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PREFACE 
 

We started to develop Mplus in 1995 with the goal of providing researchers with 

powerful new statistical modeling techniques.  We saw a wide gap between new 

statistical methods presented in the statistical literature and the statistical methods used 

by researchers in substantively-oriented papers.  Our goal was to help bridge this gap 

with easy-to-use but powerful software.  Version 1 of Mplus was released in November 

1998; Version 2 was released in February 2001; Version 3 was released in March 2004; 

Version 4 was released in February 2006; Version 5 was released in November 2007, 

Version 6 was released in April 2010; and Version 7 was released in September 2012.  

After four expansions of Version 7 during the last five years, we are now proud to present 

the new and unique features of Version 8.  With Version 8, we have gone a considerable 

way toward accomplishing our goal, and we plan to continue to pursue it in the future. 

 

The new features that have been added between Version 7 and Version 8 would never 

have been accomplished without two very important team members, Tihomir 

Asparouhov and Thuy Nguyen.  It may be hard to believe that the Mplus team has only 

two programmers, but these two programmers are extraordinary.  Tihomir has developed 

and programmed sophisticated statistical algorithms to make the new modeling possible.  

Without his ingenuity, they would not exist.  His deep insights into complex modeling 

issues and statistical theory are invaluable.  Thuy has developed the post-processing 

graphics module, the Mplus editor and language generator, and the Mplus Diagrammer 

based on a framework designed by Delian Asparouhov.  In addition, Thuy has 

programmed the Mplus language and is responsible for producing new release versions, 

testing, and keeping control of the entire code which has grown enormously.  Her 

unwavering consistency, logic, and steady and calm approach to problems keep everyone 

on target.  We feel fortunate to work with such a talented team.  Not only are they 

extremely bright, but they are also hard-working, loyal, and always striving for 

excellence.  Mplus Version 8 would not have been possible without them.   

 

Another important team member is Michelle Conn.  Michelle was with us at the 

beginning when she was instrumental in setting up the Mplus office and returned fifteen 

years ago.  Michelle wears many hats:  Chief Financial Officer, Office Manager, and 

Sales Manager, among others.  She was the driving force behind the design of the new 

shopping cart.  With the vastly increased customer base, her efficiency in multi-tasking 

and calm under pressure are much appreciated.  Noah Hastings joined the Mplus team in 

2009.  He is responsible for testing the Graphics Module and the Mplus Diagrammer,  

creating the pictures of the models in the example chapters of the Mplus User’s Guide, 



keeping the website updated, and providing assistance to Bengt with presentations, 

papers, and our book.  He has proven to be a most trustworthy and valuable team 

member. 

 

We would also like to thank all of the people who have contributed to the development of 

Mplus in past years.  These include Stephen Du Toit, Shyan Lam, Damir Spisic, Kerby 

Shedden, and John Molitor. 

 

Initial work on Mplus was supported by SBIR contracts and grants from NIAAA that we 

acknowledge gratefully. We thank Bridget Grant for her encouragement in this work. 

 

Linda K. Muthén 

Bengt O. Muthén 

Los Angeles, California 

April 2017 
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CHAPTER 1 

INTRODUCTION 
 

 

Mplus is a statistical modeling program that provides researchers with a 

flexible tool to analyze their data.  Mplus offers researchers a wide 

choice of models, estimators, and algorithms in a program that has an 

easy-to-use interface and graphical displays of data and analysis results.  

Mplus allows the analysis of both cross-sectional and longitudinal data, 

single-level and multilevel data, data that come from different 

populations with either observed or unobserved heterogeneity, and data 

that contain missing values.  Analyses can be carried out for observed 

variables that are continuous, censored, binary, ordered categorical 

(ordinal), unordered categorical (nominal), counts, or combinations of 

these variable types.  In addition, Mplus has extensive capabilities for 

Monte Carlo simulation studies, where data can be generated and 

analyzed according to most of the models included in the program. 

 

The Mplus modeling framework draws on the unifying theme of latent 

variables.  The generality of the Mplus modeling framework comes from 

the unique use of both continuous and categorical latent variables.  

Continuous latent variables are used to represent factors corresponding 

to unobserved constructs, random effects corresponding to individual 

differences in development, random effects corresponding to variation in 

coefficients across groups in hierarchical data, frailties corresponding to 

unobserved heterogeneity in survival time, liabilities corresponding to 

genetic susceptibility to disease, and latent response variable values 

corresponding to missing data.  Categorical latent variables are used to 

represent latent classes corresponding to homogeneous groups of 

individuals, latent trajectory classes corresponding to types of 

development in unobserved populations, mixture components 

corresponding to finite mixtures of unobserved populations, and latent 

response variable categories corresponding to missing data.   

 

THE Mplus MODELING FRAMEWORK 
 

The purpose of modeling data is to describe the structure of data in a 

simple way so that it is understandable and interpretable.  Essentially, 

the modeling of data amounts to specifying a set of relationships 
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between variables.  The figure below shows the types of relationships 

that can be modeled in Mplus.  The rectangles represent observed 

variables.  Observed variables can be outcome variables or background 

variables.  Background variables are referred to as x; continuous and 

censored outcome variables are referred to as y; and binary, ordered 

categorical (ordinal), unordered categorical (nominal), and count 

outcome variables are referred to as u.  The circles represent latent 

variables.  Both continuous and categorical latent variables are allowed.  

