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PREFACE

We started to develop Mplus in 1995 with the goal of providing researchers with
powerful new statistical modeling techniques. We saw a wide gap between new
statistical methods presented in the statistical literature and the statistical methods used
by researchers in substantively-oriented papers. Our goal was to help bridge this gap
with easy-to-use but powerful software. Version 1 of Mplus was released in November
1998; Version 2 was released in February 2001; Version 3 was released in March 2004;
Version 4 was released in February 2006; Version 5 was released in November 2007,
Version 6 was released in April 2010; and Version 7 was released in September 2012.
After four expansions of Version 7 during the last five years, we are now proud to present
the new and unique features of Version 8. With Version 8, we have gone a considerable
way toward accomplishing our goal, and we plan to continue to pursue it in the future.

The new features that have been added between Version 7 and Version 8 would never
have been accomplished without two very important team members, Tihomir
Asparouhov and Thuy Nguyen. It may be hard to believe that the Mplus team has only
two programmers, but these two programmers are extraordinary. Tihomir has developed
and programmed sophisticated statistical algorithms to make the new modeling possible.
Without his ingenuity, they would not exist. His deep insights into complex modeling
issues and statistical theory are invaluable. Thuy has developed the post-processing
graphics module, the Mplus editor and language generator, and the Mplus Diagrammer
based on a framework designed by Delian Asparouhov. In addition, Thuy has
programmed the Mplus language and is responsible for producing new release versions,
testing, and keeping control of the entire code which has grown enormously. Her
unwavering consistency, logic, and steady and calm approach to problems keep everyone
on target. We feel fortunate to work with such a talented team. Not only are they
extremely bright, but they are also hard-working, loyal, and always striving for
excellence. Mplus Version 8 would not have been possible without them.

Another important team member is Michelle Conn. Michelle was with us at the
beginning when she was instrumental in setting up the Mplus office and returned fifteen
years ago. Michelle wears many hats: Chief Financial Officer, Office Manager, and
Sales Manager, among others. She was the driving force behind the design of the new
shopping cart. With the vastly increased customer base, her efficiency in multi-tasking
and calm under pressure are much appreciated. Noah Hastings joined the Mplus team in
2009. He is responsible for testing the Graphics Module and the Mplus Diagrammer,
creating the pictures of the models in the example chapters of the Mplus User’s Guide,



keeping the website updated, and providing assistance to Bengt with presentations,
papers, and our book. He has proven to be a most trustworthy and valuable team
member.

We would also like to thank all of the people who have contributed to the development of
Mplus in past years. These include Stephen Du Toit, Shyan Lam, Damir Spisic, Kerby
Shedden, and John Molitor.

Initial work on Mplus was supported by SBIR contracts and grants from NIAAA that we
acknowledge gratefully. We thank Bridget Grant for her encouragement in this work.

Linda K. Muthén

Bengt O. Muthén

Los Angeles, California
April 2017






Introduction

CHAPTER 1
INTRODUCTION

Mplus is a statistical modeling program that provides researchers with a
flexible tool to analyze their data. Mplus offers researchers a wide
choice of models, estimators, and algorithms in a program that has an
easy-to-use interface and graphical displays of data and analysis results.
Mplus allows the analysis of both cross-sectional and longitudinal data,
single-level and multilevel data, data that come from different
populations with either observed or unobserved heterogeneity, and data
that contain missing values. Analyses can be carried out for observed
variables that are continuous, censored, binary, ordered categorical
(ordinal), unordered categorical (hominal), counts, or combinations of
these variable types. In addition, Mplus has extensive capabilities for
Monte Carlo simulation studies, where data can be generated and
analyzed according to most of the models included in the program.

The Mplus modeling framework draws on the unifying theme of latent
variables. The generality of the Mplus modeling framework comes from
the unique use of both continuous and categorical latent variables.
Continuous latent variables are used to represent factors corresponding
to unobserved constructs, random effects corresponding to individual
differences in development, random effects corresponding to variation in
coefficients across groups in hierarchical data, frailties corresponding to
unobserved heterogeneity in survival time, liabilities corresponding to
genetic susceptibility to disease, and latent response variable values
corresponding to missing data. Categorical latent variables are used to
represent latent classes corresponding to homogeneous groups of
individuals, latent trajectory classes corresponding to types of
development in unobserved populations, mixture components
corresponding to finite mixtures of unobserved populations, and latent
response variable categories corresponding to missing data.

THE Mplus MODELING FRAMEWORK

The purpose of modeling data is to describe the structure of data in a
simple way so that it is understandable and interpretable. Essentially,
the modeling of data amounts to specifying a set of relationships
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between variables. The figure below shows the types of relationships
that can be modeled in Mplus. The rectangles represent observed
variables. Observed variables can be outcome variables or background
variables. Background variables are referred to as x; continuous and
censored outcome variables are referred to as y; and binary, ordered
categorical (ordinal), unordered categorical (nominal), and count
outcome variables are referred to as u. The circles represent latent
variables. Both continuous and categorical latent variables are allowed.
Continuous latent variables are referred to as f. Categorical latent
variables are referred to as c.

The arrows in the figure represent regression relationships between
variables. Regressions relationships that are allowed but not specifically
shown in the figure include regressions among observed outcome
variables, among continuous latent variables, and among categorical
latent variables. For continuous outcome variables, linear regression
models are used. For censored outcome variables, censored (tobit)
regression models are used, with or without inflation at the censoring
point. For binary and ordered categorical outcomes, probit or logistic
regressions models are used. For unordered categorical outcomes,
multinomial logistic regression models are used. For count outcomes,
Poisson and negative binomial regression models are used, with or
without inflation at the zero point.
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Within

Between

Models in Mplus can include continuous latent variables, categorical
latent variables, or a combination of continuous and categorical latent
variables. In the figure above, Ellipse A describes models with only
continuous latent variables. Ellipse B describes models with only
categorical latent variables. The full modeling framework describes
models with a combination of continuous and categorical latent
variables. The Within and Between parts of the figure above indicate
that multilevel models that describe individual-level (within) and cluster-
level (between) variation can be estimated using Mplus.

MODELING WITH CONTINUOUS LATENT
VARIABLES

Ellipse A describes models with only continuous latent variables.
Following are models in Ellipse A that can be estimated using Mplus:
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Regression analysis

Path analysis

Exploratory factor analysis
Confirmatory factor analysis

Item response theory modeling
Structural equation modeling
Growth modeling

Discrete-time survival analysis
Continuous-time survival analysis
Time series analysis

Observed outcome variables can be continuous, censored, binary,
ordered categorical (ordinal), unordered categorical (nominal), counts,
or combinations of these variable types.

Special features available with the above models for all observed
outcome variables types are:

Single or multiple group analysis

Missing data under MCAR, MAR, and NMAR and with multiple
imputation

Complex survey data features including stratification, clustering,
unequal probabilities of selection (sampling weights), subpopulation
analysis, replicate weights, and finite population correction
Latent variable interactions and non-linear factor analysis using
maximum likelihood

Random slopes

Individually-varying times of observations

Linear and non-linear parameter constraints

Indirect effects including specific paths

Maximum likelihood estimation for all outcomes types

Bootstrap standard errors and confidence intervals

Wald chi-square test of parameter equalities

Factor scores and plausible values for latent variables
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MODELING WITH CATEGORICAL LATENT
VARIABLES

Ellipse B describes models with only categorical latent variables.
Following are models in Ellipse B that can be estimated using Mplus:

Regression mixture modeling

Path analysis mixture modeling

Latent class analysis

Latent class analysis with covariates and direct effects
Confirmatory latent class analysis

Latent class analysis with multiple categorical latent variables
Loglinear modeling

Non-parametric modeling of latent variable distributions
Multiple group analysis

Finite mixture modeling

Complier Average Causal Effect (CACE) modeling

Latent transition analysis and hidden Markov modeling including
mixtures and covariates

Latent class growth analysis

Discrete-time survival mixture analysis

Continuous-time survival mixture analysis

Observed outcome variables can be continuous, censored, binary,
ordered categorical (ordinal), unordered categorical (nominal), counts,
or combinations of these variable types. Most of the special features
listed above are available for models with categorical latent variables.
The following special features are also available.

Analysis with between-level categorical latent variables

Tests to identify possible covariates not included in the analysis that
influence the categorical latent variables

Tests of equality of means across latent classes on variables not
included in the analysis

Plausible values for latent classes
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MODELING WITH BOTH CONTINUOUS AND
CATEGORICAL LATENT VARIABLES

The full modeling framework includes models with a combination of
continuous and categorical latent variables. Observed outcome variables
can be continuous, censored, binary, ordered categorical (ordinal),
unordered categorical (nominal), counts, or combinations of these
variable types. Most of the special features listed above are available for
models with both continuous and categorical latent variables. Following
are models in the full modeling framework that can be estimated using
Mplus:

Latent class analysis with random effects

Factor mixture modeling

Structural equation mixture modeling

Growth mixture modeling with latent trajectory classes
Discrete-time survival mixture analysis
Continuous-time survival mixture analysis

Most of the special features listed above are available for models with
both continuous and categorical latent variables. The following special
features are also available.

e Analysis with between-level categorical latent variables

e Tests to identify possible covariates not included in the analysis that
influence the categorical latent variables

o Tests of equality of means across latent classes on variables not
included in the analysis

MODELING WITH COMPLEX SURVEY DATA

There are two approaches to the analysis of complex survey data in
Mplus. One approach is to compute standard errors and a chi-square test
of model fit taking into account stratification, non-independence of
observations due to cluster sampling, and/or unequal probability of
selection.  Subpopulation analysis, replicate weights, and finite
population correction are also available. With sampling weights,
parameters are estimated by maximizing a weighted loglikelihood
function. Standard error computations use a sandwich estimator. For
this approach, observed outcome variables can be continuous, censored,
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binary, ordered categorical (ordinal), unordered categorical (hominal),
counts, or combinations of these variable types.

A second approach is to specify a model for each level of the multilevel
data thereby modeling the non-independence of observations due to
cluster sampling. This is commonly referred to as multilevel modeling.
The use of sampling weights in the estimation of parameters, standard
errors, and the chi-square test of model fit is allowed. Both individual-
level and cluster-level weights can be used. With sampling weights,
parameters are estimated by maximizing a weighted loglikelihood
function. Standard error computations use a sandwich estimator. For
this approach, observed outcome variables can be continuous, censored,
binary, ordered categorical (ordinal), unordered categorical (nominal),
counts, or combinations of these variable types.

The multilevel extension of the full modeling framework allows random
intercepts and random slopes that vary across clusters in hierarchical
data. Random slopes include the special case of random factor loadings.
These random effects can be specified for any of the relationships of the
full Mplus model for both independent and dependent variables and both
observed and latent variables. Random effects representing across-
cluster variation in intercepts and slopes or individual differences in
growth can be combined with factors measured by multiple indicators on
both the individual and cluster levels. In line with SEM, regressions
among random effects, among factors, and between random effects and
factors are allowed.

The two approaches described above can be combined. In addition to
specifying a model for each level of the multilevel data thereby
modeling the non-independence of observations due to cluster sampling,
standard errors and a chi-square test of model fit are computed taking
into account stratification, non-independence of observations due to
cluster sampling, and/or unequal probability of selection. When there is
clustering due to both primary and secondary sampling stages, the
standard errors and chi-square test of model fit are computed taking into
account the clustering due to the primary sampling stage and clustering
due to the secondary sampling stage is modeled.

Most of the special features listed above are available for modeling of
complex survey data.
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MODELING WITH MISSING DATA

Mplus has several options for the estimation of models with missing
data. Mplus provides maximum likelihood estimation under MCAR
(missing completely at random), MAR (missing at random), and NMAR
(not missing at random) for continuous, censored, binary, ordered
categorical (ordinal), unordered categorical (nominal), counts, or
combinations of these variable types (Little & Rubin, 2002). MAR
means that missingness can be a function of observed covariates and
observed outcomes. For censored and categorical outcomes using
weighted least squares estimation, missingness is allowed to be a
function of the observed covariates but not the observed outcomes
(Asparouhov & Muthén, 2010a). When there are no covariates in the
model, this is analogous to pairwise present analysis. Non-ignorable
missing data (NMAR) modeling is possible using maximum likelihood
estimation where categorical outcomes are indicators of missingness and
where missingness can be predicted by continuous and categorical latent
variables (Muthén, Jo, & Brown, 2003; Muthén et al., 2011).

In all models, missingness is not allowed for the observed covariates
because they are not part of the model. The model is estimated
conditional on the covariates and no distributional assumptions are made
about the covariates. Covariate missingness can be modeled if the
covariates are brought into the model and distributional assumptions
such as normality are made about them. With missing data, the standard
errors for the parameter estimates are computed using the observed
information matrix (Kenward & Molenberghs, 1998).  Bootstrap
standard errors and confidence intervals are also available with missing
data.

Mplus provides multiple imputation of missing data using Bayesian
analysis (Rubin, 1987; Schafer, 1997). Both the unrestricted H1 model
and a restricted HO model can be used for imputation. Multiple data sets
generated using multiple imputation can be analyzed using a special
feature of Mplus. Parameter estimates are averaged over the set of
analyses, and standard errors are computed using the average of the
standard errors over the set of analyses and the between analysis
parameter estimate variation (Rubin, 1987; Schafer, 1997). A chi-square
test of overall model fit is provided (Asparouhov & Muthén, 2008c;
Enders, 2010).
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ESTIMATORS AND ALGORITHMS

Mplus provides both Bayesian and frequentist inference. Bayesian
analysis uses Markov chain Monte Carlo (MCMC) algorithms. Posterior
distributions can be monitored by trace and autocorrelation plots.
Convergence can be monitored by the Gelman-Rubin potential scaling
reduction using parallel computing in multiple MCMC chains. Posterior
predictive checks are provided.

Frequentist analysis uses maximum likelihood and weighted least
squares estimators. Mplus provides maximum likelihood estimation for
all models. With censored and categorical outcomes, an alternative
weighted least squares estimator is also available. For all types of
outcomes, robust estimation of standard errors and robust chi-square
tests of model fit are provided. These procedures take into account non-
normality of outcomes and non-independence of observations due to
cluster sampling. Robust standard errors are computed using the
sandwich estimator. Robust chi-square tests of model fit are computed
using mean and mean and variance adjustments as well as a likelihood-
based approach. Bootstrap standard errors are available for most
models. The optimization algorithms use one or a combination of the
following: Quasi-Newton, Fisher scoring, Newton-Raphson, and the
Expectation Maximization (EM) algorithm (Dempster et al., 1977).
Linear and non-linear parameter constraints are allowed.  With
maximum likelihood estimation and categorical outcomes, models with
continuous latent variables and missing data for dependent variables
require numerical integration in the computations. The numerical
integration is carried out with or without adaptive quadrature in
combination with rectangular integration, Gauss-Hermite integration, or
Monte Carlo integration.

MONTE CARLO SIMULATION CAPABILITIES

Mplus has extensive Monte Carlo facilities both for data generation and
data analysis. Several types of data can be generated: simple random
samples, clustered (multilevel) data, missing data, discrete- and
continuous-time survival data, and data from populations that are
observed (multiple groups) or unobserved (latent classes). Data
generation models can include random effects and interactions between
continuous latent variables and between categorical latent variables.
Outcome variables can be generated as continuous, censored, binary,
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ordered categorical (ordinal), unordered categorical (nominal), counts,
or combinations of these variable types. In addition, two-part
(semicontinuous) variables and time-to-event variables can be generated.
Independent variables can be generated as binary or continuous. All or
some of the Monte Carlo generated data sets can be saved.

The analysis model can be different from the data generation model. For
example, variables can be generated as categorical and analyzed as
continuous or generated as a three-class model and analyzed as a two-
class model. In some situations, a special external Monte Carlo feature
is needed to generate data by one model and analyze it by a different
model. For example, variables can be generated using a clustered design
and analyzed ignoring the clustering. Data generated outside of Mplus
can also be analyzed using this special external Monte Carlo feature.

Other special Monte Carlo features include saving parameter estimates
from the analysis of real data to be used as population and/or coverage
values for data generation in a Monte Carlo simulation study. In
addition, analysis results from each replication of a Monte Carlo
simulation study can be saved in an external file.

GRAPHICS

Mplus includes a dialog-based, post-processing graphics module that
provides graphical displays of observed data and analysis results
including outliers and influential observations.

These graphical displays can be viewed after the Mplus analysis is
completed. They include histograms, scatterplots, plots of individual
observed and estimated values, plots of sample and estimated means and
proportions/probabilities, plots of estimated probabilities for a
categorical latent variable as a function of its covariates, plots of item
characteristic curves and information curves, plots of survival and
hazard curves, plots of missing data statistics, plots of user-specified
functions, and plots related to Bayesian estimation. These are available
for the total sample, by group, by class, and adjusted for covariates. The
graphical displays can be edited and exported as a DIB, EMF, or JPEG
file. In addition, the data for each graphical display can be saved in an
external file for use by another graphics program.
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DIAGRAMMER

The Diagrammer can be used to draw an input diagram, to automatically
create an output diagram, and to automatically create a diagram using an
Mplus input without an analysis or data. To draw an input diagram, the
Diagrammer is accessed through the Open Diagrammer menu option of
the Diagram menu in the Mplus Editor. The Diagrammer uses a set of
drawing tools and pop-up menus to draw a diagram. When an input
diagram is drawn, a partial input is created which can be edited before
the analysis. To automatically create an output diagram, an input is
created in the Mplus Editor. The output diagram is automatically
created when the analysis is completed. This diagram can be edited and
used in a new analysis. The Diagrammer can be used as a drawing tool
by using an input without an analysis or data.

LTA CALCULATOR

Conditional probabilities, including latent transition probabilities, for
different values of a set of covariates can be computed using the LTA
Calculator. It is accessed by choosing LTA calculator from the Mplus
menu of the Mplus Editor.

LANGUAGE GENERATOR

Mplus includes a language generator to help users create Mplus input
files. The language generator takes users through a series of screens that
prompts them for information about their data and model. The language
generator contains all of the Mplus commands except DEFINE,
MODEL, PLOT, and MONTECARLO. Features added after Version 2
are not included in the language generator.

THE ORGANIZATION OF THE USER’S GUIDE

The Mplus User’s Guide has 20 chapters. Chapter 2 describes how to
get started with Mplus. Chapters 3 through 13 contain examples of
analyses that can be done using Mplus. Chapter 14 discusses special
issues. Chapters 15 through 19 describe the Mplus language. Chapter
20 contains a summary of the Mplus language. Technical appendices
that contain information on modeling, model estimation, model testing,

11



CHAPTER 1

12

numerical algorithms, and references to further technical information
can be found at www.statmodel.com.

It is not necessary to read the entire User’s Guide before using the
program. A user may go straight to Chapter 2 for an overview of Mplus
and then to one of the example chapters.
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CHAPTER 2
GETTING STARTED WITH Mplus

After Mplus is installed, the program can be run from the Mplus editor.
The Mplus Editor for Windows includes a language generator and a
graphics module. The graphics module provides graphical displays of
observed data and analysis results.

In this chapter, a brief description of the user language is presented

along with an overview of the examples and some model estimation
considerations.

THE Mplus LANGUAGE

The user language for Mplus consists of a set of ten commands each of
which has several options. The default options for Mplus have been
chosen so that user input can be minimized for the most common types
of analyses. For most analyses, only a small subset of the Mplus
commands is needed. Complicated models can be easily described using
the Mplus language. The ten commands of Mplus are:

TITLE

DATA (required)
VARIABLE (required)
DEFINE

ANALYSIS

MODEL

OUTPUT

SAVEDATA

PLOT

MONTECARLO

The TITLE command is used to provide a title for the analysis. The
DATA command is used to provide information about the data set to be
analyzed. The VARIABLE command is used to provide information
about the variables in the data set to be analyzed. The DEFINE
command is used to transform existing variables and create new
variables. The ANALYSIS command is used to describe the technical

13
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details of the analysis. The MODEL command is used to describe the
model to be estimated. The OUTPUT command is used to request
additional output not included as the default. The SAVEDATA
command is used to save the analysis data, auxiliary data, and a variety
of analysis results. The PLOT command is used to request graphical
displays of observed data and analysis results. The MONTECARLO
command is used to specify the details of a Monte Carlo simulation
study.

The Mplus commands may come in any order. The DATA and
VARIABLE commands are required for all analyses. All commands
must begin on a new line and must be followed by a colon. Semicolons
separate command options. There can be more than one option per line.
The records in the input setup must be no longer than 90 columns. They
can contain upper and/or lower case letters and tabs.

Commands, options, and option settings can be shortened for
convenience. Commands and options can be shortened to four or more
letters. Option settings can be referred to by either the complete word or
the part of the word shown in bold type in the command boxes in each
chapter.

Comments can be included anywhere in the input setup. A comment is
designated by an exclamation point. Anything on a line following an
exclamation point is treated as a user comment and is ignored by the
program. Several lines can be commented out by starting the first line
with I* and ending the last line with *!.

The keywords IS, ARE, and = can be used interchangeably in all
commands except DEFINE, MODEL CONSTRAINT, and MODEL
TEST. Items in a list can be separated by blanks or commas.

Mplus uses a hyphen (-) to indicate a list of variables or numbers. The
use of this feature is discussed in each section for which it is appropriate.
There is also a special keyword ALL which can be used to indicate all
variables. This keyword is discussed with the options that use it.

Following is a set of Mplus input files for a few prototypical examples.
The first example shows the input file for a factor analysis with
covariates (MIMIC model).
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TITLE:

DATA:
VARIABLE:
MODEL:

this is an example of a MIMIC model
with two factors, six continuous factor
indicators, and three covariates

FILE IS mimic.dat;

NAMES ARE yl-y6 x1-x3;

f1 BY yl-vy3;

f2 BY y4d-y6;

f1 £2 ON x1-x3;

The second example shows the input file for a growth model with time-
invariant covariates. It illustrates the new simplified Mplus language for
specifying growth models.

TITLE:

DATA:
VARIABLE:
MODEL:

this is an example of a linear growth
model for a continuous outcome at four
time points with the intercept and slope
growth factors regressed on two time-
invariant covariates

FILE IS growth.dat;

NAMES ARE yl-y4 x1 x2;

i s | yl@0 y2@1 y3@2 y4@3;

i s ON x1 x2;

The third example shows the input file for a latent class analysis with
covariates and a direct effect.

TITLE:

DATA:
VARIABLE:

ANALYSIS:
MODEL:

this is an example of a latent class
analysis with two classes, one covariate,
and a direct effect

FILE IS lcax.dat;

NAMES ARE ul-ud x;

CLASSES = ¢ (2);

CATEGORICAL = ul-u4;

TYPE = MIXTURE;

$OVERALLS
c ON x;
ud4d ON x;

The fourth example shows the input file for a multilevel regression
model with a random intercept and a random slope varying across

clusters.

15
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TITLE: this is an example of a multilevel
regression analysis with one individual-
level outcome variable regressed on an
individual-level background variable where
the intercept and slope are regressed on a
cluster-level variable

DATA: FILE IS reg.dat;

VARIABLE: NAMES ARE clus y X w;

CLUSTER = clus;
WITHIN = x;

BETWEEN = w;

MISSING = .;
DEFINE: CENTER x (GRANDMEAN) ;
ANALYSIS: TYPE = TWOLEVEL RANDOM;
MODEL:

SWITHINS

s | y ON x;

$BETWEENS

y s ON w;

OVERVIEW OF Mplus EXAMPLES
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The next eleven chapters contain examples of prototypical input setups
for several different types of analyses. The input, data, and output, as
well as the corresponding Monte Carlo input and Monte Carlo output for
most of the examples are on the CD that contains the Mplus program.
The Monte Carlo input is used to generate the data for each example.
They are named using the example number. For example, the names of
the files for Example 3.1 are ex3.l.inp; ex3.l.dat; ex3.l.out;
mcex3.1.inp, and mcex3.1.out. The data in ex3.1.dat are generated using
mcex3.1.inp.

The examples presented do not cover all models that can be estimated
using Mplus but do cover the major areas of modeling. They can be
seen as building blocks that can be put together as needed. For example,
a model can combine features described in an example from one chapter
with features described in an example from another chapter. Many
unique and unexplored models can therefore be created. In each chapter,
all commands and options for the first example are discussed. After that,
only the highlighted parts of each example are discussed.

For clarity, certain conventions are used in the input setups. Program
commands, options, settings, and keywords are written in upper case.
Information provided by the user is written in lower case. Note,
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however, that Mplus is not case sensitive. Upper and lower case can be
used interchangeably in the input setups.

For simplicity, the input setups for the examples are generic. Observed
continuous and censored outcome variable names start with a vy;
observed binary or ordered categorical (ordinal), unordered categorical
(nominal), and count outcome variable names start with a u; time-to-
event variables in continuous-time survival analysis start with a t;
observed background variable names start with an x; observed time-
varying background variables start with an a; observed between-level
background variables start with a w; continuous latent variable names
start with an f; categorical latent variable names start with a c; intercept
growth factor names start with an i; and slope growth factor names and
random slope names start with an s or a g. Note, however, that variable
names are not limited to these choices.

Following is a list of the example chapters:

e Chapter 3: Regression and path analysis

o Chapter 4: Exploratory factor analysis

Chapter 5: Confirmatory factor analysis and structural equation
modeling

Chapter 6: Growth modeling and survival analysis
Chapter 7: Mixture modeling with cross-sectional data
Chapter 8: Mixture modeling with longitudinal data
Chapter 9: Multilevel modeling with complex survey data
Chapter 10: Multilevel mixture modeling

Chapter 11: Missing data modeling and Bayesian analysis
Chapter 12: Monte Carlo simulation studies

Chapter 13: Special features

The Mplus Base program covers the analyses described in Chapters 3, 5,
6, 11, 13, and parts of Chapters 4 and 12. The Mplus Base program does
not include analyses with TYPE=MIXTURE, TYPE=TWOLEVEL,
TYPE=THREELEVEL, or TYPE=CROSSCLASSIFIED.

The Mplus Base and Mixture Add-On program covers the analyses
described in Chapters 3, 5, 6, 7, 8, 11, 13, and parts of Chapters 4 and
12. The Mplus Base and Mixture Add-On program does not include
analyses with TYPE=TWOLEVEL, TYPE=THREELEVEL, or
TYPE=CROSSCLASSIFIED.

17
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The Mplus Base and Multilevel Add-On program covers the analyses
described in Chapters 3, 5, 6, 9, 11, 13, and parts of Chapters 4 and 12.
The Mplus Base and Multilevel Add-On program does not include
analyses with TYPE=MIXTURE.

The Mplus Base and Combination Add-On program covers the analyses
described in all chapters. There are no restrictions on the analyses that
can be requested.
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CHAPTER 3
EXAMPLES: REGRESSION AND
PATH ANALYSIS

Regression analysis with univariate or multivariate dependent variables
is a standard procedure for modeling relationships among observed
variables. Path analysis allows the simultaneous modeling of several
related regression relationships. In path analysis, a variable can be a
dependent variable in one relationship and an independent variable in
another. These variables are referred to as mediating variables. For both
types of analyses, observed dependent variables can be continuous,
censored, binary, ordered categorical (ordinal), counts, or combinations
of these variable types. In addition, for regression analysis and path
analysis for non-mediating variables, observed dependent variables can
be unordered categorical (nominal).

For continuous dependent variables, linear regression models are used.
For censored dependent variables, censored-normal regression models
are used, with or without inflation at the censoring point. For binary and
ordered categorical dependent variables, probit or logistic regression
models are used. Logistic regression for ordered categorical dependent
variables uses the proportional odds specification. For unordered
categorical dependent variables, multinomial logistic regression models
are used. For count dependent variables, Poisson regression models are
used, with or without inflation at the zero point. Both maximum
likelihood and weighted least squares estimators are available.

All regression and path analysis models can be estimated using the
following special features:

Single or multiple group analysis

Missing data

Complex survey data

Random slopes

Linear and non-linear parameter constraints

Indirect effects including specific paths

Maximum likelihood estimation for all outcome types
Bootstrap standard errors and confidence intervals
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o Wald chi-square test of parameter equalities

For continuous, censored with weighted least squares estimation, binary,
and ordered categorical (ordinal) outcomes, multiple group analysis is
specified by using the GROUPING option of the VARIABLE command
for individual data or the NGROUPS option of the DATA command for
summary data. For censored with maximum likelihood estimation,
unordered categorical (nominal), and count outcomes, multiple group
analysis is specified using the KNOWNCLASS option of the
VARIABLE command in conjunction with the TYPE=MIXTURE
option of the ANALYSIS command. The default is to estimate the
model under missing data theory using all available data. The
LISTWISE option of the DATA command can be used to delete all
observations from the analysis that have missing values on one or more
of the analysis variables. Corrections to the standard errors and chi-
square test of model fit that take into account stratification, non-
independence of observations, and unequal probability of selection are
obtained by using the TYPE=COMPLEX option of the ANALYSIS
command in conjunction with the STRATIFICATION, CLUSTER, and
WEIGHT  options of the VARIABLE command. The
SUBPOPULATION option is used to select observations for an analysis
when a subpopulation (domain) is analyzed. Random slopes are
specified by using the | symbol of the MODEL command in conjunction
with the ON option of the MODEL command. Linear and non-linear
parameter constraints are specified by wusing the MODEL
CONSTRAINT command. Indirect effects are specified by using the
MODEL INDIRECT command. Maximum likelihood estimation is
specified by using the ESTIMATOR option of the ANALYSIS
command. Bootstrap standard errors are obtained by using the
BOOTSTRAP option of the ANALYSIS command.  Bootstrap
confidence intervals are obtained by using the BOOTSTRAP option of
the ANALYSIS command in conjunction with the CINTERVAL option
of the OUTPUT command. The MODEL TEST command is used to test
linear restrictions on the parameters in the MODEL and MODEL
CONSTRAINT commands using the Wald chi-square test.

Graphical displays of observed data and analysis results can be obtained
using the PLOT command in conjunction with a post-processing
graphics module. The PLOT command provides histograms,
scatterplots, plots of individual observed and estimated values, and plots
of sample and estimated means and proportions/probabilities. These are
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available for the total sample, by group, by class, and adjusted for
covariates. The PLOT command includes a display showing a set of
descriptive statistics for each variable. The graphical displays can be
edited and exported as a DIB, EMF, or JPEG file. In addition, the data
for each graphical display can be saved in an external file for use by
another graphics program.

Following is the set of regression examples included in this chapter:

3.1: Linear regression

3.2: Censored regression

3.3: Censored-inflated regression

3.4: Probit regression

3.5: Logistic regression

3.6: Multinomial logistic regression

3.7: Poisson regression

3.8: Zero-inflated Poisson and negative binomial regression
3.9: Random coefficient regression

3.10: Non-linear constraint on the logit parameters of an unordered
categorical (nominal) variable

Following is the set of path analysis examples included in this chapter:

3.11: Path analysis with continuous dependent variables

3.12: Path analysis with categorical dependent variables

3.13: Path analysis with categorical dependent variables using the
Theta parameterization

3.14: Path analysis with a combination of continuous and
categorical dependent variables

3.15: Path analysis with a combination of censored, categorical, and
unordered categorical (nominal) dependent variables

3.16: Path analysis with continuous dependent variables,
bootstrapped standard errors, indirect effects, and confidence
intervals

3.17: Path analysis with a categorical dependent variable and a
continuous mediating variable with missing data*

3.18: Moderated mediation with a plot of the indirect effect
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* Example uses numerical integration in the estimation of the model.
This can be computationally demanding depending on the size of the
problem.

EXAMPLE 3.1: LINEAR REGRESSION

22

TITLE: this is an example of a linear regression
for a continuous observed dependent
variable with two covariates

DATA: FILE IS ex3.1l.dat;

VARIABLE: NAMES ARE yl-y6 xl-x4;

USEVARIABLES ARE vyl x1 x3;

MODEL: yl ON x1 x3;

In this example, a linear regression is estimated.

TITLE: this is an example of a linear regression
for a continuous observed dependent
variable with two covariates

The TITLE command is used to provide a title for the analysis. The title
is printed in the output just before the Summary of Analysis.

DATA: FILE IS ex3.l.dat;

The DATA command is used to provide information about the data set
to be analyzed. The FILE option is used to specify the name of the file
that contains the data to be analyzed, ex3.1.dat. Because the data set is
in free format, the default, a FORMAT statement is not required.

VARIABLE: NAMES ARE yl-y6 x1-x4;
USEVARIABLES ARE yl x1 x3;

The VARIABLE command is used to provide information about the
variables in the data set to be analyzed. The NAMES option is used to
assign names to the variables in the data set. The data set in this
example contains ten variables: y1, y2, y3, y4, y5, y6, X1, X2, x3, and
x4. Note that the hyphen can be used as a convenience feature in order
to generate a list of names. If not all of the variables in the data set are
used in the analysis, the USEVARIABLES option can be used to select a
subset of variables for analysis. Here the variables y1, x1, and x3 have



Examples: Regression And Path Analysis

been selected for analysis. Because the scale of the dependent variable
is not specified, it is assumed to be continuous.

MODEL : yl ON x1 x3;

The MODEL command is used to describe the model to be estimated.
The ON statement describes the linear regression of y1 on the covariates
x1 and x3. It is not necessary to refer to the means, variances, and
covariances among the x variables in the MODEL command because the
parameters of the x variables are not part of the model estimation.
Because the model does not impose restrictions on the parameters of the
X variables, these parameters can be estimated separately as the sample
values. The default estimator for this type of analysis is maximum
likelihood. The ESTIMATOR option of the ANALYSIS command can
be used to select a different estimator.

EXAMPLE 3.2: CENSORED REGRESSION

TITLE: this is an example of a censored
regression for a censored dependent
variable with two covariates

DATA: FILE IS ex3.2.dat;

VARIABLE: NAMES ARE yl-y6 xl1-x4;

USEVARIABLES ARE vyl x1 x3;
CENSORED ARE vyl (b);
ANALYSIS: ESTIMATOR = MLR;
MODEL: yl ON x1 x3;

The difference between this example and Example 3.1 is that the
dependent variable is a censored variable instead of a continuous
variable. The CENSORED option is used to specify which dependent
variables are treated as censored variables in the model and its
estimation, whether they are censored from above or below, and whether
a censored or censored-inflated model will be estimated. In the example
above, yl is a censored variable. The b in parentheses following y1
indicates that y1 is censored from below, that is, has a floor effect, and
that the model is a censored regression model. The censoring limit is
determined from the data. The default estimator for this type of analysis
is a robust weighted least squares estimator. By specifying
ESTIMATOR=MLR, maximum likelihood estimation with robust
standard errors is used. The ON statement describes the censored
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regression of y1 on the covariates x1 and x3. An explanation of the
other commands can be found in Example 3.1.

EXAMPLE 3.3: CENSORED-INFLATED REGRESSION
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TITLE: this is an example of a censored-inflated
regression for a censored dependent
variable with two covariates

DATA: FILE IS ex3.3.dat;

VARIABLE: NAMES ARE yl-y6 xl-x4;

USEVARIABLES ARE vyl x1 x3;
CENSORED ARE yl1 (bi);

MODEL: yl ON x1 x3;

y1l#1 ON x1 x3;

The difference between this example and Example 3.1 is that the
dependent variable is a censored variable instead of a continuous
variable. The CENSORED option is used to specify which dependent
variables are treated as censored variables in the model and its
estimation, whether they are censored from above or below, and whether
a censored or censored-inflated model will be estimated. In the example
above, y1 is a censored variable. The bi in parentheses following y1
indicates that y1 is censored from below, that is, has a floor effect, and
that a censored-inflated regression model will be estimated. The
censoring limit is determined from the data.

With a censored-inflated model, two regressions are estimated. The first
ON statement describes the censored regression of the continuous part of
y1 on the covariates x1 and x3. This regression predicts the value of the
censored dependent variable for individuals who are able to assume
values of the censoring point and above. The second ON statement
describes the logistic regression of the binary latent inflation variable
y1#1 on the covariates x1 and x3.  This regression predicts the
probability of being unable to assume any value except the censoring
point. The inflation variable is referred to by adding to the name of the
censored variable the number sign (#) followed by the number 1. The
default estimator for this type of analysis is maximum likelihood with
robust standard errors. The ESTIMATOR option of the ANALYSIS
command can be used to select a different estimator. An explanation of
the other commands can be found in Example 3.1.
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EXAMPLE 3.4: PROBIT REGRESSION

TITLE: this is an example of a probit regression
for a binary or categorical observed
dependent variable with two covariates

DATA: FILE IS ex3.4.dat;

VARIABLE: NAMES ARE ul-u6 x1-x4;

USEVARIABLES ARE ul x1 x3;
CATEGORICAL = ul;
MODEL : ul ON x1 x3;

The difference between this example and Example 3.1 is that the
dependent variable is a binary or ordered categorical (ordinal) variable
instead of a continuous variable. The CATEGORICAL option is used to
specify which dependent variables are treated as binary or ordered
categorical (ordinal) variables in the model and its estimation. In the
example above, ul is a binary or ordered categorical variable. The
program determines the number of categories. The ON statement
describes the probit regression of ul on the covariates x1 and x3. The
default estimator for this type of analysis is a robust weighted least
squares estimator. The ESTIMATOR option of the ANALYSIS
command can be used to select a different estimator. An explanation of
the other commands can be found in Example 3.1.

EXAMPLE 3.5: LOGISTIC REGRESSION

TITLE: this is an example of a logistic
regression for a categorical observed
dependent variable with two covariates

DATA: FILE IS ex3.5.dat;

VARIABLE: NAMES ARE ul-u6 xl-x4;

USEVARIABLES ARE ul x1 x3;
CATEGORICAL IS ul;
ANALYSIS: ESTIMATOR = ML;
MODEL: ul ON x1 x3;

The difference between this example and Example 3.1 is that the
dependent variable is a binary or ordered categorical (ordinal) variable
instead of a continuous variable. The CATEGORICAL option is used to
specify which dependent variables are treated as binary or ordered
categorical (ordinal) variables in the model and its estimation. In the
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example above, ul is a binary or ordered categorical variable. The
program determines the number of categories. By specifying
ESTIMATOR=ML, a logistic regression will be estimated. The ON
statement describes the logistic regression of ul on the covariates x1 and
x3. An explanation of the other commands can be found in Example 3.1.

EXAMPLE 3.6: MULTINOMIAL LOGISTIC REGRESSION
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TITLE: this is an example of a multinomial
logistic regression for an unordered
categorical (nominal) dependent variable
with two covariates

DATA: FILE IS ex3.6.dat;

VARIABLE: NAMES ARE ul-u6 x1-x4;

USEVARIABLES ARE ul x1 x3;
NOMINAL IS ul;
MODEL: ul ON x1 x3;

The difference between this example and Example 3.1 is that the
dependent variable is an unordered categorical (nominal) variable
instead of a continuous variable. The NOMINAL option is used to
specify which dependent variables are treated as unordered categorical
variables in the model and its estimation. In the example above, ul is a
three-category unordered variable. The program determines the number
of categories. The ON statement describes the multinomial logistic
regression of ul on the covariates x1 and x3 when comparing categories
one and two of ul to the third category of ul. The intercept and slopes
of the last category are fixed at zero as the default. The default estimator
for this type of analysis is maximum likelihood with robust standard
errors. The ESTIMATOR option of the ANALYSIS command can be
used to select a different estimator. An explanation of the other
commands can be found in Example 3.1.

Following is an alternative specification of the multinomial logistic
regression of ul on the covariates x1 and x3:

ul#1 ul#2 ON x1 x3;
where ul#1l refers to the first category of ul and ul#2 refers to the

second category of ul. The categories of an unordered categorical
variable are referred to by adding to the name of the unordered




Examples: Regression And Path Analysis

categorical variable the number sign (#) followed by the number of the
category. This alternative specification allows individual parameters to
be referred to in the MODEL command for the purpose of giving starting
values or placing restrictions.

EXAMPLE 3.7: POISSON REGRESSION

TITLE: this is an example of a Poisson regression
for a count dependent variable with two
covariates

DATA: FILE IS ex3.7.dat;

VARIABLE: NAMES ARE ul-u6 x1-x4;
USEVARIABLES ARE ul x1 x3;
COUNT IS ul;

MODEL: ul ON x1 x3;

The difference between this example and Example 3.1 is that the
dependent variable is a count variable instead of a continuous variable.
The COUNT option is used to specify which dependent variables are
treated as count variables in the model and its estimation and whether a
Poisson or zero-inflated Poisson model will be estimated. In the
example above, ul is a count variable that is not inflated. The ON
statement describes the Poisson regression of ul on the covariates x1
and x3. The default estimator for this type of analysis is maximum
likelihood with robust standard errors. The ESTIMATOR option of the
ANALYSIS command can be used to select a different estimator. An
explanation of the other commands can be found in Example 3.1.
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EXAMPLE 3.8: ZERO-INFLATED POISSON AND NEGATIVE
BINOMIAL REGRESSION

TITLE: this is an example of a zero-inflated
Poisson regression for a count dependent
variable with two covariates

DATA: FILE IS ex3.8a.dat;

VARIABLE: NAMES ARE ul-u6 x1-x4;

USEVARIABLES ARE ul x1 x3;
COUNT IS ul (1);

MODEL: ul ON x1 x3;

ul#l ON x1 x3;

The difference between this example and Example 3.1 is that the
dependent variable is a count variable instead of a continuous variable.
The COUNT option is used to specify which dependent variables are
treated as count variables in the model and its estimation and whether a
Poisson or zero-inflated Poisson model will be estimated. In the first
part of this example, a zero-inflated Poisson regression is estimated. In
the example above, ul is a count variable. The i in parentheses
following ul indicates that a zero-inflated Poisson model will be
estimated. In the second part of this example, a negative binomial model
is estimated.

With a zero-inflated Poisson model, two regressions are estimated. The
first ON statement describes the Poisson regression of the count part of
ul on the covariates x1 and x3. This regression predicts the value of the
count dependent variable for individuals who are able to assume values
of zero and above. The second ON statement describes the logistic
regression of the binary latent inflation variable ul#1 on the covariates
x1 and x3. This regression predicts the probability of being unable to
assume any value except zero. The inflation variable is referred to by
adding to the name of the count variable the number sign (#) followed by
the number 1. The default estimator for this type of analysis is
maximum likelihood with robust standard errors. The ESTIMATOR
option of the ANALYSIS command can be used to select a different
estimator. An explanation of the other commands can be found in
Example 3.1.

An alternative way of specifying this model is presented in Example
7.25. In Example 7.25, a categorical latent variable with two classes is
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used to represent individuals who are able to assume values of zero and
above and individuals who are unable to assume any value except zero.
This approach allows the estimation of the probability of being in each
class and the posterior probabilities of being in each class for each
individual.

TITLE: this is an example of a negative binomial
model for a count dependent variable with
two covariates

DATA: FILE IS ex3.8b.dat;

VARIABLE: NAMES ARE ul-u6 x1-x4;

USEVARIABLES ARE ul x1 x3;
COUNT IS ul (nb);
MODEL: ul ON x1 x3;

The difference between this part of the example and the first part is that
a regression for a count outcome using a negative binomial model is
estimated instead of a zero-inflated Poisson model. The negative
binomial model estimates a dispersion parameter for each of the
outcomes (Long, 1997; Hilbe, 2011).

The COUNT option is used to specify which dependent variables are
treated as count variables in the model and its estimation and which type
of model is estimated. The nb in parentheses following ul indicates that
a negative binomial model will be estimated. The dispersion parameter
can be referred to using the name of the count variable. An explanation
of the other commands can be found in the first part of this example and
in Example 3.1.

EXAMPLE 3.9: RANDOM COEFFICIENT REGRESSION

TITLE: this is an example of a random coefficient
regression

DATA: FILE IS ex3.9.dat;

VARIABLE: NAMES ARE y x1 x2;

DEFINE: CENTER x1 x2 (GRANDMEAN) ;

ANALYSIS: TYPE = RANDOM;

MODEL: s | y ON x1;
s WITH y;
y s ON x2;
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x1 ® Yy F\
(s )

In this example a regression with random coefficients shown in the
picture above is estimated. Random coefficient regression uses random
slopes to model heterogeneity in the residual variance as a function of a
covariate that has a random slope (Hildreth & Houck, 1968; Johnston,
1984). The s shown in a circle represents the random slope. The broken
arrow from s to the arrow from x1 to y indicates that the slope in this
regression is random. The random slope is predicted by the covariate
X2.

The CENTER option is used to specify the type of centering to be used
in an analysis and the variables that will be centered. Centering
facilitates the interpretation of the results. In this example, the
covariates are centered using the grand means, that is, the sample means
of x1 and x2 are subtracted from the values of the covariates x1 and x2.
The TYPE option is used to describe the type of analysis that is to be
performed.

By selecting RANDOM, a model with random slopes will be estimated.
The | symbol is used in conjunction with TYPE=RANDOM to name and
define the random slope variables in the model. The name on the left-
hand side of the | symbol names the random slope variable. The
statement on the right-hand side of the | symbol defines the random slope
variable. The random slope s is defined by the linear regression of y on
the covariate x1. The residual variance in the regression of y on X is
estimated as the default. The residual covariance between s and y is
fixed at zero as the default. The WITH statement is used to free this
parameter. The ON statement describes the linear regressions of the
dependent variable y and the random slope s on the covariate x2. The
default estimator for this type of analysis is maximum likelihood with
robust standard errors. The estimator option of the ANALYSIS



Examples: Regression And Path Analysis

command can be used to select a different estimator. An explanation of
the other commands can be found in Example 3.1.

EXAMPLE 3.10: NON-LINEAR CONSTRAINT ON THE LOGIT
PARAMETERS OF AN UNORDERED CATEGORICAL
(NOMINAL) VARIABLE

TITLE: this is an example of non-linear
constraint on the logit parameters of an
unordered categorical (nominal) variable

DATA: FILE IS ex3.10.dat;

VARIABLE: NAMES ARE u;

NOMINAL = u;

MODEL : [u#l] (pl):;
[u#2] (p2);
[u#3] (p2);
MODEIL, CONSTRAINT:
p2 = log ((exp (pl) - 1)/2 - 1);

In this example, theory specifies the following probabilities for the four
categories of an unordered categorical (nominal) variable: Y2 + % p, Y4
(1-p), Y (1-p), ¥a p, where p is a probability parameter to be estimated.
These restrictions on the category probabilities correspond to non-linear
constraints on the logit parameters for the categories in the multinomial
logistic model. This example is based on Dempster, Laird, and Rubin
(1977, p. 2).

The NOMINAL option is used to specify which dependent variables are
treated as unordered categorical (nominal) variables in the model and its
estimation. In the example above, u is a four-category unordered
variable. The program determines the number of categories.  The
categories of an unordered categorical variable are referred to by adding
to the name of the unordered categorical variable the number sign (#)
followed by the number of the category. In this example, u#1 refers to
the first category of u, u#2 refers to the second category of u, and u#3
refers to the third category of u.

In the MODEL command, parameters are given labels by placing a name
in parentheses after the parameter. The logit parameter for category one
is referred to as p1; the logit parameter for category two is referred to as
p2; and the logit parameter for category three is also referred to as p2.
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When two parameters are referred to using the same label, they are held
equal. The MODEL CONSTRAINT command is used to define linear
and non-linear constraints on the parameters in the model. The non-
linear constraint for the logits follows from the four probabilities given
above after some algebra. The default estimator for this type of analysis
is maximum likelihood with robust standard errors. The ESTIMATOR
option of the ANALYSIS command can be used to select a different
estimator. An explanation of the other commands can be found in
Example 3.1.

EXAMPLE 3.11: PATH ANALYSIS WITH CONTINUOUS

DEPENDENT VARIABLES
TITLE: this is an example of a path analysis
with continuous dependent variables
DATA: FILE IS ex3.1ll.dat;
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VARIABLE: NAMES ARE yl-y6 xl-x4;
USEVARIABLES ARE yl-y3 x1-x3;
MODEL: yl y2 ON x1 x2 x3;
y3 ON vyl y2 x2;

x1

N

x3

In this example, the path analysis model shown in the picture above is
estimated. The dependent variables in the analysis are continuous. Two
of the dependent variables yl and y2 mediate the effects of the
covariates x1, x2, and x3 on the dependent variable y3.
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The first ON statement describes the linear regressions of y1 and y2 on
the covariates x1, x2, and x3. The second ON statement describes the
linear regression of y3 on the mediating variables y1 and y2 and the
covariate x2. The residual variances of the three dependent variables are
estimated as the default. The residuals are not correlated as the default.
As in regression analysis, it is not necessary to refer to the means,
variances, and covariances among the x variables in the MODEL
command because the parameters of the x variables are not part of the
model estimation. Because the model does not impose restrictions on
the parameters of the x variables, these parameters can be estimated
separately as the sample values. The default estimator for this type of
analysis is maximum likelihood. The ESTIMATOR option of the
ANALYSIS command can be used to select a different estimator. An
explanation of the other commands can be found in Example 3.1.

EXAMPLE 3.12: PATH ANALYSIS WITH CATEGORICAL
DEPENDENT VARIABLES

TITLE: this is an example of a path analysis
with categorical dependent variables
DATA: FILE IS ex3.12.dat;

VARIABLE: NAMES ARE ul-u6 x1-x4;
USEVARIABLES ARE ul-u3 x1-x3;
CATEGORICAL ARE ul-u3;

MODEL: ul u2 ON x1 x2 x3;
u3 ON ul u2 x2;

The difference between this example and Example 3.11 is that the
dependent variables are binary and/or ordered categorical (ordinal)
variables instead of continuous variables. The CATEGORICAL option
is used to specify which dependent variables are treated as binary or
ordered categorical (ordinal) variables in the model and its estimation.
In the example above, ul, u2, and u3 are binary or ordered categorical
variables. The program determines the number of categories for each
variable. The first ON statement describes the probit regressions of ul
and u2 on the covariates x1, x2, and x3. The second ON statement
describes the probit regression of u3 on the mediating variables ul and
u2 and the covariate x2. The default estimator for this type of analysis is
a robust weighted least squares estimator. The ESTIMATOR option of
the ANALYSIS command can be used to select a different estimator. If
the maximum likelihood estimator is selected, the regressions are
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logistic regressions. An explanation of the other commands can be
found in Example 3.1.

EXAMPLE 3.13: PATH ANALYSIS WITH CATEGORICAL
DEPENDENT VARIABLES USING THE THETA
PARAMETERIZATION

TITLE: this is an example of a path analysis
with categorical dependent variables using
the Theta parameterization
DATA: FILE IS ex3.13.dat;
VARIABLE: NAMES ARE ul-u6 xl-x4;
USEVARIABLES ARE ul-u3 x1-x3;
CATEGORICAL ARE ul-u3;
ANALYSIS: PARAMETERIZATION = THETA;
MODEL: ul u2 ON x1 x2 x3;
u3 ON ul u2 x2;

The difference between this example and Example 3.12 is that the Theta
parameterization is used instead of the default Delta parameterization.
In the Delta parameterization, scale factors for continuous latent
response variables of observed categorical dependent variables are
allowed to be parameters in the model, but residual variances for
continuous latent response variables are not. In the Theta
parameterization, residual variances for continuous latent response
variables of observed categorical dependent variables are allowed to be
parameters in the model, but scale factors for continuous latent response
variables are not. An explanation of the other commands can be found
in Examples 3.1 and 3.12.
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EXAMPLE 3.14: PATH ANALYSIS WITH A COMBINATION
OF CONTINUOUS AND CATEGORICAL DEPENDENT

VARIABLES

TITLE: this is an example of a path analysis
with a combination of continuous and
categorical dependent variables

DATA: FILE IS ex3.14.dat;

VARIABLE: NAMES ARE yl y2 ul y4-y6 xl1-x4;
USEVARIABLES ARE yl-ul x1-x3;
CATEGORICAL IS ul;

MODEL: yl y2 ON x1 x2 x3;
ul ON yl y2 x2;

The difference between this example and Example 3.11 is that the
dependent variables are a combination of continuous and binary or
ordered categorical (ordinal) variables instead of all continuous
variables. The CATEGORICAL option is used to specify which
dependent variables are treated as binary or ordered categorical (ordinal)
variables in the model and its estimation. In the example above, y1 and
y2 are continuous variables and ul is a binary or ordered categorical
variable. The program determines the number of categories. The first
ON statement describes the linear regressions of yl and y2 on the
covariates x1, x2, and x3. The second ON statement describes the probit
regression of ul on the mediating variables y1 and y2 and the covariate
x2. The default estimator for this type of analysis is a robust weighted
least squares estimator. The ESTIMATOR option of the ANALYSIS
command can be used to select a different estimator. If a maximum
likelihood estimator is selected, the regression for ul is a logistic
regression. An explanation of the other commands can be found in
Example 3.1.
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EXAMPLE 3.15: PATH ANALYSIS WITH A COMBINATION
OF CENSORED, CATEGORICAL, AND UNORDERED
CATEGORICAL (NOMINAL) DEPENDENT VARIABLES

TITLE: this is an example of a path analysis
with a combination of censored,
categorical, and unordered categorical
(nominal) dependent variables

DATA: FILE IS ex3.15.dat;

VARIABLE: NAMES ARE yl ul u2 y4-y6 xl-x4;
USEVARIABLES ARE yl-u2 x1-x3;
CENSORED IS yl (a);

CATEGORICAL IS ul;
NOMINAL IS u2;

MODEL: yl ul ON x1 x2 x3;

uz2 ON yl ul x2;

The difference between this example and Example 3.11 is that the
dependent variables are a combination of censored, binary or ordered
categorical (ordinal), and unordered categorical (nominal) variables
instead of continuous variables. The CENSORED option is used to
specify which dependent variables are treated as censored variables in
the model and its estimation, whether they are censored from above or
below, and whether a censored or censored-inflated model will be
estimated. In the example above, y1 is a censored variable. The a in
parentheses following y1 indicates that y1 is censored from above, that
is, has a ceiling effect, and that the model is a censored regression
model.  The censoring limit is determined from the data. The
CATEGORICAL option is used to specify which dependent variables
are treated as binary or ordered categorical (ordinal) variables in the
model and its estimation. In the example above, ul is a binary or
ordered categorical variable. The program determines the number of
categories. The NOMINAL option is used to specify which dependent
variables are treated as unordered categorical (nominal) variables in the
model and its estimation. In the example above, u2 is a three-category
unordered variable. The program determines the number of categories.

The first ON statement describes the censored regression of y1 and the
logistic regression of ul on the covariates x1, x2, and x3. The second
ON statement describes the multinomial logistic regression of u2 on the
mediating variables y1 and ul and the covariate x2 when comparing
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categories one and two of u2 to the third category of u2. The intercept
and slopes of the last category are fixed at zero as the default. The
default estimator for this type of analysis is maximum likelihood with
robust standard errors. The ESTIMATOR option of the ANALYSIS
command can be used to select a different estimator. An explanation of
the other commands can be found in Example 3.1.

Following is an alternative specification of the multinomial logistic
regression of u2 on the mediating variables y1 and ul and the covariate
X2:

u2#1 u2#2 ON y1 ul x2;

where u2#1 refers to the first category of u2 and u2#2 refers to the
second category of u2. The categories of an unordered categorical
variable are referred to by adding to the name of the unordered
categorical variable the number sign (#) followed by the number of the
category. This alternative specification allows individual parameters to
be referred to in the MODEL command for the purpose of giving starting
values or placing restrictions.

EXAMPLE 3.16: PATH ANALYSIS WITH CONTINUOUS
DEPENDENT VARIABLES, BOOTSTRAPPED STANDARD
ERRORS, INDIRECT EFFECTS, AND NON-SYMMETRIC
BOOTSTRAP CONFIDENCE INTERVALS

TITLE: this is an example of a path analysis
with continuous dependent variables,
bootstrapped standard errors, indirect
effects, and non-symmetric bootstrap
confidence intervals

DATA: FILE IS ex3.1l6.dat;

VARIABLE: NAMES ARE yl-y6 xl1-x4;

USEVARIABLES ARE yl-y3 x1-x3;

ANALYSIS: BOOTSTRAP = 1000;

MODEL: vyl y2 ON x1 x2 x3;
y3 ON vyl y2 x2;

MODEL INDIRECT:
y3 IND yl x1;
y3 IND y2 x1;

OUTPUT : CINTERVAL (BOOTSTRAP) ;
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The difference between this example and Example 3.11 is that
bootstrapped standard errors, indirect effects, and non-symmetric
bootstrap confidence intervals are requested. The BOOTSTRAP option
is used to request bootstrapping and to specify the number of bootstrap
draws to be used in the computation. When the BOOTSTRAP option is
used alone, bootstrap standard errors of the model parameter estimates
are obtained. When the BOOTSTRAP option is used in conjunction
with the CINTERVAL(BOOTSTRAP) option of the OUTPUT
command, bootstrap standard errors of the model parameter estimates
and non-symmetric bootstrap confidence intervals for the model
parameter estimates are obtained. The BOOTSTRAP option can be used
in conjunction with the MODEL INDIRECT command to obtain
bootstrap standard errors for indirect effects. When both MODEL
INDIRECT and CINTERVAL(BOOTSTRAP) are used, bootstrapped
standard errors and bootstrap confidence intervals are obtained for the
indirect effects. By selecting BOOTSTRAP=1000, bootstrapped
standard errors will be computed using 1000 draws.

The MODEL INDIRECT command is used to request indirect effects
and their standard errors. Total indirect, specific indirect, and total
effects are obtained using the IND and VIA options of the MODEL
INDIRECT command. The IND option is used to request a specific
indirect effect or a set of indirect effects. In the IND statements above,
the variable on the left-hand side of IND is the dependent variable. The
last variable on the right-hand side of IND is the independent variable.
Other variables on the right-hand side of IND are mediating variables.
The first IND statement requests the specific indirect effect from x1 to
y1 to y3. The second IND statement requests the specific indirect effect
from x1 to y2 to y3. Total effects are computed for all IND statements
that start and end with the same variables. An explanation of the other
commands can be found in Examples 3.1 and 3.11.
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EXAMPLE 3.17: PATH ANALYSIS WITH A CATEGORICAL
DEPENDENT VARIABLE AND A CONTINUOUS MEDIATING
VARIABLE WITH MISSING DATA

TITLE: this is an example of a path analysis
with a categorical dependent variable and
a continuous mediating variable with
missing data

DATA: FILE IS ex3.17.dat;

VARIABLE: NAMES ARE u y Xx;
CATEGORICAL IS u;
MISSING IS y (999);

ANALYSIS: ESTIMATOR = MLR;
INTEGRATION = MONTECARLO;

MODEL: y ON x;
u ON y x;
OUTPUT : TECH1 TECHS;

In this example, the dependent variable is binary or ordered categorical
(ordinal) and the continuous mediating variable has missing values. The
CATEGORICAL option is used to specify which dependent variables
are treated as binary or ordered categorical (ordinal) variables in the
model and its estimation. In the example above, u is a binary or ordered
categorical variable. The program determines the number of categories.
The MISSING option is used to identify the values or symbols in the
analysis data set that will be treated as missing or invalid. In this
example, the number 999 is the missing value flag. By specifying
ESTIMATOR=MLR, a maximum likelihood estimator with robust
standard errors using a numerical integration algorithm will be used.
Note that numerical integration becomes increasingly more
computationally demanding as the number of mediating variables with
missing data and the sample size increase. In this example, Monte Carlo
integration with 500 integration points is used. The ESTIMATOR
option can be used to select a different estimator.

The first ON statement describes the linear regression of y on the
covariate x. The second ON statement describes the logistic regression
of u on the mediating variable y and the covariate x. The OUTPUT
command is used to request additional output not included as the default.
The TECHL1 option is used to request the arrays containing parameter
specifications and starting values for all free parameters in the model.
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The TECHS option is used to request that the optimization history in
estimating the model be printed in the output. TECHS is printed to the
screen during the computations as the default. TECHS screen printing is
useful for determining how long the analysis takes. An explanation of
the other commands can be found in Example 3.1.

EXAMPLE 3.18: MODERATED MEDIATION WITH APLOT
OF THE INDIRECT EFFECT
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TITLE: this is an example of moderated mediation
with a plot of the indirect effect
DATA: FILE = ex3.18.dat;

VARIABLE: NAMES = y m X ZzZ;
USEVARIABLES = y m X zZ XZ;

DEFINE: Xz = x*z;

ANALYSIS: ESTIMATOR = BAYES;
PROCESSORS = 2;

BITERATIONS = (30000) ;
MODEL: y ON m (b)
R BE

m ON x (gammal)

Z

xz (gamma?2) ;
MODEL CONSTRAINT :

PLOT (indirect) ;

LOOP (mod,-2,2,0.1) ;

indirect = b* (gammal+gamma?2*mod) ;
PLOT : TYPE = PLOT2;

OUTPUT: TECHS;

In this example, a moderated mediation analysis with a plot of the
indirect effect is carried out (Preacher, Rucker, & Hayes, 2007). The
variable z moderates the relationship between the mediator m and the
covariate x. The DEFINE command is used to create the variable xz
which is the interaction between the moderator z and the covariate x.
The variable xz must be included on the USEVARIABLES list after the
original variables in order to be used in the analysis.

By specifying ESTIMATOR=BAYES, a Bayesian analysis will be
carried out. In Bayesian estimation, the default is to use two
independent Markov chain Monte Carlo (MCMC) chains. If multiple
processors are available, using PROCESSORS=2 will speed up
computations. The BITERATIONS option is used to specify the
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maximum and minimum number of iterations for each Markov chain
Monte Carlo (MCMC) chain when the potential scale reduction (PSR)
convergence criterion (Gelman & Rubin, 1992) is used. Using a number
in parentheses, the BITERATIONS option specifies that a minimum of
30,000 and a maximum of the default of 50,000 iterations will be used.
The large minimum value is chosen to obtain a smooth plot.

In the MODEL command, the first ON statement describes the linear
regression of y on the mediator m, the covariate x, and the moderator z.
The second ON statement describes the linear regression of the mediator
m on the covariate X, the moderator z, and the interaction xz. The
intercepts and residual variances of y and m are estimated and the
residuals are not correlated as the default.

In MODEL CONSTRAINT, the LOOP option is used in conjunction
with the PLOT option to create plots of variables. In this example, the
indirect effect defined in MODEL CONSTRAINT will be plotted. The
PLOT option names the variable that will be plotted on the y-axis. The
LOOP option names the variable that will be plotted on the x-axis, gives
the numbers that are the lower and upper values of the variable, and the
incremental value of the variable to be used in the computations. In this
example, the variable indirect will be on the y-axis and the variable mod
will be on the x-axis. The variable mod, as in moderation, varies over
the range of z that is of interest such as two standard deviations away
from its mean. Corresponding to the case of z being standardized, the
lower and upper values of mod are -2 and 2 and 0.1 is the incremental
value of mod to use in the computations. When mod appears in a
MODEL CONSTRAINT statement involving a new parameter, that
statement is evaluated for each value of mod specified by the LOOP
option. For example, the first value of mod is -2; the second value of
mod is -2 plus 0.1 or -1.9; the third value of mod is -1.9 plus 0.1 or -1.8;
the last value of mod is 2.

Using TYPE=PLOT?2 in the PLOT command, the plot of indirect and
mod can be viewed by choosing Loop plots from the Plot menu of the
Mplus Editor. The plot presents the computed values along with a 95%
confidence interval. For Bayesian estimation, the default is credibility
intervals of the posterior distribution with equal tail percentages. The
CINTERVAL option of the OUTPUT command can be used to obtain
credibility intervals of the posterior distribution that give the highest
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posterior density. An explanation of the other commands can be found
in Example 3.1.
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CHAPTER 4
EXAMPLES: EXPLORATORY
FACTOR ANALYSIS

Exploratory factor analysis (EFA) is used to determine the number of
continuous latent variables that are needed to explain the correlations
among a set of observed variables. The continuous latent variables are
referred to as factors, and the observed variables are referred to as factor
indicators. In EFA, factor indicators can be continuous, censored,
binary, ordered categorical (ordinal), counts, or combinations of these
variable types. EFA can also be carried out using exploratory structural
equation modeling (ESEM; Asparouhov & Muthén, 2009a) when factor
indicators are continuous, censored, binary, ordered categorical
(ordinal), and combinations of these variable types. ESEM examples are
shown under Confirmatory Factor Analysis in Chapter 5.

Several rotations are available using both orthogonal and oblique
procedures. The algorithms used in the rotations are described in
Jennrich and Sampson (1966), Browne (2001), Bernaards and Jennrich
(2005), Browne et al. (2004), and Jennrich and Bentler (2011, 2012).
Standard errors for the rotated solutions are available using algorithms
described in Jennrich (1973, 1974, 2007). Cudeck and O’Dell (1994)
discuss the benefits of standard errors for rotated solutions. Chi-square
difference testing comparing m-1 factors to m factors is carried out
automatically using scaling correction factors for MLM, MLR, and
WLSM and using the DIFFTEST option for WLSMV and MLMV.

All EFA models can be estimated using the following special features:

e Missing data
e Complex survey data
e  Mixture modeling

The default is to estimate the model under missing data theory using all
available data. The LISTWISE option of the DATA command can be
used to delete all observations from the analysis that have missing values
on one or more of the analysis variables. Corrections to the standard
errors and chi-square test of model fit that take into account
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stratification, non-independence of observations, and unequal probability
of selection are obtained by using the TYPE=COMPLEX option of the
ANALYSIS command in conjunction with the STRATIFICATION,
CLUSTER, and WEIGHT options of the VARIABLE command. The
SUBPOPULATION option is used to select observations for an analysis
when a subpopulation (domain) is analyzed.

Graphical displays of observed data and analysis results can be obtained
using the PLOT command in conjunction with a post-processing
graphics module. The PLOT command provides histograms,
scatterplots, plots of eigenvalues, individual observed and estimated
values, and plots of sample and estimated means and
proportions/probabilities. These are available for the total sample, by
group, by class, and adjusted for covariates. The PLOT command
includes adisplay showing a set of descriptive statistics for each
variable. The graphical displays can be edited and exported as a DIB,
EMF, or JPEG file. In addition, the data for each graphical display can
be saved in an external file for use by another graphics program.

