Josh Steiner Joél Quenneville

Testing Rails

How expert developers write
maintainable tests

Testing Rails

Josh Steiner

Joél Quenneville

Contents

Introduction

Test Driven Development

Characteristics of an Effective TestSuite

Types of Tests
The Testing Pyramid
FeatureSpecs L
ModelSpecs
RequestSpecs L
VIEBWSPEeCS o
ControllerSpecs
HelperSpecs e

Mailer Specs e

10
11

13

CONTENTS

Intermediate Testing

Testing inisolation
External services
Levels of Abstraction
JavaScript L.
Continuous Integration . . .

Coverage Reports

Antipatterns

Slowtests
Intermittent Failures

BrittleTests

Duplication

Testing Implementation Details

Let, Subject, and Before . .
Bloated Factories
Using Factories Like Fixtures

False Positives

Stubbing the System UnderTest

Testing Behavior, Not Implementation

Testing Code You Don’t Own

Conclusion

50
50
61
68
73
78

79

82
82
85
88
91
92
95

100

101

103

104

107

109

112

Introduction

Why test?

As software developers, we are hired to write code that works. If our code doesn't
work, we have failed.

So how do we ensure correctness?

One way is to manually run your program after writing it. You write a new fea-
ture, open a browser, click around to see that it works, then continue adding more
features. This works while your application is small, but at some point your pro-
gram has too many features to keep track of. You write some new code, but it
unexpectedly breaks old features and you might not even know it. This is called
a regression. At one point your code worked, but you later introduced new code
which broke the old functionality.

A better way is to have the computer check our work. We write software to auto-
mate our lives, so why not write programs to test our code as well? Automated
tests are scripts that output whether or not your code works as intended. They
verify that our program works now, and will continue to work in the future, with-
out humans having to test it by hand. Once you write a test, you should be able
to reuse it for the lifetime of the code it tests, although your tests can change as
expectations of your application change.

Any large scale and long lasting Rails application should have a comprehensive test
suite. A test suite is the collection of tests that ensure that your system works.
Before marking any task as “complete” (i.e. merging into the master branch of your
Git repository), it is imperative to run your entire test suite to catch regressions.

CHAPTER 1. INTRODUCTION 2

If you have written an effective test suite, and the test suite passes, you can be
confident that your entire application behaves as expected.

Atest suite will be comprised of many different kinds of tests, varying in scope and
subject matter. Some tests will be high level, testing an entire feature and walking
through your application as if they were a real user. Others may be specific to a
single line of code. We'll discuss the varying flavors of tests in detail throughout
this book.

Saving Time and Money

At the end of the day, testing is about saving time and money. Automated tests
catch bugs sooner, preventing them from ever being deployed. By reducing the
manpower necessary to test an entire system, you quickly make up the time it
takes to implement a test in the first place.

Automated tests also offer a quicker feedback loop to programmers, as they don't
have to walk through every path in their application by hand. A well written test
can take milliseconds to run, and with a good development setup you don't even
have to leave your editor. Compare that to using a manual approach a hundred
times a day and you can save a good chunk of time. This enables developers to
implement features faster because they can code confidently without opening the
browser.

When applications grow without a solid test suite, teams are often discouraged
by frequent bugs quietly sneaking into their code. The common solution is to hire
dedicated testers; a Quality Assurance (QA) team. This is an expensive mistake. As
your application grows, now you have to scale the number of hands on deck, who
will never be as effective as automated tests at catching regressions. QA increases
the time to implement features, as developers must communicate back and forth
with another human. Compared to a test suite, this is costly.

This is not to say that QA is completely useless, but they should be hired in addition
to a good test suite, not as a replacement. While manual testers are not as efficient
as computers at finding regressions, they are much better at validating subjective
qualities of your software, such as user interfaces.

CHAPTER 1. INTRODUCTION 3

Confidence

Having a test suite you can trust enables you do things you would otherwise not be
able to. It allows you to make large, sweeping changes in your codebase without
fearing you will break something. It gives you the confidence to deploy code at
5pm on a Friday. Confidence allows you to move faster.

Living Documentation

Since every test covers a small piece of functionality in your app, they serve as
something more than just validations of correctness. Tests are a great form of
living documentation. Since comments and dedicated documentation are decou-
pled from your code, they quickly go stale as you change your application. Tests
must be up to date, or they will fail. This makes them the second best source of
truth, after the code itself, though they are often easier to read. When | am unsure
how a piece of functionality works, I'll look first at the test suite to gain insight into
how the program is supposed to behave.

Test Driven Development

Automated tests are likely the best way to achieve confidence in a growing code-
base. To amplify that confidence and achieve bigger wins in time savings and code
cleanliness, we recommend writing code using a process called Test Driven De-
velopment (TDD). TDD is a process that uses tests to drive the design and devel-
opment of your application. It begins with a development cycle called Red, Green,
Refactor.

Red, Green, Refactor

Red, Green, Refactor is a series of steps that lead you through developing a given
feature or fixing a bug:

CHAPTER 1. INTRODUCTION 4

Red

Write a test that covers the functionality you would like to see implemented. You
don't have to know what your code looks like at this point, you just have to know
whatitwill do. Run the test. You should see it fail. Most test runners will output red
for failure and green for success. While we say “failure” do not take this negatively.
It's a good sign! By seeing the test fail first, we know that once we make it pass,
our code works.

Green

Read the error message from the failing test, and write as little code as possible to
fix the current error message. By only writing enough code to see our test pass,
we tend to write less code as a whole. Continue this process until the test passes.
This may involve writing intermediary features covering lower level functionality
which require their own Red, Green, Refactor cycle.

Do not focus on code quality at this point. Be shameless! We simply want to get our
new test passing. This may involve returning literal values from methods, which
will force you to write additional tests to cover all cases.

Refactor

Clean up your code, reducing any duplication you may have introduced. This in-
cludes your code as well as your tests. Treat your test suite with as much respect
as you would your live code, as it can quickly become difficult to maintain if not
handled with care. You should feel confident enough in the tests you've written
that you can make your changes without breaking anything.

TDD Approaches

When solving problems with TDD, you must decide where to start testing your
code. Should you start from a high level, testing how the user interacts with the
system, then drill down to the nitty gritty? Or, should you begin with a low level
design and progress outwards to the final feature? The answer to this depends,
and will vary person-to-person and feature-to-feature.

CHAPTER 1. INTRODUCTION

Write a test
\ 4
Run test <
I I
Pass Fail
Refactor Write code

!

Fail 4

I— Run test
I

Pass

y

Done

Figure 1.1: TDD Cycle

CHAPTER 1. INTRODUCTION 6

Outside-In Development

Outside-In Development starts from the highest level of abstraction first. Typically,
this will be from the perspective of the user walking through the application in their
browser and interacting with elements on the page. We call this an acceptance
test, as it ensures that the behavior of the program is acceptable to the end user.

As we develop the feature, we'll gradually need to implement more granular func-
tionality, necessitating intermediate level and lower level tests. These lower level
tests may check a single conditional or return value.

By working inwards instead of outwards, you ensure that you never write more
code than necessary, because there is a clear end. Once the acceptance test is
green, there is no more code to write!

Working outside-in is desirable when you have a good understanding of the prob-
lem, and have a rough understanding of how the interface and code will work
ahead of time. Because you are starting from a high level, your code will not work
until the very end, however your first test will guide your design all the way to
completion. You have to trust that your test will bring you there successfully.

Inside-Out Development

Sometimes you don't know what your end solution will look like, so it's better to
use an inside-out approach. An inside-out approach helps you build up your code
component by component. At each step of the way you will get a larger piece of
the puzzle working and your program will be fully functioning at the end of each
step. By building smaller parts, one at a time, you can change directions as you
get to higher-level components after you build a solid lower-level foundation.

Test Driven vs. Test First

Just because you write your test first, does not mean you are using test driven de-
velopment. While following the Red, Green, Refactor cycle, it's important to write
code only in response to error messages that are provided by test failures. This
will ensure that you do not overengineer your solution or implement features that
are not tested.

CHAPTER 1. INTRODUCTION 7

It's also important not to skip the refactor step. This is one of the most important
parts of TDD, and ensures that your code is maintainable and easy to change in
the future.

Benefits of TDD
Confidence

When it comes down to it, TDD is all about confidence. By writing tests after your
production code, it's all too easy to forget to test a specific code path. Writing your
tests first and only writing code in response to a failing test, you can trust that all
of our production code is covered. This confidence gives you power to quickly and
easily change your code without fear of it breaking.

Time Savings

Consider automated tests an investment. At first, you will add time by writing
tests you would otherwise not be writing. However, most real applications don't
stay the same; they grow. An effective test suite will keep your code honest, and
save you time debugging over the lifetime of the project. The time savings grow
as the project progresses.

TDD can also lead to time savings over traditional testing. Writing your test up
front gives you useful error messages to follow to a finished feature. You save
time thinking of what to do next, because your test tells you!

Flow
It isn't uncommon for developers to reach a state of “flow” when developing with

TDD. Once you write your test, the test failures continuously tell you what to do
next, which can almost make programming seem robotic.

Improved Design

That TDD itself improves design is arguable (and many have argued it). In real-
ity, a knowledge of object oriented design principles paired with TDD aids design.

CHAPTER 1. INTRODUCTION 8

TDD helps you recognize coupling up front. Object oriented design principles, like
dependency injection, help you write your code in ways that reduce this coupling,
making your code easier to test. It turns out that code that is easy to test happens
to align with well structured code. This makes perfect sense, because our tests
run against our code and good code is reusable.

A Pragmatic Approach

There's a lot of dogmatism surrounding the exercise of TDD. We believe that TDD is
often the best choice for all the reasons above; however, you must always consider
the tradeoffs. Sometimes, TDD doesn't make sense or simply isn’t worth it. In the
end, the most important thing is that you can feel confident that your program
works as it should. If you can achieve that confidence in other ways, that's great!

Here are some reasons you might not test drive, or even test, your code:

+ The feature you are trying to implement is outside your wheelhouse, and
you want to code an exploratory version before you can write your test. We
call a quick implementation like this a spike. After writing your spike, you
may then choose to implement the associated test. If you implement the
test after your production code, you should at the very least toggle some
code that would make it fail in an expected way. This way, you can be cer-
tain it is testing the correct thing. Alternatively, you may want to start from
scratch with your new knowledge and implement it as part of a TDD cycle.

* The entire program is small or unlikely to change. If it's small enough to test
by hand efficiently, you may elect to forego testing.

+ The program will only be used for a short time. If you plan to throw out the
program soon, it will be unlikely to change enough to warrant regression
testing, and you may decide not to test it.

* You don't care if the program doesn’t behave as expected. If the program
is unimportant, it may not be worth testing.

Characteristics of an Effective Test Suite

The most effective test suites share the following characteristics.

CHAPTER 1. INTRODUCTION 9

Fast

The faster your tests are, the more often you can run them. Ideally, you can run
your tests after every change you make to your codebase. Tests give you the feed-
back you need to change your code. The faster they are the faster you can work
and the sooner you can deliver a product.

When you run slow tests, you have to wait for them to complete. If they are slow
enough, you may even decide to take a coffee break or check Twitter. This quickly
becomes a costly exercise. Even worse, you may decide that running tests is such
an inconvenience that you stop running your tests altogether.

Complete

Tests cover all public code paths in your application. You should not be able to
remove publicly accessible code from your production app without seeing test fail-
ures. If you aren't sufficiently covered, you can't make changes and be confident
they won't break things. This makes it difficult to maintain your codebase.

Reliable

Tests do not wrongly fail or pass. If your tests fail intermittently or you get false
positives you begin to lose confidence in your test suite. Intermittent failures can
be difficult to diagnose. We'll discuss some common symptoms later.

Isolated

Tests can run in isolation. They set themselves up, and clean up after themselves.
Tests need to set themselves up so that you can run tests individually. When work-
ing on a portion of code, you don't want to have to waste time running the entire
suite just to see output from a single test. Tests that don't clean up after them-
selves may leave data or global state which can lead to failures in other tests when
run as an entire suite.

CHAPTER 1. INTRODUCTION 10

Maintainable

It is easy to add new tests and existing tests are easy to change. If it is difficult to
add new tests, you will stop writing them and your suite becomes ineffective. You
can use the same principles of good object oriented design to keep your codebase
maintainable. We'll discuss some of them later in this book.

Expressive

Tests are a powerful form of documentation because they are always kept up to
date. Thus, they should be easy enough to read so they can serve as said doc-
umentation. During the refactor phase of your TDD cycle, be sure you remove
duplication and abstract useful constructs to keep your test code tidy.

Example Application

This book comes with a bundled example application, a Reddit clone called Reddat.
If you are unfamiliar with Reddit, it is an online community for posting links and
text posts. People can then comment on and upvote those posts. Ours will be a
simplified version with no users (anyone can post) and only link posts. Make sure
that you sign into GitHub before attempting to view the example application and
commit links, or you'll receive a 404 error.

Most of the code samples included in the book come directly from commits in the
example application. At any point, you can check out the application locally and
check out those commits to explore solutions in progress. For some solutions,
the entire change is not included in the chapter for the sake of focus and brevity.
However, you can see every change made for a solution in the example commits.

The book is broken into chapters for specific topics in testing, which makes it easier
to use as a reference and learn about each part step by step. However, it does
make it more challenging to see how a single feature is developed that requires
multiple types of tests. To get a sense of how features develop naturally please
check out the app’s commit history to see the code evolve one feature at a time.
Additionally, you'll find more tests to learn from that we won't cover in the book.

https://github.com/thoughtbot/testing-rails/tree/master/example_app
https://github.com/thoughtbot/testing-rails/commits/master/example_app

CHAPTER 1. INTRODUCTION 11

Make sure to take a look at the application’s README, as it contains a summary of
the application and instructions for setting it up.

RSpec

We'll need a testing framework in order to write and run our tests. The framework
we choose determines the format we use to write our tests, the commands we use
to execute our tests, and the output we see when we run our tests.

Examples of such frameworks include Test::Unit, Minitest, and RSpec. Minitest is
the default Rails testing framework, but we use RSpec for the mature test runner
and a syntax that encourages human readable tests. RSpec provides a Domain
Specific Language (DSL) specifically written for test writing that makes reading and
writing tests feel more natural. The gem is called RSpec, because the tests read
like specifications. They describe what the software does and how the interface
should behave. For this reason, we refer to RSpec tests as specs.

While this book uses RSpec, the content will be based in theories and practice that
you can use with any framework.

Installation

When creating new apps, we run rails new with the -T flag to avoid creating any
Minitest files. If you have an existing Rails app and forgot to pass that flag, you can
always remove /test manually to avoid having an unused folder in your project.

Use rspec-rails to install RSpec in a Rails app, as it configures many of the things
you need for Rails testing out of the box. The plain ol rspec gem is used for testing
non-Rails programs.

Be sure to add the gem to both the :development and :test groups in your Gemfile.
It needs to be in :development to expose Rails generators and rake tasks at the
command line.

group :development, :test do
gem 'rspec-rails’, '~> 3.0’

end

https://github.com/thoughtbot/testing-rails/blob/master/example_app/README.md
https://github.com/rspec/rspec-rails
https://github.com/rspec/rspec

CHAPTER 1. INTRODUCTION 12

Bundle install:

bundle install

Generate RSpec files:

rails generate rspec:install

This creates the following files:

.rspec

Configures the default flags that are passed when you run rspec. The line
--require spec_helper is notable, as it will automatically require the spec
helper file for every test you run.

spec/spec_helper.rb

Further customizes how RSpec behaves. Because this is loaded in every
test, you can guarantee it will be run when you run a test in isolation. Tests
run in isolation should run near instantaneously, so be careful adding any
dependencies to this file that won't be needed by every test. If you have
configurations that need to be loaded for a subset of your test suite, con-
sider making a separate helper file and load it only in those files.

At the bottom of this file is a comment block the RSpec maintainers suggest
we enable for a better experience. We agree with most of the customiza-
tions. I've uncommented them, then commented out a few specific settings
to reduce some noise in test output.

spec/rails_helper.rb

A specialized helper file that loads Rails and its dependencies. Any file that
depends on Rails will need to require this file explicitly.

The generated spec helpers come with plenty of comments describing what each
configuration does. | encourage you to read those comments to get an idea of
how you can customize RSpec to suit your needs. | won't cover them as they tend
to change with each RSpec version.

https://github.com/thoughtbot/testing-rails/blob/b86752a0690a2800c6f57e23974bfe11c8b5fe28/example_app/.rspec
https://github.com/thoughtbot/testing-rails/blob/b86752a0690a2800c6f57e23974bfe11c8b5fe28/example_app/.rspec#L2
https://github.com/thoughtbot/testing-rails/blob/b86752a0690a2800c6f57e23974bfe11c8b5fe28/example_app/spec/spec_helper.rb
https://github.com/thoughtbot/testing-rails/commit/572ddcebcf86c74687ced40ddb0aad234f6e9657
https://github.com/thoughtbot/testing-rails/commit/1c5e29def9e64d4e67abb5a0867c67348468ab5b
https://github.com/thoughtbot/testing-rails/blob/b86752a0690a2800c6f57e23974bfe11c8b5fe28/example_app/spec/rails_helper.rb

Types of Tests

The Testing Pyramid

The various test types we are about to look at fall along a spectrum. At one end
are unit tests. These test individual components inisolation, proving that they im-
plement the expected behavior independent of the surrounding system. Because
of this, unit tests are usually small and fast.