Continuous latent variables are referred to as f.  Categorical latent 

variables are referred to as c.   

 

The arrows in the figure represent regression relationships between 

variables.  Regressions relationships that are allowed but not specifically 

shown in the figure include regressions among observed outcome 

variables, among continuous latent variables, and among categorical 

latent variables.  For continuous outcome variables, linear regression 

models are used.  For censored outcome variables, censored (tobit) 

regression models are used, with or without inflation at the censoring 

point.  For binary and ordered categorical outcomes, probit or logistic 

regressions models are used.  For unordered categorical outcomes, 

multinomial logistic regression models are used.  For count outcomes, 

Poisson and negative binomial regression models are used, with or 

without inflation at the zero point.    
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Models in Mplus can include continuous latent variables, categorical 

latent variables, or a combination of continuous and categorical latent 

variables.  In the figure above, Ellipse A describes models with only 

continuous latent variables.  Ellipse B describes models with only 

categorical latent variables.  The full modeling framework describes 

models with a combination of continuous and categorical latent 

variables.  The Within and Between parts of the figure above indicate 

that multilevel models that describe individual-level (within) and cluster-

level (between) variation can be estimated using Mplus.  

 

MODELING WITH CONTINUOUS LATENT 

VARIABLES 
 

Ellipse A describes models with only continuous latent variables. 

Following are models in Ellipse A that can be estimated using Mplus:     
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 Regression analysis 

 Path analysis 

 Exploratory factor analysis 

 Confirmatory factor analysis 

 Item response theory modeling 

 Structural equation modeling 

 Growth modeling 

 Discrete-time survival analysis 

 Continuous-time survival analysis 

 Time series analysis 

 

Observed outcome variables can be continuous, censored, binary, 

ordered categorical (ordinal), unordered categorical (nominal), counts, 

or combinations of these variable types.   

 

Special features available with the above models for all observed 

outcome variables types are: 

 

 Single or multiple group analysis 

 Missing data under MCAR, MAR, and NMAR and with multiple 

imputation 

 Complex survey data features including stratification, clustering, 

unequal probabilities of selection (sampling weights), subpopulation 

analysis, replicate weights, and finite population correction 

 Latent variable interactions and non-linear factor analysis using 

maximum likelihood 

 Random slopes 

 Individually-varying times of observations 

 Linear and non-linear parameter constraints 

 Indirect effects including specific paths 

 Maximum likelihood estimation for all outcomes types 

 Bootstrap standard errors and confidence intervals 

 Wald chi-square test of parameter equalities 

 Factor scores and plausible values for latent variables 
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MODELING WITH CATEGORICAL LATENT 

VARIABLES 
 

Ellipse B describes models with only categorical latent variables.  

Following are models in Ellipse B that can be estimated using Mplus:     

 Regression mixture modeling 

 Path analysis mixture modeling 

 Latent class analysis 

 Latent class analysis with covariates and direct effects 

 Confirmatory latent class analysis 

 Latent class analysis with multiple categorical latent variables 

 Loglinear modeling 

 Non-parametric modeling of latent variable distributions 

 Multiple group analysis 

 Finite mixture modeling 

 Complier Average Causal Effect (CACE) modeling 

 Latent transition analysis and hidden Markov modeling including 

mixtures and covariates 

 Latent class growth analysis  

 Discrete-time survival mixture analysis 

 Continuous-time survival mixture analysis 

 

Observed outcome variables can be continuous, censored, binary, 

ordered categorical (ordinal), unordered categorical (nominal), counts, 

or combinations of these variable types.  Most of the special features 

listed above are available for models with categorical latent variables.  

The following special features are also available. 

 

 Analysis with between-level categorical latent variables 

 Tests to identify possible covariates not included in the analysis that  

influence the categorical latent variables 

 Tests of equality of means across latent classes on variables not 

included in the analysis 

 Plausible values for latent classes 
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MODELING WITH BOTH CONTINUOUS AND 

CATEGORICAL LATENT VARIABLES 
 

The full modeling framework includes models with a combination of 

continuous and categorical latent variables.  Observed outcome variables 

can be continuous, censored, binary, ordered categorical (ordinal), 

unordered categorical (nominal), counts, or combinations of these 

variable types.  Most of the special features listed above are available for 

models with both continuous and categorical latent variables.  Following 

are models in the full modeling framework that can be estimated using 

Mplus:     

 

 Latent class analysis with random effects 

 Factor mixture modeling 

 Structural equation mixture modeling 

 Growth mixture modeling with latent trajectory classes 

 Discrete-time survival mixture analysis 

 Continuous-time survival mixture analysis 

 

Most of the special features listed above are available for models with 

both continuous and categorical latent variables.  The following special 

features are also available. 