Following is the set of EFA examples included in this chapter.

e 4.1: Exploratory factor analysis with continuous factor indicators

e 4.2: Exploratory factor analysis with categorical factor indicators

e 4.3: Exploratory factor analysis with continuous, censored,
categorical, and count factor indicators*

e 4.4: Exploratory factor mixture analysis with continuous latent class
indicators

e 4.5: Two-level exploratory factor analysis with continuous factor
indicators

e 4.6: Two-level exploratory factor analysis with both individual- and
cluster-level factor indicators

e 4.7: Bi-factor exploratory factor analysis with continuous factor
indicators

* Example uses numerical integration in the estimation of the model.
This can be computationally demanding depending on the size of the
problem.
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EXAMPLE 4.1: EXPLORATORY FACTOR ANALYSIS WITH
CONTINUOUS FACTOR INDICATORS

TITLE: this is an example of an exploratory
factor analysis with continuous factor
indicators

DATA: FILE IS ex4.la.dat;

VARIABLE: NAMES ARE yl-yl2;
ANALYSIS: TYPE = EFA 1 4;
OUTPUT: MODINDICES;

In the first part of this example, an exploratory factor analysis with
continuous factor indicators is carried out. Rotated solutions with
standard errors are obtained for each number of factors. Modification
indices are requested for the residual correlations. In the second part of
this example, the same exploratory factor analysis for four factors is
carried out using exploratory structural equation modeling (ESEM).

TITLE: this is an example of an exploratory
factor analysis with continuous factor
indicators

The TITLE command is used to provide a title for the analysis. The title
is printed in the output just before the Summary of Analysis.

DATA: FILE IS ex4.l.dat;

The DATA command is used to provide information about the data set
to be analyzed. The FILE option is used to specify the name of the file
that contains the data to be analyzed, ex4.1.dat. Because the data set is
in free format, the default, a FORMAT statement is not required.

VARIABLE: NAMES ARE yl-y12;

The VARIABLE command is used to provide information about the
variables in the data set to be analyzed. The NAMES option is used to
assign names to the variables in the data set. The data set in this
example contains 12 variables: yl1, y2, y3, y4, y5, y6, y7, y8, y9, y10,
y11, and y12. Note that the hyphen can be used as a convenience feature
in order to generate a list of names.
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ANALYSIS: TYPE = EFA 1 4;

The ANALYSIS command is used to describe the technical details of the
analysis. The TYPE option is used to describe the type of analysis that
is to be performed. By specifying TYPE=EFA, an exploratory factor
analysis will be carried out. The numbers following EFA give the lower
and upper limits on the number of factors to be extracted. The default
rotation is the oblique rotation of GEOMIN. The ROTATION option of
the ANALYSIS command can be used to select a different rotation. The
default estimator for this type of analysis is maximum likelihood. The
ESTIMATOR option of the ANALYSIS command can be used to select
a different estimator.

OUTPUT: MODINDICES;

The MODINDICES option is used with EFA to request modification
indices and expected parameter change indices for the residual
correlations which are fixed at zero in EFA.

TITLE: this is an example of an exploratory
factor analysis with continuous factor
indicators using exploratory structural
equation modeling (ESEM)

DATA: FILE IS ex4.lb.dat;
VARIABLE: NAMES ARE yl-yl2;
MODEL : f1-f4 BY yl-yl2 (*1);
OUTPUT : MODINDICES;

The difference between this part of the example and the first part is that
an exploratory factor analysis for four factors is carried out using
exploratory structural equation modeling (ESEM). In the MODEL
command, the BY statement specifies that the factors f1 through f4 are
measured by the continuous factor indicators y1 through y12. The label
1 following an asterisk (*) in parentheses following the BY statement is
used to indicate that f1, f2, f3, and 4 are a set of EFA factors. When no
rotation is specified using the ROTATION option of the ANALYSIS
command, the default obligue GEOMIN rotation is used. The intercepts
and residual variances of the factor indicators are estimated and the
residuals are not correlated as the default. The variances of the factors
are fixed at one as the default. The factors are correlated under the
default obligue GEOMIN rotation. The results are the same as for the
four-factor EFA in the first part of the example.
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EXAMPLE 4.2: EXPLORATORY FACTOR ANALYSIS WITH
CATEGORICAL FACTOR INDICATORS

TITLE: this is an example of an exploratory
factor analysis with categorical factor
indicators

DATA: FILE IS ex4.2.dat;

VARIABLE: NAMES ARE ul-ul2;
CATEGORICAL ARE ul-ul2;
ANALYSIS: TYPE = EFA 1 4;

The difference between this example and Example 4.1 is that the factor
indicators are binary or ordered categorical (ordinal) variables instead of
continuous variables. Estimation of factor analysis models with binary
variables is discussed in Muthén (1978) and Muthén et al. (1997). The
CATEGORICAL option is used to specify which dependent variables
are treated as binary or ordered categorical (ordinal) variables in the
model and its estimation. In the example above, all twelve factor
indicators are binary or ordered categorical variables. Categorical
variables can be binary or ordered categorical. The program determines
the number of categories for each variable. The default estimator for
this type of analysis is a robust weighted least squares estimator. The
ESTIMATOR option of the ANALYSIS command can be used to select
a different estimator. With maximum likelihood estimation, numerical
integration is used with one dimension of integration for each factor. To
reduce computational time with several factors, the number of
integration points per dimension can be reduced from the default of 7 for
exploratory factor analysis to as few as 3 for an approximate solution.
An explanation of the other commands can be found in Example 4.1.
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EXAMPLE 4.3: EXPLORATORY FACTOR ANALYSIS WITH
CONTINUOUS, CENSORED, CATEGORICAL, AND COUNT
FACTOR INDICATORS
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TITLE: this is an example of an exploratory
factor analysis with continuous, censored,
categorical, and count factor indicators

DATA: FILE = ex4.3.dat;

VARIABLE: NAMES = u4-u6 y4-y6 ul-u3 yl-y3;

CENSORED = y4-y6 (b) ;

CATEGORICAL = ul-u3;

COUNT = uéd-ub;
ANALYSIS: TYPE = EFA 1 4;

The difference between this example and Example 4.1 is that the factor
indicators are a combination of continuous, censored, binary or ordered
categorical (ordinal), and count variables instead of all continuous
variables. The CENSORED option is used to specify which dependent
variables are treated as censored variables in the model and its
estimation, whether they are censored from above or below, and whether
a censored or censored-inflated model will be estimated. In the example
above, y4, y5, and y6 are censored variables. The b in parentheses
indicates that they are censored from below, that is, have a floor effect,
and that the model is a censored regression model. The censoring limit
is determined from the data. The CATEGORICAL option is used to
specify which dependent variables are treated as binary or ordered
categorical (ordinal) variables in the model and its estimation. In the
example above, the factor indicators ul, u2, and u3 are binary or ordered
categorical variables. The program determines the number of categories
for each variable. The COUNT option is used to specify which
dependent variables are treated as count variables in the model and its
estimation and whether a Poisson or zero-inflated Poisson model will be
estimated. In the example above, u4, u5, and u6 are count variables.
The variables y1, y2, and y3 are continuous variables.

The default estimator for this type of analysis is maximum likelihood
with robust standard errors using a numerical integration algorithm.
Note that numerical integration becomes increasingly —more
computationally demanding as the number of factors and the sample size
increase. In this example, the four-factor solution requires four
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dimensions of integration. Using the default of 7 integration points per
factor for exploratory factor analysis, a total of 2,401 integration points
is required for this analysis. To reduce computational time with several
factors, the number of integration points per dimension can be reduced
from the default of 7 for exploratory factor analysis to as few as 3 for an
approximate solution. The ESTIMATOR option of the ANALYSIS
command can be used to select a different estimator. An explanation of
the other commands can be found in Example 4.1.

EXAMPLE 4.4: EXPLORATORY FACTOR MIXTURE
ANALYSIS WITH CONTINUOUS LATENT CLASS
INDICATORS

TITLE: this is an example of an exploratory
factor mixture analysis with continuous
latent class indicators

DATA: FILE = ex4.4.dat;

VARIABLE: NAMES = yl-y8;

CLASSES = c(2);

ANALYSIS: TYPE = MIXTURE EFA 1 2;

In this example, an exploratory factor mixture analysis with continuous
latent class indicators is carried out. Factor mixture analysis uses a
combination of categorical and continuous latent variables. Mixture
modeling refers to modeling with categorical latent variables that
represent subpopulations where population membership is not known
but is inferred from the data. With continuous latent class indicators, the
means of the latent class indicators vary across the classes as the default.
The continuous latent variables describe within-class correlations among
the latent class indicators. The within-class correlations follow an
exploratory factor analysis model that varies across the latent classes.
This is the mixtures of factor analyzers model discussed in McLachlan
and Peel (2000) and McLachlan et al. (2004). Rotated solutions with
standard errors are obtained for each latent class. See Example 7.27 for
a confirmatory factor mixture analysis.

The CLASSES option is used to assign names to the categorical latent
variables in the model and to specify the number of latent classes in the
model for each categorical latent variable. In the example above, there
is one categorical latent variable ¢ that has two latent classes. The
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ANALYSIS command is used to describe the technical details of the
analysis. The TYPE option is used to describe the type of analysis that
is to be performed. By specifying TYPE=MIXTURE EFA, an
exploratory factor mixture analysis will be carried out. The numbers
following EFA give the lower and upper limits on the number of factors
to be extracted. The default rotation is the oblique rotation of GEOMIN.
The ROTATION option of the ANALYSIS command can be used to
select a different rotation. The default estimator for this type of analysis
is maximum likelihood with robust standard errors. The ESTIMATOR
option of the ANALYSIS command can be used to select a different
estimator. An explanation of the other commands can be found in
Example 4.1.

EXAMPLE 4.5: TWO-LEVEL EXPLORATORY FACTOR
ANALYSIS WITH CONTINUOUS FACTOR INDICATORS
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TITLE: this is an example of a two-level
exploratory factor analysis with
continuous factor indicators

DATA: FILE IS ex4.5.dat;

VARIABLE: NAMES ARE yl-y6 xl1 x2 w clus;
USEVARIABLES = yl-y6;

CLUSTER = clus;
ANALYSIS: TYPE = TWOLEVEL EFA 1 2 UW 1 1 UB;

In this example, a two-level exploratory factor analysis model with
individual-level continuous factor indicators is carried out. Two-level
analysis models non-independence of observations due to cluster
sampling. An exploratory factor analysis is specified for both the within
and between parts of the model. Rotated solutions with standard errors
are obtained for both the within and between parts of the model. See
Example 9.6 for a two-level confirmatory factor analysis.

The CLUSTER option is used to identify the variable that contains
clustering information. The ANALYSIS command is used to describe
the technical details of the analysis. The TYPE option is used to
describe the type of analysis that is to be performed. By specifying
TYPE=TWOLEVEL EFA, a two-level exploratory factor analysis will
be carried out. The numbers following EFA give the lower and upper
limits on the number of factors to be extracted. The first set of numbers
are for the within part of the model. The second set of numbers are for
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the between part of the model. In both parts of the model, one- and two-
factors solutions and an unrestricted solution will be obtained. The
unrestricted solution for the within part of the model is specified by UW
and the unrestricted solution for the between part of the model is
specified by UB. The within and between specifications are crossed.
Factor solutions will be obtained for one factor within and one factor
between, two factors within and one factor between, unrestricted within
and one factor between, one factor within and unrestricted between, and
two factors within and unrestricted between. Rotations are not given for
unrestricted solutions. The default rotation is the oblique rotation of
GEOMIN. The ROTATION option of the ANALYSIS command can be
used to select a different rotation. The default estimator for this type of
analysis is maximum likelihood with robust standard errors. The
ESTIMATOR option of the ANALYSIS command can be used to select
a different estimator. An explanation of the other commands can be
found in Example 4.1.

EXAMPLE 4.6: TWO-LEVEL EXPLORATORY FACTOR
ANALYSIS WITH BOTH INDIVIDUAL- AND CLUSTER-
LEVEL FACTOR INDICATORS

TITLE: this is an example of a two-level
exploratory factor analysis with both
individual- and cluster-level factor
indicators

DATA: FILE = ex4.6.dat;

VARIABLE: NAMES = ul-u6 yl-y4 x1 x2 w clus;
USEVARIABLES = ul-u6 yl-v4;
CATEGORICAL = ul-u6;

CLUSTER = clus;

BETWEEN = yl-vy4;
ANALYSIS: TYPE = TWOLEVEL EFA 1 2 UW 1 2 UB;
SAVEDATA: SWMATRIX = ex4.6sw.dat;

The difference between this example and Example 4.5 is that there is a
combination of individual-level categorical factor indicators and
between-level continuous factor indicators. The exploratory factor
analysis structure for the within part of the model includes only the
individual-level factor indicators whereas the exploratory factor analysis
structure for the between part of the model includes the between part of
the individual-level factor indicators and the between-level factor
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indicators. Rotated solutions with standard errors are obtained for both
the within and between parts of the model.

The BETWEEN option is used to identify the variables in the data set
that are measured on the cluster level and modeled only on the between
level. Variables not mentioned on the WITHIN or the BETWEEN
statements are measured on the individual level and can be modeled on
both the within and between levels. The default rotation is the oblique
rotation of GEOMIN. The ROTATION option of the ANALYSIS
command can be used to select a different rotation. The default
estimator for this type of analysis is a robust weighted least squares
estimator using a diagonal weight matrix (Asparouhov & Muthén, 2007).
The ESTIMATOR option of the ANALYSIS command can be used to
select a different estimator. The SWMATRIX option of the
SAVEDATA command is used with TYPE=TWOLEVEL and weighted
least squares estimation to specify the name and location of the file that
contains the within- and between-level sample statistics and their
corresponding estimated asymptotic covariance matrix. It is
recommended to save this information and use it in subsequent analyses
along with the raw data to reduce computational time during model
estimation. An explanation of the other commands can be found in
Examples 4.1, 4.3, and 4.5.

EXAMPLE 4.7: BI-FACTOR EXPLORATORY FACTOR
ANALYSIS WITH CONTINUOUS FACTOR INDICATORS

52

TITLE: this is an example of a bi-factor
exploratory factor analysis with
continuous factor indicators

DATA: FILE = ex4.7.dat;

VARIABLE: NAMES = yl-vy10;

ANALYSIS: TYPE = EFA 2 3;

ROTATION = BI-GEOMIN;

In this example, a bi-factor exploratory factor analysis (Jennrich &
Bentler, 2011, 2012) with continuous factor indicators is carried out
using a Geomin rotation. By specifying TYPE=EFA, an exploratory
factor analysis will be carried out. The number 2 is the lower limit and
the number 3 is the upper limit on the number of factors to be extracted.
By specifying BI-GEOMIN, a bi-factor EFA will be carried out using a
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bi-factor Geomin rotation. Because this is a bi-factor analysis, the two-
factor solution will have one general factor and one specific factor. The
three-factor solution will have one general factor and two specific
factors. The default for the BI-GEOMIN rotation is an oblique rotation
where the specific factors are correlated with the general factor and are
correlated with each other. In the orthogonal rotation, the specific
factors are uncorrelated with the general factor and are uncorrelated with
each other. ~ An orthogonal rotation is obtained by specifying
ROTATION=BI-GEOMIN(ORTHOGONAL). An alternative bi-factor
rotation can be obtained using the BI-CF-QUARTIMAX setting of the
ROTATION option. The default estimator for this type of analysis is
maximum likelihood. The ESTIMATOR option of the ANALYSIS
command can be used to select a different estimator. An explanation of
the other commands can be found in Example 4.1.
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CHAPTER 5

EXAMPLES: CONFIRMATORY
FACTOR ANALYSIS AND
STRUCTURAL EQUATION
MODELING

Confirmatory factor analysis (CFA) is used to study the relationships
between a set of observed variables and a set of continuous latent
variables. When the observed variables are categorical, CFA is also
referred to as item response theory (IRT) analysis (Fox, 2010; van der
Linden, 2016). CFA with covariates (MIMIC) includes models where
the relationship between factors and a set of covariates are studied to
understand measurement invariance and population heterogeneity.
These models can include direct effects, that is, the regression of a factor
indicator on a covariate in order to study measurement non-invariance.
Structural equation modeling (SEM) includes models in which
regressions among the continuous latent variables are estimated (Bollen,
1989; Browne & Arminger, 1995; Joreskog & Sorbom, 1979). In all of
these models, the latent variables are continuous. Observed dependent
variable variables can be continuous, censored, binary, ordered
categorical (ordinal), unordered categorical (nominal), counts, or
combinations of these variable types.

CFA is a measurement model. SEM has two parts: a measurement
model and a structural model. The measurement model for both CFA
and SEM is a multivariate regression model that describes the
relationships between a set of observed dependent variables and a set of
continuous latent variables. The observed dependent variables are
referred to as factor indicators and the continuous latent variables are
referred to as factors. The relationships are described by a set of linear
regression equations for continuous factor indicators, a set of censored
normal or censored-inflated normal regression equations for censored
factor indicators, a set of probit or logistic regression equations for
binary or ordered categorical factor indicators, a set of multinomial
logistic regression equations for unordered categorical factor indicators,
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and a set of Poisson or zero-inflated Poisson regression equations for
count factor indicators.

The structural model describes three types of relationships in one set of
multivariate regression equations: the relationships among factors, the
relationships among observed variables, and the relationships between
factors and observed variables that are not factor indicators. These
relationships are described by a set of linear regression equations for the
factors that are dependent variables and for continuous observed
dependent variables, a set of censored normal or censored-inflated
normal regression equations for censored observed dependent variables,
a set of probit or logistic regression equations for binary or ordered
categorical observed dependent variables, a set of multinomial logistic
regression equations for unordered categorical observed dependent
variables, and a set of Poisson or zero-inflated Poisson regression
equations for count observed dependent variables. For logistic
regression, ordered categorical variables are modeled using the
proportional odds specification. Both maximum likelihood and weighted
least squares estimators are available.

All CFA, MIMIC and SEM models can be estimated using the following
special features:

Single or multiple group analysis

Missing data

Complex survey data

Latent variable interactions and non-linear factor analysis using
maximum likelihood

Random slopes

Linear and non-linear parameter constraints

Indirect effects including specific paths

Maximum likelihood estimation for all outcome types
Bootstrap standard errors and confidence intervals
Wald chi-square test of parameter equalities

For continuous, censored with weighted least squares estimation, binary,
and ordered categorical (ordinal) outcomes, multiple group analysis is
specified by using the GROUPING option of the VARIABLE command
for individual data or the NGROUPS option of the DATA command for
summary data. For censored with maximum likelihood estimation,
unordered categorical (nominal), and count outcomes, multiple group
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analysis is specified using the KNOWNCLASS option of the
VARIABLE command in conjunction with the TYPE=MIXTURE
option of the ANALYSIS command. The default is to estimate the
model under missing data theory using all available data. The
LISTWISE option of the DATA command can be used to delete all
observations from the analysis that have missing values on one or more
of the analysis variables. Corrections to the standard errors and chi-
square test of model fit that take into account stratification, non-
independence of observations, and unequal probability of selection are
obtained by using the TYPE=COMPLEX option of the ANALYSIS
command in conjunction with the STRATIFICATION, CLUSTER, and
WEIGHT  options of the VARIABLE command. The
SUBPOPULATION option is used to select observations for an analysis
when a subpopulation (domain) is analyzed. Latent variable interactions
are specified by using the | symbol of the MODEL command in
conjunction with the XWITH option of the MODEL command. Random
slopes are specified by using the | symbol of the MODEL command in
conjunction with the ON option of the MODEL command. Linear and
non-linear parameter constraints are specified by using the MODEL
CONSTRAINT command. Indirect effects are specified by using the
MODEL INDIRECT command. Maximum likelihood estimation is
specified by using the ESTIMATOR option of the ANALYSIS
command. Bootstrap standard errors are obtained by using the
BOOTSTRAP option of the ANALYSIS command.  Bootstrap
confidence intervals are obtained by using the BOOTSTRAP option of
the ANALYSIS command in conjunction with the CINTERVAL option
of the OUTPUT command. The MODEL TEST command is used to test
linear restrictions on the parameters in the MODEL and MODEL
CONSTRAINT commands using the Wald chi-square test.

Graphical displays of observed data and analysis results can be obtained
using the PLOT command in conjunction with a post-processing
graphics module. The PLOT command provides histograms,
scatterplots, plots of individual observed and estimated values, plots of
sample and estimated means and proportions/probabilities, and plots of
item characteristic curves and information curves. These are available
for the total sample, by group, by class, and adjusted for covariates. The
PLOT command includes a display showing a set of descriptive statistics
for each variable. The graphical displays can be edited and exported as a
DIB, EMF, or JPEG file. In addition, the data for each graphical display
can be saved in an external file for use by another graphics program.
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Following is the set of CFA examples included in this chapter:

5.1: CFA with continuous factor indicators

5.2: CFA with categorical factor indicators

5.3: CFA with continuous and categorical factor indicators
5.4: CFA with censored and count factor indicators*

5.5: Item response theory (IRT) models*

5.6: Second-order factor analysis

5.7: Non-linear CFA*

5.8: CFA with covariates (MIMIC) with continuous factor
indicators

5.9: Mean structure CFA for continuous factor indicators
e 5.10: Threshold structure CFA for categorical factor indicators

Following is the set of SEM examples included in this chapter:

e 5.11: SEM with continuous factor indicators

e 5.12: SEM with continuous factor indicators and an indirect effect
for factors

e 5.13: SEM with continuous factor indicators and an interaction
between two factors*

Following is the set of multiple group examples included in this chapter:

e 5.14: Multiple group CFA with covariates (MIMIC) with
continuous factor indicators and no mean structure

e 5.15: Multiple group CFA with covariates (MIMIC) with
continuous factor indicators and a mean structure

e 5.16: Multiple group CFA with covariates (MIMIC) with
categorical factor indicators and a threshold structure

e 5.17: Multiple group CFA with covariates (MIMIC) with
categorical factor indicators and a threshold structure using the
Theta parameterization

e 5.18: Two-group twin model for continuous outcomes where factors
represent the ACE components

e 5.19: Two-group twin model for categorical outcomes where factors
represent the ACE components
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Following is the set of examples included in this chapter that estimate
models with parameter constraints:

5.20: CFA with parameter constraints

5.21: Two-group twin model for continuous outcomes using
parameter constraints

5.22: Two-group twin model for categorical outcomes using
parameter constraints

5.23: QTL sibling model for a continuous outcome using parameter
constraints

Following is the set of exploratory structural equation modeling (ESEM)
examples included in this chapter:

5.24: EFA with covariates (MIMIC) with continuous factor
indicators and direct effects

5.25: SEM with EFA and CFA factors with continuous factor
indicators

5.26: EFA at two time points with factor loading invariance and
correlated residuals across time

5.27: Multiple-group EFA with continuous factor indicators
5.28: EFA with residual variances constrained to be greater than
zero

5.29: Bi-factor EFA using ESEM

5.30: Bi-factor EFA with two items loading on only the general
factor

Following is the set of Bayesian CFA examples included in this chapter:

5.31: Bayesian bi-factor CFA with two items loading on only the
general factor and cross-loadings with zero-mean and small-variance
priors

5.32: Bayesian MIMIC model with cross-loadings and direct effects
with zero-mean and small-variance priors

5.33: Bayesian multiple group model with approximate
measurement invariance using zero-mean and small-variance priors

* Example uses numerical integration in the estimation of the model.
This can be computationally demanding depending on the size of the
problem.
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EXAMPLE 5.1: CFAWITH CONTINUOUS FACTOR
INDICATORS

TITLE: this is an example of a CFA with
continuous factor indicators
DATA: FILE IS ex5.1l.dat;
VARIABLE: NAMES ARE yl-y6;
MODEL: f1 BY yl-vy3;
f2 BY y4-y6;

y3 |+

v4

VS |~

y6 |+

In this example, the confirmatory factor analysis (CFA) model with
continuous factor indicators shown in the picture above is estimated.
The model has two correlated factors that are each measured by three
continuous factor indicators.
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TITLE: this is an example of a CFA with
continuous factor indicators

The TITLE command is used to provide a title for the analysis. The title
is printed in the output just before the Summary of Analysis.

DATA: FILE IS ex5.l.dat;

The DATA command is used to provide information about the data set
to be analyzed. The FILE option is used to specify the name of the file
that contains the data to be analyzed, ex5.1.dat. Because the data set is
in free format, the default, a FORMAT statement is not required.

VARIABIE: NAMES ARE yl-y6;

The VARIABLE command is used to provide information about the
variables in the data set to be analyzed. The NAMES option is used to
assign names to the variables in the data set. The data set in this
example contains six variables: y1, y2, y3, y4, y5, y6. Note that the
hyphen can be used as a convenience feature in order to generate a list of
names.

MODEL: f1 BY yl-y3;
£f2 BY y4-y6;

The MODEL command is used to describe the model to be estimated.
Here the two BY statements specify that f1 is measured by y1, y2, and
y3, and 2 is measured by y4, y5, and y6. The metric of the factors is set
automatically by the program by fixing the first factor loading in each
BY statement to 1. This option can be overridden. The intercepts and
residual variances of the factor indicators are estimated and the residuals
are not correlated as the default. The variances of the factors are
estimated as the default. The factors are correlated as the default
because they are independent (exogenous) variables. The default
estimator for this type of analysis is maximum likelihood. The
ESTIMATOR option of the ANALYSIS command can be used to select
a different estimator.
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EXAMPLE 5.2: CFAWITH CATEGORICAL FACTOR
INDICATORS

TITLE: this is an example of a CFA with
categorical factor indicators
DATA: FILE IS ex5.2.dat;

VARIABLE: NAMES ARE ul-u6;
CATEGORICAL ARE ul-ub;
MODEL: f1 BY ul-u3;
f2 BY ud-ub6;

The difference between this example and Example 5.1 is that the factor
indicators are binary or ordered categorical (ordinal) variables instead of
continuous variables. The CATEGORICAL option is used to specify
which dependent variables are treated as binary or ordered categorical
(ordinal) variables in the model and its estimation. In the example
above, all six factor indicators are binary or ordered categorical
variables. The program determines the number of categories for each
factor indicator. The default estimator for this type of analysis is a
robust weighted least squares estimator (Muthén, 1984; Muthén, du Toit,
& Spisic, 1997). With this estimator, probit regressions for the factor
indicators regressed on the factors are estimated. The ESTIMATOR
option of the ANALYSIS command can be used to select a different
estimator. An explanation of the other commands can be found in
Example 5.1.

With maximum likelihood estimation, logistic regressions for the factor
indicators regressed on the factors are estimated using a numerical
integration algorithm.  This is shown in Example 5.5. Note that
numerical integration becomes increasingly more computationally
demanding as the number of factors and the sample size increase.

62



Examples: Confirmatory Factor Analysis And
Structural Equation Modeling

EXAMPLE 5.3: CFAWITH CONTINUOUS AND
CATEGORICAL FACTOR INDICATORS

TITLE: this is an example of a CFA with
continuous and categorical factor
indicators

DATA: FILE IS ex5.3.dat;

VARIABLE: NAMES ARE ul-u3 vy4-vyb6;
CATEGORICAL ARE ul u2 u3;
MODEL : f1 BY ul-u3;
f2 BY y4-y6;

The difference between this example and Example 5.1 is that the factor
indicators are a combination of binary or ordered categorical (ordinal)
and continuous variables instead of all continuous variables. The
CATEGORICAL option is used to specify which dependent variables
are treated as binary or ordered categorical (ordinal) variables in the
model and its estimation. In the example above, the factor indicators ul,
u2, and u3 are binary or ordered categorical variables whereas the factor
indicators y4, y5, and y6 are continuous variables. The program
determines the number of categories for each factor indicator. The
default estimator for this type of analysis is a robust weighted least
squares estimator. With this estimator, probit regressions are estimated
for the categorical factor indicators, and linear regressions are estimated
for the continuous factor indicators. The ESTIMATOR option of the
ANALYSIS command can be used to select a different estimator. With
maximum likelihood estimation, logistic regressions are estimated for
the categorical dependent variables using a numerical integration
algorithm. Note that numerical integration becomes increasingly more
computationally demanding as the number of factors and the sample size
increase.  An explanation of the other commands can be found in
Example 5.1.
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EXAMPLE 5.4: CFAWITH CENSORED AND COUNT FACTOR
INDICATORS

TITLE: this is an example of a CFA with censored
and count factor indicators
DATA: FILE IS ex5.4.dat;

VARIABLE: NAMES ARE yl-y3 ud-u6;
CENSORED ARE yl-y3 (a);
COUNT ARE u4-ub;

MODEL: f1 BY yl-y3;
£f2 BY u4d-u6;
OUTPUT : TECH1 TECHS;

The difference between this example and Example 5.1 is that the factor
indicators are a combination of censored and count variables instead of
all continuous variables. The CENSORED option is used to specify
which dependent variables are treated as censored variables in the model
and its estimation, whether they are censored from above or below, and
whether a censored or censored-inflated model will be estimated. In the
example above, y1, y2, and y3 are censored variables. The a in
parentheses following y1-y3 indicates that y1, y2, and y3 are censored
from above, that is, have ceiling effects, and that the model is a censored
regression model. The censoring limit is determined from the data. The
COUNT option is used to specify which dependent variables are treated
as count variables in the model and its estimation and whether a Poisson
or zero-inflated Poisson model will be estimated. In the example above,
u4, ub, and u6 are count variables. Poisson regressions are estimated for
the count dependent variables and censored regressions are estimated for
the censored dependent variables.

The default estimator for this type of analysis is maximum likelihood
with robust standard errors using a numerical integration algorithm.
Note that numerical integration becomes increasingly —more
computationally demanding as the number of factors and the sample size
increase. In this example, two dimensions of integration are used with a
total of 225 integration points. The ESTIMATOR option of the
ANALYSIS command can be used to select a different estimator. The
OUTPUT command is used to request additional output not included as
the default. The TECHL1 option is used to request the arrays containing
parameter specifications and starting values for all free parameters in the
model. The TECHS8 option is used to request that the optimization

64



EXAMPLE 5.5:

Examples: Confirmatory Factor Analysis And
Structural Equation Modeling

history in estimating the model be printed in the output. TECHS is
printed to the screen during the computations as the default. TECH8
screen printing is useful for determining how long the analysis takes. An
explanation of the other commands can be found in Example 5.1.

ITEM RESPONSE THEORY (IRT) MODELS

In this example, four logistic IRT models are estimated: the generalized
partial credit model (GPCM), the two-parameter logistic model (2PL),
the three-parameter logistic model (3PL) with a guessing parameter, and
the four-parameter logistic model (4PL) with a lower (guessing)
parameter and an upper asymptote parameter. In all examples, a single
continuous factor is measured by 20 categorical factor indicators.

TITLE: this is an example of a generalized
partial credit item response theory (IRT)
model

DATA: FILE IS ex5.5partl.dat;

VARIABLE: NAMES ARE ul-u20;
CATEGORICAL ARE ul-u20 (gpcm);
ANALYSIS: ESTIMATOR = MLR;

MODEL: f BY ul-u20%*;
f@i;

OUTPUT : TECH1 TECHS;

PLOT: TYPE = PLOT3;

In the first part of the example shown above, the GPCM model is
estimated. The CATEGORICAL option is used to specify which
dependent variables are treated as binary or ordered categorical (ordinal)
variables in the model and its estimation. In the example above, the
factor indicators ul through u20 are ordered categorical (ordinal)
variables. The letters gpcm in parentheses specify that a GPCM model
is estimated. The program determines the number of categories for each
factor indicator. By specifying ESTIMATOR=MLR, a maximum
likelihood estimator with robust standard errors using a numerical
integration algorithm will be used. Note that numerical integration
becomes increasingly more computationally demanding as the number of
factors and the sample size increase. In this example, one dimension of
integration is used with 15 integration points. The ESTIMATOR option
of the ANALYSIS command can be used to select a different estimator.
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In the MODEL command, the BY statement specifies that f is measured
by ul through u20. The asterisk (*) frees the first factor loading which
is fixed at one as the default to define the metric of the factor. Instead
the metric of the factor is defined by fixing the factor variance at one in
line with IRT. For one-factor models with no covariates, results are
presented both in a factor model parameterization and in a conventional
IRT parameterization.

With the following MODEL command, a partial credit model is
estimated:

MODEL: f BY ul-u20@1;
£*1;

The OUTPUT command is used to request additional output not
included as the default. The TECHL1 option is used to request the arrays
containing parameter specifications and starting values for all free
parameters in the model. The TECHS8 option is used to request that the
optimization history in estimating the model be printed in the output.
TECHS is printed to the screen during the computations as the default.
TECHS screen printing is useful for determining how long the analysis
takes. The PLOT command is used to request graphical displays of
observed data and analysis results. These graphical displays can be
viewed after the analysis is completed using a post-processing graphics
module. Item characteristic curves and information curves are available.
When covariates are included in the model with direct effects on one or
more factor indicators, item characteristic curves can be plotted for each
value of the covariate to show differential item functioning (DIF). An
explanation of the other commands can be found in Example 5.1.

TITLE: this is an example of a two-parameter
logistic item response theory (IRT) model
DATA: FILE IS exb5.b5part2.dat;

VARIABLE: NAMES ARE ul-u20;
CATEGORICAL ARE ul-u20;
ANALYSIS: ESTIMATOR = MLR;

MODEL: f BY ul-u20%*;
f@1l;

OUTPUT: TECH1 TECHS;

PLOT: TYPE = PLOT3;

In the second part of the example shown above, a two-parameter logistic
model is estimated. The difference between the specification for the
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GPCM and the 2PL models is that nothing is placed in parentheses after
the variable names in the CATEGORICAL option. The factor indicators
ul through u20 are binary variables. If the factor indicators are ordered
categorical (ordinal) variables, the input is the same but a graded-
response model is estimated.

TITLE: this is an example of a three-parameter
logistic item response theory (IRT) model
using priors for the guessing parameters

DATA: FILE = exb.bpart3.dat;

VARIABLE: NAMES = ul-u20;

CATEGORICAL = ul-u20(3pl):;

ANALYSIS: ESTIMATOR = MLR;

MODEL: f BY ul-u20%*;

fa@1l;

[ul$2-u20$2]1 (al-a20);
OUTPUT: TECH1 TECHS;
PLOT: TYPE = PLOT3;

MODEL PRIORS:
al-a20~N(1.386,1);

In the third part of the example shown above, a three-parameter logistic
model is estimated. One difference between the specification for the
GPCM and the 3PL models is that 3pl is placed in parentheses after the
variable names in the CATEGORICAL option. The factor indicators ul
through u20 are binary variables. In addition, because convergence
problems are common with the 3PL model, the MODEL PRIORS
command is used to provide priors for the second thresholds. The
second thresholds are parameters related to the guessing parameters
which cannot be referred to directly. The first thresholds are referred to
by adding $1 to the variable names. The second thresholds are referred
to by adding $2 to the variable names. In the MODEL command, labels
are given to the second thresholds. These labels are used in MODEL
PRIORS to assign priors to the second thresholds. Prior mean values for
the second thresholds of 1.386 correspond to guessing values of 0.25
(Asparouhov & Muthén, 2016).

TITLE: this is an example of a four-parameter
logistic item response theory (IRT) model
using priors for the lower (guessing) and
upper asymptote parameters

DATA: FILE = ex5.5partéd.dat;

VARIABLE: NAMES = ul-u20;

CATEGORICAL = ul-u20 (4pl):;

ANALYSIS: ESTIMATOR = MLR;

67



CHAPTER 5

MODEL: f BY ul-u20%*;
fa@i;
[ul$2-u20%2] (al-a20);
[ul$3-u20$3] (bl-b20);
OUTPUT: TECH1 TECHS;
PLOT: TYPE = PLOT3;
MODEL PRIORS:
al-a20~N(1.386,1) ;
bl-b20~N(-2,1);

In the fourth part of the example shown above, a four-parameter logistic
model is estimated. One difference between the specification for the
GPCM and the 4PL models is that 4pl is placed in parentheses after the
variable names in the CATEGORICAL option. The factor indicators ul
through u20 are binary variables. In addition, because convergence
problems are common with the 4PL model, the MODEL PRIORS
command is used to provide priors for the second and third thresholds.
The second and third thresholds are parameters related to the upper
asymptote (guessing) and lower asymptote parameters, respectively,
which cannot be referred to directly. The first thresholds are referred to
by adding $1 to the variable names. The second thresholds are referred
to by adding $2 to the variable names. The third thresholds are referred
to by adding $3 to the variable names. In the MODEL command, labels
are given to the second and third thresholds. These labels are used in
MODEL PRIORS to assign priors to the second and third thresholds.
Prior mean values for the second thresholds of 1.386 correspond to
guessing values of 0.25. Prior mean values for the third thresholds of -2
correspond to upper asymptote values of 0.88 (Asparouhov & Muthén,
2016).

EXAMPLE 5.6: SECOND-ORDER FACTOR ANALYSIS

68

TITLE: this is an example of a second-order
factor analysis

DATA: FILE IS ex5.6.dat;

VARIABLE: NAMES ARE yl-yl12;

MODEL: f1 BY yl-y3;

£f2 BY y4-y6;
£3 BY y7-y9;
f4 BY yl0-yl2;
£f5 BY fl1-£f4;
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yl y2 y3 y4 y5 y6 y7 y8 y9 || yl0 || y11 || y12

In this example, the second-order factor analysis model shown in the
picture above is estimated. The factor indicators of the first-order
factors f1, f2, 3, and f4 are continuous. The first-order factors are
indicators of the second-order factor 5.

The first four BY statements specify that f1 is measured by y1, y2, and
y3; f2 is measured by y4, y5, and y6; f3 is measured by y7, y8, and y9;
and f4 is measured by y10, y11, and y12. The fifth BY statement
specifies that the second-order factor f5 is measured by f1, f2, f3, and f4.
The metrics of the first- and second-order factors are set automatically
by the program by fixing the first factor loading in each BY statement to
1. This option can be overridden. The intercepts and residual variances
of the first-order factor indicators are estimated and the residuals are not
correlated as the default. The residual variances of the first-order factors
are estimated as the default. The residuals of the first-order factors are
not correlated as the default. The variance of the second-order factor is
estimated as the default. The default estimator for this type of analysis
is maximum likelihood. The ESTIMATOR option of the ANALYSIS
command can be used to select a different estimator. An explanation of
the other commands can be found in Example 5.1.
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TITLE: this is an example of a non-linear CFA
DATA: FILE IS ex5.7.dat;
VARIABLE: NAMES ARE yl-y5;
ANALYSIS: TYPE = RANDOM;
ALGORITHM = INTEGRATION;
MODEL: f BY yl-vy5;
fxf | £ XWITH £f;
yl-y5 ON fxf;
OUTPUT : TECH1 TECHS;

In this example, a non-linear CFA model is estimated (McDonald, 1967).
The factor indicators are quadratic functions of the factor. The TYPE
option is used to describe the type of analysis that is to be performed.
By selecting RANDOM, a model with a random effect will be estimated.
By specifying ALGORITHM=INTEGRATION, a maximum likelihood
estimator with robust standard errors using a numerical integration
algorithm will be used. Note that numerical integration becomes
increasingly more computationally demanding as the number of factors
and the sample size increase. In this example, one dimension of
integration is used with 15 integration points. The ESTIMATOR option
of the ANALYSIS command can be used to select a different estimator.

The BY statement specifies that f is measured by y1 through y5. This
specifies the linear part of the quadratic function. The | statement in
conjunction with the XWITH option of the MODEL command is used to
define the quadratic factor term. The name on the left-hand side of the |
symbol names the quadratic factor term. The XWITH statement on the
right-hand side of the | symbol defines the quadratic factor term fxf. The
ON statement specifies the quadratic part of the quadratic function. The
OUTPUT command is used to request additional output not included as
the default. The TECHL1 option is used to request the arrays containing
parameter specifications and starting values for all free parameters in the
model. The TECHS8 option is used to request that the optimization
history in estimating the model be printed in the output. TECHS is
printed to the screen during the computations as the default. TECHS8
screen printing is useful for determining how long the analysis takes. An
explanation of the other commands can be found in Example 5.1.
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EXAMPLE 5.8: CFA WITH COVARIATES (MIMIC) WITH
CONTINUOUS FACTOR INDICATORS

TITLE: this is an example of a CFA with
covariates (MIMIC) with continuous factor
indicators

DATA: FILE IS ex5.8.dat;

VARIABLE: NAMES ARE yl-y6 x1-x3;

MODEL: f1 BY yl-y3;
f2 BY y4-y6;
f1 £f2 ON x1-x3;

yl |+
x1 y2 |«

y3 |~
x2

y4 [
x3 yS |«

y6 |+

In this example, the CFA model with covariates (MIMIC) shown in the
picture above is estimated. The two factors are regressed on three
covariates.
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The first BY statement specifies that f1 is measured by y1, y2, and y3.
The second BY statement specifies that f2 is measured by y4, y5, and y6.
The metric of the factors is set automatically by the program by fixing
the first factor loading in each BY statement to 1. This option can be
overridden. The intercepts and residual variances of the factor
indicators are estimated and the residuals are not correlated as the
default. The residual variances of the factors are estimated as the
default. The residuals of the factors are correlated as the default because
residuals are correlated for latent variables that do not influence any
other variable in the model except their own indicators. The ON
statement describes the linear regressions of f1 and f2 on the covariates
x1, x2, and x3. The ESTIMATOR option of the ANALYSIS command
can be used to select a different estimator. An explanation of the other
commands can be found in Example 5.1.

EXAMPLE 5.9: MEAN STRUCTURE CFA FOR CONTINUOUS
FACTOR INDICATORS

72

TITLE: this is an example of a mean structure CFA
for continuous factor indicators

DATA: FILE IS ex5.9.dat;

VARIABLE: NAMES ARE yla-ylc yZa-y2c;

MODEL : f1 BY yla ylb@1l ylc@l;

f2 BY y2a y2b@l y2c@l;
[yla ylb ylec] (1);
[y2a y2b y2c] (2);
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yla |«

ylc [«

y2a |«

< y2b |

y2¢ |+

In this example, the CFA model in which two factors are measured by
three equivalent tests forms shown in the picture above is estimated.
The three equivalent test forms are referred to as a, b, and c.

The first BY statement specifies that f1 is measured by yla, ylb, and
ylc. The second BY statement specifies that f2 is measured by y2a, y2b,
and y2c. The letters a, b, and ¢ are used to represent three equivalent test
forms, and 1 and 2 represent two different topics. The metric of the
factors is set automatically by the program by fixing the first factor
loading in each BY statement to 1. This option can be overridden. The
second and third factor loadings for both factors are fixed at one using
the @ option to reflect the hypothesis that the two test forms are
equivalent. The intercepts and residual variances of the factor indicators
are estimated and the residuals are not correlated as the default. The
variances of the factors are estimated as the default. The covariance
between f1 and f2 is estimated as the default because f1 and f2 are
independent (exogenous) variables.

To reflect the hypothesis that the three test forms are equivalent with

respect to their measurement intercepts, the first bracket statement
specifies that the intercepts for yla, ylb, and ylc are equal and the
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second bracket statement specifies that the intercepts for y2a, y2b, and
y2c are equal. Equalities are designated by a number in parentheses. All
parameters in a statement followed by the same number in parentheses
are held equal. The means of the two factors are fixed at zero as the
default. The default estimator for this type of analysis is maximum
likelihood. The ESTIMATOR option of the ANALYSIS command can
be used to select a different estimator. An explanation of the other
commands can be found in Example 5.1.

EXAMPLE 5.10: THRESHOLD STRUCTURE CFA FOR
CATEGORICAL FACTOR INDICATORS
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TITLE: this is an example of a threshold
structure CFA for categorical factor
indicators

DATA: FILE IS ex5.10.dat;

VARIABLE: NAMES ARE ula-ulc u2a-u2c;
CATEGORICAL ARE ula-ulc uZa-u2c;

MODEL: f1 BY ula ulb@l ulc@l;
£f2 BY u2a u2b@l u2cQl;
[ula$l ulb$1l ulc$l] (1)
[u2as$l u2bs$1l u2csl] (2)

’
’

The difference between this example and Example 5.9 is that the factor
indicators are binary or ordered categorical (ordinal) variables instead of
continuous variables. The CATEGORICAL option is used to specify
which dependent variables are treated as binary or ordered categorical
(ordinal) variables in the model and its estimation. In the example
above, all six factor indicators are binary or ordered categorical
variables. The program determines the number of categories for each
factor indicator. In this example, it is assumed that the factor indicators
are binary variables with one threshold each.

For binary and ordered categorical factor indicators, thresholds are
modeled rather than intercepts or means. The number of thresholds for a
categorical variable is equal to the number of categories minus one. In
the example above, the categorical variables are binary so they have one
threshold. Thresholds are referred to by adding to the variable name a $
followed by a number. The thresholds of the factor indicators are
referred to as ula$l, ulb$l, ulc$l, u2a$l, u2b$l, and u2c$1.
Thresholds are referred to in square brackets. To reflect the hypothesis
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that the three test forms are equivalent with respect to their measurement
thresholds, the (1) after the first bracket statement specifies that the
thresholds for ula, ulb, and ulc are constrained to be equal and the (2)
after the second bracket statement specifies that the thresholds for u2a,
u2b, and u2c are constrained to be equal. The default estimator for this
type of analysis is a robust weighted least squares estimator. The
ESTIMATOR option of the ANALYSIS command can be used to select
a different estimator. With maximum likelihood, logistic regressions are
estimated using a numerical integration algorithm. Note that numerical
integration becomes increasingly more computationally demanding as
the number of factors and the sample size increase. An explanation of
the other commands can be found in Examples 5.1 and 5.9.

EXAMPLE 5.11: SEM WITH CONTINUOUS FACTOR

INDICATORS

TITLE: this is an example of a SEM with
continuous factor indicators

DATA: FILE IS exb5.1ll.dat;

VARIABLE: NAMES ARE yl-yl12;

MODEL: f1 BY yl-y3;

£f2 BY y4-y6;
£f3 BY y7-y9;
f4 BY yl0-yl2;
f4 ON £3;

£f3 ON f1 £2;
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y7 y8 y9 yl0 || y11 || y12

In this example, the SEM model with four continuous latent variables
shown in the picture above is estimated. The factor indicators are
continuous variables.

The first BY statement specifies that f1 is measured by y1, y2 and y3.
The second BY statement specifies that f2 is measured by y4, y5, and y6.
The third BY statement specifies that f3 is measured by y7, y8, and y9.
The fourth BY statement specifies that f4 is measured by y10, y11, and
y12. The metric of the factors is set automatically by the program by
fixing the first factor loading in each BY statement to 1. This option can
be overridden. The intercepts and residual variances of the factor
indicators are estimated and the residuals are not correlated as the
default. The variances of the factors are estimated as the default. The
covariance between f1 and f2 is estimated as the default because f1 and
f2 are independent (exogenous) variables. The other factor covariances
are not estimated as the default.

The first ON statement describes the linear regression of f4 on f3. The
second ON statement describes the linear regression of f3 on f1 and f2.
The default estimator for this type of analysis is maximum likelihood.
The ESTIMATOR option of the ANALYSIS command can be used to
select a different estimator. An explanation of the other commands can
be found in Example 5.1.
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EXAMPLE 5.12: SEM WITH CONTINUOUS FACTOR
INDICATORS AND AN INDIRECT EFFECT FOR FACTORS

TITLE: this is an example of a SEM with
continuous factor indicators and an
indirect effect for factors

DATA: FILE IS ex5.12.dat;
VARIABLE: NAMES ARE yl-vy12;
MODEL: f1 BY yl-vy3;

f2 BY y4-y6;

£f3 BY y7-y9;

f4 BY yl0-yl2;

f4 ON £3;

£f3 ON f1 f£2;
MODEL INDIRECT:

f4 IND £3 f1;

The difference between this example and Example 5.11 is that an
indirect effect is estimated. Indirect effects and their standard errors can
be requested using the MODEL INDIRECT command. Total indirect,
specific indirect, and total effects are specified by using the IND and
VIA statements. Total effects include all indirect effects and the direct
effect. The IND statement is used to request a specific indirect effect or
set of indirect effects. The VIA statement is used to request a set of
indirect effects that include specific mediators.

In the IND statement above, the variable on the left-hand side of IND is
the dependent variable. The last variable on the right-hand side of IND
is the independent variable. Other variables on the right-hand side of
IND are mediating variables. The IND statement requests the specific
indirect effect from f1 to f3 to f4. The default estimator for this type of
analysis is maximum likelihood. The ESTIMATOR option of the
ANALYSIS command can be used to select a different estimator. An
explanation of the other commands can be found in Examples 5.1 and
5.11.
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EXAMPLE 5.13: SEM WITH CONTINUOUS FACTOR
INDICATORS AND AN INTERACTION BETWEEN TWO
LATENT VARIABLES

TITLE: this is an example of a SEM with
continuous factor indicators and an
interaction between two latent variables

DATA: FILE IS exb5.13.dat;

VARIABLE: NAMES ARE yl-vyl12;

ANALYSIS: TYPE = RANDOM;

ALGORITHM = INTEGRATION;

MODEL: f1 BY yl-y3;
f2 BY y4-y6;
£f3 BY y7-y9;
f4 BY yl0-yl2;
f4 ON £3;
£f3 ON f1 £2;
flxf2 | f£f1 XWITH £2;
£f3 ON f1xf2;

OUTPUT : TECH1 TECHS;

y7 y8 y9 || yl0|| y11|| yl2

The difference between this example and Example 5.11 is that an
interaction between two latent variables is included in the model. The
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interaction is shown in the picture above as a filled circle. The model is
estimated using maximum likelihood (Klein & Moosbrugger, 2000).

The TYPE option is used to describe the type of analysis that is to be
performed. By selecting RANDOM, a model with a random effect will
be estimated. By specifying ALGORITHM=INTEGRATION, a
maximum likelihood estimator with robust standard errors using a
numerical integration algorithm will be used. Note that numerical
integration becomes increasingly more computationally demanding as
the number of factors and the sample size increase. In this example, two
dimensions of integration are used with a total of 225 integration points.
The ESTIMATOR option of the ANALYSIS command can be used to
select a different estimator.

Latent variable interactions are specified by using the | statement in
conjunction with the XWITH option of the MODEL command. The
name on the left-hand side of the | symbol names the latent variable
interaction. The XWITH statement on the right-hand side of the |
symbol defines the latent variable interaction. The latent variable f1xf2
is the interaction between f1 and f2. The last ON statement uses the
latent variable interaction as an independent variable. The OUTPUT
command is used to request additional output not included as the default.
The TECHL1 option is used to request the arrays containing parameter
specifications and starting values for all free parameters in the model.
The TECHS8 option is used to request that the optimization history in
estimating the model be printed in the output. TECHS is printed to the
screen during the computations as the default. TECHS8 screen printing is
useful for determining how long the analysis takes. An explanation of
the other commands can be found in Examples 5.1 and 5.11.
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EXAMPLE 5.14: MULTIPLE GROUP CFA WITH
COVARIATES (MIMIC) WITH CONTINUOUS FACTOR
INDICATORS AND NO MEAN STRUCTURE

TITLE: this is an example of a multiple group CFA
with covariates (MIMIC) with continuous
factor indicators and no mean structure

DATA: FILE IS exb5.1l4.dat;

VARIABLE: NAMES ARE yl-y6 x1-x3 g;

GROUPING IS g (1 = male 2 = female);

ANALYSIS: MODEL = NOMEANSTRUCTURE;

INFORMATION = EXPECTED;

MODEL: f1 BY yl-y3;
f2 BY y4-y6;
f1 £2 ON x1-x3;

MODEL female:
f1 BY y3;

The difference between this example and Example 5.8 is that this is a
multiple group rather than a single group analysis. The GROUPING
option is used to identify the variable in the data set that contains
information on group membership when the data for all groups are
stored in a single data set. The information in parentheses after the
grouping variable name assigns labels to the values of the grouping
variable found in the data set. In the example above, observations with g
equal to 1 are assigned the label male, and individuals with g equal to 2
are assigned the label female. These labels are used in conjunction with
the MODEL command to specify model statements specific to each

group.

The NOMEANSTRUCTURE setting for the MODEL option of the
ANALYSIS command is used with TYPE=GENERAL to specify that
means, intercepts, and thresholds are not included in the analysis model.
As a result, a covariance structure model is estimated. The
INFORMATION option is used to select the estimator of the information
matrix to be used in computing standard errors when the ML or MLR
estimators are used for analysis. The default is the observed information
matrix. In this example, the expected information matrix is used in line
with conventional covariance structure analysis.

80



Examples: Confirmatory Factor Analysis And
Structural Equation Modeling

In multiple group analysis, two variations of the MODEL command are
used. They are MODEL and MODEL followed by a label. MODEL
describes the overall model to be estimated for each group. The factor
loading measurement parameters are held equal across groups as the
default to specify measurement invariance. MODEL followed by a label
describes differences between the overall model and the model for the
group designated by the label. In the group-specific MODEL command
for females, the factor loading for variable y3 and factor f1 is specified
to be free and not equal to the same factor loading for males. The
default estimator for this type of analysis is maximum likelihood. The
ESTIMATOR option of the ANALYSIS command can be used to select
a different estimator. An explanation of the other commands can be
found in Examples 5.1 and 5.8.

EXAMPLE 5.15: MULTIPLE GROUP CFA WITH
COVARIATES (MIMIC) WITH CONTINUOUS FACTOR
INDICATORS AND A MEAN STRUCTURE

TITLE: this is an example of a multiple group CFA
with covariates (MIMIC) with continuous
factor indicators and a mean structure

DATA: FILE IS exb5.15.dat;

VARIABLE: NAMES ARE yl-y6 x1-x3 g;

GROUPING IS g (1 = male 2 = female);

MODEL: f1 BY yl-y3;
f2 BY y4-y6;
f1 £2 ON x1-x3;

MODEL female:
f1 BY vy3;

[y3];

The difference between this example and Example 5.14 is that means are
included in the model. In multiple group analysis, when a model
includes a mean structure, both the intercepts and factor loadings of the
continuous factor indicators are held equal across groups as the default
to specify measurement invariance. The intercepts of the factors are
fixed at zero in the first group and are free to be estimated in the other
groups as the default. The group-specific MODEL command for
females specifies that the intercept of y3 for females is free and not
equal to the intercept for males. Intercepts are referred to by using
square brackets. The default estimator for this type of analysis is
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maximum likelihood. The ESTIMATOR option of the ANALYSIS
command can be used to select a different estimator. An explanation of
the other commands can be found in Examples 5.1, 5.8, and 5.14.

EXAMPLE 5.16: MULTIPLE GROUP CFA WITH
COVARIATES (MIMIC) WITH CATEGORICAL FACTOR
INDICATORS AND A THRESHOLD STRUCTURE
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TITLE: this is an example of a multiple group CFA
with covariates (MIMIC) with categorical
factor indicators and a threshold
structure

DATA: FILE IS exb5.l6.dat;

VARIABLE: NAMES ARE ul-u6 x1-x3 g;

CATEGORICAL ARE ul-u6;
GROUPING IS g (1 = male 2 = female);

MODEL: f1 BY ul-u3;
f2 BY ud-ub6;
fl1 £2 ON x1-x3;

MODEL female:
f1 BY u3;

[ulsi];
{u3@1l};

The difference between this example and Example 5.15 is that the factor
indicators are binary or ordered categorical (ordinal) variables instead of
continuous variables. For multiple-group CFA with categorical factor
indicators, see  Muthén and Christoffersson (1981) and Muthén and
Asparouhov (2002).

The CATEGORICAL option is used to specify which dependent
variables are treated as binary or ordered categorical (ordinal) variables
in the model and its estimation. In the example above, all six factor
indicators are binary or ordered categorical variables. The program
determines the number of categories for each factor indicator.

For binary and ordered categorical factor indicators, thresholds are
modeled rather than intercepts or means. The number of thresholds for a
categorical variable is equal to the number of categories minus one. In
the above example, u3 is a binary variable with two categories.
Thresholds are referred to by adding to the variable name a $ followed
by a number. The threshold for u3 is u3$1. Thresholds are referred to in
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square brackets. When a model includes a mean structure, the
thresholds of the factor indicators are held equal across groups as the
default to specify measurement invariance. In the group-specific
MODEL command for females, the threshold and factor loading of u3
for females are specified to be free and not equal to the threshold and
factor loading for males.

Because the factor indicators are categorical, scale factors are required
for multiple group analysis when the default Delta parameterization is
used. Scale factors are referred to using curly brackets ({}). By default,
scale factors are fixed at one in the first group and are free to be
estimated in the other groups. When a threshold and a factor loading for
a categorical factor indicator are free across groups, the scale factor for
that variable must be fixed at one in all groups for identification
purposes. Therefore, the scale factor for u3 is fixed at one for females.

The default estimator for this type of analysis is a robust weighted least
squares estimator. The ESTIMATOR option of the ANALYSIS
command can be used to select a different estimator. With maximum
likelihood, logistic regressions are estimated using a numerical
integration algorithm. ~ Note that numerical integration becomes
increasingly more computationally demanding as the number of factors
and the sample size increase. An explanation of the other commands can
be found in Examples 5.1, 5.8, 5.14, and 5.15.
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EXAMPLE 5.17: MULTIPLE GROUP CFA WITH
COVARIATES (MIMIC) WITH CATEGORICAL FACTOR
INDICATORS AND A THRESHOLD STRUCTURE USING THE
THETA PARAMETERIZATION

TITLE: this is an example of a multiple group CFA
with covariates (MIMIC) with categorical
factor indicators and a threshold
structure using the Theta parameterization

DATA: FILE IS exb5.17.dat;

VARIABLE: NAMES ARE ul-u6 x1-x3 g;

CATEGORICAL ARE ul-u6;
GROUPING IS g (1 = male 2 = female);

ANALYSIS: PARAMETERIZATION = THETA;

MODEL: f1 BY ul-u3;
f2 BY ud-ub6;
fl1 £2 ON x1-x3;

MODEL female:
f1 BY u3;

[ulsi];
u3@l;

The difference between this example and Example 5.16 is that the Theta
parameterization is used instead of the Delta parameterization. In the
Delta parameterization, scale factors are allowed to be parameters in the
model, but residual variances for latent response variables of observed
categorical dependent variables are not. In the alternative Theta
parameterization, residual variances for latent response variables are
allowed to be parameters in the model but scale factors are not. The
Theta parameterization is selected by specifying
PARAMETERIZATION=THETA in the ANALYSIS command.

When the Theta parameterization is used, the residual variances for the
latent response variables of the observed categorical dependent variables
are fixed at one in the first group and are free to be estimated in the other
groups as the default. When a threshold and a factor loading for a
categorical factor indicator are free across groups, the residual variance
for the variable must be fixed at one in these groups for identification
purposes. In the group-specific MODEL command for females, the
residual variance for u3 is fixed at one. An explanation of the other
commands can be found in Examples 5.1, 5.8, 5.14, 5.15, and 5.16.

84



Examples: Confirmatory Factor Analysis And
Structural Equation Modeling

EXAMPLE 5.18: TWO-GROUP TWIN MODEL FOR
CONTINUOUS OUTCOMES WHERE FACTORS REPRESENT
THE ACE COMPONENTS

TITLE:

DATA:

MODEL:

VARIABLE:

ANALYSIS:

MODEL dz:

this is an example of a two-group twin
model for continuous outcomes where
factors represent the ACE components
FILE = exb5.18.dat;

NAMES = yl y2 g;

GROUPING = g (1 = mz 2 = dz);

MODEL = NOCOVARIANCES;

[yl-y2] (1);

y1l-y2@0;
al BY yl*
a2 BY y2*
cl BY yl*
c2 BY y2*
el BY yl*
e2 BY y2*
al-e2@1;
[al-e2@0];
al WITH a2@1;
cl WITH c2@Q1;
al WITH a2@Q.5;

—_~ e~~~ —~ —~
S w NN
—_—— — — — —
Ne Ne Ne Ne Ne N

yl y2

In this example, the univariate twin model shown in the picture above is
estimated. This is a two-group twin model for a continuous outcome
where factors represent the ACE components (Neale & Cardon, 1992).
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The variables y1 and y2 represent a univariate outcome for each member
of the twin pair. The A factors represent the additive genetic
components which correlate 1.0 for monozygotic twin pairs and 0.5 for
dizygotic twin pairs. The C factors represent common environmental
effects which correlate 1.0 for all twin pairs. The E factors represent
uncorrelated environmental effects. A simpler alternative way of
specifying this model is shown in Example 5.21 where parameter
constraints are used instead of the A, C, and E factors.

Exogenous factors are correlated as the default. By specifying
MODEL=NOCOVARIANCES in the ANALYSIS command, all
covariances in the model are fixed at zero. The WITH option of the
MODEL command can be used to override the default for selected
covariances as shown in the three WITH statements. In the MODEL
command, the (1) following the first bracket statement specifies that the
intercepts of yl and y2 are held equal across twins. The second
statement fixes the residual variances of y1 and y2 to zero. The residual
variances of yl1 and y2 are instead captured by the loadings of the E
factors. The six BY statements are used to define the six factors. The
asterisk (*) is used to free the factor loadings because the default is that
the factor loading for the first factor indicator is fixed at one. The
loadings for the A, C, and E factors are held equal across twins by
placing (2) following the two BY statements for the A factors, (3)
following the two BY statements for the C factors, and (4) following the
two BY statements for the E factors. In the next two statements, the A,
C, and E factor variances are fixed at one and the A, C, and E factor
means are fixed at zero. Because the factor means are fixed at zero, the
intercepts of y1 and y2 are their means.

The WITH statement for the A factors is used to fix the covariance
(correlation) between the A factors to 1.0 for monozygotic twin pairs.
The group-specific MODEL command is used to fix the covariance
between the A factors to 0.5 for the dizygotic twin pairs. The WITH
statement for the C factors is used to fix the covariance between the C
factors to 1. The default estimator for this type of analysis is maximum
likelihood. The ESTIMATOR option of the ANALYSIS command can
be used to select a different estimator. An explanation of the other
commands can be found in Examples 5.1 and 5.14.
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EXAMPLE 5.19: TWO-GROUP TWIN MODEL FOR
CATEGORICAL OUTCOMES WHERE FACTORS
REPRESENT THE ACE COMPONENTS

TITLE: this is an example of a two-group twin
model for categorical outcomes where
factors represent the ACE components

DATA: FILE = ex5.19.dat;

VARIABLE: NAMES = ul u2 g;

CATEGORICAL = ul-uz2;
GROUPING = g (1 = mz 2 = dz);

ANALYSIS: MODEL = NOCOVARIANCES;

MODEL: [ul$l-u2s$1] (1);
al BY ul~* (
a2 BY u2~* (2);
cl BY ul~* (3);
c2 BY u2~* (3
al-c2@1;
[al-c2@0];
al WITH a2@1l;
cl WITH c2@Q1;

MODEL dz: al WITH a2@.5;
{ul-u2@1};

The difference between this example and Example 5.18 is that the
outcomes are binary or ordered categorical instead of continuous
variables. Because of this, the outcomes have no freely estimated
residual variances and therefore the E factors are not part of the model.
With categorical outcomes, the twin model is formulated for normally-
distributed latent response variables underlying the categorical outcomes
which are also called liabilities. This model is referred to as the
threshold model for liabilities (Neale & Cardon, 1992). More complex
examples of such models are given in Prescott (2004). A simpler
alternative way of specifying this model is shown in Example 5.22
where parameter constraints are used instead of the A and C factors.

The CATEGORICAL option is used to specify which dependent
variables are treated as binary or ordered categorical (ordinal) variables
in the model and its estimation. In the example above, ul and u2 are
binary or ordered categorical variables. The program determines the
number of categories for each variable.
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For binary and ordered categorical outcomes, thresholds are modeled
rather than intercepts or means. The number of thresholds for a
categorical variable is equal to the number of categories minus one. In
the example above, the categorical variables are binary so they have one
threshold. Thresholds are referred to by adding to the variable name a $
followed by a number. The thresholds of ul and u2 are referred to as
ul$l and u2$1l. Thresholds are referred to in square brackets. The (1)
after the first bracket statement specifies that the thresholds for u1$1 and
u2$1 are constrained to be equal.

Because the outcomes are categorical, scale factors are required for
multiple group analysis when the default Delta parameterization is used.
Scale factors are referred to using curly brackets ({}). By default, scale
factors are fixed at one in the first group and are free to be estimated in
the other groups. In this model where the variance contributions from
the A and C factors are assumed equal across the two groups, the scale
factors are fixed at one in both groups to represent the equality of
variance for latent response variables underlying ul and u2. The
statement in curly brackets in the group-specific MODEL command
specifies that the scale factors are fixed at one. The variance
contribution from the E factor is a remainder obtained by subtracting the
variance contributions of the A and C factors from the unit variance of
the latent response variables underlying ul and u2. These are obtained
as part of the STANDARDIZED option of the OUTPUT command.

The default estimator for this type of analysis is a robust weighted least
squares estimator. The ESTIMATOR option of the ANALYSIS
command can be used to select a different estimator. With maximum
likelihood and categorical factor indicators, numerical integration is
required. Note that numerical integration becomes increasingly more
computationally demanding as the number of factors and the sample size
increase. An explanation of the other commands can be found in
Examples 5.1, 5.14, and 5.18.



Examples: Confirmatory Factor Analysis And
Structural Equation Modeling

EXAMPLE 5.20: CFAWITH PARAMETER CONSTRAINTS

TITLE: this is an example of a CFA with parameter
constraints
DATA: FILE = ex5.20.dat;
VARIABLE: NAMES = yl-y6;
MODEL: f1 BY yl
y2-y3 (lam2-1am3) ;
f2 BY v4
y5-y6 (lam5-1am6) ;
f1 (vfl);
f2 (vE2);
yl-y3 (vel-ve3);
y4-y6 (ved-veb);
MODEL CONSTRAINT:
NEW (rel2 rel5 stan3 stano);

rel2 = lam2**2*vfl/ (lam2**2*vfl + ve2);
relb = lamb**2*vf2/ (lamb**2*vf2 + wveb);
rel5 = rel2;

stan3 = 1am3*SQRT (vfl) /SORT (lam3**2*vfl +
ve3l) ;

stan6 = 1lam6*SQRT (vf2) /SORT (lam6**2*vE2 +
veob) ;

0 = stan6 - stan3;
ve2 > veb;
ved > 0;

OUTPUT : STANDARDIZED;

In this example, parameter constraints are used to estimate reliabilities,
estimate standardized coefficients, constrain functions of parameters to
be equal, and constrain parameters to be greater than a value. This
example uses the model from Example 5.1.

The MODEL CONSTRAINT command specifies parameter constraints
using labels defined for parameters in the MODEL command, labels
defined for parameters not in the MODEL command using the NEW
option of the MODEL CONSTRAINT command, and names of observed
variables that are identified using the CONSTRAINT option of the
VARIABLE command. This example illustrates constraints using labels
defined for parameters in the MODEL command and labels defined
using the NEW option. The NEW option is used to assign labels and
starting values to parameters not in the analysis model. Parameters in
the analysis model are given labels by placing a name in parentheses
after the parameter in the MODEL command.
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In the MODEL command, labels are defined for twelve parameters. The
list function can be used when assigning labels to a list of parameters.
The labels lam2, lam3, lam5, and lam6 are assigned to the factor
loadings for y2, y3, y5, and y6. The labels vfl and vf2 are assigned to
the factor variances for f1 and f2. The labels vel, ve2, ve3, ve4, ve5,
and ve6 are assigned to the residual variances of y1, y2, y3, y4, y5, and

y6.