In the real world, these components don't exist in a vacuum: they have to interact
with each other. One component may expect a collaborator to have a particular
interface when in fact it has completely different one. Even though all the tests
pass, the software as a whole is broken.

This is where integration tests come in. These tests exercise the system as a
whole rather than its individual components. They typically do so by simulating a
user trying to accomplish a task in our software. Instead of being concerned with
invoking methods or calling out to collaborators, integration tests are all about
clicking and typing as a user.

Although this is quite effective for proving that we have working software, it comes
at a cost. Integration tests tend to be much slower and more brittle than their unit
counterparts.

Many test types are neither purely unit nor integration tests. Instead, they lie
somewhere in between, testing several components together but not the full sys-
tem.

We like to build our test suite using a combination of these to create a testing
pyramid. This is a suite that has a few high-level integration tests that cover the

13

http://martinfowler.com/bliki/TestPyramid.html
http://martinfowler.com/bliki/TestPyramid.html

CHAPTER 2.

Rails
Stack

TYPES OF TESTS 14
View Vi ([)
Specs e

Route
Hel
el |
Controller Controller
Specs
Model e
" - ~
Unit Integration >
(—Test Test

Figure 2.1:

Rails Test Types

CHAPTER 2. TYPES OF TESTS 15

general functionality of the app, several intermediate-level tests that cover a sub-
system in more detail, and many unit tests to cover the nitty-gritty details of each
component.

This approach plays to the strength of each type of test while attempting to mini-
mize the downsides they have (such as slow run times).

Feature Specs

Feature specs simulate a user opening your app in a browser and interacting with
the page. Since they test that the application works for the end user, they are
considered a form of acceptance tests, and you may hear them referred to as
such. When developing a new feature and practicing outside-in development, this
is where we'll typically start.

Submitting a link post

For our first feature, we're going to allow users to create a link post. To do this
they'll have to click on a link from the home page, fill in the title and URL of the
link, and click “Submit”. We'll test that once they do all that, they see the title they
entered on the page, and it should link to the URL they provided.

As we're using TDD, we'll start with a test describing the functionality we'd like to
see. Let's start with some pseudocode:

As a user

When I visit the home page

And I click "Submit a link post”

And I fill in my title and URL

And I click "Submit”

Then I should see the title on the page
And it should link to the given URL

One thing to note is that we start our description with who the end user is for
this test. Our app will only have a single role, so it's safe to use user, however
many applications will need to differentiate unauthenticated users (often visitors),
admins, or domain specific users roles (like a coach or player).

CHAPTER 2. TYPES OF TESTS 16

Capybara

In order for our tests to be able to interact with the browser, we have to install
a gem called Capybara. Capybara is an API for interacting with the browser. It
provides methods to visit pages, fill in forms, click buttons, and more.

Add it to your Gemfile and bundle install:

gem "capybara”

Require it from your rails_helper:

require "capybara/rails”

The test

With that installed, we're ready to write our spec. Take a look at the completed
version. We'll go through it line by line:

spec/features/user_submits_a_link_spec.rb

require "rails_helper”

RSpec.feature "User submits a link” do
scenario "they see the page for the submitted link” do
link_title = "This Testing Rails book is awesome!"”
link_url = "http://testingrailsbook.com”

visit root_path

click_on "Submit a new link”

fill_in "link_title”, with: link_title
fill_in "link_url”, with: link_url
click_on "Submit!”

expect(page).to have_link link_title, href: link_url
end
end

https://github.com/jnicklas/capybara

CHAPTER 2. TYPES OF TESTS 17

Create a new file at spec/features/user_submits_a_link_spec.rb.

We'll first require our rails_helper.rb, as this will include our Rails environment
and Capybara:

require "rails_helper”

Next, our feature block:

RSpec.feature "User submits a link” do

end

.feature is a method that's provided by Capybara. By using it, you have access to
all of Capybara’s methods for interacting with the page. You may see examples
elsewhere calling . feature in the global context. This is because old versions of
RSpec used monkeypatching to define top level methods on main and Module. We
disabled this functionality by commenting in config.disable_monkey_patching!, as
this will be the default functionality in future versions of RSpec.

.feature takes a string, which you use to describe your feature. We'll usually name
this the same thing as we named our file and create a new file for every feature. It
gets printed out when we run our specs in documentation format.

Inside our feature block, we have a #scenario block:

scenario "they see the page for the submitted link” do

end

This is the container for a single specification. It describes one potential outcome
of the user creating a link. Like the feature block, we pass it a string which we’'ll
see in our output when we run our spec. The name for the scenario should be a
continuation of the string used for the feature block. When read together, they
should construct a sentence-like structure so that they read well when we run our
specs.

Now for the spec itself!

We first define a couple variables for our title and URL:

https://github.com/thoughtbot/testing-rails/blob/e03ef3ca8150d8d28c4cdf760f53d11070447b67/example_app/spec/spec_helper.rb#L53

CHAPTER 2. TYPES OF TESTS 18

link_title = "This Testing Rails book is awesome!"”
link_url = "http://testingrailsbook.com”

Next, visit the homepage:

visit root_path

Pretty straightforward. visit is a method provided by Capybara which will visit
root_path as defined by your application. Astute readers will realize that we have
not yet defined root_path. root_path is undefined, because this is a brand new
application. We're making this up, as we expect there to be some root route of the
application, and we know enough about Rails to know that Rails convention will
name it root_path once it is defined.

Use Capybara to click a link. This link will bring us to a new page to fill in our form:

click_on "Submit a new link”

Fill in the form fields:

fill_in "link_title”, with: link_title
fill_in "link_url”, with: link_url

If you guessed that #fill_in was from Capybara, you'd be right! #fill_in finds a
method by its name, id, or label and fills it in with the given text. In this case, we're
using the ids link_title and link_url. While we are using ids, note that Capybara
does not expect you to add a # to the beginning of your id as you would with CSS.

The fields we are looking for don't exist yet, but they will soon. We're using Rails
convention over configuration here to guess what the fields are going to be called.
We know that Rails gives ids to all fields by joining the model name and the field
name. As long as we don't customize those, we can use them to our advantage.

Even if you didn’t know that, once we get around to running the test, you'd see it
fail because it couldn't find a field with that name, id, or label. At that point, you
could open the page in your browser, inspect the element to see what the id is for
real, and replace it here.

With the fields filled in, we can submit the form!

CHAPTER 2. TYPES OF TESTS 19

click_on "Submit!”
And, finally, the assertion:
expect(page).to have_link link_title, href: link_url

There's a lot going on here, including some “magic”, so let's go through each of
the components. While this syntax may look strange, remember that RSpec is just
Ruby code. This could be rewritten as such:

expect(page).to(have_link(link_title, { href: link_url }))

#expect is an RSpec method that will build an assertion. It takes one value, which
we will run an assertion against. In this case it's taking the page object, which is a
value provided by Capybara that gives access to the currently loaded page. To run
the assertion, you call #to on the return value of #expect and pass ita matcher. The
matcher is a method that returns truthy or falsy when run through our assertion.
The matcher we've passed here is #have_link. #have_link comes from Capybara,
and returns true if it finds a link with the given text on the page. In this case we
also pass it a href option so it checks against the link's URL.

So now for the magic. #have_link doesn't actually exist. RSpec defines matchers
automatically for methods that start with has_ and end with 2. Capybara defines
the method #has_link? on the page object, so we could think of this whole line as
raising an error if page.has_link?(...) returns false. RSpec will automatically look
for the method #has_link? when it sees #have_link.

If you've found all this a bit complex, don't worry. How it works is less important
than being able to write assertions using the syntax. We'll be writing a lot of tests,
so the syntax will soon become familiar.

Take a look at the rspec-expectations gem to see all of the built-in matchers.

Running our spec

Now that our spec is written, we have to run it! To run it, find your command line
and enter rspec. rspec will look in our spec directory and run all of the files that
end in _spec.rb. For now, that's a single file and a single test.

You should see something like this:

https://github.com/rspec/rspec-expectations

CHAPTER 2. TYPES OF TESTS 20

User submits a link
they see the page for the submitted link (FAILED - 1)

Failures:

1) User submits a link they see the page for the submitted link
Failure/Error: visit root_path
NameError:
undefined local variable or method ‘root_path’ for
#<RSpec: :ExampleGroups: :UserSubmitsALink:0x007f9a2231fe98>
./spec/features/user_submits_a_link_spec.rb:8:in
*block (2 levels) in <top (required)>’

Finished in ©.00183 seconds (files took 2.53 seconds to load)
1 example, 1 failure

Failed examples:

rspec ./spec/features/user_submits_a_link_spec.rb:4 # User submits a link they
see the page for the submitted link

Randomized with seed 5573

Let's go through this bit by bit:

User submits a link
they see the page for the submitted link (FAILED - 1)

This is the summary of all the tests we ran. It uses the names provided in our
.feature and #scenario block descriptions. Note that here we read these names
together, which is why we wrote them to read nicely together. We see that the
scenario they see the page for the submitted link failed.

The format we see here is called documentation and is due to our configuration
in our spec_helper.rb. When we run a single spec file, it gives the output it an
expressive format. When we run multiple spec files, this format can become cum-
bersome with all the output, so it uses a more concise dot syntax. We'll see that
soon.

CHAPTER 2. TYPES OF TESTS 21

Failures:

1) User submits a link they see the page for the submitted link
Failure/Error: visit root_path
NameError:
undefined local variable or method ‘root_path’ for
#<RSpec: :ExampleGroups: :UserSubmitsALink:@x007f9a2231fe98>
./spec/features/user_submits_a_link_spec.rb:8:in
‘block (2 levels) in <top (required)>'’

This section outlines all of the failures. You will see one failure for each spec that
failed. It outputs the error message, the line that failed, and the backtrace. We'll
look at this in more detail in a second.

Finished in ©.00183 seconds (files took 2.53 seconds to load)
1 example, 1 failure

Next is a summary of the tests that were run, giving you the total time to run and
the number of tests that were run and that failed.

Failed examples:

rspec ./spec/features/user_submits_a_link_spec.rb:4 # User submits a link they
see the page for the submitted link

This section outputs the command to run each of the failing specs, for easy copy
and pasting. If you initially run your entire suite with rspec and want to focus
in on a single failing test, you can copy this line and enter it into your terminal
to run just that spec. rspec takes one or multiple files and will even parse line
numbers as you see above by passing the filename with the line number at the
end (rspec ./path/to/file:5 if you wanted to run the spec on line 5).

Randomized with seed 5573

Finally, we see the seed we ran our specs with. We run our specs in a random
order to help diagnose specs that may not clean up after themselves properly.
We'll discuss this in more detail in our section on intermittent failures.

CHAPTER 2. TYPES OF TESTS 22

Passing our test

Now that we know how to read the RSpec output, let's pass our test. To do this,
we'll read the error messages one at a time and write only enough code to make
the current error message pass.

The first error we saw looked like this:

Failure/Error: visit root_path
NameError:
undefined local variable or method ‘root_path’ for
#<RSpec: :ExampleGroups: :UserSubmitsALink:@x007f9a2231fe98>
./spec/features/user_submits_a_link_spec.rb:8:in
*block (2 levels) in <top (required)>'

It looks like root_path is undefined. This helper method comes from Rails when
you define the route in config/routes.rb. We want our homepage to show all
of the links that have been submitted, so it will point to the index action of our
LinksController:

root to: "links#index”

This is the smallest amount of code we can write to fix that error message. Run
the test again:

Failure/Error: visit root_path
ActionController: :RoutingError:
uninitialized constant LinksController

Okay, we need to define our LinksController. In app/controllers/links_controller.rb:

class LinksController

end

Define the controller class. We get this failure:

CHAPTER 2. TYPES OF TESTS 23

Failure/Error: visit root_path
NoMethodError:
undefined method ‘action’ for LinksController:Class

Hmm, so this one's a bit more cryptic. It's saying that action is undefined for our
new LinksController class. This one requires a bit of Rails knowledge to debug.
If you are familiar with Rails, you know that action is the word we use to refer to
a routable method, specific to controllers. So, what makes a controller different
from other classes? Well, it needs to inherit from ApplicationController.

class LinksController < ApplicationController

Run the test again:

Failure/Error: visit root_path
AbstractController: :ActionNotFound:
The action 'index' could not be found for LinksController

Okay, let's define that method in our controller (remember that action is Rails lingo
for a method in a controller that can be routed to):

def index

end

Failure/Error: visit root_path
ActionView: :MissingTemplate:

Missing template links/index, application/index with {:locale=>[:en],
:formats=>[:html], :variants=>[], :handlers=>[:erb, :builder, :raw, :ruby,
:coffeel]}. Searched in:

* "/Users/jsteiner/code/thoughtbot/testing-behind/app/views”

We're missing our template! It tells us all the places it looked and the formats it
looked for. In this case it's looking for an HTML template at links/index.

We can create an empty file there for now:

CHAPTER 2. TYPES OF TESTS 24

mkdir app/views/links
touch app/views/links/index.html.erb

Rerun the test:

Failure/Error: click_on "Submit a new link”
Capybara: :ElementNotFound:
Unable to find link or button "Submit a new link”

app/views/links/index.html.erb needs a link that reads “Submit a new link”. We
know it's going to go to our new link page:

<%= link_to "Submit a new link", new_link_path %>

The new failure:

Failure/Error: visit root_path
ActionView: :Template: :Error:
undefined local variable or method ‘new_link_path' for
#<#<Class:0x007ff23228ee58>:0x007f232226088>

Now we're missing a route for new new link page. Define it in config/routes.rb:

resources :links, only: [:new]

Note here that we limit which routes are created with only. This will prevent us
from having routes that we don't yet support.

Rerunning the test we get a familiar error.

Failure/Error: click_on "Submit a new link"
AbstractController: :ActionNotFound:
The action 'new’' could not be found for LinksController

CHAPTER 2. TYPES OF TESTS 25

At this point, | hope you understand the process we use to develop our features.
You may now understand why having fast tests is important, as you can see we
run them a lot!

Now, do we really run them after every single small code change? Sometimes. Not
always. As you become more experienced with TDD, you'll find that you can predict
the output your tests will give as you develop a feature. Once you can do that, you
can skip some test runs while still only writing code to pass the test that would have
appeared. This allows you to practice TDD while saving some time. However, it is
imperative that you only write code in response to the test that would have failed.
If you can't accurately predict what failure message you'll see, you should run the
tests.

I'll leave the implementation of the rest of this feature as an exercise for the reader.
Take a peak at my commit if you get stuck.

Submitting an invalid link

All links should have a title and URL, so we should prevent users from submitting
invalid links. Since this is part of the “User submits a link” feature, we can add it
to the same feature block under a different scenario. A basic feature spec might
look like this:

spec/features/user_submits_a_link_spec.rb
context "the form is invalid” do
scenario "they see a useful error message"” do

link_title = "This Testing Rails book is awesome!"

visit root_path

click_on "Submit a new link”

fill_in "link_title”, with: link_title
click_on "Submit!”

expect(page).to have_content "Url can't be blank”
end

end

https://github.com/thoughtbot/testing-rails/commit/c20b7009e46454070e87156a9947be39f08040f9

CHAPTER 2. TYPES OF TESTS 26

This test intentionally leaves the URL blank, and expects to see an error message
on the page for the missing URL. While we could test every possible path (without a
title, without a URL, without both), we really only need to test one at an integration
level. This will assure us that an error message renders if the link is invalid. To
ensure that each of our fields are valid, we instead test this at the model layer.
You can see how | tested this in the respective commit, but we won't cover model
specs until the next chapter.

There are a couple new methods in this test. The first is #context. As you might
guess, it allows you to provide additional context to wrap one or more scenarios. In
fact, you can even nest additional context blocks, however we recommend against
that. Specs are much easier to read with minimal nesting. If you need to nest
scenarios more than a couple levels deep, you might consider pulling out a new
feature file.

The other new method is #have_content. Like #have_link, this method comes from
Capybara, and is actually #has_content?. #has_content? will look on the page for
the given text, ignoring any HTML tags.

Passing the test

As always, I'll run the test now and follow the error messages to a solution. I'll leave
this up to the reader, but feel free to check out the commit to see what | did.