 

 Analysis with between-level categorical latent variables 

 Tests to identify possible covariates not included in the analysis that  

influence the categorical latent variables 

 Tests of equality of means across latent classes on variables not 

included in the analysis 

 

MODELING WITH COMPLEX SURVEY DATA 
 

There are two approaches to the analysis of complex survey data in 

Mplus.  One approach is to compute standard errors and a chi-square test 

of model fit taking into account stratification, non-independence of 

observations due to cluster sampling, and/or unequal probability of 

selection.  Subpopulation analysis, replicate weights, and finite 

population correction are also available.  With sampling weights, 

parameters are estimated by maximizing a weighted loglikelihood 

function.  Standard error computations use a sandwich estimator.  For 

this approach, observed outcome variables can be continuous, censored, 
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binary, ordered categorical (ordinal), unordered categorical (nominal), 

counts, or combinations of these variable types.   

 

A second approach is to specify a model for each level of the multilevel 

data thereby modeling the non-independence of observations due to 

cluster sampling.  This is commonly referred to as multilevel modeling.  

The use of sampling weights in the estimation of parameters, standard 

errors, and the chi-square test of model fit is allowed.  Both individual-

level and cluster-level weights can be used.  With sampling weights, 

parameters are estimated by maximizing a weighted loglikelihood 

function.  Standard error computations use a sandwich estimator.  For 

this approach, observed outcome variables can be continuous, censored, 

binary, ordered categorical (ordinal), unordered categorical (nominal), 

counts, or combinations of these variable types. 

 

The multilevel extension of the full modeling framework allows random 

intercepts and random slopes that vary across clusters in hierarchical 

data.  Random slopes include the special case of random factor loadings.  

These random effects can be specified for any of the relationships of the 

full Mplus model for both independent and dependent variables and both 

observed and latent variables.  Random effects representing across-

cluster variation in intercepts and slopes or individual differences in 

growth can be combined with factors measured by multiple indicators on 

both the individual and cluster levels.  In line with SEM, regressions 

among random effects, among factors, and between random effects and 

factors are allowed. 

 

The two approaches described above can be combined.  In addition to 

specifying a model for each level of the multilevel data thereby 

modeling the non-independence of observations due to cluster sampling, 

standard errors and a chi-square test of model fit are computed taking 

into account stratification, non-independence of observations due to 

cluster sampling, and/or unequal probability of selection.  When there is 

clustering due to both primary and secondary sampling stages, the 

standard errors and chi-square test of model fit are computed taking into 

account the clustering due to the primary sampling stage and clustering 

due to the secondary sampling stage is modeled.   

 

Most of the special features listed above are available for modeling of 

complex survey data. 
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MODELING WITH MISSING DATA 
 

Mplus has several options for the estimation of models with missing 

data.  Mplus provides maximum likelihood estimation under MCAR 

(missing completely at random), MAR (missing at random), and NMAR 

(not missing at random) for continuous, censored, binary, ordered 

categorical (ordinal), unordered categorical (nominal), counts, or 

combinations of these variable types (Little & Rubin, 2002).  MAR 

means that missingness can be a function of observed covariates and 

observed outcomes.  For censored and categorical outcomes using 

weighted least squares estimation, missingness is allowed to be a 

function of the observed covariates but not the observed outcomes 

(Asparouhov & Muthén, 2010a).  When there are no covariates in the 

model, this is analogous to pairwise present analysis.  Non-ignorable 

missing data (NMAR) modeling is possible using maximum likelihood 

estimation where categorical outcomes are indicators of missingness and 

where missingness can be predicted by continuous and categorical latent 

variables (Muthén, Jo, & Brown, 2003; Muthén et al., 2011).   

 

In all models, missingness is not allowed for the observed covariates 

because they are not part of the model. The model is estimated 

conditional on the covariates and no distributional assumptions are made 

about the covariates.  Covariate missingness can be modeled if the 

covariates are brought into the model and distributional assumptions 

such as normality are made about them.   With missing data, the standard 

errors for the parameter estimates are computed using the observed 

information matrix (Kenward & Molenberghs, 1998).  Bootstrap 

standard errors and confidence intervals are also available with missing 

data.   

 

Mplus provides multiple imputation of missing data using Bayesian 

analysis (Rubin, 1987; Schafer, 1997).  Both the unrestricted H1 model 

and a restricted H0 model can be used for imputation.  Multiple data sets 

generated using multiple imputation can be analyzed using a special 

feature of Mplus.  Parameter estimates are averaged over the set of 

analyses, and standard errors are computed using the average of the 

standard errors over the set of analyses and the between analysis 

parameter estimate variation (Rubin, 1987; Schafer, 1997).  A chi-square 

test of overall model fit is provided (Asparouhov & Muthén, 2008c; 

Enders, 2010). 
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ESTIMATORS AND ALGORITHMS 
 

Mplus provides both Bayesian and frequentist inference.  Bayesian 

analysis uses Markov chain Monte Carlo (MCMC) algorithms.  Posterior 

distributions can be monitored by trace and autocorrelation plots.  