In the MODEL CONSTRAINT command, the NEW option is used to
assign labels to four parameters that are not in the analysis model: rel2,
rel5, stan3, and stan6. The parameters rel2 and rel6 estimate the
reliability of y2 and y6 where reliability is defined as variance explained
divided by total variance. The parameters stan3 and stan6 estimate the
standardized coefficients for y3 and y6 using conventional
standardization formulas. In the statement that begins 0=, two
parameters are held equal to each other by defining their difference as
zero. In the last two statements, the residual variance of y2 is
constrained to be greater than the residual variance of y5, and the
residual variance of y4 is constrained to be greater than zero. The
STANDARDIZED option of the OUTPUT command is requested to
illustrate that the R-square values found in the output are the same as the
estimated reliabilities, and the standardized values found in the output
are the same as the estimated standardized values. Standard errors for
parameters named using the NEW option are given. The default
estimator for this type of analysis is maximum likelihood. The
ESTIMATOR option of the ANALYSIS command can be used to select
a different estimator. An explanation of the other commands can be
found in Example 5.1.
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EXAMPLE 5.21: TWO-GROUP TWIN MODEL FOR
CONTINUOUS OUTCOMES USING PARAMETER
CONSTRAINTS

TITLE: this is an example of a two-group twin
model for continuous outcomes using
parameter constraints

DATA: FILE = exb.21.dat;

VARIABLE: NAMES = yl y2 g;

GROUPING = g(1l = mz 2 = dz);

MODEL: [yl-y2] (1),
yl-y2 (var) ;
yl WITH y2 (covmz) ;

MODEL dz: vyl WITH y2 (covdz);

MODEL CONSTRAINT:

NEW(a c e h);

var = a**2 + c**2 + e*x*2;
covmz = a**2 + c**2;
covdz = 0.5%a**2 + c**2;

h = a**2/(a**2 + c**2 + e**2);

yl y2

N

In this example, the model shown in the picture above is estimated using
parameter constraints. The model estimated is the same as the model in
Example 5.18.

In the MODEL command, labels are defined for three parameters. The
label var is assigned to the variances of yl1 and y2. Because they are
given the same label, these parameters are held equal. In the overall
MODEL command, the label covmz is assigned to the covariance
between y1 and y2 for the monozygotic twins. In the group-specific
MODEL command, the label covdz is assigned to the covariance
between y1 and y2 for the dizygotic twins.

In the MODEL CONSTRAINT command, the NEW option is used to
assign labels to four parameters that are not in the analysis model: a, c,
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e, and h. The three parameters a, ¢, and e are used to decompose the
variances and covariances of y1 and y2 into genetic and environmental
components. The parameter h does not impose restrictions on the model
parameters but is used to compute the heritability estimate and its
standard error. The default estimator for this type of analysis is
maximum likelihood. The ESTIMATOR option of the ANALYSIS
command can be used to select a different estimator. An explanation of
the other commands can be found in Examples 5.1, 5.14, 5.18, and 5.20.

EXAMPLE 5.22: TWO-GROUP TWIN MODEL FOR
CATEGORICAL OUTCOMES USING PARAMETER

CONSTRAINTS

TITLE: this is an example of a two-group twin
model for categorical outcomes using
parameter constraints

DATA: FILE = ex5.22.dat;

VARIABLE: NAMES = ul u2 g;

GROUPING = g(1l = mz 2 = dz);
CATEGORICAL = ul u2;

MODEL: [ul$1-u2$1](1);
ul WITH u2 (covmz) ;

MODEL dz: ul WITH uZ2(covdz);

MODEL CONSTRAINT:

NEW(a c e h);

covmz = a**2 + c**2;
covdz = 0.5%a**2 + c**2;
e =1 - (a**2 + c**2);

h = a*x*2/1;
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The difference between this example and Example 5.21 is that the
outcomes are binary or ordered categorical instead of continuous
variables. Because of this, the outcomes have no freely estimated
residual variances. The ACE variance and covariance restrictions are
placed on normally-distributed latent response variables underlying the
categorical outcomes which are also called liabilities. This model is
referred to as the threshold model for liabilities (Neale & Cardon, 1992).
The model estimated is the same as the model in Example 5.19.

The variance contribution from the E factor is not a freely estimated
parameter with categorical outcomes. It is a remainder obtained by
subtracting the variance contributions of the A and C factors from the
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unit variance of the latent response variables underlying ul and u2 as
shown in the MODEL CONSTRAINT command. The denominator for
the heritability estimate is one with categorical outcomes because the
latent response variables have unit variances.

The default estimator for this type of analysis is a robust weighted least
squares estimator. The ESTIMATOR option of the ANALYSIS
command can be used to select a different estimator. With maximum
likelihood, logistic or probit regressions are estimated using a numerical
integration algorithm. ~ Note that numerical integration becomes
increasingly more computationally demanding as the number of factors
and the sample size increase. An explanation of the other commands can
be found in Examples 5.1, 5.14, 5.19 and 5.21.

EXAMPLE 5.23: QTL SIBLING MODEL FOR A CONTINUOUS
OUTCOME USING PARAMETER CONSTRAINTS

TITLE: this is an example of a QTL sibling model
for a continuous outcome using parameter
constraints

DATA: FILE = ex5.23.dat;

VARIABLE: NAMES = yl y2 pihat;
USEVARIABLES = yl y2;
CONSTRAINT = pihat;

MODEL: [yl-y21 (1);
yl-y2 (var);
yl WITH y2 (cov);

MODEL CONSTRAINT:

NEW (a e q);
var = a**2 + e**2 + g**2;
cov 0, 9N NZ I PLlNEE S EY Y2 g

yl y2
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In this example, the model shown in the picture above is estimated. This
is @ QTL model for two siblings (Marlow et al. 2003; Posthuma et al.
2004) for continuous outcomes where parameter constraints are used to
represent the A, E, and Q components. The A component represents the
additive genetic effects which correlate 0.5 for siblings. The E
component represents uncorrelated environmental effects. The Q
component represents a quantitative trait locus (QTL). The observed
variable pihat contains the estimated proportion alleles shared identity-
by-descent (IBD) by the siblings and moderates the effect of the Q
component on the covariance between the outcomes.

The CONSTRAINT option in the VARIABLE command is used to
identify the variables that can be used in the MODEL CONSTRAINT
command. These can be not only variables used in the MODEL
command but also other variables. In this example, the variable pihat is
used in the MODEL CONSTRAINT command although it is not used in
the MODEL command.

In the MODEL command, the (1) following the first bracket statement
specifies that the intercepts of y1 and y2 are held equal across the two
siblings. In addition, labels are defined for two parameters. The label
var is assigned to the variances of y1 and y2. Because they are given the
same label, these parameters are held equal. The label cov is assigned to
the covariance between y1 and y2.

In the MODEL CONSTRAINT command, the NEW option is used to
assign labels to three parameters that are not in the analysis model: a, e,
and g. The three parameters a, e, and g and the variable pihat are used to
decompose the variances and covariances of yl1 and y2 into genetic,
environmental, and QTL components. The default estimator for this
type of analysis is maximum likelihood. The ESTIMATOR option of
the ANALYSIS command can be used to select a different estimator.
An explanation of the other commands can be found in Examples 5.1
and 5.20.
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EXAMPLE 5.24: EFA WITH COVARIATES (MIMIC) WITH
CONTINUOUS FACTOR INDICATORS AND DIRECT
EFFECTS

TITLE: this is an example of an EFA with
covariates (MIMIC) with continuous factor
indicators and direct effects

DATA: FILE IS exb5.24.dat;

VARIABLE: NAMES ARE yl-y8 x1 x2;

MODEL: f1-£f2 BY yl-y8(*1);
f1-f2 ON x1-x2;
yl ON x1;
y8 ON x2;

OUTPUT : TECH1;

x1

yS

x2 yb6

y7 |~

y8

In this example, the EFA with covariates (MIMIC) with continuous
factor indicators and direct effects shown in the picture above is
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estimated. This is an exploratory structural equation model (ESEM,;
Asparouhov & Muthén, 2009a). The factors f1 and 2 are EFA factors
which have the same factor indicators. Unlike CFA, no factor loadings
are fixed at zero. Instead, the four restrictions on the factor loadings,
factor variances, and factor covariances necessary for identification are
imposed by rotating the factor loading matrix and fixing the factor
residual variances at one.

In the MODEL command, the BY statement specifies that the factors f1
and f2 are measured by the continuous factor indicators y1 through y8.
The label 1 following an asterisk (*) in parentheses following the BY
statement is used to indicate that f1 and f2 are a set of EFA factors.
When no rotation is specified using the ROTATION option of the
ANALYSIS command, the default obligue GEOMIN rotation is used.
The intercepts and residual variances of the factor indicators are
estimated and the residuals are not correlated as the default. The
residual variances of the factors are fixed at one as the default. The
residuals of the factors are correlated under the default oblique
GEOMIN rotation. The first ON statement describes the linear
regressions of f1 and f2 on the covariates x1 and x2. The second and
third ON statements describe the linear regressions of y1 on x1 and y8
on x2. These regressions represent direct effects used to test for
measurement non-invariance.

The default estimator for this type of analysis is maximum likelihood.
The ESTIMATOR option of the ANALYSIS command can be used to
select a different estimator. An explanation of the other commands can
be found in Example 5.1.
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EXAMPLE 5.25: SEM WITH EFA AND CFA FACTORS WITH
CONTINUOUS FACTOR INDICATORS

VARIABLE: NAMES
MODEL: f1-£2
£3 BY
f4 BY
£3 ON
f4 ON

ARE yl-y12;

BY yl-y6 (*1);
y71-vy9;
y1l0-y12;
f1-£2;

£3;

TITLE: this is an example of a SEM with EFA and
CFA factors with continuous factor
indicators

DATA: FILE IS exb5.25.dat;

y5

y6

| | | ! | |
y7 y8 y9 y10 | | y11 || y12
3 4

In this example, the SEM with EFA and CFA factors with continuous
factor indicators shown in the picture above is estimated. This is an
exploratory structural equation model (ESEM; Asparouhov & Muthén,
2009a). The factors f1 and f2 are EFA factors which have the same
factor indicators. Unlike CFA, no factor loadings are fixed at zero.
Instead, the four restrictions on the factor loadings, factor variances, and
factor covariances necessary for identification are imposed by rotating
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the factor loading matrix and fixing the factor variances at one. The
factors 3 and f4 are CFA factors.

In the MODEL command, the first BY statement specifies that the
factors f1 and f2 are measured by the continuous factor indicators y1
through y6. The label 1 following an asterisk (*) in parentheses
following the BY statement is used to indicate that f1 and f2 are a set of
EFA factors. When no rotation is specified using the ROTATION
option of the ANALYSIS command, the default oblique GEOMIN
rotation is used. For EFA factors, the intercepts and residual variances
of the factor indicators are estimated and the residuals are not correlated
as the default. The variances of the factors are fixed at one as the
default. The factors are correlated under the default oblique GEOMIN
rotation. The second BY statement specifies that f3 is measured by y7,
y8, and y9. The third BY statement specifies that f4 is measured by y10,
y11, and y12. The metric of the factors is set automatically by the
program by fixing the first factor loading in each BY statement to 1.
This option can be overridden. The intercepts and residual variances of
the factor indicators are estimated and the residual are not correlated as
the default. The residual variances of the factors are estimated as the
default.

The first ON statement describes the linear regression of f3 on the set of
EFA factors f1 and f2. The second ON statement describes the linear
regression of f4 on f3. The default estimator for this type of analysis is
maximum likelihood. The ESTIMATOR option of the ANALYSIS
command can be used to select a different estimator. An explanation of
the other commands can be found in Example 5.1.
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EXAMPLE 5.26: EFA AT TWO TIME POINTS WITH FACTOR
LOADING INVARIANCE AND CORRELATED RESIDUALS
ACRQOSS TIME
TITLE: this is an example of an EFA at two time
points with factor loading invariance and
correlated residuals across time
DATA: FILE IS ex5.26.dat;
VARIABLE: NAMES ARE yl-vy12;
MODEL: f1-f2 BY yl-y6 (*tl 1);
£f3-f4 BY y7-yl2 (*t2 1);
yl-y6 PWITH y7-yl2;
OUTPUT : TECH1 STANDARDIZED;

In this example, the EFA at two time points with factor loading
invariance and correlated residuals across time shown in the picture
above is estimated. This is an exploratory structural equation model
(ESEM; Asparouhov & Muthén, 2009a). The factor indicators yl
through y6 and y7 through y12 are the same variables measured at two
time points. The factors f1 and f2 are one set of EFA factors which have
the same factor indicators and the factors f3 and f4 are a second set of
EFA factors which have the same factor indicators. Unlike CFA, no
factor loadings are fixed at zero in either set. Instead, for each set, the
four restrictions on the factor loadings, factor variances, and factor
covariances necessary for identification are imposed by rotating the
factor loading matrix and fixing the factor variances at one at the first
time point. For the other time point, factor variances are free to be
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estimated as the default when factor loadings are constrained to be equal
across time.

In the MODEL command, the first BY statement specifies that the
factors f1 and f2 are measured by the continuous factor indicators y1
through y6. The label t1 following an asterisk (*) in parentheses
following the BY statement is used to indicate that f1 and f2 are a set of
EFA factors. The second BY statement specifies that the factors 3 and
f4 are measured by the continuous factor indicators y7 through y12. The
label t2 following an asterisk (*) in parentheses following the BY
statement is used to indicate that f3 and f4 are a set of EFA factors. The
number 1 following the labels t1 and t2 specifies that the factor loadings
matrices for the two sets of EFA factors are constrained to be equal.
When no rotation is specified using the ROTATION option of the
ANALYSIS command, the default obligue GEOMIN rotation is used.

For EFA factors, the intercepts and residual variances of the factor
indicators are estimated and the residuals are not correlated as the
default. The intercepts are not held equal across time as the default.
The means of the factors are fixed at zero at both time points and the
variances of the factors are fixed at one as the default. In this example
because the factor loadings are constrained to be equal across time, the
factor variances are fixed at one at the first time point and are free to be
estimated at the other time point. The factors are correlated as the
default under the obligue GEOMIN rotation. The PWITH statement
specifies that the residuals for each factor indicator are correlated over
time. The default estimator for this type of analysis is maximum
likelihood. The ESTIMATOR option of the ANALYSIS command can
be used to select a different estimator. An explanation of the other
commands can be found in Example 5.1.
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EXAMPLE 5.27: MULTIPLE-GROUP EFA WITH
CONTINUOUS FACTOR INDICATORS

TITLE: this is an example of multiple-group EFA
with continuous factor indicators with no
measurement invariance

DATA: FILE IS exb.27.dat;

VARIABLE: NAMES ARE yl-y10 group;

GROUPING IS group (1 = gl 2 = g2);

MODEL: f1-f2 BY yl-y10 (*1);
[f1-f2Q@0];
MODEL g2: f1-f2 BY yl-y10 (*1);
[yl-y101;
OUTPUT: TECH1;
i ) i i i i i i ' i

yl y2 y3 y4 yS y6 y7 y8 y9 yl10

In this example, the multiple-group EFA with continuous indicators
shown in the picture above is estimated. This is an exploratory
structural equation model (ESEM; Asparouhov & Muthén, 2009a). The
factors f1 and 2 are EFA factors which have the same factor indicators.
Unlike CFA, no factor loadings are fixed at zero. Instead, for the first
group the four restrictions on the factor loadings, factor variances, and
factor covariances necessary for model identification are imposed by
rotating the factor loading matrix and fixing the factor variances at one
in all groups. The first model in this example imposes no equality
constraints on the model parameters across the two groups. Four
subsequent models impose varying degrees of invariance on the model
parameters.

In the MODEL command, the BY statement specifies that the factors f1
and f2 are measured by the continuous factor indicators y1 through y10.
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The label 1 following an asterisk (*) in parentheses following the BY
statement is used to indicate that f1 and f2 are a set of EFA factors.
When no rotation is specified using the ROTATION option of the
ANALYSIS command, the default obligue GEOMIN rotation is used.

The intercepts and residual variances of the factor indicators are
estimated and the residuals are not correlated as the default. The
variances of the factors are fixed at one in both groups. The factors are
correlated under the default oblique GEOMIN rotation. The bracket
statement specifies that the factor means are fixed at zero in both groups
to override the default of the factor means being fixed at zero in the first
group and being free in the other group.

In the group-specific MODEL command for g2, the BY statement
relaxes the default equality constraint on the factor loading matrices in
the two groups. The bracket statement relaxes the default equality
constraint on the intercepts of the factor indicators y1 through y10 in the
two groups. The default estimator for this type of analysis is maximum
likelihood. The ESTIMATOR option of the ANALYSIS command can
be used to select a different estimator. An explanation of the other
commands can be found in Example 5.1

Following is the second part of the example where equality of factor
loading matrices across the two groups is imposed. The variances of the
factors are fixed at one in the first group and are free to be estimated in
the other group.

MODEL: f1-£f2 BY yl-y10 (*1);
[f1-£2@01];
MODEL g2: [yl-y10];

Equality of factor loading matrices is accomplished by removing the BY
statement from the group-specific MODEL command for g2. Equality
of factor loading matrices is the default.

Following is the third part of the example where equality of factor
loading matrices and intercepts of the factor indicators across the two
groups is imposed.

| MODEL: f1-f2 by yl-y10 (*1);
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Equality of factor indicator intercepts is accomplished by removing the
bracket statement for y1 through y10 from the group-specific MODEL
command for g2. Equality of factor indicator intercepts is the default.
This specification is the default setting in multiple group analysis,
specifying measurement invariance of the intercepts of the factor
indicators and the factor loading matrices. The factor means are fixed at
zero in the first group and are free to be estimated in the other group as
the default.

Following is the fourth part of the example where equality of factor
variances and the factor covariance is imposed in addition to
measurement invariance of the intercepts and factor loading matrices.

MODEL: f1-£f2 by yl-y10 (*1);
f1 WITH £2 (1);
f1-£2@1;

In the MODEL command, the number one in parentheses following the
WITH statement specifies that the covariance between f1 and 2 is held
equal across the two groups. The default in multiple group EFA when
factor loading matrices are held equal across groups is that the factor
variances are fixed to one in the first group and are free to be estimated
in the other group. The third statement in the MODEL command
overrides this default by specifing that the factor variances are fixed at
one in both groups.

Following is the fifth part of the example where in addition to equality
of factor variances and the factor covariance, equality of the factor
means is imposed in addition to measurement invariance of the
intercepts and factor loading matrices.

MODEL: f1-£f2 by yl-y10 (*1);
f1 WITH £2 (1);
f1-£2@1;

[f1-£2@01];

The default in multiple group EFA is that the factor means are fixed to
zero in the first group and are free to be estimated in the other groups.
The bracket statement in the MODEL command specifies that the factor
means are fixed at zero in both groups.
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EXAMPLE 5.28: EFA WITH RESIDUAL VARIANCES
CONSTRAINED TO BE GREATER THAN ZERO

TITLE: this is an example of an EFA with residual
variances constrained to be greater than
Zero

DATA: FILE = exb.28.dat;

VARIABLE: NAMES = yl-y10;
ANALYSIS: ROTATION = GEOMIN;
MODEL: f1-f2 BY yl-y10 (*1);
yl-y10 (v1-v10);
MODEL CONSTRAINT:
DO (1,10) v#>0;
OUTPUT : STDY;

In this example, an exploratory factor analysis with residual variances
constrained to be greater than zero is carried out using a Geomin
rotation. This is an exploratory structural equation model (ESEM,;
Asparouhov & Muthén, 2009a). The factors f1 and f2 are EFA factors
which have the same factor indicators. By specifying GEOMIN, an EFA
will be carried out using the Geomin rotation. The default is an oblique
rotation. ~ An orthogonal rotation can be obtained by specifying
ROTATION=GEOMIN(ORTHOGONAL). The ROTATION option can
be used to specify other rotations.

In the MODEL command, the BY statement specifies that the factors f1
and f2 are measured by the continuous factor indicators y1 through y10.
The label 1 following an asterisk (*) in parentheses following the BY
statement is used to indicate that f1 and f2 are a set of EFA factors. The
intercepts and residual variances of the factor indicators are estimated
and the residuals are not correlated as the default. The variances of the
factors are fixed at one as the default. The DO option of the MODEL
CONSTRAINT command is used to constrain the residual variances of
the factor indicators to be greater than zero. The DO option provides a
do loop to facilitate specifying the same expression for a set of
parameters. The parameters are given labels in the MODEL command.
In the DO option, the numbers in parentheses give the range of values
for the do loop. The number sign (#) is replaced by these values during
the execution of the do loop. In the OUTPUT command, the STDY
option is chosen for standardization with respect to y. This puts the
results in the metric of an EFA. The default estimator for this type of
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analysis is maximum likelihood. The ESTIMATOR option of the
ANALYSIS command can be used to select a different estimator. An
explanation of the other commands can be found in Examples 5.1.

EXAMPLE 5.29: BI-FACTOR EFA USING ESEM

TITLE: this is an example of a bi-factor EFA
using ESEM
DATA: FILE = exb5.29.dat;

VARIABLE: NAMES = yl-y10;
ANALYSIS: ROTATION = BI-GEOMIN;
MODEL: fg f1 £2 BY yl-y10 (*1);
OUTPUT: STDY;

In this example, a bi-factor exploratory factor analysis (Jennrich &
Bentler, 2011, 2012) using ESEM with continuous factor indicators is
carried out using a bi-factor Geomin rotation. This is an exploratory
structural equation model (ESEM; Asparouhov & Muthén, 2009a). The
factors fg, f1, and f2 are EFA factors which have the same factor
indicators. By specifying BI-GEOMIN, a bi-factor EFA will be carried
out using a bi-factor Geomin rotation. The default is an oblique solution
where the specific factors are correlated with the general factor and are
correlated with each other. In the orthogonal solution, the specific
factors are uncorrelated with the general factor and are uncorrelated with
each other.  An orthogonal rotation is obtained by specifying
ROTATION=BI-GEOMIN(ORTHOGONAL). An alternative bi-factor
rotation can be obtained using the BI-CF-QUARTIMAX setting of the
ROTATION option.

In the MODEL command, the BY statement specifies that the factors fg,
f1, and f2 are measured by the continuous factor indicators y1 through
y10. The factor fg is a general factor and f1 and 2 are specific factors.
The label 1 following an asterisk (*) in parentheses following the BY
statement is used to indicate that fg, f1, and f2 are a set of EFA factors.
The intercepts and residual variances of the factor indicators are
estimated and the residuals are not correlated as the default. The
variances of the factors are fixed at one as the default. In the OUTPUT
command, the STDY option is chosen for standardization with respect to
y. This puts the results in the metric of an EFA. The default estimator
for this type of analysis is maximum likelihood. The ESTIMATOR
option of the ANALYSIS command can be used to select a different
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estimator. An explanation of the other commands can be found in
Example 5.1.

EXAMPLE 5.30: BI-FACTOR EFAWITH TWO ITEMS
LOADING ON ONLY THE GENERAL FACTOR

106

TITLE: this is an example of bi-factor EFA with
two items loading on only the general
factor

DATA: FILE = ex5.30.dat;

VARIABLE: NAMES = yl-y10;
ANALYSIS: ROTATION = GEOMIN;
MODEL: fg BY yl-yl0%*;

fg@l;

f1-£f2 BY yl-y8 (*1);

fg WITH £1-£f2@0;
OUTPUT : STDY ;

In this example, a bi-factor exploratory factor analysis with continuous
factor indicators is carried out using a Geomin rotation. This is an
exploratory structural equation model (ESEM; Asparouhov & Muthén,
2009a). The general factor fg is a CFA factor. The specific factors f1
and f2 are EFA factors which have the same factor indicators. Only the
specific factors are rotated. By specifying GEOMIN, an EFA will be
carried out using the Geomin rotation for the specific factors. The
default is an oblique rotation. An orthogonal rotation can be obtained by
specifying ROTATION=GEOMIN(ORTHOGONAL). The ROTATION
option can be used to specify other rotations.

In the MODEL command, the first BY statement specifies that the
general factor fg is measured by y1 through y10. The asterisk (*) frees
the first factor loading which is fixed at one as the default to define the
metric of the factor. Instead the metric of the factor is defined by fixing
the factor variance at one. The second BY statement specifies that the
specific factors f1 and f2 are measured by the continuous factor
indicators y1 through y8. The label following an asterisk (*) in
parentheses following the BY statement is used to indicate that f1 and 2
are a set of EFA factors. The variances of the factors are fixed at one as
the default. The specific factors are correlated under the oblique
Geomin rotation. The WITH statement specifies that the general and
specific factors are not correlated. The intercepts and residual variances
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of the factor indicators are estimated and the residuals are not correlated
as the default. In the OUTPUT command, the STDY option is chosen
for standardization with respect to y. This puts the results in the metric
of an EFA. The default estimator for this type of analysis is maximum
likelihood. The ESTIMATOR option of the ANALYSIS command can
be used to select a different estimator. An explanation of the other
commands can be found in Example 5.1.

EXAMPLE 5.31: BAYESIAN BI-FACTOR CFAWITH TWO
ITEMS LOADING ON ONLY THE GENERAL FACTOR AND
CROSS-LOADINGS WITH ZERO-MEAN AND SMALL-
VARIANCE PRIORS

TITLE: this is an example of a Bayesian bi-factor
CFA with two items loading on only the
general factor and cross-loadings with
zero-mean and small-variance priors

DATA: FILE = ex5.31.dat;

VARIABLE: NAMES = yl-y10;

ANALYSIS: ESTIMATOR = BAYES;

PROCESSORS = 2;

MODEL: fg BY yl-yl0%*;
fg@l;
f1 BY yl-y4
y5-y10 (flxlamb-flxlamlOQ) ;
f2 BY y5-y8
vl-yv4 y9-y10 (f2xlaml-f2xlam6) ;
fg WITH f1-£f2Q0;

MODEL PRIORS:
flxlam5-f2x1am6~N(0,0.01) ;

PLOT: TYPE = PLOTZ2;

In this example, a bi-factor CFA with two items loading on only the
general factor and cross-loadings with zero-mean and small-variance
priors is carried out using the Bayes estimator. This is a Bayesian
structural equation model (BSEM; Muthén & Asparouhov, 2012). By
specifying ESTIMATOR=BAYES, a Bayesian analysis will be carried
out. In Bayesian estimation, the default is to use two independent
Markov chain Monte Carlo (MCMC) chains. If multiple processors are
available, using PROCESSORS=2 will speed up computations.

107



CHAPTER 5

108

In the MODEL command, the first BY statement specifies that the
general factor, fg, is measured by the continuous factor indicators y1
through y10. The asterisk (*) frees the first factor loading which is fixed
at one as the default to define the metric of the factor. Instead the metric
of the factor is defined by fixing the factor variance at one. The second
and third BY statements specify that the specific factors, f1 and f2, are
measured by y1 through y10. The first factor loadings are fixed at one to
set the metric of the factors. The first line of each BY statement shows
the major loadings for each factor. The second line shows the cross-
loadings which are assigned labels. For f1, labels are assigned to cross-
loadings for y5 through y10. For 2, labels are assigned to cross-
loadings for y1 through y4, y9, and y10. The WITH statement specifies
that the general and specific factors are not correlated. The intercepts
and residual variances of the factor indicators are estimated and the
residuals are not correlated as the default. In MODEL PRIORS, the
labels assigned in the MODEL command are used to assign zero-mean
and small-variance priors to the cross-loadings. By specifying
TYPE=PLOT?2 in the PLOT command, the following plots are available:
posterior parameter distributions, posterior parameter trace plots,
autocorrelation plots, posterior predictive checking scatterplots, and
posterior predictive checking distribution plots. An explanation of the
other commands can be found in Example 5.1.
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EXAMPLE 5.32: BAYESIAN MIMIC MODEL WITH CROSS-
LOADINGS AND DIRECT EFFECTS WITH ZERO-MEAN AND
SMALL-VARIANCE PRIORS

TITLE: this is an example of a Bayesian MIMIC
model with cross-loadings and direct
effects with zero-mean and small-variance
priors

DATA: FILE = ex5.32.dat;

VARIABLE: NAMES = yl-y6 x1-x3;

ANALYSIS: ESTIMATOR = BAYES;

PROCESSORS = 2;

MODEL: f1 BY yl-y3
y4-y6 (xload4-xloadb6) ;
f2 BY y4-yb6
yl-y3 (xloadl-xload3):;
f1-f2 ON x1-x3;
yl-y6 ON x1-x3 (dirl-dirl8);

MODEL PRIORS:
xloadl-xload6~N(0,0.01) ;
dirl-dirl8~N(0,0.01);

PLOT: TYPE = PLOT2;

In this example, a MIMIC model with cross-loadings and direct effects
with zero-mean and small-variance priors is carried out using the Bayes
estimator. This is a Bayesian structural equation model (BSEM; Muthén
& Asparouhov, 2012).

In the MODEL command, the first BY statement specifies that f1 is
measured by the continuous factor indicators y1 through y6. The second
BY statements specifies that f2 is measured by the continuous factor
indicators y1 through y6. The first factor loadings are fixed at one to set
the metric of the factors. The first line of each BY statement shows the
major loadings for each factor. The second line shows the cross-
loadings which are assigned labels. For f1, labels are assigned to y4
through y6. For f2, labels are assigned to y1 through y3. The intercepts
and residual variances of the factor indicators are estimated and the
residuals are not correlated as the default. In MODEL PRIORS, the
labels assigned in the MODEL command are used to assign zero-mean
and small-variance priors to the factor loadings. The first ON statement
describes the linear regressions of f1 and f2 on the covariates x1, x2, and
x3. The residual variances of f1 and f2 are estimated and the residuals
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are correlated as the default. The second ON statement describes the
linear regressions of y1 through y6 on the covariates x1, x2, and x3.
These are direct effects which are assumed to be small. Labels are
assigned to these regression coefficients. In MODEL PRIORS, the
labels assigned in the MODEL command are used to assign zero-mean
and small-variance priors to the factor loadings and regression
coefficients. By specifying TYPE=PLOT?2 in the PLOT command, the
following plots are available:  posterior parameter distributions,
posterior parameter trace plots, autocorrelation plots, posterior
predictive checking scatterplots, and posterior predictive checking
distribution plots. An explanation of the other commands can be found
in Examples 5.1 and 5.31.

EXAMPLE 5.33: BAYESIAN MULTIPLE GROUP MODEL
WITH APPROXIMATE MEASUREMENT INVARIANCE
USING ZERO-MEAN AND SMALL-VARIANCE PRIORS
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TITLE: this is an example of a Bayesian
multiple group model with approximate
measurement invariance using zero-mean and
small-variance priors

DATA: FILE = ex5.33.dat;

VARIABLE: NAMES = u yl-y6 group;

USEVARIABLES = yl-y6 group;
CLASSES = c(10);
KNOWNCLASS = c(group = 1-10);

ANALYSIS: TYPE = MIXTURE;

ESTIMATOR = BAYES;
PROCESSORS = 2;
MODEL = ALLFREE;

MODEL: $OVERALLS%
f1 BY yl-y3* (lam# 1-lam# 3);
£f2 BY y4-y6* (lam# 4-lam# 6);

[yl-y6] (nu# l-nu# 6);
sc#10%

f1-£2@1;

[£1-£2@0];

MODEL PRIORS:

DO(1,6) DIFF(laml #-lamlO #)~N(0,0.01);
DO(1,6) DIFF(nul #-nulO #)~N(0,0.01);
PLOT: TYPE = PLOT2;

OUTPUT : TECH1 TECHS;
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In this example, a multiple group model with approximate measurement
invariance using zero-mean and small-variance priors is carried out using
the Bayes estimator. This is a Bayesian structural equation model
(BSEM; Muthén & Asparouhov, 2012). In Bayesian estimation,
multiple group analysis is carried out using the CLASSES and
KNOWNCLASS options and TYPE=MIXTURE. The CLASSES option
is used to assign names to the categorical latent variables in the model
and to specify the number of latent classes in the model for each
categorical latent variable. In the example above, there is one
categorical latent variable ¢ that has ten latent classes. The
KNOWNCLASS option identifies c as the categorical latent variable for
which latent class membership is known.  The information in
parentheses following the categorical latent variable name defines the
known classes using an observed variable. In this example, the observed
variable group is used to define the known classes. The first class
consists of individuals with the value 1 on the variable group. The
second class consists of individuals with the value 2 on the variable
group etc.

MODEL=ALLFREE is used with TYPE=MIXTURE, the
KNOWNCLASS option, ESTIMATOR=BAYES, and a special labeling
function to assign zero-mean and small-variance priors to differences in
intercepts, thresholds, and factor loadings across groups. By specifying
MODEL=ALLFREE, factor means, variances, and covariances are free
across groups except for factor means in the last group which are fixed
at zero. In addition, intercepts, thresholds, factor loadings, and residual
variances of the factor indicators are free across the groups.

In the overall model, the first BY statement specifies that f1 is measured
by the continuous factor indicators y1 through y3. The second BY
statement specifies that f2 is measured by the continuous factor
indicators y4 through y6. In both BY statements the asterisk (*) frees
the first factor loadings which are fixed at one as the default to set the
metric of the factors. The metric of the factors is set instead by fixing
the factor variances to one in class 10. The residual variances of the
factor indicators are estimated and the residuals are not correlated as the
default.

In the overall part of the model, labels are assigned to the factor loadings

and the intercepts using automatic labeling for groups. The labels must
include the number sign (#) followed by the underscore () symbol
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followed by a number. The number sign (#) refers to a group and the
number refers to a parameter. The label lam#_1 is assigned to the factor
loading for y1; the label lam#_2 is assigned to the factor loading for y2;
and the label lam#_3 is assigned to the factor loading for y3. These
labels are expanded to include group information. For example, the
label for parameter 1 is expanded across the ten groups to give labels
lam1_1, lam2_1 through lam10_1. In MODEL PRIORS, these expanded
labels are used to assign zero-mean and small-variance priors to the
differences across groups of the factor loadings and intercepts using the
DO and DIFFERENCE options. They can be used together to simplify
the assignment of priors to a large set of difference parameters for
models with multiple groups and multiple time points. For the DO
option, the numbers in parentheses give the range of values for the do
loop. The number sign (#) is replaced by these values during the
execution of the do loop. The numbers refer to the six factor indicators.

By specifying TYPE=PLOT2 in the PLOT command, the following
plots are available:  posterior parameter distributions, posterior
parameter trace plots, autocorrelation plots, posterior predictive
checking scatterplots, and posterior predictive checking distribution
plots. An explanation of the other commands can be found in Example
5.1 and 5.31.
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CHAPTER 6

EXAMPLES: GROWTH
MODELING, SURVIVAL
ANALYSIS, AND N=1 TIME
SERIES ANALYSIS

Growth models examine the development of individuals on one or more
outcome variables over time. These outcome variables can be observed
variables or continuous latent variables. Observed outcome variables
can be continuous, censored, binary, ordered categorical (ordinal),
counts, or combinations of these variable types if more than one growth
process is being modeled. In growth modeling, random effects are used
to capture individual differences in development. In a latent variable
modeling framework, the random effects are reconceptualized as
continuous latent variables, that is, growth factors.

Mplus takes a multivariate approach to growth modeling such that an
outcome variable measured at four occasions gives rise to a four-variate
outcome vector. In contrast, multilevel modeling typically takes a
univariate approach to growth modeling where an outcome variable
measured at four occasions gives rise to a single outcome for which
observations at the different occasions are nested within individuals,
resulting in two-level data. Due to the use of the multivariate approach,
Mplus does not consider a growth model to be a two-level model as in
multilevel modeling but a single-level model. With longitudinal data,
the number of levels in Mplus is one less than the number of levels in
conventional multilevel modeling. The multivariate approach allows
flexible modeling of the outcomes such as differences in residual
variances over time, correlated residuals over time, and regressions
among the outcomes over time.

In Mplus, there are two options for handling the relationship between the
outcome and time. One approach allows time scores to be parameters in
the model so that the growth function can be estimated. This is the
approach used in structural equation modeling. The second approach
allows time to be a variable that reflects individually-varying times of
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observations. This variable has a random slope. This is the approach
used in multilevel modeling. Random effects in the form of random
slopes are also used to represent individual variation in the influence of
time-varying covariates on outcomes.

Growth modeling in Mplus allows the analysis of multiple processes,
both parallel and sequential; regressions among growth factors and
random effects; growth modeling of factors measured by multiple
indicators; and growth modeling as part of a larger latent variable model.

Survival modeling in Mplus includes both discrete-time and continuous-
time analyses. Both types of analyses consider the time to an event.
Discrete-time survival analysis is used when the outcome is recorded
infrequently such as monthly or annually, typically leading to a limited
number of measurements. Continuous-time survival analysis is used
when the outcome is recorded more frequently such as hourly or daily,
typically leading to a large number of measurements. Survival modeling
is integrated into the general latent variable modeling framework so that
it can be part of a larger model.

N=1 time series analysis is used to analyze intensive longitudinal data
such as those obtained with ecological momentary assessments,
experience sampling methods, daily diary methods, and ambulatory
assessments for a single person. Such data typically have a large number
of time points, for example, twenty to two hundred. The measurements
are typically closely spaced in time. In Mplus, univariate autoregressive,
regression, cross-lagged, confirmatory factor analysis, Item Response
Theory, and structural equation models can be estimated for continuous,
binary, ordered categorical (ordinal), or combinations of these variable
types. Multilevel extensions of these models can be found in Chapter 9.

All growth and survival models can be estimated using the following
special features:

Single or multiple group analysis

Missing data

Complex survey data

Latent variable interactions and non-linear factor analysis using
maximum likelihood

Random slopes

¢ Individually-varying times of observations
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Linear and non-linear parameter constraints

Indirect effects including specific paths

Maximum likelihood estimation for all outcome types
Bootstrap standard errors and confidence intervals
Wald chi-square test of parameter equalities

For continuous, censored with weighted least squares estimation, binary,
and ordered categorical (ordinal) outcomes, multiple group analysis is
specified by using the GROUPING option of the VARIABLE command
for individual data or the NGROUPS option of the DATA command for
summary data. For censored with maximum likelihood estimation,
unordered categorical (nominal), and count outcomes, multiple group
analysis is specified using the KNOWNCLASS option of the
VARIABLE command in conjunction with the TYPE=MIXTURE
option of the ANALYSIS command. The default is to estimate the
model under missing data theory using all available data. The
LISTWISE option of the DATA command can be used to delete all
observations from the analysis that have missing values on one or more
of the analysis variables. Corrections to the standard errors and chi-
square test of model fit that take into account stratification, non-
independence of observations, and unequal probability of selection are
obtained by using the TYPE=COMPLEX option of the ANALYSIS
command in conjunction with the STRATIFICATION, CLUSTER, and
WEIGHT  options of the VARIABLE command. The
SUBPOPULATION option is used to select observations for an analysis
when a subpopulation (domain) is analyzed. Latent variable interactions
are specified by using the | symbol of the MODEL command in
conjunction with the XWITH option of the MODEL command. Random
slopes are specified by using the | symbol of the MODEL command in
conjunction with the ON option of the MODEL command. Individually-
varying times of observations are specified by using the | symbol of the
MODEL command in conjunction with the AT option of the MODEL
command and the TSCORES option of the VARIABLE command.
Linear and non-linear parameter constraints are specified by using the
MODEL CONSTRAINT command. Indirect effects are specified by
using the MODEL INDIRECT command. Maximum likelihood
estimation is specified by using the ESTIMATOR option of the
ANALYSIS command. Bootstrap standard errors are obtained by using
the BOOTSTRAP option of the ANALYSIS command. Bootstrap
confidence intervals are obtained by using the BOOTSTRAP option of
the ANALYSIS command in conjunction with the CINTERVAL option
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of the OUTPUT command. The MODEL TEST command is used to test
linear restrictions on the parameters in the MODEL and MODEL
CONSTRAINT commands using the Wald chi-square test.

Graphical displays of observed data and analysis results can be obtained
using the PLOT command in conjunction with a post-processing
graphics module. The PLOT command provides histograms,
scatterplots, plots of individual observed and estimated values, and plots
of sample and estimated means and proportions/probabilities. These are
available for the total sample, by group, by class, and adjusted for
covariates. The PLOT command includes a display showing a set of
descriptive statistics for each variable. The graphical displays can be
edited and exported as a DIB, EMF, or JPEG file. In addition, the data
for each graphical display can be saved in an external file for use by
another graphics program.

Following is the set of growth modeling examples included in this
chapter:

e 6.1: Linear growth model for a continuous outcome

e 6.2: Linear growth model for a censored outcome using a censored
model*

e 6.3: Linear growth model for a censored outcome using a censored-
inflated model*

e 6.4: Linear growth model for a categorical outcome

e 6.5: Linear growth model for a categorical outcome using the Theta
parameterization

e 6.6: Linear growth model for a count outcome using a Poisson
model*

e 6.7: Linear growth model for a count outcome using a zero-inflated
Poisson model*

e 6.8: Growth model for a continuous outcome with estimated time
scores

e 6.9: Quadratic growth model for a continuous outcome

e 6.10: Linear growth model for a continuous outcome with time-
invariant and time-varying covariates

e 6.11: Piecewise growth model for a continuous outcome

e 6.12: Growth model with individually-varying times of observation
and a random slope for time-varying covariates for a continuous
outcome
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e 6.13: Growth model for two parallel processes for continuous
outcomes with regressions among the random effects

e 6.14: Multiple indicator linear growth model for continuous
outcomes

e 6.15: Multiple indicator linear growth model for categorical
outcomes

e 6.16: Two-part (semicontinuous) growth model for a continuous
outcome™

e 6.17: Linear growth model for a continuous outcome with first-
order auto correlated residuals using non-linear constraints

e 6.18: Multiple group multiple cohort growth model

Following is the set of survival analysis examples included in this
chapter:

e 6.19: Discrete-time survival analysis

e 6.20: Continuous-time survival analysis using the Cox regression
model

e 6.21: Continuous-time survival analysis using a parametric
proportional hazards model

e 6.22: Continuous-time survival analysis using a parametric
proportional hazards model with a factor influencing survival*

Following is the set of N=1 time series analysis examples included in
this chapter:

e 6.23: N=1 time series analysis with a univariate first-order
autoregressive AR(1) model for a continuous dependent variable

e 6.24: N=1 time series analysis with a univariate first-order
autoregressive AR(1) model for a continuous dependent variable
with a covariate

e 6.25: N=1 time series analysis with a bivariate cross-lagged model
for continuous dependent variables

e 6.26: N=1 time series analysis with a first-order autoregressive
AR(1) confirmatory factor analysis (CFA) model with continuous
factor indicators

e 6.27: N=1 time series analysis with a first-order autoregressive
AR(1) IRT model with binary factor indicators

e 6.28: N=1 time series analysis with a bivariate cross-lagged model
with two factors and continuous factor indicators
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* Example uses numerical integration in the estimation of the model.
This can be computationally demanding depending on the size of the
problem.

EXAMPLE 6.1: LINEAR GROWTH MODEL FOR A
CONTINUOUS OUTCOME

TITLE: this is an example of a linear growth
model for a continuous outcome
DATA: FILE IS ex6.l.dat;

VARIABLE: NAMES ARE yll-y14 x1 x2 x31-x34;
USEVARIABLES ARE yll-yl4;

MODEL: i s | yl1Q@0 y12@1 y13Q@2 yl14@3;
! L ! L
yll yl2 yl3 yl4

In this example, the linear growth model for a continuous outcome at
four time points shown in the picture above is estimated.

TITLE: this is an example of a linear growth
model for a continuous outcome

The TITLE command is used to provide a title for the analysis. The title
is printed in the output just before the Summary of Analysis.

DATA: FILE IS ex6.l.dat;

The DATA command is used to provide information about the data set
to be analyzed. The FILE option is used to specify the name of the file
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that contains the data to be analyzed, ex6.1.dat. Because the data set is
in free format, the default, a FORMAT statement is not required.

VARIABLE: NAMES ARE yll-yl14 x1 x2 x31-x34;
USEVARIABLES ARE yll-yl4;

The VARIABLE command is used to provide information about the
variables in the data set to be analyzed. The NAMES option is used to
assign names to the variables in the data set. The data set in this
example contains ten variables: yl11, y12, y13, y14, x1, x2, x31, x32,
x33, and x34. Note that the hyphen can be used as a convenience feature
in order to generate a list of names. If not all of the variables in the data
set are used in the analysis, the USEVARIABLES option can be used to
select a subset of variables for analysis. Here the variables y11, y12,
y13, and yl4 have been selected for analysis. They represent the
outcome measured at four equidistant occasions.

MODEL: i s | yl1@0 y12@1 y13@2 yl14@3;

The MODEL command is used to describe the model to be estimated.
The | symbol is used to name and define the intercept and slope factors
in a growth model. The names i and s on the left-hand side of the |
symbol are the names of the intercept and slope growth factors,
respectively. The statement on the right-hand side of the | symbol
specifies the outcome and the time scores for the growth model. The
time scores for the slope growth factor are fixed at 0, 1, 2, and 3 to
define a linear growth model with equidistant time points. The zero time
score for the slope growth factor at time point one defines the intercept
growth factor as an initial status factor. The coefficients of the intercept
growth factor are fixed at one as part of the growth model
parameterization. The residual variances of the outcome variables are
estimated and allowed to be different across time and the residuals are
not correlated as the default.

In the parameterization of the growth model shown here, the intercepts
of the outcome variables at the four time points are fixed at zero as the
default. The means and variances of the growth factors are estimated as
the default, and the growth factor covariance is estimated as the default
because the growth factors are independent (exogenous) variables. The
default estimator for this type of analysis is maximum likelihood. The
ESTIMATOR option of the ANALYSIS command can be used to select
a different estimator.
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EXAMPLE 6.2: LINEAR GROWTH MODEL FOR A
CENSORED OUTCOME USING A CENSORED MODEL

TITLE: this is an example of a linear growth
model for a censored outcome using a
censored model

DATA: FILE IS ex6.2.dat;

VARIABLE: NAMES ARE yll-yl4 x1 x2 x31-x34;
USEVARIABLES ARE yll-yl4;

CENSORED ARE yll-yl14 (b);

ANALYSIS: ESTIMATOR = MLR;

MODEL: i s | yl1Q@0 y12@1 y13Q@2 y14@3;

OUTPUT : TECH1 TECHS;

The difference between this example and Example 6.1 is that the
outcome variable is a censored variable instead of a continuous variable.
The CENSORED option is used to specify which dependent variables
are treated as censored variables in the model and its estimation, whether
they are censored from above or below, and whether a censored or
censored-inflated model will be estimated. In the example above, y11,
y12, y13, and y14 are censored variables. They represent the outcome
variable measured at four equidistant occasions. The b in parentheses
following y11-y14 indicates that y11, y12, y13, and y14 are censored
from below, that is, have floor effects, and that the model is a censored
regression model. The censoring limit is determined from the data. The
residual variances of the outcome variables are estimated and allowed to
be different across time and the residuals are not correlated as the
default.

The default estimator for this type of analysis is a robust weighted least
squares estimator. By specifying ESTIMATOR=MLR, maximum
likelihood estimation with robust standard errors using a numerical
integration algorithm is used. Note that numerical integration becomes
increasingly more computationally demanding as the number of factors
and the sample size increase. In this example, two dimensions of
integration are used with a total of 225 integration points. The
ESTIMATOR option of the ANALYSIS command can be used to select
a different estimator.

In the parameterization of the growth model shown here, the intercepts
of the outcome variables at the four time points are fixed at zero as the
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default. The means and variances of the growth factors are estimated as
the default, and the growth factor covariance is estimated as the default
because the growth factors are independent (exogenous) variables. The
OUTPUT command is used to request additional output not included as
the default. The TECHL1 option is used to request the arrays containing
parameter specifications and starting values for all free parameters in the
model. The TECHS8 option is used to request that the optimization
history in estimating the model be printed in the output. TECHS is
printed to the screen during the computations as the default. TECHS8
screen printing is useful for determining how long the analysis takes. An
explanation of the other commands can be found in Example 6.1.

EXAMPLE 6.3: LINEAR GROWTH MODEL FOR A
CENSORED OUTCOME USING A CENSORED-INFLATED

MODEL

TITLE: this is an example of a linear growth
model for a censored outcome using a
censored-inflated model

DATA: FILE IS ex6.3.dat;

VARIABLE: NAMES ARE yll-y14 x1 x2 x31-x34;
USEVARIABLES ARE yll-yl4;

CENSORED ARE yll-yl4 (bi);

ANALYSIS: INTEGRATION = 7;

MODEL: i s | yl1Q@0 y12@1 y13Q@2 yl4@3;
i1 si | yl1#1@0 yl2#1@1 yl3#1@2 yl4#1@3;
si@0;

OUTPUT: TECH1 TECHS;

The difference between this example and Example 6.1 is that the
outcome variable is a censored variable instead of a continuous variable.
The CENSORED option is used to specify which dependent variables
are treated as censored variables in the model and its estimation, whether
they are censored from above or below, and whether a censored or
censored-inflated model will be estimated. In the example above, y11,
y12, y13, and y14 are censored variables. They represent the outcome
variable measured at four equidistant occasions. The bi in parentheses
following y11-y14 indicates that y11, y12, y13, and y14 are censored
from below, that is, have floor effects, and that a censored-inflated
regression model will be estimated. The censoring limit is determined
from the data. The residual variances of the outcome variables are
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estimated and allowed to be different across time and the residuals are
not correlated as the default.

With a censored-inflated model, two growth models are estimated. The
first | statement describes the growth model for the continuous part of
the outcome for individuals who are able to assume values of the
censoring point and above. The residual variances of the outcome
variables are estimated and allowed to be different across time and the
residuals are not correlated as the default. The second | statement
describes the growth model for the inflation part of the outcome, the
probability of being unable to assume any value except the censoring
point. The binary latent inflation variable is referred to by adding to the
name of the censored variable the number sign (#) followed by the
number 1.

In the parameterization of the growth model for the continuous part of
the outcome, the intercepts of the outcome variables at the four time
points are fixed at zero as the default. The means and variances of the
growth factors are estimated as the default, and the growth factor
covariance is estimated as the default because the growth factors are
independent (exogenous) variables.

In the parameterization of the growth model for the inflation part of the
outcome, the intercepts of the outcome variable at the four time points
are held equal as the default. The mean of the intercept growth factor is
fixed at zero. The mean of the slope growth factor and the variances of
the intercept and slope growth factors are estimated as the default, and
the growth factor covariance is estimated as the default because the
growth factors are independent (exogenous) variables.

In this example, the variance of the slope growth factor si for the
inflation part of the outcome is fixed at zero. Because of this, the
covariances among si and all of the other growth factors are fixed at zero
as the default. The covariances among the remaining three growth
factors are estimated as the default.

The default estimator for this type of analysis is maximum likelihood
with robust standard errors using a numerical integration algorithm.
Note that numerical integration becomes increasingly —more
computationally demanding as the number of factors and the sample size
increase. In this example, three dimensions of integration are used with
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a total of 343 integration points. The INTEGRATION option of the
ANALYSIS command is used to change the number of integration points
per dimension from the default of 15 to 7. The ESTIMATOR option of
the ANALYSIS command can be used to select a different estimator.
The OUTPUT command is used to request additional output not
included as the default. The TECHL1 option is used to request the arrays
containing parameter specifications and starting values for all free
parameters in the model. The TECHS option is used to request that the
optimization history in estimating the model be printed in the output.
TECHS is printed to the screen during the computations as the default.
TECHS screen printing is useful for determining how long the analysis
takes. An explanation of the other commands can be found in Example
6.1.

EXAMPLE 6.4: LINEAR GROWTH MODEL FOR A

CATEGORICAL OUTCOME
TITLE: this is an example of a linear growth
model for a categorical outcome
DATA: FILE IS ex6.4.dat;

VARIABLE: NAMES ARE ull-uld x1 x2 x31-x34;
USEVARIABLES ARE ull-uli4;
CATEGORICAL ARE ull-ul4;

MODEL: i s | wll@0 uwl2@1 wl3@2 ul4@3;

The difference between this example and Example 6.1 is that the
outcome variable is a binary or ordered categorical (ordinal) variable
instead of a continuous variable. The CATEGORICAL option is used to
specify which dependent variables are treated as binary or ordered
categorical (ordinal) variables in the model and its estimation. In the
example above, ull, ul2, ul3, and ul4 are binary or ordered categorical
variables. They represent the outcome variable measured at four
equidistant occasions.

In the parameterization of the growth model shown here, the thresholds
of the outcome variable at the four time points are held equal as the
default. The mean of the intercept growth factor is fixed at zero. The
mean of the slope growth factor and the variances of the intercept and
slope growth factors are estimated as the default, and the growth factor
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covariance is estimated as the default because the growth factors are
independent (exogenous) variables.

The default estimator for this type of analysis is a robust weighted least
squares estimator. The ESTIMATOR option of the ANALYSIS
command can be used to select a different estimator. With the weighted
least squares estimator, the probit model and the default Delta
parameterization for categorical outcomes are used. The scale factor for
the latent response variable of the categorical outcome at the first time
point is fixed at one as the default, while the scale factors for the latent
response variables at the other time points are free to be estimated. If a
maximum likelihood estimator is used, the logistic model for categorical
outcomes with a numerical integration algorithm is used (Hedeker &
Gibbons, 1994). Note that numerical integration becomes increasingly
more computationally demanding as the number of factors and the
sample size increase. An explanation of the other commands can be
found in Example 6.1.

EXAMPLE 6.5: LINEAR GROWTH MODEL FOR A
CATEGORICAL OUTCOME USING THE THETA
PARAMETERIZATION
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TITLE: this is an example of a linear growth
model for a categorical outcome using the
Theta parameterization

DATA: FILE IS ex6.5.dat;

VARIABLE: NAMES ARE ull-uléd4 x1 x2 x31-x34;
USEVARIABLES ARE ull-ul4;
CATEGORICAL ARE ull-ul4;

ANALYSIS: PARAMETERIZATION = THETA;

MODEL: i s | wll@0 uwl2@1 uwl3@2 ul4@3;

The difference between this example and Example 6.4 is that the Theta
parameterization instead of the default Delta parameterization is used.
In the Delta parameterization, scale factors for the latent response
variables of the observed categorical outcomes are allowed to be
parameters in the model, but residual variances for the latent response
variables are not. In the Theta parameterization, residual variances for
latent response variables are allowed to be parameters in the model, but
scale factors are not. Because the Theta parameterization is used, the
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residual variance for the latent response variable at the first time point is
fixed at one as the default, while the residual variances for the latent
response variables at the other time points are free to be estimated. An
explanation of the other commands can be found in Examples 6.1 and
6.4.

EXAMPLE 6.6: LINEAR GROWTH MODEL FOR A COUNT
OUTCOME USING A POISSON MODEL

TITLE: this is an example of a linear growth
model for a count outcome using a Poisson
model

DATA: FILE IS ex6.6.dat;

VARIABLE: NAMES ARE ull-uld x1 x2 x31-x34;
USEVARIABLES ARE ull-uli4;
COUNT ARE ull-uli4;
MODEL: i s | wll@0 uwl2@1l uwl3@2 ul4d@3;
OUTPUT : TECH1 TECHS;

The difference between this example and Example 6.1 is that the
outcome variable is a count variable instead of a continuous variable.
The COUNT option is used to specify which dependent variables are
treated as count variables in the model and its estimation and whether a
Poisson or zero-inflated Poisson model will be estimated. In the
example above, ull, ul2, ul3, and ul4 are count variables. They
represent the outcome variable measured at four equidistant occasions.

In the parameterization of the growth model shown here, the intercepts
of the outcome variables at the four time points are fixed at zero as the
default. The means and variances of the growth factors are estimated as
the default, and the growth factor covariance is estimated as the default
because the growth factors are independent (exogenous) variables. The
default estimator for this type of analysis is maximum likelihood with
robust standard errors using a numerical integration algorithm. Note that
numerical integration becomes increasingly more computationally
demanding as the number of factors and the sample size increase. In this
example, two dimensions of integration are used with a total of 225
integration points. The ESTIMATOR option of the ANALYSIS
command can be used to select a different estimator. The OUTPUT
command is used to request additional output not included as the default.
The TECHL1 option is used to request the arrays containing parameter
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specifications and starting values for all free parameters in the model.
The TECHS option is used to request that the optimization history in
estimating the model be printed in the output. TECHS is printed to the
screen during the computations as the default. TECHS8 screen printing is
useful for determining how long the analysis takes. An explanation of
the other commands can be found in Example 6.1.

EXAMPLE 6.7: LINEAR GROWTH MODEL FOR A COUNT
OUTCOME USING A ZERO-INFLATED POISSON MODEL
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TITLE: this is an example of a linear growth
model for a count outcome using a zero-
inflated Poisson model

DATA: FILE IS ex6.7.dat;

VARIABLE: NAMES ARE ull-uléd4 x1 x2 x31-x34;
USEVARIABLES ARE ull-ul4;

COUNT ARE ull-uléd (1) ;

ANALYSIS: INTEGRATION = 7;

MODEL: i s | wll@0 uwl2@1 uwl3@2 ul4@3;
ii si | ull#1@0 ul2#1Q@1 ul3#1Q@2 ul4d#1@3;
s@0 si@O0;

OUTPUT : TECH1 TECHS;

The difference between this example and Example 6.1 is that the
outcome variable is a count variable instead of a continuous variable.
The COUNT option is used to specify which dependent variables are
treated as count variables in the model and its estimation and whether a
Poisson or zero-inflated Poisson model will be estimated. In the
example above, ull, ul2, ul3, and ul4 are count variables. They
represent the outcome variable ul measured at four equidistant
occasions. The i in parentheses following ul1-ul4 indicates that a zero-
inflated Poisson model will be estimated.

With a zero-inflated Poisson model, two growth models are estimated.
The first | statement describes the growth model for the count part of the
outcome for individuals who are able to assume values of zero and
above. The second | statement describes the growth model for the
inflation part of the outcome, the probability of being unable to assume
any value except zero. The binary latent inflation variable is referred to
by adding to the name of the count variable the number sign (#) followed
by the number 1.
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In the parameterization of the growth model for the count part of the
outcome, the intercepts of the outcome variables at the four time points
are fixed at zero as the default. The means and variances of the growth
factors are estimated as the default, and the growth factor covariance is
estimated as the default because the growth factors are independent
(exogenous) variables.

In the parameterization of the growth model for the inflation part of the
outcome, the intercepts of the outcome variable at the four time points
are held equal as the default. The mean of the intercept growth factor is
fixed at zero. The mean of the slope growth factor and the variances of
the intercept and slope growth factors are estimated as the default, and
the growth factor covariance is estimated as the default because the
growth factors are independent (exogenous) variables.

In this example, the variance of the slope growth factor s for the count
part and the slope growth factor si for the inflation part of the outcome
are fixed at zero. Because of this, the covariances among s, si, and the
other growth factors are fixed at zero as the default. The covariance
between the i and ii intercept growth factors is estimated as the default.

The default estimator for this type of analysis is maximum likelihood
with robust standard errors using a numerical integration algorithm.
Note that numerical integration becomes increasingly —more
computationally demanding as the number of factors and the sample size
increase. In this example, two dimensions of integration are used with a
total of 49 integration points. The INTEGRATION option of the
ANALYSIS command is used to change the number of integration points
per dimension from the default of 15 to 7. The ESTIMATOR option of
the ANALYSIS command can be used to select a different estimator.
The OUTPUT command is used to request additional output not
included as the default. The TECHL1 option is used to request the arrays
containing parameter specifications and starting values for all free
parameters in the model. The TECHS8 option is used to request that the
optimization history in estimating the model be printed in the output.
TECHS is printed to the screen during the computations as the default.
TECHS screen printing is useful for determining how long the analysis
takes. An explanation of the other commands can be found in Example
6.1.
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EXAMPLE 6.8: GROWTH MODEL FOR A CONTINUOUS
OUTCOME WITH ESTIMATED TIME SCORES

TITLE: this is an example of a growth model for a
continuous outcome with estimated time
scores

DATA: FILE IS ex6.8.dat;

VARIABLE: NAMES ARE yll-yl4 x1 x2 x31-x34;
USEVARIABLES ARE yll-vyl4;
MODEL : i s | yl1Q@0 y12@1 y13*2 yl4*3;

The difference between this example and Example 6.1 is that two of the
time scores are estimated. The | statement highlighted above shows how
to specify free time scores by using the asterisk (*) to designate a free
parameter. Starting values are specified as the value following the
asterisk (*). For purposes of model identification, two time scores must
be fixed for a growth model with two growth factors. In the example
above, the first two time scores are fixed at zero and one, respectively.
The third and fourth time scores are free to be estimated at starting
values of 2 and 3, respectively. The default estimator for this type of
analysis is maximum likelihood. The ESTIMATOR option of the
ANALYSIS command can be used to select a different estimator. An
explanation of the other commands can be found in Example 6.1.

EXAMPLE 6.9: QUADRATIC GROWTH MODEL FOR A
CONTINUOUS OUTCOME
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TITLE: this is an example of a quadratic growth
model for a continuous outcome
DATA: FILE IS ex6.9.dat;

VARIABLE: NAMES ARE yll-y14 x1 x2 x31-x34;
USEVARIABLES ARE yll-yl4;
MODEL: i s g | yll@0 yl2@1 y13@2 yl14@3;
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The difference between this example and Example 6.1 is that the
guadratic growth model shown in the picture above is estimated. A
guadratic growth model requires three random effects: an intercept
factor (i), a linear slope factor (s), and a quadratic slope factor (q). The |
symbol is used to name and define the intercept and slope factors in the
growth model. The names i, s, and g on the left-hand side of the |
symbol are the names of the intercept, linear slope, and quadratic slope
factors, respectively. In the example above, the linear slope factor has
equidistant time scores of 0, 1, 2, and 3. The time scores for the
quadratic slope factor are the squared values of the linear time scores.
These time scores are automatically computed by the program.

In the parameterization of the growth model shown here, the intercepts
of the outcome variable at the four time points are fixed at zero as the
default. The means and variances of the three growth factors are
estimated as the default, and the three growth factors are correlated as
the default because they are independent (exogenous) variables. The
default estimator for this type of analysis is maximum likelihood. The
ESTIMATOR option of the ANALYSIS command can be used to select
a different estimator. An explanation of the other commands can be
found in Example 6.1.
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EXAMPLE 6.10: LINEAR GROWTH MODEL FOR A
CONTINUOUS OUTCOME WITH TIME-INVARIANT AND
TIME-VARYING COVARIATES

TITLE: this is an example of a linear growth
model for a continuous outcome with time-
invariant and time-varying covariates

DATA: FILE IS ex6.10.dat;
VARIABLE: NAMES ARE yll-yl4 x1 x2 a3l-a34;
MODEL: i s | yl1Q@0 y12@1 y13Q@2 yl14@3;

i s ON x1 x2;
yll ON a31l;
yl2 ON a32;
yl3 ON a33;
yl4 ON a34;

yl1 yl2 yl13 yl4

O

x1 x2 a3l a32 a33 a34

The difference between this example and Example 6.1 is that time-
invariant and time-varying covariates as shown in the picture above are
included in the model.
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The first ON statement describes the linear regressions of the two
growth factors on the time-invariant covariates x1 and x2. The next four
ON statements describe the linear regressions of the outcome variable on
the time-varying covariates a31, a32, a33, and a34 at each of the four
time points. The default estimator for this type of analysis is maximum
likelihood. The ESTIMATOR option of the ANALYSIS command can
be used to select a different estimator. An explanation of the other
commands can be found in Example 6.1.

EXAMPLE 6.11: PIECEWISE GROWTH MODEL FOR A
CONTINUOUS OUTCOME

TITLE: this is an example of a piecewise growth
model for a continuous outcome

DATA: FILE IS ex6.ll.dat;

VARIABLE: NAMES ARE yl-y5;

MODEL : i sl | ylQ@0 y2@1 y3@2 y4@2 y5@2;
i s2 | yl@0 y2@0 y3@0 y4@1 y5@2;

In this example, the piecewise growth model shown in the picture above
is estimated. In a piecewise growth model, different phases of
development are captured by more than one slope growth factor. The
first | statement specifies a linear growth model for the first phase of
development which includes the first three time points. The second |
statement specifies a linear growth model for the second phase of
development which includes the last three time points. Note that there is
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one intercept growth factor i. It must be named in the specification of
both growth models when using the | symbol.

In the parameterization of the growth models shown here, the intercepts
of the outcome variable at the five time points are fixed at zero as the
default. The means and variances of the three growth factors are
estimated as the default, and the three growth factors are correlated as
the default because they are independent (exogenous) variables. The
default estimator for this type of analysis is maximum likelihood. The
ESTIMATOR option of the ANALYSIS command can be used to select
a different estimator. An explanation of the other commands can be
found in Example 6.1.

EXAMPLE 6.12: GROWTH MODEL WITH INDIVIDUALLY -
VARYING TIMES OF OBSERVATION AND A RANDOM
SLOPE FOR TIME-VARYING COVARIATES FOR A
CONTINUOUS OUTCOME
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TITLE: this is an example of a growth model with
individually-varying times of observation
and a random slope for time-varying
covariates for a continuous outcome

DATA: FILE IS ex6.12.dat;

VARIABLE: NAMES ARE yl-y4 x all-ald a2l-a24;
TSCORES = all-al4;

ANALYSIS: TYPE = RANDOM;

MODEL: is | yl-y4 AT all-al4;
st | yl ON a2l;
st | y2 ON a22;
st | y3 ON a23;
st | y4 ON az24;

i s st ON x;
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a2l a22 a23 a24

b

—>
|
>
|
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In this example, the growth model with individually-varying times of
observation, a time-invariant covariate, and time-varying covariates with
random slopes shown in the picture above is estimated. The st shown in
a circle represents the random slope. The broken arrows from st to the
arrows from a21 to y1, a22 to y2, a23 to y3, and a24 to y4 indicate that
the slopes in these regressions are random.

The TSCORES option is used to identify the variables in the data set that
contain information about individually-varying times of observation for
the outcomes. The TYPE option is used to describe the type of analysis
that is to be performed. By selecting RANDOM, a growth model with
random slopes will be estimated.

The | symbol is used in conjunction with TYPE=RANDOM to name and
define the random effect variables in the model. The names on the left-
hand side of the | symbol name the random effect variables. In the first |
statement, the AT option is used on the right-hand side of the | symbol to
define a growth model with individually-varying times of observation for
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the outcome variable. Two growth factors are used in the model, a
random intercept, i, and a random slope, s.

