/groups/802/3/10G_study/email/save/thrd65.html#02385
http://grouper.ieee.org/groups/802/3/10G_study/email/save/msg02386.html
http://grouper.ieee.org/groups/802/3/10G_study/email/save/msg02384.html
http://grouper.ieee.org/groups/802/3/10G_study/email/save/mail66.html#02385
mailto:pat_thaler@agilent.com
mailto:walker@cutter.hpl.hp.com
mailto:stds%2D802%2D3%2Dhssg@ieee.org
mailto:rabynum@mindspring.com
http://grouper.ieee.org/groups/802/3/10G_study/email/save/msg02383.html
mailto:rabynum@mindspring.com
mailto:owner%2Dstds%2D802%2D3%2Dhssg@ieee.org
Highlight

Highlight

Highlight

Highlight

Highlight

1/14/2018 Re: 850 nm solutions

http://grouper.ieee.org/groups/802/3/10G_study/email/save/msg02385.html 2/3

> 10 Gbit
> serial connection. Our existing decision has been to not do a short copper
> link -
> probably driven in part by the low usage of 1000BASE-CX.
>
> Regards,
> Pat Thaler
>
> -----Original Message-----
> From: Roy Bynum [mailto:rabynum@mindspring.com]
> Sent: Wednesday, April 26, 2000 6:43 PM
> To: THALER,PAT (A-Roseville,ex1); Rick Walker; stds-802-3-hssg@ieee.org
> Subject: Re: 850 nm solutions
>
>
> Pat,
>
> For Infiniband, I think that HARI is a very good solution. I question the
> way that it was introduced and developed as part of the
> effort in something that is not Infiniband. If people want to make products
> for Infiniband, I have no problem with that. As a
> customer, I question the motivations of my vendors to have me pay for the
> development of technology that was actually intended for
> another use. I wonder how much that has already increased the price of the
> product that I will be receiving. I wonder even more
> how much the vendor was actually trying to develop something for my use
> instead of somebody else, and gave me, the customer, the
> "left overs". I wonder how much better the product, that I may buy, would
> have been better if the vendor had not been developing
> technology for another use.
>
> As a customer, I was hoping to receive an 802.3 Ethernet product that
> treated the interface to the optical domain as a digital
> optical system, not an analog copper system, which you refer to for the use
> of HARI. As a customer I was hoping that the vendors
> would listen to me and my requirements and look at it as an opportunity to
> enter a market that is as large as the global Internet,
> instead of staying in the collective enterprise space. Vendors that are not
> looking at the market correctly have already lost their
> market share in the Internet backbone, and they are about to start loosing
> it at the access edge as well. History has shown that
> customers will get what they want one way or another.
>
> The response of a BIG customer,
> Thank you,
> Roy Bynum
>
>
>
>
> ----- Original Message -----
> From: THALER,PAT (A-Roseville,ex1) <pat_thaler@agilent.com>
> To: Rick Walker <walker@cutter.hpl.hp.com>; <stds-802-3-hssg@ieee.org>
> Sent: Wednesday, April 26, 2000 1:08 PM
> Subject: RE: 850 nm solutions
>
>
> >
> >
> > Infiniband will be using something very similar to the HARI interface over
> > short copper links though the distance goal is, I think, 6 m. To travel
> over
> > short copper cables, it may make sense to use a 4 wide signal from HARI
> > rather than 10 Gbit/s serial.
> >
> > -----Original Message-----
> > From: Rick Walker [mailto:walker@cutter.hpl.hp.com]
> > Sent: Wednesday, April 19, 2000 4:58 PM
> > To: stds-802-3-hssg@ieee.org
> > Subject: Re: 850 nm solutions
> >
> >
> >
> >
> > > Jim Tatum writes:
> > > But why does it matter? Why limit the users? Why not put in the table.
> It
> > > costs nothing. Just put in what the model and data tell us to. It is
> > > my opinion that a large percentage of 10GB style links are going to be
> > > very short, less than 10m. If you look at the way many fiber ports
> > > are being used today, many are in the 10m range. Also, since copper
> > > cables are going to be EXTREMELY challanged to go that distance at
> > > 10GB, why not let the market choose the lowest cost solution using
> > > 850nm VCSELs and 62.5um fiber?
> >
> > FWIW, I agree that 10G across CAT-6 or other twisted pair would be very
> > difficult. However 10G across coaxial cable is fairly easy. It can be