Four Phase Test

You'll note that in each of our tests so far, we've used some strategic spacing. This
spacing is meant to make the tests easier to read by sectioning it into multiple
phases. The pattern here is modeled after the Four Phase Test, which takes the
form:

test do
setup
exercise
verify
teardown

end

https://github.com/thoughtbot/testing-rails/commit/5ed3981619066bb71c1b8f4b17647c57aebd2707
https://github.com/thoughtbot/testing-rails/commit/5ed3981619066bb71c1b8f4b17647c57aebd2707
http://xunitpatterns.com/Four%20Phase%20Test.html

CHAPTER 2. TYPES OF TESTS 27

Setup

During setup, we create any objects that your test depends on.

Exercise

During exercise, we execute the functionality we are testing.

Verify

During verify, we check our expectations against the result of the exercise phase.
Teardown

During teardown, we clean-up after ourselves. This may involve resetting the
database to it's pre-test state or resetting any modified global state. This is usually
handled by our test framework.

Four phase testing is more prominently used with model and unit tests, however it
is still useful for our acceptance tests. This is especially true for simple tests like the
two we've demonstrated, however some acceptance tests may be large enough to
warrant even more grouping. It's best to use your discretion and group things into
logical sections to make code easier to read.

Viewing the homepage

Now that we can create links, we should test that we actually see them on the
homepage. Again, we'll start with some pseudocode:

As a user

Given a link has already been submitted

When I visit the home page

Then I should see the link's title on the page
And it should link to the correct URL

This test is a little different than our last. This time we have a “given”. Instead of
creating a link ourselves, we're going to assume one already exists. The reason
behind this is simple. Walking through our application with Capybara is slow. We
shouldn’t do it any more than we have to. We've already tested that we can submit
a link, so we don't need to test it again. Instead, we can create records directly in
the database.

CHAPTER 2. TYPES OF TESTS 28

We could go about creating records the way you'd expect:
link = Link.create(title: "Testing Rails", url: "http://testingrailsbook.com")

This would work, but it has some serious downfalls when using it to test software.
Imagine we have a large application, with hundreds of tests, each one having cre-
ated a Link the manual way. If we were to add a required field to links, we would
have to go through all of our tests and add the required field for all of these tests
to get them to pass again. There are two widely used fixes for this pain point. The
first one is called fixtures.

Fixtures

Fixtures allow you to define sample data in YAML files that you can load and reuse
through your tests. It might look something like this:

fixtures/links.yml
testing_rails:

title: Testing Rails

url: http://testingrailsbook.com

In your test
link = links(:testing_rails)

Now that we've extracted the definition of our Testing Rails link, if our model adds
new required fields we only have to update our fixtures file. This is a big step up,
but we still see some problems with this solution.

For one, fixtures are a form of Mystery Guest. You have a Mystery Guest when
data used by your test is defined outside the test, thus obscuring the cause and
effect between that data and what is being verified. This makes tests harder to rea-
son about, because you have to hunt down another file to be able to understand
the entirety of what is happening.

As applications grow, you'll typically need variations on each of your models for
different situations. For example, you may have a fixture for every user role in
your application, then even more users for different roles depending on whether
or not the user is a member of a specific organization. All these are possible states
a user can be in and grow the number of fixtures you will have to recall.

CHAPTER 2. TYPES OF TESTS 29

FactoryGirl

We've found factories to be a better alternative to fixtures. Rather than defining
hardcoded data, factories define generators of sorts, with predefined logic where
necessary. You can override this logic directly when instantiating the factories in
your tests. They look something like this:

spec/factories.rb
FactoryGirl.define do
factory :link do
title "Testing Rails”
url "http://testingrailsbook.com”
end
end

In your test
link = create(:1link)

Or override the title
link = create(:link, title: "TDD isn't Dead!")

Factories put the important logic right in your test. They make it easy to see what is
happening at a glance and are more flexible to different scenarios you may want
to set up. While factories can be slower than fixtures, we think the benefits in
flexibility and readability outweigh the costs.

Installing FactoryGirl

To install FactoryGirl, add factory_girl_rails to your Gemfile:

group :development, :test do
gem "factory_girl_rails”

end

CHAPTER 2. TYPES OF TESTS 30
We'll also be using Database Cleaner:

group :test do
gem "database_cleaner”

end

Install the new gems and create a new file spec/support/factory_girl.rb:

spec/support/factory_girl.rb
RSpec.configure do |config|
config.include FactoryGirl::Syntax::Methods

config.before(:suite) do
begin
DatabaseCleaner.start
FactoryGirl.lint
ensure
DatabaseCleaner.clean
end
end
end

This file will lint your factories before the test suite is run. That is, it will ensure
that all the factories you define are valid. While not necessary, this is a worthwhile
check, especially while you are learning. It's a quick way to rest easy that your
factories work. Since FactoryGirl.lint may end up persisting some records to the
database, we use Database Cleaner to restore the state of the database after we've
linted our factories. We'll cover Database Cleaner in depth later.

Now, this file won't require itself! In your rails_helper you'll find some commented
out code that requires all of the files in spec/support. Let's comment thatin so our
FactoryGirl config gets loaded:

Uncomment me!

Dir[Rails.root.join("spec/support/*x/*.rb")].each { |f| require f }

CHAPTER 2. TYPES OF TESTS 31

Last, we need to create our factories file. Create a new file at spec/factories.rb:

FactoryGirl.define do

end

This is where we'll define our factory in the next section.

The test

With FactoryGirl set up, we can write our test. We start with a new file at
spec/features/user_views_homepage_spec.rb.

require "rails_helper”

RSpec.feature "User views homepage” do
scenario "they see existing links” do
end

end

We require our rails_helper and create the standard feature and scenario blocks.

link = create(:1link)

To setup our test, we create a link using FactoryGirl's .create method, which in-
stantiates a new Link object with our (currently non-existent) factory definition
and persists it to the database.

.create is loaded into the global context in spec/support/factory_girl.rb:

config.include FactoryGirl::Syntax::Methods

While we'll be calling .create in the global context to keep our code cleaner, you
may see people calling it more explicitly: FactoryGirl.create. This is simply a mat-
ter of preference, and both are acceptable.

Now, we'll need to add a factory definition for our Link class in spec/factories.rb:

CHAPTER 2. TYPES OF TESTS 32

spec/factories.rb
factory :link do

title "Testing Rails”

url "http://testingrailsbook.com”
end

We define a default title and URL to be created for all links created with FactoryGirl.
We only define defaults for fields that we validate presence of. If you add more
than that, your factories can become unmanageable as all of your tests become
coupled to data defined in your factories that isn't a default. Not following this
advice is a common mistake in Rails codebases and leads to major headaches.

The specific title and URL is unimportant, so we don't override the factories' de-
faults. This allows us to focus on what is important and makes the test easier to
read.

visit root_path

expect(page).to have_link link.title, href: link.url

Nothing novel here. Visit the homepage and assert that we see the title linking to
the URL.

Passing the test

This is left as an exercise for the reader. Feel free to check out the associated
commit to see what | did.

Voting on links

One of the most important parts of Reddit is being able to vote for posts. Let's
implement a basic version of this functionality in our app, where you can upvote
and downvote links.

Here's a basic test for upvoting links:

https://github.com/thoughtbot/testing-rails/commit/5ed3981619066bb71c1b8f4b17647c57aebd2707#diff-594e2b1fb48290a8f5f695da1c1e9318R2
https://github.com/thoughtbot/testing-rails/commit/944b0967232fe7bb623adbb36482ce3f76c7a037
https://github.com/thoughtbot/testing-rails/commit/944b0967232fe7bb623adbb36482ce3f76c7a037

CHAPTER 2. TYPES OF TESTS 33

spec/features/user_upvotes_a_link_spec.rb
RSpec.feature "User upvotes a link” do
scenario "they see an increased score” do
link = create(:link)

visit root_path

within "#link_#{link.id}" do
click_on "Upvote”
end

expect(page).to have_css "#link_#{link.id} [data-role=score]”, text: "1"
end

end

There are a couple new things in this test. First is the within block. within takes
a selector and looks for a matching element on the page. It then limits the scope
of everything within the block to elements inside the specified element. In this
case, our page has a potential to have multiple links or other instances of the word
“Upvote”. We scope our finder to only look for that text within the list element for
our link. We use the CSS id #link_#{1link.id} which is given by content_tag_for.

The second new method is has_css, which asserts that a given selector is on the
page. With the text option, it ensures that the provided text is found within the
given selector. The selector | use includes a data attribute: [data-role=score].
We'll frequently use data-roles to decouple our test logic from our presentation
logic. This way, we can change class names and tags without breaking our tests!

Model Specs

As you can probably guess, model specs are specs for testing your Rails models.
If you've written unit tests before, they may seem similar, although many model
specs will interact with the database due to the model's dependency on ActiveRe-
cord, so they are not truly unit tests.

CHAPTER 2. TYPES OF TESTS 34

Instance Methods

In the last chapter, we added functionality for users to vote on links with some
instance methods on our Link class to help with this.

Link#upvote

The first method is #upvote, which increments the upvotes count on the link by 1.
A simple way to test this behavior is to instantiate an object with a known upvote
count, call our #upvote method, and then verify that the new upvote count is what
we expect. A test for that might look like this:

spec/models/link_spec.rb
RSpec.describe Link, "#upvote” do
it "increments upvotes” do
link = build(:1link, upvotes: 1)

link.upvote

expect(link.upvotes).to eq 2
end
end

.describe comes from RSpec and creates a group for whatever functionality you
are describing. It takes a subject, in our case the Link class, and the behavior as a
string. Typically, we'll use the name of our method, in this case #upvote. We prefix
instance methods with a # and class methods with a ..

link = build(:1link, upvotes: 1)

.build is another FactoryGirl method. It's similar to .create, in that it instantiates
an object based on our factory definition, however .build does not save the object.
Whenever possible, we're going to favor .build over .create, as persisting to the
database is one of the slowest operations in our tests. In this case, we don't care
that the record was saved before we increment it so we use .build. If we needed a
persisted object (for example, if we needed to query for it), we would use .create.

CHAPTER 2. TYPES OF TESTS 35

You might ask, “Why not use Link.new?". Even though we don't save our record
immediately, our call to link.upvote will, so we need a valid Link. Rather than
worrying about what attributes need to be set to instantiate a valid instance, we
depend on our factory definition as the single source of truth on how to build a
valid record.

Our verify step is slightly different than we've seen in our feature specs. This time,
we aren't asserting against the page (we don't even have access to the page, since
this isn't a Capybara test). Instead, we're asserting against our system under test:
the link. We're using a built in RSpec matcher eq to confirm that the expected value,
2, matches the actual value of link.upvotes.

With the test written, we can implement the method as such:

app/models/link.rb
def upvote

increment! (:upvotes)
end

Link#score

Our score method should return the difference of the number of upvotes and
downvotes. To test this, we can instantiate a link with a known upvote count and
downvote count, then compare the expected and actual scores.

spec/models/link_spec.rb
RSpec.describe Link, "#score” do
it "returns the upvotes minus the downvotes” do

link = Link.new(upvotes: 2, downvotes: 1)

expect(link.score).to eq 1
end

end

In this test, you'll notice that we forgo FactoryGirl and use plain ol’ ActiveRecord to
instantiate our object. #score depends on #upvotes and #downvotes, which we can
set without saving our object. Since we never have to save our object, we don't
need FactoryGirl to set up a valid record.

CHAPTER 2. TYPES OF TESTS 36

With a failing test, we can write our implementation:

app/models/link.rb
def score
upvotes - downvotes

end

Class Methods

Testing class methods works similarly to testing instance methods. | added some
code to sort the links from highest to lowest score. To keep our business logic in
our models, | decided to implement a .hottest_first method to keep that logic
out of the controller.

We order our model specs as close as possible to how we order our model's meth-
ods. Thus, | added the spec for our new class method under the validations tests
and above the instance method tests.

spec/models/link_spec.rb
RSpec.describe Link, ".hottest_first” do
it "returns the links: hottest to coldest” do
coldest_link = create(:link, upvotes: 3, downvotes: 3)
hottest_link = create(:link, upvotes: 5, downvotes: 1)
lukewarm_link = create(:link, upvotes: 2, downvotes: 1)

expect(Link.hottest_first).to eq [hottest_link, lukewarm_link, coldest_link]
end

end

This is a fairly common pattern, as many of our ActiveRecord model class methods
are for sorting or filtering. The interesting thing to note here is that | intentionally
scramble the order of the created links. I've also chosen numbers for the upvotes
and downvotes to ensure that the test will fail if we incidentally are testing some-
thing other than what we intend. For example, if we accidentally implemented our
method to sort by upvotes, the test would still fail.

https://github.com/thoughtbot/testing-rails/commit/688743177f5ba0c5c0a4a6fdf4446cf8aedcc4a1
https://github.com/thoughtbot/testing-rails/commit/688743177f5ba0c5c0a4a6fdf4446cf8aedcc4a1

CHAPTER 2. TYPES OF TESTS 37

Validations

We use alibrary called shoulda-matchers to test validations. shoulda-matchers pro-
vides matchers for writing single line tests for common Rails functionality. Testing
validations in your model is important, as it is unlikely validations will be tested
anywhere else in your test suite.

To use shoulda-matchers, add the gem to your Gemfile's : test group:
gem "shoulda-matchers”
After bundle installing, you can use the built in matchers (see more online) like so:

RSpec.describe Link, "validations” do
it { is_expected.to validate_presence_of (:title) }
it { is_expected.to validate_presence_of (:url) }
it { is_expected.to validate_uniqueness_of(:url) }

end

is_expected is an RSpec method that makes it easier to write one line tests. The
it these tests refer to is the test's subject, a method provided by RSpec when you
pass a class as the first argument to describe. RSpec takes the subject you pass
into describe, and instantiates a new object. In this case, subject returns Link.new.
is_expected is a convenience syntax for expect(subject). It reads a bit nicer when
you read the whole line with the it. The following lines are roughly equivalent:

RSpec.describe Link, "validations” do
it { expect(Link.new).to validate_presence_of(:title) }
it { expect(subject).to validate_presence_of (:url) }
it { is_expected.to validate_uniqueness_of(:url) }

end

Associations

While shoulda-matchers provides methods for testing associations, we've found
that adding additional tests for associations is rarely worth it, as associations will
be tested at an integration level. Since we haven't found them useful for catching
regressions or for helping us drive our code, we have stopped using them.

https://github.com/thoughtbot/shoulda-matchers
https://github.com/thoughtbot/shoulda-matchers

CHAPTER 2. TYPES OF TESTS 38
Request Specs

Request specs are integration tests that allow you to send a request and make
assertions on its response. As end-to-end tests, they go through the entire Rails
stack from route to response. Unlike feature specs, request specs do not work
with Capybara. Instead of interacting with the page like you would with Capybara,
you can only make basic assertions against the response, such as testing the status
code, redirection, or that text appeared in the response body.

Request specs should be used to test API design, as you want to be confident that
the URLs in your API will not change. However, request specs can be used for any
request, not just APIs.

In this chapter, we'll add a basic API to our app to show how you might test one
with request specs.

Viewing links

The first endpoint we'll create is for an index of all existing links, from hottest to
coldest. We'll namespace everything under /api/v1.

spec/requests/api/v1/links_spec.rb

require "rails_helper”

RSpec.describe "GET /api/v1/links” do
it "returns a list of all links, hottest first” do
coldest_link = create(:1link)

hottest_link = create(:link, upvotes: 2)
get "/api/v1/links”
expect(json_body["links"].count).to eq(2)
hottest_link_json = json_body["links"]1[0]
expect(hottest_link_json).to eq({

"id" => hottest_link.id,
"title” => hottest_link.title,

CHAPTER 2. TYPES OF TESTS 39

"url” => hottest_link.url,
"upvotes” => hottest_link.upvotes,
"downvotes” => hottest_link.downvotes,
»
end
end

We name our request spec files after the paths they test. In this case requests to
/api/v1/1links will be tested in spec/requests/api/v1/1links_spec.rb.

After setting up our data, we make a GET request with the built-in get method. We
then assert on the number of records returned in the JSON payload. Since all of our
requests will be JSON, and we are likely to be parsing each of them, I've extracted
a method json_body that parses the response object that is provided by rack-test.

spec/support/api_helpers.rb
module ApiHelpers
def json_body
JSON.parse(response.body)
end

end

RSpec.configure do |config|
config.include ApiHelpers, type: :request
end

| pulled the method out to its own file in spec/support, and include it automatically
in all request specs.

We could have tested the entire body of the response, but that would have been
cumbersome to write. Asserting upon the length of the response and the structure
of the first JSON object should be enough to have reasonable confidence that this
is working properly.