Convergence can be monitored by the Gelman-Rubin potential scaling 

reduction using parallel computing in multiple MCMC chains.  Posterior 

predictive checks are provided.   

 

Frequentist analysis uses maximum likelihood and weighted least 

squares estimators.  Mplus provides maximum likelihood estimation for 

all models.  With censored and categorical outcomes, an alternative 

weighted least squares estimator is also available.  For all types of 

outcomes, robust estimation of standard errors and robust chi-square 

tests of model fit are provided.  These procedures take into account non-

normality of outcomes and non-independence of observations due to 

cluster sampling.  Robust standard errors are computed using the 

sandwich estimator.  Robust chi-square tests of model fit are computed 

using mean and mean and variance adjustments as well as a likelihood-

based approach.  Bootstrap standard errors are available for most 

models.  The optimization algorithms use one or a combination of the 

following: Quasi-Newton, Fisher scoring, Newton-Raphson, and the 

Expectation Maximization (EM) algorithm (Dempster et al., 1977).  

Linear and non-linear parameter constraints are allowed.  With 

maximum likelihood estimation and categorical outcomes, models with 

continuous latent variables and missing data for dependent variables 

require numerical integration in the computations.  The numerical 

integration is carried out with or without adaptive quadrature in 

combination with rectangular integration, Gauss-Hermite integration, or 

Monte Carlo integration. 

 

MONTE CARLO SIMULATION CAPABILITIES 
 

Mplus has extensive Monte Carlo facilities both for data generation and 

data analysis.  Several types of data can be generated:  simple random 

samples, clustered (multilevel) data, missing data, discrete- and 

continuous-time survival data, and data from populations that are 

observed (multiple groups) or unobserved (latent classes). Data 

generation models can include random effects and interactions between 

continuous latent variables and between categorical latent variables.  

Outcome variables can be generated as continuous, censored, binary, 
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ordered categorical (ordinal), unordered categorical (nominal), counts, 

or combinations of these variable types.  In addition, two-part 

(semicontinuous) variables and time-to-event variables can be generated.  

Independent variables can be generated as binary or continuous.  All or 

some of the Monte Carlo generated data sets can be saved. 

 

The analysis model can be different from the data generation model.  For 

example, variables can be generated as categorical and analyzed as 

continuous or generated as a three-class model and analyzed as a two-

class model.  In some situations, a special external Monte Carlo feature 

is needed to generate data by one model and analyze it by a different 

model.  For example, variables can be generated using a clustered design 

and analyzed ignoring the clustering.  Data generated outside of Mplus 

can also be analyzed using this special external Monte Carlo feature.   

 

Other special Monte Carlo features include saving parameter estimates 

from the analysis of real data to be used as population and/or coverage 

values for data generation in a Monte Carlo simulation study.  In 

addition, analysis results from each replication of a Monte Carlo 

simulation study can be saved in an external file.  

 

GRAPHICS 
 

Mplus includes a dialog-based, post-processing graphics module that 

provides graphical displays of observed data and analysis results 

including outliers and influential observations. 

 

These graphical displays can be viewed after the Mplus analysis is 

completed. They include histograms, scatterplots, plots of individual 

observed and estimated values, plots of sample and estimated means and 

proportions/probabilities, plots of estimated probabilities for a 

categorical latent variable as a function of its covariates, plots of item 

characteristic curves and information curves, plots of survival and 

hazard curves, plots of missing data statistics, plots of user-specified 

functions, and plots related to Bayesian estimation.  These are available 

for the total sample, by group, by class, and adjusted for covariates.  The 

graphical displays can be edited and exported as a DIB, EMF, or JPEG 

file.  In addition, the data for each graphical display can be saved in an 

external file for use by another graphics program.  
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DIAGRAMMER 
  

The Diagrammer can be used to draw an input diagram, to automatically 

create an output diagram, and to automatically create a diagram using an 

Mplus input without an analysis or data.  To draw an input diagram, the 

Diagrammer is accessed through the Open Diagrammer menu option of 

the Diagram menu in the Mplus Editor.  The Diagrammer uses a set of 

drawing tools and pop-up menus to draw a diagram.  When an input 

diagram is drawn, a partial input is created which can be edited before 

the analysis.  To automatically create an output diagram, an input is 

created in the Mplus Editor.  The output diagram is automatically 

created when the analysis is completed.  This diagram can be edited and 

used in a new analysis.  The Diagrammer can be used as a drawing tool 

by using an input without an analysis or data.  

 

LTA CALCULATOR 
 

Conditional probabilities, including latent transition probabilities, for 

different values of a set of covariates can be computed using the LTA 

Calculator.  It is accessed by choosing LTA calculator from the Mplus 

menu of the Mplus Editor. 

 

LANGUAGE GENERATOR 
 

Mplus includes a language generator to help users create Mplus input 

files.  The language generator takes users through a series of screens that 

prompts them for information about their data and model. The language 

generator contains all of the Mplus commands except DEFINE, 

MODEL, PLOT, and MONTECARLO.  Features added after Version 2 

are not included in the language generator.  