mailto:rabynum@mindspring.com
mailto:walker@cutter.hpl.hp.com
Highlight

1/14/2018 Re: 850 nm solutions

http://grouper.ieee.org/groups/802/3/10G_study/email/save/msg02385.html 3/3

> > done with 0.1" diameter coaxial cable using simple NRZ data encoding. A
> > simple FIR pre-equalizer can double this distance. Without a doubt
> > copper would be the cheapest solution for links under 10M. I would
> > estimate a mature chipset price of about $50 per end and $15 for the
> > cable.
> >
> > This performance was demonstrated in 1998 using a 25GHz bipolar chipset.
> > See: Walker, R. C., K. Hsieh, T. A. Knotts and C. Yen, "A 10Gb/s
> > Si-Bipolar TX/RX Chipset for Computer Data Transmission" , ISSCC Digest
> > of Technical Papers 41(February 1998), 302,303,450.
> >
> > A Copper PHY was voted down by the committee because it was thought that
> > there was no market for this type of low-cost short distance link.
> >
> > kind regards,
> > --
> > Rick Walker

References:
RE: 850 nm solutions

From: THALER,PAT (A-Roseville,ex1)

Prev by Date: RE: XAUI IO specs
Next by Date: RE: XAUI IO specs
Prev by thread: RE: 850 nm solutions
Next by thread: Re: 850 nm solutions
Index(es):

Date
Thread

http://grouper.ieee.org/groups/802/3/10G_study/email/save/msg02383.html
http://grouper.ieee.org/groups/802/3/10G_study/email/save/msg02386.html
http://grouper.ieee.org/groups/802/3/10G_study/email/save/msg02384.html
http://grouper.ieee.org/groups/802/3/10G_study/email/save/msg02383.html
http://grouper.ieee.org/groups/802/3/10G_study/email/save/msg02388.html
http://grouper.ieee.org/groups/802/3/10G_study/email/save/mail66.html#02385
http://grouper.ieee.org/groups/802/3/10G_study/email/save/thrd65.html#02385
Highlight

La Jolla, CA July 10-14, 2000 64b/66b Coding Update

IEEE 802.3ae
Task Force

 64b/66b PCS
updated 6/30/2000

state machines modified 7/17/2000

Rick Walker Agilent Howard Frazier Cisco
Richard Dugan Agilent Paul Bottorff Nortel
Birdy Amrutur Agilent Shimon Mueller Sun
Rich Taborek nSerial Brad Booth Intel
Don Alderrou nSerial Kevin Daines World Wide Packets
John Ewen IBM Osamu Ishida NTT
Mark Ritter IBM Jason Yorks Cielo
Al Bezoni Lucent Henning Lysdal Giga/Intel
Drew Plant Agilent Justin Chang Quake

La Jolla, CA July 10-14, 2000 64b/66b Coding Update

IEEE 802.3ae
Task Force

Topics

• Code review and update

• Test vectors

• Bit ordering sequence

• Frame sync algorithm and state machine

• TX,RX error detection state machines

• Optional code features

• Summary

La Jolla, CA July 10-14, 2000 64b/66b Coding Update

IEEE 802.3ae
Task Force

Building frames from 10GbE RS symbols

Z Z Z Z Z Z Z Z D D D D D D D D D Z Z Z Z Z
S,T = SOP, EOP

= control words (Z)
D = Data octets

D D
D D
D D
D D

D D
D D
D D
D T

D D
D D
D T
D Z

D D
D T
D Z
D Z

D T
D Z
D Z
D Z

D Z
D Z
T Z
Z Z

D Z
T Z
Z Z
Z Z

Z Z
Z Z
Z Z
Z Z

Z S
Z D
Z D
Z D

S D
D D
D D
D D

T Z
Z Z
Z Z
Z Z

Z Z Z Z Z Z Z Z S D D D D D D D D Z Z Z Z Z

Z Z Z Z Z Z Z Z D D D D D D D D Z Z Z Z Z Z
Z Z Z Z Z Z Z Z D D D D D D D D T Z Z Z Z Z

pure data pure control two possible packet startings

eight possible packet endings

D Z
D Z
D Z
T Z

time

octet 0
octet 1
octet 2
octet 3

D S

T

Z

I,E

La Jolla, CA July 10-14, 2000 64b/66b Coding Update

IEEE 802.3ae
Task Force

Code Overview

64 bit data field (scrambled)