Creating links

Next, we'll test creating a new link via our API:

CHAPTER 2. TYPES OF TESTS 40

spec/requests/api/v1/links_spec.rb
RSpec.describe "POST /api/v1/links"” do
it "creates the link” do

link_params = attributes_for(:1link)
post "/api/v1/links"”, link: link_params

expect(response.status).to eq 201
expect(Link.last.title).to eq link_params[:title]
end

context "when there are invalid attributes” do
it "returns a 422, with errors” do

link_params = attributes_for(:link, :invalid)
post "/api/v1/links"”, link: link_params

expect(response.status).to eq 422
expect(json_body.fetch("errors”)).not_to be_empty
end
end
end

attributes_for is another FactoryGirl method, which gives you a hash of the at-
tributes defined in your factory. In this case, it would return:

{ title: "Testing Rails”, url: "http://testingrailsbook.com” }

This time, we POST to /api/v1/links. post takes a second hash argument for the
data to be sent to the server. We assert on the response status. 201 indicates that
the request succeeded in creating a new record. We then check that the last Link
has the title we expect to ensure it is creating a record using the data we submitted.

In the second test, we introduce a new FactoryGirl concept called traits. Traits are
specialized versions of factories. To declare them, you nest them under a factory
definition. This will give them all the attributes of the parent factory, as well as any
of the modifications specified in the trait. With the new trait, our Link factory looks
like this:

CHAPTER 2. TYPES OF TESTS 41

spec/factories.rb
factory :link do
title "Testing Rails”
url "http://testingrailsbook.com”

trait :invalid do
title nil
end

end

The :invalid trait nulls out the title field so we can easily create invalid records
in a reusable manner.

View Specs

View specs allow you to test the logic in your views. While this logic should be
minimal, there are certainly times where you'll want to pull out the handy view spec
to test some critical functionality. A common antipattern in test suites is testing
too much in feature specs, which tend to be slow. This is especially a problem
when you have multiple tests covering similar functionality, with minor variations.

In this section, we'll allow image links to be rendered inline. The main functionality
of displaying link posts was tested previously in a feature spec. Aside from the
already tested logic for creating a link, rendering a link post as an inline image is
mostly view logic. Instead of duplicating that functionality in another feature spec,
we'll write a view spec, which should cover our use case and minimize test suite
runtime.

Rendering Images Inline

In order to keep our link rendering logic DRY, | moved all of itinto app/views/1links/_link.html.erb.
This way, we can reuse that partial anywhere we want to display a link, and it can
correctly render with or without the image tag.

The associated spec looks like this:

CHAPTER 2. TYPES OF TESTS 42

spec/views/links/_link.html.erb_spec.rb

require "rails_helper”

RSpec.describe "links/_link.html.erb” do
context "if the url is an image"” do
it "renders the image inline” do
link = build(:1link, url: "http://example.com/image. jpg")

render partial: "links/link.html.erb”, locals: { link: link }

expect(rendered).to have_selector "img[src='#{link.url}']"
end
end

end

In this spec, we build a link with an image URL, then render our partial with our link
as a local variable. We then make a simple assertion that the image appears in the
rendered HTML.

When I initially implemented this partial, | had forgotten to also render the image
on the link’s show page. Since some functionality | expected to see wasn't imple-
mented, | wrote a test to cover that case as well.

spec/views/links/show.html.erb_spec.rb

require "rails_helper”

RSpec.describe "links/show.html.erb” do
context "if the url is an image"” do
it "renders the image inline” do
link = build(:1link, url: "http://example.com/image. jpg")
assign(:1link, link)

render

expect(rendered).to have_selector "img[src="#{link.url}']"
end
end

end

CHAPTER 2. TYPES OF TESTS 43

This test is similar to the previous one, but this time we are rendering a view as
opposed to a partial view. First, instead of a local variable we need to assign an
instance variable. assign(:1link, link) will assign the value of the variable link to
the instance variable @link in our rendered view.

Instead of specifying the view to render, this time we let RSpec work its “magic”.
RSpecinfers the view it should render based on the name of the file in the describe
block.

Controller Specs

Controller specs exist in a weird space between other test types. They have some
overlap with many of the other test types discussed so far so their use can be
controversial.

In terms of scope they aren't really unit tests because controllers are so tightly
coupled to other parts of the Rails infrastructure. On the other hand, they aren't
integration tests either because requests don't go through the routes and don't
render the view.

As their name implies, controller specs are used to test the logic in a controller.
We've previously seen that feature specs can drive the creation of a controller.
Given that Rails developers actively try to keep logic out of their controllers and
that feature specs do cover controllers, controller tests can often be redundant.
A good rule of thumb is that you don't need a controller test until you introduce
conditional logic to your controller. In our experience, we tend to write very few
controller specs in our applications.

As previously mentioned, feature specs are slow (relative to other spec types). They
are best used to test flows through an application. If there are multiple ways to
error out of a flow early, it can be expensive to write the same feature spec over
and over with minor variations.

Time for a controller spec! Or what about a request spec? The two spec types are
quite similar and there are many situations where either would do the job. The
main difference is that controller specs don't actually render views or hit URLs and
go through the routing system.

So if you have logic in a controller and

CHAPTER 2. TYPES OF TESTS 44

+ the forking logic is part of two distinct and important features, you may
want a feature spec

+ you care about the URL, you may want a request spec

+ you care about the rendered content, you may want a request spec or even
a view spec

+ none of the above apply, you may want a controller spec or a request spec

One common rule of thumb is to use feature specs for happy paths and controller
tests for the sad paths.

The “happy path” is where everything succeeds (e.g. successfully navigating the
app and submitting a link) while the “sad path” is where a failure occurs (e.g. suc-
cessfully navigating the app but submitting an invalid link). Some flows through the
app have multiple points of potential failure so there can be multiple “sad paths”
for a given “happy path”.

All this being said, let's look at an actual controller spec! In this section, we'll be
rewriting the tests for the invalid link case to use a controller spec rather than a
feature spec.

Invalid Links

In this test, we want to try and submit an invalid link and expect that it will not
succeed but that the form will be re-rendered.

The specs looks like this:

spec/controllers/links_controller_spec.rb

require "rails_helper”

RSpec.describe LinksController, "#create” do
context "when the link is invalid” do
it "re-renders the form” do

post :create, link: attributes_for(:link, :invalid)

expect(response).to render_template :new
end
end

end

CHAPTER 2. TYPES OF TESTS 45

Just like with the request spec, the post method will make a POST request. However,
unlike the request spec, we are making the request directly to a controller action
rather than to a URL.

The first parameter to post is the action we want to exercise. In addition, we may
pass an optional hash of params. Since we are simulating a form submission,
we need a hash of attributes nested under the link key. We can generate these
attributes by taking advantage of the invalid link factory we created earlier. Finally,
the controller is inferred from the RSpec.describe.

This will make a POST request to the LinksController#create action with an invalid
link as its payload.

Controller specs expose a response object that we can assert against. Although we
cannot assert against actual rendered content, we can assert against the name of
the template that will be rendered.

Itis worth noting here that this specis not equivalent to the feature specit replaces.
The feature test tested that an error message actually appeared on the page. The
controller test, on the other hand, only tests that the form gets re-rendered.

This is one of those situations where you have to make a judgment call. Is itimpor-
tant enough to test that the error message shows up on the page, or is testing that
the application handles the error sufficient? Is it worth trading a slow and partially
duplicated feature spec for a faster controller test that doesn’t test the UI? Would
a request spec be a good compromise? What about a controller spec plus a view
spec to test the both sides independently?

All of these options are valid solutions. Based on the context you will pick the one
that gives you the best combination of confidence, coverage, and speed.

Helper Specs

Helpers are generally one-off functions that don't really fit anywhere else. They
can be particularly easy to test due to their small scope and lack of side-effects.

We will add some formatting to the display of a link's score. While a high score
means that a link is popular, a low score can have multiple meanings. Is it new? Is
it controversial and thus has a high number of both positive and negative votes?
Is it just boring?

CHAPTER 2. TYPES OF TESTS 46

To make some of the context more obvious, we will format the scoreas5 (+7, -2)
instead of just showing the net score.

Formatting the score

Formatting is not a model-level concern. Instead, we are going to implement it as
a helper method. In TDD fashion we start with a test:

spec/helpers/application_helper_spec.rb

require "rails_helper”

RSpec.describe ApplicationHelper, "#formatted_score_for"” do
it "displays the net score along with the raw votes” do
link = Link.new(upvotes: 7, downvotes: 2)
formatted_score = helper.formatted_score_for(link)
expect(formatted_score).to eq "5 (+7, -2)"
end

end

Since we don't need to persist to the database and don't care about validity, we
are using Link.new here instead of FactoryGirl.

Helpers are modules. Because of this, we can't instantiate them to test inside a
spec, instead they must be mixed into an object. RSpec helps us out here by pro-
viding the helper object that automatically mixes in the described helper. All of the
methods on the helper can be called on helper.

It is worth noting here that this is not a pure unit test since it depends on both the
helper and the Link model. In a later chapter, we will talk about doubles and how
they can be used to isolate code from its collaborators.

Mailer Specs

As with every other part of your Rails application, mailers should be tested at an in-
tegration and unit level to ensure they work and will continue to work as expected.

CHAPTER 2. TYPES OF TESTS 47

Say we send an email to moderators when a new link is added to the site. Following
an outside-in development process, we'll start with an integration level test. In this
case, a controller spec:

spec/controllers/links_controller_spec.rb
context "when the link is valid” do
it "sends an email to the moderators” do
valid_link = double(save: true)
allow(Link).to receive(:new).and_return(valid_link)
allow(LinkMailer).to receive(:new_link)

post :create, link: { attribute: "value" }

expect(LinkMailer).to have_received(:new_link).with(valid_link)
end
end

This test introduces some new methods. We'll discuss the intricacies of how this
works in testing side effects. For now, just realize that we've set up an expectation
to check that when a link is created, we call the method LinkMailer#new_link. With
this in place, we can be comfortable that when we enter the conditional in our
controller, that method is called. We'll test what that method does in our unit test.

The above spec would lead to a controller action like this:

app/controllers/links_controller.rb
def create
@link = Link.new(link_params)

if @link.save
LinkMailer.new_link(@link)
redirect_to link_path(@link)
else
render :new
end
end

This now forces us to write a new class and method LinkMailer#new_link.

CHAPTER 2. TYPES OF TESTS 48

LinkMailer#new_link

Before writing our test we'll install the email-spec gem, which provides a number
of helpful matchers for testing mailers, such as:

* deliver_to
* deliver_from
* have_subject

* have_body_text

With the gem installed and setup, we can write our test:

spec/mailers/link_mailer_spec.rb

require "rails_helper”

RSpec.describe LinkMailer, "#new_link"” do
it "delivers a new link notification email” do
link = build(:1link)

email = LinkMailer.new_link(1link)

expect(email).to deliver_to(LinkMailer::MODERATOR_EMAILS)

expect(email).to deliver_from("noreply@reddat.com”)

expect(email).to have_subject(”"New link submitted")

expect(email).to have_body_text("A new link has been posted”)
end

end

This test confirms our to, from, subject and body are what we expect. That should
give us enough coverage to be confident in this mailer, and allow us to write our
mailer code:

app/mailers/link_mailer.rb
class LinkMailer < ApplicationMailer
MODERATOR_EMAILS = "moderators@example.com”

https://github.com/email-spec/email-spec

CHAPTER 2. TYPES OF TESTS

default from: "noreply@reddat.com”

def new_link(link)
@link = link
mail(to: MODERATOR_EMAILS, subject: "New link submitted”)
end
end

49

Intermediate Testing

Testing in isolation

In a previous chapter we discussed unit tests, tests that exercise a single com-
ponent of a system in isolation. That's nice in theory, but in the real world most
objects depend on collaborators which may in turn depend on their own collab-
orators. You set out to test a single object and end up with a whole sub-system.

Say we want to add the ability to calculate whether or not a link is controversial.
We're starting to have a lot of score-related functionality so we extract it into its
own Score object that takes in a Link in its constructor. Score implements the fol-
|Ovvh1g:#upvotes,#downvotes,#value,and #controversial?

The spec looks like:

require "rails_helper”

RSpec.describe Score do
describe "#upvotes"” do
it "is the upvotes on the link"” do
link = Link.new(upvotes: 10)
score = Score.new(link)

expect(score.upvotes).to eq 10

end

end

50

CHAPTER 3. INTERMEDIATE TESTING 51

describe "#downvotes” do
it "is the downvotes on the link” do
link = Link.new(downvotes: 5)
score = Score.new(link)

expect(score.downvotes).to eq 5
end

end

describe "#value” do
it "is the difference between up and down votes” do
link = Link.new(upvotes: 10, downvotes: 3)
score = Score.new(link)

expect(score.value).to eq 7
end
end

describe "#controversial?” do
it "is true for posts where up/down votes are within 20% of each other” do
controversial_link = Link.new(upvotes: 10, downvotes: 9)
score = Score.new(controversial_link)

expect(score).to be_controversial
end

it "is false for posts where up/down votes have > 20% difference” do
non_controversial_link = Link.new(upvotes: 10, downvotes: 5)

score = Score.new(non_controversial_link)

expect(score).not_to be_controversial
end
end

end

The system under test (often abbreviated SUT) is the unit we are trying to test. In
this case, the SUT is the instance of Score which we've named score in each test.

CHAPTER 3. INTERMEDIATE TESTING 52

However, score can't do it's work alone. It needs help from a collaborator. Here,
the collaborator (Link) is passed in as a parameter to Score's constructor.

You'll notice the tests all follow the same pattern. First, we create an instance of
Link. Then we use it to build an instance of Score. Finally, we test behavior on the
score. Our test can now fail for reasons completely unrelated to the score object:

+ There is no Link class defined yet
+ Link's constructor expects different arguments
+ Link does not implement the instance methods #upvotes and #downvotes

Note that the collaborator doesn't have to be an instance of Link. Ruby is a duck-
typed language which means that collaborators just need to implement an ex-
pected set of methods rather than be of a given class. In the case of the Score's
constructor, any object that implements the #upvotes, and #downvotes methods
could be a collaborator. For example if we introduce comments that could be up-
voted/downvoted, Comment would be another equally valid collaborator.

Ideally, in a pure unit test we could isolate the SUT from its collaborators so that
only the SUT would cause our spec to fail. In fact, we should be able to TDD the
SUT even if collaborating components haven't been built yet.

Test doubles

RSpec gives us test doubles (sometimes also called mock objects) which act as
fake collaborators in tests. The name derives from stunt doubles in movies that
stand in for the real actor when a difficult stunt needs to be done. Test doubles
are constructed with the double method. It takes an optional hash of methods it
needs to respond to as well as their return values.

Let's try using this in our spec:

require "rails_helper”

RSpec.describe Score do
describe "#upvotes"” do

it "is the upvotes on the link” do

CHAPTER 3. INTERMEDIATE TESTING 53

link = double(upvotes: 10, downvotes: 0)

score = Score.new(link)

expect(score.upvotes).to eq 10
end
end

describe "#downvotes” do
it "is the downvotes on the link” do
link = double(upvotes: 0, downvotes: 5)

score = Score.new(link)

expect(score.downvotes).to eq 5
end
end

describe "#value” do
it "is the difference between up and down votes” do

link = double(upvotes: 10, downvotes: 3)
score = Score.new(link)

expect(score.value).to eq 7
end

end

describe "#controversial?” do
it "is true for posts where up/down votes are within 20% of each other” do

controversial_link = double(upvotes: 10, downvotes: 9)

score = Score.new(controversial_link)

expect(score).to be_controversial

end

it "is false for posts where up/down votes have > 20% difference” do
non_controversial_link = double(upvotes: 10, downvotes: 5)

score = Score.new(non_controversial_link)

expect(score).not_to be_controversial

CHAPTER 3. INTERMEDIATE TESTING 54

end
end

end

Here, we've replaced the dependency on Link and are constructing a double that
responds to the following interface:

* upvotes

* downvotes

Stubbing

Doubles make it easy for us to isolate collaborators that are passed into the object
we are testing (the system under test or SUT). Sometimes however, we have to
deal with collaborators that are hard-coded inside our object. We canisolate these
objects too with a technique called stubbing.

Stubbing allows us to tell collaborators to return a canned response when they
receive a given message.

spec/controllers/links_controller_spec.rb

require "rails_helper”

RSpec.describe LinksController, "#create” do
context "when the link is invalid” do
it "re-renders the form” do
post :create, link: attributes_for(:link, :invalid)

expect(response).to render_template :new
end
end
end

In this controller spec, we assert that the form should get re-rendered when given
invalid data. However, validation is not done by the controller (the SUT in this
case) but by a collaborator (Link). This test could pass or fail unexpectedly if the link
validations were updated even though no controller code has changed.