In the parameterization of the growth model shown here, the intercepts
of the outcome variables are fixed at zero as the default. The residual
variances of the outcome variables are free to be estimated as the
default. The residual covariances of the outcome variables are fixed at
zero as the default. The means, variances, and covariances of the
intercept and slope growth factors are free as the default.

The second, third, fourth, and fifth | statements use the ON option to
name and define the random slope variables in the model. The name on
the left-hand side of the | symbol names the random slope variable. The
statement on the right-hand side of the | symbol defines the random slope
variable. In the second | statement, the random slope st is defined by the
linear regression of the dependent variable yl1 on the time-varying
covariate a21. In the third | statement, the random slope st is defined by
the linear regression of the dependent variable y2 on the time-varying
covariate a22. In the fourth | statement, the random slope st is defined
by the linear regression of the dependent variable y3 on the time-varying
covariate a23. In the fifth | statement, the random slope st is defined by
the linear regression of the dependent variable y4 on the time-varying
covariate a24. Random slopes with the same name are treated as one
variable during model estimation. The ON statement describes the linear
regressions of the intercept growth factor i, the slope growth factor s,
and the random slope st on the covariate x. The intercepts and residual
variances of, i, s, and st, are free as the default. The residual covariance
between i and s is estimated as the default. The residual covariances
between st and i and s are fixed at zero as the default. The default
estimator for this type of analysis is maximum likelihood with robust
standard errors. The estimator option of the ANALYSIS command can
be used to select a different estimator. An explanation of the other
commands can be found in Example 6.1.
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EXAMPLE 6.13: GROWTH MODEL FOR TWO PARALLEL
PROCESSES FOR CONTINUOUS OUTCOMES WITH
REGRESSIONS AMONG THE RANDOM EFFECTS

TITLE: this is an example of a growth model for
two parallel processes for continuous
outcomes with regressions among the random
effects

DATA: FILE IS ex6.13.dat;

VARIABLE: NAMES ARE yll1 y12 y13 yl4 y21 y22 y23 y24;

MODEL: il sl | yl1@0 yl2@1 y13@2 y14@3;
i2 s2 | y21@0 y22@1 y23@2 y24@3;
sl ON i2;
s2 ON il;
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In this example, the model for two parallel processes shown in the
picture above is estimated. Regressions among the growth factors are
included in the model.

The | statements are used to name and define the intercept and slope
growth factors for the two linear growth models. The names il and sl
on the left-hand side of the first | statement are the names of the intercept
and slope growth factors for the first linear growth model. The names i2
and s2 on the left-hand side of the second | statement are the names of
the intercept and slope growth factors for the second linear growth
model. The values on the right-hand side of the two | statements are the
time scores for the two slope growth factors. For both growth models,
the time scores of the slope growth factors are fixed at 0, 1, 2, and 3 to
define a linear growth model with equidistant time points. The zero time
score for the slope growth factor at time point one defines the intercept
factors as initial status factors. The coefficients of the intercept growth
factors are fixed at one as part of the growth model parameterization.
The residual variances of the outcome variables are estimated and
allowed to be different across time, and the residuals are not correlated
as the default.

In the parameterization of the growth model shown here, the intercepts
of the outcome variables at the four time points are fixed at zero as the
default. The means and variances of the intercept growth factors are
estimated as the default, and the intercept growth factor covariance is
estimated as the default because the intercept growth factors are
independent (exogenous) variables. The intercepts and residual
variances of the slope growth factors are estimated as the default, and
the slope growth factors are correlated as the default because residuals
are correlated for latent variables that do not influence any other variable
in the model except their own indicators.

The two ON statements describe the regressions of the slope growth
factor for each process on the intercept growth factor of the other
process. The default estimator for this type of analysis is maximum
likelihood. The ESTIMATOR option of the ANALYSIS command can
be used to select a different estimator. An explanation of the other
commands can be found in Example 6.1.
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EXAMPLE 6.14: MULTIPLE INDICATOR LINEAR GROWTH
MODEL FOR CONTINUOUS OUTCOMES

TITLE: this is an example of a multiple indicator
linear growth model for continuous
outcomes

DATA: FILE IS ex6.14.dat;

VARIABLE: NAMES ARE yl1l y21 y31 yl2 y22 y32 yl13
y23 y33;

MODEL: f1 BY vyll

y21-y31 (1-2);
£f2 BY vyl12
y22-y32 (1-2);
£f3 BY vyl13
y23-y33 (1-2);
[yll yl2 y13] (3);
[y21l y22 y23] (4);
[y31 y32 y33] (3);
i s | £1@0 f2@1 £3@2;
i { | 4 i i | { |
yl1 y21 y31 yl12 y22 y32 y13 y23 y33
: 5

In this example, the multiple indicator linear growth model for
continuous outcomes shown in the picture above is estimated. The first
BY statement specifies that f1 is measured by y11, y21, and y31. The
second BY statement specifies that f2 is measured by y12, y22, and y32.
The third BY statement specifies that f3 is measured by y13, y23, and
y33. The metric of the three factors is set automatically by the program
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by fixing the first factor loading in each BY statement to one. This
option can be overridden. The residual variances of the factor indicators
are estimated and the residuals are not correlated as the default.

A multiple indicator growth model requires measurement invariance of
the three factors across time. Measurement invariance is specified by
holding the intercepts and factor loadings of the factor indicators equal
over time. The (1-2) following the factor loadings in the three BY
statements uses the list function to assign equality labels to these
parameters. The label 1 is assigned to the factor loadings of y21, y22,
and y23 which holds these factor loadings equal across time. The label 2
is assigned to the factor loadings of y31, y32, and y33 which holds these
factor loadings equal across time. The factor loadings of y11, y21, and
y31 are fixed at one as described above. The bracket statements refer to
the intercepts. The (3) holds the intercepts of y11, y12, and y13 equal.
The (4) holds the intercepts of y21, y22, and y23 equal. The (5) holds
the intercepts of y31, y32, and y33 equal.

The | statement is used to name and define the intercept and slope factors
in the growth model. The names i and s on the left-hand side of the | are
the names of the intercept and slope growth factors, respectively. The
values on the right-hand side of the | are the time scores for the slope
growth factor. The time scores of the slope growth factor are fixed at 0,
1, and 2 to define a linear growth model with equidistant time points.
The zero time score for the slope growth factor at time point one defines
the intercept growth factor as an initial status factor. The coefficients of
the intercept growth factor are fixed at one as part of the growth model
parameterization. The residual variances of the factors f1, f2, and f3 are
estimated and allowed to be different across time, and the residuals are
not correlated as the default.

In the parameterization of the growth model shown here, the intercepts
of the factors f1, f2, and f3 are fixed at zero as the default. The mean of
the intercept growth factor is fixed at zero and the mean of the slope
growth factor is estimated as the default. The variances of the growth
factors are estimated as the default, and the growth factors are correlated
as the default because they are independent (exogenous) variables. The
default estimator for this type of analysis is maximum likelihood. The
ESTIMATOR option of the ANALYSIS command can be used to select
a different estimator. An explanation of the other commands can be
found in Example 6.1.
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EXAMPLE 6.15: MULTIPLE INDICATOR LINEAR GROWTH
MODEL FOR CATEGORICAL OUTCOMES

TITLE: this is an example of a multiple indicator
linear growth model for categorical
outcomes

DATA: FILE IS ex6.15.dat;

VARIABLE: NAMES ARE ull u2l u3l ul2 u22 u32
ul3 u23 u33;
CATEGORICAL ARE ull u2l u3l ul2 u22 u32
ul3 u23 u33;

MODEL: f1 BY ull
uz2l-u3l (1-2);

£2 BY ul2
uz2z2-u32 (1-2);

£3 BY ul3

u23-u33 (1-2);
[ullsl ul2s1l uwl3s$1l] (3);
[u21s$1 u22s1 u23$1] (4);
[u31$1l u32%$1 u33$1] (5);
{ull-u31@1 ul2-u33};
i s | £1@0 £2Q@1 £3@2;

The difference between this example and Example 6.14 is that the factor
indicators are binary or ordered categorical (ordinal) variables instead of
continuous variables. The CATEGORICAL option is used to specify
which dependent variables are treated as binary or ordered categorical
(ordinal) variables in the model and its estimation. In the example
above, all of the factor indicators are categorical variables. The program
determines the number of categories for each indicator.

For binary and ordered categorical factor indicators, thresholds are
modeled rather than intercepts or means. The number of thresholds for a
categorical variable is equal to the number of categories minus one. In
the example above, the categorical variables are binary so they have one
threshold. Thresholds are referred to by adding to the variable name a $
followed by a number. The thresholds of the factor indicators are
referred to as u11$1, ul2$1, ul3%1, u21$1, u22$1, u23%$1, u31$l, u32%1,
and u33$1. Thresholds are referred to in square brackets.

The growth model requires measurement invariance of the three factors
across time. Measurement invariance is specified by holding the
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thresholds and factor loadings of the factor indicators equal over time.
The (3) after the first bracket statement holds the thresholds of ull, ul2,
and ul3 equal. The (4) after the second bracket statement holds the
thresholds of u21, u22, and u23 equal. The (5) after the third bracket
statement holds the thresholds of u31, u32, and u33 equal. A list of
observed variables in curly brackets refers to scale factors. These are
part of the model with weighted least squares estimation and the Delta
parameterization. The scale factors for the latent response variables of
the categorical outcomes for the first factor are fixed at one, while the
scale factors for the latent response variables for the other factors are
free to be estimated. An explanation of the other commands can be

found in Examples 6.1 and 6.14.

EXAMPLE 6.16: TWO-PART (SEMICONTINUOUS) GROWTH

MODEL FOR A CONTINUOUS OUTCOME

continuous outcome
DATA: FILE = ex6.l16.dat;
DATA TWOPART:

NAMES = yl-vy4;

BINARY = binl-bin4;

VARIABLE: NAMES = x yl-v4;

MISSING = ALL(999);
ANALYSIS: ESTIMATOR = MLR;

su@0; iu WITH sy@O;
OUTPUT : TECH1 TECHS;

TITLE: this is an example of a two-part
(semicontinuous) growth model for a

CONTINUOUS = contl-cont4;
USEVARIABLES = binl-bin4 contl-cont4;
CATEGORICAL = binl-bin4;

MODEL : iu su | binl@0 bin2@l1 bin3@2 bin4@3;
iy sy | contl@0 cont2@l cont3@2 cont4@3;
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yl y2 y3 y4

In this example, the two-part (semicontinuous) growth model (Olsen &
Schafer, 2001) for a continuous outcome shown in the picture above is
estimated. This is one type of model that can be considered when a
variable has a floor effect, for example, a preponderance of zeroes. The
analysis requires that one binary variable and one continuous variable be
created from the outcome being studied.

The DATA TWOPART command is used to create a binary and a
continuous variable from a variable with a floor effect. In this example,
a set of binary and continuous variables are created using the default
value of zero as the cutpoint. The CUTPOINT option of the DATA
TWOPART command can be used to select another value. The two
variables are created using the following rules:

1. If the value of the original variable is missing, both the new binary
and the new continuous variable values are missing.
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2. If the value of the original variable is greater than the cutpoint value,
the new binary variable value is one and the new continuous variable
value is the log of the original variable as the default.

3. If the value of the original variable is less than or equal to the
cutpoint value, the new binary variable value is zero and the new
continuous variable value is missing.

The TRANSFORM option of the DATA TWOPART command can be
used to select an alternative to the default log transformation of the new
continuous variables. One choice is no transformation.

The NAMES option of the DATA TWOPART command is used to
identify the variables from the NAMES option of the VARIABLE
command that are used to create a set of binary and continuous variables.
Variables y1, y2, y3, and y4 are used. The BINARY option is used to
assign names to the new set of binary variables. The names for the new
binary variables are binl, bin2, bin3, and bin4. The CONTINUOUS
option is used to assign names to the new set of continuous variables.
The names for the new continuous variables are contl, cont2, cont3, and
cont4d. The new variables must be placed on the USEVARIABLES
statement of the VARIABLE command if they are used in the analysis.

The CATEGORICAL option is used to specify which dependent
variables are treated as binary or ordered categorical (ordinal) variables
in the model and its estimation. In the example above, binl, bin2, bin3,
and bin4 are binary variables. The MISSING option is used to identify
the values or symbols in the analysis data set that are to be treated as
missing or invalid. In this example, the number 999 is the missing value
flag. The default is to estimate the model under missing data theory
using all available data. By specifying ESTIMATOR=MLR, a
maximum likelihood estimator with robust standard errors using a
numerical integration algorithm will be used. Note that numerical
integration becomes increasingly more computationally demanding as
the number of growth factors and the sample size increase. In this
example, one dimension of integration is used with a total of 15
integration points. The ESTIMATOR option of the ANALYSIS
command can be used to select a different estimator.

The first | statement specifies a linear growth model for the binary
outcome. The second | statement specifies a linear growth model for the
continuous outcome. In the parameterization of the growth model for
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the binary outcome, the thresholds of the outcome variable at the four
time points are held equal as the default. The mean of the intercept
growth factor is fixed at zero. The mean of the slope growth factor and
the variances of the intercept and slope growth factors are estimated as
the default. In this example, the variance of the slope growth factor is
fized at zero for simplicity. In the parameterization of the growth model
for the continuous outcome, the intercepts of the outcome variables at
the four time points are fixed at zero as the default. The means and
variances of the growth factors are estimated as the default, and the
growth factors are correlated as the default because they are independent
(exogenous) variables.

It is often the case that not all growth factor covariances are significant
in two-part growth modeling. Fixing these at zero stabilizes the
estimation. This is why the growth factor covariance between iu and sy
is fixed at zero. The OUTPUT command is used to request additional
output not included as the default. The TECH1 option is used to request
the arrays containing parameter specifications and starting values for all
free parameters in the model. The TECHS option is used to request that
the optimization history in estimating the model be printed in the output.
TECHS is printed to the screen during the computations as the default.
TECHS screen printing is useful for determining how long the analysis
takes. An explanation of the other commands can be found in Example
6.1.

143



CHAPTER 6

EXAMPLE 6.17: LINEAR GROWTH MODEL FOR A
CONTINUOUS OUTCOME WITH FIRST-ORDER AUTO
CORRELATED RESIDUALS USING NON-LINEAR
CONSTRAINTS

TITLE: this is an example of a linear growth
model for a continuous outcome with first-
order auto correlated residuals using non-
linear constraints

DATA: FILE = ex6.17.dat;
VARIABLE: NAMES = yl-y4;
MODEL: i s | yl@0 y20@1 y3@2 y4@3;

yl-y4 (resvar);
yl-y3 PWITH y2-y4 (pl);
yl-y2 PWITH y3-y4 (p2);
yl WITH y4 (p3);

MODEL CONSTRAINT:
NEW (corr) ;

pl = resvar*corr;
P2 = resvar*corr**2;
p3 = resvar*corr**3;

The difference between this example and Example 6.1 is that first-order
auto correlated residuals have been added to the model. In a model with
first-order correlated residuals, one residual variance parameter and one
residual auto-correlation parameter are estimated.

In the MODEL command, the label resvar following the residual
variances serves two purposes. It specifies that the residual variances
are held equal to each other and gives that residual variance parameter a
label to be used in the MODEL CONSTRAINT command. The labels
pl, p2, and p3 specify that the residual covariances at adjacent time
points, at adjacent time points once removed, and at adjacent time points
twice removed are held equal. The MODEL CONSTRAINT command
is used to define linear and non-linear constraints on the parameters in
the model. In the MODEL CONSTRAINT command, the NEW option
is used to introduce a new parameter that is not part of the MODEL
command. This residual auto-correlation parameter is referred to as
corr. The pl parameter constraint specifies that the residual covariances
at adjacent time points are equal to the residual variance parameter
multiplied by the auto-correlation parameter. The p2 parameter
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constraint specifies that the residual covariances at adjacent time points
once removed are equal to the residual variance parameter multiplied by
the auto-correlation parameter to the power of two. The p3 parameter
constraint specifies that the residual covariance at adjacent time points
twice removed is equal to the residual variance parameter multiplied by
the auto-correlation parameter to the power of three. An explanation of
the other commands can be found in Example 6.1.

EXAMPLE 6.18: MULTIPLE GROUP MULTIPLE COHORT
GROWTH MODEL

TITLE:

DATA:
VARIABLE:

MODEL:

this is an example of a multiple group
multiple cohort growth model

FILE = ex6.18.dat;

NAMES = yl-y4 x az2l-a24 g;

GROUPING = g (1 = 1990 2 = 1989 3 =
i s |yl@O0 y2@.2 y3@.4 y4@.6;

[i] (1); [s] (2);

i (3); s (4);

i WITH s (5);

i ON x (6);

s ON x (7);

yl ON g
y2 ON
y3 ON
y4 ON

y2-y4

MODEL 1989:

i s |yl@.1 y2@.3 y3@.5 y4@.7;
yl ON a2l;
y2 ON a22;
y3 ON a23;
y4 ON a24;

yl-vy4;

MODEL 1988:

OUTPUT:

i s |yl@.2 y2@.4 y3@.6 y4@.8;
yl ON a2l (12);

y2 ON a22 (14);

y3 ON a23 (16);

y4 ON a24;

yl-y3 (22-24);

v4;

TECH1 MODINDICES (3.84);

1988) ;
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X a2l a22 a23 a24

In this example, the multiple group multiple cohort growth model shown
in the picture above is estimated. Longitudinal research studies often
collect data on several different groups of individuals defined by their
birth year or cohort. This allows the study of development over a wider
age range than the length of the study and is referred to as an accelerated
or sequential cohort design. The interest in these studies is the
development of an outcome over age not measurement occasion. This
can be handled by rearranging the data so that age is the time axis using
the DATA COHORT command or using a multiple group approach as
described in this example. The advantage of the multiple group
approach is that it can be used to test assumptions of invariance of
growth parameters across cohorts.

In the multiple group approach the variables in the data set represent the
measurement occasions. In this example, there are four measurement
occasions: 2000, 2002, 2004, and 2006. Therefore there are four
variables to represent the outcome. In this example, there are three
cohorts with birth years 1988, 1989, and 1990. It is the combination of
the time of measurement and birth year that determines the ages
represented in the data. This is shown in the table below where rows
represent cohort and columns represent measurement occasion. The
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entries in the table represent the ages. In this example, ages 10 to 18 are
represented.

M.O./ 2000 2002 2004 2006
Cohort
1988 12 14 16 18
1989 11 13 15 17
1990 10 12 14 16

The model that is estimated uses the time axis of age as shown in the
table below where rows represent cohort and columns represent age.
The entries for the first three rows in the table are the years of the
measurement occasions. The entries for the last row are the time scores
for a linear model.

AGel |, 11 12 13 14 15 16 17 18
Cohort

1988 2000 2002 2004 2006
1989 2000 2002 2004 2006

1990 | 2000 2002 2004 2006

Time ) 4 1 2 3 4 5 6 7 8
Score

As shown in the table, three ages are represented by more than one
cohort. Age 12 is represented by cohorts 1988 and 1990 measured in
2000 and 2002; age 14 is represented by cohorts 1988 and 1990
measured in 2002 and 2004; and age 16 is represented by cohorts 1988
and 1990 measured in 2004 and 2006. This information is needed to
constrain parameters to be equal in the multiple group model.

The table also provides information about the time scores for each
cohort. The time scores are obtained as the difference in age between
measurement occasions divided by ten. The division is used to avoid
large time scores which can lead to convergence problems. Cohort 1990
provides information for ages 10, 12, 14, and 16. The time scores for
cohort 2000 are 0, .2, .4, and .6. Cohort 1989 provides information for
ages 11, 13, 15, and 17. The time scores for cohort 1989 are .1, .3, .5,
and .7. Cohort 1988 provides information for ages 12, 14, 16, and 18.
The time scores for cohort 1988 are .2, .4, .6, and .8.
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The GROUPING option is used to identify the variable in the data set
that contains information on group membership when the data for all
groups are stored in a single data set. The information in parentheses
after the grouping variable name assigns labels to the values of the
grouping variable found in the data set. In the example above,
observations with g equal to 1 will be assigned the label 1990,
individuals with g equal to 2 will be assigned the label 1989, and
individuals with g equal to 3 will be assigned the label 1988. These
labels are used in conjunction with the MODEL command to specify
model statements specific to each group.

In multiple group analysis, two variations of the MODEL command are
used. They are MODEL and MODEL followed by a label. MODEL
describes the overall model to be estimated for each group. MODEL
followed by a label describes differences between the overall model and
the model for the group designated by the label. In the MODEL
command, the | symbol is used to name and define the intercept and
slope factors in a growth model. The names i and s on the left-hand side
of the | symbol are the names of the intercept and slope growth factors,
respectively. The statement on the right-hand side of the | symbol
specifies the outcome and the time scores for the growth model. The
time scores for the slope growth factor are fixed at 0, .2, .4, and .6.
These are the time scores for cohort 1990. The zero time score for the
slope growth factor at time point one defines the intercept growth factor
as an initial status factor for age 10. The coefficients of the intercept
growth factor are fixed at one as part of the growth model
parameterization. The residual variances of the outcome variables are
estimated and allowed to be different across age and the residuals are not
correlated as the default. The time scores for the other two cohorts are
specified in the group-specific MODEL commands. The group-specific
MODEL command for cohort 1989 fixes the time scores at .1, .3, .5, and
.7. The group-specific MODEL command for cohort 1988 fixes the time
scores at .2, .4, .6, and .8.

The equalities specified by the numbers in parentheses represent the
baseline assumption that the cohorts come from the same population.
Equalities specified in the overall MODEL command constrain
parameters to be equal across all groups. All parameters related to the
growth factors are constrained to be equal across all groups. Other
parameters are held equal when an age is represented by more than one
cohort. For example, the ON statement with the (12) equality in the
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overall MODEL command describes the linear regression of y2 on the
time-varying covariate a22 for cohort 1990 at age 12. In the group-
specific MODEL command for cohort 1988, the ON statement with the
(12) equality describes the linear regression of y1 on the time-varying
covariate a21 for cohort 1988 at age 12. Other combinations of cohort
and age do not involve equality constraints. Cohort 1990 is the only
cohort that represents age 10; cohort 1989 is the only cohort that
represents ages 11, 13, 15, 17; and cohort 1988 is the only cohort that
represents age 18. Statements in the group-specific MODEL commands
relax equality constraints specified in the overall MODEL command.
An explanation of the other commands can be found in Example 6.1.

EXAMPLE 6.19: DISCRETE-TIME SURVIVAL ANALYSIS

TITLE: this is an example of a discrete-time
survival analysis
DATA: FILE IS ex6.19.dat;

VARIABLE: NAMES ARE ul-u4 x;
CATEGORICAL = ul-u4;
MISSING = ALL (999);
ANALYSIS: ESTIMATOR = MLR;
MODEL: f BY ul-u4@l;
f ON x;
£@0;

ul u2 u3 u4

In this example, the discrete-time survival analysis model shown in the
picture above is estimated. Each u variable represents whether or not a
single non-repeatable event has occurred in a specific time period. The
value 1 means that the event has occurred, 0 means that the event has not
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occurred, and a missing value flag means that the event has occurred in a
preceding time period or that the individual has dropped out of the study
(Muthén & Masyn, 2005). The factor f is used to specify a proportional
odds assumption for the hazards of the event.

The MISSING option is used to identify the values or symbols in the
analysis data set that are to be treated as missing or invalid. In this
example, the number 999 is the missing value flag. The default is to
estimate the model under missing data theory using all available data.
The default estimator for this type of analysis is a robust weighted least
squares estimator. By specifying ESTIMATOR=MLR, maximum
likelihood estimation with robust standard errors is used. The BY
statement specifies that f is measured by ul, u2, u3, and u4 where the
factor loadings are fixed at one. This represents a proportional odds
assumption where the covariate x has the same influence on ul, u2, u3,
and u4. The ON statement describes the linear regression of f on the
covariate X. The residual variance of f is fixed at zero to correspond to a
conventional discrete-time survival model. An explanation of the other
commands can be found in Example 6.1.

EXAMPLE 6.20: CONTINUOUS-TIME SURVIVAL ANALYSIS
USING THE COX REGRESSION MODEL

150

TITLE: this is an example of a continuous-time
survival analysis using the Cox regression
model

DATA: FILE = ex6.20.dat;

VARIABLE: NAMES = t x tc;

SURVIVAL = t;

TIMECENSORED = tc (0 = NOT 1 = RIGHT);
MODEL: t ON x;

In this example, the continuous-time survival analysis model shown in
the picture above is estimated. This is the Cox regression model (Singer
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& Willett, 2003). The profile likelihood method is used for model
estimation (Asparouhov et al., 2006).

The SURVIVAL option is used to identify the variables that contain
information about time to event and to provide information about the
number and lengths of the time intervals in the baseline hazard function
to be used in the analysis. The SURVIVAL option must be used in
conjunction with the TIMECENSORED option. In this example, t is the
variable that contains time-to-event information. Because nothing is
specified in parentheses behind t, the default baseline hazard function is
used. The TIMECENSORED option is used to identify the variables
that contain information about right censoring. In this example, the
variable is named tc. The information in parentheses specifies that the
value zero represents no censoring and the value one represents right
censoring. This is the default.

In the MODEL command, the ON statement describes the loglinear
regression of the time-to-event variable t on the covariate x. The default
estimator for this type of analysis is maximum likelihood with robust
standard errors. The estimator option of the ANALYSIS command can
be used to select a different estimator. An explanation of the other
commands can be found in Example 6.1.

EXAMPLE 6.21: CONTINUOUS-TIME SURVIVAL ANALYSIS
USING A PARAMETRIC PROPORTIONAL HAZARDS MODEL

TITLE: this is an example of a continuous-time
survival analysis using a parametric
proportional hazards model

DATA: FILE = ex6.21.dat;

VARIABLE: NAMES = t x tc;

SURVIVAL = t(20*1);
TIMECENSORED = tc (0 = NOT 1 = RIGHT);

ANALYSIS: BASEHAZARD = ONj;

MODEL: [t#1-t#21];

t ON x;

The difference between this example and Example 6.20 is that a
parametric proportional hazards model is used instead of a Cox
regression model. In contrast to the Cox regression model, the
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parametric model estimates parameters and their standard errors for the
baseline hazard function (Asparouhov et al., 2006).

The SURVIVAL option is used to identify the variables that contain
information about time to event and to provide information about the
number and lengths of the time intervals in the baseline hazard function
to be used in the analysis. The SURVIVAL option must be used in
conjunction with the TIMECENSORED option. In this example, t is the
variable that contains time-to-event information. The numbers in
parentheses following the time-to-event variable specify that twenty time
intervals of length one are used in the analysis for the baseline hazard
function. The TIMECENSORED option is used to identify the variables
that contain information about right censoring. In this example, this
variable is named tc. The information in parentheses specifies that the
value zero represents no censoring and the value one represents right
censoring. This is the default.

The BASEHAZARD option of the ANALYSIS command is used with
continuous-time survival analysis to specify whether the baseline hazard
parameters are treated as model parameters or as auxiliary parameters.
The ON setting specifies that the parameters are treated as model
parameters. There are as many baseline hazard parameters as there are
time intervals plus one. These parameters can be referred to in the
MODEL command by adding to the name of the time-to-event variable
the number sign (#) followed by a number. In the MODEL command,
the bracket statement specifies that the 21 baseline hazard parameters are
part of the model.

The default estimator for this type of analysis is maximum likelihood
with robust standard errors. The estimator option of the ANALYSIS
command can be used to select a different estimator. An explanation of
the other commands can be found in Examples 6.1 and 6.20.
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EXAMPLE 6.22: CONTINUOUS-TIME SURVIVAL ANALYSIS
USING A PARAMETRIC PROPORTIONAL HAZARDS MODEL
WITH A FACTOR INFLUENCING SURVIVAL

TITLE: this is an example of a continuous-time
survival analysis using a parametric
proportional hazards model with a factor
influencing survival

DATA: FILE = ex6.22.dat;

VARIABLE: NAMES = t ul-u4 x tc;

SURVIVAL = t (20*1);
TIMECENSORED = tc;
CATEGORICAL = ul-u4;

ANALYSIS: ALGORITHM = INTEGRATION;
BASEHAZARD = ON;

MODEL: f BY ul-u4;

[t#1-t#21];
t ON x f;
f ON x;
OUTPUT : TECH1 TECHS;
ul u2 u3 u4 t
X

In this example, the continuous-time survival analysis model shown in
the picture above is estimated. The model is similar to Larsen (2005)
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although in this example the analysis uses a parametric baseline hazard
function (Asparouhov et al., 2006).

By specifying ALGORITHM=INTEGRATION, a maximum likelihood
estimator with robust standard errors using a numerical integration
algorithm will be used. Note that numerical integration becomes
increasingly more computationally demanding as the number of factors
and the sample size increase. In this example, one dimension of
integration is used with a total of 15 integration points. The
ESTIMATOR option of the ANALYSIS command can be used to select
a different estimator.

In the MODEL command the BY statement specifies that f is measured
by the binary indicators ul, u2, u3, and u4. The bracket statement
specifies that the 21 baseline hazard parameters are part of the model.
The first ON statement describes the loglinear regression of the time-to-
event variable t on the covariate x and the factor f. The second ON
statement describes the linear regression of f on the covariate x. An
explanation of the other commands can be found in Examples 6.1 and
6.21.

EXAMPLE 6.23: N=1 TIME SERIES ANALYSIS WITH A
UNIVARIATE FIRST-ORDER AUTOREGRESSIVE AR(1)
MODEL FOR A CONTINUOUS DEPENDENT VARIABLE
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TITLE: this is an example of an N=1 time series
analysis with a univariate first-order
autoregressive AR(1l) model for a
continuous dependent variable

DATA: FILE = ex6.23.dat;

VARIABLE: NAMES = y;

LAGGED = y(1);

ANALYSIS: ESTIMATOR = BAYES;
PROCESSORS = 2;

BITERATIONS = (2000);
MODEL: y ON yé&l;
OUTPUT: TECH1 TECHS;
PLOT: TYPE = PLOT3;
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In this example, the N=1 time series analysis with a univariate first-order
autoregressive AR(1) model for a continuous dependent variable shown
in the picture above is estimated (Shumway & Stoffer, 2011). The
subscript t refers to a time point and the subscript t-1 refers to the
previous time point. The dots indicate that the process includes both
previous and future time points using the same model.

In the VARIABLE command, the NAMES option is used to assign
names to the variables in the data set. The data set in this example
contains one variable y. The variable y is measured over multiple time
points. The number of times it is measured is equal to the number of
records in the data set. The records must be ordered by time. The
LAGGED option is used to specify the maximum lag to use for an
observed variable during model estimation. The variable y has lag 1.
The lagged variable is referred to by adding to the name of the variable
an ampersand (&) and the number of the lag.

In the ANALYSIS command, by specifying ESTIMATOR=BAYES, a
Bayesian analysis will be carried out. In Bayesian estimation, the
default is to use two independent Markov chain Monte Carlo (MCMC)
chains. If multiple processors are available, using PROCESSORS=2
will speed up computations. The BITERATIONS option is used to
specify the maximum and minimum number of iterations for each
Markov chain Monte Carlo (MCMC) chain when the potential scale
reduction (PSR) convergence criterion (Gelman & Rubin, 1992) is used.
Using a number in parentheses, the BITERATIONS option specifies that
a minimum of 2,000 and a maximum of the default of 50,000 iterations
will be used.

In the MODEL command, the ON statement describes the linear
regression over multiple time points of the dependent variable y on the
dependent variable y&1 which is y at the previous time point. An
intercept, regression coefficient, and residual variance are estimated.
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An N=1 time series analysis with a univariate second-order
autoregressive AR(2) model can also be estimated. For this analysis, the
LAGGED option is specified as LAGGED =y (2); and the MODEL
command is specified as follows:

|MODEL: y ON vy&l y&2;

In the MODEL command, the ON statement describes the linear
regression over multiple time points of the dependent variable y on the
dependent variable y&1 which is y at the previous time point and the
dependent variable y&2 which is y at two time points prior. An
intercept, two regression coefficients, and a residual variance are
estimated. A model where only y at lag 2 is used is specified as follows:

|MODEL: y ON y&l@0 yé&2;

where the coefficient for y at lag 1 is fixed at zero. An intercept,
regression coefficient, and residual variance are estimated.

The OUTPUT command is used to request additional output not
included as the default. The TECHL1 option is used to request the arrays
containing parameter specifications and starting values for all free
parameters in the model. The TECHS8 option is used to request that the
optimization history in estimating the model be printed in the output.
TECHS is printed to the screen during the computations as the default.
TECHS screen printing is useful for determining how long the analysis
takes and to check convergence using the PSR convergence criterion.
The PLOT command is used to request graphical displays of observed
data and analysis results. These graphical displays can be viewed after
the analysis is completed using a post-processing graphics module. The
trace plot and autocorrelation plot can be used to monitor the MCMC
iterations in terms of convergence and quality of the posterior
distribution for each parameter. The posterior distribution plot shows the
complete posterior distribution of the parameter estimate. Also available
are time series plots of observed values, autocorrelations at different
lags, and partial autocorrelations at different lags. An explanation of the
other commands can be found in Example 6.1.
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EXAMPLE 6.24: N=1 TIME SERIES ANALYSIS WITH A
UNIVARIATE FIRST-ORDER AUTOREGRESSIVE AR(1)
MODEL FOR A CONTINUOUS DEPENDENT VARIABLE

WITH A COVARIATE

TITLE: this is an example of an N=1 time series
analysis with a univariate first-order
autoregressive AR (1) model for a
continuous dependent variable with a
covariate

DATA: FILE = ex6.24.dat;

VARIABLE: NAMES ARE y x;
LAGGED = y (1) x(1);

ANALYSIS: ESTIMATOR = BAYES;
PROCESSORS = 2;
BITERATIONS = (1000);

MODEL: y ON y&l x x&1;

OUTPUT : TECH1 TECHS;

PLOT: TYPE = PLOT3;

4
Ve A
X 1 X, .

In this example, the N=1 time series analysis with a univariate first-order
autoregressive AR(1) model for a continuous dependent variable with a
covariate shown in the picture above is estimated. The subscript t refers
to a time point and the subscript t-1 refers to the previous time point.
The dots indicate that the process includes both previous and future time
points using the same model.

In the MODEL command, the ON statement describes the linear
regression over multiple time points of the dependent variable y on the
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dependent variable y&1 which is y at the previous time point, a covariate
X, and a covariate x&1 which is x at the previous time point. An
intercept, three regression coefficients, and a residual variance are
estimated. An explanation of the other commands can be found in
Examples 6.1 and 6.23.

EXAMPLE 6.25: N=1 TIME SERIES ANALYSIS WITH A
BIVARIATE CROSS-LAGGED MODEL FOR CONTINUOUS
DEPENDENT VARIABLES

TITLE: this is an example of an N=1 time series
analysis with a bivariate cross-lagged
model for continuous dependent variables

DATA: FILE = ex6.25.dat;

VARIABLE: NAMES = yl y2;

LAGGED = yl1(1) y2(1);

ANALYSIS: ESTIMATOR = BAYES;
PROCESSORS = 2;

BITERATIONS = (500);
MODEL: yl ON ylé&l y2&1;
y2 ON y2&1 yl&l;
OUTPUT: TECH1 TECHS;
PLOT: TYPE = PLOT3;
N armnes
y t_l > y t
2 3 y2
Y41 Y4

In this example, the N=1 time series analysis with a bivariate cross-
lagged model for continuous dependent variables shown in the picture
above is estimated. This model is also referred to as a first-order vector
autoregressive VAR(1) model, see e.g., Shumway and Stoffer (2011).
The subscript t refers to a time point and the subscript t-1 refers to the
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previous time point. The dots indicate that the process includes both
previous and future time points using the same model.

In the MODEL command, the first ON statement describes the linear
regression over multiple time points of the dependent variable y1 on the
dependent variable y1&1 which is y1 at the previous time point, and the
dependent variable y2&1 which is y2 at the previous time point. The
second ON statement describes the linear regression over multiple time
points of the dependent variable y2 on the dependent variable y2&1
which is y2 at the previous time point, and the dependent variable y1&1
which is y1 at the previous time point. Two intercepts, four regression
coefficients, two residual variances, and one residual covariance are
estimated. An explanation of the other commands can be found in
Examples 6.1 and 6.23.

EXAMPLE 6.26: N=1 TIME SERIES ANALYSIS WITH A
FIRST-ORDER AUTOREGRESSIVE AR(1) CONFIRMATORY
FACTOR ANALYSIS (CFA) MODEL WITH CONTINUOUS
FACTOR INDICATORS

TITLE: this is an example of an N=1 time series
analysis with a first-order autoregressive
AR (1) confirmatory factor analysis (CFA)
model with continuous factor indicators

DATA: FILE = ex6.26.dat;

VARIABLE: NAMES = yl-vy4;

ANALYSIS: ESTIMATOR = BAYES;
PROCESSORS = 2;

BITERATIONS = (2000);
MODEL: f BY yl-y4 (&1);

f ON fé&1;
OUTPUT : TECH1 TECHS;
PLOT: TYPE = PLOT3;
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In this example, the N=1 time series analysis with a first-order
autoregressive AR(1) confirmatory factor analysis (CFA) model with
continuous factor indicators shown in the picture above is estimated.
This model is also referred to as a direct autoregressive factor score
(DAFS) model. For a discussion of N=1 time series factor analysis, also
referred to as dynamic factor analysis, see e.g., Molenaar (1985); Zhang,
Hamaker, and Nesselroade (2008); and Asparouhov, Hamaker, and
Muthén (2017). The subscript t refers to a time point and the subscript t-
1 refers to the previous time point. The dots indicate that the process
includes both previous and future time points using the same model.

In the MODEL command, the BY statement specifies that f is measured
by y1, y2, y3, and y4. The metric of the factor is set automatically by
the program by fixing the first factor loading to one. This option can be
overridden. An ampersand (&) followed by the number 1 is placed in
parentheses following the BY statement to indicate that the factor f at
lag 1 can be used in the analysis. The factor f at lag 1 is referred to as
f&1. The intercepts and residual variances of the factor indicators are
estimated and the residuals are not correlated as the default. The ON
statement describes the linear regression over multiple time points of the
factor f on the factor f&1 which is f at the previous time point. A
regression coefficient and residual variance of the factor are estimated.
The intercept of the factor is fixed at zero as the default.

A white noise factor score (WNFS) model (Zhang & Nesselroade, 2007)
can be estimated using the MODEL command below where instead of
regressing the factor f on f&1, the factor indicators y1, y2, y3, and y4 are
regressed on f&1.
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MODEL: f BY yl-y4 (&1);
yl-y4 ON f&l;

An explanation of the other commands can be found in Examples 6.1
and 6.23.

EXAMPLE 6.27: N=1 TIME SERIES ANALYSIS WITH A
FIRST-ORDER AUTOREGRESSIVE AR(1) IRT MODEL WITH
BINARY FACTOR INDICATORS

TITLE: this is an example of an N=1 time series
analysis with a first-order autoregressive
AR (1) IRT model with binary factor
indicators

DATA: FILE = ex6.27.dat;

VARIABLE: NAMES = ul-u4;
CATEGORICAL = ul-u4;

ANALYSIS: ESTIMATOR = BAYES;
PROCESSORS = 2;

BITERATIONS = (2000);
MODEL: £f BY ul-ud~* (&1);

f@i;

f ON fe&l;
OUTPUT: TECH1 TECHS;
PLOT: TYPE = PLOT3;

In this example, an N=1 time series analysis with a first-order
autoregressive AR(1) IRT model with binary factor indicators is
estimated. The subscript t refers to a time point and the subscript t-1
refers to the previous time point. The dots indicate that the process
includes both previous and future time points using the same model.

The CATEGORICAL option specifies that the variables ul, u2, u3, and
u4 are binary. In the MODEL command, the BY statement specifies that
f is measured by ul, u2, u3, and u4. The metric of the factor is set
automatically by the program by fixing the first factor loading to one.
The asterisk following ul-u4 overrides this default. The metric of the
factor is set by fixing the factor residual variance to one. An ampersand
(&) followed by the number 1 is placed in parentheses following the BY
statement to indicate that the factor f at lag 1 can be used in the analysis.
The factor f at lag 1 is referred to as f&1. The thresholds of the factor
indicators are estimated as the default. The ON statement describes the
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linear regression over multiple time points of the factor f on the factor
f&1 which is f at the previous time point. A regression coefficient and
residual variance of the factor are estimated. The intercept of the factor
is fixed at zero as the default. An explanation of the other commands

can be found in Examples 6.1, 6.4, and 6.23.

EXAMPLE 6.28: N=1 TIME SERIES ANALYSIS WITH A

BIVARIATE CROSS-LAGGED MODEL WITH TWO FACTORS

AND CONTINUOUS FACTOR INDICATORS

TITLE:

DATA:

MODEL:

OUTPUT:
PLOT:

VARIABLE:
ANALYSIS:

this is an example of an N=1 time series
analysis with a bivariate cross-lagged
model with two factors and continuous
factor indicators

FILE = ex6.28.dat;

NAMES = yll-yl4 y21-y24;

ESTIMATOR = BAYES;

PROCESSORS = 2;

BITERATIONS = (2000);

f1 BY yll-y14 (&1);

f2 BY y21-y24 (&1);

f1 ON fl&l f2&1;

f2 ON f2&1 fl&1;

TECH1 TECHS;

TYPE = PLOT3;
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In this example, the N=1 time series analysis with a bivariate cross-
lagged model with two factors and continuous factor indicators shown in
the picture above is estimated. The subscript t refers to a time point and
the subscript t-1 refers to the previous time point. The dots indicate that
the process includes both previous and future time points using the same
model.

In the MODEL command, the first BY statement specifies that f1 is
measured by y11, y12, y13, and y14. The second BY statement specifies
that f2 is measured by y21, y22, y23, and y24. The metric of the factors
is set automatically by the program by fixing the first factor loading to
one. This option can be overridden. An ampersand (&) followed by the
number 1 is placed in parentheses following the BY statements to
indicate that the factors f1 and f2 at lag 1 are used during model
estimation. The factors f1 and f2 at lag 1 are referred to as f1&1 and
f2&1, respectively. The intercepts and residual variances of the factor
indicators are estimated and the residuals are not correlated as the
default. The first ON statement describes the linear regression over
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multiple time points of the factor f1 on the factor f1&1 which is f1 at the
previous time point and the factor f2&1 which is f2 at the previous time
point. The second ON statement describes the linear regression over
multiple time points of the factor 2 on the factor f2&1 which is f2 at the
previous time point and the factor f1&1 which is f1 at the previous time
point. Four regression coefficients, two residual variances, and one
residual covariance of the factors are estimated. The intercepts of the
factors are fixed at zero as the default. An explanation of the other
commands can be found in Examples 6.1 and 6.23.
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CHAPTER 7

EXAMPLES: MIXTURE
MODELING WITH CROSS-
SECTIONAL DATA

Mixture modeling refers to modeling with categorical latent variables
that represent subpopulations where population membership is not
known but is inferred from the data. This is referred to as finite mixture
modeling in statistics (McLachlan & Peel, 2000). A special case is
latent class analysis (LCA) where the latent classes explain the
relationships among the observed dependent variables similar to factor
analysis. In contrast to factor analysis, however, LCA provides
classification of individuals. In addition to conventional exploratory
LCA, confirmatory LCA and LCA with multiple categorical latent
variables can be estimated. In Mplus, mixture modeling can be applied
to any of the analyses discussed in the other example chapters including
regression analysis, path analysis, confirmatory factor analysis (CFA),
item response theory (IRT) analysis, structural equation modeling
(SEM), growth modeling, survival analysis, and multilevel modeling.
Observed dependent variables can be continuous, censored, binary,
ordered categorical (ordinal), unordered categorical (nominal), counts,
or combinations of these variable types. LCA and general mixture
models can be extended to include continuous latent variables. An
overview can be found in Muthén (2008).

LCA is a measurement model. A general mixture model has two parts: a
measurement model and a structural model. The measurement model for
LCA and the general mixture model is a multivariate regression model
that describes the relationships between a set of observed dependent
variables and a set of categorical latent variables. The observed
dependent variables are referred to as latent class indicators. The
relationships are described by a set of linear regression equations for
continuous latent class indicators, a set of censored normal or censored-
inflated normal regression equations for censored latent class indicators,
a set of logistic regression equations for binary or ordered categorical
latent class indicators, a set of multinomial logistic regressions for
unordered categorical latent class indicators, and a set of Poisson or
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zero-inflated Poisson regression equations for count latent class
indicators.

The structural model describes three types of relationships in one set of
multivariate regression equations:  the relationships among the
categorical latent variables, the relationships among observed variables,
and the relationships between the categorical latent variables and
observed variables that are not latent class indicators.  These
relationships are described by a set of multinomial logistic regression
equations for the categorical latent dependent variables and unordered
observed dependent variables, a set of linear regression equations for
continuous observed dependent variables, a set of censored normal or
censored normal regression equations for censored-inflated observed
dependent variables, a set of logistic regression equations for binary or
ordered categorical observed dependent variables, and a set of Poisson
or zero-inflated Poisson regression equations for count observed
dependent variables.  For logistic regression, ordered categorical
variables are modeled using the proportional odds specification.
Maximum likelihood estimation is used.

The general mixture model can be extended to include continuous latent
variables. The measurement and structural models for continuous latent
variables are described in Chapter 5. In the extended general mixture
model, relationships between categorical and continuous latent variables
are allowed. These relationships are described by a set of multinomial
logistic regression equations for the categorical latent dependent
variables and a set of linear regression equations for the continuous
latent dependent variables.

In mixture modeling, some starting values may result in local solutions
that do not represent the global maximum of the likelihood. To avoid
this, different sets of starting values are automatically produced and the
solution with the best likelihood is reported.

All cross-sectional mixture models can be estimated using the following
special features:

e Single or multiple group analysis
e Missing data
o Complex survey data
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o Latent variable interactions and non-linear factor analysis using
maximum likelihood

Random slopes

Linear and non-linear parameter constraints

Indirect effects including specific paths

Maximum likelihood estimation for all outcome types
Bootstrap standard errors and confidence intervals

Wald chi-square test of parameter equalities

Test of equality of means across latent classes using posterior
probability-based multiple imputations

For TYPE=MIXTURE, multiple group analysis is specified by using the
KNOWNCLASS option of the VARIABLE command. The default is to
estimate the model under missing data theory using all available data.
The LISTWISE option of the DATA command can be used to delete all
observations from the analysis that have missing values on one or more
of the analysis variables. Corrections to the standard errors and chi-
square test of model fit that take into account stratification, non-
independence of observations, and unequal probability of selection are
obtained by using the TYPE=COMPLEX option of the ANALYSIS
command in conjunction with the STRATIFICATION, CLUSTER, and
WEIGHT  options of the VARIABLE command. The
SUBPOPULATION option is used to select observations for an analysis
when a subpopulation (domain) is analyzed. Latent variable interactions
are specified by using the | symbol of the MODEL command in
conjunction with the XWITH option of the MODEL command. Random
slopes are specified by using the | symbol of the MODEL command in
conjunction with the ON option of the MODEL command. Linear and
non-linear parameter constraints are specified by using the MODEL
CONSTRAINT command. Indirect effects are specified by using the
MODEL INDIRECT command. Maximum likelihood estimation is
specified by using the ESTIMATOR option of the ANALYSIS
command. Bootstrap standard errors are obtained by using the
BOOTSTRAP option of the ANALYSIS command.  Bootstrap
confidence intervals are obtained by using the BOOTSTRAP option of
the ANALYSIS command in conjunction with the CINTERVAL option
of the OUTPUT command. The MODEL TEST command is used to test
linear restrictions on the parameters in the MODEL and MODEL
CONSTRAINT commands using the Wald chi-square test. The
AUXILIARY option is used to test the equality of means across latent
classes using posterior probability-based multiple imputations.
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Graphical displays of observed data and analysis results can be obtained
using the PLOT command in conjunction with a post-processing
graphics module. The PLOT command provides histograms,
scatterplots, plots of individual observed and estimated values, plots of
sample and estimated means and proportions/probabilities, and plots of
estimated probabilities for a categorical latent variable as a function of
its covariates. These are available for the total sample, by group, by
class, and adjusted for covariates. The PLOT command includes
a display showing a set of descriptive statistics for each variable. The
graphical displays can be edited and exported as a DIB, EMF, or JPEG
file. In addition, the data for each graphical display can be saved in an
external file for use by another graphics program.

Following is the set of examples included in this chapter.

e 7.1 Mixture regression analysis for a continuous dependent
variable using automatic starting values with random starts

e 7.2: Mixture regression analysis for a count variable using a zero-
inflated Poisson model using automatic starting values with random
starts

e 7.3: LCA with binary latent class indicators using automatic starting
values with random starts

e 7.4: LCA with binary latent class indicators using user-specified
starting values without random starts

e 7.5: LCA with binary latent class indicators using user-specified
starting values with random starts

e 7.6: LCA with three-category latent class indicators using user-
specified starting values without random starts

e 7.7: LCA with unordered categorical latent class indicators using
automatic starting values with random starts

e 7.8: LCA with unordered categorical latent class indicators using
user-specified starting values with random starts

e 7.9: LCA with continuous latent class indicators using automatic
starting values with random starts

e 7.10: LCA with continuous latent class indicators using user-
specified starting values without random starts

e 7.11: LCA with binary, censored, unordered, and count latent class
indicators using user-specified starting values without random starts

e 7.12: LCA with binary latent class indicators using automatic
starting values with random starts with a covariate and a direct effect
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7.13: Confirmatory LCA with binary latent class indicators and
parameter constraints

7.14: Confirmatory LCA with two categorical latent variables
7.15: Loglinear model for a three-way table with conditional
independence between the first two variables

7.16: LCA with partial conditional independence*

7.17: Mixture CFA modeling

7.18: LCA with a second-order factor (twin analysis)*

7.19: SEM with a categorical latent variable regressed on a
continuous latent variable*

7.20: Structural equation mixture modeling

7.21: Mixture modeling with known classes (multiple group
analysis)

7.22: Mixture modeling with continuous variables that correlate
within class

7.23: Mixture randomized trials modeling using CACE estimation
with training data

7.24: Mixture randomized trials modeling using CACE estimation
with missing data on the latent class indicator

7.25: Zero-inflated Poisson regression carried out as a two-class
model

7.26: CFA with a non-parametric representation of a non-normal
factor distribution

7.27: Factor (IRT) mixture analysis with binary latent class and
factor indicators*

7.28: Two-group twin model for categorical outcomes using
maximum likelihood and parameter constraints*

7.29: Two-group IRT twin model for factors with categorical factor
indicators using parameter constraints*

7.30: Continuous-time survival analysis using a Cox regression
model to estimate a treatment effect

* Example uses numerical integration in the estimation of the model.
This can be computationally demanding depending on the size of the
problem.
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EXAMPLE 7.1: MIXTURE REGRESSION ANALYSIS FOR A
CONTINUOUS DEPENDENT VARIABLE USING AUTOMATIC
STARTING VALUES WITH RANDOM STARTS

TITLE: this is an example of a mixture regression
analysis for a continuous dependent
variable using automatic starting values
with random starts

DATA: FILE IS ex7.1.dat;

VARIABLE: NAMES ARE y x1 x2;

CLASSES = ¢ (2);

ANALYSIS: TYPE = MIXTURE;

MODEL:
$OVERALLS
y ON x1 x2;

c ON x1;
ScH#2%
y ON x2;
\Zi
OUTPUT : TECH1 TECHS;

,,,,,,,,,,,,,,

x1 x2
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In this example, the mixture regression model for a continuous
dependent variable shown in the picture above is estimated using
automatic starting values with random starts. Because c is a categorical
latent variable, the interpretation of the picture is not the same as for
models with continuous latent variables. The arrow from c to y indicates
that the intercept of y varies across the classes of c. This corresponds to
the regression of y on a set of dummy variables representing the
categories of c. The broken arrow from c to the arrow from x2 to y
indicates that the slope in the regression of y on x2 varies across the
classes of c. The arrow from x1 to c represents the multinomial logistic
regression of ¢ on x1.

TITLE: this is an example of a mixture regression
analysis for a continuous dependent
variable

The TITLE command is used to provide a title for the analysis. The title
is printed in the output just before the Summary of Analysis.

DATA: FILE IS ex7.1l.dat;

The DATA command is used to provide information about the data set
to be analyzed. The FILE option is used to specify the name of the file
that contains the data to be analyzed, ex7.1.dat. Because the data set is
in free format, the default, a FORMAT statement is not required.

VARIABLE: NAMES ARE y x1 x2;
CLASSES = ¢ (2);

The VARIABLE command is used to provide information about the
variables in the data set to be analyzed. The NAMES option is used to
assign names to the variables in the data set. The data set in this
example contains three variables: y, x1, and x2. The CLASSES option
is used to assign names to the categorical latent variables in the model
and to specify the number of latent classes in the model for each
categorical latent variable. In the example above, there is one
categorical latent variable c that has two latent classes.

ANALYSIS: TYPE = MIXTURE;

The ANALYSIS command is used to describe the technical details of the
analysis. The TYPE option is used to describe the type of analysis that
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is to be performed. By selecting MIXTURE, a mixture model will be
estimated.

When TYPE=MIXTURE is specified, either user-specified or automatic
starting values are used to create randomly perturbed sets of starting
values for all parameters in the model except variances and covariances.
In this example, the random perturbations are based on automatic
starting values. Maximum likelihood optimization is done in two stages.
In the initial stage, 20 random sets of starting values are generated. An
optimization is carried out for ten iterations using each of the 20 random
sets of starting values. The ending values from the 4 optimizations with
the highest loglikelihoods are used as the starting values in the final
stage optimizations which are carried out using the default optimization
settings for TYPE=MIXTURE. A more thorough investigation of
multiple solutions can be carried out using the STARTS and
STITERATIONS options of the ANALYSIS command.

MODEL:
$OVERALLS%
y ON x1 x2;
c ON x1;
Sc#2%
y ON x2;
'

The MODEL command is used to describe the model to be estimated.
For mixture models, there is an overall model designated by the label
%OVERALL%. The overall model describes the part of the model that
is in common for all latent classes. The part of the model that differs for
each class is specified by a label that consists of the categorical latent
variable followed by the number sign followed by the class number. In
the example above, the label %c#2% refers to the part of the model for
class 2 that differs from the overall model.

In the overall model, the first ON statement describes the linear
regression of y on the covariates x1 and x2. The second ON statement
describes the multinomial logistic regression of the categorical latent
variable ¢ on the covariate x1 when comparing class 1 to class 2. The
intercept in the regression of ¢ on x1 is estimated as the default.

In the model for class 2, the ON statement describes the linear regression
of y on the covariate x2. This specification relaxes the default equality
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constraint for the regression coefficient. By mentioning the residual
variance of y, it is not held equal across classes. The intercepts in class
1 and class 2 are free and unequal as the default. The default estimator
for this type of analysis is maximum likelihood with robust standard
errors. The ESTIMATOR option of the ANALYSIS command can be
used to select a different estimator.

Following is an alternative specification of the multinomial logistic
regression of ¢ on the covariate x1:

c#l ON x1;

where c#1 refers to the first class of ¢c. The classes of a categorical latent
variable are referred to by adding to the name of the categorical latent
variable the number sign (#) followed by the number of the class. This
alternative specification allows individual parameters to be referred to in
the MODEL command for the purpose of giving starting values or
placing restrictions.

OUTPUT: TECH1 TECHS;

The OUTPUT command is used to request additional output not
included as the default. The TECHL1 option is used to request the arrays
containing parameter specifications and starting values for all free
parameters in the model. The TECHS8 option is used to request that the
optimization history in estimating the model be printed in the output.
TECHS is printed to the screen during the computations as the default.
TECHS screen printing is useful for determining how long the analysis
takes.
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EXAMPLE 7.2: MIXTURE REGRESSION ANALYSIS FOR A
COUNT VARIABLE USING A ZERO-INFLATED POISSON
MODEL USING AUTOMATIC STARTING VALUES WITH
RANDOM STARTS

TITLE: this is an example of a mixture regression
analysis for a count variable using a
zero-inflated Poisson model using
automatic starting values with random
starts

DATA: FILE IS ex7.2.dat;

VARIABLE: NAMES ARE u x1 x2;

CLASSES = ¢ (2);
COUNT = u (1)

ANALYSIS: TYPE = MIXTURE;

MODEL:
$OVERALLS
u ON x1 x2;

u#l ON x1 x2;
c ON x1;
SC#2%

u ON x2;

OUTPUT : TECH1 TECHS;

The difference between this example and Example 7.1 is that the
dependent variable is a count variable instead of a continuous variable.
The COUNT option is used to specify which dependent variables are
treated as count variables in the model and its estimation and whether a
Poisson or zero-inflated Poisson model will be estimated. In the
example above, u is a count variable. The i in parentheses following u
indicates that a zero-inflated Poisson model will be estimated.

With a zero-inflated Poisson model, two regressions are estimated. In
the overall model, the first ON statement describes the Poisson
regression of the count part of u on the covariates x1 and x2. This
regression predicts the value of the count dependent variable for
individuals who are able to assume values of zero and above. The
second ON statement describes the logistic regression of the binary
latent inflation variable u#l on the covariates x1 and X2. This
regression describes the probability of being unable to assume any value
except zero. The inflation variable is referred to by adding to the name
of the count variable the number sign (#) followed by the number 1. The
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third ON statement specifies the multinomial logistic regression of the
categorical latent variable ¢ on the covariate x1 when comparing class 1
to class 2. The intercept in the regression of ¢ on x1 is estimated as the
default.

In the model for class 2, the ON statement describes the Poisson
regression of the count part of u on the covariate x2. This specification
relaxes the default equality constraint for the regression coefficient. The
intercepts of u are free and unequal across classes as the default. All
other parameters are held equal across classes as the default. The
default estimator for this type of analysis is maximum likelihood with
robust standard errors. The ESTIMATOR option of the ANALYSIS
command can be used to select a different estimator. An explanation of
the other commands can be found in Example 7.1.

EXAMPLE 7.3: LCAWITH BINARY LATENT CLASS
INDICATORS USING AUTOMATIC STARTING VALUES
WITH RANDOM STARTS

TITLE: this is an example of a LCA with binary
latent class indicators using automatic
starting values with random starts

DATA: FILE IS ex7.3.dat;

VARIABLE: NAMES ARE ul-u4 x1-x10;

USEVARIABLES = ul-u4;
CLASSES = ¢ (2);
CATEGORICAL = ul-u4;
AUXILIARY = x1-x10 (R3STEP)
ANALYSIS: TYPE = MIXTURE;
OUTPUT : TECH1 TECH8 TECH1O0;
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ul

u2

u3

u4

In this example, the latent class analysis (LCA) model with binary latent
class indicators shown in the picture above is estimated using automatic
starting values and random starts. Because c is a categorical latent
variable, the interpretation of the picture is not the same as for models
with continuous latent variables. The arrows from c to the latent class
indicators ul, u2, u3, and u4 indicate that the thresholds of the latent
class indicators vary across the classes of ¢. This implies that the
probabilities of the latent class indicators vary across the classes of c.
The arrows correspond to the regressions of the latent class indicators on
a set of dummy variables representing the categories of c.

The CATEGORICAL option is used to specify which dependent
variables are treated as binary or ordered categorical (ordinal) variables
in the model and its estimation. In the example above, the latent class
indicators ul, u2, u3, and u4, are binary or ordered categorical variables.
The program determines the number of categories for each indicator.
The AUXILIARY option is used to specify variables that are not part of
the analysis that are important predictors of latent classes using a three-
step approach (Vermunt, 2010; Asparouhov & Muthén, 2012b). The
letters R3STEP in parentheses is placed behind the variables in the
AUXILIARY statement that that will be used as covariates in the third
step multinomial logistic regression in a mixture model.
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The MODEL command does not need to be specified when automatic
starting values are used. The thresholds of the observed variables and
the mean of the categorical latent variable are estimated as the default.
The thresholds are not held equal across classes as the default. The
default estimator for this type of analysis is maximum likelihood with
robust standard errors. The ESTIMATOR option of the ANALYSIS
command can be used to select a different estimator.

The TECH10 option is used to request univariate, bivariate, and
response pattern model fit information for the categorical dependent
variables in the model. This includes observed and estimated (expected)
frequencies and standardized residuals. An explanation of the other
commands can be found in Example 7.1.

EXAMPLE 7.4: LCAWITH BINARY LATENT CLASS
INDICATORS USING USER-SPECIFIED STARTING VALUES
WITHOUT RANDOM STARTS

TITLE: this is an example of a LCA with binary
latent class indicators using user-
specified starting values without random
starts

DATA: FILE IS ex7.4.dat;

VARIABLE: NAMES ARE ul-u4;

CLASSES = ¢ (2);
CATEGORICAL = ul-u4;

ANALYSIS: TYPE = MIXTURE;
STARTS = 0;

MODEL:
$OVERALLS%
sc#ls
[ul$1*1 u2$1*1 u3sl*-1 u4ds$l*-11;
sc#2%

[ul$1*-1 u2s$1l*-1 u3$1l*1 udsl*1];

OUTPUT: TECH1 TECHS;

The differences between this example and Example 7.3 are that user-
specified starting values are used instead of automatic starting values
and there are no random starts. By specifying STARTS=0 in the
ANALYSIS command, random starts are turned off.
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In the MODEL command, user-specified starting values are given for the
thresholds of the binary latent class indicators. For binary and ordered
categorical dependent variables, thresholds are referred to by adding to a
variable name a dollar sign ($) followed by a threshold number. The
number of thresholds is equal to the number of categories minus one.
Because the latent class indicators are binary, they have one threshold.
The thresholds of the latent class indicators are referred to as ul$l,
u2$1, u3$l, and ud$l. Square brackets are used to specify starting
values in the logit scale for the thresholds of the binary latent class
indicators. The asterisk (*) is used to assign a starting value. It is placed
after a variable with the starting value following it. In the example
above, the threshold of ul is assigned the starting value of 1 for class 1
and -1 for class 2. The threshold of u4 is assigned the starting value of -
1 for class 1 and 1 for class 2. The default estimator for this type of
analysis is maximum likelihood with robust standard errors. The
ESTIMATOR option of the ANALYSIS command can be used to select
a different estimator. An explanation of the other commands can be
found in Examples 7.1 and 7.3.

EXAMPLE 7.5: LCAWITH BINARY LATENT CLASS
INDICATORS USING USER-SPECIFIED STARTING VALUES
WITH RANDOM STARTS
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TITLE: this is an example of a LCA with binary
latent class indicators using user-
specified starting values with random
starts

DATA: FILE IS ex7.5.dat;

VARIABLE: NAMES ARE ul-u4;

CLASSES = ¢ (2);
CATEGORICAL = ul-u4;

ANALYSIS: TYPE = MIXTURE;
STARTS = 100 10;
STITERATIONS = 20;

MODEL:
$OVERALLS%
sc#ls
[ul$1*1 u2$1*1 u3s$1l*-1 u4ds$l*-11;
Sc#2%

[ul$1*-1 u2$1l*-1 u3$1l*1 udsl+*1l];

OUTPUT : TECH1 TECHS;
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The difference between this example and Example 7.4 is that random
starts are used. In this example, the random perturbations are based on
user-specified starting values. The STARTS option is used to specify
the number of initial stage random sets of starting values to generate and
the number of final stage optimizations to use. The default is 20 random
sets of starting values for the initial stage and 4 optimizations for the
final stage. In the example above, the STARTS option specifies that 100
random sets of starting values for the initial stage and 10 final stage
optimizations will be used. The STITERATIONS option is used to
specify the maximum number of iterations allowed in the initial stage.
In this example, 20 iterations are allowed in the initial stage instead of
the default of 10. The default estimator for this type of analysis is
maximum likelihood with robust standard errors. The ESTIMATOR
option of the ANALYSIS command can be used to select a different
estimator. An explanation of the other commands can be found in
Examples 7.1, 7.3, and 7.4.

EXAMPLE 7.6: LCAWITH THREE-CATEGORY LATENT
CLASS INDICATORS USING USER-SPECIFIED STARTING
VALUES WITHOUT RANDOM STARTS

TITLE: this is an example of a LCA with three-
category latent class indicators using
user-specified starting values without
random starts

DATA: FILE IS ex7.6.dat;

VARIABLE: NAMES ARE ul-u4;

CLASSES = ¢ (2);
CATEGORICAL = ul-u4;

ANALYSIS: TYPE = MIXTURE;

STARTS = 0;

MODEL:
$OVERALL%
sc#ls
[ul$1*.5 u2s$1l*.5 u3$l*-.5 ud$l*-.5];
[ul$2*1 u2$2*1 u3$2*0 uds$2*01];
SCc#2%
[ul$1*-.5 u2$1*-.5 u3$1*.5 udsl*.5];
[ul$2*0 u2$2*0 u3ds$2+*1 u4ds$2*1];
OUTPUT: TECH1 TECHS;
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The difference between this example and Example 7.4 is that the latent
class indicators are ordered categorical (ordinal) variables with three
categories instead of binary variables. When latent class indicators are
ordered categorical variables, each latent class indicator has more than
one threshold. The number of thresholds is equal to the number of
categories minus one. When user-specified starting values are used, they
must be specified for all thresholds and they must be in increasing order
for each variable within each class. For example, in class 1 the threshold
starting values for latent class indicator ul are .5 for the first threshold
and 1 for the second threshold. The default estimator for this type of
analysis is maximum likelihood with robust standard errors. The
ESTIMATOR option of the ANALYSIS command can be used to select
a different estimator. An explanation of the other commands can be
found in Examples 7.1, 7.3, and 7.4.

EXAMPLE 7.7: LCA WITH UNORDERED CATEGORICAL
LATENT CLASS INDICATORS USING AUTOMATIC
STARTING VALUES WITH RANDOM STARTS
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TITLE: this is an example of a LCA with unordered
categorical latent class indicators using
automatic starting values with random
starts

DATA: FILE IS ex7.7.dat;

VARIABLE: NAMES ARE ul-u4;

CLASSES = ¢ (2);

NOMINAL = ul-ué4;
ANALYSIS: TYPE = MIXTURE;
OUTPUT: TECH1 TECHS;

The difference between this example and Example 7.3 is that the latent
class indicators are unordered categorical (nominal) variables instead of
binary variables. The NOMINAL option is used to specify which
dependent variables are treated as unordered categorical (nominal)
variables in the model and its estimation. In the example above, ul, u2,
u3, and u4 are three-category unordered variables. The categories of an
unordered categorical variable are referred to by adding to the name of
the unordered categorical variable the number sign (#) followed by the
number of the category. The default estimator for this type of analysis is
maximum likelihood with robust standard errors. The ESTIMATOR
option of the ANALYSIS command can be used to select a different
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estimator. An explanation of the other commands can be found in
Examples 7.1 and 7.3.