  

THE ORGANIZATION OF THE USER’S GUIDE 
 

The Mplus User’s Guide has 20 chapters.  Chapter 2 describes how to 

get started with Mplus.  Chapters 3 through 13 contain examples of 

analyses that can be done using Mplus.  Chapter 14 discusses special 

issues.  Chapters 15 through 19 describe the Mplus language.  Chapter 

20 contains a summary of the Mplus language.  Technical appendices 

that contain information on modeling, model estimation, model testing, 
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numerical algorithms, and references to further technical information 

can be found at www.statmodel.com. 

 

It is not necessary to read the entire User’s Guide before using the 

program.  A user may go straight to Chapter 2 for an overview of Mplus 

and then to one of the example chapters. 
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CHAPTER 2 

GETTING STARTED WITH Mplus  
 

 

After Mplus is installed, the program can be run from the Mplus editor.  

The Mplus Editor for Windows includes a language generator and a 

graphics module.  The graphics module provides graphical displays of 

observed data and analysis results.   

 

In this chapter, a brief description of the user language is presented 

along with an overview of the examples and some model estimation 

considerations.  

 

THE Mplus LANGUAGE 
 

The user language for Mplus consists of a set of ten commands each of 

which has several options.  The default options for Mplus have been 

chosen so that user input can be minimized for the most common types 

of analyses.  For most analyses, only a small subset of the Mplus 

commands is needed.  Complicated models can be easily described using 

the Mplus language.  The ten commands of Mplus are:   

 

 TITLE 

 DATA  (required) 

 VARIABLE (required) 

 DEFINE 

 ANALYSIS 

 MODEL 

 OUTPUT 

 SAVEDATA 

 PLOT 

 MONTECARLO 

 

The TITLE command is used to provide a title for the analysis.  The 

DATA command is used to provide information about the data set to be 

analyzed.  The VARIABLE command is used to provide information 

about the variables in the data set to be analyzed.  The DEFINE 

command is used to transform existing variables and create new 

variables.  The ANALYSIS command is used to describe the technical 
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details of the analysis.  The MODEL command is used to describe the 

model to be estimated.  The OUTPUT command is used to request 

additional output not included as the default.  The SAVEDATA 

command is used to save the analysis data, auxiliary data, and a variety 

of analysis results.  The PLOT command is used to request graphical 

displays of observed data and analysis results.  The MONTECARLO 

command is used to specify the details of a Monte Carlo simulation 

study.      

 

The Mplus commands may come in any order.  The DATA and 

VARIABLE commands are required for all analyses.  All commands 

must begin on a new line and must be followed by a colon.  Semicolons 

separate command options.  There can be more than one option per line.  

The records in the input setup must be no longer than 90 columns.  They 

can contain upper and/or lower case letters and tabs.   

 

Commands, options, and option settings can be shortened for 

convenience.  Commands and options can be shortened to four or more 

letters.  Option settings can be referred to by either the complete word or 

the part of the word shown in bold type in the command boxes in each 

chapter.  

 

Comments can be included anywhere in the input setup.  A comment is 

designated by an exclamation point.  Anything on a line following an 

exclamation point is treated as a user comment and is ignored by the 

program.  Several lines can be commented out by starting the first line 

with !* and ending the last line with *!.   

 

The keywords IS, ARE, and = can be used interchangeably in all 

commands except DEFINE, MODEL CONSTRAINT, and MODEL 

TEST.  Items in a list can be separated by blanks or commas. 

 

Mplus uses a hyphen (-) to indicate a list of variables or numbers.  The 

use of this feature is discussed in each section for which it is appropriate.  

There is also a special keyword ALL which can be used to indicate all 

variables.  This keyword is discussed with the options that use it.  

 

Following is a set of Mplus input files for a few prototypical examples.  

The first example shows the input file for a factor analysis with 

covariates (MIMIC model). 
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TITLE: this is an example of a MIMIC model  

 with two factors, six continuous factor 

indicators, and three covariates  

DATA: FILE IS mimic.dat; 

VARIABLE: NAMES ARE y1-y6 x1-x3; 

MODEL: f1 BY y1-y3; 

 f2 BY y4-y6; 

 f1 f2 ON x1-x3; 

 

The second example shows the input file for a growth model with time-

invariant covariates.  It illustrates the new simplified Mplus language for 

specifying growth models. 

 
TITLE: this is an example of a linear growth 

model for a continuous outcome at four 

time points with the intercept and slope 

growth factors regressed on two time-

invariant covariates 

DATA: FILE IS growth.dat; 

VARIABLE: NAMES ARE y1-y4 x1 x2; 

MODEL: i s | y1@0 y2@1 y3@2 y4@3; 

 i s ON x1 x2; 

 

The third example shows the input file for a latent class analysis with 

covariates and a direct effect.   