CHAPTER 3. INTERMEDIATE TESTING 55

We can use a combination RSpec’s stubs and test doubles to solve this problem.

spec/controllers/links_controller_spec.rb

require "rails_helper”

RSpec.describe LinksController, "#create" do
context "when the link is invalid” do
it "re-renders the form” do
invalid_link = double(save: false)
allow(Link).to receive(:new).and_return(invalid_link)

post :create, link: { attribute: "value"” }

expect(response).to render_template :new
end
end
end

We've already seen how to create a test double to pretend to be a collaborator
that returns the responses we need for a scenario. In the case of this controller
however, the link isn't passed in as a parameter. Instead it is returned by another
collaborator, the hard-coded class Link.

RSpec's allow, to_receive, and and_return methods allow us to target a collabo-
rator, intercept messages sent to it, and return a canned response. In this case,
whenever the controller asks Link for a new instance, it will return our test double
instead.

By isolating this controller spec, we can change the definition of what a “valid” link
is all we want without impacting this test. The only way this test can fail now is if it
does not re-render the form when Link#save returns false.

Testing Side Effects

So far, we've seen how to isolate ourselves from input from our collaborators. But
what about methods with side-effects whose only behavior is to send a message
to a collaborator? How do we test side-effects without having to test the whole
subsystem?

CHAPTER 3. INTERMEDIATE TESTING 56

A common side-effectin a Rails application is sending email. Because we are trying
to test the controller in isolation here, we don’t want to also have to test the mailer
or the filesystem in this spec. Instead, we'd like to just test that we told the mailer
to send the email at the appropriate time and trust that it will do its job correctly
like proper object-oriented citizens.

RSpec provides two ways of “listening” for and expecting on messages sent to col-
laborators. These are mocking and spying.

Mocking

When mocking an interaction with a collaborator we set up an expectation that
it will receive a given message and then exercise the system to see if that does
indeed happen. Let's return to our example of sending emails to moderators:

spec/controllers/links_controller_spec.rb

require "rails_helper”

RSpec.describe LinksController, "#create” do
context "when the link is invalid” do
it "re-renders the form” do
invalid_link = double(save: false)

allow(Link).to receive(:new).and_return(invalid_link)
post :create, link: { attribute: "value"” }

expect(response).to render_template :new
end
end

context "when the link is valid” do
it "sends an email to the moderators” do
valid_link = double(save: true)

allow(Link).to receive(:new).and_return(valid_link)

expect(LinkMailer).to receive(:new_link).with(valid_link)

CHAPTER 3. INTERMEDIATE TESTING 57

post :create, link: { attribute: "value"” }
end
end

end

Spying

Mocking can be a little weird because the expectation happens in the middle of
the test, contrary to the four-phase test pattern discussed in an earlier section.
Spying on the other hand does follow that approach.

spec/controllers/links_controller_spec.rb

require "rails_helper”

RSpec.describe LinksController, "#create"” do
context "when the link is invalid” do
it "re-renders the form” do
invalid_link = double(save: false)
allow(Link).to receive(:new).and_return(invalid_link)

post :create, link: { attribute: "value" }

expect(response).to render_template :new
end

end

context "when the link is valid” do
it "sends an email to the moderators” do
valid_link = double(save: true)
allow(Link).to receive(:new).and_return(valid_link)
allow(LinkMailer).to receive(:new_link)

post :create, link: { attribute: "value" }

expect(LinkMailer).to have_received(:new_link).with(valid_link)

end

CHAPTER 3. INTERMEDIATE TESTING 58

end
end

Note that you can only spy on methods that have been stubbed or on test doubles
(often referred to as spies in this context because they are often passed into an ob-
ject just to record what messages are sent to it). If you try to spy on an unstubbed
method, you will get a warning that looks like:

ll <LinkMailer (class)> expected to have received new_link, but that
object is not a spy or method has not been stubbed.

Terminology

The testing community has a lot of overlapping nomenclature when it comes to the
techniques for testing things in isolation. For example many refer to fake objects
that stand in for collaborators (doubles) as mock objects or test stubs (not to be
confused with mocking and stubbing).

RSpec itself added to the confusion by providing stub and mock aliases for double
in older versions (not to be confused with mocking and stubbing).

Forcing a real collaborator to return a canned response to certain messages
(stubbing) is sometimes referred to as a partial double.

Finally, RSpec provides a spy method which creates a double that will respond to
any method. Although often used when spying, these can be used anywhere you'd
normally use a standard double and any double can be used when spying. They
term spy can be a bit ambiguous as it can refer to both objects created via the spy
method and objects used for spying.

Benefits

Taking this approach yields several benefits. Because we aren’t using real collab-
orators, we can TDD a unit of code even if the collaborators haven't been written
yet.

Using test doubles gets painful for components that are highly coupled to many
collaborators. Let that pain drive you to reduce the coupling in your system. Re-
member the final step of the TDD cycle is refactor.

CHAPTER 3. INTERMEDIATE TESTING 59

Test doubles make the interfaces the SUT depends on explicit. Whereas the old
spec said that the helper method relied on a Link, the new spec says that methods
on Score depend on an object that must implement #upvotes, and #downvotes. This
improves the unit tests as a source of documentation.

Dangers

One of the biggest benefits of testing in isolation is just that: the ability to test-
drive the creation of an object without worrying about the implementation of its
collaborators. In fact, you can build an object even if its collaborators don't even
exist yet.

This advantage is also one of its pitfalls. Itis possible to have a perfectly unit-tested
system that has components that don't line up with each other or even have some
components missing altogether. The software is broken even though the test suite
is green.

This is why it is important to also have integration tests that test that the system
as a whole works as expected. In a Rails application, these will usually be your
feature specs.

RSpec also provides some tools to help us combat this. Verifying doubles (created
with the method instance_double) take a class as their first argument. When that
classis not loaded, it acts like a regular double. However, when the class is loaded,
it will raise an error if you try to call methods on the double that are not defined
for instances of the class.

spec/models/score_spec.rb

require "rails_helper”

RSpec.describe Score do
describe "#upvotes” do
it "is the upvotes on the 1link"” do
link = instance_double(Link, upvotes: 10, downvotes: 0)
score = Score.new(link)

expect(score.upvotes).to eq 10

end

CHAPTER 3. INTERMEDIATE TESTING 60

end

describe "#downvotes” do
it "is the downvotes on the link” do
link = instance_double(Link, upvotes: 0, downvotes: 5)
score = Score.new(link)

expect(score.downvotes).to eq 5
end

end

describe "#value” do
it "is the difference between up and down votes” do
link = instance_double(Link, upvotes: 10, downvotes: 3)
score = Score.new(link)

expect(score.value).to eq 7
end

end

describe "#controversial?” do
it "is true for posts where up/down votes are within 20% of each other” do
controversial_link = instance_double(Link, upvotes: 10, downvotes: 9)

score = Score.new(controversial_link)

expect(score).to be_controversial

end

it "is false for posts where up/down votes have > 20% difference” do
non_controversial_link = instance_double(Link, upvotes: 10, downvotes: 5)
score = Score.new(non_controversial_link)

expect(score).not_to be_controversial
end
end

end

Here we convert the score spec to use verifying doubles. Now if we try to

CHAPTER 3. INTERMEDIATE TESTING 61

make our doubles respond to methods that Link does not respond to (such as
total_upvotes), we get the following error:

Failure/Error: 1link = instance_double(Link, total_upvotes: 10, downvotes:

Link does not implement: total_upvotes

Brittleness

One of the key ideas behind testing code is that you should test what your code
does, not how it is done. The various techniques for testing in isolation bend that
rule. The tests are more closely coupled to which collaborators an object uses and
the names of the messages the SUT will send to those collaborators.

This can make the tests more brittle, more likely to break if the implementation
changes. For example, if we changed the LinksController to use save! instead of
save, we would now have to update the double or stubbed method in the tests.

A pragmatic approach

Sometimes you need to test a component that is really tightly coupled with
another. When this is framework code it is often better just to back up a bit
and test the two components together. For example models that inherit from
ActiveRecord: :Base are coupled to ActiveRecord’s database code. Trying to isolate
the model from the database can get really painful and there’s nothing you can
do about it because you don't own the ActiveRecord code.

External services

Rails apps commonly interact with external services and APIs. In general we try to
avoid testing these because we don't own that code and the network is unreliable.
This means that the test suite could fail if the external service or the internet con-
nection was down even if our code is fine. In addition, it's just plain slow. So how
do we get around this? There are a few approaches:

2)

CHAPTER 3. INTERMEDIATE TESTING 62

Adapter pattern

It's generally a best practice to encapsulate external interactions in an adapter
class. Your tests can stub this adapter instead of making the network request.

An adapter for Twitter might look like:

class TwitterAdapter
def self.tweet(message)
new(ENV. fetch("TWITTER_API_KEY"), ENV.fetch("TWITTER_SECRET_TOKEN")).
tweet (message)

end

def initialize(api_key, secret_token)

@client = Twitter::REST::Client.new do |config|
config.access_token = api_key
config.access_token_secret = secret_token

end

end

def tweet(message)
@client.update(message)
end

end
It might be used in a controller like:

class LevelCompletionsController < ApplicationController
def create

other things

TwitterAdapter.tweet(I18n.t(".success”))
end

end

By wrapping up the Twitter code in an adapter, not only have we made it easier
to test but we've also encapsulated our dependency on the twitter gem as well as
the configuration of the environment variables.

CHAPTER 3. INTERMEDIATE TESTING 63

We can stub the adapter in specs:

describe "complete level” do
it "posts to twitter” do
allow(TwitterAdapter).to receive(:tweet).and_return(true)

do some things

expect(TwitterAdapter).to have_received(:tweet).with(I18n.t(".success"))
end

end

Note that when testing the TwitterAdapter itself, you shouldn’t stub it as stubbing the
system under test is an anti-pattern.

Injecting an adapter

Inintegration tests though, we try to avoid stubbing so as to test the entire system.
Sometimes, it makes sense to inject a fake adapter for the purpose of testing. For
example:

module FakeSMS
Message = Struct.new(:to, :from, :body)

class Client
this allows us to "read” messages later on
def self.messages
@messages ||= []

end

def send_message(to:, from:, body:)
self.class.messages << Message.new(to, from, body)
end
end

end

We can then inject it into our adapter class when running specs.

CHAPTER 3. INTERMEDIATE TESTING 64

spec/rails_helper.rb

SMSClient.client = FakeSMS::Client
This allows us to write feature specs that look like this:

feature "signing in” do
scenario "with two factors” do

user = create(:user, password: "password”, email: "user@example.com")

visit root_path
click_on "Sign In”

fill_in :email, with: "user@example.com”
fill_in :password, with: "password”

click_on "Submit”

last_message = FakeSMS.messages.last
fill_in :code, with: last_message.body

click_on "Submit”

expect(page).to have_content("Sign out”)
end
end

This approach is explored in more detail in this blog post on testing SMS interac-
tions.

Spying on external libraries

This approach is similar to that described above. However, instead of stubbing
and spying on adapter classes, you do so on external libraries since you don't own
that code. This could be a third-party wrapper around an API (such as the Twitter
gem) or a networking library like HTTParty. So, for example, a test might look like
this, where Twitter:Rest:Client is an external dependency:

https://robots.thoughtbot.com/testing-sms-interactions
https://robots.thoughtbot.com/testing-sms-interactions

CHAPTER 3. INTERMEDIATE TESTING 65

describe "complete level” do
it "posts to twitter” do
twitter = spy(:twitter)
allow(Twitter::Rest::Client).to receive(:new).and_return(twitter)

do some things

expect(twitter).to have_received(:update).with(I18n.t(".success"))
end

end

So when do you stub a library directly rather than the adapter? The library is an
implementation of the adapter and should be encapsulated by it. Any time you
need to exercise the adapter itself (such as in the adapter’s unit tests) you can
stub the external library. If the adapter is simply a collaborator of the SUT, then
you should stub the adapter instead.

Webmock

Webmock is a gem that allows us to intercept HTTP requests and returns a canned
response. It also allows you to assert that HTTP requests were made with certain
parameters. This s just like stubbing and mocking we've looked earlier, butinstead
of applying it to an object, we apply it to a whole HTTP request.

Because we are now stubbing the HTTP request itself, we can test out adapters
and how they would respond to various responses such as server or validation
errors.

describe QuoteOfTheDay, "#fetch” do
it "fetches a quote via the API" do
quote_text = "Victorious warriors win first and then go to war, while defeated warriors

stub_request(:get, "api.quotes.com/today").
with({ author: "Sun Tzu"”, quote: quote_text }.to_json)

quote = QuoteOfTheDay.fetch

https://github.com/bblimke/webmock

CHAPTER 3. INTERMEDIATE TESTING 66

expect(quote.author).to eq "Sun Tzu"
expect(quote.text).to eq quote_text
end

end

Blocking all requests

Webmock can be configured to block all external web requests. It will raise an error
telling you where that request was made from. This helps enforce a “no external
requests in specs” policy. To do so, add the following line to your rails_helper.rb
file:

WebMock.disable_net_connect! (:allow_localhost => true)

This is a best practice and should be enabled on most applications.

VCR

VCRis a gem that allows us to record an app’s HTTP requests and then replay them
in future test runs. It saves the responses in a fixtures file and then serves it up
instead of a real response the next time you make a request. This means you don't
have to manually define the response payloads and allows easy replication of the
actual production API's responses. These fixtures can get stale so it's generally a
good idea to expire them every now and then.

Fakes

Fakes are little applications that you can boot during your test that will mimic a real
service. These give you the ability return dynamic responses because they actually
run code. We commonly write these as Sinatra apps and then use Webmock or
capybara-discoball load it up the app in tests. These fakes are often packaged
as gems and many popular services have open source test fakes written by the
community.

A fake for Stripe (payment processor) might look like:

CHAPTER 3. INTERMEDIATE TESTING 67

class FakeStripe < Sinatra::Base
post "/v1/customers/:customer_id/subscriptions” do
content_type :json
customer_subscription.merge(
id: params[:id],
customer: params[:customer_id]
).to_json

end

def customer_subscription
default subscription params
end
end

We can use capybara-discoball to boot the fake app in our tests:

spec/rails_helper.rb

Capybara: :Discoball.spin(FakeStripe) do |server|
url = "http://#{server.host}:#{server.port}”
Stripe.api_base = url

end

Capybara: :Discoball boots up a local server at a url like 127.9.0.1:4567. We set
the api_base attribute on the Stripe class to point to our local server instead of
the real production Stripe servers. Our app will make real HTTP requests to the
local server running our fake, exercising all of our application’s code including the
HTTP request handling. This approach is the closest to the real world we can get
without hitting the real service.

Fakes are particularly convenient when dealing with complex interactions such as
payments.

These fakes can be re-used beyond the test environment in both development and
staging.

CHAPTER 3. INTERMEDIATE TESTING 68

The best approach?

There is no single best approach to handling external services. At the unit level,
stubbing adapters or using Webmock is our approach of choice. At the integration
level, fakes are quite pleasant to work with although we'll still use Webmock for
one-off requests. I've found VCR to be rather brittle and more difficult to work
with. As the most automated of all the options, you trade control for convenience.

With all these approaches, the external APl can change out from under you without
your tests breaking because they are explicitly not hitting the real API. The only way
to catch this is by running the app against the real API, either via the test suite (slow
and unreliable), in Cl, or manually in a staging environment.

Levels of Abstraction

Capybara gives us many useful commands and matchers for testing an application
from a user’s point of view. However, these feature specs can easily become hard
to grok after adding just a few interactions. The best way to combat this is to write
feature specs at a single level of abstraction.

This test has many different levels of abstraction.

spec/features/user_marks_todo_complete_spec.rb
feature "User marks todo complete” do
scenario "updates todo as completed” do
sign_in # straight forward

create_todo "Buy milk" # makes sense

huh? HTML list element ... text ... some kind of button?

find("”.todos 1i", text: "Buy milk").click_on "Mark complete”

hmm... styles ... looks like we want completed todos to look different?
expect(page).to have_css(”.todos li.completed”, text: "Buy milk")
end

def create_todo(name)
click_on "Add new todo”

CHAPTER 3. INTERMEDIATE TESTING 69

fill_in "Name", with: name
click_on "Submit”
end

end

The first two lines are about a user’s interactions with the app. Then the next lines
drop down to a much lower level, messing around with CSS selectors and text
values. Readers of the test have to parse all these implementation details just to
understand what is going on.

Ideally, the spec should read almost like pseudo-code:

spec/features/user_marks_todo_complete_spec.rb
feature "User marks todo complete” do
scenario "updates todo as completed” do
sign_in
create_todo
mark todo complete
assert todo is completed
end

end

The two most common ways to get there are extract method and page objects.

Extract Method
The extract method pattern is commonly used to hide implementation details
and to maintain a single level of abstraction in both source code and specs.