EXAMPLE 7.8: LCAWITH UNORDERED CATEGORICAL
LATENT CLASS INDICATORS USING USER-SPECIFIED
STARTING VALUES WITH RANDOM STARTS

TITLE: this is an example of a LCA with unordered
categorical latent class indicators using
user-specified starting values with random
starts

DATA: FILE IS ex7.8.dat;

VARIABLE: NAMES ARE ul-u4;

CLASSES = ¢ (2);
NOMINAL = ul-u4;
ANALYSIS: TYPE = MIXTURE;
MODEL: $OVERALLS%
ScH#l%
[ul#1l-ud#1*0];
[ul#2-ud#2*1];
Sc#2%
[ul#l-ud#1l*-1];
[ul#2-ud#2*-11];
OUTPUT : TECH1 TECHS;

The difference between this example and Example 7.7 is that user-
specified starting values are used instead of automatic starting values.
Means are referred to by using bracket statements. The categories of an
unordered categorical variable are referred to by adding to the name of
the unordered categorical variable the number sign (#) followed by the
number of the category. In this example, ul#1 refers to the first category
of ul and ul#2 refers to the second category of ul. Starting values of 0
and 1 are given for the means in class 1 and starting values of -1 are
given for the means in class 2. The default estimator for this type of
analysis is maximum likelihood with robust standard errors. The
ESTIMATOR option of the ANALYSIS command can be used to select
a different estimator. An explanation of the other commands can be
found in Examples 7.1, 7.3, and 7.7.
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EXAMPLE 7.9: LCAWITH CONTINUOUS LATENT CLASS
INDICATORS USING AUTOMATIC STARTING VALUES
WITH RANDOM STARTS

TITLE:

DATA:

OUTPUT:

VARIABLE:

ANALYSIS:

this is an example of a LCA with
continuous latent class indicators using
automatic starting values with random
starts

FILE IS ex7.9.dat;

NAMES ARE yl-vy4;

CLASSES = ¢ (2);

TYPE = MIXTURE;

TECH1 TECHS;

The difference between this example and Example 7.3 is that the latent
class indicators are continuous variables instead of binary variables.
When there is no specification in the VARIABLE command regarding
the scale of the dependent variables, it is assumed that they are
continuous. Latent class analysis with continuous latent class indicators

y4 |—

is often referred to as latent profile analysis.
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The MODEL command does not need to be specified when automatic
starting values are used. The means and variances of the latent class
indicators and the mean of the categorical latent variable are estimated
as the default. The means of the latent class indicators are not held
equal across classes as the default. The variances are held equal across
classes as the default and the covariances among the latent class
indicators are fixed at zero as the default. The default estimator for this
type of analysis is maximum likelihood with robust standard errors. The
ESTIMATOR option of the ANALYSIS command can be used to select
a different estimator. An explanation of the other commands can be
found in Examples 7.1 and 7.3.

EXAMPLE 7.10: LCA WITH CONTINUOUS LATENT CLASS
INDICATORS USING USER-SPECIFIED STARTING VALUES
WITHOUT RANDOM STARTS

TITLE: this is an example of a LCA with
continuous latent class indicators using
user-specified starting values without
random starts

DATA: FILE IS ex7.10.dat;

VARIABLE: NAMES ARE yl-v4;

CLASSES = ¢ (2);

ANALYSIS: TYPE = MIXTURE;
STARTS = 0;

MODEL:
$OVERALLS%
sc#ls
[yl-y4*1];
yl-vy4;
sc#2%

[yl-y4*-11;
vl-v4;

OUTPUT : TECH1 TECHS;

The difference between this example and Example 7.4 is that the latent
class indicators are continuous variables instead of binary variables. As
a result, starting values are given for means instead of thresholds.

The means and variances of the latent class indicators and the mean of

the categorical latent variable are estimated as the default. In the models
for class 1 and class 2, by mentioning the variances of the latent class
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indicators, the default constraint of equality of variances across classes
is relaxed. The covariances among the latent class indicators within
class are fixed at zero as the default. The default estimator for this type
of analysis is maximum likelihood with robust standard errors. The
ESTIMATOR option of the ANALYSIS command can be used to select
a different estimator. An explanation of the other commands can be
found in Examples 7.1 and 7.4.

EXAMPLE 7.11: LCA WITH BINARY, CENSORED,
UNORDERED, AND COUNT LATENT CLASS INDICATORS
USING USER-SPECIFIED STARTING VALUES WITHOUT
RANDOM STARTS
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TITLE: this is an example of a LCA with binary,
censored, unordered, and count latent
class indicators using user-specified
starting values without random starts

DATA: FILE IS ex7.1ll.dat;

VARIABLE: NAMES ARE ul yl u2 u3;

CLASSES = ¢ (2);
CATEGORICAL = ul;
CENSORED = y1 (b);
NOMINAL = u2;
COUNT = u3 (1i);
ANALYSIS: TYPE = MIXTURE;
STARTS = 0;

MODEL:
$OVERALLS%
sc#ls
[ul$1*-1 y1*3 u2#1*0 u2#2*1 u3*.5
u3#1*1.5];
yl*2;
sc#2%

[ul$1*0 y1*1 u2#1*-1 u2#2*0 u3*1 u3#1*1];
yl*1;

OUTPUT: TECH1 TECHS;

The difference between this example and Example 7.4 is that the latent
class indicators are a combination of binary, censored, unordered
categorical (nominal) and count variables instead of binary variables.

The CATEGORICAL option is used to specify which dependent
variables are treated as binary or ordered categorical (ordinal) variables
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in the model and its estimation. In the example above, the latent class
indicator ul is a binary variable. The CENSORED option is used to
specify which dependent variables are treated as censored variables in
the model and its estimation, whether they are censored from above or
below, and whether a censored or censored-inflated model will be
estimated. In the example above, y1 is a censored variable. The b in
parentheses following y1 indicates that y1 is censored from below, that
is, has a floor effect, and that the model is a censored regression model.
The censoring limit is determined from the data. The NOMINAL option
is used to specify which dependent variables are treated as unordered
categorical (nominal) variables in the model and its estimation. In the
example above, u2 is a three-category unordered variable. The program
determines the number of categories. The categories of an unordered
categorical variable are referred to by adding to the name of the
unordered categorical variable the number sign (#) followed by the
number of the category. In this example, u2#1 refers to the first category
of u2 and u2#2 refers to the second category of u2. The COUNT option
is used to specify which dependent variables are treated as count
variables in the model and its estimation and whether a Poisson or zero-
inflated Poisson model will be estimated. In the example above, u3 is a
count variable. The i in parentheses following u3 indicates that a zero-
inflated model will be estimated. The inflation part of the count variable
is referred to by adding to the name of the count variable the number
sign (#) followed by the number 1. The default estimator for this type of
analysis is maximum likelihood with robust standard errors. The
ESTIMATOR option of the ANALYSIS command can be used to select
a different estimator. An explanation of the other commands can be
found in Examples 7.1 and 7.4.
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EXAMPLE 7.12: LCA WITH BINARY LATENT CLASS
INDICATORS USING AUTOMATIC STARTING VALUES
WITH RANDOM STARTS WITH A COVARIATE AND A
DIRECT EFFECT

186

TITLE:

DATA:

VARIABLE:

ANALYSIS:

MODEL:

OUTPUT:

this is an example of a LCA with binary
latent class indicators using automatic
starting values with random starts with a
covariate and a direct effect

FILE IS ex7.12.dat;

NAMES ARE ul-u4d x;

CLASSES = ¢ (2);

CATEGORICAL = ul-u4;

TYPE = MIXTURE;

$SOVERALL%

c ON x;

u4 ON x;
TECH1 TECHS;

ul

u3

u4

The difference between this example and Example 7.3 is that the model
contains a covariate and a direct effect. The first ON statement
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describes the multinomial logistic regression of the categorical latent
variable ¢ on the covariate x when comparing class 1 to class 2. The
intercepts of this regression are estimated as the default. The second ON
statement describes the logistic regression of the binary indicator u4 on
the covariate x. This is referred to as a direct effect from x to u4. The
regression coefficient is held equal across classes as the default. The
default estimator for this type of analysis is maximum likelihood with
robust standard errors. The ESTIMATOR option of the ANALYSIS
command can be used to select a different estimator. An explanation of
the other commands can be found in Examples 7.1 and 7.3.

EXAMPLE 7.13: CONFIRMATORY LCA WITH BINARY
LATENT CLASS INDICATORS AND PARAMETER
CONSTRAINTS

TITLE: this is an example of a confirmatory LCA
with binary latent class indicators and
parameter constraints

DATA: FILE IS ex7.13.dat;

VARIABLE: NAMES ARE ul-u4;
CLASSES = ¢ (2);
CATEGORICAL = ul-u4;

ANALYSIS: TYPE = MIXTURE;

MODEL:
$OVERALLS%
sc#ls
[ulsi*—17];
[u2$1-u3s$1*-11 (1);
[ud$1*-1] (pl);
sc#2%

[ul$1@-1517;
[u2$1-u3s1*1] (2);
[uds1*1] (p2);

MODEL CONSTRAINT:
p2 = - pl;

OUTPUT : TECH1 TECHS;

In this example, constraints are placed on the measurement parameters
of the latent class indicators to reflect three hypotheses: (1) u2 and u3
are parallel measurements, (2) ul has a probability of one in class 2, and
(3) the error rate for u4 is the same in the two classes (McCutcheon,
2002, pp. 70-72).

187



CHAPTER 7

The first hypothesis is specified by placing (1) following the threshold
parameters for u2 and u3 in class 1 and (2) following the threshold
parameters for u2 and u3 in class 2. This holds the thresholds for the
two latent class indicators equal to each other but not equal across
classes. The second hypothesis is specified by fixing the threshold of ul
in class 2 to the logit value of -15. The third hypothesis is specified
using the MODEL CONSTRAINT command. The MODEL
CONSTRAINT command is used to define linear and non-linear
constraints on the parameters in the model. Parameters are given labels
by placing a name in parentheses after the parameter in the MODEL
command. In the MODEL command, the threshold of u4 in class 1 is
given the label p1 and the threshold of u4 in class 2 is given the label p2.
In the MODEL CONSTRAINT command, the linear constraint is
defined. The threshold of u4 in class 1 is equal to the negative value of
the threshold of u4 in class 2. The default estimator for this type of
analysis is maximum likelihood with robust standard errors. The
ESTIMATOR option of the ANALYSIS command can be used to select
a different estimator. An explanation of the other commands can be
found in Example 7.1.

EXAMPLE 7.14: CONFIRMATORY LCAWITH TWO
CATEGORICAL LATENT VARIABLES
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TITLE: this is an example of a confirmatory LCA
with two categorical latent variables
DATA: FILE IS ex7.l4.dat;

VARIABLE: NAMES ARE ul-u4 yl-vy4;
CLASSES = cu (2) cy (3);
CATEGORICAL = ul-u4;

ANALYSIS: TYPE = MIXTURE;
PARAMETERIZATION = LOGLINEAR;

MODEL:
$OVERALLS
cu WITH cy;
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MODEL cu:
Scu#l%
[ul$1-u4sl];
Scu#2%
[ul$1-u4s1];
MODEL cy:
Scy#1%
[yl-v4];
SCcy#2%
[yl-v4];
SCy#3%
[yl-v4];
OUTPUT: TECH1 TECHS;

ul u2 u3 u4

vl y2 y3 y4

In this example, the confirmatory LCA with two categorical latent
variables shown in the picture above is estimated. The two categorical
latent variables are correlated and have their own sets of latent class
indicators.
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The CLASSES option is used to assign names to the categorical latent
variables in the model and to specify the number of latent classes in the
model for each categorical latent variable. In the example above, there
are two categorical latent variables cu and cy. The categorical latent
variable cu has two latent classes and the categorical latent variable cy
has three latent classes. PARAMETERIZATION=LOGLINEAR is used
to specify associations among categorical latent variables. In the
LOGLINEAR parameterization, the WITH option of the MODEL
command is used to specify the relationships between the categorical
latent variables. When a model has more than one categorical latent
variable, MODEL followed by a label is used to describe the analysis
model for each categorical latent variable. Labels are defined by using
the names of the categorical latent variables. The categorical latent
variable cu has four binary indicators ul through u4. Their thresholds
are specified to vary only across the classes of the categorical latent
variable cu. The categorical latent variable cy has four continuous
indicators y1 through y4. Their means are specified to vary only across
the classes of the categorical latent variable cy. The default estimator
for this type of analysis is maximum likelihood with robust standard
errors. The ESTIMATOR option of the ANALYSIS command can be
used to select a different estimator. An explanation of the other
commands can be found in Example 7.1.

Following is an alternative specification of the associations among cu
and cy:

cu#l WITH cy#1 cy#2,

where cu#l refers to the first class of cu, cy#1 refers to the first class of
cy, and cy#2 refers to the second class of cy. The classes of a
categorical latent variable are referred to by adding to the name of the
categorical latent variable the number sign (#) followed by the number
of the class. This alternative specification allows individual parameters
to be referred to in the MODEL command for the purpose of giving
starting values or placing restrictions.
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EXAMPLE 7.15: LOGLINEAR MODEL FOR A THREE-WAY
TABLE WITH CONDITIONAL INDEPENDENCE BETWEEN
THE FIRST TWO VARIABLES

TITLE:

DATA:

MODEL:

OUTPUT:

VARIABLE:

ANALYSIS:

MODEL cl:

MODEL c2:

MODEL c3:

this is an example of a loglinear model
for a three-way table with conditional
independence between the first two
variables

FILE IS ex7.15.dat;

NAMES ARE ul u2 u3 w;

FREQWEIGHT = w;

CATEGORICAL = ul-u3;

CLASSES = cl (2) c2 (2) c3 (2);

TYPE = MIXTURE;

STARTS = 0;

PARAMETERIZATION = LOGLINEAR;

SOVERALL%
cl WITH c3;
c2 WITH c3;

Scl#1%
[uls$1@1s];
Scl#2%
[uls$1@-15];

Sc2#1%
[u2$1@15];
SCc2#2%
[u2$1@-1517;

$c3#1%
[u3S1@15];
$c3#2%
[u3s1@-15];
TECH1 TECHS8;

In this example, a loglinear model for a three-way frequency table with
conditional independence between the first two variables is estimated.
The loglinear model is estimated using categorical latent variables that
are perfectly measured by observed categorical variables. It is also
possible to estimate loglinear models for categorical latent variables that
are measured with error by observed categorical variables. The
conditional independence is specified by the two-way interaction
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between the first two variables being zero for each of the two levels of
the third variable.

PARAMETERIZATION=LOGLINEAR is used to estimate loglinear
models with two- and three-way interactions. In the LOGLINEAR
parameterization, the WITH option of the MODEL command is used to
specify the associations among the categorical latent variables. When a
model has more than one categorical latent variable, MODEL followed
by a label is used to describe the analysis model for each categorical
latent variable. Labels are defined by using the names of the categorical
latent variables. In the example above, the categorical latent variables
are perfectly measured by the latent class indicators. This is specified by
fixing their thresholds to the logit value of plus or minus 15,
corresponding to probabilities of zero and one. The default estimator for
this type of analysis is maximum likelihood with robust standard errors.
The ESTIMATOR option of the ANALYSIS command can be used to
select a different estimator. An explanation of the other commands can
be found in Examples 7.1 and 7.14.

EXAMPLE 7.16: LCAWITH PARTIAL CONDITIONAL

INDEPENDENCE
TITLE: this is an example of LCA with partial
conditional independence
DATA: FILE IS ex7.l6.dat;
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VARIABLE: NAMES ARE ul-u4;
CATEGORICAL = ul-u4;
CLASSES = c(2);
ANALYSIS: TYPE = MIXTURE;
PARAMETERIZATION = RESCOVARIANCES;

MODEL:
$OVERALLS
Sc#lS
[ul$l-udsl*-117;
u2 WITH u3;
OUTPUT : TECH1 TECHS;
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ul

u3

4 ud

In this example, the LCA with partial conditional independence shown
in the picture above is estimated. A similar model is described in Qu,
Tan, and Kutner (1996).

By specifying  PARAMETERIZATION=RESCOVARIANCES, the
WITH option can be used to specify residual covariances for binary and
ordered categorical outcomes using maximum likelihood estimation
Asparouhov & Muthén, 2015b). In the example above, the WITH
statement in class 1 specifies the residual covariance between u2 and u3
for class 1. The conditional independence assumption of u2 and u3 is
not violated for class 2. An explanation of the other commands can be
found in Example 7.1.
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EXAMPLE 7.17: MIXTURE CFA MODELING
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TITLE: this is an example of mixture CFA modeling
DATA: FILE IS ex7.17.dat;
VARIABLE: NAMES ARE yl-y5;
CLASSES = c(2);
ANALYSIS: TYPE = MIXTURE;
MODEL: $OVERALLS
f BY yl-vy5;
Sc#ls
[£*1];

OUTPUT: TECH1 TECHS;

o :

In this example, the mixture CFA model shown in the picture above is
estimated (Muthén, 2008). The mean of the factor f varies across the
classes of the categorical latent variable ¢. The residual arrow pointing
to f indicates that the factor varies within class. This implies that the
distribution of f is allowed to be non-normal. It is possible to allow
other parameters of the CFA model to vary across classes.

The BY statement specifies that f is measured by y1, y2, y3, y4, and y5.
The factor mean varies across the classes. All other model parameters
are held equal across classes as the default. The default estimator for
this type of analysis is maximum likelihood with robust standard errors.
The ESTIMATOR option of the ANALYSIS command can be used to
select a different estimator. An explanation of the other commands can
be found in Example 7.1.
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EXAMPLE 7.18: LCA WITH A SECOND-ORDER FACTOR

(TWIN ANALYSIS)
TITLE: this is an example of a LCA with a second-
order factor (twin analysis)
DATA: FILE IS ex7.18.dat;
VARIABLE: NAMES ARE ull-ul3 u2l1-u23;
CLASSES = cl(2) c2(2);
CATEGORICAL = ull-u23;
ANALYSIS: TYPE = MIXTURE;
ALGORITHM = INTEGRATION;
MODEL:
$OVERALLS
f BY;
f@i;
cl c2 ON £*1 (1) ;
MODEL cl:
Scl#1%
[ull$1-ul3$1*-17;
cl#2%
[ulls$1-ul3s1*1];
MODEL c2:
SC2#1%
[u21$1-u2381*-17;
SC2#2%
[u21$1-u23$1*17];
OUTPUT : TECH1 TECHS;
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ull ul2 ul3 u2l u22 u23

In this example, the second-order factor model shown in the picture
above is estimated. The first-order factors are categorical latent
variables and the second-order factor is a continuous latent variable.
This is a model that can be used for studies of twin associations where
the categorical latent variable c1 refers to twin 1 and the categorical
latent variable c2 refers to twin 2.

By specifying ALGORITHM=INTEGRATION, a maximum likelihood
estimator with robust standard errors using a numerical integration
algorithm will be used. Note that numerical integration becomes
increasingly more computationally demanding as the number of factors
and the sample size increase. In this example, one dimension of
integration is used with 15 integration points. The ESTIMATOR option
can be used to select a different estimator. When a model has more than
one categorical latent variable, MODEL followed by a label is used to
describe the analysis model for each categorical latent variable. Labels
are defined by using the names of the categorical latent variables.

In the overall model, the BY statement names the second order factor f.
The ON statement specifies that f influences both categorical latent
variables in the same amount by imposing an equality constraint on the
two multinomial logistic regression coefficients. The slope in the
multinomial regression of ¢ on f reflects the strength of association



EXAMPLE 7.19: SEM WITH A CATEGORICAL LATENT
VARIABLE REGRESSED ON A CONTINUOUS LATENT

VARIABLE

between the two categorical latent variables.
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other commands can be found in Examples 7.1 and 7.14.

An explanation of the

TITLE: this is an example of a SEM with a
categorical latent variable regressed on a
continuous latent variable

DATA: FILE IS ex7.19.dat;

VARIABLE: NAMES ARE ul-u8;

CATEGORICAL = ul-u8;
CLASSES = ¢ (2);

ANALYSIS: TYPE = MIXTURE;
ALGORITHM = INTEGRATION;

MODEL:
$OVERALLS
f BY ul-u4;

c ON f;

ScH#l%

[ub$1-u8s$1];

ScH#2%

[ub$1-u8s$1];

OUTPUT : TECH1 TECHS;

ul us
u2 ué
u3 u7
u4 u8
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In this example, the model with both a continuous and categorical latent
variable shown in the picture above is estimated. The categorical latent
variable c is regressed on the continuous latent variable f in a
multinomial logistic regression.

By specifying ALGORITHM=INTEGRATION, a maximum likelihood
estimator with robust standard errors using a numerical integration
algorithm will be used. Note that numerical integration becomes
increasingly more computationally demanding as the number of factors
and the sample size increase. In this example, one dimension of
integration is used with 15 integration points. The ESTIMATOR option
can be used to select a different estimator. In the overall model, the BY
statement specifies that f is measured by the categorical factor indicators
ul through u4. The categorical latent variable ¢ has four binary latent
class indicators u5 through u8. The ON statement specifies the
multinomial logistic regression of the categorical latent variable ¢ on the
continuous latent variable f. An explanation of the other commands can
be found in Example 7.1.

EXAMPLE 7.20: STRUCTURAL EQUATION MIXTURE

MODELING
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TITLE: this is an example of structural equation
mixture modeling
DATA: FILE IS ex7.20.dat;

VARIABLE: NAMES ARE yl-y6;

CLASSES = ¢ (2);
ANALYSIS: TYPE = MIXTURE;
MODEL:

$OVERALLS%

f1 BY yl-y3;

£f2 BY y4-y6;

£f2 ON f1;

sc#ls

[f1*1 f21];

f2 ON f1;
OUTPUT: TECH1 TECHS;
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In this example, the structural equation mixture model shown in the
picture above is estimated. A continuous latent variable 2 is regressed
on a second continuous latent variable f1. The solid arrows from the
categorical latent variable ¢ to f1 and f2 indicate that the mean of f1 and
the intercept of f2 vary across classes. The broken arrow from c to the
arrow from f1 to f2 indicates that the slope in the linear regression of f2
on f1 varies across classes. For related models, see Jedidi, Jagpal, and
DeSarbo (1997).

In the overall model, the first BY statement specifies that f1 is measured
by yl1 through y3. The second BY statement specifies that f2 is
measured by y4 through y6. The ON statement describes the linear
regression of f2 on f1. In the model for class 1, the mean of f1, the
intercept of f2, and the slope in the regression of f2 on f1 are specified to
be free across classes. All other parameters are held equal across classes
as the default. The default estimator for this type of analysis is
maximum likelihood with robust standard errors. The ESTIMATOR
option of the ANALYSIS command can be used to select a different
estimator. An explanation of the other commands can be found in
Example 7.1.
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EXAMPLE 7.21: MIXTURE MODELING WITH KNOWN
CLASSES (MULTIPLE GROUP ANALYSIS)

TITLE: this is an example of mixture modeling
with known classes (multiple group
analysis)

DATA: FILE IS ex7.21.dat;

VARIABLE: NAMES = g yl-vy4;
CLASSES = cg (2) c (2)
KNOWNCLASS = cg (g =0 g =1);

ANALYSIS: TYPE = MIXTURE;

MODEL:
$OVERALLS
c ON cg;

MODEL c:

ScH#l%
[yl-v4];
ScH#2%
[yl-v4];
MODEL cg:
SCca#ls
yl-v4;
SCag#2%
yl-v4;
OUTPUT : TECH1 TECHS;

In this example, the multiple group mixture model shown in the picture
above is estimated. The groups are represented by the classes of the
categorical latent variable cg, which has known class (group)
membership.
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The KNOWNCLASS option is used for multiple group analysis with
TYPE=MIXTURE. It is used to identify the categorical latent variable
for which latent class membership is known and is equal to observed
groups in the sample. The KNOWNCLASS option identifies cg as the
categorical latent variable for which latent class membership is known.
The information in parentheses following the categorical latent variable
name defines the known classes using an observed variable. In this
example, the observed variable g is used to define the known classes.
The first class consists of individuals with the value 0 on the variable g.
The second class consists of individuals with the value 1 on the variable
g. The means of y1, y2, y3, and y4 vary across the classes of c, while
the variances of y1, y2, y3, and y4 vary across the classes of cg. An
explanation of the other commands can be found in Example 7.1.

EXAMPLE 7.22: MIXTURE MODELING WITH CONTINUOUS
VARIABLES THAT CORRELATE WITHIN CLASS
(MULTIVARIATE NORMAL MIXTURE MODEL)

TITLE: this is an example of mixture modeling
with continuous variables that correlate
within class (multivariate normal mixture
model)

DATA: FILE IS ex7.22.dat;

VARIABLE: NAMES ARE yl-v4;

CLASSES = ¢ (3);

ANALYSIS: TYPE = MIXTURE;

MODEL:
$OVERALLS
yl WITH y2-vy4;
y2 WITH y3 vy4;
y3 WITH vy4;
$Cc#2%

[yl-y4*-11;

$Cc#3%

[yl-y4*1];
OUTPUT : TECH1 TECHS;
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In this example, the mixture model shown in the picture above is
estimated. Because c is a categorical latent variable, the interpretation of
the picture is not the same as for models with continuous latent
variables. The arrows from c to the observed variables y1, y2, y3, and
y4 indicate that the means of the observed variables vary across the
classes of c. The arrows correspond to the regressions of the observed
variables on a set of dummy variables representing the categories of c.
The observed variables correlate within class. This is a conventional
multivariate mixture model (Everitt & Hand, 1981; McLachlan & Peel,
2000).

In the overall model, by specifying the three WITH statements the
default of zero covariances within class is relaxed and the covariances
among y1, y2, y3, and y4 are estimated. These covariances are held
equal across classes as the default. The variances of y1, y2, y3, and y4
are estimated and held equal as the default. These defaults can be
overridden. The means of the categorical latent variable ¢ are estimated
as the default.

When WITH statements are included in a mixture model, starting values
may be useful. In the class-specific model for class 2, starting values of
-1 are given for the means of y1, y2, y3, and y4. In the class-specific
model for class 3, starting values of 1 are given for the means of y1, y2,
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y3, and y4. The default estimator for this type of analysis is maximum
likelihood with robust standard errors. The ESTIMATOR option of the
ANALYSIS command can be used to select a different estimator. An
explanation of the other commands can be found in Example 7.1.

EXAMPLE 7.23: MIXTURE RANDOMIZED TRIALS
MODELING USING CACE ESTIMATION WITH TRAINING
DATA

TITLE: this is an example of mixture randomized
trials modeling using CACE estimation with
training data

DATA: FILE IS ex7.23.dat;

VARIABLE: NAMES ARE y x1 x2 cl c2;

CLASSES = ¢ (2);
TRAINING = cl c2;

ANALYSIS: TYPE = MIXTURE;

MODEL:
$OVERALLS%
y ON x1 x2;
c ON x1;
ScH#lS
[yl:
'
y ON x2@0;
sc#2%
[y*.5];
'

OUTPUT: TECH1 TECHS;
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In this example, the mixture model for randomized trials using CACE
(Complier-Average Causal Effect) estimation with training data shown
in the picture above is estimated (Little & Yau, 1998). The continuous
dependent variable y is regressed on the covariate x1 and the treatment
dummy variable x2. The categorical latent variable ¢ is compliance
status, with class 1 referring to non-compliers and class 2 referring to
compliers. Compliance status is observed in the treatment group and
unobserved in the control group. Because c is a categorical latent
variable, the interpretation of the picture is not the same as for models
with continuous latent variables. The arrow from ¢ to the y variable
indicates that the intercept of y varies across the classes of ¢. The arrow
from c to the arrow from x2 to y indicates that the slope in the regression
of y on x2 varies across the classes of c. The arrow from x1 to ¢
represents the multinomial logistic regression of ¢ on x1.

The TRAINING option is used to identify the variables that contain
information about latent class membership. Because there are two
classes, there are two training variables c1 and c2. Individuals in the
treatment group are assigned values of 1 for c¢1 and 0 for c2 if they are
non-compliers and O for cl and 1 for c2 if they are compliers.
Individuals in the control group are assigned values of 1 for both c1 and
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c2 to indicate that they are allowed to be a member of either class and
that their class membership is estimated.

In the overall model, the first ON statement describes the linear
regression of y on the covariate x1 and the treatment dummy variable x2.
The intercept and residual variance of y are estimated as the default.
The second ON statement describes the multinomial logistic regression
of the categorical latent variable c on the covariate xX1 when comparing
class 1 to class 2. The intercept in the regression of ¢ on x1 is estimated
as the default.

In the model for class 1, a starting value of zero is given for the intercept
of y as the default. The residual variance of y is specified to relax the
default across class equality constraint. The ON statement describes the
linear regression of y on x2 where the slope is fixed at zero. This is
done because non-compliers do not receive treatment. In the model for
class 2, a starting value of .5 is given for the intercept of y. The residual
variance of y is specified to relax the default across class equality
constraint. The regression of y ON x2, which represents the CACE
treatment effect, is not fixed at zero for class 2. The default estimator
for this type of analysis is maximum likelihood with robust standard
errors. The ESTIMATOR option of the ANALYSIS command can be
used to select a different estimator. An explanation of the other
commands can be found in Example 7.1.

EXAMPLE 7.24: MIXTURE RANDOMIZED TRIALS
MODELING USING CACE ESTIMATION WITH MISSING
DATA ON THE LATENT CLASS INDICATOR

TITLE: this is an example of mixture randomized
trials modeling using CACE estimation with
missing data on the latent class indicator

DATA: FILE IS ex7.24.dat;

VARIABLE: NAMES ARE u y x1 x2;

CLASSES = ¢ (2);

CATEGORICAL = u;

MISSING = u (999);
ANALYSIS: TYPE = MIXTURE;
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MODEL:
$OVERALLS
y ON x1 x2;
c ON x1;

Sc#l%
[u$1@15];
[yl:

Yy

y ON x2@0;

ScH#2%
[uS1@-15];
[y*.51;
N

OUTPUT: TECH1 TECHS;

x1 x2

~_

The difference between this example and Example 7.23 is that a binary
latent class indicator u has been added to the model. This binary
variable represents observed compliance status. Treatment compliers
have a value of 1 on this variable; treatment non-compliers have a value
of 0 on this variable; and individuals in the control group have a missing
value on this variable. The latent class indicator u is used instead of
training data.
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In the model for class 1, the threshold of the latent class indicator
variable u is set to a logit value of 15. In the model for class 2, the
threshold of the latent class indicator variable u is set to a logit value of
—15. These logit values reflect that ¢ is perfectly measured by u.
Individuals in the non-complier class (class 1) have probability zero of
observed compliance and individuals in the complier class (class 2) have
probability one of observed compliance. The default estimator for this
type of analysis is maximum likelihood with robust standard errors. The
ESTIMATOR option of the ANALYSIS command can be used to select
a different estimator. An explanation of the other commands can be
found in Examples 7.1 and 7.23.

EXAMPLE 7.25: ZERO-INFLATED POISSON REGRESSION
CARRIED OUT AS A TWO-CLASS MODEL

TITLE: this is an example of a zero-inflated
Poisson regression carried out as a two-
class model

DATA: FILE IS ex3.8.dat;

VARIABLE: NAMES ARE ul x1 x3;

COUNT IS ul;
CLASSES = ¢ (2);

ANALYSIS: TYPE = MIXTURE;

MODEL:
$OVERALLS%
ul ON x1 x3;

c ON x1 x3;

sc#ls

[ul@-1517;

ul ON x1@0 x3@Q0;
OUTPUT: TECH1 TECHS;
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In this example, the zero-inflated Poisson regression model shown in the
picture above is estimated. This is an alternative to the way zero-
inflated Poisson regression was carried out in Example 3.8. In the
example above, a categorical latent variable ¢ with two classes is used to
represent individuals who are able to assume values of zero and above
and individuals who are unable to assume any value except zero. The
categorical latent variable ¢ corresponds to the binary latent inflation
variable ul#l in Example 3.8. This approach has the advantage of
allowing the estimation of the probability of being in each class and the
posterior probabilities of being in each class for each individual.

The COUNT option is used to specify which dependent variables are
treated as count variables in the model and its estimation and whether a
Poisson or zero-inflated Poisson model will be estimated. In the
example above, ul is a specified as count variable without inflation
because the inflation is captured by the categorical latent variable c.

In the overall model, the first ON statement describes the Poisson
regression of the count variable ul on the covariates x1 and x3. The
second ON statement describes the multinomial logistic regression of the
categorical latent variable c on the covariates x1 and x3 when comparing
class 1 to class 2. In this example, class 1 contains individuals who are
unable to assume any value except zero on ul. Class 2 contains
individuals whose values on ul are distributed as a Poisson variable
without inflation. Mixing the two classes results in ul having a zero-
inflated Poisson distribution. In the class-specific model for class 1, the
intercept of ul is fixed at -15 to represent a low log rate at which the
probability of a count greater than zero is zero. Therefore, all
individuals in class 1 have a value of 0 on ul. Because ul has no
variability, the slopes in the Poisson regression of ul on the covariates
x1 and x3 in class 1 are fixed at zero. The default estimator for this type
of analysis is maximum likelihood with robust standard errors. The
ESTIMATOR option of the ANALYSIS command can be used to select
a different estimator. An explanation of the other commands can be
found in Example 7.1.
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EXAMPLE 7.26: CFAWITH A NON-PARAMETRIC
REPRESENTATION OF A NON-NORMAL FACTOR
DISTRIBUTION

TITLE: this is an example of CFA with a non-
parametric representation of a non-normal
factor distribution

DATA: FILE IS ex7.26.dat;

VARIABLE: NAMES ARE yl-y5 c;

USEV = yl-y5;
CLASSES = ¢ (3);
ANALYSIS: TYPE = MIXTURE;

MODEL: $OVERALLS%
f BY yl-y5;
£@0;

OUTPUT : TECH1 TECHS;

In this example, a CFA model with a non-parametric representation of a
non-normal factor distribution is estimated. One difference between this
example and Example 7.17 is that the factor variance is fixed at zero in
each class. This is done to capture a non-parametric representation of
the factor distribution (Aitkin, 1999) where the latent classes are used to
represent non-normality not unobserved heterogeneity with substantively
meaningful latent classes. This is also referred to as semiparametric
modeling. The factor distribution is represented by a histogram with as
many bars as there are classes. The bars represent scale steps on the
continuous latent variable. The spacing of the scale steps is obtained by
the factor means in the different classes with a factor mean for one class
fixed at zero for identification, and the percentage of individuals at the
different scale steps is obtained by the latent class percentages. This
means that continuous factor scores are obtained for the individuals
while not assuming normality for the factor but estimating its
distribution. Factor variances can also be estimated to obtain a more
general mixture although this reverts to the parametric assumption of
normality, in this case, within each class. When the latent classes are
used to represent non-normality, the mixed parameter values are of
greater interest than the parameters for each mixture component
(Muthén, 2002, p. 102; Muthén, 2004). An explanation of the other
commands can be found in Example 7.1.
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EXAMPLE 7.27: FACTOR (IRT) MIXTURE ANALYSIS WITH
BINARY LATENT CLASS AND FACTOR INDICATORS
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TITLE:

DATA:

VARIABLE:

ANALYSIS:

MODEL:

OUTPUT:

this is an example of a factor (IRT)
mixture analysis with binary latent class
and factor indicators
FILE = ex7.27.dat;

NAMES = ul-u8;
CATEGORICAL = ul-u8;
CLASSES = ¢ (2);

TYPE = MIXTURE;
ALGORITHM = INTEGRATION;
STARTS = 100 20;
$OVERALLS%

f BY ul-u8;

[£QO];

Sc#l%

f BY ul@l u2-u8;

£

[ul$1l-u8s$1];

Sc#2%

f BY ul@l u2-u8;

£

[ul$1-u8s1];

TECH1 TECHS;
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In this example, the factor (IRT) mixture model shown in the picture
above is estimated (Muthén, 2008). The model is a generalization of the
latent class model where the latent class model assumption of
conditional independence between the latent class indicators within class
is relaxed using a factor that influences the items within each class
(Muthén, 2006; Muthén & Asparouhov, 2006; Muthén, Asparouhov, &
Rebollo, 2006). The factor represents individual variation in response
probabilities within class. Alternatively, this model may be seen as an
Item Response Theory (IRT) mixture model. The broken arrows from
the categorical latent variable ¢ to the arrows from the factor f to the
latent class indicators ul to u8 indicate that the factor loadings vary
across classes.

By specifying ALGORITHM=INTEGRATION, a maximum likelihood
estimator with robust standard errors using a numerical integration
algorithm will be used. Note that numerical integration becomes
increasingly more computationally demanding as the number of factors
and the sample size increase. In this example, one dimension of
integration is used with 15 integration points. The ESTIMATOR option
can be used to select a different estimator. The STARTS option is used
to specify the number of initial stage random sets of starting values to
generate and the number of final stage optimizations to use. The default
is 20 random sets of starting values for the initial stage and 4
optimizations for the final stage. In the example above, the STARTS
option specifies that 100 random sets of starting values for the initial
stage and 20 final stage optimizations will be used.

In the overall model, the BY statement specifies that the factor f is
measured by ul, u2, u3, u4, u5, u6, u7, and u8. The mean of the factor is
fixed at zero which implies that the mean is zero in both classes. The
factor variance is held equal across classes as the default. The
statements in the class-specific parts of the model relax the equality
constraints across classes for the factor loadings, factor variance, and the
thresholds of the indicators. An explanation of the other commands can
be found in Examples 7.1 and 7.3.
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EXAMPLE 7.28: TWO-GROUP TWIN MODEL FOR
CATEGORICAL OUTCOMES USING MAXIMUM
LIKELIHOOD AND PARAMETER CONSTRAINTS
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TITLE: this is an example of a two-group twin
model for categorical outcomes using
maximum likelihood and parameter
constraints

DATA: FILE = ex7.28.dat;

VARIABLE: NAMES = ul u2 dz;

CATEGORICAL = ul uz2;
CLASSES = cdz (2);
KNOWNCLASS = cdz (dz = 0 dz = 1);

ANALYSIS: TYPE = MIXTURE;

ALGORITHM = INTEGRATION;
LINK = PROBIT;

MODEL: $OVERALLS
[ulsl-u2s$1] (1);
f1 BY ul;
f2 BY u2;

[f1-£f2@0];

f1-f2 (varf);

$cdz#1%

f1 WITH £2 (covmz) ;

$cdz#2%

f1 WITH £2 (covdz) ;
MODEL CONSTRAINT:

NEW (a c h);
varf = a**2 + c**2 + .001;
covmz A¥YD 4+ @¥¥2g

covdz 0.5*a**2 + c**2;
h = a**2/(a**2 + c**2 + 1);
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ul u2

In this example, the model shown in the picture above is estimated. The
variables ul and u2 represent a univariate outcome for each member of a
twin pair. Monozygotic and dizygotic twins are considered in a two-
group twin model for categorical outcomes using maximum likelihood
estimation. Parameter constraints are used to represent the ACE model
restrictions. The ACE variance and covariance restrictions are placed on
normally-distributed latent response variables, which are also called
liabilities, underlying the categorical outcomes. This model is referred
to as the threshold model for liabilities (Neale & Cardon, 1992). The
monozygotic and dizygotic twin groups are represented by latent classes
with known class membership.

The CATEGORICAL option is used to specify which dependent
variables are treated as binary or ordered categorical (ordinal) variables
in the model and its estimation. In the example above, the variables ul
and u2 are binary or ordered categorical variables. The program
determines the number of categories for each indicator.  The
KNOWNCLASS option identifies cdz as the categorical latent variable
for which latent class membership is known.  The information in
parentheses following the categorical latent variable name defines the
known classes using an observed variable. In this example, the observed
variable dz is used to define the known classes. The first class consists
of the monozygotic twins who have the value 0 on the variable dz. The
second class consists of the dizygotic twins who have the value 1 on the
variable dz.

By specifying ALGORITHM=INTEGRATION, a maximum likelihood
estimator with robust standard errors using a numerical integration
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algorithm will be used. Note that numerical integration becomes
increasingly more computationally demanding as the number of factors
and the sample size increase. In this example, two dimensions of
integration are used with 225 integration points. The ESTIMATOR
option can be used to select a different estimator. The LINK option is
used with maximum likelihood estimation to select a logit or a probit
link for models with categorical outcomes. The default is a logit link. In
this example, the probit link is used because the threshold model for
liabilities uses normally-distributed latent response variables.

In the overall model, the (1) following the first bracket statement
specifies that the thresholds of ul and u2 are held equal across twins.
The two BY statements define a factor behind each outcome. This is
done because covariances of categorical outcomes are not part of the
model when maximum likelihood estimation is used. The covariances of
the factors become the covariances of the categorical outcomes or more
precisely the covariances of the latent response variables underlying the
categorical outcomes. The means of the factors are fixed at zero and
their variances are held equal across twins. The variance of each
underlying response variable is obtained as the sum of the factor
variance plus one where one is the residual variance in the probit
regression of the categorical outcome on the factor.

In the MODEL command, labels are defined for three parameters. The
label varf is assigned to the variances of f1 and f2. Because they are
given the same label, these parameters are held equal. The label covmz
is assigned to the covariance between f1 and f2 for the monozygotic
twins and the label covdz is assigned to the covariance between f1 and f2
for the dizygotic twins. In the MODEL CONSTRAINT command, the
NEW option is used to assign labels to three parameters that are not in
the analysis model: a, ¢, and h. The two parameters a and c are used to
decompose the covariances of ul and u2 into genetic and environmental
components. The value .001 is added to the variance of the factors to
avoid a singular factor covariance matrix which comes about because the
factor variances and covariances are the same. The parameter h does not
impose restrictions on the model parameters but is used to compute the
heritability estimate and its standard error. This heritability estimate
uses the residual variances for the latent response variables which are
fixed at one. An explanation of the other commands can be found in
Example 7.1.
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EXAMPLE 7.29: TWO-GROUP IRT TWIN MODEL FOR
FACTORS WITH CATEGORICAL FACTOR INDICATORS
USING PARAMETER CONSTRAINTS

TITLE:

DATA:

MODEL:

VARIABLE:

ANALYSIS:

this is an example of a two-group IRT twin
model for factors with categorical factor
indicators using parameter constraints
FILE = ex7.29.dat;
NAMES = ull-uld4 u2l-u24 dz;
CATEGORICAL = ull-u24;
CLASSES = cdz (2);
KNOWNCLASS = cdz (dz = 0 dz = 1);
TYPE = MIXTURE;
ALGORITHM = INTEGRATION;
$OVERALLS
f1 BY ull
ul2-ul4d (lam2-lami) ;
£f2 BY u2l
u22-u24 (lam2-lamé) ;
[f1-£f2@0];
f1-f2 (var);
[ulls$1-ul4dsl] (tl-td);
[u21$1-u24s$1] (tl-t4);
$cdz#1%
f1 WITH £2 (covmz) ;
$cdz#2%
f1 WITH f£2 (covdz) ;

MODEL CONSTRAINT:

NEW(a ¢ e h);

var = a**2 + c**2 + e**2;
covmz = a**2 + c**2;
covdz = 0.5%a**2 + c**2;

h = a**2/(a**2 + c**2 + e*x*2);
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In this example, the model shown in the picture above is estimated. The
factors f1 and f2 represent a univariate variable for each member of the
twin pair. Monozygotic and dizygotic twins are considered in a two-
group twin model for factors with categorical factor indicators using
parameter constraints and maximum likelihood estimation. Parameter
constraints are used to represent the ACE model restrictions. The ACE
variance and covariance restrictions are placed on two factors instead of
two observed variables as in Example 7.28. The relationships between
the categorical factor indicators and the factors are logistic regressions.
Therefore, the factor model for each twin is a two-parameter logistic
Item Response Theory model (Muthén, Asparouhov, & Rebollo, 2006).
The monozygotic and dizygotic twin groups are represented by latent
classes with known class membership.

By specifying ALGORITHM=INTEGRATION, a maximum likelihood
estimator with robust standard errors using a numerical integration
algorithm will be used. Note that numerical integration becomes
increasingly more computationally demanding as the number of factors
and the sample size increase. In this example, two dimensions of
integration are used with 225 integration points. The ESTIMATOR
option can be used to select a different estimator.

In the overall model, the two BY statements specify that f1 is measured
by ull, ul2, ul3, and ul4 and that f2 is measured by u21, u22, u23, and
u24. The means of the factors are fixed at zero. In the class-specific
models, the threshold of the dz variable is fixed at 15 in class one and -
15 in class 2.
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In the MODEL command, labels are defined for nine parameters. The
list function can be used when assigning labels. The label lam2 is
assigned to the factor loadings for ul2 and u22; the label lam3 is
assigned to the factor loadings for ul3 and u23; and the label lam4 is
assigned to the factor loadings for ul4 and u24. Factor loadings with the
same label are held equal. The label t1 is assigned to the thresholds of
ull and u2l; the label t2 is assigned to the thresholds of ul2 and u22;
the label t3 is assigned to the thresholds of ul3 and u23; and the label t4
is assigned to the thresholds of ul4 and u24. Parameters with the same
label are held equal. The label covmz is assigned to the covariance
between f1 and f2 for the monozygotic twins and the label covdz is
assigned to the covariance between f1 and f2 for the dizygotic twins.

In the MODEL CONSTRAINT command, the NEW option is used to
assign labels to four parameters that are not in the analysis model: a, c,
e, and h. The three parameters a, ¢, and e are used to decompose the
variances and covariances of f1 and f2 into genetic and environmental
components. The parameter h does not impose restrictions on the model
parameters but is used to compute the heritability estimate and its
standard error. An explanation of the other commands can be found in
Examples 7.1 and 7.28.

EXAMPLE 7.30: CONTINUOUS-TIME SURVIVAL ANALYSIS
USING A COX REGRESSION MODEL TO ESTIMATE A
TREATMENT EFFECT

TITLE: this is an example of continuous-time
survival analysis using a Cox regression
model to estimate a treatment effect

DATA: FILE = ex7.30.dat;

VARIABLE: NAMES are t u x tcent class;
USEVARIABLES = t-tcent;

SURVIVAL = t;

TIMECENSORED = tcent;

CATEGORICAL = u;

CLASSES = c (2);

ANALYSIS: TYPE = MIXTURE;
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MODEL:
$OVERALLS%
t ON x;
Sc#l%
[uS1@15];
[tQO];
SCc#2%
[uS1@-15];
[tl:
OUTPUT : TECH1 LOGRANK;
PLOT: TYPE = PLOT2;

In this example, the continuous-time survival analysis model shown in
the picture above is estimated. The model is similar to Larsen (2004). A
treatment and a control group are analyzed as two known latent classes.
The baseline hazards are held equal across the classes and the treatment
effect is expressed as the intercept of the survival variable in the
treatment group. For applications of this model, see Muthén et al.
(2009).

The CATEGORICAL option is used to specify that the variable u is a
binary variable. This variable is a treatment dummy variable where zero
represents the control group and one represents the treatment group. In
this example, the categorical latent variable ¢ has two classes. In the
MODEL command, in the model for class 1, the threshold for u is fixed
at 15 so that the probability that u equals one is zero. By this
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specification, class 1 is the control group. In the model for class 2, the
threshold for u is fixed at -15 so that the probability that u equals one is
one. By this specification, class 2 is the treatment group. In the overall
model, the ON statement describes the Cox regression for the survival
variable t on the covariate x. In class 1, the intercept in the Cox
regression is fixed at zero. In class 2, it is free. This intercept represents
the treatment effect. The LOGRANK option of the OUTPUT command
provides a logrank test of the equality of the treatment and control
survival curves (Mantel, 1966). By specifying PLOT2 in the PLOT
command, the following plots are obtained:

e Kaplan-Meier curve

e Sample log cumulative hazard curve

e Estimated baseline hazard curve

e Estimated baseline survival curve

e Estimated log cumulative baseline curve

e Kaplan-Meier curve with estimated baseline survival curve

e Sample log cumulative hazard curve with estimated log
cumulative baseline curve

An explanation of the other commands can be found in Example 7.1.
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Examples: Mixture Modeling With Longitudinal Data

CHAPTER 8

EXAMPLES: MIXTURE
MODELING WITH
LONGITUDINAL DATA

Mixture modeling refers to modeling with categorical latent variables
that represent subpopulations where population membership is not
known but is inferred from the data. This is referred to as finite mixture
modeling in statistics (McLachlan & Peel, 2000). For an overview of
different mixture models, see Muthén (2008). In mixture modeling with
longitudinal data, unobserved heterogeneity in the development of an
outcome over time is captured by categorical and continuous latent
variables. The simplest longitudinal mixture model is latent class
growth analysis (LCGA). In LCGA, the mixture corresponds to
different latent trajectory classes. No variation across individuals is
allowed within classes (Nagin, 1999; Roeder, Lynch, & Nagin, 1999;
Kreuter & Muthén, 2008). Another longitudinal mixture model is the
growth mixture model (GMM; Muthén & Shedden, 1999; Muthén et al.,
2002; Muthén, 2004; Muthén & Asparouhov, 2009). In GMM, within-
class variation of individuals is allowed for the latent trajectory classes.
The within-class variation is represented by random effects, that is,
continuous latent variables, as in regular growth modeling. All of the
growth models discussed in Chapter 6 can be generalized to mixture
modeling. Yet another mixture model for analyzing longitudinal data is
latent transition analysis (LTA; Collins & Wugalter, 1992; Reboussin et
al., 1998), also referred to as hidden Markov modeling, where latent
class indicators are measured over time and individuals are allowed to
transition between latent classes. With discrete-time survival mixture
analysis (DTSMA; Muthén & Masyn, 2005), the repeated observed
outcomes represent event histories. Continuous-time survival mixture
modeling is also available (Asparouhov et al., 2006). For mixture
modeling with longitudinal data, observed outcome variables can be
continuous, censored, binary, ordered categorical (ordinal), counts, or
combinations of these variable types.

221



CHAPTER 8

222

All longitudinal mixture models can be estimated using the following
special features:

Single or multiple group analysis

Missing data

Complex survey data

Latent variable interactions and non-linear factor analysis using
maximum likelihood

Random slopes

Individually-varying times of observations

Linear and non-linear parameter constraints

Indirect effects including specific paths

Maximum likelihood estimation for all outcome types
Bootstrap standard errors and confidence intervals

Wald chi-square test of parameter equalities

Test of equality of means across latent classes using posterior
probability-based multiple imputations

For TYPE=MIXTURE, multiple group analysis is specified by using the
KNOWNCLASS option of the VARIABLE command. The default is to
estimate the model under missing data theory using all available data.
The LISTWISE option of the DATA command can be used to delete all
observations from the analysis that have missing values on one or more
of the analysis variables. Corrections to the standard errors and chi-
square test of model fit that take into account stratification, non-
independence of observations, and unequal probability of selection are
obtained by using the TYPE=COMPLEX option of the ANALYSIS
command in conjunction with the STRATIFICATION, CLUSTER, and
WEIGHT  options of the VARIABLE command. The
SUBPOPULATION option is used to select observations for an analysis
when a subpopulation (domain) is analyzed. Latent variable interactions
are specified by using the | symbol of the MODEL command in
conjunction with the XWITH option of the MODEL command. Random
slopes are specified by using the | symbol of the MODEL command in
conjunction with the ON option of the MODEL command. Individually-
varying times of observations are specified by using the | symbol of the
MODEL command in conjunction with the AT option of the MODEL
command and the TSCORES option of the VARIABLE command.
Linear and non-linear parameter constraints are specified by using the
MODEL CONSTRAINT command. Indirect effects are specified by
using the MODEL INDIRECT command. Maximum likelihood
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estimation is specified by using the ESTIMATOR option of the
ANALYSIS command. Bootstrap standard errors are obtained by using
the BOOTSTRAP option of the ANALYSIS command. Bootstrap
confidence intervals are obtained by using the BOOTSTRAP option of
the ANALYSIS command in conjunction with the CINTERVAL option
of the OUTPUT command. The MODEL TEST command is used to test
linear restrictions on the parameters in the MODEL and MODEL
CONSTRAINT commands using the Wald chi-square test. The
AUXILIARY option is used to test the equality of means across latent
classes using posterior probability-based multiple imputations.

Graphical displays of observed data and analysis results can be obtained
using the PLOT command in conjunction with a post-processing
graphics module. The PLOT command provides histograms,
scatterplots, plots of individual observed and estimated values, plots of
sample and estimated means and proportions/probabilities, and plots of
estimated probabilities for a categorical latent variable as a function of
its covariates. These are available for the total sample, by group, by
class, and adjusted for covariates. The PLOT command includes
a display showing a set of descriptive statistics for each variable. The
graphical displays can be edited and exported as a DIB, EMF, or JPEG
file. In addition, the data for each graphical display can be saved in an
external file for use by another graphics program.

Following is the set of GMM examples included in this chapter:

e 8.1: GMM for a continuous outcome using automatic starting values
and random starts

e 8.2: GMM for a continuous outcome using user-specified starting
values and random starts

e 8.3: GMM for a censored outcome using a censored model with
automatic starting values and random starts*

o 8.4: GMM for a categorical outcome using automatic starting values
and random starts*

e 8.5: GMM for a count outcome using a zero-inflated Poisson model
and a negative binomial model with automatic starting values and
random starts*

o 8.6: GMM with a categorical distal outcome using automatic
starting values and random starts

o 8.7: A sequential process GMM for continuous outcomes with two
categorical latent variables
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o 8.8: GMM with known classes (multiple group analysis)
Following is the set of LCGA examples included in this chapter:

e 8.9: LCGA for a binary outcome

e 8.10: LCGA for a three-category outcome

e 8.11: LCGA for a count outcome using a zero-inflated Poisson
model

Following is the set of hidden Markov and LTA examples included in
this chapter:

o 8.12: Hidden Markov model with four time points

e 8.13: LTA for two time points with a binary covariate influencing
the latent transition probabilities

e 8.14: LTA for two time points with a continuous covariate
influencing the latent transition probabilities

o 8.15: Mover-stayer LTA for three time points using a probability
parameterization

Following are the discrete-time and continuous-time survival mixture
analysis examples included in this chapter:

e 8.16: Discrete-time survival mixture analysis with survival
predicted by growth trajectory classes

e 8.17: Continuous-time survival mixture analysis using a Cox
regression model

* Example uses numerical integration in the estimation of the model.
This can be computationally demanding depending on the size of the
problem.
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EXAMPLE 8.1: GMM FOR A CONTINUOUS OUTCOME
USING AUTOMATIC STARTING VALUES AND RANDOM

STARTS

TITLE:

DATA:

MODEL:

OUTPUT:

VARIABLE:

ANALYSIS:

this is an example of a GMM for a

continuous outcome using automatic
starting values and random starts

FILE IS ex8.1.dat;

NAMES ARE yl-v4 x;

CLASSES = ¢ (2);

TYPE = MIXTURE;

STARTS = 40 8;

$OVERALLS

i s | yl@0 y2@1 y3@2 y4@3;
i s ON x;

c ON x;

TECH1 TECHS;

In the example above, the growth mixture model (GMM) for a
continuous outcome shown in the picture above is estimated. Because ¢
is a categorical latent variable, the interpretation of the picture is not the
same as for models with continuous latent variables. The arrows from ¢
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to the growth factors i and s indicate that the intercepts in the regressions
of the growth factors on x vary across the classes of c. This corresponds
to the regressions of i and s on a set of dummy variables representing the
categories of c. The arrow from x to c represents the multinomial
logistic regression of ¢ on x. GMM is discussed in Muthén and Shedden
(1999), Muthén (2004), and Muthén and Asparouhov (2009).

TITLE: this is an example of a growth mixture
model for a continuous outcome

The TITLE command is used to provide a title for the analysis. The title
is printed in the output just before the Summary of Analysis.

DATA: FILE IS ex8.l.dat;

The DATA command is used to provide information about the data set
to be analyzed. The FILE option is used to specify the name of the file
that contains the data to be analyzed, ex8.1.dat. Because the data set is
in free format, the default, a FORMAT statement is not required.

VARIABLIE: NAMES ARE yl-y4 x;
CLASSES = c (2);

The VARIABLE command is used to provide information about the
variables in the data set to be analyzed. The NAMES option is used to
assign names to the variables in the data set. The data set in this
example contains five variables: yl1, y2, y3, y4, and X. Note that the
hyphen can be used as a convenience feature in order to generate a list of
names. The CLASSES option is used to assign names to the categorical
latent variables in the model and to specify the number of latent classes
in the model for each categorical latent variable. In the example above,
there is one categorical latent variable c that has two latent classes.

ANALYSIS: TYPE = MIXTURE;
STARTS = 40 8;

The ANALYSIS command is used to describe the technical details of the
analysis. The TYPE option is used to describe the type of analysis that
is to be performed. By selecting MIXTURE, a mixture model will be
estimated.
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When TYPE=MIXTURE is specified, either user-specified or automatic
starting values are used to create randomly perturbed sets of starting
values for all parameters in the model except variances and covariances.
In this example, the random perturbations are based on automatic
starting values. Maximum likelihood optimization is done in two stages.
In the initial stage, 20 random sets of starting values are generated. An
optimization is carried out for 10 iterations using each of the 20 random
sets of starting values. The ending values from the 4 optimizations with
the highest loglikelihoods are used as the starting values in the final
stage optimizations which is carried out using the default optimization
settings for TYPE=MIXTURE. A more thorough investigation of
multiple solutions can be carried out using the STARTS and
STITERATIONS options of the ANALYSIS command. In this example,
40 initial stage random sets of starting values are used and 8 final stage
optimizations are carried out.

MODEL:
$SOVERALLS
i s | yl@0 y2@l y3@2 y4@3;
i s ON x;
c ON x;

The MODEL command is used to describe the model to be estimated.
For mixture models, there is an overall model designated by the label
%OVERALL%. The overall model describes the part of the model that
is in common for all latent classes. The | symbol is used to name and
define the intercept and slope growth factors in a growth model. The
names i and s on the left-hand side of the | symbol are the names of the
intercept and slope growth factors, respectively. The statement on the
right-hand side of the | symbol specifies the outcome and the time scores
for the growth model. The time scores for the slope growth factor are
fixed at 0, 1, 2, and 3 to define a linear growth model with equidistant
time points. The zero time score for the slope growth factor at time
point one defines the intercept growth factor as an initial status factor.
The coefficients of the intercept growth factor are fixed at one as part of
the growth model parameterization. The residual variances of the
outcome variables are estimated and allowed to be different across time
and the residuals are not correlated as the default.

In the parameterization of the growth model shown here, the intercepts

of the outcome variable at the four time points are fixed at zero as the
default. The intercepts and residual variances of the growth factors are
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estimated as the default, and the growth factor residual covariance is
estimated as the default because the growth factors do not influence any
variable in the model except their own indicators. The intercepts of the
growth factors are not held equal across classes as the default. The
residual variances and residual covariance of the growth factors are held
equal across classes as the default.

The first ON statement describes the linear regressions of the intercept
and slope growth factors on the covariate X. The second ON statement
describes the multinomial logistic regression of the categorical latent
variable ¢ on the covariate x when comparing class 1 to class 2. The
intercept of this regression is estimated as the default. The default
estimator for this type of analysis is maximum likelihood with robust
standard errors. The ESTIMATOR option of the ANALYSIS command
can be used to select a different estimator.

Following is an alternative specification of the multinomial logistic
regression of ¢ on the covariate x:

c#l ON x;

where c#1 refers to the first class of ¢c. The classes of a categorical latent
variable are referred to by adding to the name of the categorical latent
variable the number sign (#) followed by the number of the class. This
alternative specification allows individual parameters to be referred to in
the MODEL command for the purpose of giving starting values or
placing restrictions.

OUTPUT: TECH1 TECHS;

The OUTPUT command is used to request additional output not
included as the default. The TECHL1 option is used to request the arrays
containing parameter specifications and starting values for all free
parameters in the model. The TECHS8 option is used to request that the
optimization history in estimating the model be printed in the output.
TECHS is printed to the screen during the computations as the default.
TECHS screen printing is useful for determining how long the analysis
takes.
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EXAMPLE 8.2: GMM FOR A CONTINUOUS OUTCOME
USING USER-SPECIFIED STARTING VALUES AND RANDOM

STARTS

TITLE: this is an example of a GMM for a
continuous outcome using user-specified
starting values and random starts

DATA: FILE IS ex8.2.dat;

VARIABLE: NAMES ARE yl-vy4 x;

CLASSES = ¢ (2);

ANALYSIS: TYPE = MIXTURE;

MODEL:
$OVERALLS
i s | yl@0 y2@1 y3@2 y4@3;

i s ON x;

c ON x;
Sc#lS

[1%1 s%.5]¢
SC#2%

[1*3 s*1];

OUTPUT : TECH1 TECHS;

The difference between this example and Example 8.1 is that user-
specified starting values are used instead of automatic starting values. In
the MODEL command, user-specified starting values are given for the
intercepts of the intercept and slope growth factors. Intercepts are
referred to using brackets statements. The asterisk (*) is used to assign a
starting value for a parameter. It is placed after the parameter with the
starting value following it. In class 1, a starting value of 1 is given for
the intercept growth factor and a starting value of .5 is given for the
slope growth factor. In class 2, a starting value of 3 is given for the
intercept growth factor and a starting value of 1 is given for the slope
growth factor. The default estimator for this type of analysis is
maximum likelihood with robust standard errors. The ESTIMATOR
option of the ANALYSIS command can be used to select a different
estimator. An explanation of the other commands can be found in
Example 8.1.
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EXAMPLE 8.3: GMM FOR A CENSORED OUTCOME USING A
CENSORED MODEL WITH AUTOMATIC STARTING
VALUES AND RANDOM STARTS

TITLE: this is an example of a GMM for a censored
outcome using a censored model with
automatic starting values and random
starts

DATA: FILE IS ex8.3.dat;

VARIABLE: NAMES ARE yl-vy4 x;

CLASSES = ¢ (2);
CENSORED = yl-y4 (b);

ANALYSIS: TYPE = MIXTURE;

ALGORITHM = INTEGRATION;

MODEL:
$SOVERALL%
i s | yl@0 y2@1 y3@2 y4@3;
i s ON x;
c ON x;
OUTPUT: TECH1 TECHS;

The difference between this example and Example 8.1 is that the
outcome variable is a censored variable instead of a continuous variable.
The CENSORED option is used to specify which dependent variables
are treated as censored variables in the model and its estimation, whether
they are censored from above or below, and whether a censored or
censored-inflated model will be estimated. In the example above, y1, y2,
y3, and y4 are censored variables. They represent the outcome variable
measured at four equidistant occasions. The b in parentheses following
y1-y4 indicates that y1, y2, y3, and y4 are censored from below, that is,
have floor effects, and that the model is a censored regression model.
The censoring limit is determined from the data.

By specifying ALGORITHM=INTEGRATION, a maximum likelihood
estimator with robust standard errors using a numerical integration
algorithm will be used. Note that numerical integration becomes
increasingly more computationally demanding as the number of factors
and the sample size increase. In this example, two dimensions of
integration are used with a total of 225 integration points. The
ESTIMATOR option of the ANALYSIS command can be used to select
a different estimator.
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In the parameterization of the growth model shown here, the intercepts
of the outcome variable at the four time points are fixed at zero as the
default. The intercepts and residual variances of the growth factors are
estimated as the default, and the growth factor residual covariance is
estimated as the default because the growth factors do not influence any
variable in the model except their own indicators. The intercepts of the
growth factors are not held equal across classes as the default. The
residual variances and residual covariance of the growth factors are held
equal across classes as the default. An explanation of the other
commands can be found in Example 8.1.

EXAMPLE 8.4: GMM FOR A CATEGORICAL OUTCOME
USING AUTOMATIC STARTING VALUES AND RANDOM

STARTS

TITLE: this is an example of a GMM for a
categorical outcome using automatic
starting values and random starts

DATA: FILE IS ex8.4.dat;

VARIABLE: NAMES ARE ul-u4d x;

CLASSES = ¢ (2);
CATEGORICAL = ul-u4;

ANALYSIS: TYPE = MIXTURE;

ALGORITHM = INTEGRATION;

MODEL:
$SOVERALL%
i s | ul@0 u2@l u3@2 u4@3;
i s ON x;
c ON x;
OUTPUT: TECH1 TECHS;

The difference between this example and Example 8.1 is that the
outcome variable is a binary or ordered categorical (ordinal) variable
instead of a continuous variable. The CATEGORICAL option is used to
specify which dependent variables are treated as binary or ordered
categorical (ordinal) variables in the model and its estimation. In the
example above, ul, u2, u3, and u4 are binary or ordered categorical
variables. They represent the outcome variable measured at four
equidistant occasions.

By specifying ALGORITHM=INTEGRATION, a maximum likelihood
estimator with robust standard errors using a numerical integration
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algorithm will be used. Note that numerical integration becomes
increasingly more computationally demanding as the number of factors
and the sample size increase. In this example, two dimensions of
integration are used with a total of 225 integration points. The
ESTIMATOR option of the ANALYSIS command can be used to select
a different estimator.

In the parameterization of the growth model shown here, the thresholds
of the outcome variable at the four time points are held equal as the
default. The intercept of the intercept growth factor is fixed at zero in
the last class and is free to be estimated in the other classes. The
intercept of the slope growth factor and the residual variances of the
intercept and slope growth factors are estimated as the default, and the
growth factor residual covariance is estimated as the default because the
growth factors do not influence any variable in the model except their
own indicators. The intercepts of the growth factors are not held equal
across classes as the default. The residual variances and residual
covariance of the growth factors are held equal across classes as the
default. An explanation of the other commands can be found in
Example 8.1.

EXAMPLE 8.5: GMM FOR A COUNT OUTCOME USING A
ZERO-INFLATED POISSON MODEL AND A NEGATIVE
BINOMIAL MODEL WITH AUTOMATIC STARTING VALUES
AND RANDOM STARTS
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TITLE: this is an example of a GMM for a count
outcome using a zero-inflated Poisson
model with automatic starting values and
random starts

DATA: FILE IS ex8.5a.dat;

VARIABLE: NAMES ARE ul-u8 x;

CLASSES = ¢ (2);
COUNT ARE ul-u8 (i)

ANALYSIS: TYPE = MIXTURE;

STARTS = 40 8;
STITERATIONS = 20;
ALGORITHM = INTEGRATION;
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MODEL:
SOVERALL%
i s g | ul@0 w2@.1 u3@.2 ud4@.3 ub@.4 u6@.5
u7@.6 u8R.7;
ii si gi | ul#1@0 u2#1Q@.1 u3#1Q@.2 u4d#1@.3
ub#1Q@.4 u6#1Q@.5 u7#1Q@.6 u8#1Q@.7;
s—-qi@0;
i s ON x;
c ON x;
OUTPUT: TECH1 TECHS;

The difference between this example and Example 8.1 is that the
outcome variable is a count variable instead of a continuous variable. In
addition, the outcome is measured at eight occasions instead of four and
a quadratic rather than a linear growth model is estimated. The COUNT
option is used to specify which dependent variables are treated as count
variables in the model and its estimation and the type of model that will
be estimated. In the first part of this example a zero-inflated Poisson
model is estimated. In the example above, ul, u2, u3, u4, u5, ué, u7, and
u8 are count variables. They represent the outcome variable measured at
eight equidistant occasions. The i in parentheses following ul-u8
indicates that a zero-inflated Poisson model will be estimated.