Data Codewords have “01” sync preamble

a “10” sync preamble. Both the coded 56-bit
Mixed Data/Control frames are identified with

combined 56 bit data/control field (scrambled)

00,11 preambles are considered code errors and

8-bit TYPE

payload and TYPE field are scrambled

0 1

1 0

cause the packet to be invalidated by forcing
an error (E) symbol on coder output

La Jolla, CA July 10-14, 2000 64b/66b Coding Update

IEEE 802.3ae
Task Force

Code Summary

• all undefined bit fields (in yellow) are set to zero for 10GbE

Input Data Sync Bit fields
(first RS transfer / second RS transfer) [0] [1] [2] [65]

D0D1D2D3/ D4D5D6D7 0 1 D0 D1 D2 D3 D4 D5 D6 D7
[0] [7] [0] [7] [0] [7] [0] [7] [0] [7] [0] [7] [0] [7] [0] [7]

Z0Z1Z2Z3/ Z4Z5Z6Z7 1 0 0x1e C0 C1 C2 C3 C4 C5 C6 C7
“01111000” [0] [6] [0] [6] [0] [6] [0] [6] [0] [6] [0] [6] [0] [6] [0] [6]

Z0Z1Z2Z3/S 4D5D6D7 1 0 0x33 C0 C1 C2 C3 D5 D6 D7

S0D1D2D3/ D4D5D6D7 1 0 0x78 D1 D2 D3 D4 D5 D6 D7

T0Z1Z2Z3/ Z4Z5Z6Z7 1 0 0x87 C1 C2 C3 C4 C5 C6 C7

D0T1Z2Z3/ Z4Z5Z6Z7 1 0 0x99 D0 C2 C3 C4 C5 C6 C7

D0D1T2Z3/ Z4Z5Z6Z7 1 0 0xaa D0 D1 C3 C4 C5 C6 C7

D0D1D2T3/ Z4Z5Z6Z7 1 0 0xb4 D0 D1 D2 C4 C5 C6 C7

D0D1D2D3/T 4Z5Z6Z7 1 0 0xcc D0 D1 D2 D3 C5 C6 C7

D0D1D2D3/ D4T5Z6Z7 1 0 0xd2 D0 D1 D2 D3 D4 C6 C7

D0D1D2D3/ D4D5T6Z7 1 0 0xe1 D0 D1 D2 D3 D4 D5 C7

D0D1D2D3/ D4D5D6T7 1 0 0xff D0 D1 D2 D3 D4 D5 D6

La Jolla, CA July 10-14, 2000 64b/66b Coding Update

IEEE 802.3ae
Task Force

 RS “Z” code to 7 bit “C” field mapping

RS Z value name shorthand 7-bit C field line code
0x07,1 idle [I] 0x00
0xfb,1 start [S] encoded by TYPE byte
0xfd,1 terminate [T] encoded by TYPE byte
0xfe,1 error [E] 0x1e
0x1c,1 reserved0 - 0x2d
0x3c,1 reserved1 - 0x33
0x7c,1 reserved2 - 0x4b
0xbc,1 reserved3 - 0x55
0xdc,1 reserved4 - 0x66
0xf7,1 reserved5 - 0x78

La Jolla, CA July 10-14, 2000 64b/66b Coding Update

IEEE 802.3ae
Task Force

 Bit ordering sequence

0 7Byte 4 0 7Byte 5 0 7Byte 6 0 7Byte 7

0 7Byte 0 0 7Byte 1 0 7Byte 2 0 7Byte 3

MAC0 1 2 3

re-order eight octet data
field for scrambling

0 7Byte 70 7Byte 0 0 7Byte 1

Scrambler

0 7Byte 70 7Byte 0 0 7Byte 1

(sync)

Serial transmission order

pre-pend two bit sync field to
scrambled 64 bit data field

ei
gh

t o
ct

et
s

(lsb)

La Jolla, CA July 10-14, 2000 64b/66b Coding Update

IEEE 802.3ae
Task Force

 Scrambler definition

S0 S1 S2 S19 S57

D58 S58

CLOCK

 Serial form of the Scrambler:

scrambled
data output

serial
data input

The serial form of the scrambler is shown here for
bit ordering purposes. Parallel implementations could
also be used. For details see:
http://grouper.ieee.org/groups/802/3/ae/public/mar00/walker_1_0300.pdf