 
TITLE: this is an example of a latent class 

analysis with two classes, one covariate, 

and a direct effect 

DATA: FILE IS lcax.dat; 

VARIABLE: NAMES ARE u1-u4 x; 

 CLASSES = c (2); 

 CATEGORICAL = u1-u4; 

ANALYSIS: TYPE = MIXTURE; 

MODEL:  

 %OVERALL% 

 c ON x; 

 u4 ON x; 

 

The fourth example shows the input file for a multilevel regression 

model with a random intercept and a random slope varying across 

clusters. 
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TITLE: this is an example of a multilevel    

 regression analysis with one individual- 

level outcome variable regressed on an 

individual-level background variable where 

the intercept and slope are regressed on a 

cluster-level variable  

DATA: FILE IS reg.dat; 

VARIABLE: NAMES ARE clus y x w; 

 CLUSTER = clus; 

 WITHIN = x; 

 BETWEEN = w; 

 MISSING = .; 

DEFINE: CENTER x (GRANDMEAN); 

ANALYSIS: TYPE = TWOLEVEL RANDOM; 

MODEL: 

 %WITHIN% 

 s | y ON x; 

 %BETWEEN% 

 y s ON w; 

 

OVERVIEW OF Mplus EXAMPLES  
 

The next eleven chapters contain examples of prototypical input setups 

for several different types of analyses.  The input, data, and output, as 

well as the corresponding Monte Carlo input and Monte Carlo output for 

most of the examples are on the CD that contains the Mplus program.  

The Monte Carlo input is used to generate the data for each example.  

They are named using the example number.  For example, the names of 

the files for Example 3.1 are ex3.1.inp; ex3.1.dat; ex3.1.out; 

mcex3.1.inp, and mcex3.1.out.  The data in ex3.1.dat are generated using 

mcex3.1.inp. 

 

The examples presented do not cover all models that can be estimated 

using Mplus but do cover the major areas of modeling.  They can be 

seen as building blocks that can be put together as needed.  For example, 

a model can combine features described in an example from one chapter 

with features described in an example from another chapter.  Many 

unique and unexplored models can therefore be created.  In each chapter, 

all commands and options for the first example are discussed.  After that, 

only the highlighted parts of each example are discussed.    

 

For clarity, certain conventions are used in the input setups.  Program 

commands, options, settings, and keywords are written in upper case.  

Information provided by the user is written in lower case.  Note, 
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however, that Mplus is not case sensitive.  Upper and lower case can be 

used interchangeably in the input setups.   

 

For simplicity, the input setups for the examples are generic.  Observed 

continuous and censored outcome variable names start with a y; 

observed binary or ordered categorical (ordinal), unordered categorical 

(nominal), and count outcome variable names start with a u; time-to-

event variables in continuous-time survival analysis start with a t; 

observed background variable names start with an x; observed time-

varying background variables start with an a; observed between-level 

background variables start with a w; continuous latent variable names 

start with an f; categorical latent variable names start with a c; intercept 

growth factor names start with an i; and slope growth factor names and 

random slope names start with an s or a q.  Note, however, that variable 

names are not limited to these choices.   

 

Following is a list of the example chapters: 

 

 Chapter 3: Regression and path analysis 

 Chapter 4: Exploratory factor analysis 

 Chapter 5: Confirmatory factor analysis and structural equation 

modeling 

 Chapter 6:  Growth modeling and survival analysis 

 Chapter 7:  Mixture modeling with cross-sectional data 

 Chapter 8:  Mixture modeling with longitudinal data 

 Chapter 9:  Multilevel modeling with complex survey data 

 Chapter 10: Multilevel mixture modeling 

 Chapter 11: Missing data modeling and Bayesian analysis 

 Chapter 12: Monte Carlo simulation studies 

 Chapter 13: Special features 

  

The Mplus Base program covers the analyses described in Chapters 3, 5, 

6, 11, 13, and parts of Chapters 4 and 12.  The Mplus Base program does 

not include analyses with TYPE=MIXTURE, TYPE=TWOLEVEL, 

TYPE=THREELEVEL, or TYPE=CROSSCLASSIFIED. 

 

The Mplus Base and Mixture Add-On program covers the analyses 

described in Chapters 3, 5, 6, 7, 8, 11, 13,  and parts of Chapters 4 and 

12.  The Mplus Base and Mixture Add-On program does not include 

analyses with TYPE=TWOLEVEL, TYPE=THREELEVEL, or 

TYPE=CROSSCLASSIFIED. 
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The Mplus Base and Multilevel Add-On program covers the analyses 

described in Chapters 3, 5, 6, 9, 11, 13,  and parts of Chapters 4 and 12.  

The Mplus Base and Multilevel Add-On program does not include 

analyses with TYPE=MIXTURE. 

 

The Mplus Base and Combination Add-On program covers the analyses 

described in all chapters.  There are no restrictions on the analyses that 

can be requested.   
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CHAPTER 3 

EXAMPLES:  REGRESSION AND 

PATH ANALYSIS 
 

 

Regression analysis with univariate or multivariate dependent variables 

is a standard procedure for modeling relationships among observed 

variables.  Path analysis allows the simultaneous modeling of several 

related regression relationships.  In path analysis, a variable can be a 

dependent variable in one relationship and an independent variable in 

another.  These variables are referred to as mediating variables.  For both 

types of analyses, observed dependent variables can be continuous, 

censored, binary, ordered categorical (ordinal), counts, or combinations 

of these variable types.  In addition, for regression analysis and path 

analysis for non-mediating variables, observed dependent variables can 

be unordered categorical (nominal).   