Consider the following spec:

feature "User marks todo complete” do
scenario "updates todo as completed” do
sign_in
create_todo "Buy milk”

mark_complete "Buy milk”

CHAPTER 3. INTERMEDIATE TESTING 70

expect(page).to have_completed_todo "Buy milk”

end

def create_todo(name)
click_on "Add new todo”
fill_in "Name", with: name
click_on "Submit”

end

def mark_complete(name)
find(".todos 1i", text: name).click_on "Mark complete”
end

def have_completed_todo(name)
have_css(”.todos li.completed”, text: name)
end
end

Notice how obvious it is what happens in the scenario now. There is no more
context switching, no need to pause and decipher CSS selectors. The interactions
are front and center now. Details such as selectors or the exact text of that link
we need to click are largely irrelevant to readers of our spec and will likely change
often. If we really want to know what is entailed in marking a todo as “complete”,
the definition is available just a few lines below. Convenient yet out of the way.

Although this does make code reusable if we were to write another scenario, the
primary purpose of extracting these methods is not to reduce duplication. Instead,
it serves as a way to bundle lower-level steps and name them as higher-level con-
cepts. Communication and maintainability are the main goal here, easier code-
reuse is a useful side effect.

Page objects

In a RESTful Rails application, the interactions on a page are usually based around
a single resource. Notice how all of the extracted methods in the example above
are about todos (creating, completing, expecting to be complete) and most of them
have todo in their name.

CHAPTER 3. INTERMEDIATE TESTING 71

What if instead of having a bunch of helper methods that did things with todos, we
encapsulated that logic into some sort of object that manages todo interactions on
the page? This is the page object pattern.

Our feature spec (with a few more scenarios) might look like:

scenario "create a new todo” do
sign_in_as "person@example.com”

todo = todo_on_page
todo.create

expect(todo).to be_visible
end

scenario "view only todos the user has created” do
sign_in_as "other@example.com”

todo = todo_on_page

todo.create
sign_in_as "me@example.com”

expect(todo).not_to be_visible
end

scenario "complete my todos” do
sign_in_as "person@example.com”

todo = todo_on_page

todo.create
todo.mark_complete

expect(todo).to be_complete

end

scenario "mark completed todo as incomplete” do
sign_in_as "person@example.com”
todo = todo_on_page

CHAPTER 3. INTERMEDIATE TESTING 72

todo.create
todo.mark_complete
todo.mark_incomplete

expect(todo).not_to be_complete
end

def todo_on_page
TodoOnPage.new("Buy eggs")
end

The todo is now front and center in all these tests. Notice that the tests now only
say what to do. In fact, this test is no longer web-specific. It could be for a mobile
or desktop app for all we know. Low-level details, the how, are encapsulated in
the TodoOnPage object. Using an object instead of simple helper methods allows
us to build more complex interactions, extract state and extract private methods.
Notice that the helper methods all required the same title parameter that is now
instance state on the page object.

Let's take a look at what an implementation of TodoOnPage might look like.

class TodoOnPage
include Capybara::DSL

attr_reader :title

def initialize(title)
@title = title
end

def create
click_link "Create a new todo”
fill_in "Title”, with: title
click_button "Create”

end

def mark_complete

CHAPTER 3. INTERMEDIATE TESTING

todo_element.click_link "Complete”
end

def mark_incomplete
todo_element.click_link "Incomplete”
end

def visible?
todo_list.has_css? "1i", text: title

end

def complete?

todo_list.has_css? "li.complete”, text:

end

private

def todo_element
find "1i", text: title

end

def todo_list
find "ol.todos”
end

end

73

title

This takes advantage of RSpec's “magic” matchers, which turn predicate methods
such as #visible? and #complete? into matchers like be_visible and be_complete.

Also, we include Capybara: :DSL to get all of the nice Capybara helper methods.

JavaScript

At some point, your application is going to use JavaScript. However, all the tools

we've explored so far are written for testing Ruby code. How can we test this be-

havior?

CHAPTER 3. INTERMEDIATE TESTING 74

Webdrivers

At the integration level, we don't care what technology is being used under the
hood. The focus is on the user interactions instead. By default, RSpec/Capybara
run feature specs using Rack: : Test which simulates a browser. Although it is fast,
it cannot execute JavaScript.

In order to execute JavaScript, we need a real browser. Capybara allows using dif-
ferent drivers instead of the default of Rack: : Test. Selenium is a wrapper around
Firefox that gives us programmatic access. If you configure Capybara to use Sele-
nium, you will see a real Firefox window open up and run through your scenarios.

The downside to Selenium is that it is slow and somewhat brittle (depends on your
version of Firefox installed). To address these issues, it is more common to use a
headless driver such as Capybara Webkit or Poltergeist. These are real browser
engines but without the Ul. By packaging the engine and not rendering the Ul,
these headless browsers can improve speed by a significant factor as well as avoid
breaking every time you upgrade your browser.

To use a JavaScript driver (Capybara Webkit in this case) you install its gem and
then point Capybara to the driver. In your rails_helper.rb, you want to add the
following:

Capybara. javascript_driver = :webkit
Then, you want to add a : js tag to all scenarios that need to be run with JavaScript.

feature "A user does something” do
scenario "and sees a success message”, :js do
test some things
end
end

Cleaning up test data

By default, RSpec wraps all database interactions in a database transaction. This
means that any records created are only accessible within the transaction and any
changes made to the database will be rolled back at the end of the transaction.

https://github.com/seleniumhq/selenium
https://github.com/thoughtbot/capybara-webkit
https://github.com/teampoltergeist/poltergeist

CHAPTER 3. INTERMEDIATE TESTING 75

Using transactions allows each test to start from a clean environment with a fresh
database.

This pattern breaks down when dealing with JavaScript in feature specs. Real
browsers (headless or not) run in a separate thread from your Rails app and are
therefore outside of the database transaction. Requests made from these drivers
will not have access to the data created within the specs.

We can disable transactions in our feature specs but now we need to clean up
manually. This is where Database Cleaner comes in. Database Cleaner offers
three different ways to handle cleanup:

1. Transactions
2. Deletion (via the SQL DELETE command)
3. Truncation (via the SQL TRUNCATE command)

Transactions are much faster but won't work with JavaScript drivers. The speed of
deletion and truncation depends on the table structure and how many tables have
been populated. Generally speaking, SQL DELETE is slower the more rows there are
in your table while TRUNCATE has more of a fixed cost.

First, disable transactions in rails_helper.rb.

RSpec.configure do |config|
config.use_transactional_fixtures = false

end

Our default database cleaner config looks like this:

RSpec.configure do |config|
config.before(:suite) do
DatabaseCleaner.clean_with(:deletion)

end

config.before(:each) do
DatabaseCleaner.strategy = :transaction

end

https://github.com/DatabaseCleaner/database_cleaner

CHAPTER 3. INTERMEDIATE TESTING 76

config.before(:each, js: true) do
DatabaseCleaner.strategy = :deletion

end

config.before(:each) do
DatabaseCleaner.start
end

config.after(:each) do
DatabaseCleaner.clean
end
end

We clean the database with deletion once before running the suite. Specs default
to cleaning up via a transaction with the exception of those that use a JavaScript
driver. This gets around the issues created by using a real browser while still keep-
ing the clean up fast for most specs.

Asynchronous helpers

One of the nice things about JavaScript is that you can add interactivity to a web
page in a non-blocking manner. For example, you open a modal when a user
clicks a button. Although it takes a couple seconds (you have a sweet animation),
the user’'s mouse isn't frozen and they still feel in control.

This breaks if we try to test via Capybara:

first(”.modal-open™).click

first(”.confirm”).click

It will click the button but the next interaction will fail because the modal hasn't
finished loading. The ideal behavior would be for the test to wait until the modal
finished loading. We could add a sleep here in the test but this would slow the test
down a lot and won't guarantee that the modal is loaded.

Luckily, Capybara provides some helpers for this exact situation. Finders such as
first orallreturnnil ifthereis no such element. find on the other hand will keep

CHAPTER 3. INTERMEDIATE TESTING 77

trying until the element shows up on the page or a maximum wait time has been
exceeded (default 2 seconds). While a sleep 2 will stop your tests for two seconds
on every run, these finders will only wait as long as it needs to before moving on.

We can rewrite the previous test as:

this will take a few seconds to open modal

find("”.modal-open™).click

this will keep trying to find up to two seconds
find(".confirm”).click

Similar to find, most of Capybara’s matchers support waiting. You should always
use the matchers and not try to call the query methods directly.

This will _not_ retry

expect(page.has_css?(".active”)).to eq false

This _will_ retry if the element isn’'t initially on the page

expect(page).not_to have_active_class

AJAX

In addition to just manipulating the Ul, it is common to use JavaScript to commu-
nicate asynchronously with the server. Testing this in a feature spec can be tricky.

Remember, feature specs test the application from a user’s perspective. As a user,
| don't care whether you use AJAX or not, that is an implementation detail. What |
do care about is the functionality of the application. Therefore, feature tests should
assert on the Ul only.

So how do you test AJAX via the UI? Imagine we are trying to test an online docu-
ment app where you can click a button and your document is saved via AJAX. How
does that interaction look like for the user?

click_on "Save”

CHAPTER 3. INTERMEDIATE TESTING 78

This will automatically wait up to 2 seconds
giving AJAX time to complete

expect(page).to have_css(”.notice”, text: "Document saved!)

Almost all AJAX interactions will change the Ul in some manner for usability rea-
sons. Assert on these changes and take advantage of Capybara’s auto-waiting
matchers.

Unit tests

If you have more than just a little jQuery scattered throughout your application,
you are probably going to want to unit test some of it. As with other things
JavaScript, there is an overwhelming amount of choice. We've had success with
both Jasmine and Mocha. Some front-end frameworks will push you very strongly
towards a particular libary. For example, Ember is biased towards Qunit.

These all come with some way of running the suite via the command-line. You can
then build a custom Rake task that will run both your RSpec and JavaScript suites.
The Rake task can be run both locally and on CI. RSpec provides a rake spec task
that you can hook into.

In your Rakefile:

the jasmine:ci task is provided by the jasmine gem

task :full_suite, ["jasmine:ci"”, "spec"]
You can also override the default rake task to run both suites with just rake:

task(:default).clear
task default: ["jasmin:ci”, "spec”]

Continuous Integration

Tests are a great way to make sure an application is working correctly. However,
they only provide that value if you remember to run them. It's easy to forget to

https://jasmine.github.io/
https://mochajs.org/
https://qunitjs.com/

CHAPTER 3. INTERMEDIATE TESTING 79

re-run the test suite after rebasing or to think that everything is fine because the
change you made was so small it couldn't possibly break anything (hint: it probably
did).

Enter continuous integration, or Cl for short. Continuous integration is a service
that watches a repository and automatically tries to build the project and run the
test suite every time new code is committed. Ideally it runs on a separate machine
with a clean environment to prevent “works on my machine” bugs. It should build
all branches, allowing you to know if a branch is “green” before merging it.

There are many Cl providers that will build Rails apps and run their test suite for
you. Our current favorite is CircleCl.

GitHub can run your Cl service against commits in a pull request and will integrate
the result into the pull request status, clearly marking it as passing or failing.

Continuous integration is a great tool for preventing broken code from getting
into master and to keep nagging you if any broken code does get there. Itis not a
replacement for running tests locally. Having tests that are so slow that you only
run them on Cl is a red flag and should be addressed.

Cl can be used for continuous deployment, automatically deploying all green
builds of master.

Coverage Reports

In addition to continuous integration, many teams opt to generate coverage re-
ports. Coverage reports are generated by running alongside your test suite, and
monitoring which lines in your application are executed. This produces reports
allowing you to visualize the frequency in which each line is hit, along with high
level statistics about each file.

As you can probably guess, you're looking to approach 100% coverage, but take
note that pursuit of this metric brings diminishing returns. As with most things in
life, there is nuance, and you may have to make trade-offs.

Furthermore, you want to minimize the Hits / Line (see figure 3.1). If you are
testing the same code path 50+ times, it's a good sign that you may be over-testing,
which could lead to brittle tests. In a perfect world, you'd have 100% coverage and
only hit each line a single time.

https://circleci.com/

CHAPTER 3. INTERMEDIATE TESTING

96.73% Test Coverage

Path Coverage Relevant LOC Covered Missed
config/load.rb 100.0% 3 3)
lib/axiom/types/password.rb 100.0% 4 4 (4]
lib/cc/formatters/linked_formatter.rb 97.22% 36 35 1
lib/cc/formatters/plain_formatter.rb 100.0% 22 22 o]
lib/cc/formatters/snapshot_formatter.rb 93.62% 47 44 3
lib/cc/formatters/ticket_formatter.rb 85.71% 14 12 2
lib/cc/helpers/coverage_helper.rb 92.31% 13 12 1
lib/cc/helpers/issue_helper.rb 100.0% 5 5 o]
lib/cc/helpers/quality_helper.rb 100.0% 27 27 4]
lib/cc/helpers/vulnerability_helper.rb 100.0% 15 15 0
lib/cc/presenters/pull_requests_presenter.rb 100.0% 39 39)

lib/cc/pull_requests.rb 63 51 12

Figure 3.1: High Level Coverage Report

lib/cc/formatters/ticket_formatter.rb

* [J module CC
2 module Formatters
3 class TicketFormatter < CC::Service::Formatter
def format_vulnerability_title
if multiple?
“#{vulnerabilities.size} new #{warning_type} issues found"
else
“New #{warning_type} issue found" << location_info

def format_vulnerability_body
if multiple?
"#{vulnerabilities.size} new #{warning_type} issues were found by Code Climate"
else
message = "A #{warning_type} vulnerability was found by Code Climate"
message << location_info
end

message << *.\n\n"
message << details_url
end
end
end
end

Figure 3.2: Coverage Report For File

80

Hits / Line
10
20
55
18
105
28
6.3
48
11
195
85

5.0

CHAPTER 3. INTERMEDIATE TESTING 81

Figure 3.2 shows each executed line in green, and lines that the test suite did not
touch in red. Lines in red are a good target for new tests.

Coverage reports can be generated in a few ways. They can be generated locally
or on Cl with the simplecov gem. Alternatively, you can rely on third party services,
such as Coveralls or Code Climate.

https://circleci.com/docs/code-coverage/
https://github.com/colszowka/simplecov
https://coveralls.io/
https://codeclimate.com/

Antipatterns

Slow tests

As applications grow, test suites naturally and necessarily get slower. The longer
the test suite, the less you will run it. The more often you can run your tests, the
more valuable they are because you can catch bugs faster than you otherwise
would have. As a baseline, after every line of code that | write, | try to run its re-
spective test. | always run my entire test suite before submitting pull requests and
after rebasing. As you can imagine, this leads to running your tests frequently. If
it's a chore to run your tests you aren’t going to run them, and they quickly become
out of date. At that point, you may as well not have written them in the first place.

While continuous integration is a good tool to double check that your suite passes
in a public way, it should not be the only place that the entire suite is run. If you
have to wait to see if your tests pass on Cl, this will seriously slow down the devel-
opment of new features.

Here are some things to think about when trying to write a fast test suite:

Use profiling to find the slowest tests
The easiest way to find the worst offenders is to profile your suite. Running rspec

with the --profile flag will output the 10 slowest tests (--profile 4 will output the
4 slowest). You can add this flag to your . rspec file to output with every run.

82

CHAPTER 4. ANTIPATTERNS 83

Have a fast spec helper

When you repeatedly run individual tests and test files, you may notice that a ma-
jority of the time running the tests isn't spent running the test itself, but is actually
spent loading your application’s dependencies. One of the main culprits here is
Rails. With a large application, loading your entire application can take seconds,
and that's a long time to wait if you want to run your tests after every line of code
you change.

The nice thing is, some of the tests you write won't depend on Rails at all. Depend-
ing on how you architect your code, this could be a lot of tests. We favor writing
a lot of small objects called POROs, or Plain Old Ruby Objects (objects that aren't
backed by ActiveRecord). Since these objects don't depend on Rails, we can avoid
loading it when running just these tests.

For this reason, rspec-rails 3.0 introduced multiple default spec helpers. When
you initialize a Rails app with RSpec, it creates a rails_helper.rb which loads Rails
and a spec_helper.rb which doesn't. When you don't need Rails, or any of its de-
pendencies, require your spec_helper.rb for a modest time savings.

Use an application preloader

Rails 4.1 introduced another default feature that reduces some of the time it takes
to load Rails. The feature is bundled in a gem called Spring, and classifies itself as
an application preloader. An application preloader automatically keeps your ap-
plication running in the background so that you don't have to load it repeatedly for
various different tasks or test runs. Spring is available for many tasks by default,
such as rake tasks, migrations, and TestUnit tests.

To use spring, you can prefix these commands with the spring command, e.g.
spring rake db:migrate. Thefirsttime you runthe command, Spring will start your
application. Subsequent uses of Spring will have already booted your application,
so you should see some time savings. You can avoid having to type the spring
command prefix by installing the Spring binstubs:

bundle exec spring binstub --all

To use spring with RSpec, you'll have to install the spring-commands-rspec gem
and run bundle exec spring binstub rspec.

https://github.com/rails/spring
https://github.com/jonleighton/spring-commands-rspec

CHAPTER 4. ANTIPATTERNS 84

If you are on older versions of Rails, you can manually add spring to your Gemfile,
or use other application preloaders such as Zeus.