La Jolla, CA July 10-14, 2000 64b/66b Coding Update

IEEE 802.3ae
Task Force

Sample 64b/66b Test Vector
• Start with a minimum length (64 byte) Ethernet packet with preamble and CRC

55 55 55 55 55 55 d5 08 00 20 77 05 38 0e 8b 00 00 00 00 08 00 45 00 00 28 1c 66 00 00 1b 06 9e

d7 00 00 59 4d 00 00 68 d1 39 28 4a eb 00 00 30 77 00 00 7a 0c 50 12 1e d2 62 84 00 00 00 00 00

 00 00 00 93 eb f7 79

• Add SOP, EOP, Idles and convert to RS indications
07,1 07,1 07,1 07,1 07,1 07,1 07,1 07,1 fb,1 55,0 55,0 55,0 55,0 55,0 55,0 d5,0

08,0 00,0 20,0 77,0 05,0 38,0 0e,0 8b,0 00,0 00,0 00,0 00,0 08,0 00,0 45,0 00,0

00,0 28,0 1c,0 66,0 00,0 00,0 1b,0 06,0 9e,0 d7,0 00,0 00,0 59,0 4d,0 00,0 00,0

68,0 d1,0 39,0 28,0 4a,0 eb,0 00,0 00,0 30,0 77,0 00,0 00,0 7a,0 0c,0 50,0 12,0

1e,0 d2,0 62,0 84,0 00,0 00,0 00,0 00,0 00,0 00,0 00,0 00,0 93,0 eb,0 f7,0 79,0

fd,1 07,1 07,1 07,1 07,1 07,1 07,1 07,1

• Arrange bytes into frames with type indicators and sync bits
"10" 1e 00 00 00 00 00 00 00 "10" 78 55 55 55 55 55 55 d5 "01" 08 00 20 77 05 38 0e 8b

"01" 00 00 00 00 08 00 45 00 "01" 00 28 1c 66 00 00 1b 06 "01" 9e d7 00 00 59 4d 00 00

"01" 68 d1 39 28 4a eb 00 00 "01 " 30 77 00 00 7a 0c 50 12 "01" 1e d2 62 84 00 00 00 00

"01" 00 00 00 00 93 eb f7 79 "10" 87 00 00 00 00 00 00 00

• Scramble and transmit left-to-right, lsb first, (scrambler initial state is set to all ones)
"10" 1e 00 00 00 80 f0 ff 7b "10" 78 15 ad aa aa 16 30 62

"01" 08 e1 81 c5 6e 7c 76 6a "01" e6 30 28 80 cc aa f4 8d

"01" 83 ee 49 ae 6d 93 db 2c "01" f3 46 70 db 82 5a 90 74

"01" 1e 51 79 6b 1a 25 7a c5 "01" 41 1f bf d4 0c 44 ca 4a

"01" 09 28 12 d2 b5 2d 3f 2c "01 " 49 92 de c8 b3 33 0e 32

"10" 2a a3 3a c8 d7 ad 99 b5

La Jolla, CA July 10-14, 2000 64b/66b Coding Update

IEEE 802.3ae
Task Force

Frame alignment algorithm
Look for presence of “01” or “10” sync patterns every 66 bits

This can be done either in parallel, by looking at all possible
locations, or in serial by looking at only one potential location.

In either case, a frame sync detector is used to statistically
qualify a valid sync alignment.

In the parallel case, a barrel shifter can immediately make the
phase shift adjustment. In the serial case, a sync error is used
to cycle-slip the demultiplexor to hunt for a valid sync phase.

So what algorithm should be used for reliable and rapid frame
sync detection?

La Jolla, CA July 10-14, 2000 64b/66b Coding Update

IEEE 802.3ae
Task Force

Frame sync criteria
If misaligned, then sync error rate will be 50%. We must quickly
assert loss of sync and “slip” our alignment to another
candidate location

If already aligned with good BER (<10e-9), then we want to stay
in sync with very high reliability

If BER is worse than10e-4 we should suppress sync, to avoid
likelyhood of False Packet Acceptance due to CRC failures