 

For continuous dependent variables, linear regression models are used.  

For censored dependent variables, censored-normal regression models 

are used, with or without inflation at the censoring point.  For binary and 

ordered categorical dependent variables, probit or logistic regression 

models are used.  Logistic regression for ordered categorical dependent 

variables uses the proportional odds specification.  For unordered 

categorical dependent variables, multinomial logistic regression models 

are used.  For count dependent variables, Poisson regression models are 

used, with or without inflation at the zero point.  Both maximum 

likelihood and weighted least squares estimators are available.     

 

All regression and path analysis models can be estimated using the 

following special features: 

 

 Single or multiple group analysis 

 Missing data 

 Complex survey data 

 Random slopes 

 Linear and non-linear parameter constraints 

 Indirect effects including specific paths 

 Maximum likelihood estimation for all outcome types 

 Bootstrap standard errors and confidence intervals 
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 Wald chi-square test of parameter equalities 

 

For continuous, censored with weighted least squares estimation, binary, 

and ordered categorical (ordinal) outcomes, multiple group analysis is 

specified by using the GROUPING option of the VARIABLE command 

for individual data or the NGROUPS option of the DATA command for 

summary data.  For censored with maximum likelihood estimation, 

unordered categorical (nominal), and count outcomes, multiple group 

analysis is specified using the KNOWNCLASS option of the 

VARIABLE command in conjunction with the TYPE=MIXTURE 

option of the ANALYSIS command.  The default is to estimate the 

model under missing data theory using all available data.  The 

LISTWISE option of the DATA command can be used to delete all 

observations from the analysis that have missing values on one or more 

of the analysis variables.  Corrections to the standard errors and chi-

square test of model fit that take into account stratification, non-

independence of observations, and unequal probability of selection are 

obtained by using the TYPE=COMPLEX option of the ANALYSIS 

command in conjunction with the STRATIFICATION, CLUSTER, and 

WEIGHT options of the VARIABLE command. The 

SUBPOPULATION option is used to select observations for an analysis 

when a subpopulation (domain) is analyzed.  Random slopes are 

specified by using the | symbol of the MODEL command in conjunction 

with the ON option of the MODEL command.  Linear and non-linear 

parameter constraints are specified by using the MODEL 

CONSTRAINT command.  Indirect effects are specified by using the 

MODEL INDIRECT command.  Maximum likelihood estimation is 

specified by using the ESTIMATOR option of the ANALYSIS 

command.  Bootstrap standard errors are obtained by using the 

BOOTSTRAP option of the ANALYSIS command.  Bootstrap 

confidence intervals are obtained by using the BOOTSTRAP option of 

the ANALYSIS command in conjunction with the CINTERVAL option 

of the OUTPUT command.  The MODEL TEST command is used to test 

linear restrictions on the parameters in the MODEL and MODEL 

CONSTRAINT commands using the Wald chi-square test.      

 

Graphical displays of observed data and analysis results can be obtained 

using the PLOT command in conjunction with a post-processing 

graphics module.  The PLOT command provides histograms, 

scatterplots, plots of individual observed and estimated values, and plots 

of sample and estimated means and proportions/probabilities.  These are 
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available for the total sample, by group, by class, and adjusted for 

covariates.  The PLOT command includes a display showing a set of 

descriptive statistics for each variable.  The graphical displays can be 

edited and exported as a DIB, EMF, or JPEG file.  In addition, the data 

for each graphical display can be saved in an external file for use by 

another graphics program.  

  

Following is the set of regression examples included in this chapter: 

 

 3.1:  Linear regression 

 3.2:  Censored regression 

 3.3:  Censored-inflated regression 

 3.4:  Probit regression 

 3.5:  Logistic regression 

 3.6:  Multinomial logistic regression 

 3.7:  Poisson regression 

 3.8:  Zero-inflated Poisson and negative binomial regression 

 3.9:  Random coefficient regression 

 3.10:  Non-linear constraint on the logit parameters of an unordered 

categorical (nominal) variable 

 

Following is the set of path analysis examples included in this chapter: 

 

 3.11:  Path analysis with continuous dependent variables 

 3.12:  Path analysis with categorical dependent variables 

 3.13:  Path analysis with categorical dependent variables using the 

Theta parameterization 

 3.14:  Path analysis with a combination of continuous and 

categorical dependent variables 

 3.15:  Path analysis with a combination of censored, categorical, and 

unordered categorical (nominal) dependent variables 

 3.16:  Path analysis with continuous dependent variables, 

bootstrapped standard errors, indirect effects, and confidence 

intervals 

 3.17:  Path analysis with a categorical dependent variable and a 

continuous mediating variable with missing data* 

 3.18:  Moderated mediation with a plot of the indirect effect 
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*  Example uses numerical integration in the estimation of the model.  

This can be computationally demanding depending on the size of the 

problem. 