Only persist what is necessary

One of the most common causes of slow tests is excessive database interaction.
Persisting to the database takes far longer than initializing objects in memory, and
while we're talking fractions of a second, each of these round trips to the database
adds up when running your entire suite.

When you initialize new objects, try to do so with the least overhead. Depending
on what you need, you should choose your initialization method in this order:

* Object.new - initializes the object without FactoryGirl. Use this when you
don't care about any validations or default values.

* FactoryGirl.build_stubbed(:object) - initializes the object with FactoryGirl,
setting up default values and associates records using the build_stubbed
method. Nothing is persisted to the database.

* FactoryGirl.build(:object) - initializes the object with FactoryGirl, setting
up default values and persisting associated records with create.

* FactoryGirl.create(:object) - initializes and persists the object with Fac-
toryGirl, setting up default values and persisting associated records with
create.

Another thing to look out for is factory definitions with more associations than
are necessary for a valid model. We talk about this more in Using Factories Like
Fixtures.

Move sad paths out of feature specs

Feature specs are slow. They have to boot up a fake browser and navigate around.
They're particularly slow when using a JavaScript driver which incurs even more
overhead. While you do want a feature spec to cover every user facing feature of
your application, you also don't want to duplicate coverage.

Many times, feature specs are written to cover both happy paths and sad paths. In
an attempt to mitigate duplicate code coverage with slower tests, we'll often write

https://github.com/burke/zeus

CHAPTER 4. ANTIPATTERNS 85

our happy path tests with feature specs, and sad paths with some other medium,
such as request specs or view specs. Finding a balance between too many and too
few feature specs comes with experience.

Don't hit external APIs

External APIs are slow and unreliable. Furthermore, you can't access them with-
out an internet connection and many APIs have rate limits. To avoid all these
problems, you should not be hitting external APIs in the test environment. For
most APIs you should be writing fakes or stubbing them out. At the very least, you
can use the VCR gem to cache your test's HTTP requests. If you use VCR, be sure
to auto-expire the tests once every one or two weeks to ensure the APl doesn't
change out from under you.

If you want to be extra certain that you are testing against the real API, you can
configure your test suite to hit the APl on Cl only.

Delete tests

Sometimes, a test isn't worth it. There are always tradeoffs, and if you have a
particularly slow test that is testing a non-mission critical feature, or a feature that
is unlikely to break, maybe it's time to throw the test out if it prevents you from
running the suite.

Intermittent Failures

Intermittent test failures are one of the hardest kinds of bug to find. Before you
can fix a bug, you need to know why it is happening, and if the bug manifests itself
at seemingly random intervals, this can be especially difficult. Intermittent failures
can happen for a lot of reasons, typically due to time or from tests affecting other
tests.

We usually advise running your tests in a random order. The goal of this is to
make it easy to tell when tests are being impacted by other tests. If your tests
aren’t cleaning up after themselves, then they may cause failures in other tests,
intermittently depending on the order the tests happen to be run in. When this

https://github.com/vcr/vcr

CHAPTER 4. ANTIPATTERNS 86

happens, the best way to start diagnosing is to rerun the tests using the seed of
the failing test run.

You may have noticed thatyour tests output something like Randomized with seed 30205
at the end of each test run. You can use that seed to rerun the tests in the same
“randomized” order: rspec --seed 30205. If you want to narrow down the number

of examples that are run, you can use RSpec bisect (rspec --seed 30205 --bisect),
which runs the tests in different combinations to hone in on the one that is causing
problems.

Here are some likely candidates to look for when trying to diagnose intermittent
failures:

Database contamination

Database contamination occurs when writes to the database are not cleaned up
after a single test is run. When the subsequent test is run, the effects of the first
test can cause unexpected output. RSpec has transactional fixtures turned on by
default, meaning it runs each test within a transaction, rolling that transaction back
at the end of the test.

The problem is, tests run with the JavaScript driver are run in a separate thread
which doesn't share a connection to the database. This means that the test has
to commit the changes to the database. In order to return to the original state,
you have to truncate the database, essentially deleting all records and resetting
all indexes. The one downside of this, is that it's a bit slower than transactions.

As we've mentioned previously, we use Database Cleaner to automatically use
transaction or truncation to reset our database depending on which strategy is
necessary.

Global state

Whenever you modify global state, be sure to reset it to the original state after the
test is run, even if the test raises an error. If the state is never reset, the modified
value can leak into the following tests in the test run. Here's a common helper file
I'll use to set ENV variables in my tests:

https://relishapp.com/rspec/rspec-core/v/3-3/docs/command-line/bisect

CHAPTER 4. ANTIPATTERNS 87

spec/support/env_helper.rb

module EnvHelper
def with_env(variable, value)
old_value = ENV[variable]
ENV[variable] = value
yield
ensure
ENV[variable] = old_value
end
end

RSpec.configure do |config|
config.include EnvHelper
end
You can use this in a test, like so:
require "spec_helper”
feature "User views the form setup page”, :js do
scenario "after creating a submission, they see the continue button” do
with_env("POLLING_INTERVAL", "1") do
form = create(:form)
visit setup_form_path(form, as: form.user)
expect(page).not_to have_css "[data-role=continue]”
submission = create(:submission, form: form)
expect(page).to have_css "[data-role=continue]”
end
end

end

You could also use Climate Control, a pre-baked solution that works in a similar
fashion.

https://github.com/thoughtbot/climate_control

CHAPTER 4. ANTIPATTERNS 88
Time

Time and time zones can be tricky. Sometimes microseconds can be the difference
between a passing and failing test, and if you've ever run your tests from different
time zones you may have seen failures on assertions about the current day.

The best way to ensure that the time is what you think it is, is to stub it out with a
known value. Rails 4.1 introduced the travel_to helper, which allows you to stub
the time within a block:

it "sets submitted at to the current time” do

form = Form.new

travel_to Time.now do

form.submit

expect(form.reload.submitted_at).to eq Time.now
end

end

If you are on older versions of Rails, you can use timecop to control time.

Brittle Tests

When it becomes difficult to make trivial changes to your code without breaking
tests, your test suite can become a burden. Brittle code comes from coupling.
The more coupled your code, the harder it is to make changes without having to
update multiple locations in your code. We want to write test suites that fully cover
all functionality of our application while still being resilient to change.

We've learned how stubbing and mocking can lead to brittle tests. Here's another
example of coupling and some tips to fix it:

Coupling to copy and the DOM

An easy way to create brittle tests is to hard code DOM attributes or copy (user-
facing text) into your tests. These should be easy to change by yourself, designers,

https://github.com/travisjeffery/timecop
https://en.wikipedia.org/wiki/Copy_(written)

CHAPTER 4. ANTIPATTERNS 89

and anyone else on the team without breaking any tests. Most often, the impor-
tant thing that you want to test is that a representation of a certain piece of text
or element is appearing in the right spot at the right time. The actual words and
elements themselves are unimportant.

Consider the following:

<div class="welcome-message">
<p>Welcome, #{current_user.name}</p>
</div>

expect(page).to have_content "Welcome, #{user.name}"

Now, imagine later on that the text in the template needs to change from
Welcome, #{user.name} to Hello again, #{user.name}!. We'd now have to change
this text in two places, and if we had it in more tests we'd have to change it in each
one. Let's look at some ways to decouple our tests from our copy.

Internationalization

Our preferred way to decouple your copy from your tests is to use international-
ization (i118n), which is primarily used to support your app in multiple languages.
i18n works by extracting all the copy in your application to YAML files, which have
keys mapping to your copy. In your application, you reference these keys, which
then output the correct text depending on the user’s language.

Using i18n can be costly if you never end up supporting multiple languages, but if
you do end up needing to internationalize your app, it is much easier to do it from
the start. The benefit of doing this up front, is that you don't have to go back and
find and replace every line of copy throughout your app, which grows in difficulty
with the size of your app.

The second benefit of i18n, and why it matters to us here, is that i18n does the
hard work of decoupling our application from specific copy. We can use the keys
in our tests without worrying about the exact text changing out from under us.
With i18n, our tests would look like this:

CHAPTER 4. ANTIPATTERNS 90

<div class="welcome-message">
<p><%= t("dashboards.show.welcome"”, user: current_user) %></p>
</div>

expect(page).to have_content t("dashboards.show.welcome”, user: user)

A change in our copy would go directly into our YAML file, and we wouldn't have
to change a thing in any of our templates or tests.

Data Attributes

If you have an existing app that has not been internationalized, an easier way to
decouple your tests from copy or DOM elements is to use data attributes. You can
add data attributes to any HTML tag and then assert on it's presence in your tests.
Here's an example:

<div class="warning” data-role="warning">
<p>This is a warning</p>
</div>

expect(page).to have_css "[data-role=warningl”

It's important to note that we aren't using have_css to assert on the CSS class or
HTML tag either. Classes and tags are DOM elements with high churn and are
often changed by designers who may not be as proficient with Ruby or tests. By
using a separate data-role, and teaching designers their purpose, they can change
the markup as much as they want (as long as they keep the data-role) without
breaking our tests.

Extract objects and methods

As with most things in object-oriented programming, the best way to reduce du-
plication and minimize coupling is to extract a method or class that can be reused.
That way, if something changes you only have to change it in a single place. We'll
usually start by extracting common functionality to a method. If the functionality
is more complex we'll then consider extracting a page object.

CHAPTER 4. ANTIPATTERNS 91
Duplication

Test code can fall victim to many of the same traps as production code. One of the
worst offenders is duplication. Those who don't recognize this slowly see produc-
tivity drop as it becomes necessary to modify multiple tests with small changes to
the production codebase.

Just like you refactor your production code, you should refactor test code, lest it
become a burden. In fact, refactoring tests should be handled at the same time as
refactoring production code — during the refactoring step in Red, Green, Refactor.

You can use all the tools you use in object oriented programming to DRY up dupli-
cate test code, such as extracting to methods and classes. For feature specs, you
may consider using Page Objects to clean up repetitive interactions.

You may also consider using i18n to have a single source of truth for all copy. i18n
can help make your tests resilient, as minor copy tweaks won't require any changes
to your test or even production code. This is of course a secondary benefit to the
fact that it allows you to localize your app to multiple languages!

Extracting Helper Methods

Common helper methods should be extracted to spec/support, where they can be
organized by utility and automatically included into a specific subset of the tests.
Here's an example from FormKeep's test suite:

spec/support/kaminari_helper.rb
module KaminariHelper
def with_kaminari_per_page(value, &block)
old_value = Kaminari.config.default_per_page
Kaminari.config.default_per_page = value
block.call
ensure
Kaminari.config.default_per_page = old_value
end
end

RSpec.configure do |config]|

https://formkeep.com

CHAPTER 4. ANTIPATTERNS 92

config.include KaminariHelper, type: :request
end

The above code allows us to configure Kaminari's default_per_page setting in the
block, and ensures it is set back to the original value. The RSpec.configure bit in-
cludes our module into all request specs. This file (and others in spec/support) is
automatically included in our rails_helper.rb:

spec/rails_helper.rb

Dir[Rails.root.join("spec/support/*x/x.rb")].each { |f| require f }

Testing Implementation Details

One metric of a solid test suite is that you shouldn't have to modify your tests when
refactoring production code. If your tests know too much about the implementa-
tion of your code, your production and test code will be highly coupled, and even
minor changes in your production code will require reciprocal changes in the test
suite. When you find yourself refactoring your test suite alongside a refactoring
of your production code, it's likely you've tested too many implementation details
of your code. At this point, your tests have begun to slow rather than assist in
refactoring.

The solution to this problem is to favor testing behavior over implementation. You
should test what your code does, not how it does it. Let's use some code as an
example:

class Numeric
def negative?
self <0
end
end

def absolute_value(number)
if number.negative?
-number
else

CHAPTER 4. ANTIPATTERNS 93

number
end

end

The following is a bad test (not to mention, it doesn't fully test the method):

this is bad

describe "#absolute_value” do
it "checks if the number is negative” do
number = 5

allow(number).to receive(:negative?)
absolute_value(number)

expect(number).to have_received(:negative?)
end

end

The above code tests an implementation detail. If we later removed our imple-
mentation of Numeric#negative? we'd have to change both our production code
and our test code.

A better test would look like this:

describe "#absolute_value"” do
it "returns the number’'s distance from zero” do
expect(absolute_value(4)).to eq 4
expect(absolute_value(0)).to eq @
expect(absolute_value(-2)).to eq 2
end
end

The above code tests the interface of #absolute_value. By testing just the inputs
and outputs, we can freely change the implementation of the method without hav-
ing to change our test case. The nice thing is that if we are following TDD, our tests
will naturally follow this guideline, since TDD encourages us to write tests for the
behavior we expect to see.

CHAPTER 4. ANTIPATTERNS 94

Gotcha

Itis occasionally true that testing behavior and testing implementation will be one
and the same. Acommon case for this is when testing methods that must delegate
to other methods. For example, many service objects will queue up a background
job. Queuing that job is a crucial behavior of the service object, so it may be nec-
essary to stub the job and assert it was called:

describe "Notifier#notify” do
it "queues a NotifierJob"” do
allow(NotifierJob).to receive(:notify)

Notifier.notify("message")

expect(NotifierJob).to have_received(:notify).with("message”)
end

end

Private Methods

As you may have guessed, private methods are an implementation detail. We say
it's an implementation detail, because the consumer of the class will rely on the
public interface, but shouldn't care what is happening behind the scenes. When
you encapsulate code into a private method, the code is not part of the class’s
public interface. You should be able to change how the code works (but not what
it does) without disrupting anything that depends on the class.

The benefit of being able to refactor code freely is a huge boon, as long as you
know that the behavior of your class is well tested. While you shouldn't test your
private methods directly, they can and should be tested indirectly by exercising
the code from public methods. This allows you to change the internals of your
code down the road without having to change your tests.

If you feel that the logic in your private methods is necessary to testindependently,
that may be a hint that the functionality can be encapsulated in its own class. At
that point, you can extract a new class to test. This has the added benefit of im-
proved reusability and readability.

CHAPTER 4. ANTIPATTERNS 95
Let, Subject, and Before

RSpec has a few features that we have not yet mentioned, because we find that
they make test suites difficult to maintain. The main offenders are let, let!,
subject, and before. They share similar problems, so this section will use let and
let! as examples. let allows you to declare a fixture that will be automatically
defined in all other tests in the same context of the let.

let works by passing it a symbol and a block. You are then provided a method
with the same name as the symbol you passed to let in your test. When you call
it, RSpec will evaluate and memoize the respective block. Since the block is not
run until you call the method, we say that it is lazy-evaluated. let! on the other
hand, will define a method that runs the code in the given block, but it will always
be invoked one time before each test is run.

Here's an example taken from Hound:

describe RepoActivator, "#deactivate” do
let(:repo) {
create(:repo)

let(:activator) {
allow(RemoveHoundFromRepo).to receive(:run)
allow(AddHoundToRepo).to receive(:run).and_return(true)

RepoActivator.new(github_token: "githubtoken”, repo: repo)

let! (:github_api) {
hook = double(:hook, id: 1)
api = double(:github_api, remove_hook: true)
allow(api).to receive(:create_hook).and_yield(hook)
allow(GithubApi).to receive(:new).and_return(api)

api

context "when repo deactivation succeeds” do

https://github.com/thoughtbot/hound

CHAPTER 4. ANTIPATTERNS 96

it "marks repo as deactivated” do
activator.deactivate

expect(repo.reload).not_to be_active
end

it "removes GitHub hook"” do
activator.deactivate

expect(github_api).to have_received(:remove_hook)
expect(repo.hook_id).to be_nil
end

it "returns true"” do
expect(activator.deactivate).to be true
end
end
end

The biggest issue of this code is readability. As with other types of fixtures, let
obscures the code by introducing a Mystery Guest. Having the test's dependencies
declared at the top of the file make it difficult to know which dependencies are
required for each test. If you added more tests to this test group, they may not all
have the same dependencies.

let can also lead to brittle tests. Since your tests are reliant on objects that are
created far from the test cases themselves, it's easy for somebody to change the
setup code unaware of how it will effect each individual test. This issue is com-
pounded when we override definitions in nested contexts:

describe RepoActivator, "#deactivate” do
let(:repo) {
create(:repo)

let(:activator) {
allow(RemoveHoundFromRepo).to receive(:run)

allow(AddHoundToRepo).to receive(:run).and_return(true)

CHAPTER 4. ANTIPATTERNS 97

RepoActivator.new(github_token: "githubtoken”, repo: repo)

context "when repo deactivation succeeds” do
let(:repo) {

create(:repo, some_attribute: "some value")

end

end

In the above scenario, we have overriden the definition of repo in our nested con-
text. While we can assume that a direct call to repo will return this locally defined
repo, what happens when we call activator, which also depends on repo but is
declared in the outer context? Does it call the repo that is defined in the same
context, or does it call the repo that is defined in the same context of our test?