BER current sync
state next sync state notes

~50% in out should be fast
>10e-4 in out prevents MTTFPA events, can be

relatively slow to trigger
<10e-9 out in should be fast

La Jolla, CA July 10-14, 2000 64b/66b Coding Update

IEEE 802.3ae
Task Force

Frame sync algorithm
• frame sync is acquired after 64 contiguous frames have

been received with valid “01” or “10” sync headers

• frame sync is declared lost after 32 “11” or “00” sync
patterns have been declared in any block of 64 frames

• In addition, if there are 16 or more errors within any 125us
time interval (~10e-4 BER), then frame sync is inhibited

OUT IN
start

(BER <10e-4) &

(BER >10e-4) ||

64 contiguous
error-free frames

32 or more errors
in 64 frames

La Jolla, CA July 10-14, 2000 64b/66b Coding Update

IEEE 802.3ae
Task Force

64/66 frame sync performance

-8 -7 -6 -5 -4 -3 -2 -1 0

log(ber)

-10

-8

-6

-4

-2

0

2

4

6

8
lo

g
(m

ea
n

tim
e

to
 tr

ig
ge

r [
se

co
nd

s]
)

64 contiguous error free frames

32 or more errors

16 or more errors

one year

rapidly sync for low BERs

in 125us inhibits
sync for BER >10e-4

in 64 frames rapidly
drops sync for
50% BER

La Jolla, CA July 10-14, 2000 64b/66b Coding Update

IEEE 802.3ae
Task Force

Frame lock process

NO_FRAME_LOCK

frame_lock<=false

power_on=true +
reset = true

FRAME_LOCK

frame_lock<=true

SLIP

frame_lock<=false

bad_mt_gt_32=true
good_mt_eq_64=true

ELSE

bad_mt_gt_32=true
slip_done=trueELSEELSE

Receiver Synchronization condition
sync_done <= frame_lock=true * hi_ber=false

La Jolla, CA July 10-14, 2000 64b/66b Coding Update

IEEE 802.3ae
Task Force

BER monitor process

mt_valid=false

mt_invalid_cnt++
hi_ber_cnt++

mt_valid_cnt++

mt_valid=true

125us_timer_done

hi_ber<=(hi_ber_cnt>16)?

hi_ber_cnt<=0

64frames_timer_done

mt_valid_cnt<=0
mt_invalid_cnt<=0

power_on=true +
reset = true

M2

true : false

UCTUCT

M3 M4 M5

UCT

M1

bad_mt_gt_32 <=
(mt_invalid_cnt>32)?true:false

good_mt_eq_64 <=
(mt_valid_cnt=64)?true:false

M0

mt_valid_cnt<=0
mt_invalid_cnt<=0
hi_ber_cnt<=0

UCT

UCT

bad_mt_gt_32<=false
good_mt_eq_64<=false
hi_ber <= false

La Jolla, CA July 10-14, 2000 64b/66b Coding Update

IEEE 802.3ae
Task Force

Z Z
Z Z
Z Z
Z Z

Z S
Z D
Z D
Z D

S D
D D
D D
D D

D D
D D
D D
D T

D D
D D
D T
D Z

D D
D T
D Z
D Z

D T
D Z
D Z
D Z

D Z
D Z
T Z
Z Z

D Z
T Z
Z Z
Z Z

T Z
Z Z
Z Z
Z Z

D Z
D Z
D Z
T Z

D D
D D
D D
D D

Z
S

D

T

Packet boundary protection
• A 2 bit error in the sync preamble can convert a packet

boundary (S,T) into a Data frame (D) and vice-versa.
However, all such errors violate frame sequencing rules
unless another 4 errors recreate a false S,T packet (a total
of six errors). Frame sequence errors invalidate the packet
by forcing an (E) on the coder output.

8

8

4

4

44

6

6

4

numbers show
bits of Hamming
protection

3!

La Jolla, CA July 10-14, 2000 64b/66b Coding Update

IEEE 802.3ae
Task Force

TX process

TYPE(tx_tobe_coded)=S

TYPE(tx_tobe_coded)=D

TYPE(tx_tobe_coded)=T

TYPE(tx_tobe_coded)=Z

T

D

S

Z

E

TYPE(tx_tobe_coded)=Z

TYPE(tx_tobe_coded)=D

TYPE(tx_tobe_coded)=Z

ELSE initialize_done=true

 tx_tobe_xmitted<=ENCODE(tx_tobe_coded)

tx_tobe_xmitted<=EFRAME_P

TYPE(tx_tobe_coded)=S

power_on=true +
reset = true

 tx_tobe_xmitted<=ENCODE(tx_tobe_coded)

tx_tobe_xmitted<=ENCODE(tx_tobe_coded)

tx_tobe_xmitted<=ENCODE(tx_tobe_coded)