A more thorough investigation of multiple solutions can be carried out
using the STARTS and STITERATIONS options of the ANALYSIS
command. In this example, 40 initial stage random sets of starting
values are used and 8 final stage optimizations are carried out. In the
initial stage analyses, 20 iterations are used instead of the default of 10
iterations. By specifying ALGORITHM=INTEGRATION, a maximum
likelihood estimator with robust standard errors using a numerical
integration algorithm will be used. Note that numerical integration
becomes increasingly more computationally demanding as the number of
factors and the sample size increase. In this example, one dimension of
integration is used with 15 integration points. The ESTIMATOR option
of the ANALYSIS command can be used to select a different estimator.

With a zero-inflated Poisson model, two growth models are estimated.
The first | statement describes the growth model for the count part of the
outcome for individuals who are able to assume values of zero and
above. The second | statement describes the growth model for the
inflation part of the outcome, the probability of being unable to assume
any value except zero. The binary latent inflation variable is referred to
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by adding to the name of the count variable the number sign (#) followed
by the number 1.

In the parameterization of the growth model for the count part of the
outcome, the intercepts of the outcome variable at the eight time points
are fixed at zero as the default. The intercepts and residual variances of
the growth factors are estimated as the default, and the growth factor
residual covariances are estimated as the default because the growth
factors do not influence any variable in the model except their own
indicators. The intercepts of the growth factors are not held equal across
classes as the default. The residual variances and residual covariances
of the growth factors are held equal across classes as the default. In this
example, the variances of the slope growth factors s and q are fixed at
zero. This implies that the covariances between i, s, and q are fixed at
zero. Only the variance of the intercept growth factor i is estimated.

In the parameterization of the growth model for the inflation part of the
outcome, the intercepts of the outcome variable at the eight time points
are held equal as the default. The intercept of the intercept growth factor
is fixed at zero in all classes as the default. The intercept of the slope
growth factor and the residual variances of the intercept and slope
growth factors are estimated as the default, and the growth factor
residual covariances are estimated as the default because the growth
factors do not influence any variable in the model except their own
indicators. The intercept of the slope growth factor, the residual
variances of the growth factors, and residual covariance of the growth
factors are held equal across classes as the default. These defaults can
be overridden, but freeing too many parameters in the inflation part of
the model can lead to convergence problems. In this example, the
variances of the intercept and slope growth factors are fixed at zero.
This implies that the covariances between ii, si, and qi are fixed at zero.
An explanation of the other commands can be found in Example 8.1.

TITLE: this is an example of a GMM for a count
outcome using a negative binomial model
with automatic starting values and random
starts

DATA: FILE IS ex8.5b.dat;

VARIABLE: NAMES ARE ul-u8 x;

CLASSES = c(2);
COUNT = ul-u8 (nb) ;

ANALYSIS: TYPE = MIXTURE;
ALGORITHM = INTEGRATION;
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MODEL:
$OVERALL%
i s g | ul@0 w2@.1 u3@.2 u4@.3 ub@.4 u6@.5
u7@.6 u8r.7;
s-q@o0;
i s ON x;
c ON x;
OUTPUT: TECH1 TECHS;

The difference between this part of the example and the first part is that
a growth mixture model (GMM) for a count outcome using a negative
binomial model is estimated instead of a zero-inflated Poisson model.
The negative binomial model estimates a dispersion parameter for each
of the outcomes (Long, 1997; Hilbe, 2011).

The COUNT option is used to specify which dependent variables are
treated as count variables in the model and its estimation and which type
of model is estimated. The nb in parentheses following ul-u8 indicates
that a negative binomial model will be estimated. The dispersion
parameters for each of the outcomes are held equal across classes as the
default. The dispersion parameters can be referred to using the names of
the count variables.  An explanation of the other commands can be
found in the first part of this example and in Example 8.1.

EXAMPLE 8.6: GMM WITH A CATEGORICAL DISTAL
OUTCOME USING AUTOMATIC STARTING VALUES AND
RANDOM STARTS

TITLE: this is an example of a GMM with a
categorical distal outcome using automatic
starting values and random starts

DATA: FILE IS ex8.6.dat;

VARIABLE: NAMES ARE yl-y4 u x;

CLASSES = c(2);
CATEGORICAL = u;
ANALYSIS: TYPE = MIXTURE;

MODEL:
$SOVERALL%
i s | yl@0 y2@1 y3@2 y4@3;
i s ON x;
c ON x;
OUTPUT: TECH1 TECHS;
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The difference between this example and Example 8.1 is that a binary or
ordered categorical (ordinal) distal outcome has been added to the model
as shown in the picture above. The distal outcome u is regressed on the
categorical latent variable ¢ using logistic regression.  This is
represented as the thresholds of u varying across classes.

The CATEGORICAL option is used to specify which dependent
variables are treated as binary or ordered categorical (ordinal) variables
in the model and its estimation. In the example above, u is a binary or
ordered categorical variable. The program determines the number of
categories for each indicator. The default is that the thresholds of u are
estimated and vary across the latent classes. Because automatic starting
values are used, it is not necessary to include these class-specific
statements in the model command. The default estimator for this type of
analysis is maximum likelihood with robust standard errors. The
ESTIMATOR option of the ANALYSIS command can be used to select
a different estimator. An explanation of the other commands can be
found in Example 8.1.
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EXAMPLE 8.7: A SEQUENTIAL PROCESS GMM FOR
CONTINUOUS OUTCOMES WITH TWO CATEGORICAL

LATENT VARIABLES

TITLE:

DATA:

MODEL:

OUTPUT:

VARIABLE:

ANALYSIS:

MODEL cl:

MODEL c2:

this is an example of a sequential
process GMM for continuous outcomes with
two categorical latent variables

FILE IS ex8.7.dat;

NAMES ARE yl-y8;

CLASSES = cl (3) c2 (2);

TYPE = MIXTURE;

$OVERALL%
il sl | yl@0 y2@1 y3@2 y4@3;
12 s2 | y5@0 y6@l y7@2 y8@3;
c2 ON cl;

Scl#l%
[i1 sl11;

scl#2%
[i1*1 s11;

scl#3%
[11*2 s1];

SC2#1%
[12 s2];

SC2#2%
[12%=1 2] 3

TECH1 TECHS;
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In this example, the sequential process growth mixture model for
continuous outcomes shown in the picture above is estimated. The latent
classes of the second process are related to the latent classes of the first
process. This is a type of latent transition analysis. Latent transition
analysis is shown in Examples 8.12, 8.13, and 8.14.

The | statements in the overall model are used to name and define the
intercept and slope growth factors in the growth models. In the first |
statement, the names i1 and s1 on the left-hand side of the | symbol are
the names of the intercept and slope growth factors, respectively. In the
second | statement, the names i2 and s2 on the left-hand side of the |
symbol are the names of the intercept and slope growth factors,
respectively. In both | statements, the values on the right-hand side of
the | symbol are the time scores for the slope growth factor. For both
growth processes, the time scores of the slope growth factors are fixed at
0, 1, 2, and 3 to define linear growth models with equidistant time
points. The zero time scores for the slope growth factors at time point
one define the intercept growth factors as initial status factors. The
coefficients of the intercept growth factors il and i2 are fixed at one as
part of the growth model parameterization. In the parameterization of
the growth model shown here, the means of the outcome variables at the
four time points are fixed at zero as the default. The intercept and slope
growth factor means are estimated as the default. The variances of the
growth factors are also estimated as the default. The growth factors are
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correlated as the default because they are independent (exogenous)
variables. The means of the growth factors are not held equal across
classes as the default. The variances and covariances of the growth
factors are held equal across classes as the default.

In the overall model, the ON statement describes the probabilities of
transitioning from a class of the categorical latent variable cl to a class
of the categorical latent variable c2. The ON statement describes the
multinomial logistic regression of ¢2 on c¢1 when comparing class 1 of c2
to class 2 of c2. In this multinomial logistic regression, coefficients
corresponding to the last class of each of the categorical latent variables
are fixed at zero. The parameterization of models with more than one
categorical latent variable is discussed in Chapter 14. Because cl has
three classes and c2 has two classes, two regression coefficients are
estimated. The means of cl and the intercepts of ¢2 are estimated as the
default.

When there are multiple categorical latent variables, each one has its
own MODEL command. The MODEL command for each latent
variable is specified by MODEL followed by the name of the latent
variable. For each categorical latent variable, the part of the model that
differs for each class is specified by a label that consists of the
categorical latent variable followed by the number sign followed by the
class number. In the example above, the label %c1#1% refers to the part
of the model for class one of the categorical latent variable c1 that
differs from the overall model. The label %c2#1% refers to the part of
the model for class one of the categorical latent variable c2 that differs
from the overall model. The class-specific part of the model for each
categorical latent variable specifies that the means of the intercept and
slope growth factors are free to be estimated for each class. The default
estimator for this type of analysis is maximum likelihood with robust
standard errors. The ESTIMATOR option of the ANALYSIS command
can be used to select a different estimator. An explanation of the other
commands can be found in Example 8.1.

Following is an alternative specification of the multinomial logistic
regression of c2 on cl:

c2#1 ON cl1#1 cl1#2;
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where c2#1 refers to the first class of c2, c1#1 refers to the first class of
cl, and cl1#2 refers to the second class of cl.
categorical latent variable are referred to by adding to the name of the
categorical latent variable the number sign (#) followed by the number
of the class. This alternative specification allows individual parameters
to be referred to in the MODEL command for the purpose of giving

starting values or placing restrictions.

EXAMPLE 8.8: GMM WITH KNOWN CLASSES (MULTIPLE

GROUP ANALYSIS)

TITLE:

DATA:

MODEL:

OUTPUT:

VARIABLE:

ANALYSIS:

this is an example of GMM with known
classes (multiple group analysis)
FILE IS ex8.8.dat;

NAMES ARE g yl-v4 x;

USEVARIABLES ARE yl-vy4 x;

CLASSES = cg (2) c (2);

KNOWNCLASS = cg (g =0 g =1);

TYPE = MIXTURE;

$OVERALLS

i s | yl@0 y2@1 y3@2 y4@3;
i s ON x;

c ON cg x;
scg#l.c#1%
[1%2 s*1]¢
scg#l.c#2%
[i*0 s*01];
scg#2.c#1%
[1%3 s%1.5]¢
scg#2.c#2%
[1*1 s%.5]¢
TECH1 TECHS;
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The difference between this example and Example 8.1 is that this
analysis includes a categorical latent variable for which class
membership is known resulting in a multiple group growth mixture
model. The CLASSES option is used to assign names to the categorical
latent variables in the model and to specify the number of latent classes
in the model for each categorical latent variable. In the example above,
there are two categorical latent variables cg and c. Both categorical
latent variables have two latent classes. The KNOWNCLASS option is
used for multiple group analysis with TYPE=MIXTURE to identify the
categorical latent variable for which latent class membership is known
and is equal to observed groups in the sample. The KNOWNCLASS
option identifies cg as the categorical latent variable for which class
membership is known. The information in parentheses following the
categorical latent variable name defines the known classes using an
observed variable. In this example, the observed variable g is used to
define the known classes. The first class consists of individuals with the
value 0 on the variable g. The second class consists of individuals with
the value 1 on the variable g.

In the overall model, the second ON statement describes the multinomial
logistic regression of the categorical latent variable ¢ on the known class
variable cg and the covariate x. This allows the class probabilities to
vary across the observed groups in the sample. In the four class-specific
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parts of the model, starting values are given for the growth factor
intercepts. The four classes correspond to a combination of the classes
of cg and c. They are referred to by combining the class labels using a
period (.). For example, the combination of class 1 of cg and class 1 of ¢
is referred to as cg#l.c#1. The default estimator for this type of analysis
is maximum likelihood with robust standard errors. The ESTIMATOR
option of the ANALYSIS command can be used to select a different
estimator. An explanation of the other commands can be found in
Example 8.1.

EXAMPLE 8.9: LCGA FOR A BINARY OUTCOME
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TITLE: this is an example of a LCGA for a binary
outcome

DATA: FILE IS ex8.9.dat;

VARIABILE: NAMES ARE ul-u4;

CLASSES = ¢ (2):;
CATEGORICAL = ul-u4;

ANALYSIS: TYPE = MIXTURE;
MODEL:
SOVERALL%
i s | ul@0 u2@l u3@2 u4@3;
OUTPUT: TECH1 TECHS;
ul u2 u3 u4

&~z
ORO
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The difference between this example and Example 8.4 is that a LCGA
for a binary outcome as shown in the picture above is estimated instead
of a GMM. The difference between these two models is that GMM
allows within class variability and LCGA does not (Kreuter & Muthén,
2008; Muthén, 2004; Muthén & Asparouhov, 2009).

When TYPE=MIXTURE without ALGORITHM=INTEGRATION is
selected, a LCGA is carried out. In the parameterization of the growth
model shown here, the thresholds of the outcome variable at the four
time points are held equal as the default. The intercept growth factor
mean is fixed at zero in the last class and estimated in the other classes.
The slope growth factor mean is estimated as the default in all classes.
The variances of the growth factors are fixed at zero as the default
without ALGORITHM=INTEGRATION. Because of this, the growth
factor covariance is fixed at zero. The default estimator for this type of
analysis is maximum likelihood with robust standard errors. The
ESTIMATOR option of the ANALYSIS command can be used to select
a different estimator. An explanation of the other commands can be
found in Examples 8.1 and 8.4.

EXAMPLE 8.10: LCGA FOR A THREE-CATEGORY

OUTCOME

TITLE: this is an example of a LCGA for a three-
category outcome
DATA: FILE IS ex8.10.dat;

VARIABLE: NAMES ARE ul-u4;
CLASSES = c(2);
CATEGORICAL = ul-u4;
ANALYSIS: TYPE = MIXTURE;
MODEL:
$SOVERALL%
i s | uwl@0 u2@1 u3@2 u4@3;
! [ul$l-u4s$1*-.51 (1);
! [ul$2-u4ds$2* .51 (2);
! Sc#lS
! Ll S]] 5
! SCc#2%
! [1@0 s*0];
OUTPUT: TECH1 TECHS;
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The difference between this example and Example 8.9 is that the
outcome variable is an ordered categorical (ordinal) variable instead of a
binary variable. Note that the statements that are commented out are not
necessary. This results in an input identical to Example 8.9. The
statements are shown to illustrate how starting values can be given for
the thresholds and growth factor means in the model if this is needed.
Because the outcome is a three-category variable, it has two thresholds.
An explanation of the other commands can be found in Examples 8.1,
8.4 and 8.9.

EXAMPLE 8.11: LCGA FOR A COUNT OUTCOME USING A
ZERO-INFLATED POISSON MODEL
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TITLE: this is an example of a LCGA for a count
outcome using a zero-inflated Poisson
model

DATA: FILE IS ex8.1ll.dat;

VARIABLE: NAMES ARE ul-u4;
COUNT = ul-ud4 (1);
CLASSES = ¢ (2);

ANALYSIS: TYPE = MIXTURE;

MODEL:

$SOVERALL%

i s | ul@0 u2@l u3@2 u4@3;

ii si | ul#1@0 u2#1@1 u3#1@2 ud#1@3;
OUTPUT: TECH1 TECHS;

The difference between this example and Example 8.9 is that the
outcome variable is a count variable instead of a continuous variable.
The COUNT option is used to specify which dependent variables are
treated as count variables in the model and its estimation and whether a
Poisson or zero-inflated Poisson model will be estimated. In the
example above, ul, u2, u3, and u4 are count variables and a zero-inflated
Poisson model is used. The count variables represent the outcome
measured at four equidistant occasions.

With a zero-inflated Poisson model, two growth models are estimated.
The first | statement describes the growth model for the count part of the
outcome for individuals who are able to assume values of zero and
above. The second | statement describes the growth model for the
inflation part of the outcome, the probability of being unable to assume
any value except zero. The binary latent inflation variable is referred to
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by adding to the name of the count variable the number sign (#) followed
by the number 1.

In the parameterization of the growth model for the count part of the
outcome, the intercepts of the outcome variable at the four time points
are fixed at zero as the default. The means of the growth factors are
estimated as the default. The variances of the growth factors are fixed
at zero. Because of this, the growth factor covariance is fixed at zero as
the default. The means of the growth factors are not held equal across
classes as the default.

In the parameterization of the growth model for the inflation part of the
outcome, the intercepts of the outcome variable at the four time points
are held equal as the default. The mean of the intercept growth factor is
fixed at zero in all classes as the default. The mean of the slope growth
factor is estimated and held equal across classes as the default. These
defaults can be overridden, but freeing too many parameters in the
inflation part of the model can lead to convergence problems. The
variances of the growth factors are fixed at zero. Because of this, the
growth factor covariance is fixed at zero. The default estimator for this
type of analysis is maximum likelihood with robust standard errors. The
ESTIMATOR option of the ANALYSIS command can be used to select
a different estimator. An explanation of the other commands can be
found in Examples 8.1 and 8.9.

EXAMPLE 8.12: HIDDEN MARKOV MODEL WITH FOUR

TIME POINTS

TITLE: this is an example of a hidden Markov
model with four time points
DATA: FILE IS ex8.12.dat;

VARIABLE: NAMES ARE ul-u4;

CATEGORICAL = ul-u4;

CLASSES = cl(2) c2(2) c3(2) c4(2);
ANALYSIS: TYPE = MIXTURE;
MODEL:

$SOVERALL%

[c2#1-c4#1] (1) ;

c4 ON c3 (2);

c3 ON c2 (2);

c2 ON cl (2);
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MODEL cl:
Scl#1%
[ulsl] (3);
Scl#2%
[ulsl] (4);
MODEL c2:
Sc2#1%
[u2s1] (3);
$Cc2#2%
[u251] (4);
MODEL c3:
Sc3#1%
[u3s1] (3);
SCc3#2%
[u3s1] (4);
MODEL c4:
Scd#1%
[uds1l] (3);
Scl#2%
[udsl] (4);
OUTPUT: TECH1 TECHS;

ul u2 u3 u4

In this example, the hidden Markov model for a single binary outcome
measured at four time points shown in the picture above is estimated.
Although each categorical latent variable has only one latent class
indicator, this model allows the estimation of measurement error by
allowing latent class membership and observed response to disagree.
This is a first-order Markov process where the transition matrices are
specified to be equal over time (Langeheine & van de Pol, 2002). The
parameterization of this model is described in Chapter 14.

The CLASSES option is used to assign names to the categorical latent
variables in the model and to specify the number of latent classes in the
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model for each categorical latent variable. In the example above, there
are four categorical latent variables cl, c2, c3, and c4. All of the
categorical latent variables have two latent classes. In the overall model,
the transition matrices are held equal over time. This is done by placing
(1) after the bracket statement for the intercepts of c2, ¢3, and c4 and by
placing (2) after each of the ON statements that represent the first-order
Markov relationships. When a model has more than one categorical
latent variable, MODEL followed by a label is used to describe the
analysis model for each categorical latent variable. Labels are defined
by using the names of the categorical latent variables. The class-specific
equalities (3) and (4) represent measurement invariance across time. An
explanation of the other commands can be found in Example 8.1.

EXAMPLE 8.13: LTA FOR TWO TIME POINTS WITH A
BINARY COVARIATE INFLUENCING THE LATENT
TRANSITION PROBABILITIES

TITLE: this is an example of a LTA for two time
points with a binary covariate influencing
the latent transition probabilities

DATA: FILE = ex8.13.dat;

VARIABLE: NAMES = ull-ulb5 u2l-u25 g;

CATEGORICAL = ull-ulb5 u2l-u25;
CLASSES = cg (2) cl (3) c2 (3);
KNOWNCLASS = cg (g = 0 g = 1);

ANALYSIS: TYPE = MIXTURE;

MODEL: $OVERALLS%
cl c2 ON cg;

MODEL cg: %cg#l%
c2 ON cl;
sCag#2%
c2 ON cl;

MODEL cl: %cl#1%

(1

(2);

(3) s

(4

(5

—_ — — — —
Ne Ne Ne Ne No

6
7
8
9
1

~— Ne Ne N N

(6)
(7)
(8)
(9)
(10

’
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MODEL c2:

OUTPUT:

TECH1 TECH8 TECH15;

ull

ul2

ul3

ul4

uls

u2l

w2 || w3 || wa | s
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In this example, the latent transition analysis (LTA; Mooijaart, 1998;
Reboussin et al., 1998; Kaplan, 2007; Nylund, 2007; Collins & Lanza,
2010) model for two time points with a binary covariate influencing the
latent transition probabilities shown in the picture above is estimated.
The same five latent class indicators are measured at two time points.
The model assumes measurement invariance across time for the five
latent class indicators. The parameterization of this model is described
in Chapter 14.

The KNOWNCLASS option is used for multiple group analysis with
TYPE=MIXTURE to identify the categorical latent variable for which
latent class membership is known and is equal to observed groups in the
sample. The KNOWNCLASS option identifies cg as the categorical
latent variable for which class membership is known. The information
in parentheses following the categorical latent variable name defines the
known classes using an observed variable. In this example, the observed
variable g is used to define the known classes. The first class consists of
individuals with the value 0 on the variable g. The second class consists
of individuals with the value 1 on the variable g.

In the overall model, the first ON statement describes the multinomial
logistic regression of the categorical latent variables c1 and c2 on the
known class variable cg. This allows the class probabilities to vary
across the observed groups in the sample.

When there are multiple categorical latent variables, each one has its
own MODEL command. The MODEL command for each categorical
latent variable is specified by MODEL followed by the name of the
categorical latent variable. In this example, MODEL cg describes the
group-specific parameters of the regression of c2 on ¢1. This allows the
binary covariate to influence the latent transition probabilities. MODEL
cl describes the class-specific measurement parameters for variable c1
and MODEL c2 describes the class-specific measurement parameters for
variable c2. The model for each categorical latent variable that differs
for each class of that variable is specified by a label that consists of the
categorical latent variable name followed by the number sign followed
by the class number. For example, in the example above, the label
%c1#1% refers to class 1 of categorical latent variable c1.

In this example, the thresholds of the latent class indicators for a given
class are held equal for the two categorical latent variables. The (1-5),

249



CHAPTER 8

(6-10), and (11-15) following the bracket statements containing the
thresholds use the list function to assign equality labels to these
parameters. For example, the label 1 is assigned to the thresholds u11$1
and u21$1 which holds these thresholds equal over time.

The TECH15 option is used to obtain the transition probabilities for
each of the two known classes. The default estimator for this type of
analysis is maximum likelihood with robust standard errors. The
estimator option of the ANALYSIS command can be used to select a
different estimator. An explanation of the other commands can be found
in Example 8.1.

Following is the second part of the example that shows an alternative
parameterization. The PARAMETERIZATION option is used to select
a probability parameterization rather than a logit parameterization. This
allows latent transition probabilities to be expressed directly in terms of
probability parameters instead of via logit parameters. In the overall
model, only the ¢l on cg regression is specified, not the c2 on cg
regression. Other specifications are the same as in the first part of the
example.

ANALYSIS: TYPE = MIXTURE;
PARAMETERIZATION = PROBABILITY;
MODEL: $OVERALLS%
cl ON cg;
MODEL cg: %cg#l%
c2 ON cl;
sCcag#2%
c2 ON cl;

EXAMPLE 8.14: LTAFOR TWO TIME POINTSWITH A
CONTINUOUS COVARIATE INFLUENCING THE LATENT
TRANSITION PROBABILITIES
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TITLE: this is an example of a LTA for two time
points with a continuous covariate
influencing the latent transition
probabilities

DATA: FILE = ex8.14.dat;

VARIABLE: NAMES = ull-ulb5 u2l-u25 x;

CATEGORICAL = ull-ulb u2l-u25;
CLASSES = cl (3) c2 (3);
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ANALYSIS:

MODEL:

MODEL cl:

MODEL c2:

OUTPUT:

TYPE = MIXTURE;

PROCESSORS =
$OVERALLS%

cl ON x;

c2 ON cl;
$cl#1%
c2 ON x;
[ullsi]
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g s w N
—_—— — — —
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c2 ON x;
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c2 ON x;

R
O W N
S0 To So To <o

—_~ o~~~ —~
g w N
—_—— — — —
Ne Ne Ne Ne N

6
7
8
9
1

O~ — — —

(
(
(
(
(

~— Ne Ne N N

’

(
(
(
(

Ne Ne Ne N

1
1
1
1
u25s1] (1
TECH1 TECH

~

1)
2)
3)
4)
5)
8;

8;

251




CHAPTER 8

252

ull || ul2 || ul3 || ul4 || uls u2l || u22 || u23 || u24 || u2s

In this example, the latent transition analysis (LTA; Reboussin et al.,
1998; Kaplan, 2007; Nylund, 2007; Collins & Lanza, 2010) model for
two time points with a continuous covariate influencing the latent
transition probabilities shown in the picture above is estimated. The
same five latent class indicators are measured at two time points. The
model assumes measurement invariance across time for the five latent
class indicators. The parameterization of this model is described in
Chapter 14.

In the overall model, the first ON statement describes the multinomial
logistic regression of the categorical latent variable c1 on the continuous
covariate x. The second ON statement describes the multinomial logistic
regression of ¢c2 on c1. The multinomial logistic regression of c2 on the
continuous covariate x is specified in the class-specific parts of MODEL
cl. This follows parameterization 2 discussed in Muthén and
Asparouhov (2011). The class-specific regressions of ¢2 on x allow the
continuous covariate x to influence the latent transition probabilities.
The latent transition probabilities for different values of the covariates
can be computed by choosing LTA calculator from the Mplus menu of
the Mplus Editor.

When there are multiple categorical latent variables, each one has its
own MODEL command. The MODEL command for each categorical
latent variable is specified by MODEL followed by the name of the
categorical latent variable. MODEL c1 describes the class-specific
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multinomial logistic regression of c2 on x and the class-specific
measurement parameters for variable c1. MODEL c2 describes the
class-specific measurement parameters for variable c2. The model for
each categorical latent variable that differs for each class of that variable
is specified by a label that consists of the categorical latent variable
name followed by the number sign followed by the class number. For
example, in the example above, the label %c1#1% refers to class 1 of
categorical latent variable c1.

In this example, the thresholds of the latent class indicators for a given
class are held equal for the two categorical latent variables. The (1-5),
(6-10), and (11-15) following the bracket statements containing the
thresholds use the list function to assign equality labels to these
parameters. For example, the label 1 is assigned to the thresholds u11$1
and u21$1 which holds these thresholds equal over time. The default
estimator for this type of analysis is maximum likelihood with robust
standard errors. The estimator option of the ANALYSIS command can
be used to select a different estimator. An explanation of the other
commands can be found in Example 8.1.

EXAMPLE 8.15: MOVER-STAYER LTA FOR THREE TIME
POINTS USING A PROBABILITY PARAMETERIZATION

TITLE: this is an example of a mover-stayer LTA
for three time points using a probability
parameterization

DATA: FILE = ex8.15.dat;

VARIABLE: NAMES = ull-ulb5 u2l-u25 u31-u35;
CATEGORICAL = ull-ulb u2l-u25 u3l-u35;
CLASSES = c(2) cl(3) c2(3) c3(3);

ANALYSIS: TYPE = MIXTURE;

PARAMETERIZATION = PROBABILITY;
STARTS = 100 20;
PROCESSORS = 8;

MODEL: $OVERALLS
cl ON c;

MODEL c: sc#1l% !mover class
c2 ON cl;
c3 ON c2;
$c#2% ! stayer class
c2#1 ON cl#1@1l; c2#2 ON cl#1@O0;
c2#1 ON cl#2@0; c2#2 ON cl#2@1;
c2#1 ON cl#3@0; c2#2 ON cl#3@0;
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MODEL cl:

MODEL c2:

MODEL c3:

c3#1 ON c2#1@1; c3#2 ON c2#1Q0;
c3#1 ON c2#2Q@0; c3#2 ON c2#2@1;
c3#1 ON c2#3@Q@0; c3#2 ON c2#3Q0;
$cl#1%
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[u34$1]1 (9);
[u35%1] (10);

$c3#3%
[u31s$1] (11);
[u32$1] (12);
[u33s$1] (13);
[u343$1] (14);
[u35$1] (15);
OUTPUT : TECH1 TECH8 TECH15;
ull | - | uls w2l | - | u2s5 udl | - | u3ds

In this example, the mover-stayer (Langeheine & van de Pol, 2002)
latent transition analysis (LTA) for three time points using a probability
parameterization shown in the picture above is estimated. The same five
latent class indicators are measured at three time points. The model
assumes measurement invariance across time for the five latent class
indicators. The parameterization of this model is described in Chapter
14.

The PARAMETERIZATION option is used to select a probability
parameterization rather than a logit parameterization. This allows latent
transition probabilities to be expressed directly in terms of probability
parameters instead of via logit parameters. The alternative logit
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parameterization of mover-stayer LTA is described in the document
LTA With Movers-Stayers (see FAQ, www.statmodel.com).

In the overall model, the ON statement describes the multinomial
logistic regression of the categorical latent variable c1 on the mover-
stayer categorical latent variable c. The multinomial logistic regressions
of c2 on c1 and c3 on c2 are specified in the class-specific parts of
MODEL c.

When there are multiple categorical latent variables, each one has its
own MODEL command. The MODEL command for each categorical
latent variable is specified by MODEL followed by the name of the
categorical latent variable. MODEL c describes the class-specific
multinomial logistic regressions of c2 on c1 and c¢3 on c2 where the first
c class is the mover class and the second c class is the stayer class.
MODEL c1 describes the class-specific measurement parameters for
variable cl1; MODEL c2 describes the class-specific measurement
parameters for variable c2; and MODEL c3 describes the class-specific
measurement parameters for variable c3. The model for each categorical
latent variable that differs for each class of that variable is specified by a
label that consists of the categorical latent variable name followed by the
number sign followed by the class number. For example, in the example
above, the label %c1#1% refers to class 1 of categorical latent variable
cl.

In class 1, the mover class of MODEL c, the two ON statements specify
that the latent transition probabilities are estimated. In class 2, the stayer
class, the ON statements specify that the latent transition probabilities
are fixed at either zero or one. A latent transition probability of one
specifies that an observation stays in the same class across time.

In this example, the thresholds of the latent class indicators for a given
class are held equal for the three categorical latent variables. The (1-5),
(6-10), and (11-15) following the bracket statements containing the
thresholds use the list function to assign equality labels to these
parameters. For example, the label 1 is assigned to the thresholds
ull$l, u21%1, and u31$1 which holds these thresholds equal over time.

The TECH15 option is used to obtain the transition probabilities for both
the mover and stayer classes. The default estimator for this type of
analysis is maximum likelihood with robust standard errors. The
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estimator option of the ANALYSIS command can be used to select a
different estimator. An explanation of the other commands can be found
in Example 8.1.

EXAMPLE 8.16: DISCRETE-TIME SURVIVAL MIXTURE
ANALYSIS WITH SURVIVAL PREDICTED BY GROWTH

TRAJECTORY CLASSES
TITLE: this is an example of a discrete-time
survival mixture analysis with survival
predicted by growth trajectory classes
DATA: FILE IS ex8.1l6.dat;
VARIABLE: NAMES ARE yl-y3 ul-u4;
CLASSES = c(2);
CATEGORICAL = ul-u4;
MISSING = ul-u4 (999);
ANALYSIS: TYPE = MIXTURE;
MODEL:
$OVERALLS%
i s | yl@0 y2@l1 y3@2;
f BY ul-u4@l;
OUTPUT : TECH1 TECHS;
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In this example, the discrete-time survival mixture analysis model shown
in the picture above is estimated. In this model, a survival model for ul,
u2, u3, and u4 is specified for each class of c defined by a growth
mixture model for yl-y3 (Muthén & Masyn, 2005). Each u variable
represents whether or not a single non-repeatable event has occurred in a
specific time period. The value 1 means that the event has occurred, 0
means that the event has not occurred, and a missing value flag means
that the event has occurred in a preceding time period or that the
individual has dropped out of the study. The factor f is used to specify a
proportional odds assumption for the hazards of the event. The arrows
from c to the growth factors i and s indicate that the means of the growth
factors vary across the classes of c.

In the overall model, the | symbol is used to name and define the
intercept and slope growth factors in a growth model. The names i and s
on the left-hand side of the | symbol are the names of the intercept and
slope growth factors, respectively. The statement on the right-hand side
of the | symbol specifies the outcomes and the time scores for the growth
model. The time scores for the slope growth factor are fixed at 0, 1, and
2 to define a linear growth model with equidistant time points. The zero
time score for the slope growth factor at time point one defines the
intercept growth factor as an initial status factor. The coefficients of the
intercept growth factor are fixed at one as part of the growth model
parameterization. The residual variances of the outcome variables are
estimated and allowed to be different across time and the residuals are
not correlated as the default.

In the parameterization of the growth model shown here, the intercepts
of the outcome variable at the four time points are fixed at zero as the
default. The means and variances of the growth factors are estimated as
the default, and the growth factor covariance is estimated as the default
because they are independent (exogenous) variables. The means of the
growth factors are not held equal across classes as the default. The
variances and covariance of the growth factors are held equal across
classes as the default.

In the overall model, the BY statement specifies that f is measured by
ul, u2, u3, and u4 where the factor loadings are fixed at one. This
represents a proportional odds assumption. The mean of f is fixed at
zero in class two as the default. The variance of f is fixed at zero in both
classes. The ESTIMATOR option of the ANALYSIS command can be
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used to select a different estimator. An explanation of the other
commands can be found in Example 8.1.

EXAMPLE 8.17: CONTINUOUS-TIME SURVIVAL MIXTURE
ANALYSIS USING A COX REGRESSION MODEL

TITLE:

DATA:

MODEL:

OUTPUT:

VARIABLE:

ANALYSIS:

this is an example of a continuous-time
survival mixture analysis using a Cox
regression model

FILE = ex8.17.dat;

NAMES = t ul-ub x tc;

CATEGORICAL = ul-ub5;

CLASSES = ¢ (2);

SURVIVAL = t (ALL);

TIMECENSORED = tc (0 = NOT 1 = RIGHT) ;
TYPE = MIXTURE;

$OVERALLS

t ON x;

c ON x;

Sc#lS

[ul$l-ubs$1];

t ON x;

SC#2%

[ul$l-ubs$1];

t ON x;

TECH1 TECHS;

ul
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In this example, the continuous-time survival analysis model shown in
the picture above is estimated. This is a Cox regression mixture model
similar to the model of Larsen (2004) as discussed in Asparouhov et al.
(2006). The profile likelihood method is used for estimation.

The SURVIVAL option is used to identify the variables that contain
information about time to event and to provide information about the
number and lengths of the time intervals in the baseline hazard function
to be used in the analysis. The SURVIVAL option must be used in
conjunction with the TIMECENSORED option. In this example, t is the
variable that contains time-to-event information. By specifying the
keyword ALL in parenthesis following the time-to-event variable, the
time intervals are taken from the data. The TIMECENSORED option is
used to identify the variables that contain information about right
censoring. In this example, the variable is named tc. The information in
parentheses specifies that the value zero represents no censoring and the
value one represents right censoring. This is the default.

In the overall model, the first ON statement describes the loglinear
regression of the time-to-event variable t on the covariate x. The second
ON statement describes the multinomial logistic regression of the
categorical latent variable ¢ on the covariate x. In the class-specific
models, by specifying the thresholds of the latent class indicator
variables and the regression of the time-to-event t on the covariate X,
these parameters will be estimated separately for each class. The non-
parametric baseline hazard function varies across class as the default.
The default estimator for this type of analysis is maximum likelihood
with robust standard errors. The estimator option of the ANALYSIS
command can be used to select a different estimator. An explanation of
the other commands can be found in Example 8.1.
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CHAPTER 9

EXAMPLES: MULTILEVEL
MODELING WITH COMPLEX
SURVEY DATA

Complex survey data refers to data obtained by stratification, cluster
sampling and/or sampling with an unequal probability of selection.
Complex survey data are also referred to as multilevel or hierarchical
data. For an overview, see Muthén and Satorra (1995). There are two
approaches to the analysis of complex survey data in Mplus.

One approach is to compute standard errors and a chi-square test of
model fit taking into account stratification, non-independence of
observations due to cluster sampling, and/or unequal probability of
selection. Subpopulation analysis is also available. With sampling
weights, parameters are estimated by maximizing a weighted
loglikelihood function. Standard error computations use a sandwich
estimator. This approach can be obtained by specifying
TYPE=COMPLEX in the ANALYSIS command in conjunction with the
STRATIFICATION, CLUSTER, WEIGHT, and/or SUBPOPULATION
options of the VARIABLE command. Observed outcome variables can
be continuous, censored, binary, ordered categorical (ordinal), unordered
categorical (nominal), counts, or combinations of these variable types.
The implementation of these methods in Mplus is discussed in
Asparouhov (2005, 2006) and Asparouhov and Muthén (2005, 2006a).

A second approach is to specify a model for each level of the multilevel
data thereby modeling the non-independence of observations due to
cluster sampling. This is commonly referred to as multilevel modeling.
The use of sampling weights in the estimation of parameters, standard
errors, and the chi-square test of model fit is allowed. Both individual-
level and cluster-level weights can be used. With sampling weights,
parameters are estimated by maximizing a weighted loglikelihood
function. Standard error computations use a sandwich estimator. This
approach can be obtained for two-level data by specifying
TYPE=TWOLEVEL in the ANALYSIS command in conjunction with
the CLUSTER, WEIGHT, WTSCALE, BWEIGHT, and/or BWTSCALE
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options of the VARIABLE command. For TYPE=TWOLEVEL,
observed outcome variables can be continuous, censored, binary, ordered
categorical (ordinal), unordered categorical (nominal), counts, or
combinations of these variable types. This approach can also be
obtained for three-level data by specifying TYPE=THREELEVEL in
conjunction with the CLUSTER, WEIGHT, WTSCALE, B2WEIGHT,
B3WEIGHT and/or BWTSCALE options of the VARIABLE command.
For TYPE=THREELEVEL, observed outcome variables can be
continuous. Complex survey features are not available for
TYPE=THREELEVEL with categorical variables or
TYPE=CROSSCLASSIFIED because these models are estimated using
Bayesian analysis for which complex survey features have not been
generally developed.

The approaches described above can be combined by specifying
TYPE=COMPLEX TWOLEVEL in the ANALYSIS command in
conjunction with the STRATIFICATION, CLUSTER, WEIGHT,
WTSCALE, BWEIGHT, and/or BWTSCALE options of the
VARIABLE command or TYPE=COMPLEX THREELEVEL in
conjunction with the STRATIFICATION, CLUSTER, WEIGHT,
WTSCALE, B2WEIGHT, B3WEIGHT, and/or BWTSCALE options of
the VARIABLE command  For TYPE=TWOLEVEL, when there is
clustering due to two cluster variables, the standard errors and chi-square
test of model fit are computed taking into account the clustering due to
the highest cluster level using TYPE=COMPLEX whereas clustering
due to the lowest cluster level is modeled using TYPE=TWOLEVEL.
For TYPE=THREELEVEL, when there is clustering due to three cluster
variables, the standard errors and chi-square test of model fit are
computed taking into account the clustering due to the highest cluster
level using TYPE=COMPLEX whereas clustering due to the other
cluster levels is modeled using TYPE=THREELEVEL.

A distinction can be made between cross-sectional data in which non-
independence arises because of cluster sampling and longitudinal data in
which non-independence arises because of repeated measures of the
same individuals across time. With cross-sectional data, the number of
levels in Mplus is the same as the number of levels in conventional
multilevel modeling programs. Mplus allows three-level modeling.
With longitudinal data, the number of levels in Mplus is one less than
the number of levels in conventional multilevel modeling programs
because Mplus takes a multivariate approach to repeated measures
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analysis. Longitudinal models are two-level models in conventional
multilevel programs, whereas they are single-level models in Mplus.
These models are discussed in Chapter 6. Three-level analysis where
time is the first level, individual is the second level, and cluster is the
third level is handled by two-level modeling in Mplus (see also Muthén,
1997). Four-level analysis where time is the first level, individual is the
second level, classroom is the third level, and school is the fourth level is
handled by three-level modeling in Mplus.

Time series analysis is used to analyze intensive longitudinal data such
as those obtained with ecological momentary assessments, experience
sampling methods, daily diary methods, and ambulatory assessments.
Such data typically have a large number of time points, for example,
twenty to two hundred. The measurements are typically closely spaced
in time. In Mplus, a variety of two-level and cross-classified time series
models can be estimated. These include univariate autoregressive,
regression, cross-lagged, confirmatory factor analysis, Item Response
Theory, and structural equation models for continuous, binary, ordered
categorical (ordinal), or combinations of these variable types. N=1
versions of these models can be found in Chapter 6.

The general latent variable modeling framework of Mplus allows the
integration of random effects and other continuous latent variables
within a single analysis model. Random effects are allowed for both
independent and dependent variables and both observed and latent
variables. Random effects representing across-cluster variation in
intercepts and slopes or individual differences in growth can be
combined with factors measured by multiple indicators on both the
individual and cluster levels. Random factor loadings are available as a
special case of random slopes. Random variances are also available. In
line with SEM, regressions among random effects, among factors, and
between random effects and factors are allowed.

Multilevel models can include regression analysis, path analysis,
confirmatory factor analysis (CFA), item response theory (IRT) analysis,
structural equation modeling (SEM), latent class analysis (LCA), latent
transition analysis (LTA), latent class growth analysis (LCGA), growth
mixture modeling (GMM), discrete-time survival analysis, continuous-
time survival analysis, and combinations of these models.
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For TYPE=TWOLEVEL, there are four estimator options. The first
estimator option is full-information maximum likelihood which allows
continuous, censored, binary, ordered categorical (ordinal), unordered
categorical (nominal), counts, or combinations of these variable types;
random intercepts and slopes; and missing data. With longitudinal data,
maximum likelihood estimation allows modeling of individually-varying
times of observation and random slopes for time-varying covariates.
Non-normality robust standard errors and a chi-square test of model fit
are available. The second estimator option is limited-information
weighted least squares (Asparouhov & Muthén, 2007) which allows
continuous, binary, ordered categorical (ordinal), and combinations of
these variables types; random intercepts; and missing data. The third
estimator option is the Muthén limited information estimator (MUML;
Muthén, 1994) which is restricted to models with continuous variables,
random intercepts, and no missing data. The fourth estimator option is
Bayes which allows continuous, categorical, and combinations of these
variable types; random intercepts and slopes; and missing data.

All two-level models can be estimated using the following special
features:

Multiple group analysis

Missing data

Complex survey data

Latent variable interactions and non-linear factor analysis using
maximum likelihood

Random slopes

Individually-varying times of observations

Linear and non-linear parameter constraints

Indirect effects including specific paths

Maximum likelihood estimation for all outcome types
Wald chi-square test of parameter equalities

For continuous, censored with weighted least squares estimation, binary,
and ordered categorical (ordinal) outcomes, multiple group analysis is
specified by using the GROUPING option of the VARIABLE command
for individual data. For censored with maximum likelihood estimation,
unordered categorical (nominal), and count outcomes, multiple group
analysis is specified using the KNOWNCLASS option of the
VARIABLE command in conjunction with the TYPE=MIXTURE
option of the ANALYSIS command. The default is to estimate the
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model under missing data theory using all available data. The
LISTWISE option of the DATA command can be used to delete all
observations from the analysis that have missing values on one or more
of the analysis variables. Corrections to the standard errors and chi-
square test of model fit that take into account stratification, non-
independence of observations, and unequal probability of selection are
obtained by using the TYPE=COMPLEX option of the ANALYSIS
command in conjunction with the STRATIFICATION, CLUSTER, and
WEIGHT options of the VARIABLE command. Latent variable
interactions are specified by using the | symbol of the MODEL command
in conjunction with the XWITH option of the MODEL command.
Random slopes are specified by using the | symbol of the MODEL
command in conjunction with the ON option of the MODEL command.
Individually-varying times of observations are specified by using the |
symbol of the MODEL command in conjunction with the AT option of
the MODEL command and the TSCORES option of the VARIABLE
command. Linear and non-linear parameter constraints are specified by
using the MODEL CONSTRAINT command. Indirect effects are
specified by using the MODEL INDIRECT command. Maximum
likelihood estimation is specified by using the ESTIMATOR option of
the ANALYSIS command. The MODEL TEST command is used to test
linear restrictions on the parameters in the MODEL and MODEL
CONSTRAINT commands using the Wald chi-square test.

For TYPE=THREELEVEL, there are two estimator options. The first
estimator option is full-information maximum likelihood which allows
continuous variables; random intercepts and slopes; and missing data.
Non-normality robust standard errors and a chi-square test of model fit
are available. The second estimator option is Bayes which allows
continuous, categorical, and combinations of these variable types;
random intercepts and slopes; and missing data.

All three-level models can be estimated using the following special
features:

Multiple group analysis

Missing data

Complex survey data

Random slopes

Linear and non-linear parameter constraints
Maximum likelihood estimation for all outcome types
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o Wald chi-square test of parameter equalities

For continuous outcomes, multiple group analysis is specified by using
the GROUPING option of the VARIABLE command. The default is to
estimate the model under missing data theory using all available data.
The LISTWISE option of the DATA command can be used to delete all
observations from the analysis that have missing values on one or more
of the analysis variables. Corrections to the standard errors and chi-
square test of model fit that take into account stratification, non-
independence of observations, and unequal probability of selection are
obtained by using the TYPE=COMPLEX option of the ANALYSIS
command in conjunction with the STRATIFICATION, CLUSTER, and
WEIGHT options of the VARIABLE command. Random slopes are
specified by using the | symbol of the MODEL command in conjunction
with the ON option of the MODEL command. Linear and non-linear
parameter constraints are specified by using the MODEL
CONSTRAINT command. Maximum likelihood estimation is specified
by using the ESTIMATOR option of the ANALYSIS command. The
MODEL TEST command is used to test linear restrictions on the
parameters in the MODEL and MODEL CONSTRAINT commands
using the Wald chi-square test.

For TYPE=CROSSCLASSIFIED, there is one estimator option, Bayes,
which allows continuous, categorical, and combinations of these variable
types; random intercepts and slopes; and missing data.

All cross-classified models can be estimated using the following special
features:

Missing data

Random slopes
Random factor loadings
Random variances

The default is to estimate the model under missing data theory using all
available data. The LISTWISE option of the DATA command can be
used to delete all observations from the analysis that have missing values
on one or more of the analysis variables. Random slopes are specified
by using the | symbol of the MODEL command in conjunction with the
ON option of the MODEL command.
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Graphical displays of observed data and analysis results can be obtained
using the PLOT command in conjunction with a post-processing
graphics module. The PLOT command provides histograms,
scatterplots, plots of individual observed and estimated values, and plots
of sample and estimated means and proportions/probabilities. These are
available for the total sample, by group, by class, and adjusted for
covariates. The PLOT command includes a display showing a set of
descriptive statistics for each variable. The graphical displays can be
edited and exported as a DIB, EMF, or JPEG file. In addition, the data
for each graphical display can be saved in an external file for use by
another graphics program.

Following is the set of cross-sectional two-level modeling examples
included in this chapter:

o 9.1: Two-level regression analysis for a continuous dependent
variable with a random intercept

o 9.2: Two-level regression analysis for a continuous dependent
variable with a random slope

e 9.3: Two-level path analysis with a continuous and a categorical
dependent variable*

e 9.4: Two-level path analysis with a continuous, a categorical, and a
cluster-level observed dependent variable

e 9.5: Two-level path analysis with continuous dependent variables
and random slopes*

o 9.6: Two-level CFA with continuous factor indicators and
covariates

e 9.7: Two-level CFA with categorical factor indicators and
covariates*

e 9.8: Two-level CFA with continuous factor indicators, covariates,
and random slopes

e 9.9: Two-level SEM with categorical factor indicators on the within
level and cluster-level continuous observed and random intercept
factor indicators on the between level

e 9.10: Two-level SEM with continuous factor indicators and a
random slope for a factor*

e 9.11: Two-level multiple group CFA with continuous factor
indicators

Following is the set of longitudinal two-level modeling examples
included in this chapter:
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e 9.12: Two-level growth model for a continuous outcome (three-
level analysis)

e 9.13: Two-level growth model for a categorical outcome (three-
level analysis)*

e 9.14: Two-level growth model for a continuous outcome (three-
level analysis) with variation on both the within and between levels
for a random slope of a time-varying covariate*

e 9.15: Two-level multiple indicator growth model with categorical
outcomes (three-level analysis)

e 9.16: Linear growth model for a continuous outcome with time-
invariant and time-varying covariates carried out as a two-level
growth model using the DATA WIDETOLONG command

e 9.17: Two-level growth model for a count outcome using a zero-
inflated Poisson model (three-level analysis)*

o 9.18: Two-level continuous-time survival analysis using Cox
regression with a random intercept

e 9.19: Two-level mimic model with continuous factor indicators,
random factor loadings, two covariates on within, and one covariate
on between with equal loadings across levels

Following is the set of three-level and cross-classified modeling
examples included in this chapter:

e 9.20: Three-level regression for a continuous dependent variable

e 9.21: Three-level path analysis with a continuous and a categorical
dependent variable

o 9.22: Three-level MIMIC model with continuous factor indicators,
two covariates on within, one covariate on between level 2, one
covariate on between level 3 with random slopes on both within and
between level 2

e 9.23: Three-level growth model with a continuous outcome and one
covariate on each of the three levels

e 9.24: Regression for a continuous dependent variable using cross-
classified data

e 9.25: Path analysis with continuous dependent variables using
cross-classified data

e 9.26: IRT with random binary items using cross-classified data

e 9.27: Multiple indicator growth model with random intercepts and
factor loadings using cross-classified data
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Following is the set of cross-sectional two-level modeling examples with
random residual variances included in this chapter:

o 9.28: Two-level regression analysis for a continuous dependent
variable with a random intercept and a random residual variance

o 9.29: Two-level confirmatory factor analysis (CFA) with continuous
factor indicators, covariates, and a factor with a random residual
variance

Following is the set of two-level time series analysis examples with
random effects included in this chapter:

e 9.30: Two-level time series analysis with a univariate first-order
autoregressive AR(1) model for a continuous dependent variable
with a random intercept, random AR(1) slope, and random residual
variance

o 9.31: Two-level time series analysis with a univariate first-order
autoregressive AR(1) model for a continuous dependent variable
with a covariate, random intercept, random AR(1) slope, random
slope, and random residual variance

o 9.32: Two-level time series analysis with a bivariate cross-lagged
model for continuous dependent variables with random intercepts
and random slopes

o 9.33: Two-level time series analysis with a first-order
autoregressive AR(1) factor analysis model for a single continuous
indicator and measurement error

o 9.34: Two-level time series analysis with a first-order
autoregressive AR(1) confirmatory factor analysis (CFA) model for
continuous factor indicators with random intercepts, a random
AR(1) slope, and a random residual variance

o 9.35: Two-level time series analysis with a first-order
autoregressive AR(1) IRT model for binary factor indicators with
random thresholds, a random AR(1) slope, and a random residual
variance

o 9.36: Two-level time series analysis with a bivariate cross-lagged
model for two factors and continuous factor indicators with random
intercepts and random slopes

o 9.37: Two-level time series analysis with a univariate first-order
autoregressive AR(1) model for a continuous dependent variable
with a covariate, linear trend, random slopes, and a random residual
variance
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Following is the set of cross-classified time series analysis examples
with random effects included in this chapter:

9.38: Cross-classified time series analysis with a univariate first-
order autoregressive AR(1) model for a continuous dependent
variable with a covariate, random intercept, and random slope

9.39: Cross-classified time series analysis with a univariate first-
order autoregressive AR(1) model for a continuous dependent
variable with a covariate, linear trend, and random slope

9.40: Cross-classified time series analysis with a first-order
autoregressive AR(1) confirmatory factor analysis (CFA) model for
continuous factor indicators with random intercepts and a factor
varying across both subjects and time

* Example uses numerical integration in the estimation of the model.
This can be computationally demanding depending on the size of the
problem.

EXAMPLE 9.1: TWO-LEVEL REGRESSION ANALYSIS FOR A
CONTINUOUS DEPENDENT VARIABLE WITH A RANDOM

INTERCEPT

270

TITLE: this is an example of a two-level

regression analysis for a continuous
dependent variable with a random intercept
and an observed covariate

DATA: FILE = ex9.la.dat;
VARIABLE: NAMES = y x w xm clus;

WITHIN = x;

BETWEEN = w xm;

CLUSTER = clus;
DEFINE: CENTER x (GRANDMEAN) ;
ANALYSIS: TYPE = TWOLEVEL;
MODEL:

SWITHINS

y ON x;

$BETWEENS

y ON w xm;
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Within

w Between

In this example, the two-level regression model shown in the picture
above is estimated. The dependent variable y in this regression is
continuous. Two ways of treating the covariate x are described. In this
part of the example, the covariate X is treated as an observed variable in
line with conventional multilevel regression modeling. In the second
part of the example, the covariate x is decomposed into two latent
variable parts.

The within part of the model describes the regression of y on an
observed covariate X where the intercept is a random effect that varies
across the clusters. In the within part of the model, the filled circle at the
end of the arrow from x to y represents a random intercept that is
referred to as y in the between part of the model. In the between part of
the model, the random intercept is shown in a circle because it is a
continuous latent variable that varies across clusters. The between part
of the model describes the linear regression of the random intercept y on
observed cluster-level covariates w and xm. The observed cluster-level
covariate xm takes the value of the mean of x for each cluster. The
within and between parts of the model correspond to level 1 and level 2
of a conventional multilevel regression model with a random intercept.
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TITLE: this is an example of a two-level
regression analysis for a continuous
dependent variable with a random intercept
and an observed covariate

The TITLE command is used to provide a title for the analysis. The title
is printed in the output just before the Summary of Analysis.

DATA: FILE = ex9.la.dat;

The DATA command is used to provide information about the data set
to be analyzed. The FILE option is used to specify the name of the file
that contains the data to be analyzed, ex9.1a.dat. Because the data set is
in free format, the default, a FORMAT statement is not required.

VARIABLE: NAMES = y x w xm clus;
WITHIN = x;
BETWEEN = w xm;
CLUSTER = clus;

The VARIABLE command is used to provide information about the
variables in the data set to be analyzed. The NAMES option is used to
assign names to the variables in the data set. The data set in this
example contains five variables: y, x, w, xm, and clus.

The WITHIN option is used to identify the variables in the data set that
are measured on the individual level and modeled only on the within
level. They are specified to have no variance in the between part of the
model. The BETWEEN option is used to identify the variables in the
data set that are measured on the cluster level and modeled only on the
between level. Variables not mentioned on the WITHIN or the
BETWEEN statements are measured on the individual level and can be
modeled on both the within and between levels. Because y is not
mentioned on the WITHIN statement, it is modeled on both the within
and between levels. On the between level, it is a random intercept. The
CLUSTER option is used to identify the variable that contains clustering
information. The CENTER option is used to specify the type of
centering to be used in an analysis and the variables that are to be
centered. In this example, grand-mean centering is chosen.
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DEFINE: CENTER x (GRANDMEAN) ;

The DEFINE command is used to transform existing variables and create
new variables. The CENTER option is used to specify the type of
centering to be used in an analysis and the variables that will be
centered. Centering facilitates the interpretation of the results. In this
example, the covariate is centered using the grand mean, that is, the
sample mean of X is subtracted from the values of the covariate x.

ANALYSIS: TYPE = TWOLEVEL;

The ANALYSIS command is used to describe the technical details of the
analysis. By selecting TWOLEVEL, a multilevel model with random
intercepts will be estimated.

MODEL:
SWITHINS
y ON x;
SBETWEENS
y ON w xm;

The MODEL command is used to describe the model to be estimated. In
multilevel models, a model is specified for both the within and between
parts of the model. In the within part of the model, the ON statement
describes the linear regression of y on the observed individual-level
covariate X. The within-level residual variance in the regression of y on
X is estimated as the default.

In the between part of the model, the ON statement describes the linear
regression of the random intercept y on the observed cluster-level
covariates w and xm. The intercept and residual variance of y are
estimated as the default. The default estimator for this type of analysis
is maximum likelihood with robust standard errors. The ESTIMATOR
option of the ANALYSIS command can be used to select a different
estimator.

Following is the second part of the example where the covariate x is
decomposed into two latent variable parts.
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TITLE: this is an example of a two-level
regression analysis for a continuous
dependent variable with a random intercept
and a latent covariate

DATA: FILE = ex9.1lb.dat;

VARIABLE: NAMES =y x w clus;

BETWEEN = w;

CLUSTER = clus;
DEFINE: CENTER = x (GRANDMEAN) ;
ANALYSIS: TYPE = TWOLEVEL;
MODEL:
SWITHINS
y ON x (gammalO) ;
$BETWEENS
y ON w

X (gammaOl) ;
MODEL CONSTRAINT:
NEW (betac) ;
betac = gammaOl - gammalO;

The difference between this part of the example and the first part is that
the covariate x is decomposed into two latent variable parts instead of
being treated as an observed variable as in conventional multilevel
regression modeling. The decomposition occurs when the covariate X is
not mentioned on the WITHIN statement and is therefore modeled on
both the within and between levels. When a covariate is not mentioned
on the WITHIN statement, it is decomposed into two uncorrelated latent
variables,

Xij = Xwij * Xpj ,

where i represents individual, j represents cluster, X, is the latent
variable covariate used on the within level, and xy; is the latent variable
covariate used on the between level. This model is described in Muthén
(1989, 1990, 1994). The latent variable covariate X, is not used in
conventional multilevel analysis. Using a latent covariate may, however,
be advantageous when the observed cluster-mean covariate xm does not
have sufficient reliability resulting in biased estimation of the between-
level slope (Asparouhov & Muthén, 2006b; Ludtke et al., 2008).

The decomposition can be expressed as,

Xwij = Xij = Xpj
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which can be viewed as an implicit, latent group-mean centering of the
latent within-level covariate. To obtain results that are not group-mean
centered, a linear transformation of the within and between slopes can be
done as described below using the MODEL CONSTRAINT command.

In the MODEL command, the label gammal0 in the within part of the
model and the label gamma0l in the between part of the model are
assigned to the regression coefficients in the linear regression of y on x
in both parts of the model for use in the MODEL CONSTRAINT
command. The MODEL CONSTRAINT command is used to define
linear and non-linear constraints on the parameters in the model. In the
MODEL CONSTRAINT command, the NEW option is used to
introduce a new parameter that is not part of the MODEL command.
This parameter is called betac and is defined as the difference between
gamma0l and gammalO. It corresponds to a “contextual effect” as
described in Raudenbush and Bryk (2002, p. 140, Table 5.11).

EXAMPLE 9.2: TWO-LEVEL REGRESSION ANALYSIS FOR A
CONTINUOUS DEPENDENT VARIABLE WITH A RANDOM

SLOPE

TITLE: this is an example of a two-level
regression analysis for a continuous
dependent variable with a random slope and
an observed covariate

DATA: FILE = ex9.2a.dat;

VARIABLE: NAMES = y x w xm clus;

WITHIN = x;

BETWEEN = w xm;

CLUSTER = clus;
DEFINE: CENTER x (GROUPMEAN) ;
ANALYSIS: TYPE = TWOLEVEL RANDOM;
MODEL:

SWITHINS

s | y ON x;

$BETWEENS

y s ON w xm;

y WITH s;
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Within

W / y Between

The difference between this example and the first part of Example 9.1 is
that the model has both a random intercept and a random slope. In the
within part of the model, the filled circle at the end of the arrow from x
to y represents a random intercept that is referred to as y in the between
part of the model. The filled circle on the arrow from x to y represents a
random slope that is referred to as s in the between part of the model. In
the between part of the model, the random intercept and random slope
are shown in circles because they are continuous latent variables that
vary across clusters. The observed cluster-level covariate xm takes the
value of the mean of x for each cluster. The within and between parts of
the model correspond to level 1 and level 2 of a conventional multilevel
regression model with a random intercept and a random slope.

In the DEFINE command, the individual-level covariate x is centered
using the cluster means for x. This is recommended when a random
slope is estimated (Raudenbush & Bryk, 2002, p. 143).

In the within part of the model, the | symbol is used in conjunction with
TYPE=RANDOM to name and define the random slope variables in the
model. The name on the left-hand side of the | symbol names the
random slope variable. The statement on the right-hand side of the |
symbol defines the random slope variable. Random slopes are defined
using the ON option. The random slope s is defined by the linear
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regression of the dependent variable y on the observed individual-level
covariate x. The within-level residual variance in the regression of y on
X is estimated as the default.

In the between part of the model, the ON statement describes the linear
regressions of the random intercept y and the random slope s on the
observed cluster-level covariates w and xm. The intercepts and residual
variances of s and y are estimated and the residuals are not correlated as
the default. The WITH statement specifies that the residuals of s and y
are correlated. The default estimator for this type of analysis is
maximum likelihood with robust standard errors. The ESTIMATOR
option of the ANALYSIS command can be used to select a different
estimator. An explanation of the other commands can be found in
Example 9.1.

Following is the second part of the example that shows how to plot a
cross-level interaction where the cluster-level covariate w moderates the
influence of the within-level covariate x on y.

MODEL: SWITHINS
s | y ON x;
$BETWEENS%
y ON w xm;
[s] (gamO0);
s ON w (gaml)
xm;
y WITH s;
MODEL CONSTRAINT:
PLOT (ylow yhigh);
LOOP (levell,-3,3,0.01)

ylow = (gamO+gaml* (-1))*levell;
yvhigh = (gamO+gaml*1l) *levell;
PLOT: TYPE = PLOT2;

In MODEL CONSTRAINT, the LOOP option is used in conjunction
with the PLOT option to create plots of variables. In this example,
cross-level interaction effects defined in MODEL CONSTRAINT will
be plotted. The PLOT option names the variables that will be plotted on
the y-axis. The LOOP option names the variable that will be plotted on
the x-axis, gives the numbers that are the lower and upper values of the
variable, and the incremental value of the variable to be used in the
computations. In this example, the variables ylow and yhigh will be on
the y-axes and the variable levell will be on the x-axes. The variable
levell, representing the x covariate, varies over the range of x that is of
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interest such as three standard deviations away from its mean. The
lower and upper values of levell are -3 and 3 and 0.01 is the incremental
value of levell to use in the computations. When levell appears in a
MODEL CONSTRAINT statement involving a new parameter, that
statement is evaluated for each value of levell specified by the LOOP
option. For example, the first value of levell is -3; the second value of
levell is -3 plus 0.01 or -2.99; the third value of levell is -2.99 plus 0.01
or -2.98; the last value of levell is 3. Ylow and yhigh use the values -1
and 1 of the cluster-level covariate w to represent minus one standard
deviation and plus one standard deviation from the mean for w. The
cross-level interaction effects are evaluated at the value zero for the
cluster-level covariate xm.

Using TYPE=PLOT2 in the PLOT command, the plots of ylow and
yhigh and levell can be viewed by choosing Loop plots from the Plot
menu of the Mplus Editor. The plots present the computed values along
with a 95% confidence interval. For Bayesian estimation, the default is
credibility intervals of the posterior distribution with equal tail
percentages. The CINTERVAL option of the OUTPUT command can
be used to obtain credibility intervals of the posterior distribution that
give the highest posterior density.

Following is the third part of the example that shows an alternative
treatment of the observed covariate Xx.

TITLE: this is an example of a two-level
regression analysis for a continuous
dependent variable with a random slope and
a latent covariate

DATA: FILE = ex9.2c.dat;

VARIABLE: NAMES =y x w clus;

BETWEEN = w;
CLUSTER = clus;

ANALYSIS: TYPE = TWOLEVEL RANDOM;

MODEL:

SWITHINS
s | y ON x;
$BETWEENS%
y s ON w x;
y WITH s;

The difference between this part of the example and the first part of the
example is that the covariate x is latent instead of observed on the
between level. This is achieved when the individual-level observed
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covariate is modeled in both the within and between parts of the model.
This is requested by not mentioning the observed covariate x on the
WITHIN statement in the VARIABLE command. When a random slope
is estimated, the observed covariate x is used on the within level and the
latent variable covariate X, is used on the between level.
ESTIMATOR option of the ANALYSIS command can be used to select

a different estimator.

found in Example 9.1.

EXAMPLE 9.3: TWO-LEVEL PATH ANALYSIS WITH A
CONTINUOUS AND A CATEGORICAL DEPENDENT

VARIABLE

The

An explanation of the other commands can be

TITLE:

DATA:

MODEL:

OUTPUT:

VARIABLE:

ANALYSIS:

this is an example of a two-level path
analysis with a continuous and a
categorical dependent variable
FILE IS ex9.3.dat;

NAMES ARE u y x1 x2 w clus;
CATEGORICAL = u;

WITHIN = x1 x2;

BETWEEN = w;

CLUSTER IS clus;

TYPE = TWOLEVEL;

ALGORITHM = INTEGRATION;

SWITHINS

y ON x1 x2;
u ON y x2;
SBETWEENS%

y u ON w;
TECH1 TECHS;
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x1 y

Within
x2 u

Between
w

In this example, the two-level path analysis model shown in the picture
above is estimated. The mediating variable y is a continuous variable
and the dependent variable u is a binary or ordered categorical variable.
The within part of the model describes the linear regression of y on x1
and x2 and the logistic regression of u on y and x2 where the intercepts
in the two regressions are random effects that vary across the clusters
and the slopes are fixed effects that do not vary across the clusters. In
the within part of the model, the filled circles at the end of the arrows
from x1 to y and x2 to u represent random intercepts that are referred to
as y and u in the between part of the model.  In the between part of the
model, the random intercepts are shown in circles because they are
continuous latent variables that vary across clusters. The between part
of the model describes the linear regressions of the random intercepts y
and u on a cluster-level covariate w.