This code has another, more sneaky problem. If you noticed, there's a subtle use
of let! when we declare github_api. We used let!, because the first and last ex-
ample need it to be stubbed, but don't need to reference it in the test. Since let!
forces the execution of the code in the block, we've introduced the possibility for
a potential future bug. If we write a new test in this context, this code will now be
run for that test case, even if we didn't intend for that to happen. This is a recipe
for unintentionally slowing down your suite.

If we were to scroll down so that the let statements go off the screen, our exam-
ples would look like this:

context "when repo deactivation succeeds” do
it "marks repo as deactivated” do
activator.deactivate

expect(repo.reload).not_to be_active

end

CHAPTER 4. ANTIPATTERNS 98

it "removes GitHub hook" do
activator.deactivate

expect(github_api).to have_received(:remove_hook)
expect(repo.hook_id).to be_nil
end

it "returns true” do
expect(activator.deactivate).to be true
end
end

We now have no context as to what is happening in these tests. It's impossible
to tell what your test depends on, and what else is happening behind the scenes.
In a large file, you'd have to go back and forth between your tests and let state-
ments, which is slow and error prone. In poorly organized files, you might even
have multiple levels of nesting and dispersed let statements, which make it almost
impossible to know which let statements are associated with each test.

So what's the solution to these problems? Instead of using RSpec’s DSL, you can
use plain old Ruby. Variables, methods, and classes! A refactored version of the
code above might look like this:

describe RepoActivator, "#deactivate” do
context "when repo deactivation succeeds” do
it "marks repo as deactivated” do
repo = create(:repo)
activator = build_activator(repo: repo)
stub_github_api

activator.deactivate

expect(repo.reload).not_to be_active
end

it "removes GitHub hook"” do

repo = create(:repo)

CHAPTER 4. ANTIPATTERNS 99

activator = build_activator(repo: repo)
github_api = stub_github_api

activator.deactivate

expect(github_api).to have_received(:remove_hook)
expect(repo.hook_id).to be_nil

end

it "returns true” do
activator = build_activator
stub_github_api

result = activator.deactivate

expect(result).to be true
end
end

def build_activator(token: "githubtoken”, repo: build(:repo))
allow(RemoveHoundFromRepo).to receive(:run)
allow(AddHoundToRepo).to receive(:run).and_return(true)

RepoActivator.new(github_token: token, repo: repo)

end

def stub_github_api
hook = double(:hook, id: 1)
api = double(:github_api, remove_hook: true)
allow(api).to receive(:create_hook).and_yield(hook)
allow(GithubApi).to receive(:new).and_return(api)
api

end

end

By calling these Ruby constructs directly from our test, it's easy to see what is being
generated in the test, and if we need to dig deeper into what's happening, we can
follow the method call trail all the way down. In effect, we've optimized for commu-

CHAPTER 4. ANTIPATTERNS 100

nication rather than terseness. We've also avoided implicitly adding unnecessary
dependencies to each of our tests.

Another thing to note is that while we build the activator and GitHub API stub in
methods external to our tests, we do the assignment within the tests themselves.
Memoizing the value to an instance variable in the external method is simply a
reimplementation of let, and suffers the same pitfalls.

Bloated Factories

A factory is the single source of truth for what it takes to instantiate a minimally
valid object. When you define more attributes than you need on a factory, you
implicitly couple yourself to these values every time you use the factory. These at-
tributes can cause subtle side effects and make your tests harder to reason about
and change as time goes on.

Factories are intended to be customized directly in the test case you are using them
in. This allows you to communicate what is significant about a record directly in the
test. When you set these attributes in the test case itself, it is easier to understand
the causes and effects in the test. This is useful for both test maintenance and
communication about the feature or unit under test.

When defining your factories, define the minimum number of attributes for the
model to pass validations. Here's an example:

class User < ActiveRecord: :Base
validates :password_digest, presence: true
validates :username, presence: true, uniqueness: true

end
DON'T do this

factory :user do
sequence(:username) { |n| "username#{n}" }
password_digest "password”
name "Donald Duck” # according to our model, this attribute is optional
age 24 # so is this

end

CHAPTER 4. ANTIPATTERNS 101

DO this

factory :user do
sequence(:username) { |n| "username#{n}" }
password_digest "password”

end

Using Factories Like Fixtures

While we prefer factories over fixtures, it is important to use factories appropri-
ately to get any benefit. Occasionally we'll see test suites create factory definitions
as if they were fixtures:

factory :pam, class: User do
name "Pam”
manager false

end

factory :michael, class: User do
name "Michael”
manager true

end

This is the worst of both worlds. Factories are great because they're flexible, how-
ever they are slower than fixtures. When you use them like fixtures, they are slow,
inflexible, and cryptic. As the factory definitions grow, they tend to violate the
rule of having a minimal set of attributes for a valid records. In addition to the
issues that brings, it becomes difficult to remember which factories return which
attributes.

Instead of creating multiple factory definitions to group related functionality, use
traits or nested factories.

Traits allow you to compose attributes within the test itself.

CHAPTER 4. ANTIPATTERNS 102

factory :message do
body "What's up?”

trait :read do
read_at { 1.month.ago }
end
end

In the test

build_stubbed(:message, :read) # it's clear what we're getting here

You may even consider pulling traits out to the global level for reuse between fac-
tories:

factory :message do
noop

end

factory :notification do
noop
end

trait :read do
read_at { 1.month.ago }
end

In the test
build_stubbed(:message, :read)
build_stubbed(:notification, :read)

In addition to traits, you can extend functionality through inheritance with nested
factories:

factory :user do
sequence(:username) { |n| "username#{n}" }
password_digest "password”

CHAPTER 4. ANTIPATTERNS 103

factory :subscriber do
subscribed true
end

end

In the test
build_stubbed(:subscriber)

This allows you to better communicate state and still maintain a single source of
knowledge about the necessary attributes to build a user.

This is good

build_stubbed(:user, :subscribed)

This is better
build_stubbed(:subscriber)

Note that nesting is not as composable as traits since you can only build an object
from a single factory. Traits, however, are more flexible as multiple can be used
at the same time.

False Positives

Occasionally, you'll run into a case where a feature doesn’t work while the test for
it is incorrectly passing. This usually manifests itself when the test is written after
the production code in question. The solution here is to always follow Red, Green,
Refactor. If you don't see your test fail before seeing it turn green, you can't be
certain that the change you are making is the thing that actually got the test to
pass, or if it is passing for some other reason. By seeing it fail first, you know that
once you get it to pass it is passing because of the changes you made.

Sometimes, you need to figure out how to get your production code working be-
fore writing your test. This may be because you aren’t sure how the production
code is going to work and you just want to try some things out before you know
what you're going to test. When you do this and you go back to write your test, be
sure that you comment out the production code that causes the feature to work.

CHAPTER 4. ANTIPATTERNS 104

This way, you can write your test and see it fail. Then, when you comment in the
code to make it pass, you'll be certain that that was the thing to make the test pass,
so your test is valid.

Stubbing the System Under Test

As we've learned, stubbing allows us to isolate code we are testing from other
complex behavior. Sometimes, we are tempted to stub a method inside the class
we are testing. If a behavior is so complicated that we feel compelled to stub it out
in a test, that behavior is its own concern and should be encapsulated in its own
class.

Imagine we are interacting with a payment service that allows us to create and
refund charges to a credit card. Interacting with the service is similar for each of
these requests, so we implement a method #create_transaction that we can reuse
when creating and refunding charges:

class CreditCard
def initialize(id)
@id = id

end

def create_charge(amount)
create_transaction("/cards/#{@id}/charges"”, amount: amount)

end

def refund_charge(transaction_id)
create_transaction("/cards/#{@id}/charges/#{transaction_id}/refund")
end

private

def create_transaction(path, data = {3})
response = Net::HTTP.start("payments.example.com”) do |http]|
post = Net::HTTP::Post.new(path)
post.body = data.to_json
http.request(post)

CHAPTER 4. ANTIPATTERNS 105

end

data = JSON.parse(response.body)
Response.new(transaction_id: datal["transaction_id"])
end
end

#create_transaction makes an HTTP request to our payment gateway's end-
point, parses the response data, and returns a new response object with the
transaction_id from the returned data. This is a relatively complicated method,
and we've learned before that external web requests can be unreliable and slow,
so we decide to stub this out in our tests for #create_charge and #refund_charge.

An initial test for #create_charge might look like this:

describe CreditCard, "#create_charge” do
it "returns transaction IDs on success” do
credit_card = CreditCard.new("4111")
expected = double("expected”)
allow(credit_card).to receive(:create_transaction)
.with("/cards/4111/charges”, amount: 100)
.and_return(expected)

result = credit_card.create_charge(100)

expect(result).to eq(expected)
end

end

This test will work, but it carries some warning signs about how we've factored
our code. The first is we're stubbing a private method. As we've learned, tests
shouldn't even be aware of private methods. If you're paying attention, you'll also
notice that we've stubbed the system under test.

This stub breaks up our CreditCard class in an ad hoc manner. We've defined be-
havior in our CreditCard class definition that we are currently trying to test, and
now we've introduced new behavior with our stub. Instead of splitting this behav-
ior just in our test, we should separate concerns deliberately in our production
code.

CHAPTER 4. ANTIPATTERNS 106

If we reexamine our code, we'll realize that our CreditCard class does in fact have
multiple concerns. One, is acting as our credit card, which can be charged and re-
funded. The second, alluded to by our need to stub it, is formatting and request-
ing data from our payment gateway. By extracting this behavior to a GatewayClient
class, we can create a clear distinction between our two responsibilities, make each
easier to test, and make our GatewayClient functionality easier to reuse.

Let's extract the class and inject it into our CreditCard instance as a dependency.
First, the refactored test:

describe CreditCard, "#create_charge” do
it "returns transaction IDs on success” do

expected = double("expected”)

gateway_client = double(”gateway_client")

allow(gateway_client).to receive(:post)
.with("/cards/4111/charges”, amount: 100)
.and_return(expected)

credit_card = CreditCard.new(gateway_client, "4111")

result = credit_card.create_charge(100)

expect(result).to eq(expected)
end
end

Now, we are no longer stubbing the SUT. Instead, we've injected a double that
responds to a method post and returns our canned response. Now, we need to
refactor our code to match our expectations.

class CreditCard
def initialize(client, id)
@id = id
@client = client
end

def create_charge(amount)
@client.post("/cards/#{@id}/charges”, amount: amount)

end

CHAPTER 4. ANTIPATTERNS 107

def refund_charge(transaction_id)
@client.post("/cards/#{@id}/charges/#{transaction_id}/refund”)
end

end

class GatewayClient
def post(path, data = {})
response = Net::HTTP.start("payments.example.com”) do |http]|
post = Net::HTTP::Post.new(path)
post.body = data.to_json
http.request(post)
end

data = JSON.parse(response.body)
Response.new(transaction_id: data[”transaction_id"])
end
end

Whenever you are tempted to stub the SUT, take a moment to think about why
you didn't want to set up the required state. If you could easily set up the state
with a factory or helper, prefer that and remove the stub. If the method you are
stubbing has complicated behavior which is difficult to retest, use that as a cue to
extract a new class, and stub the new dependency.

Testing Behavior, Not Implementation

We've said previously that tests should assert on behavior, not implementation.
But, what happens when our tests do know too much about how code is imple-
mented? Let's look at an example:

app/models/item.rb
class Item < ActiveRecord::Base
def self.unique_names
pluck(:name).uniq.sort

end

CHAPTER 4. ANTIPATTERNS 108

end

spec/models/item_spec.rb
describe Item, ".unique_names” do
it "returns a list of sorted, unique, Item names” do
create(:item, name: "Gamma")
create(:item, name: "Gamma")
create(:item, name: "Alpha")
create(:item, name: "Beta")

expected = Item.pluck(:name).uniq.sort

expect(Item.unique_names).to eq expected
end

end

The implementation of the method under test is pluck(:name).uniq.sort, and
we're testing it against Item.pluck(:name).unig.sort. In essence, we've repeated
the logic, or implementation, of the code directly in our test. There are a couple
issues with this.

For one, if we change how we are getting names in the future — say we change
the underlying field name to some_name — we'll have to change the expectation in
our test, even though our expectation hasn't changed. While this isn't the biggest
concern, if our test suite has many instances of this it can become strenuous to
maintain.

Second and more importantly, this test is weak and potentially incorrect. If our
logic is wrong in our production code, it's likely also wrong in our test, however
the test would still be green because our test matches our production code.

Instead of testing the implementation of the code, we should test it's behavior. A
better test would look like this:

describe Item, ".unique_names” do
it "returns a list of sorted, unique, Item names”" do
create(:item, name: "Gamma")
create(:item, name: "Gamma")

create(:item, name: "Alpha")

CHAPTER 4. ANTIPATTERNS 109

create(:item, name: "Beta”)

expect(Item.unique_names).to eq %w(Alpha Beta Gamma)
end

end

Our refactored test specifies the behavior we expect. When the given items exist,
we assert that the method returns ["Alpha”, "Beta” "Gamma"]. We aren’tasserting
on logic that could potentially be wrong, but rather how the method behaves given
the above inputs. As an added benefit, it's easier to see what happens when we
call Item.unique_names

Testing implementation details is a common symptom of not following TDD. Once
you know how the code under question will work, it's all too easy to reimplement
that logic in the test. To avoid this in your codebase, be sure you are writing your
tests first.

Testing Code You Don’t Own

When writing tests, it can be easy to get carried away and start testing more than
is necessary. One common mistake is to write unit tests for functionality provided
by a third-party library. For example:

class User < ActiveRecord: :Base

end

describe "#save" do
it "saves the user"” do

user = User.new
user.save
expect(user).to eq User.find(user.id)

end

end

CHAPTER 4. ANTIPATTERNS 110

This testis not testing any code you've written but instead is testing ActiveRecord: :Base#save
provided by Rails. Rails should already have tests for this functionality, so you
don't need to test it again.

This may seem obvious, but we've seen this in the wild more than you'd expect.

A more subtle example would be when composing behavior from third-party li-
braries. For example:

require "twitter”

class PublishService
def initialize
@twitterClient = Twitter::REST::Client.new

end

def publish(message)
@twitter_client.update(message)
end
end

describe "#publish” do
it "publishes to twitter” do
new_tweet_request = stub_request(:post, "api.twitter.com/tweets")

service = PublishService.new
service.publish("message”)

expect(new_tweet_request).to have_been_requested
end

end

This unit test is too broad and tests that the twitter gem is correctly implementing
HTTP requests. You should expect that the gem’s maintainers have already tested
that. Instead, you can test behavior up to the boundary of the third-party code
using stub.

describe "#publish” do

CHAPTER 4. ANTIPATTERNS 111

it "publishes to twitter” do
client = double(publish: nil)
allow(Twitter::REST::Client).to receive(:new).and_return(client)

service = PublishService.new
service.publish("message")

expect(client).to have_received(:publish).with("message"”)
end
end

Methods provided by third-party libraries should already be tested by those li-
braries. In fact, they probably test more thoroughly and with more edge cases
than anything you would write yourself. (Re)writing these tests adds overhead to
your test suite without providing any additional value so we encourage you not to
write them at all.

Conclusion

Congratulations! You've reached the end. Over the course of this book, we've
learned how testing can be used to ensure the correctness of your code, how to
use tools to automate your tests, and how to integrate them with Rails.

We've also explored how techniques such as TDD and Outside-in testing, can im-
prove not only your tests but also the implementation of your source code. How-
ever, poorly written tests can have the opposite effect so we've discussed various
pitfalls and anti-patterns to avoid. Finally, we've taken a look at first principles and
how coupling among the objects in a system impacts the tests.

You have the tools to write an effective test suite that documents your code,
catches regressions, and gives you the confidence you need to keep moving.
Take advantage of this to tame your existing projects and tackle bigger, more
challenging project!

112

	Introduction
	Why test?
	Test Driven Development
	Characteristics of an Effective Test Suite
	Example Application
	RSpec

	Types of Tests
	The Testing Pyramid
	Feature Specs
	Model Specs
	Request Specs
	View Specs
	Controller Specs
	Helper Specs
	Mailer Specs

	Intermediate Testing
	Testing in isolation
	External services
	Levels of Abstraction
	JavaScript
	Continuous Integration
	Coverage Reports

	Antipatterns
	Slow tests
	Intermittent Failures
	Brittle Tests
	Duplication
	Testing Implementation Details
	Let, Subject, and Before
	Bloated Factories
	Using Factories Like Fixtures
	False Positives
	Stubbing the System Under Test
	Testing Behavior, Not Implementation
	Testing Code You Don't Own

	Conclusion