ELSE

ELSE

ELSE

ELSE

La Jolla, CA July 10-14, 2000 64b/66b Coding Update

IEEE 802.3ae
Task Force

RX process

E

TYPE(rx_tobe_decoded)=Z

TYPE(rx_tobe_decoded)=S

sync_done=true &&

TYPE(rx_tobe_decoded)=Z

TYPE(rx_tobe_decoded)=D

TYPE(rx_tobe_decoded)=Z

TYPE(rx_tobe_decoded)=D

TYPE(rx_tobe_decoded)=T

sync_done=falsepower_on=true + reset = true +

TYPE(rx_tobe_decoded)=S

D

T

S

Z

rx_decoded<=EFRAME_G
rx_err=EFRAME_G

rx_to_gmii<=rx_err

rx_decoded<=DECODE(rx_tobe_decoded)
rx_to_gmii<=rx_decoded

rx_decoded<=DECODE(rx_tobe_decoded)
rx_to_gmii<=rx_decoded

rx_decoded<=DECODE(rx_tobe_decoded)
rx_to_gmii<=rx_decoded

rx_decoded<=DECODE(rx_tobe_decoded)
rx_to_gmii<=rx_decoded

ELSE

ELSE

ELSE

ELSE

rx_err<=rx_decoded

rx_err<=rx_decoded

rx_err<=rx_decoded

rx_err<=rx_EFRAME_G

ELSE

La Jolla, CA July 10-14, 2000 64b/66b Coding Update

IEEE 802.3ae
Task Force

Optional Code Features
• Special frames are reserved to support ordered sets for both

Fiber Channel and 10GbE Link Signalling Sublayer (LSS)

• x,y ordered-set IDs are “1111” for FC and “0000” for 10GbE LSS
XGMII Pattern Sync Bit fields 0-63

ZZZZ/O DDD 1 0 0x2d Z0 Z1 Z2 Z3 y D5 D6 D7
ODDD/ ZZZZ 1 0 0x4b D1 D2 D3 x Z4 Z5 Z6 Z7
ODDD/O DDD 1 0 0x55 D1 D2 D3 x y D5 D6 D7
ODDD/S DDD 1 0 0x66 D1 D2 D3 x y D5 D6 D7
SDDD/ DDDD 1 0 0x78 D1 D2 D3 D4 D5 D6 D7
undefined 1 0 0x00 reserved for future expansion

rs value name shorthand 7-bit line code
0x5c,1 FC ordered-set [Of] encoded by TYPE byte
0x9c,1 10 GbE Link Signalling [LS] encoded by TYPE byte

La Jolla, CA July 10-14, 2000 64b/66b Coding Update

IEEE 802.3ae
Task Force

Summary

• We’ve shown a simple and reliable algorithm for 64b/66b
frame sync detection

• Bit ordering has been clarified to be compatible with
Ethernet CRC definition

• The TX and RX error control state machines have been
presented

• A simple test vector has been produced to help to verify
new implementations

• Optional 64b/66b extensions exist to support FC ordered
sets and LS signalling

La Jolla, CA July 10-14, 2000 64b/66b Coding Update

IEEE 802.3ae
Task Force

 Supplementary slides

La Jolla, CA July 10-14, 2000 64b/66b Coding Update

IEEE 802.3ae
Task Force

State machine notation conventions
Variables

TXD<35:0>TXD signal of GMII

RXD<35:0>RXD signal of GMII

tx_tobe_coded<71:0>.................... 72 bit vector which is to be encoded by the PCS before transmission to the PMA.It is formed by
concatenation of two consecutive TXD vectors. With the most recently received TXD word in the 35 : 0 bit
locations.

tx_tobe_xmitted<65:0>A 66 bit vector which is the result of a PCS ENCODE operation and is to be transmitted to the PMA.

rx_tobe_decoded<65:0>A 66 bit vector containing the most recently received code word from the PMA.

rx_decoded<71:0>.........................72 bit vector which is the result of the PCS DECODE operation on the received bit vector, rx_tobe_decoded

rx_to_gmii<71:0>..........................72 bit vector which is a pipelined delayed copy of rx_decoded. This is sent to GMII in two steps of 36 bits
each. Bits 71:36 are sent first to RXD, followed by bits 35:0.