The CATEGORICAL option is used to specify which dependent
variables are treated as binary or ordered categorical (ordinal) variables
in the model and its estimation. The program determines the number of
categories of u. The dependent variable u could alternatively be an
unordered categorical (nominal) variable. The NOMINAL option is
used and a multinomial logistic regression is estimated.
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In the within part of the model, the first ON statement describes the
linear regression of y on the individual-level covariates x1 and x2 and
the second ON statement describes the logistic regression of u on the
mediating variable y and the individual-level covariate x2. The slopes in
these regressions are fixed effects that do not vary across the clusters.
The residual variance in the linear regression of y on x1 and x2 is
estimated as the default. There is no residual variance to be estimated in
the logistic regression of u on y and x2 because u is a binary or ordered
categorical variable. In the between part of the model, the ON statement
describes the linear regressions of the random intercepts y and u on the
cluster-level covariate w. The intercept and residual variance of y and u
are estimated as the default. The residual covariance between y and u is
free to be estimated as the default.

By specifying ALGORITHM=INTEGRATION, a maximum likelihood
estimator with robust standard errors using a numerical integration
algorithm will be used. Note that numerical integration becomes
increasingly more computationally demanding as the number of factors
and the sample size increase. In this example, two dimensions of
integration are used with a total of 225 integration points. The
ESTIMATOR option of the ANALYSIS command can be used to select
a different estimator. The OUTPUT command is used to request
additional output not included as the default. The TECH1 option is used
to request the arrays containing parameter specifications and starting
values for all free parameters in the model. The TECHS8 option is used
to request that the optimization history in estimating the model be
printed in the output. TECHS is printed to the screen during the
computations as the default. TECHS8 screen printing is useful for
determining how long the analysis takes. An explanation of the other
commands can be found in Example 9.1.
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EXAMPLE 9.4: TWO-LEVEL PATH ANALYSISWITH A
CONTINUOUS, A CATEGORICAL, AND A CLUSTER-LEVEL
OBSERVED DEPENDENT VARIABLE

TITLE:

DATA:

MODEL:

OUTPUT:

VARIABLE:

ANALYSIS:

this is an example of a two-level path
analysis with a continuous, a categorical,
and a cluster-level observed dependent
variable

FILE = ex9.4.dat;

NAMES ARE u z y x w clus;

CATEGORICAL = uy;

WITHIN = x;

BETWEEN W Z;

CLUSTER clus;

TYPE = TWOLEVEL;

ESTIMATOR = WLSM;

SWITHINS

u ON vy x;

y ON x;
*BETWEENS
u ON w y z;
y ON w;

z ON w;

y WITH z;
TECH1;
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y Within
X u
y Between
w u
3z

The difference between this example and Example 9.3 is that the
between part of the model has an observed cluster-level mediating
variable z and a latent mediating variable y that is a random intercept.
The model is estimated using weighted least squares estimation instead
of maximum likelihood.

By specifying ESTIMATOR=WLSM, a robust weighted least squares
estimator using a diagonal weight matrix is used (Asparouhov &
Muthén, 2007). The ESTIMATOR option of the ANALYSIS command
can be used to select a different estimator.

In the between part of the model, the first ON statement describes the
linear regression of the random intercept u on the cluster-level covariate
w, the random intercept y, and the observed cluster-level mediating
variable z. The third ON statement describes the linear regression of the
observed cluster-level mediating variable z on the cluster-level covariate
w. An explanation of the other commands can be found in Examples 9.1
and 9.3.
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EXAMPLE 9.5: TWO-LEVEL PATH ANALYSIS WITH
CONTINUOUS DEPENDENT VARIABLES AND RANDOM

SLOPES

TITLE:

DATA:

MODEL:

OUTPUT:

VARIABLE:

ANALYSIS:

this is an example of two-level path
analysis with continuous dependent
variables and random slopes

FILE IS ex9.5.dat;

NAMES ARE vyl y2 x1 x2 w clus;

WITHIN = x1 x2;

BETWEEN = w;

CLUSTER IS clus;

TYPE = TWOLEVEL RANDOM;

SWITHINS

s2 | y2 ON yl;

y2 ON x2;

sl | yl ON x2;

yl ON x1;
SBETWEENS%

yl y2 sl s2 ON w;
TECH1 TECHS;
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x1 yl
sl s2
Within
x2 y2
@ Between
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The difference between this example and Example 9.3 is that the model
includes two random intercepts and two random slopes instead of two
random intercepts and two fixed slopes and the dependent variable is
continuous. In the within part of the model, the filled circle on the arrow
from the covariate x2 to the mediating variable y1 represents a random
slope and is referred to as sl in the between part of the model. The filled
circle on the arrow from the mediating variable y1 to the dependent
variable y2 represents a random slope and is referred to as s2 in the
between part of the model. In the between part of the model, the
random slopes sl and s2 are shown in circles because they are
continuous latent variables that vary across clusters.

In the within part of the model, the | symbol is used in conjunction with
TYPE=RANDOM to name and define the random slope variables in the
model. The name on the left-hand side of the | symbol names the
random slope variable. The statement on the right-hand side of the |
symbol defines the random slope variable. Random slopes are defined
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using the ON option. In the first | statement, the random slope s2 is
defined by the linear regression of the dependent variable y2 on the
mediating variable y1. In the second | statement, the random slope s1 is
defined by the linear regression of the mediating variable y1 on the
individual-level covariate x2. The within-level residual variances of y1
and y2 are estimated as the default. The first ON statement describes the
linear regression of the dependent variable y2 on the individual-level
covariate x2. The second ON statement describes the linear regression
of the mediating variable y1 on the individual-level covariate x1.

In the between part of the model, the ON statement describes the linear
regressions of the random intercepts y1 and y2 and the random slopes s1
and s2 on the cluster-level covariate w. The intercepts and residual
variances of y1, y2, s2, and sl are estimated as the default. The residual
covariances between y1, y2, s2, and sl are fixed at zero as the default.
This default can be overridden. The default estimator for this type of
analysis is maximum likelihood with robust standard errors. The
ESTIMATOR option of the ANALYSIS command can be used to select
a different estimator. An explanation of the other commands can be
found in Examples 9.1 and 9.3.

EXAMPLE 9.6: TWO-LEVEL CFAWITH CONTINUOUS
FACTOR INDICATORS AND COVARIATES
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TITLE: this is an example of a two-level CFA with
continuous factor indicators and
covariates

DATA: FILE IS ex9.6.dat;

VARIABLE: NAMES ARE yl-y4 x1 x2 w clus;
WITHIN = x1 x2;
BETWEEN = w;
CLUSTER = clus;
ANALYSIS: TYPE = TWOLEVEL;
MODEL:
SWITHINS
fw BY yl-vy4;
fw ON x1 x2;
SBETWEENS
fb BY yl-vy4;
y1-v4@0;
fb ON w;
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In this example, the two-level CFA model with continuous factor
indicators, a between factor, and covariates shown in the picture above is
estimated. In the within part of the model, the filled circles at the end of
the arrows from the within factor fw to y1, y2, y3, and y4 represent
random intercepts that are referred to as yl1, y2, y3, and y4 in the
between part of the model. In the between part of the model, the random
intercepts are shown in circles because they are continuous latent
variables that vary across clusters. They are indicators of the between
factor fb. In this model, the residual variances for the factor indicators
in the between part of the model are fixed at zero. If factor loadings are
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constrained to be equal across the within and the between levels, this
implies a model where the regression of the within factor on x1 and x2
has a random intercept varying across the clusters.

In the within part of the model, the BY statement specifies that fw is
measured by y1, y2, y3, and y4. The metric of the factor is set
automatically by the program by fixing the first factor loading to one.
This option can be overridden. The residual variances of the factor
indicators are estimated and the residuals are not correlated as the
default. The ON statement describes the linear regression of fw on the
individual-level covariates x1 and x2. The residual variance of the
factor is estimated as the default. The intercept of the factor is fixed at
zero.

In the between part of the model, the BY statement specifies that fb is
measured by the random intercepts y1, y2, y3, and y4. The metric of the
factor is set automatically by the program by fixing the first factor
loading to one. This option can be overridden. The residual variances
of the factor indicators are set to zero. The ON statement describes the
regression of fb on the cluster-level covariate w. The residual variance
of the factor is estimated as the default. The intercept of the factor is
fixed at zero as the default. The default estimator for this type of
analysis is maximum likelihood with robust standard errors. The
ESTIMATOR option of the ANALYSIS command can be used to select
a different estimator. An explanation of the other commands can be
found in Example 9.1.
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EXAMPLE 9.7: TWO-LEVEL CFAWITH CATEGORICAL
FACTOR INDICATORS AND COVARIATES

TITLE: this is an example of a two-level CFA with
categorical factor indicators and
covariates

DATA: FILE IS ex9.7.dat;

VARIABLE: NAMES ARE ul-u4 x1 x2 w clus;
CATEGORICAL = ul-u4;

WITHIN = x1 x2;

BETWEEN w;

CLUSTER clus;

MISSING ALL (999);
ANALYSIS: TYPE = TWOLEVEL;
MODEL:

SWITHINS

fw BY ul-u4;

fw ON x1 x2;

$SBETWEENS%

fb BY ul-u4;

fb ON w;
OUTPUT: TECH1 TECHS;

The difference between this example and Example 9.6 is that the factor
indicators are binary or ordered categorical (ordinal) variables instead of
continuous variables. The CATEGORICAL option is used to specify
which dependent variables are treated as binary or ordered categorical
(ordinal) variables in the model and its estimation. In the example
above, all four factor indicators are binary or ordered categorical. The
program determines the number of categories for each indicator. The
default estimator for this type of analysis is maximum likelihood with
robust standard errors using a numerical integration algorithm. Note that
numerical integration becomes increasingly more computationally
demanding as the number of factors and the sample size increase. In this
example, two dimensions of integration are used with a total of 225
integration points. The ESTIMATOR option of the ANALYSIS
command can be used to select a different estimator.

In the between part of the model, the residual variances of the random
intercepts of the categorical factor indicators are fixed at zero as the
default because the residual variances of random intercepts are often
very small and require one dimension of numerical integration each.
Weighted least squares estimation of between-level residual variances
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does not require numerical integration in estimating the model. An
explanation of the other commands can be found in Examples 9.1 and

9.6.

EXAMPLE 9.8: TWO-LEVEL CFAWITH CONTINUOUS
FACTOR INDICATORS, COVARIATES, AND RANDOM

SLOPES

TITLE:

DATA:

MODEL:

VARIABLE:

ANALYSIS:

this is an example of a two-level CFA with
continuous factor indicators, covariates,
and random slopes

FILE IS ex9.8.dat;

NAMES ARE yl-y4 x1 x2 w clus;

CLUSTER = clus;

WITHIN = x1 x2;

BETWEEN = w;

TYPE = TWOLEVEL RANDOM;

SWITHINS

fw BY yl-vy4;
sl | fw ON x1;
s2 | fw ON x2;
$BETWEENS

fb BY yl-vy4;
y1-y4@0;

fb sl s2 ON w;
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The difference between this example and Example 9.6 is that the model
has random slopes in addition to random intercepts and the random
slopes are regressed on a cluster-level covariate. In the within part of the
model, the filled circles on the arrows from x1 and x2 to fw represent
random slopes that are referred to as s1 and s2 in the between part of the
model. In the between part of the model, the random slopes are shown
in circles because they are latent variables that vary across clusters.
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In the within part of the model, the | symbol is used in conjunction with
TYPE=RANDOM to name and define the random slope variables in the
model. The name on the left-hand side of the | symbol names the
random slope variable. The statement on the right-hand side of the |
symbol defines the random slope variable. Random slopes are defined
using the ON option. In the first | statement, the random slope sl is
defined by the linear regression of the factor fw on the individual-level
covariate x1. In the second | statement, the random slope s2 is defined
by the linear regression of the factor fw on the individual-level covariate
x2. The within-level residual variance of f1 is estimated as the default.

In the between part of the model, the ON statement describes the linear
regressions of fb, s1, and s2 on the cluster-level covariate w. The
residual variances of fb, s1, and s2 are estimated as the default. The
residuals are not correlated as the default. The default estimator for this
type of analysis is maximum likelihood with robust standard errors. The
ESTIMATOR option of the ANALYSIS command can be used to select
a different estimator. An explanation of the other commands can be
found in Examples 9.1 and 9.6.
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EXAMPLE 9.9: TWO-LEVEL SEM WITH CATEGORICAL
FACTOR INDICATORS ON THE WITHIN LEVEL AND
CLUSTER-LEVEL CONTINUOUS OBSERVED AND RANDOM
INTERCEPT FACTOR INDICATORS ON THE BETWEEN
LEVEL

TITLE: this is an example of a two-level SEM with
categorical factor indicators on the
within level and cluster-level continuous
observed and random intercept factor
indicators on the between level

DATA: FILE IS ex9.9.dat;

VARIABLE: NAMES ARE ul-u6 yl-y4 xl1 x2 w clus;
CATEGORICAL = ul-ub6;

WITHIN = x1 x2;
BETWEEN = w yl-vy4;
CLUSTER IS clus;

ANALYSIS: TYPE IS TWOLEVEL;
ESTIMATOR = WLSMV;

MODEL:

SWITHINS
fwl BY ul-u3;
fw2 BY ud-u6;
fwl fw2 ON x1 x2;
SBETWEENS
fb BY ul-u6;
f BY yl-v4;
fb ON w £f;
f ON w;
SAVEDATA: SWMATRIX = ex9.9sw.dat;
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In this example, the model with two within factors and two between
factors shown in the picture above is estimated. The within-level factor
indicators are categorical. In the within part of the model, the filled
circles at the end of the arrows from the within factor fwl to ul, u2, and
u3 and fw2 to u4, ub, and u6 represent random intercepts that are
referred to as ul, u2, u3, u4, u5, and u6 in the between part of the model.
In the between part of the model, the random intercepts are shown in
circles because they are continuous latent variables that vary across
clusters. The random intercepts are indicators of the between factor fb.
This example illustrates the common finding of fewer between factors
than within factors for the same set of factor indicators. The between
factor f has observed cluster-level continuous variables as factor
indicators.

By specifying ESTIMATOR=WLSMV, a robust weighted least squares
estimator using a diagonal weight matrix will be used. The default
estimator for this type of analysis is maximum likelihood with robust
standard errors using a numerical integration algorithm. Note that
numerical integration becomes increasingly more computationally
demanding as the number of factors and the sample size increase. In this
example, three dimensions of integration would be used with a total of
3,375 integration points. For models with many dimensions of
integration and categorical outcomes, the weighted least squares
estimator may improve computational speed. The ESTIMATOR option
of the ANALYSIS command can be used to select a different estimator.

In the within part of the model, the first BY statement specifies that fwl
is measured by ul, u2, and u3. The second BY statement specifies that
fw2 is measured by u4, u5, and u6. The metric of the factors are set
automatically by the program by fixing the first factor loading for each
factor to one. This option can be overridden. Residual variances of the
latent response variables of the categorical factor indicators are not
parameters in the model. They are fixed at one in line with the Theta
parameterization. Residuals are not correlated as the default. The ON
statement describes the linear regressions of fwl and fw2 on the
individual-level covariates x1 and x2. The residual variances of the
factors are estimated as the default. The residuals of the factors are
correlated as the default because residuals are correlated for latent
variables that do not influence any other variable in the model except
their own indicators. The intercepts of the factors are fixed at zero as
the default.
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In the between part of the model, the first BY statement specifies that fb
is measured by the random intercepts ul, u2, u3, u4, u5, and ué. The
metric of the factor is set automatically by the program by fixing the first
factor loading to one. This option can be overridden. The residual
variances of the factor indicators are estimated and the residuals are not
correlated as the default. Unlike maximum likelihood estimation,
weighted least squares estimation of between-level residual variances
does not require numerical integration in estimating the model. The
second BY statement specifies that f is measured by the cluster-level
factor indicators y1, y2, y3, and y4. The residual variances of the factor
indicators are estimated and the residuals are not correlated as the
default. The first ON statement describes the linear regression of fb on
the cluster-level covariate w and the factor f. The second ON statement
describes the linear regression of f on the cluster-level covariate w. The
residual variances of the factors are estimated as the default. The
intercepts of the factors are fixed at zero as the default.

The SWMATRIX option of the SAVEDATA command is used with
TYPE=TWOLEVEL and weighted least squares estimation to specify
the name and location of the file that contains the within- and between-
level sample statistics and their corresponding estimated asymptotic
covariance matrix. It is recommended to save this information and use it
in subsequent analyses along with the raw data to reduce computational
time during model estimation. An explanation of the other commands
can be found in Example 9.1.
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EXAMPLE 9.10: TWO-LEVEL SEM WITH CONTINUOUS
FACTOR INDICATORS AND A RANDOM SLOPE FOR A

FACTOR

TITLE:

DATA:

MODEL:

OUTPUT:

VARIABLE:

ANALYSIS:

this is an example of a two-level SEM with
continuous factor indicators and a random
slope for a factor

FILE IS ex9.10.dat;

NAMES ARE yl-y5 w clus;

BETWEEN = w;

CLUSTER = clus;

TYPE = TWOLEVEL RANDOM;

ALGORITHM = INTEGRATION;

INTEGRATION = 10;

SWITHINS

fw BY yl-vy4;
s | y5 ON fw;
SBETWEENS%

fb BY yl-vy4;
y1-y4@0;

y5 s ON fb w;
TECH1 TECHS;
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In this example, the two-level SEM with continuous factor indicators
shown in the picture above is estimated. In the within part of the model,
the filled circles at the end of the arrows from fw to the factor indicators
y1, y2, y3, and y4 and the filled circle at the end of the arrow from fw to
y5 represent random intercepts that are referred to as y1, y2, y3, y4, and
y5 in the between part of the model. The filled circle on the arrow from
fw to y5 represents a random slope that is referred to as s in the between
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part of the model. In the between part of the model, the random
intercepts and random slope are shown in circles because they are
continuous latent variables that vary across clusters.

By specifying TYPE=TWOLEVEL RANDOM in the ANALYSIS
command, a multilevel model with random intercepts and random slopes
will be estimated. By specifying ALGORITHM=INTEGRATION, a
maximum likelihood estimator with robust standard errors using a
numerical integration algorithm will be used. Note that numerical
integration becomes increasingly more computationally demanding as
the number of factors and the sample size increase. In this example, four
dimensions of integration are used with a total of 10,000 integration
points. The INTEGRATION option of the ANALYSIS command is
used to change the number of integration points per dimension from the
default of 15 to 10. The ESTIMATOR option of the ANALYSIS
command can be used to select a different estimator.

In the within part of the model, the BY statement specifies that fw is
measured by the factor indicators y1, y2, y3, and y4. The metric of the
factor is set automatically by the program by fixing the first factor
loading in each BY statement to one. This option can be overridden.
The residual variances of the factor indicators are estimated and the
residuals are uncorrelated as the default. The variance of the factor is
estimated as the default.

In the within part of the model, the | symbol is used in conjunction with
TYPE=RANDOM to name and define the random slope variables in the
model. The name on the left-hand side of the | symbol names the
random slope variable. The statement on the right-hand side of the |
symbol defines the random slope variable. Random slopes are defined
using the ON option. In the | statement, the random slope s is defined by
the linear regression of the dependent variable y5 on the within factor
fw. The within-level residual variance of y5 is estimated as the default.

In the between part of the model, the BY statement specifies that fb is
measured by the random intercepts y1, y2, y3, and y4. The metric of the
factor is set automatically by the program by fixing the first factor
loading in the BY statement to one. This option can be overridden. The
residual variances of the factor indicators are fixed at zero. The variance
of the factor is estimated as the default. The ON statement describes the
linear regressions of the random intercept y5 and the random slope s on
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the factor fb and the cluster-level covariate w. The intercepts and
residual variances of y5 and s are estimated and their residuals are
uncorrelated as the default.

The OUTPUT command is used to request additional output not
included as the default. The TECH1 option is used to request the arrays
containing parameter specifications and starting values for all free
parameters in the model. The TECHS option is used to request that the
optimization history in estimating the model be printed in the output.
TECHS is printed to the screen during the computations as the default.
TECHS screen printing is useful for determining how long the analysis
takes. An explanation of the other commands can be found in Example
9.1.

EXAMPLE 9.11: TWO-LEVEL MULTIPLE GROUP CFAWITH
CONTINUOUS FACTOR INDICATORS
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TITLE: this is an example of a two-level
multiple group CFA with continuous
factor indicators

DATA: FILE IS ex9.1l1l.dat;

VARIABLE: NAMES ARE yl-y6 g clus;

GROUPING = g (1 = gl 2 = g2);
CLUSTER = clus;
ANALYSIS: TYPE = TWOLEVEL;
MODEL:
SWITHINS
fwl BY yl-y3;
fw2 BY y4-y6;
SBETWEENS%
fbl BY yl-y3;
fb2 BY y4-y6;

MODEL g2: SWITHINS
fwl BY y2-y3;
fw2 BY y5-y6;
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In this example, the two-level multiple group CFA with continuous
factor indicators shown in the picture above is estimated. In the within
part of the model, the filled circles at the end of the arrows from the
within factors fwl to y1, y2, and y3 and fw2 to y4, y5, and y6 represent
random intercepts that are referred to as y1, y2, y3, y4, y5, and y6 in the
between part of the model. In the between part of the model, the random
intercepts are shown in circles because they are continuous latent
variables that vary across clusters. The random intercepts are indicators
of the between factors b1 and fb2.

The GROUPING option of the VARIABLE command is used to identify
the variable in the data set that contains information on group
membership when the data for all groups are stored in a single data set.
The information in parentheses after the grouping variable name assigns
labels to the values of the grouping variable found in the data set. In the
example above, observations with g equal to 1 are assigned the label g1,
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and individuals with g equal to 2 are assigned the label g2. These labels
are used in conjunction with the MODEL command to specify model
statements specific to each group. The grouping variable should be a
cluster-level variable.

In multiple group analysis, two variations of the MODEL command are
used. They are MODEL and MODEL followed by a label. MODEL
describes the model to be estimated for all groups. The factor loadings
and intercepts are held equal across groups as the default to specify
measurement invariance. MODEL followed by a label describes
differences between the overall model and the model for the group
designated by the label.

In the within part of the model, the BY statements specify that fwl is
measured by y1, y2, and y3, and fw2 is measured by y4, y5, and y6. The
metric of the factors is set automatically by the program by fixing the
first factor loading in each BY statement to one. This option can be
overridden. The variances of the factors are estimated as the default.
The factors fwl and fw2 are correlated as the default because they are
independent (exogenous) variables. In the between part of the model,
the BY statements specify that fbl is measured by y1, y2, and y3, and
fb2 is measured by y4, y5, and y6. The metric of the factor is set
automatically by the program by fixing the first factor loading in each
BY statement to one. This option can be overridden. The variances of
the factors are estimated as the default. The factors fbl and fb2 are
correlated as the default because they are independent (exogenous)
variables.

In the group-specific MODEL command for group 2, by specifying the
within factor loadings for fwl and fw2, the default equality constraints
are relaxed and the factor loadings are no longer held equal across
groups. The factor indicators that are fixed at one remain the same, in
this case y1 and y4. The default estimator for this type of analysis is
maximum likelihood with robust standard errors. The ESTIMATOR
option of the ANALYSIS command can be used to select a different
estimator. An explanation of the other commands can be found in
Example 9.1.
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EXAMPLE 9.12: TWO-LEVEL GROWTH MODEL FOR A
CONTINUOUS OUTCOME (THREE-LEVEL ANALYSIS)

TITLE:

DATA:

MODEL:

VARIABLE:

ANALYSIS:

this is an example of a two-level growth
model for a continuous outcome (three-
level analysis)

FILE IS ex9.12.dat;

NAMES ARE yl-y4 x w clus;

WITHIN = x;

BETWEEN = w;

CLUSTER = clus;

TYPE = TWOLEVEL;

SWITHINS

iw sw | yl@0 y2@1 y3@2 y4@3;
yl-y4 (1);

iw sw ON x;

SBETWEENS

ib sb | yl@0 y2@1 y3@2 y4@3;
y1-y4@0;

ib sb ON w;
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In this example, the two-level growth model for a continuous outcome
(three-level analysis) shown in the picture above is estimated. In the
within part of the model, the filled circles at the end of the arrows from
the within growth factors iw and sw to y1, y2, y3, and y4 represent
random intercepts that are referred to as yl, y2, y3, and y4 in the
between part of the model. In the between part of the model, the random
intercepts are shown in circles because they are continuous latent
variables that vary across clusters.

In the within part of the model, the | statement names and defines the
within intercept and slope factors for the growth model. The names iw
and sw on the left-hand side of the | symbol are the names of the
intercept and slope growth factors, respectively. The values on the right-
hand side of the | symbol are the time scores for the slope growth factor.
The time scores of the slope growth factor are fixed at 0, 1, 2, and 3 to
define a linear growth model with equidistant time points. The zero time
score for the slope growth factor at time point one defines the intercept
growth factor as an initial status factor. The coefficients of the intercept
growth factor are fixed at one as part of the growth model
parameterization. The residual variances of the outcome variables are
constrained to be equal over time in line with conventional multilevel
growth modeling. This is done by placing (1) after them. The residual
covariances of the outcome variables are fixed at zero as the default.
Both of these restrictions can be overridden. The ON statement
describes the linear regressions of the growth factors on the individual-
level covariate X. The residual variances of the growth factors are free
to be estimated as the default. The residuals of the growth factors are
correlated as the default because residuals are correlated for latent
variables that do not influence any other variable in the model except
their own indicators.

In the between part of the model, the | statement names and defines the
between intercept and slope factors for the growth model. The names ib
and sb on the left-hand side of the | symbol are the names of the intercept
and slope growth factors, respectively. The values on the right-hand side
of the | symbol are the time scores for the slope growth factor. The time
scores of the slope growth factor are fixed at 0, 1, 2, and 3 to define a
linear growth model with equidistant time points. The zero time score
for the slope growth factor at time point one defines the intercept factor
as an initial status factor. The coefficients of the intercept growth factor
are fixed at one as part of the growth model parameterization. The
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residual variances of the outcome variables are fixed at zero on the
between level in line with conventional multilevel growth modeling.
These residual variances can be estimated. The ON statement describes
the linear regressions of the growth factors on the cluster-level covariate
w. The residual variances and the residual covariance of the growth
factors are free to be estimated as the default.

In the parameterization of the growth model shown here, the intercepts
of the outcome variable at the four time points are fixed at zero as the
default. The intercepts of the growth factors are estimated as the default
in the between part of the model. The default estimator for this type of
analysis is maximum likelihood with robust standard errors. The
ESTIMATOR option of the ANALYSIS command can be used to select
a different estimator. An explanation of the other commands can be
found in Example 9.1.

EXAMPLE 9.13: TWO-LEVEL GROWTH MODEL FOR A
CATEGORICAL OUTCOME (THREE-LEVEL ANALYSIS)

306

TITLE: this is an example of a two-level
growth model for a categorical outcome
(three-level analysis)

DATA: FILE IS ex9.13.dat;

VARIABLE: NAMES ARE ul-u4 x w clus;
CATEGORICAL = ul-u4;

WITHIN = x;
BETWEEN W,
CLUSTER clus;

ANALYSIS: TYPE = TWOLEVEL;

INTEGRATION = 7;

MODEL:
SWITHINS
iw sw | ul@O u2@l u3@2 ud@3;
iw sw ON x;
$SBETWEENS%
ib sb | ul@0 u2@1 u3@2 ud@3;
ib sb ON w;

OUTPUT: TECH1 TECHS;

The difference between this example and Example 9.12 is that the
outcome variable is a binary or ordered categorical (ordinal) variable
instead of a continuous variable.
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The CATEGORICAL option is used to specify which dependent
variables are treated as binary or ordered categorical (ordinal) variables
in the model and its estimation. In the example above, ul, u2, u3, and u4
are binary or ordered categorical variables. They represent the outcome
measured at four equidistant occasions.

The default estimator for this type of analysis is maximum likelihood
with robust standard errors using a numerical integration algorithm.
Note that numerical integration becomes increasingly —more
computationally demanding as the number of factors and the sample size
increase. In this example, four dimensions of integration are used with a
total of 2,401 integration points. The INTEGRATION option of the
ANALYSIS command is used to change the number of integration points
per dimension from the default of 15 to 7. The ESTIMATOR option of
the ANALYSIS command can be used to select a different estimator.
For models with many dimensions of integration and categorical
outcomes, the weighted least squares estimator may improve
computational speed.

In the parameterization of the growth model shown here, the thresholds
of the outcome variable at the four time points are held equal as the
default and are estimated in the between part of the model. The
intercept of the intercept growth factor is fixed at zero. The intercept of
the slope growth factor is estimated as the default in the between part of
the model. The residual variances of the growth factors are estimated as
the default. The residuals of the growth factors are correlated as the
default because residuals are correlated for latent variables that do not
influence any other variable in the model except their own indicators.
On the between level, the residual variances of the random intercepts ul,
u2, u3, and u4 are fixed at zero as the default.

The OUTPUT command is used to request additional output not
included as the default. The TECHL1 option is used to request the arrays
containing parameter specifications and starting values for all free
parameters in the model. The TECHS8 option is used to request that the
optimization history in estimating the model be printed in the output.
TECHS is printed to the screen during the computations as the default.
TECHS screen printing is useful for determining how long the analysis
takes. An explanation of the other commands can be found in Examples
9.1and 9.12.
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EXAMPLE 9.14: TWO-LEVEL GROWTH MODEL FOR A
CONTINUOUS OUTCOME (THREE-LEVEL ANALYSIS) WITH
VARIATION ON BOTH THE WITHIN AND BETWEEN
LEVELS FOR A RANDOM SLOPE OF A TIME-VARYING
COVARIATE

TITLE: this is an example of a two-level growth
model for a continuous outcome (three-
level analysis) with variation on both the
within and between levels for a random
slope of a time-varying covariate

DATA: FILE IS ex9.14.dat;

VARIABLE: NAMES ARE yl-y4 x al-a4 w clus;

WITHIN = x al-a4;
BETWEEN = w;
CLUSTER = clus;

ANALYSIS: TYPE = TWOLEVEL RANDOM;
ALGORITHM = INTEGRATION;
INTEGRATION = 10;

MODEL:

SWITHINS
iw sw | yl@0 y2@1 y3@2 y4@3;
yl-y4 (1);
iw sw ON x;
s* | yl ON al;
s* | y2 ON aZz2;
s* | y3 ON a3;
s* | y4 ON a4;
$BETWEENS
ib sb | yl@0 y2@1 y3@2 y4@3;
y1-y4@0;
ib sb s ON w;
OUTPUT : TECH1 TECHS;
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t t t t Within

The difference between this example and Example 9.12 is that the model
includes an individual-level time-varying covariate with a random slope
that varies on both the within and between levels. In the within part of
the model, the filled circles at the end of the arrows from al to y1, a2 to
y2, a3 to y3, and a4 to y4 represent random intercepts that are referred to
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as y1, y2, y3, and y4 in the between part of the model. In the between
part of the model, the random intercepts are shown in circles because
they are continuous latent variables that vary across classes. The broken
arrows from s to the arrows from al to y1, a2 to y2, a3 to y3, and a4 to
y4 indicate that the slopes in these regressions are random. The s is
shown in a circle in both the within and between parts of the model to
represent a decomposition of the random slope into its within and
between components.

By specifying TYPE=TWOLEVEL RANDOM in the ANALYSIS
command, a multilevel model with random intercepts and random slopes
will be estimated. By specifying ALGORITHM=INTEGRATION, a
maximum likelihood estimator with robust standard errors using a
numerical integration algorithm will be used. Note that numerical
integration becomes increasingly more computationally demanding as
the number of factors and the sample size increase. In this example, four
dimensions of integration are used with a total of 10,000 integration
points. The INTEGRATION option of the ANALYSIS command is
used to change the number of integration points per dimension from the
default of 15 to 10. The ESTIMATOR option of the ANALYSIS
command can be used to select a different estimator.

The | symbol is used in conjunction with TYPE=RANDOM to name and
define the random slope variables in the model. The name on the left-
hand side of the | symbol names the random slope variable. The
statement on the right-hand side of the | symbol defines the random slope
variable. The random slope s is defined by the linear regressions of y1
on al, y2 on a2, y3 on a3, and y4 on a4. Random slopes with the same
name are treated as one variable during model estimation. The random
intercepts for these regressions are referred to by using the name of the
dependent variables in the regressions, that is, y1, y2, y3, and y4. The
asterisk (*) following the s specifies that s will have variation on both
the within and between levels. Without the asterisk (*), s would have
variation on only the between level. An explanation of the other
commands can be found in Examples 9.1 and 9.12.



Examples: Multilevel Modeling With Complex Survey Data

EXAMPLE 9.15: TWO-LEVEL MULTIPLE INDICATOR
GROWTH MODEL WITH CATEGORICAL OUTCOMES
(THREE-LEVEL ANALYSIS)

TITLE: this is an example of a two-level multiple
indicator growth model with categorical
outcomes (three-level analysis)

DATA: FILE IS ex9.15.dat;

VARIABLE: NAMES ARE ull u2l u3l ul2 u22 u32 ul3 u23
u33 clus;

CATEGORICAL = ull-u33;
CLUSTER = clus;
ANALYSIS: TYPE IS TWOLEVEL;
ESTIMATOR = WLSM;
MODEL:
SWITHINS
flw BY ull
u2l-u3l (1-2);
f2w BY ul2
u22-u32 (1-2);
f3w BY ul3
u23-u33 (1-2);
iw sw | flw@O0 f2w@1l f3w@2;
SBETWEENS
flb BY ull
u2l-u3l (1-2);
f2b BY ul2
u22-u32 (1-2);
f3b BY ul3
u23-u33 (1-2);
[ull$l ul2$1l ul3s1l] (3)
[u2181 uw22$1 u23s$1] (4)
[u31$1 u32$1 u33s$1] (5)
ib sb | f1b@0 £f2b@l £3b
[f1b-f3b@0 ib@0O sb];
flb-f3b (6);
SAVEDATA: SWMATRIX = ex9.15sw.dat;
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u33

Within

In this example, the two-level multiple indicator growth model with
categorical outcomes (three-level analysis) shown in the picture above is
estimated. The picture shows a factor measured by three indicators at
three time points. In the within part of the model, the filled circles at the
end of the arrows from the within factors flw to ull, u21, and u3l; f2w
to ul2, u22, and u32; and f3w to ul3, u23, and u33 represent random
intercepts that are referred to as ull, u21, u3l, ul2, u22, u32, ul3, u23,
and u33 in the between part of the model. In the between part of the
model, the random intercepts are continuous latent variables that vary
across clusters. The random intercepts are indicators of the between
factors flb, f2b, and f3b. In this model, the residual variances of the
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factor indicators in the between part of the model are estimated. The
residuals are not correlated as the default. Taken together with the
specification of equal factor loadings on the within and the between
parts of the model, this implies a model where the regressions of the
within factors on the growth factors have random intercepts that vary
across the clusters.

By specifying ESTIMATOR=WLSM, a robust weighted least squares
estimator using a diagonal weight matrix will be used. The default
estimator for this type of analysis is maximum likelihood with robust
standard errors using a numerical integration algorithm. Note that
numerical integration becomes increasingly more computationally
demanding as the number of factors and the sample size increase. For
models with many dimensions of integration and categorical outcomes,
the weighted least squares estimator may improve computational speed.

In the within part of the model, the three BY statements define a within-
level factor at three time points. The metric of the three factors is set
automatically by the program by fixing the first factor loading to one.
This option can be overridden. The (1-2) following the factor loadings
uses the list function to assign equality labels to these parameters. The
label 1 is assigned to the factor loadings of u21, u22, and u23 which
holds these factor loadings equal across time. The label 2 is assigned to
the factor loadings of u31, u32, and u33 which holds these factor
loadings equal across time. Residual variances of the latent response
variables of the categorical factor indicators are not free parameters to be
estimated in the model. They are fixed at one in line with the Theta
parameterization. Residuals are not correlated as the default. The |
statement names and defines the within intercept and slope growth
factors for the growth model. The names iw and sw on the left-hand side
of the | symbol are the names of the intercept and slope growth factors,
respectively. The names and values on the right-hand side of the |
symbol are the outcome and time scores for the slope growth factor. The
time scores of the slope growth factor are fixed at 0, 1, and 2 to define a
linear growth model with equidistant time points. The zero time score
for the slope growth factor at time point one defines the intercept growth
factor as an initial status factor. The coefficients of the intercept growth
factor are fixed at one as part of the growth model parameterization.
The variances of the growth factors are free to be estimated as the
default. The covariance between the growth factors is free to be
estimated as the default. The intercepts of the factors defined using BY
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statements are fixed at zero. The residual variances of the factors are
free and not held equal across time. The residuals of the factors are
uncorrelated in line with the default of residuals for first-order factors.

In the between part of the model, the first three BY statements define a
between-level factor at three time points. The (1-2) following the factor
loadings uses the list function to assign equality labels to these
parameters. The label 1 is assigned to the factor loadings of u21, u22,
and u23 which holds these factor loadings equal across time as well as
across levels. The label 2 is assigned to the factor loadings of u31, u32,
and u33 which holds these factor loadings equal across time as well as
across levels. Time-invariant thresholds for the three indicators are
specified using (3), (4), and (5) following the bracket statements. The
residual variances of the factor indicators are free to be estimated. The |
statement names and defines the between intercept and slope growth
factors for the growth model. The names ib and sb on the left-hand side
of the | symbol are the names of the intercept and slope growth factors,
respectively. The values on the right-hand side of the | symbol are the
time scores for the slope growth factor. The time scores of the slope
growth factor are fixed at 0, 1, and 2 to define a linear growth model
with equidistant time points. The zero time score for the slope growth
factor at time point one defines the intercept growth factor as an initial
status factor. The coefficients of the intercept growth factor are fixed at
one as part of the growth model parameterization. In the
parameterization of the growth model shown here, the intercept growth
factor mean is fixed at zero as the default for identification purposes.
The variances of the growth factors are free to be estimated as the
default. The covariance between the growth factors is free to be
estimated as the default. The intercepts of the factors defined using BY
statements are fixed at zero. The residual variances of the factors are
held equal across time. The residuals of the factors are uncorrelated in
line with the default of residuals for first-order factors.

The SWMATRIX option of the SAVEDATA command is used with
TYPE=TWOLEVEL and weighted least squares estimation to specify
the name and location of the file that contains the within- and between-
level sample statistics and their corresponding estimated asymptotic
covariance matrix. It is recommended to save this information and use it
in subsequent analyses along with the raw data to reduce computational
time during model estimation. An explanation of the other commands
can be found in Example 9.1
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EXAMPLE 9.16: LINEAR GROWTH MODEL FOR A
CONTINUOUS OUTCOME WITH TIME-INVARIANT AND
TIME-VARYING COVARIATES CARRIED OUT AS A TWO-
LEVEL GROWTH MODEL USING THE DATA WIDETOLONG

COMMAND

TITLE:

DATA:

VARIABLE:

ANALYSIS:
MODEL:

this is an example of a linear growth
model for a continuous outcome with time-
invariant and time-varying covariates
carried out as a two-level growth model
using the DATA WIDETOLONG command

FILE IS ex9.1l6.dat;

DATA WIDETOLONG:

WIDE = yll-y14 | a3l1-a34;

ILONG = y | a3;

IDVARIABLE = person;

REPETITION = time;

NAMES ARE yll-yl14 x1 x2 a3l-a34;
USEVARIABLE = x1 x2 y a3 person time;
CLUSTER = person;

WITHIN = time a3;

BETWEEN = x1 x2;

TYPE = TWOLEVEL RANDOM;

SWITHINS

s | y ON time;

y ON a3;

SBETWEENS%

y s ON x1 x2;

y WITH s;
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In this example, a linear growth model for a continuous outcome with
time-invariant and time-varying covariates as shown in the picture above
is estimated. As part of the analysis, the DATA WIDETOLONG
command is used to rearrange the data from a multivariate wide format
to a univariate long format. The model is similar to the one in Example
6.10 using multivariate wide format data. The differences are that the
current model restricts the within-level residual variances to be equal
across time and the within-level influence of the time-varying covariate
on the outcome to be equal across time.

The WIDE option of the DATA WIDETOLONG command is used to
identify sets of variables in the wide format data set that are to be
converted into single variables in the long format data set. These
variables must variables from the NAMES statement of the VARIABLE
command. The two sets of variables y11, y12, y13, and y14 and a31,
a32, a33, and a34 are identified. The LONG option is used to provide
names for the new variables in the long format data set. The names y
and a3 are the names of the new variables. The IDVARIABLE option is
used to provide a name for the variable that provides information about
the unit to which the record belongs. In univariate growth modeling, this
is the person identifier which is used as a cluster variable. In this
example, the name person is used. This option is not required. The



Examples: Multilevel Modeling With Complex Survey Data

default variable name is id. The REPETITION option is used to provide
a name for the variable that contains information on the order in which
the variables were measured. In this example, the name time is used.
This option is not required. The default variable name is rep. The new
variables must be mentioned on the USEVARIABLE statement of the
VARIABLE command if they are used in the analysis. They must be
placed after any original variables. The USEVARIABLES option lists
the original variables x1 and x2 followed by the new variables y, a3,
person, and time.

The CLUSTER option of the VARIABLE command is used to identify
the variable that contains clustering information. In this example, the
cluster variable person is the variable that was created using the
IDVARIABLE option of the DATA WIDETOLONG command. The
WITHIN option is used to identify the variables in the data set that are
measured on the individual level and modeled only on the within level.
They are specified to have no variance in the between part of the model.
The BETWEEN option is used to identify the variables in the data set
that are measured on the cluster level and modeled only on the between
level. Variables not mentioned on the WITHIN or the BETWEEN
statements are measured on the individual level and can be modeled on
both the within and between levels.

In the within part of the model, the | symbol is used in conjunction with
TYPE=RANDOM to name and define the random slope variables in the
model. The name on the left-hand side of the | symbol names the
random slope variable. The statement on the right-hand side of the |
symbol defines the random slope variable. Random slopes are defined
using the ON option. In the | statement, the random slope s is defined by
the linear regression of the dependent variable y on time. The within-
level residual variance of y is estimated as the default. The ON
statement describes the linear regression of y on the covariate a3.

In the between part of the model, the ON statement describes the linear
regressions of the random intercept y and the random slope s on the
covariates x1 and x2. The WITH statement is used to free the
covariance between y and s. The default estimator for this type of
analysis is maximum likelihood with robust standard errors. The
estimator option of the ANALYSIS command can be used to select a
different estimator. An explanation of the other commands can be found
in Example 9.1.
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EXAMPLE 9.17: TWO-LEVEL GROWTH MODEL FOR A
COUNT OUTCOME USING A ZERO-INFLATED POISSON
MODEL (THREE-LEVEL ANALYSIS)

TITLE: this is an example of a two-level growth
model for a count outcome using a zero-
inflated Poisson model (three-level
analysis)

DATA: FILE = ex9.17.dat;

VARIABLE: NAMES = ul-u4 x w clus;

COUNT = ul-ud4 (1);
CLUSTER = clus;
WITHIN = x;
BETWEEN = w;

ANALYSIS: TYPE = TWOLEVEL;
ALGORITHM = INTEGRATION;
INTEGRATION = 10;
MCONVERGENCE = 0.01;

MODEL: SWITHINS
iw sw | ul@0 u2@l u3@2 ud@3;
1iw siw | ul#1@O0 ul2#1@1 u3#1@2 ud#1@3;
sw@0;
siw@0;
iw WITH iiw;
iw ON x;
sw ON x;

SBETWEENS%
ib sb | ul@0 u2@l u3@2 ud@3;
iib sib | ul#1@0 u2#1Q@1 u3#1Q@2 u4d#1@3;
sb-sib@0;
ib ON w;
OUTPUT : TECH1 TECHS;

The difference between this example and Example 9.12 is that the
outcome variable is a count variable instead of a continuous variable.

The COUNT option is used to specify which dependent variables are
treated as count variables in the model and its estimation and whether a
Poisson or zero-inflated Poisson model will be estimated. In the
example above, ul, u2, u3, and u4 are count variables. The i in
parentheses following u indicates that a zero-inflated Poisson model will
be estimated.
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By specifying ALGORITHM=INTEGRATION, a maximum likelihood
estimator with robust standard errors using a numerical integration
algorithm will be used. Note that numerical integration becomes
increasingly more computationally demanding as the number of factors
and the sample size increase. In this example, three dimensions of
integration are used with a total of 1,000 integration points. The
INTEGRATION option of the ANALYSIS command is used to change
the number of integration points per dimension from the default of 15 to
10. The ESTIMATOR option of the ANALYSIS command can be used
to select a different estimator. The MCONVERGENCE option is used
to change the observed-data log likelihood derivative convergence
criterion for the EM algorithm from the default value of .001 to .01
because it is difficult to obtain high numerical precision in this example.

With a zero-inflated Poisson model, two growth models are estimated.
In the within and between parts of the model, the first | statement
describes the growth model for the count part of the outcome for
individuals who are able to assume values of zero and above. The
second | statement describes the growth model for the inflation part of
the outcome, the probability of being unable to assume any value except
zero. The binary latent inflation variable is referred to by adding to the
name of the count variable the number sign (#) followed by the number
1. In the parameterization of the growth model for the count part of the
outcome, the intercepts of the outcome variables at the four time points
are fixed at zero as the default. In the parameterization of the growth
model for the inflation part of the outcome, the intercepts of the outcome
variable at the four time points are held equal as the default. In the
within part of the model, the variances of the growth factors are
estimated as the default, and the growth factor covariances are fixed at
zero as the default. In the between part of the model, the mean of the
growth factors for the count part of outcome are free. The mean of the
intercept growth factor for the inflation part of the outcome is fixed at
zero and the mean for the slope growth factor for the inflation part of the
outcome is free. The variances of the growth factors are estimated as the
default, and the growth factor covariances are fixed at zero as the
default.

In the within part of the model, the variances of the slope growth factors
sw and siw are fixed at zero. The ON statements describes the linear
regressions of the intercept and slope growth factors iw and sw for the
count part of the outcome on the covariate x. In the between part of the
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model, the variances of the intercept growth factor iib and the slope
growth factors sb and sib are fixed at zero. The ON statement describes
the linear regression of the intercept growth factor ib on the covariate w.
An explanation of the other commands can be found in Examples 9.1
and 9.12.

EXAMPLE 9.18: TWO-LEVEL CONTINUOUS-TIME
SURVIVAL ANALYSIS USING COX REGRESSION WITH A
RANDOM INTERCEPT

TITLE: this is an example of a two-level
continuous-time survival analysis using
Cox regression with a random intercept
DATA: FILE = ex9.18.dat;
VARIABLE: NAMES = t x w tc clus;
CLUSTER = clus;
WITHIN = x;
BETWEEN = w;
SURVIVAL = t (ALL);
TIMECENSORED = tc (0 = NOT 1 = RIGHT);
ANALYSIS: TYPE = TWOLEVEL;
BASEHAZARD = OFF;
MODEL: SWITHINS
t ON x;
SBETWEENS%
t ON w;
t;

Within

Between
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In this example, the two-level continuous-time survival analysis model
shown in the picture above is estimated. This is the Cox regression
model with a random intercept (Klein & Moeschberger, 1997; Hougaard,
2000).  The profile likelihood method is used for estimation
(Asparouhov et al., 2006).

The SURVIVAL option is used to identify the variables that contain
information about time to event and to provide information about the
time intervals in the baseline hazard function to be used in the analysis.
The SURVIVAL option must be used in conjunction with the
TIMECENSORED option. In this example, t is the variable that
contains time to event information. By specifying the keyword ALL in
parenthesis following the time-to-event variable, the time intervals are
taken from the data. The TIMECENSORED option is used to identify
the variables that contain information about right censoring. In this
example, this variable is named tc. The information in parentheses
specifies that the value zero represents no censoring and the value one
represents right censoring. This is the default. The BASEHAZARD
option of the ANALYSIS command is used with continuous-time
survival analysis to specify if a non-parametric or a parametric baseline
hazard function is used in the estimation of the model. The setting OFF
specifies that a non-parametric baseline hazard function is used. This is
the default.

The MODEL command is used to describe the model to be estimated. In
multilevel models, a model is specified for both the within and between
parts of the model. In the within part of the model, the loglinear
regression of the time-to-event t on the covariate x is specified. In the
between part of the model, the linear regression of the random intercept t
on the cluster-level covariate w is specified. The residual variance of t is
estimated. The default estimator for this type of analysis is maximum
likelihood with robust standard errors. The estimator option of the
ANALYSIS command can be used to select a different estimator. An
explanation of the other commands can be found in Example 9.1.
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EXAMPLE 9.19: TWO-LEVEL MIMIC MODEL WITH
CONTINUOUS FACTOR INDICATORS, RANDOM FACTOR
LOADINGS, TWO COVARIATES ON WITHIN, AND ONE
COVARIATE ON BETWEEN WITH EQUAL LOADINGS
ACROSS LEVELS

TITLE: this is an example of a two-level MIMIC
model with continuous factor indicators,
random factor loadings, two covariates on
within, and one covariate on between
with equal loadings across levels

DATA: FILE = ex9.19.dat;

VARIABLE: NAMES = yl-y4 x1 x2 w clus;

WITHIN = x1 x2;
BETWEEN = w;
CLUSTER = clus;

ANALYSIS: TYPE = TWOLEVEL RANDOM;
ESTIMATOR = BAYES;
PROCESSORS = 2;
BITERATIONS = (1000) ;

MODEL: SWITHINS
sl-s4 | £ BY yl-vy4;
fQ1;

f ON x1 x2;
SBETWEENS
f ON w;
£;
PLOT: TYPE = PLOT2;
OUTPUT : TECH1 TECHS;

In this example, a two-level MIMIC model with continuous factor
indicators, random factor loadings, two covariates on within, and one
covariate on between with equal loadings across levels is estimated. In
the ANALYSIS command, TYPE=TWOLEVEL RANDOM is specified
indicating that a two-level model will be estimated. By specifying
ESTIMATOR=BAYES, a Bayesian analysis will be carried out. In
Bayesian estimation, the default is to use two independent Markov chain
Monte Carlo (MCMC) chains. If multiple processors are available,
using PROCESSORS=2 will speed up computations. The
BITERATIONS option is used to specify the maximum and minimum
number of iterations for each Markov chain Monte Carlo (MCMC) chain
when the potential scale reduction (PSR) convergence criterion (Gelman
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& Rubin, 1992) is used. Using a number in parentheses, the
BITERATIONS option specifies that a minimum of 1000 and a
maximum of the default of 50,000 iterations will be used.

In the within part of the model, the | symbol is used in conjunction with
TYPE=RANDOM to name and define the random factor loading
variables in the model. The name on the left-hand side of the | symbol
names the random factor loading variable. The statement on the right-
hand side of the | symbol defines the random factor loading variable.
Random factor loadings are defined using the BY option. The random
factor loading variables s1, s2, s3, and s4 are defined by the linear
regression of the factor indicators y1, y2, y3, and y4 on the factor f. The
factor variance is fixed at one to set the metric of the factor. The
residual variances of y1 through y4 are estimated and the residuals are
not correlated as the default. The ON statement describes the linear
regression of f on the individual-level covariates x1 and x2. In the
between part of the model, the ON statement describes the linear
regression of the random intercept f on the cluster-level covariate w.
The cluster-level residual variance of the factor is estimated. The
intercepts and the cluster-level residual variances of y1 through y4 are
estimated and the residuals are not correlated as the default.

By specifying TYPE=PLOT2 in the PLOT command, the following
plots are available:  posterior parameter distributions, posterior
parameter trace plots, autocorrelation plots, posterior predictive
checking scatterplots, and posterior predictive checking distribution
plots. An explanation of the other commands can be found in Example
9.1.

Following is one alternative specification of the MODEL command
where a different factor fb is specified in the between part of the model
using the random intercepts as factor indicators. The residual variance
of fb is estimated as the default.

MODEL: SWITHINS
sl-s4 | £ BY yl-vy4;
fQ1;
f ON x1 x2;
SBETWEENS%
fb BY yl-vy4;
fb ON w;
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Following is another alternative specification of the MODEL command
where a factor is specified in the between part of the model using the
random intercepts as factors indicators.
factor are held equal to the means of the random factor loadings defined

in the within part of the model.

MODEL:

SWITHINS

sl-s4 | £ BY yl-v4;

fa@i;

f ON x1 x2;

$SBETWEEN%

fb BY yl-y4* (laml-lamé);
fb ON w;

[sl-s4] (laml-lam4);

EXAMPLE 9.20: THREE-LEVEL REGRESSION FOR A
CONTINUOUS DEPENDENT VARIABLE

TITLE:

DATA:

MODEL:

OUTPUT:

VARIABLE:

ANALYSIS:

this is an example of a three-level
regression for a continuous dependent
variable

FILE = ex9.20.dat;

NAMES =y x w z level2 level3;
CLUSTER = level3 level2;

WITHIN = x;

BETWEEN = (level2?2) w (level3) z;

TYPE = THREELEVEL RANDOM;

SWITHINS

sl | y ON x;
$BETWEEN level2%
s2 | y ON w;

sl2 | sl ON w;

y WITH sl;
$BETWEEN level3$%
y ON z;

sl ON z;

s2 ON z;

sl2 ON z;

y WITH sl s2 sl2;
sl WITH s2 sl12;
s2 WITH sl12;
TECH1 TECHS;
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In this example, the three-level regression with a continuous dependent
variable shown in the picture above is estimated. The CLUSTER option
is used to identify the variables in the data set that contain clustering
information. Two cluster variables are used for a three-level model.
The CLUSTER option specifies that level3 is the cluster variable for
level 3 and level2 is the cluster variable for level 2. The cluster variable
for the highest level must come first, that is, level 2 is nested in level 3.

The WITHIN option is used to identify the variables in the data set that
are measured on the individual level and to specify the levels on which
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they are modeled. All variables on the WITHIN list must be measured
on the individual level. An individual-level variable can be modeled on
all or some levels. If a variable measured on the individual level is
mentioned on the WITHIN list without a label, it is modeled on only
level 1. It has no variance on levels 2 and 3. If a variable is not
mentioned on the WITHIN list, it is modeled on all levels. The variable
x can be modeled on only level 1. The variable y can be modeled on all
levels.

The BETWEEN option is used to identify the variables in the data set
that are measured on the cluster level(s) and to specify the level(s) on
which they are modeled. All variables on the BETWEEN list must be
measured on a cluster level. A cluster-level variable can be modeled on
all or some cluster levels. For TYPE=THREELEVEL, if a variable
measured on level 2 is mentioned on the BETWEEN list with a level 2
cluster label, it is modeled on only level 2. It has no variance on level 3.
A variable measured on level 3 must be mentioned on the BETWEEN
list with a level 3 cluster label. The variable w can be modeled on only
level 2. The variable z can be modeled on only level 3.

In the ANALYSIS command, TYPE=THREELEVEL RANDOM is
specified indicating that a three-level model will be estimated. In the
within and level 2 parts of the model, the | symbol is used in conjunction
with TYPE=RANDOM to name and define the random slope variables
in the model. The name on the left-hand side of the | symbol names the
random slope variable. The statement on the right-hand side of the |
symbol defines the random slope variable. Random slopes are defined
using the ON option. In the within part of the model, the random slope
sl is defined by the linear regression of y on the individual-level
covariate x. The within-level residual variance of y is estimated as the
default. In the level 2 part of the model, two random slopes are defined.
The random slope s2 is defined by the linear regression of the level 2
random intercept y on the level 2 covariate w. The random slope s12 is
defined by the linear regression of the level 2 random slope s1 on the
level 2 covariate w. The level 2 residual variances of y and sl are
estimated and the residuals are not correlated as the default. The WITH
statement specifies that the level 2 residuals of y and s1 are correlated.

In the level 3 part of the model, the first ON statement describes the
linear regression of the level 3 random intercept y on the level 3
covariate z. The next three ON statements describe the linear
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regressions of the level 3 random slopes s1, s2, and s12 on the level 3
covariate z. The intercepts and level 3 residual variances of y, s1, s2,
and s12 are estimated and the residuals are not correlated as the default.
The WITH statements specify that the level 3 residuals of y, s1, s2, and
s12 are correlated. The default estimator for this type of analysis is
maximum likelihood with robust standard errors. The ESTIMATOR
option of the ANALYSIS command can be used to select a different
estimator. An explanation of the other commands can be found in
Examples 9.1 and 9.3.

EXAMPLE 9.21: THREE-LEVEL PATH ANALYSIS WITH A
CONTINUOUS AND A CATEGORICAL DEPENDENT

VARIABLE

TITLE: this an example of a three-level path
analysis with a continuous and a
categorical dependent variable

DATA: FILE = ex9.21.dat;
VARIABLE: NAMES = u y2 vy yv3 x w z level2 level3;
CATEGORICAL = u;

CLUSTER = level3 level2;

WITHIN = x;

BETWEEN = y2 (level2) w (level3) =z y3;
ANALYSIS: TYPE = THREELEVEL;

ESTIMATOR = BAYES;

PROCESSORS = 2;

BITERATIONS = (1000);
MODEL: SWITHINS

u ON y x;

y ON x;

SBETWEEN level2%

u ON w y y2;

y ON w;

y2 ON w;

y WITH y2;

SBETWEEN level3%

u ON y y2;

y ON z;

y2 ON z;

y3 ON y y2;

y WITH y2;

u WITH y3;
OUTPUT : TECH1 TECHS;
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In this example, the three-level path analysis with a continuous and a
categorical dependent variable shown in the picture above is estimated.
The CATEGORICAL option is used to specify which dependent
variables are treated as binary or ordered categorical (ordinal) variables
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in the model and its estimation. In the example above, the variable u is
binary or ordered categorical.

The WITHIN option is used to identify the variables in the data set that
are measured on the individual level and to specify the levels on which
they are modeled. All variables on the WITHIN list must be measured
on the individual level. An individual-level variable can be modeled on
all or some levels. If a variable measured on the individual level is
mentioned on the WITHIN list without a label, it is modeled on only
level 1. It has no variance on levels 2 and 3. If a variable is not
mentioned on the WITHIN list, it is modeled on all levels. The variable
x can be modeled on only level 1. The variables u and y can be modeled
on all levels.

The BETWEEN option is used to identify the variables in the data set
that are measured on the cluster level(s) and to specify the level(s) on
which they are modeled. All variables on the BETWEEN list must be
measured on a cluster level. A cluster-level variable can be modeled on
all or some cluster levels. For TYPE=THREELEVEL, if a variable
measured on level 2 is mentioned on the BETWEEN list without a label,
it is modeled on levels 2 and 3. If a variable measured on level 2 is
mentioned on the BETWEEN list with a level 2 cluster label, it is
modeled on only level 2. It has no variance on level 3. A variable
measured on level 3 must be mentioned on the BETWEEN list with a
level 3 cluster label. The variable y2 can be modeled on levels 2 and 3.
The variable w can be modeled on only level 2. The variables z and y3
can be modeled on only level 3.

In the ANALYSIS command, TYPE=THREELEVEL is specified
indicating that a three-level model will be estimated. By specifying
ESTIMATOR=BAYES, a Bayesian analysis will be carried out. In
Bayesian estimation, the default is to use two independent Markov chain
Monte Carlo (MCMC) chains. If multiple processors are available,
using PROCESSORS=2 will speed up computations. The
BITERATIONS option is used to specify the maximum and minimum
number of iterations for each Markov chain Monte Carlo (MCMC) chain
when the potential scale reduction (PSR) convergence criterion (Gelman
& Rubin, 1992) is used. Using a number in parentheses, the
BITERATIONS option specifies that a minimum of 1,000 and a
maximum of the default of 50,000 iterations will be used.
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In the within part of the model, the first ON statement describes the
probit regression of u on the mediator y and the individual-level
covariate X. The second ON statement describes the linear regression of
the mediator y on the covariate x. The within-level residual variance of
y is estimated as the default. In the level 2 part of the model, the first
ON statement describes the linear regression of the level 2 random
intercept u on the level 2 covariate w, the level 2 random intercept y, and
the level 2 mediator y2. The second ON statement describes the linear
regression of the level 2 random intercept y on the level 2 covariate w.
The third ON statement describes the linear regression of the level 2
mediator y2 on the level 2 covariate w. The level 2 residual variances of
u, y, and y2 are estimated and the residuals are not correlated as the
default. The WITH statement specifies that the level 2 residuals of y and
y2 are correlated. In the level 3 part of the model, the first ON statement
describes the linear regression of the level 3 random intercept u on the
level 3 random intercepts y and y2. The second ON statement describes
the linear regression of the level 3 random intercept y on the level 3
covariate z. The third ON statement describes the linear regression of
the level 3 random intercept y2 on the level 3 covariate z. The fourth
ON statement describes the linear regression of the level 3 variable y3
on the level 3 random intercepts y and y2. The threshold of u; the
intercepts of y, y2, and y3; and the level 3 residual variances of u, y, y2,
and y3 are estimated and the residuals are not correlated as the default.
The first WITH statement specifies that the residuals of y and y2 are
correlated. The second WITH statement specifies that the residuals of u
and y3 are correlated. An explanation of the other commands can be
found in Examples 9.1, 9.3, and 9.20.
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EXAMPLE 9.22: THREE-LEVEL MIMIC MODEL WITH
CONTINUOUS FACTOR INDICATORS, TWO COVARIATES
ON WITHIN, ONE COVARIATE ON BETWEEN LEVEL 2, AND
ONE COVARIATE ON BETWEEN LEVEL 3 WITH RANDOM
SLOPES ON BOTH WITHIN AND BETWEEN LEVEL 2

TITLE: this is an example of a three-level MIMIC
model with continuous factor indicators,
two covariates on within, one covariate on
between level 2, one covariate on between
level 3 with random slopes on both within
and between level 2

DATA: FILE = ex9.22.dat;

VARIABLE: NAMES = yl-y6 x1 x2 w z level2 level3;
CLUSTER = level3 level2;

WITHIN = x1 x2;

BETWEEN = (level2) w (level3) z;
ANALYSIS: TYPE = THREELEVEL RANDOM;
MODEL: SWITHINS

fwl BY yl-y3;

fw2 BY y4-y6;

fwl ON x1;

s | fw2 ON x2;

$BETWEEN level2$%

fb2 BY yl-y6;

sf2 | fb2 ON w;

ss | s ON w;

fb2 WITH s;

$BETWEEN level3$%

fb3 BY yl-y6;

fb3 ON z;

s ON z;

sf2 ON z;

ss ON z;

fb3 WITH s sf2 ss;

s WITH sf2 ss;

sf2 WITH ss;
OUTPUT : TECH1 TECHS;
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In this example, the three-level MIMIC model with continuous factor
indicators, two covariates on within, one covariate on between level 2,
one covariate on between level 3 with random slopes on both within and
between level 2 shown in the picture above is estimated.

The WITHIN option is used to identify the variables in the data set that
are measured on the individual level and to specify the levels on which
they are modeled. All variables on the WITHIN list must be measured
on the individual level. An individual-level variable can be modeled on
all or some levels. If a variable measured on the individual level is
mentioned on the WITHIN list without a label, it is modeled on only
level 1. It has no variance on levels 2 and 3. If a variable is not
mentioned on the WITHIN list, it is modeled on all levels. The variables
x1 and x2 can be modeled on only level 1. The variables y1 through y6
can be modeled on all levels.

The BETWEEN option is used to identify the variables in the data set
that are measured on the cluster level(s) and to specify the level(s) on
which they are modeled. All variables on the BETWEEN list must be
measured on a cluster level. A cluster-level variable can be modeled on
all or some cluster levels. For TYPE=THREELEVEL, if a variable
measured on level 2 is mentioned on the BETWEEN list with a level 2
cluster label, it is modeled on only level 2. It has no variance on level 3.
A variable measured on level 3 must be mentioned on the BETWEEN
list with a level 3 cluster label. The variable w can be modeled on only
level 2. The variable z can be modeled on only level 3.

In the ANALYSIS command, TYPE=THREELEVEL RANDOM is
specified indicating that a three-level model will be estimated. In the
within part of the model, the first BY statement specifies that the factor
fwl is measured by y1 through y3. The second BY statement specifies
that fw2 is measured by y4 through y6. The metric of the factors is set
automatically by the program by fixing the first factor loading in each
BY statement to one. This default can be overridden. The residual
variances of the factor indicators are estimated and the residuals are not
correlated as the default. The residual variances of the factors are
estimated and the residuals are correlated as the default. The ON
statement describes the linear regression of fwl on the individual-level
covariate x1.

333



CHAPTER 9

334

In the within and level 2 parts of the model, the | symbol is used in
conjunction with TYPE=RANDOM to name and define the random
slope variables in the model. The name on the left-hand side of the |
symbol names the random slope variable. The statement on the right-
hand side of the | symbol defines the random slope variable. Random
slopes are defined using the ON option. In the within part of the model,
the random slope s is defined by the linear regression of fw2 on the
individual-level covariate x2.

In the level 2 part of the model, the BY statement specifies that the
factor fb2 is measured by the level 2 random intercepts y1 through y6.
The metric of the factors is set automatically by the program by fixing
the first factor loading in each BY statement to one. This default can be
overridden. The level 2 residual variances of the factor indicators are
estimated and the residuals are not correlated as the default. The
variance of the factor is estimated as the default. The random slope sf2
is defined by the linear regression of fb2 on the level 2 covariate w. The
random slope ss is defined by the linear regression of the random slope s
on the level 2 covariate w. The level 2 residual variances of fb2 and s
are estimated and the residuals are not correlated as the default.

In the level 3 part of the model, the BY statement specifies that the
factor fb3 is measured by the level 3 random intercepts y1 through y6.
The metric of the factors is set automatically by the program by fixing
the first factor loading in each BY statement to one. This default can be
overridden. The intercept and level 3 residual variances of the factor
indicators are estimated and the residuals are not correlated as the
default. The residual variance of the factor is estimated as the default.
The first ON statement describes the linear regression of fb3 on the level
3 covariate z. The second ON statement describes the linear regression
of the random slope s on the level 3 covariate z. The third ON statement
describes the linear regression of the random slope sf2 on the level 3
covariate z. The fourth ON statement specifies the linear regression of
the random slope ss on the level 3 covariate z. The intercepts of y1
through y6, s, sf2, and ss; and the level 3 residual variances of b3, s,
sf2, and ss are estimated and the residuals are not correlated as the
default. The WITH statements specify that the level 3 residuals of fb3,
s, sf2, and ss are correlated. The default estimator for this type of
analysis is maximum likelihood with robust standard errors. The
ESTIMATOR option of the ANALYSIS command can be used to select
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a different estimator. An explanation of the other commands can be
found in Examples 9.1, 9.3, and 9.20.