rx_err<71:0>..................................This holds either a pipeline delayed copy of rx_decoded or the error frame EFRAME_G

state ...Holds the current state of the transmit or the receive process.

sync_doneBoolean variable is set true when receiver is synchronized and set to false when receiver looses frame lock.

frame_lock.....................................boolean variable is set true when receiver acquires frame delineation

mt_valid ...boolean variable is set true if received frame rx_tobe_decoded has valid frame prefix bits. I.e, mt_valid =
rx_tobe_decoded[65] ^ rx_tobe_decoded[64]

mt_valid_cntHolds the number of frames within a window of 64 frames, with valid prefix bits

mt_invalid_cntHolds the number of frames within a window of 64 frames with invalid prefix bits

good_mt_eq_64Boolean variable is set true when there are 64 contiguous valid prefix bits

bad_mt_gt_32Boolean variable is set true when there are at least 32 invalid prefix bits within a block of 64

hi_ber_cntHolds the number of with invalid prefix bits, within a 125us period

hi_ber...Boolean is asserted true when the hi_ber_cnt exceeds 16 indicating a bit error rate >=10-4

slip_done..Boolean variable is set true when the hi_ber_cnt exceeds 16 indicating a bit error rate >=10-4

La Jolla, CA July 10-14, 2000 64b/66b Coding Update

IEEE 802.3ae
Task Force

State machine notation conventions
Constants

const enum FRAME_TYPE = { Z, S, T, D}Each 72 bit vector, tx_tobe_coded and the 66 bit vector, rx_tobe_decoded,can be
classified to belong to one of the four types depending on its contents. The frame types Z,S, T, D are defined
in TBD.

EFRAME_G<71:0>72 bit vector to be sent to the GMII interface and represents a error octet in all the eight octet locations

EFRAME_P<65:0>66 bit vector to be sent to the PMA and represents a error octet in all the eight octet locations,

Functions
ENCODE(tx_tobe_coded<71:0>) ..Encodes the 72 bit vector into a 66 bit vector to be transmitted to the PMA

DECODE(rx_tobe_decoded<65:0>)Decodes the 66 bit vector into a 72 bit vector to be sent to the GMII

TYPE(tx_tobe_coded<71:0>)

TYPE(rx_tobe_decoded<65:0>) ...Decodes the FRAME_TYPE of the tx_tobe_coded<71:0> bit vector or the
rx_tobe_decoded<65:0>

Timers
64frames_timer_doneTimer which is triggered once every 64 of the 66-bit frames in the receive process

125us_timer_doneTimer which is triggered once every 125us (is approximately 214 66-bit frames in the receive process).

	Code Summary
	DDDD/DDDD
	0
	1
	D0
	D1
	D2
	D3
	D4
	D5
	D6
	D7
	ZZZZ/ZZZZ
	1
	0
	0x1e
	Z0
	Z1
	Z2
	Z3
	Z4
	Z5
	Z6
	Z6
	ZZZZ/SDDD
	1
	0
	0x33
	Z0
	Z1
	Z2
	Z3
	D5
	D6
	D7
	SDDD/DDDD
	1
	0
	0x78
	D1
	D2
	D3
	D4
	D5
	D6
	D7
	TZZZ/ZZZZ
	1
	0
	0x87
	Z1
	Z2
	Z3
	Z4
	Z5
	Z6
	Z7
	DTZZ/ZZZZ
	1
	0
	0x99
	D0
	Z2
	Z3
	Z4
	Z5
	Z6
	Z7
	DDTZ/ZZZZ
	1
	0
	0xaa
	D0
	D1
	Z3
	Z4
	Z5
	Z6
	Z7
	DDDT/ZZZZ
	1
	0
	0xb4
	D0
	D1
	D2
	Z4
	Z5
	Z6
	Z7
	DDDD/TZZZ
	1
	0
	0xcc
	D0
	D1
	D2
	D3
	Z5
	Z6
	Z7
	DDDD/DTZZ
	1
	0
	0xd2
	D0
	D1
	D2
	D3
	D4
	Z6
	Z7
	DDDD/DDTZ
	1
	0
	0xe1
	D0
	D1
	D2
	D3
	D4
	D5
	Z7
	DDDD/DDDT
	1
	0
	0xff
	D0
	D1
	D2
	D3
	D4
	D5
	D6
	There are three choices per bit, so frames can be composed with 64, 4:1 multiplexors controlled a...

	Building frames with XAUI (HARI) mapping
	Coder Block Diagram
	Decoder Block Diagram
	Gate count
	• Logic: 706 logic cells + 144 flops
	• Gearbox + clock generator: ~1400 flops

	Gate count
	• Logic: 731 logic cells + 234 flops
	• Gearbox + clock generator: ~1400 flops

	K28.0
	idle1
	R
	0x00
	K28.1
	busy idle0
	Kb
	0x1e
	K28.2
	reserved0
	-
	0x2d
	K23.7
	busy idle1
	Rb
	0x33
	K27.7
	start
	S
	encoded by TYPE byte
	K29.7
	terminate
	T
	encoded by TYPE byte
	K28.4
	reserved1
	-
	0x4b
	K28.5
	idle0
	K
	0x55
	K30.7
	error
	E
	0x66
	K28.7
	reserved2
	-
	0x78
	• The 7-bit line codes representing 8B/10B control characters have 4-bit minimum hamming distance.

	TX Clock synthesis I
	False Packet Acceptance Rate
	• A key parameter of any code is the rate at which “damaged” packets are accepted as valid. In ge...
	• For 1Gb Ethernet the Mean Time to False Packet Acceptance (MTTFPA) was calculated to be approxi...
	• Because 64b/66b has a uniform 4-bit Hamming protection, a conservative estimate can be made. As...

	TX Clock synthesis II
	Control code mapping
	• PLL locks to received XAUI clock
	• PLL provides clock to 16:1 MUX
	• PLL locks to MUX clock output
	• PLL provides clock to XAUI output FIFO

	Derivation of Parallel Scrambler
	Summary
	• Since the last meeting, we’ve finished a gate level implementation and folded the results back ...
	• An analysis of Mean Time to False Packet Acceptance (MTTFPA) shows acceptable performance with ...
	• Gate counts for 64/66 are reasonable and on par with the complexity of the four 8b/10b decoders...
	• Clock Generation is straightforward and easy in any process capable of XAUI PLL performance

	Derivation of Parallel Scrambler
	Topics
	• Code update
	• Mean Time to False Packet Acceptance
	• Coder Block Diagram and Gate Count
	• Scrambler design
	• Summary

	Scrambling principle
	• Self synchronizing scrambler
	• Can be parallelized for efficient implementation
	• Using along pattern length reduces possibility of jamming (eg: x58+x19+1=0)
	• Long pattern length self-synchronizing scramblers exist that do not compromise Ethernet CRC cov...
	Coded output data
	Uncoded input data

	Code Overview
	64b/66b coding update
	False Packet Acceptance Rate
	• P = coded packet size = 58+1526*8*66/64
	• pe = bit error rate, N = number of errors, tb = bit time (1/10.3125G).
	• probability of N errors in packet of size P:
	• expected time for 4 or more errors:

	False Packet Acceptance Rate
	False Packet Acceptance Rate
	Summary
	• At a 10e-9 BER and 10.3Gb/s, the MTTFPA of 64b/66b is approximately equal to the 1Gb Ethernet 8...
	• If 10G Ethernet maintains the same 10e-11 specification for PMD raw error rate, then 64/66b giv...

	Rick Walker, Birdy Amrutur, Tom Knotts
	Agilent Laboratories, Palo Alto, CA
	rick_walker@agilent.com

	Richard Dugan
	Agilent Technologies, Integrated Circuits Business Division, San Jose, CA
	richard_dugan@agilent.com

	walker_1_0700-Jul-10-14-2000-Walker-Rick-IEEE-802-3ae-Task-Force-La-Jolla-CA 64b-66b-Coding-Update.pdf
	64b/66b PCS
	Topics
	Building frames from 10GbE RS symbols
	Code Overview
	Code Summary
	RS “Z” code to 7 bit “C” field mapping
	Bit ordering sequence
	Scrambler definition
	Sample 64b/66b Test Vector
	Frame alignment algorithm
	Frame sync criteria
	Frame sync algorithm
	64/66 frame sync performance
	Frame lock process
	BER monitor process
	Packet boundary protection
	TX process
	RX process
	Optional Code Features
	Summary
	Supplementary slides
	State machine notation conventions
	State machine notation conventions