EXAMPLE 9.23: THREE-LEVEL GROWTH MODEL WITH A
CONTINUOUS OUTCOME AND ONE COVARIATE ON EACH
OF THE THREE LEVELS

TITLE: this is an example of a three-level growth
model with a continuous outcome and one
covariate on each of the three levels

DATA: FILE = ex9.23.dat;

VARIABLE: NAMES = yl-y4 x w z level2 level3;

CLUSTER = level3 level2;
WITHIN = x;

BETWEEN = (level2) w (level3) z;
ANALYSIS: TYPE = THREELEVEL;
MODEL: SWITHINS

iw sw | yl@0 y2@1 y3@2 y4@3;
iw sw ON x;
$BETWEEN level2%
ib2 sb2 | yl@0 y2@1 y3@2 y4@3;
ib2 sb2 ON w;
$BETWEEN level3%
ib3 sb3 | yl@0 y2@1 y3@2 y4@3;
ib3 sb3 ON z;
y1-y4@0;

OUTPUT : TECH1 TECHS;
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In this example, the three-level growth model with a continuous outcome
and one covariate on each of the three levels shown in the picture above
is estimated.

The WITHIN option is used to identify the variables in the data set that
are measured on the individual level and to specify the levels on which
they are modeled. All variables on the WITHIN list must be measured
on the individual level. An individual-level variable can be modeled on
all or some levels. If a variable measured on the individual level is
mentioned on the WITHIN list without a label, it is modeled on only
level 1. It has no variance on levels 2 and 3. |If a variable is not
mentioned on the WITHIN list, it is modeled on all levels. The variable
x can be modeled on only level 1. The variables y1 through y4 can be
modeled on all levels.

The BETWEEN option is used to identify the variables in the data set
that are measured on the cluster level(s) and to specify the level(s) on
which they are modeled. All variables on the BETWEEN list must be
measured on a cluster level. A cluster-level variable can be modeled on
all or some cluster levels. For TYPE=THREELEVEL, if a variable
measured on level 2 is mentioned on the BETWEEN list with a level 2
cluster label, it is modeled on only level 2. It has no variance on level 3.
A variable measured on level 3 must be mentioned on the BETWEEN
list with a level 3 cluster label. The variable w can be modeled on only
level 2. The variable z can be modeled on only level 3.

In the ANALYSIS command, TYPE=THREELEVEL is specified
indicating that a three-level model will be estimated. In the within part
of the model, the | symbol is used to name and define the within
intercept and slope factors in a growth model. The names iw and sw on
the left-hand side of the | symbol are the names of the intercept and slope
growth factors, respectively. The statement on the right-hand side of the
| symbol specifies the outcome and the time scores for the growth model.
The time scores for the slope growth factor are fixed at 0, 1, 2, and 3 to
define a linear growth model with equidistant time points. The zero time
score for the slope growth factor at time point one defines the intercept
growth factor as an initial status factor. The coefficients of the intercept
growth factor are fixed at one as part of the growth model
parameterization. The residual variances of y1 through y4 are estimated
and allowed to be different across time and the residuals are not
correlated as the default. In the parameterization of the growth model
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shown here, the intercepts of the outcome variables at the four time
points are fixed at zero as the default. The ON statement describes the
linear regression of the intercept and slope growth factors on the
individual-level covariate x. The residual variances of the growth
factors are estimated and the residuals are correlated as the default. The
level 2 residual variances of y1 through y4 are estimated and allowed to
be different across time and the residuals are not correlated as the
default.

The growth model specified in the within part of the model is also
specified on levels 2 and 3. In the level 2 part of the model, the ON
statement describes the linear regression of the level 2 intercept and
slope growth factors on the level 2 covariate w. The level 2 residual
variances of the growth factors are estimated and the residuals are
correlated as the default. In the level 3 part of the model, the ON
statement describes the linear regression of the level 3 intercept and
slope growth factors on the level 3 covariate z. The intercepts and level
3 residual variances of the growth factors are estimated and the residuals
are correlated as the default. The level 3 residual variances of yl
through y4 are fixed at zero. The default estimator for this type of
analysis is maximum likelihood with robust standard errors. The
ESTIMATOR option of the ANALYSIS command can be used to select
a different estimator. An explanation of the other commands can be
found in Examples 9.1, 9.3, and 9.20.
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EXAMPLE 9.24: REGRESSION FOR A CONTINUOUS
DEPENDENT VARIABLE USING CROSS-CLASSIFIED DATA

TITLE:

DATA:

MODEL:

OUTPUT:

VARIABLE:

ANALYSIS:

this is an example of a regression for a
continuous dependent variable using cross-
classified data

FILE = ex9.24.dat;

NAMES = vy x1 x2 w z level2a level2b;
CLUSTER = level2b level2a;

WITHIN = x1 x2;

BETWEEN = (level2a) w (level2b) z;
TYPE = CROSSCLASSIFIED RANDOM;
ESTIMATOR = BAYES;

PROCESSORS = 2;

BITERATIONS = (2000);

SWITHINS

y ON x1;

s | y ON x2;

$BETWEEN level2a%

y ON w;

s ON w;

y WITH s;

SBETWEEN level2b%

y ON z;

s ON z;

y WITH s;

TECH1 TECHS;
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In this example, the regression for a continuous dependent variable using
cross-classified data shown in the picture above is estimated. The
CLUSTER option is used to identify the variables in the data set that
contain clustering information. Two cluster variables are used for a
cross-classified model. The CLUSTER option specifies that level2b is
the cluster variable for level 2b and level2a is the cluster variable for
level 2a.
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The WITHIN option is used to identify the variables in the data set that
are measured on the individual level and to specify the levels on which
they are modeled. All variables on the WITHIN list must be measured
on the individual level. An individual-level variable can be modeled on
all or some levels. If a variable measured on the individual level is
mentioned on the WITHIN list without a label, it is modeled on only
level 1. It has no variance on levels 2a and 2b. If a variable is not
mentioned on the WITHIN list, it is modeled on all levels. The variables
x1 and x2 can be modeled on only level 1. The variable y can be
modeled on all levels.

The BETWEEN option is used to identify the variables in the data set
that are measured on the cluster level(s) and to specify the level(s) on
which they are modeled. All variables on the BETWEEN list must be
measured on a cluster level. For TYPE=CROSSCLASSIFIED, a
variable measured on level 2a must be mentioned on the BETWEEN list
with a level 2a cluster label. It can be modeled on only level 2a. A
variable measured on level 2b must be mentioned on the BETWEEN list
with a level 2b cluster label. It can be modeled on only level 2b. The
variable w can be modeled on only level 2a. The variable z can be
modeled on only level 2b.

In the ANALYSIS command, TYPE=CROSSCLASSIFIED RANDOM
is specified indicating that a cross-classified model will be estimated.
By specifying ESTIMATOR=BAYES, a Bayesian analysis will be
carried out. In Bayesian estimation, the default is to use two
independent Markov chain Monte Carlo (MCMC) chains. If multiple
processors are available, using PROCESSORS=2 will speed up
computations. The BITERATIONS option is used to specify the
maximum and minimum number of iterations for each Markov chain
Monte Carlo (MCMC) chain when the potential scale reduction (PSR)
convergence criterion (Gelman & Rubin, 1992) is used. Using a number
in parentheses, the BITERATIONS option specifies that a minimum of
2000 and a maximum of the default of 50,000 iterations will be used.

In the within part of the model, the ON statement describes the linear
regression of y on the individual-level covariate x1. The residual
variance of y is estimated as the default. The | symbol is used in
conjunction with TYPE=RANDOM to name and define the random
slope variables in the model. The name on the left-hand side of the |
symbol names the random slope variable. The statement on the right-
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hand side of the | symbol defines the random slope variable. Random
slopes are defined using the ON option. The random slope s is defined
by the linear regression of y on the individual-level covariate x2. In the
level 2a part of the model, the first ON statement describes the linear
regression of the level 2a random intercept y on the level 2a covariate w.
The second ON statement describes the linear regression of the level 2a
random slope s on the level 2a covariate w. The residuals of y and s are
estimated and the residuals are not correlated as the default. The WITH
statement specifies that the residuals of y and s are correlated. In the
level 2b part of the model, the first ON statement describes the linear
regression of the level 2b random intercept y on the level 2b covariate z.
The second ON statement describes the linear regression of the level 2b
random slope s on the level 2b covariate z. The residual variances of y
and s are estimated and the residuals are not correlated as the default.
The WITH statement specifies that the residuals of y and s are
correlated. The intercepts of y and s are estimated as the default on level
2b. An explanation of the other commands can be found in Examples
9.1and 9.3.

EXAMPLE 9.25: PATH ANALYSIS WITH CONTINUOUS
DEPENDENT VARIABLES USING CROSS-CLASSIFIED DATA

342

TITLE: this is an example of path analysis with
continuous dependent variables using
cross-classified data

DATA: FILE = ex9.25.dat;

VARIABLE: NAMES = yl yv2 x w z level2a levellb;
CLUSTER = level2b level2a;

WITHIN = x;
BETWEEN = (level2a) w (level2b) z;

ANALYSIS: TYPE = CROSSCLASSIFIED;

ESTIMATOR = BAYES;
PROCESSORS = 2;

MODEL: SWITHINS
y2 ON yl x;
yl ON x;
$BETWEEN level2a$
vyl y2 ON w;
yl WITH y2;
$BETWEEN level2b%
vyl y2 ON z;
yl WITH y2;

OUTPUT : TECH1 TECHS;
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Within

Level 2a

Level 2b

In this example, the path analysis with continuous dependent variables
using cross-classified data shown in the picture above is estimated. The
WITHIN option is used to identify the variables in the data set that are
measured on the individual level and to specify the levels on which they
are modeled. All variables on the WITHIN list must be measured on the
individual level. An individual-level variable can be modeled on all or
some levels. If a variable measured on the individual level is mentioned
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on the WITHIN list without a label, it is modeled on only level 1. It has
no variance on levels 2a and 2b. If a variable is not mentioned on the
WITHIN list, it is modeled on all levels. The variable x can be modeled
on only level 1. The variables y1 and y2 can be modeled on all levels.

The BETWEEN option is used to identify the variables in the data set
that are measured on the cluster level(s) and to specify the level(s) on
which they are modeled. All variables on the BETWEEN list must be
measured on a cluster level. For TYPE=CROSSCLASSIFIED, a
variable measured on level 2a must be mentioned on the BETWEEN list
with a level 2a cluster label. It can be modeled on only level 2a. A
variable measured on level 2b must be mentioned on the BETWEEN list
with a level 2b cluster label. It can be modeled on only level 2b. The
variable w can be modeled on only level 2a. The variable z can be
modeled on only level 2b.

In the ANALYSIS command, TYPE=CROSSCLASSIFIED is specified
indicating that a cross-classified model will be estimated. By specifying
ESTIMATOR=BAYES, a Bayesian analysis will be carried out. No
other estimators are available. In Bayesian estimation, the default is to
use two independent Markov chain Monte Carlo (MCMC) chains. |If
multiple processors are available, using PROCESSORS=2 will speed up
computations.

In the within part of the model, the first ON statement describes the
linear regression of y2 on the mediator y1 and the individual-level
covariate X. The second ON statement describes the linear regression of
yl on the individual-level covariate x. The residuals of y1 and y2 are
estimated and the residual are not correlated as the default. In the level
2a part of the model, the first ON statement describes the linear
regressions of the level 2a intercepts y1 and y2 on the level 2a covariate
w. The level 2a residuals are estimated and the residuals are not
correlated as the default. The WITH statement specifies that the level 2a
residuals of y1 and y2 are correlated. In the level 2b part of the model,
the first ON statement describes the linear regression of the level 2b
random intercepts y1 and y2 on the level 2b covariate z. The level 2b
residuals are estimated and the residuals are not correlated as the default.
The WITH statement specifies that the level 2b residuals of y1 and y2
are correlated. The intercepts of y1 and y2 are estimated as the default
on level 2b. An explanation of the other commands can be found in
Examples 9.1, 9.3, and 9.24.
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EXAMPLE 9.26: IRT WITH RANDOM BINARY ITEMS USING
CROSS-CLASSIFIED DATA

TITLE: this is an example of IRT with random
binary items using cross-classified
data

DATA: FILE = ex9.26.dat;

VARIABLE: NAMES = u subject item;
CATEGORICAL = u;
CLUSTER = item subject;
ANALYSIS: TYPE = CROSSCLASSIFIED RANDOM;
ESTIMATOR = BAYES;
PROCESSORS = 2;
MODEL: SWITHINS
$BETWEEN subject$
s | £ BY u;
f@i;
u@o;
$SBETWEEN item%
u; [us$l];
s; [sl:
OUTPUT: TECH1 TECHS;

In this example, an IRT with random binary items using cross-classified
data is estimated (Fox, 2010). Both the intercepts and factor loadings of
the set of items are random. The CATEGORICAL option is used to
specify which dependent variables are treated as binary or ordered
categorical (ordinal) variables in the model and its estimation. In the
example above, the variable u is binary or ordered categorical. The
CLUSTER option is used to identify the variables in the data set that
contain clustering information. Two cluster variables are used for a
cross-classified model. The CLUSTER option specifies that item is the
cluster variable for the item level and subject is the cluster variable for
the subject level. The fastest moving level must come first.

The WITHIN option is used to identify the variables in the data set that
are measured on the individual level and to specify the levels on which
they are modeled. If a variable is not mentioned on the WITHIN list, it
is modeled on all levels. The variable u can be modeled on the subject
and item levels.

In the ANALYSIS command, TYPE=CROSSCLASSIFIED RANDOM
is specified indicating that a cross-classified model will be estimated.
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By specifying ESTIMATOR=BAYES, a Bayesian analysis will be
carried out. In Bayesian estimation, the default is to use two
independent Markov chain Monte Carlo (MCMC) chains. If multiple
processors are available, using PROCESSORS=2 will speed up
computations.

The within part of the model is not used in this example. In the subject
part of the model, the | symbol is used in conjunction with
TYPE=RANDOM to name and define the random factor loading
variables in the model. The name on the left-hand side of the | symbol
names the random factor loading variable. The statement on the right-
hand side of the | symbol defines the random factor loading variable.
Random factor loadings are defined using the BY option. The random
factor loading variable s is defined by the probit regression of u on the
factor f. The factor variance is fixed at one to set the metric of the
factor. The across-subject variance of u is fixed at zero. In the item part
of the model, the variance of the random intercept u, the threshold of u,
and the mean and variance of the random factor loading s are estimated
as the default. An explanation of the other commands can be found in
Examples 9.1, 9.3, and 9.24.
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EXAMPLE 9.27: MULTIPLE INDICATOR GROWTH MODEL
WITH RANDOM INTERCEPTS AND FACTOR LOADINGS
USING CROSS-CLASSIFIED DATA

TITLE: this is an example of a multiple indicator
growth model with random intercepts and
factor loadings using cross-classified
data

DATA: FILE = ex9.27.dat;

VARIABLE: NAMES = yl-y3 time subject;
USEVARIABLES = yl-y3 timescor;

CLUSTER = subject time;
WITHIN = timescor (time) yl-vy3;

DEFINE: timescor = (time-1)/100;

ANALYSIS: TYPE = CROSSCLASSIFIED RANDOM;
ESTIMATOR = BAYES;

PROCESSORS = 2;
BITERATIONS = (1000) ;

MODEL: SWITHINS
sl-s3 | £ BY yl-y3;
fQ1;

s | £ ON timescor;
yl-y3; [yl-y3@0];
$BETWEEN time%
sl-s3; [sl-s31];
yl-y3; [yl-y3@Q0];

s@0; [s@0];
$BETWEEN subject$%
£; [£]1:
s1-s3@0; [s1-s3@0];
s; [sl:

OUTPUT: TECH1 TECHS;

In this example, a multiple indicator growth model with random
intercepts and factor loadings using cross-classified data is estimated.
The WITHIN option is used to identify the variables in the data set that
are measured on the individual level and to specify the levels on which
they are modeled. All variables on the WITHIN list must be measured
on the individual level. An individual-level variable can be modeled on
all or some levels. If a variable measured on the individual level is
mentioned on the WITHIN list without a label, it is modeled on only
level 1. It has no variance on the time and subject levels. If it is
mentioned on the WITHIN list with a time cluster label, it is modeled on
levels 1 and on the time level. It has no variance on the subject level.
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The variable timescor can be modeled on only level 1. The variables y1,
y2, and y3 can be modeled on levels 1 and the time level. The DEFINE
command is used to transform existing variables and to create new
variables. The new variable timescor is a time score variable centered at
the first time point.

In the ANALYSIS command, TYPE=CROSSCLASSIFIED RANDOM
is specified indicating that a cross-classified model will be estimated.
By specifying ESTIMATOR=BAYES, a Bayesian analysis will be
carried out. In Bayesian estimation, the default is to use two
independent Markov chain Monte Carlo (MCMC) chains. If multiple
processors are available, using PROCESSORS=2 will speed up
computations. The BITERATIONS option is used to specify the
maximum and minimum number of iterations for each Markov chain
Monte Carlo (MCMC) chain when the potential scale reduction (PSR)
convergence criterion (Gelman & Rubin, 1992) is used. Using a number
in parentheses, the BITERATIONS option specifies that a minimum of
1000 and a maximum of the default of 50,000 iterations will be used.

In the within part of the model, the | symbol is used in conjunction with
TYPE=RANDOM to name and define the random factor loading
variables in the model. The name on the left-hand side of the | symbol
names the random factor loading variable. The statement on the right-
hand side of the | symbol defines the random factor loading variable.
Random factor loadings are defined using the BY option. The random
factor loading variables sl1, s2, and s3 are defined by the linear
regression of the factor indicators y1, y2, and y3 on the factor f. The
factor variance is fixed to one to set the metric of the factor. The
intercepts of the factor indicators are fixed at zero as part of the growth
model parameterization. The residual variances are estimated and the
residuals are not correlated as the default.

The | symbol is used in conjunction with TYPE=RANDOM to name and
define the random slope variables in the model. The name on the left-
hand side of the | symbol names the random slope variable. The
statement on the right-hand side of the | symbol defines the random slope
variable. Random slopes are defined using the ON option. The random
slope growth factor s is defined by the linear regression of f on the
individual-level covariate timescor.
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In the time part of the model, the means and variances of the random
factor loadings s1, s2, and s3 and the variances of the random intercepts
y1, y2, and y3 are estimated. The intercepts of y1, y2, and y3 are fixed
at zero as part of the growth model parameterization. The variances of
the random factor loadings s1, s2, and s3 and the variances of the
random intercepts y1, y2, and y3 represent measurement non-invariance
across time. The mean and variance of the random slope growth factor s
are fixed at zero.

In the subject part of the model, f is a random intercept growth factor.
Its mean and variance are estimated. The means and variances of the
random factor loadings s1, s2, and s3 are fixed at zero. The mean and
variance of the random slope growth factor s are estimated. An
explanation of the other commands can be found in Examples 9.1, 9.3,
and 9.24.

EXAMPLE 9.28: TWO-LEVEL REGRESSION ANALYSIS FOR
A CONTINUOUS DEPENDENT VARIABLE WITH A RANDOM
INTERCEPT AND A RANDOM RESIDUAL VARIANCE

TITLE: this is an example of a two-level
regression analysis for a continuous
dependent variable with a random intercept
and a random residual variance

DATA: FILE = ex9.28.dat;

VARIABLE: NAMES ARE z y x w xm clus;

WITHIN = x;
BETWEEN W Xm z;
CLUSTER clus;

ANALYSIS: TYPE = TWOLEVEL RANDOM;
ESTIMATOR = BAYES;
PROCESSORS = 2;
BITERATIONS = (2000);

MODEL: SWITHINS
y ON x;
logv | y;

SBETWEENS%

y ON w xm;

logv ON w xm;

y WITH logv;

z ON y logv;
OUTPUT : TECH1 TECHS;
PLOT: TYPE = PLOT3;
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In this example, the two-level regression analysis for a continuous
dependent variable with a random intercept and a random residual
variance shown in the picture above is estimated. The dependent
variable y in this regression is continuous. Both the intercept and
residual variance are random. In the within part of the model, the filled
circle at the end of the arrow from X to y represents a random intercept
that is referred to as y in the between part of the model. The filled circle
at the end of the residual arrow pointing to y represents a random
residual variance that is referred to as logv in the between part of the
model. In the between part of the model, the random intercept and
random residual variance are shown in circles because they are
continuous latent variables that vary across clusters. The log of the
random residual variance is used in the model.

In the ANALYSIS command, TYPE=TWOLEVEL RANDOM is
specified indicating that a two-level model will be estimated. By
specifying ESTIMATOR=BAYES, a Bayesian analysis will be carried
out. In Bayesian estimation, the default is to use two independent
Markov chain Monte Carlo (MCMC) chains. If multiple processors are
available, using PROCESSORS=2 will speed up computations. The
BITERATIONS option is used to specify the maximum and minimum
number of iterations for each Markov chain Monte Carlo (MCMC) chain
when the potential scale reduction (PSR) convergence criterion (Gelman
& Rubin, 1992) is used. Using a number in parentheses, the
BITERATIONS option specifies that a minimum of 2,000 and a
maximum of the default of 50,000 iterations will be used.
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In the within part of the model, the ON statement describes the linear
regression of y on the observed individual-level covariate x. The
residual variance of y is estimated as the default. The | symbol is used in
conjunction with TYPE=RANDOM to name and define the random
residual variance. The name on the left-hand side of the | symbol names
the log of the random residual variance. The name on the right-hand
side of the | symbol specifies the name of the variable that has a random
residual variance. Logv is the random residual variance fory.

In the between part of the model, the first ON statement describes the
linear regression of the random intercept y on the observed cluster-level
covariates w and xm. The second ON statement describes the linear
regression of the log of the random residual variance logv on the cluster-
level covariates w and xm. The intercept and residual variance of y and
logv are estimated as the default. The WITH statement specifies that the
residuals of y and logv are correlated. The third ON statement describes
the linear regression of the cluster-level dependent variable z on the
random intercept and the log of the random residual variance. The
intercept and residual variance of z are estimated as the default.

The OUTPUT command is used to request additional output not
included as the default. The TECHL1 option is used to request the arrays
containing parameter specifications and starting values for all free
parameters in the model. The TECHS8 option is used to request that the
optimization history in estimating the model be printed in the output.
TECHS is printed to the screen during the computations as the default.
TECHS screen printing is useful for determining how long the analysis
takes and to check convergence using the PSR convergence criterion.
The PLOT command is used to request graphical displays of observed
data and analysis results. These graphical displays can be viewed after
the analysis is completed using a post-processing graphics module. The
trace plot and autocorrelation plot can be used to monitor the MCMC
iterations in terms of convergence and quality of the posterior
distribution for each parameter. The posterior distribution plot shows the
complete posterior distribution of the parameter estimate.  An
explanation of the other commands can be found in Example 9.1.
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EXAMPLE 9.29: TWO-LEVEL CONFIRMATORY FACTOR
ANALYSIS (CFA) WITH CONTINUOUS FACTOR
INDICATORS, COVARIATES, AND A FACTOR WITH A
RANDOM RESIDUAL VARIANCE

TITLE: this is an example of a two-level
confirmatory factor analysis (CFA)
with continuous factor indicators,
covariates, and a factor with a random
residual variance

DATA: FILE = ex9.29.dat;

VARIABLE: NAMES ARE yl-y4 x1 x2 w clus;
WITHIN = x1 x2;

BETWEEN = w;
CLUSTER = clus;

ANALYSIS: TYPE = TWOLEVEL RANDOM;
ESTIMATOR = BAYES;
PROCESSORS = 2;
BITERATIONS = (10000) ;

MODEL: SWITHINS
fw BY yl-vy4;
fw ON x1 x2;
logv | fw;

SBETWEENS

fb BY yl-vy4;

fb ON w;

logv ON w;
OUTPUT : TECH1 TECHS;
PLOT: TYPE = PLOT3;
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In this example, the two-level CFA model with continuous factor
indicators, covariates, and a factor with a random residual variance
shown in the picture above is estimated. In the within part of the model,
the filled circles at the end of the arrows from the within factor fw to y1,
y2, y3, and y4 represent random intercepts that are referred to as y1, y2,
y3, and y4 in the between part of the model. The filled circle at the end
of the residual arrow pointing to fw represents a random residual
variance that is referred to as logv in the between part of the model. In
the between part of the model, the random intercepts are shown in
circles because they are continuous latent variables that vary across
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clusters. They are indicators of the between factor fb. The log of the
random residual variance is used in the model.

The BITERATIONS option is used to specify the maximum and
minimum number of iterations for each Markov chain Monte Carlo
(MCMC) chain when the potential scale reduction (PSR) convergence
criterion (Gelman & Rubin, 1992) is used. Using a number in
parentheses, the BITERATIONS option specifies that a minimum of
10,000 and a maximum of the default of 50,000 iterations will be used.
The minimum is relatively large because this model may be more
difficult to estimate.

In the within part of the model, the BY statement specifies that fw is
measured by yl1, y2, y3, and y4. The metric of the factor is set
automatically by the program by fixing the first factor loading to one.
This option can be overridden. The residual variances of the factor
indicators are estimated and the residuals are not correlated as the
default. The ON statement describes the linear regression of fw on the
individual-level covariates x1 and x2. The | symbol is used in
conjunction with TYPE=RANDOM to name and define the random
residual variance. The name on the left-hand side of the | symbol names
the log of the random residual variance. The name on the right-hand
side of the | symbol specifies the name of the variable that has a random
residual variance. Logv is the random residual variance for fw.

In the between part of the model, the BY statement specifies that fb is
measured by the random intercepts y1, y2, y3, and y4. The metric of the
factor is set automatically by the program by fixing the first factor
loading to one. This option can be overridden. The intercepts and
residual variances of the factor indicators are estimated and the residuals
are not correlated as the default. The first ON statement describes the
regression of fb on the cluster-level covariate w. The residual variance
of the factor is estimated as the default. The intercept of the factor is
fixed at zero as the default. The second ON statement describes the
regression of the log of the random residual variance logv on the cluster-
level covariate w. The intercept and residual variance of logv are
estimated as the default. An explanation of the other commands can be
found in Examples 9.1 and 9.28.
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EXAMPLE 9.30: TWO-LEVEL TIME SERIES ANALYSIS
WITH A UNIVARIATE FIRST-ORDER AUTOREGRESSIVE
AR(1) MODEL FOR A CONTINUOUS DEPENDENT
VARIABLE WITH A RANDOM INTERCEPT, RANDOM AR(1)
SLOPE, AND RANDOM RESIDUAL VARIANCE

TITLE: this is an example of a two-level time
series analysis with a univariate first-
order autoregressive AR(1l) model for a
continuous dependent variable with a
random intercept, random AR(l) slope, and
random residual variance

DATA: FILE = ex9.30.dat;
VARIABLE: NAMES = z y w time subject;
BETWEEN = z w;
CLUSTER = subject;

LAGGED = y(1);

TINTERVAL = time (1);
ANALYSIS: TYPE = TWOLEVEL RANDOM;

ESTIMATOR = BAYES;

PROCESSORS = 2;

BITERATIONS = (2000);
MODEL: SWITHINS

s | y ON yé&l;

logv | y;

SBETWEENS%

y ON w;

s ON w;

logv ON w;

y s logv WITH y s logv;

z ON y s logv;
OUTPUT : TECH1 TECH8 FSCOMPARISON;
PLOT: TYPE = PLOT3;

FACTORS = ALL;
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In this example, the two-level time series analysis with a univariate first-
order autoregressive AR(1) model for a continuous dependent variable
with a random intercept, random AR(1) slope, and random residual
variance shown in the picture above is estimated (Asparouhov, Hamaker,
& Muthén, 2017). The subscript t refers to a time point and the
subscript t-1 refers to the previous time point. The dots indicate that the
process includes both previous and future time points using the same
model. In the within part of the model, the filled circle at the end of the
arrow from y,; to y; represents a random intercept that is referred to as y
in the between part of the model. The filled circle on the arrow from y;
to y, represents a random AR(1) slope that is referred to as s in the
between part of the model. The filled circle at the end of the residual
arrow pointing to y represents a random residual variance that is referred
to as logv in the between part of the model. In the between part of the
model, the random intercept, random AR(1) slope, and random residual
variance are shown in circles because they are continuous latent
variables that vary across clusters. In this model, the random intercept is
the random mean because y in the within part of the model is centered.
The log of the random residual variance is used in the model.
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The LAGGED option of the VARIABLE command is used to specify
the maximum lag to use for an observed variable during model
estimation. The variable y has lag 1. The lagged variable is referred to
by adding to the name of the variable an ampersand (&) and the number
of the lag.

The TINTERVAL option is used in time series analysis to specify the
time interval that is used to create a time variable when data are
misaligned with respect to time due to missed measurement occasions
that are not assigned a missing value flag and when measurement
occasions are random. The data set must be sorted by the time interval
variable. In this example, the time interval value is one and the time
interval variable values are 1, 2, 3, etc.. This results in intervals of -.5 to
1.5,1.5t0 2.5, and 2.5t0 3.5, etc.

In the within part of the model, the | symbol is used in conjunction with
TYPE=RANDOM to name and define the random variables in the
model. The name on the left-hand side of the | symbol names the
random variable. The statement on the right-hand side of the | symbol
defines the random variable. In the first | statement, the random AR(1)
slope s is defined by the linear regression over multiple time points of
the dependent variable y on the dependent variable y&1 which is y at the
previous time point. In the second | statement, the random residual
variance logv is defined as the log of the residual variance of the
dependent variable y.

In the between part of the model, the first ON statement describes the
linear regression of the random intercept y on the observed cluster-level
covariate w. The second ON statement describes the linear regression of
the random AR(1) slope s on the observed cluster-level covariate w. The
third ON statement describes the linear regression of the log of the
random residual variance logv on the observed cluster-level covariate w.
The intercepts and residual variances of y, s, and logv are estimated and
the residuals are not correlated as the default. The WITH statement
specifies that the residuals among vy, s, and logv are correlated. The
fourth ON statement describes the linear regression of the observed
cluster-level dependent variable z on the random intercept y, the random
AR(1) slope s, and the log of the random residual variance logv.

A two-level time series analysis with a univariate second-order
autoregressive AR(2) model can also be estimated. For this analysis, the
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LAGGED option is specified as LAGGED =y (2); and the MODEL
command is specified as follows:

MODEL: SWITHINS
sl | y ON y&l;
s2 | y ON y&2;
logv | y;
SBETWEENS
y ON w;
sl-s2 ON w;
logv ON w;
y sl s2 logv WITH y sl s2 logv;
z ON y sl s2 logv;

In the first | statement, the random AR(1) slope sl is defined by the
linear regression over multiple time points of the dependent variable y
on the dependent variable y&1 which is y at the previous time point. In
the second | statement, the random AR(2) slope s2 is defined by the
linear regression over multiple time points of the dependent variable y
on the dependent variable y&2 which is y at two time points prior. A
model where only y at lag 2 is used is specified as follows:

MODEL: SWITHINS
y ON y&1@0;
s2 | y ON vy&2;

where the coefficient for y at lag 1 is fixed at zero.

In the OUTPUT command, the FSCOMPARISON option is used to
request a comparison of between-level estimated factor scores. In the
PLOT command, the FACTORS option is used with the keyword ALL
to request that estimated factor scores for all between-level random
effects be available for plotting. An explanation of the other commands
can be found in Examples 9.1 and 9.28.
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... Within

Between

A more detailed picture of the model is shown above. This picture
reflects that the dependent variable y is decomposed into two
uncorrelated latent variables,

Yit = Ywit T Ybis

where i represents individual, t represents time, Yy is the latent variable
used on the within level, and yy is the latent variable used on the
between level. This model is described in Asparouhov, Hamaker, and
Muthén (2017). The decomposition can also be expressed as

Ywit= Yit = Ybi,
which can be viewed as a latent group-mean centering of the within-level

latent variable. For a further discussion of centering and latent variable
decomposition, see Ludtke et al. (2008).
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EXAMPLE 9.31: TWO-LEVEL TIME SERIES ANALYSIS
WITH A UNIVARIATE FIRST-ORDER AUTOREGRESSIVE
AR(1) MODEL FOR A CONTINUOUS DEPENDENT
VARIABLE WITH A COVARIATE, RANDOM INTERCEPT,
RANDOM AR(1) SLOPE, RANDOM SLOPE, AND RANDOM
RESIDUAL VARIANCE

TITLE: this is an example of a two-level time
series analysis with a univariate first-
order autoregressive AR (1) model for a
continuous dependent variable with a
covariate, random intercept, random AR(1)
slope, random slope, and random residual
variance
DATA: FILE = ex9.31.dat;
VARIABLE: NAMES = y x w xm subject;
WITHIN = x;
BETWEEN = w xm;
CLUSTER = subject;
LAGGED = y(1);
DEFINE: CENTER X (GROUPMEAN) ;
ANALYSIS: TYPE = TWOLEVEL RANDOM;
ESTIMATOR = BAYES;
PROCESSORS = 2;
BITERATIONS = (2000);
MODEL: SWITHINS
sy | y ON y&l;
sx | y ON x;
logv | vy:
SBETWEENS%
y ON w xm;
sy ON w xm;
sx ON w xm;
logv ON w xm;
y sy sx logv WITH y sy sx logv;
OUTPUT : TECH1 TECHS;
PLOT: TYPE= PLOT3;
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The difference between this example and Example 9.30 is that a
covariate with a random slope is added and no cluster-level dependent
variable is used. In this example, the two-level time series analysis with
a univariate first-order autoregressive AR(1) model for a continuous
dependent variable with a covariate, random intercept, random AR(1)
slope, random slope, and random residual variance shown in the picture
above is estimated. The log of the random residual variance is used in
the model.
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In the DEFINE command, the individual-level covariate x is centered
using the cluster means for x. In this analysis, the cluster means are the
means for each subject.

In the within part of the model, the | symbol is used in conjunction with
TYPE=RANDOM to name and define the random variables in the
model. The name on the left-hand side of the | symbol names the
random variable. The statement on the right-hand side of the | symbol
defines the random variable. In the first | statement, the random AR(1)
slope sy is defined by the linear regression over multiple time points of
the dependent variable y on the dependent variable y&1 which is y at the
previous time point. In the second | statement, the random slope sx is
defined by the linear regression over multiple time points of the
dependent variable y on the observed individual-level covariate x. In the
third | statement, the random residual variance logv is defined as the log
of the residual variance of the dependent variable y.

In the between part of the model, the first ON statement describes the
linear regression of the random intercept y on the observed cluster-level
covariates w and xm. The second ON statement describes the linear
regression of the random AR(1) slope sy on the observed cluster-level
covariates w and xm. The third ON statement describes the linear
regression of the random slope sx on the observed cluster-level
covariates w and xm. The fourth ON statement describes the linear
regression of the random residual variance logv on the observed cluster-
level covariates w and xm. The intercepts and residual variances of vy,
sy, sx, and logv are estimated and the residuals are not correlated as the
default. The WITH statement specifies that the residuals among vy, sy,
sx, and logv are correlated. An explanation of the other commands can
be found in Examples 9.1, 9.28, and 9.30.
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EXAMPLE 9.32: TWO-LEVEL TIME SERIES ANALYSIS
WITH A BIVARIATE CROSS-LAGGED MODEL FOR
CONTINUOUS DEPENDENT VARIABLES WITH RANDOM
INTERCEPTS AND RANDOM SLOPES

TITLE: this is an example of a two-level time
series analysis with a bivariate cross-
lagged model for continuous dependent
variables with random intercepts and
random slopes

DATA: FILE = ex9.32.dat;

VARIABLE: NAMES = yl y2 subject;

CLUSTER = subject;
LAGGED = y1(1) y2(1);

ANALYSIS: TYPE = TWOLEVEL RANDOM;
ESTIMATOR = BAYES;
PROCESSORS = 2;
BITERATIONS = (2000);

MODEL: SWITHINS
sl | yl ON yle&l;
s2 | y2 ON y2&1;
sl2 | yl ON y2&1;
s21 | y2 ON ylé&l;

SBETWEENS%

vl y2 sl-s21 WITH yl y2 sl-s21;
OUTPUT : TECH1 TECH8 STANDARDIZED (CLUSTER) ;
PLOT: TYPE = PLOT3;
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The difference between this example and Example 9.30 is that a
bivariate cross-lagged model rather than a univariate first-order
autoregressive AR(1) model is estimated. In this example, the two-level
time series analysis with a bivariate cross-lagged model for continuous
dependent variables with random intercepts and random slopes shown in
the picture above is estimated.

In the within part of the model, the | symbol is used in conjunction with
TYPE=RANDOM to name and define the random variables in the
model. The name on the left-hand side of the | symbol names the
random variable. The statement on the right-hand side of the | symbol
defines the random variable. In the first | statement, the random AR(1)
slope sl is defined by the linear regression over multiple time points of
the dependent variable y1 on the dependent variable y1&1 which is y1 at
the previous time point. In the second | statement, the random AR(1)
slope s2 is defined by the linear regression over multiple time points of
the dependent variable y2 on the dependent variable y2&1 which is y2 at
the previous time point. In the third | statement, the random cross-lagged
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slope s12 is defined by the linear regression over multiple time points of
the dependent variable y1 on the dependent variable y2&1 which is y2 at
the previous time point. In the fourth | statement, the random cross-
lagged slope s21 is defined by the linear regression over multiple time
points of the dependent variable y2 on the dependent variable y1&1
which is y1 at the previous time point.

In the between part of the model, the WITH statement specifies that y1,
y2, 81, s2,s12, s21, are correlated.

In the OUTPUT command, the STANDARDIZED option is used to
request standardized parameter estimates and their standard errors and
R-square. When a model has random effects, each parameter is
standardized for each cluster. The standardized values reported are the
average of the standardized values across clusters for each parameter
(Schuurman et al., 2016; Asparouhov, Hamaker, & Muthén, 2017). The
CLUSTER setting requests that the standardized values for each cluster
be printed in the output.

A two-level time series analysis with a bivariate cross-lagged model for
continuous dependent variables with random residual variances and a
random residual covariance can also be estimated. The MODEL
command is specified as follows:

MODEL: SWITHINS
sl | yl ON yle&l;
s2 | y2 ON y2&1;
sl2 | yl ON y2&1;
s21 | y2 ON yle&l;
logvl | yl;
logv2 | y2;
f BY ylel y2@1;
logvt | £;
$BETWEENS%
vyl y2 sl-logvf WITH yl y2 sl-logvf;

In the fifth | statement, the random residual variance logv1 is defined as
the residual variance of the dependent variable y1. In the sixth |
statement, the random residual variance logv2 is defined as the residual
variance of the dependent variable y2. The logs of the random residual
variances are used in the model. In the BY statement, the factor loadings
for the factor f are fixed at one for the factor indicators y1 and y2. The
variance of the factor f is the covariance between the residuals of y1 and
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y2. In the seventh | statement, the random residual covariance logvf is
defined as the variance of the factor f. An explanation of the other
commands can be found in Examples 9.1, 9.28, and 9.30.

EXAMPLE 9.33: TWO-LEVEL TIME SERIES ANALYSIS
WITH A FIRST-ORDER AUTOREGRESSIVE AR(1) FACTOR
ANALYSIS MODEL FOR A SINGLE CONTINUOUS
INDICATOR AND MEASUREMENT ERROR

TITLE: this is an example of a two-level time
series analysis with a first-order
autoregressive AR (1) factor analysis model
for a single continuous indicator and
measurement error

DATA: FILE = ex9.33.dat;

VARIABLE: NAMES = y subject;

CLUSTER = subject;

ANALYSIS: TYPE = TWOLEVEL RANDOM;
ESTIMATOR = BAYES;
PROCESSORS = 2;
BITERATIONS = (5000);

MODEL: SWITHINS
f BY y@1l(&l);

s | £ ON f&l;

SBETWEENS

y WITH s;
OUTPUT: TECH1 TECHS;
PLOT: TYPE = PLOT3;
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In this example, the two-level time series analysis with a first-order
autoregressive AR(1) factor analysis model for a single continuous
indicator and measurement error shown in the picture above is estimated.

The BITERATIONS option is used to specify the maximum and
minimum number of iterations for each Markov chain Monte Carlo
(MCMC) chain when the potential scale reduction (PSR) convergence
criterion (Gelman & Rubin, 1992) is used. Using a number in
parentheses, the BITERATIONS option specifies that a minimum of
5,000 and a maximum of the default of 50,000 iterations will be used.
The minimum is relatively large because this model may be more
difficult to estimate.

In the within part of the model, the BY statement specifies that the factor
f is equivalent to the dependent variable y without measurement error. It
is possible to identify measurement error because the model is
autoregressive. An ampersand (&) followed by the number 1 is placed
in parentheses following the BY statement to indicate that the factor f at
lag 1 can be used in the analysis. The factor f at lag 1 is referred to as
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f&1. The | symbol is used in conjunction with TYPE=RANDOM to
name and define the random variables in the model. The name on the
left-hand side of the | symbol names the random variable. The statement
on the right-hand side of the | symbol defines the random variable. In
the | statement, the random AR(1) slope s is defined by the linear
regression over multiple time points of the factor f on the factor f&1
which is f at the previous time point.

In the between part of the model, the WITH statement specifies that y
and s are correlated.

A two-level time series analysis with an ARMA (1, 1) model where AR
stands for autoregressive and MA stands for moving average (Shumway
& Stoffer, 2011) shown in the picture below can also be estimated. As
shown in Granger and Morris (1976) and Schuurman et al. (2015) for
N=1 time series analysis, this is an alternative representation of the data
used in the measurement error model shown above. For this analysis,
the LAGGED option of the VARIABLE command is specified as
LAGGED =y (1); and the MODEL command is specified as shown
below.

e
N

> yt .o

Yiq
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MODEL: SWITHINS
s | y ON vyé&l;
e BY y@1 (&1);
y@.01;
y ON eé&l;

In the | statement, the random AR(1) slope s is defined by the linear
regression over multiple time points of the dependent variable y on the
dependent variable y&1 which is y at the previous time point. The BY
statement together with fixing the residual variance of y at a small value
specify that the factor e is equivalent to the residual of the dependent
variable y. The small value of .01 is chosen rather than zero to obtain
faster convergence. An ampersand (&) followed by the number 1 is
placed in parentheses following the BY statement to indicate that the
factor e at lag 1 can be used in the analysis. The factor e at lag 1 is
referred to as e&1. The ON statement describes the linear regression of
the dependent variable y on the residual e&1 which is the residual of y at
the previous time point. This is the moving average component of the
model. An explanation of the other commands can be found in
Examples 9.1, 9.28, and 9.30.
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EXAMPLE 9.34: TWO-LEVEL TIME SERIES ANALYSIS
WITH A FIRST-ORDER AUTOREGRESSIVE AR(1)
CONFIRMATORY FACTOR ANALYSIS (CFA) MODEL FOR
CONTINUOUS FACTOR INDICATORS WITH RANDOM
INTERCEPTS, A RANDOM AR(1) SLOPE, AND A RANDOM
RESIDUAL VARIANCE

TITLE: this is an example of a two-level time
series analysis with a first-order
autoregressive AR (1) confirmatory factor
analysis (CFA) model for continuous factor
indicators with random intercepts, a
random AR (1) slope, and a random residual
variance

DATA: FILE = ex9.34.dat;

VARIABLE: NAMES = yl-y4 subject;

CLUSTER = subject;

ANALYSIS: TYPE = TWOLEVEL RANDOM;
ESTIMATOR = BAYES;
PROCESSORS = 2;
BITERATIONS = (2000);

MODEL: SWITHINS
f BY yl-v4(&l);

s | £ ON f&l;

logv | £;

SBETWEENS%

fb BY yl-y4x*;

fbel;

fb s logv WITH fb s logv;
OUTPUT : TECH1 TECHS;
PLOT: TYPE = PLOT3;
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In this example, the two-level time series analysis with a first-order
autoregressive AR(1) confirmatory factor analysis (CFA) model for
continuous factor indicators with random intercepts, a random AR(1)
slope, and a random residual variance shown in the picture above is
estimated. The log of the random residual variance is used in the model.

In the within part of the model, the BY statement specifies that f is
measured by y1, y2, y3, and y4. The metric of the factor is set
automatically by the program by fixing the first factor loading to one.
This option can be overridden. An ampersand (&) followed by the
number 1 is placed in parentheses following the BY statement to
indicate that the factor f at lag 1 can be used in the analysis. The factor f
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at lag 1 is referred to as f&1. The residual variances of the factor
indicators are estimated and the residuals are not correlated as the
default. The | symbol is used in conjunction with TYPE=RANDOM to
name and define the random variables in the model. The name on the
left-hand side of the | symbol names the random variable. The statement
on the right-hand side of the | symbol defines the random variable. In
the first | statement, the random AR(1) slope s is defined by the linear
regression over multiple time points of the factor f on the factor f&1
which is f at the previous time point. In the second | statement, the
random residual variance logv is defined as the log of the residual
variance of the factor f.

In the between part of the model, the BY statement specifies that fb is
measured by the random intercepts y1, y2, y3, and y4. The metric of the
factor is set automatically by the program by fixing the first factor
loading to one. The asterisk following y1-y4 overrides this default. The
metric of the factor is set by fixing the factor variance to one. The
WITH statement specifies that fb, s, and logv are correlated. An
explanation of the other commands can be found in Examples 9.1, 9.28,
and 9.30.
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EXAMPLE 9.35: TWO-LEVEL TIME SERIES ANALYSIS
WITH A FIRST-ORDER AUTOREGRESSIVE AR(1) IRT
MODEL FOR BINARY FACTOR INDICATORS WITH
RANDOM THRESHOLDS, A RANDOM AR(1) SLOPE, AND A
RANDOM RESIDUAL VARIANCE

TITLE: this is an example of a two-level time
series analysis with a first-order
autoregressive AR (1) IRT model for binary
factor indicators with random thresholds,
a random AR (1) slope, and a random
residual variance

DATA: FILE = ex9.35part2.dat;

VARIABLE: NAMES = ul-u4 subject;

CATEGORICAL = ul-u4;
CLUSTER = subject;

ANALYSIS: TYPE = TWOLEVEL RANDOM;
ESTIMATOR = BAYES;
PROCESSORS = 2;
BITERATIONS = (3000);

MODEL: SWITHINS
f BY ul-ud* (&l 1-4);

s | £ ON f&l;

logvt | £

SBETWEENS

fb BY ul-ud* (1-4);

[logvf@0];

fb s logvf WITH fb s logvf;
OUTPUT : TECH1 TECHS;

In this example, a two-level time series analysis with a first-order
autoregressive AR(1) IRT model for binary factor indicators with
random thresholds, a random AR(1) slope, and a random residual
variance is estimated. The log of the random residual variance is used in
the model.

The CATEGORICAL option specifies that the variables ul, u2, u3, and
u4 are binary. The BITERATIONS option is used to specify the
maximum and minimum number of iterations for each Markov chain
Monte Carlo (MCMC) chain when the potential scale reduction (PSR)
convergence criterion (Gelman & Rubin, 1992) is used. Using a number
in parentheses, the BITERATIONS option specifies that a minimum of
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3,000 and a maximum of the default of 50,000 iterations will be used.
The minimum is relatively large because this model may be more
difficult to estimate

In the within part of the model, the BY statement specifies that f is
measured by ul, u2, u3, and u4. The metric of the factor is set
automatically by the program by fixing the first factor loading to one.
The asterisk following ul-u4 overrides this default. The metric of the
factor is set by fixing the mean of the log of the random residual
variance of the factor f to zero in the between part of the model which is
described below. An ampersand (&) followed by the number 1 is placed
in parentheses following the BY statement to indicate that the factor f at
lag 1 can be used in the analysis. The factor f at lag 1 is referred to as
f&1. The numbers 1-4 in parentheses in combination with the same
numbers in the between part of the model specify that the factor loadings
are constrained to be equal to those of the factor fb in the between part
of the model. The | symbol is used in conjunction with
TYPE=RANDOM to name and define the random variables in the
model. The name on the left-hand side of the | symbol names the
random variable. The statement on the right-hand side of the | symbol
defines the random variable. In the first | statement, the random AR(1)
slope s is defined by the linear regression over multiple time points of
the factor f on the factor f&1 which is f at the previous time point. In the
second | statement, the random residual variance logvf is defined as the
log of the residual variance of the factor f.

In the between part of the model, the BY statement specifies that fb is
measured by the random intercepts ul, u2, u3, and u4. The metric of the
factor is set automatically by the program by fixing the first factor
loading to one. The asterisk following ul-u4 overrides this default.
Because the factor loadings are constrained to be equal for the within-
level factor f and the between-level factor fb, the metric of the factors
can be set by fixing the mean of the log of the random residual variance
of the factor f to zero or the variance of the factor fb to one. The WITH
statement specifies that fb, s, and logvf are correlated. An explanation
of the other commands can be found in Examples 9.1, 9.28, and 9.30.
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EXAMPLE 9.36: TWO-LEVEL TIME SERIES ANALYSIS
WITH A BIVARIATE CROSS-LAGGED MODEL FOR TWO
FACTORS AND CONTINUOUS FACTOR INDICATORS WITH
RANDOM INTERCEPTS AND RANDOM SLOPES

TITLE: two-level time series analysis with a
bivariate cross-lagged model for two
factors and continuous factor indicators
with random intercepts and random slopes

DATA: FILE = ex9.36.dat;

VARIABLE: NAMES = yll-yl4 y21-y24 subject;
CLUSTER = subject;

ANALYSIS: TYPE = TWOLEVEL RANDOM;

ESTIMATOR = BAYES;
PROCESSORS = 2;
BITERATIONS = (2000);

MODEL: SWITHINS
f1 BY yll-yl4(&l);
£f2 BY y21-y24 (&1);
sll | £f1 ON fl&l;
s22 | f£f2 ON f2&1;
sl2 | f1 ON f2&1;
s21 | £f2 ON fls&l;

SBETWEENS
fbl BY yll-yl4x*;
fb2 BY y21l-y24%*;

fbl-fb2@1;

fbl fb2 sll-s21 WITH fbl fb2 sll-s21;
OUTPUT: TECH1 TECHS;
PLOT: TYPE = PLOT3;
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In this example, the two-level time series analysis with a bivariate cross-
lagged model for two factors and continuous factor indicators with
random intercepts and random slopes shown in the picture above is
estimated.

In the within part of the model, the first BY statement specifies that f1 is
measured by y11, y12, y13, and y14. The second BY statement specifies
that f2 is measured by y21, y22, y23, and y24. The metric of the factors
is set automatically by the program by fixing the first factor loading to
one. This option can be overridden. An ampersand (&) followed by the
number 1 is placed in parentheses following the BY statements to
indicate that the factors f1 and f2 at lag 1 are used during model
estimation. The factors f1 and f2 at lag 1 are referred to as f1&1 and
f2&1, respectively. The residual variances of the factor indicators are
estimated and the residuals are not correlated as the default. The |
symbol is used in conjunction with TYPE=RANDOM to name and
define the random variables in the model. The name on the left-hand
side of the | symbol names the random variable. The statement on the
right-hand side of the | symbol defines the random variable. In the first |
statement, the random AR(1) slope sl11 is defined by the linear
regression over multiple time points of the factor f1 on the factor f1&1
which is f1 at the previous time point. In the second | statement, the
random AR(1) slope s22 is defined by the linear regression over multiple
time points of the factor 2 on the factor f2&1 which is 2 at the previous
time point. In the third | statement, the random cross-lagged slope s12 is
defined by the linear regression over multiple time points of the factor f1
on the factor f2&1 which is f2 at the previous time point. In the fourth |
statement, the random cross-lagged slope s21 is defined by the linear
regression over multiple time points of the factor f2 on the factor f1&1
which is f1 at the previous time point.

In the between part of the model, the first BY statement specifies that f1
is measured by the random intercepts y11, y12, y13, and y14. The
second BY statement specifies that f2 is measured by the random
intercepts y21, y22, y23, and y24. The metric of the factors is set
automatically by the program by fixing the first factor loadings to one.
The asterisk following y11-y14 and y21-y24 overrides this default. The
metric of the factors is set by fixing the factor variances to one. The
WITH statement specifies that fbl, fb2, s11, s22, s12, and s21 are
correlated. An explanation of the other commands can be found in
Examples 9.1, 9.28, and 9.30.

377



CHAPTER 9

EXAMPLE 9.37: TWO-LEVEL TIME SERIES ANALYSIS
WITH A UNIVARIATE FIRST-ORDER AUTOREGRESSIVE
AR(1) MODEL FOR A CONTINUOUS DEPENDENT
VARIABLE WITH A COVARIATE, LINEAR TREND,
RANDOM SLOPES, AND A RANDOM RESIDUAL VARIANCE

TITLE:

DATA:

DEFINE:

MODEL:

OUTPUT:
PLOT:

VARIABLE:

ANALYSIS:

two-level time series analysis with a
univariate first-order autoregressive
AR (1) model for a continuous dependent
variable with a covariate, linear trend,
random slopes, and a random residual
variance

FILE = ex9.37.dat;

NAMES = y x w xm time subject;

WITHIN = x time;

BETWEEN W Xm;

CLUSTER subject;

LAGGED = vy (1);

CENTER x (GROUPMEAN) ;

TYPE = TWOLEVEL RANDOM;

ESTIMATOR = BAYES;

PROCESSORS = 2;

BITERATIONS = (10000) ;

SWITHINS

sy | y ON y&l;

sx | y ON x;

s | y ON time;

logv | y;

SBETWEENS%

sy ON w xm;

sx ON w xm;

s ON w xm;

logv ON w xm;

y ON w xm;

sy-logv y WITH sy-logv y;

TECH1 TECHS;

TYPE= PLOT3;
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In this example, the two-level time series analysis with a univariate first-
order autoregressive AR(1) model for a continuous dependent variable
with a covariate, linear trend, random slopes, and a random residual
variance shown in the picture above is estimated. The log of the random
residual variance is used in the model.

The BITERATIONS option is used to specify the maximum and
minimum number of iterations for each Markov chain Monte Carlo
(MCMC) chain when the potential scale reduction (PSR) convergence
criterion (Gelman & Rubin, 1992) is used. Using a number in
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parentheses, the BITERATIONS option specifies that a minimum of
10,000 and a maximum of the default of 50,000 iterations will be used.
The minimum is relatively large because this model may be more
difficult to estimate.

In the within part of the model, the | symbol is used in conjunction with
TYPE=RANDOM to name and define the random variables in the
model. The name on the left-hand side of the | symbol names the
random variable. The statement on the right-hand side of the | symbol
defines the random variable. In the first | statement, the random AR(1)
slope sy is defined by the linear regression over multiple time points of
the dependent variable y on the dependent variable y&1 which is y at the
previous time point. In the second | statement, the random slope sx is
defined by the linear regression over multiple time points of the
dependent variable y on the observed individual-level covariate x. In the
third | statement, the random linear trend s is defined by the linear
regression over multiple time points of the dependent variable y on the
observed individual-level covariate time. In the fourth | statement, the
random residual variance logv is defined as the log of the residual
variance of the dependent variable y.

In the between part of the model, the first ON describes the linear
regression of the random AR(1) slope sy on the observed cluster-level
covariates w and xm. The second ON statement describes the linear
regression of the random slope sx on the observed cluster-level
covariates w and xm. The third ON statement describes the linear
regression of the random linear trend s on the observed cluster-level
covariates w and xm. The fourth ON statement describes the linear
regression of the random residual variance logv on the observed cluster-
level covariates w and xm. The fifth ON statement describes the linear
regression of the random intercept y on the observed cluster-level
covariates w and xm. The intercepts and residual variances of sy, sx, s,
logv, and y are estimated and the residuals are not correlated as the
default. The WITH statement specifies that the residuals among sy, sx,
s, logv, and y are correlated. An explanation of the other commands can
be found in Examples 9.1, 9.28, 9.30, and 9.31.
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EXAMPLE 9.38: CROSS-CLASSIFIED TIME SERIES
ANALYSIS WITH A UNIVARIATE FIRST-ORDER
AUTOREGRESSIVE AR(1) MODEL FOR A CONTINUOUS
DEPENDENT VARIABLE WITH A COVARIATE, RANDOM
INTERCEPT, AND RANDOM SLOPE

TITLE: cross-classified time series analysis with
a univariate first-order autoregressive
AR (1) model for a continuous dependent
variable with a covariate, random
intercept, and random slope

DATA: FILE = ex9.38.dat;

VARIABLE: NAMES = w xm y x time subject;
CLUSTER = subject time;
WITHIN = x;

BETWEEN = (subject)w xm;
LAGGED = vy (1);
DEFINE: CENTER x (GROUPMEAN subject);

ANALYSIS: TYPE = CROSSCLASSIFIED RANDOM;
ESTIMATOR = BAYES;
PROCESSORS = 2;
BITERATIONS = (2000);
MODEL: SWITHINS
sx | y ON x;
y ON yé&l;
$BETWEEN subject$%
y sx ON w xm;

y WITH sx;

$BETWEEN time%

y WITH sx;
OUTPUT: TECH1 TECHS;
PLOT: TYPE = PLOT3;

FACTORS = ALL;
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In this example, the cross-classified time series analysis with a univariate
first-order autoregressive AR(1) model for a continuous dependent
variable with a covariate, random intercept, and random slope shown in

the picture above is estimated.
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The CLUSTER option is used to identify the variables in the data set
that contain clustering information. Two cluster variables are used for a
cross-classified time series model. One is for subject and the other for
time. Subject and time are crossed. There is no nesting because each
subject is observed only once at any one time. The cluster variable for
subject must precede the cluster variable for time. Within each cluster,
data must be ordered by time.

The WITHIN option is used to identify the variables in the data set that
are measured on the individual level and to specify the levels on which
they are modeled. All variables on the WITHIN list must be measured
on the individual level. An individual-level variable can be modeled on
all or some levels. If a variable measured on the individual level is
mentioned on the WITHIN list without a label, it is modeled only in the
within part of the model. It has no variance in the between subject and
between time parts of the model. If a variable is not mentioned on the
WITHIN list, it is modeled on all levels. The variable x can be modeled
in only the within part of the model.

The BETWEEN option is used to identify the variables in the data set
that are measured on the cluster level(s) and to specify the level(s) on
which they are modeled. All variables on the BETWEEN list must be
measured on a cluster level. For TYPE=CROSSCLASSIFIED, a
variable measured on the subject level must be mentioned on the
BETWEEN list with a subject label. It can be modeled in only the
between subject part of the model. A variable measured on the time
level must be mentioned on the BETWEEN list with a time label. It can
be modeled in only the between time part of the model. The variables w
and xm can be modeled in only the between subject part of the model.

In the ANALYSIS command, TYPE=CROSSCLASSIFIED RANDOM
is specified indicating that a cross-classified model will be estimated. In
the within part of the model, the | symbol is used in conjunction with
TYPE=RANDOM to name and define the random variables in the
model. The name on the left-hand side of the | symbol names the
random variable. The statement on the right-hand side of the | symbol
defines the random variable. In the | statement, the random slope sx is
defined by the linear regression over multiple time points of the
dependent variable y on the observed individual-level covariate x. The
ON statement describes the linear regression over multiple time points of
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the dependent variable y on the dependent variable y&1 which is y at the
previous time point.

In the between subject part of the model, the ON statement describes the
linear regressions of the random intercept y and the random slope sx on
the observed cluster-level covariates w and xm. The intercepts and
residual variances of y and sx across subjects are estimated and the
residuals are not correlated as the default. The WITH statement
specifies that the residuals among y and sx are correlated. In the
between time part of the model, the WITH statement specifies that y and
sx are correlated. The variances of y and sx across time are estimated as
the default.

A cross-classified time series analysis with a univariate first-order
autoregressive AR(1) model for a continuous dependent variable with a
random AR(1) slope and a random residual variance can also be
estimated. The estimation of this model is computationally demanding.
The MODEL command is specified as follows:

MODEL: SWITHINS
sx | y ON x;
sy | y ON y&l;
logv | vy:
$BETWEEN subject%
y sx sy logv ON w xm;
y sx-logv WITH y sx-logv;
$BETWEEN time%

y sx—-sy WITH y sx-sy;

In the second | statement, the random AR(1) slope sy is defined by the
linear regression over multiple time points of the dependent variable y
on the dependent variable y&1 which is y at the previous time point. In
the third | statement, the random residual variance logv is defined as the
log of the residual variance of the dependent variable y. The log of the
random residual variance is used in the model.

In the between subject part of the model, the ON statement describes the
linear regression of the random intercept y, the random slope sx, the
random AR(1) slope sy, and the random residual variance logv on the
observed cluster-level covariates w and xm. The intercepts and residual
variances of y, sx, sy, and logv across subjects are estimated and the
residuals are not correlated as the default. The WITH statement
specifies that the residuals among y, sx, sy, and logv are correlated.
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In the between time part of the model, the variances of y, sx, and sy
across subjects are estimated and they are not correlated as the default.
The WITH statement specifies that y, sx, and sy are correlated. An
explanation of the other commands can be found in Examples 9.1, 9.28,
9.30, and 9.31.

EXAMPLE 9.39: CROSS-CLASSIFIED TIME SERIES
ANALYSIS WITH A UNIVARIATE FIRST-ORDER
AUTOREGRESSIVE AR(1) MODEL FOR A CONTINUOUS
DEPENDENT VARIABLE WITH A COVARIATE, LINEAR
TREND, AND RANDOM SLOPE

TITLE: this is an example of a cross-classified
time series analysis with a univariate
first-order autoregressive AR(1l) model for
a continuous dependent variable with a
covariate, linear trend, and random slope

DATA: FILE = ex9.39.dat;

VARIABLE: NAMES = w xm y x time subject;
USEVARIABLES = w xm y x timew timet;
WITHIN = x timew;

BETWEEN = (subject) w xm (time) timet;
CLUSTER = subject time;
LAGGED = y(1);
DEFINE : timew = time;
timet = time;

CENTER x (GROUPMEAN subject) ;
ANALYSIS: TYPE = CROSSCLASSIFIED RANDOM;

ESTIMATOR = BAYES;

PROCESSORS = 2;

BITERATIONS = (5000) ;
MODEL: SWITHINS

y ON yé&l;

s | y ON timew;

sx | y ON x;

$BETWEEN subject$%

y S sx ON w xm;

y s sx WITH y s sx;

$BETWEEN time%

sx ON timet;

y WITH sx;
s@0;
OUTPUT : TECH1 TECHS;
PLOT: TYPE = PLOT3;
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In this example, the cross-classified time series analysis with a univariate
first-order autoregressive AR(1) model for a continuous dependent
variable with a covariate, linear trend, and random slope shown in the
picture above is estimated.

In the DEFINE command, the variables timew and timet are created as
duplicates of the cluster variable time. Timew is used in the within part
of the model and timet is used in the between time part of the model.
The variables timew and timet are placed at the end of the
USEVARIABLES list after the original variables to indicate that they
will be used in the analysis. The individual-level covariate x is centered
using the cluster means for x.

The BITERATIONS option is used to specify the maximum and
minimum number of iterations for each Markov chain Monte Carlo
(MCMC) chain when the potential scale reduction (PSR) convergence
criterion (Gelman & Rubin, 1992) is used. Using a number in
parentheses, the BITERATIONS option specifies that a minimum of
5,000 and a maximum of the default of 50,000 iterations will be used.
The minimum is relatively large because this model may be more
difficult to estimate.

In the within part of the model, the ON statement describes the linear
regression over multiple time points of the dependent variable y on the
dependent variable y&1 which is y at the previous time point. The |
symbol is used in conjunction with TYPE=RANDOM to name and
define the random variables in the model. The name on the left-hand
side of the | symbol names the random variable. The statement on the
right-hand side of the | symbol defines the random variable. In the first |
statement, the random linear trend s is defined by the linear regression
over multiple time points of the dependent variable y on the observed
individual-level covariate timew. In the second | statement, the random
slope sx is defined by the linear regression over multiple time points of
the dependent variable y on the observed individual-level covariate x.

In the between subject part of the model, the ON statement describes the
linear regression of the random intercept y, the random linear trend s,
and the random slope sx on the observed subject-level covariates w and
xm. The WITH statement specifies that the residuals among y, s, and sx
are correlated.
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In the between time part of the model, the ON statement describes the
linear regression of the random slope sx on the observed time-level
covariate timet. The WITH statement specifies that the residuals among
y and sx are correlated. The variance of the random linear trend s is free
as the default but is fixed at zero because it can be difficult to estimate
and is not a necessary model component.

A cross-classified time series analysis with a univariate first-order
autoregressive AR(1) model for a continuous dependent variable with a
random AR(1) slope and a random residual variance can also be
estimated. = The estimation of this model is very demanding
computationally. The MODEL command is specified as follows:

MODEL: SWITHINS
sy | y ON y&l;
s | y ON timew;
sx | y ON x;
logv | vy:
$BETWEEN subject%
y sy sx logv s ON w xm;
y sy sx logv s WITH y sy s logv s;
$BETWEEN time%
sx ON timet;
y sy sx WITH y sy sx;

s@0;

In the first | statement, the random AR(1) slope sy is defined by the
linear regression over multiple time points of the dependent variable y
on the dependent variable y&1 which is y at the previous time point. In
the fourth | statement, the random residual variance logv is defined as the
log of the residual variance of the dependent variable y. The log of the
random residual variance is used in the model. The random AR(1) slope
sy is allowed to vary across both subjects and time whereas the random
residual variance logv is allowed to vary only across subjects. An
explanation of the other commands can be found in Examples 9.1, 9.28,
9.30, and 9.38.
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EXAMPLE 9.40: CROSS-CLASSIFIED TIME SERIES
ANALYSIS WITH A UNIVARIATE FIRST-ORDER
AUTOREGRESSIVE AR(1) CONFIRMATORY FACTOR
ANALYSIS (CFA) MODEL FOR CONTINUOUS FACTOR
INDICATORS WITH RANDOM INTERCEPTS AND A FACTOR
VARYING ACROSS BOTH SUBJECTS AND TIME

TITLE: this is an example of a cross-classified
time series analysis with a first-order
autoregressive AR (1) confirmatory factor
analysis (CFA) model for continuous factor
indicators with random intercepts and a
factor varying across both subjects and
time

DATA: FILE = ex9.40.dat;

VARIABLE: NAMES = yl-y3 time subject;

CLUSTER = subject time;

ANALYSIS: TYPE = CROSSCLASSIFIED RANDOM;
ESTIMATOR = BAYES;

PROCESSORS = 2;

BITERATIONS = (1000);
MODEL: SWITHINS

f BY yl-y3* (&1 1-3);

f@1;

f ON fé&1;

$BETWEEN subject$%
fsubj BY yl-y3* (1-3);
$BETWEEN time%
ftime BY yl-y3* (1-3);
OUTPUT : TECH1 TECHS;
PLOT: TYPE = PLOT3;
FACTORS = ALL;
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In this example, the cross-classified time series analysis with a first-
order autoregressive AR(1) confirm