 

EXAMPLE 3.1: LINEAR REGRESSION  
 

 
TITLE: this is an example of a linear regression 

for a continuous observed dependent 

variable with two covariates 

DATA: FILE IS ex3.1.dat; 

VARIABLE: NAMES ARE y1-y6 x1-x4; 

 USEVARIABLES ARE y1 x1 x3; 

MODEL: y1 ON x1 x3; 

 

In this example, a linear regression is estimated. 

 
TITLE: this is an example of a linear regression 

for a continuous observed dependent 

variable with two covariates 

 

The TITLE command is used to provide a title for the analysis.  The title 

is printed in the output just before the Summary of Analysis. 

 
DATA: FILE IS ex3.1.dat; 

 

The DATA command is used to provide information about the data set 

to be analyzed.  The FILE option is used to specify the name of the file 

that contains the data to be analyzed, ex3.1.dat.  Because the data set is 

in free format, the default, a FORMAT statement is not required.    

 
VARIABLE: NAMES ARE y1-y6 x1-x4; 

 USEVARIABLES ARE y1 x1 x3; 

 

The VARIABLE command is used to provide information about the 

variables in the data set to be analyzed.  The NAMES option is used to 

assign names to the variables in the data set.  The data set in this 

example contains ten variables:  y1, y2, y3, y4, y5, y6, x1, x2, x3, and 

x4.  Note that the hyphen can be used as a convenience feature in order 

to generate a list of names.  If not all of the variables in the data set are 

used in the analysis, the USEVARIABLES option can be used to select a 

subset of variables for analysis.  Here the variables y1, x1, and x3 have 
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been selected for analysis.  Because the scale of the dependent variable 

is not specified, it is assumed to be continuous. 

 
MODEL: y1 ON x1 x3; 

 

The MODEL command is used to describe the model to be estimated. 

The ON statement describes the linear regression of y1 on the covariates 

x1 and x3.  It is not necessary to refer to the means, variances, and 

covariances among the x variables in the MODEL command because the 

parameters of the x variables are not part of the model estimation.  

Because the model does not impose restrictions on the parameters of the 

x variables, these parameters can be estimated separately as the sample 

values. The default estimator for this type of analysis is maximum 

likelihood.  The ESTIMATOR option of the ANALYSIS command can 

be used to select a different estimator.  

 

EXAMPLE 3.2: CENSORED REGRESSION  
 

 
TITLE: this is an example of a censored 

regression for a censored dependent 

variable with two covariates 

DATA: FILE IS ex3.2.dat; 

VARIABLE: NAMES ARE y1-y6 x1-x4; 

 USEVARIABLES ARE y1 x1 x3; 

 CENSORED ARE y1 (b); 

ANALYSIS: ESTIMATOR = MLR; 

MODEL: y1 ON x1 x3; 

 

The difference between this example and Example 3.1 is that the 

dependent variable is a censored variable instead of a continuous 

variable.  The CENSORED option is used to specify which dependent 

variables are treated as censored variables in the model and its 

estimation, whether they are censored from above or below, and whether 

a censored or censored-inflated model will be estimated.  In the example 

above, y1 is a censored variable.  The b in parentheses following y1 

indicates that y1 is censored from below, that is, has a floor effect, and 

that the model is a censored regression model.  The censoring limit is 

determined from the data.  The default estimator for this type of analysis 

is a robust weighted least squares estimator.  By specifying 

ESTIMATOR=MLR, maximum likelihood estimation with robust 

standard errors is used.  The ON statement describes the censored 
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regression of y1 on the covariates x1 and x3.  An explanation of the 

other commands can be found in Example 3.1. 

 

EXAMPLE 3.3: CENSORED-INFLATED REGRESSION 
 

 
TITLE: this is an example of a censored-inflated 

regression for a censored dependent 

variable with two covariates 

DATA: FILE IS ex3.3.dat; 

VARIABLE: NAMES ARE y1-y6 x1-x4; 

 USEVARIABLES ARE y1 x1 x3; 

 CENSORED ARE y1 (bi); 

MODEL: y1 ON x1 x3; 

 y1#1 ON x1 x3; 

 

The difference between this example and Example 3.1 is that the 

dependent variable is a censored variable instead of a continuous 

variable.  The CENSORED option is used to specify which dependent 

variables are treated as censored variables in the model and its 

estimation, whether they are censored from above or below, and whether 

a censored or censored-inflated model will be estimated.  In the example 

above, y1 is a censored variable.  The bi in parentheses following y1 

indicates that y1 is censored from below, that is, has a floor effect, and 

that a censored-inflated regression model will be estimated.  The 

censoring limit is determined from the data.   

 

With a censored-inflated model, two regressions are estimated.  The first 

ON statement describes the censored regression of the continuous part of 

y1 on the covariates x1 and x3.  This regression predicts the value of the 

censored dependent variable for individuals who are able to assume 

values of the censoring point and above. The second ON statement 

describes the logistic regression of the binary latent inflation variable 

y1#1 on the covariates x1 and x3.   This regression predicts the 

probability of being unable to assume any value except the censoring 

point.  The inflation variable is referred to by adding to the name of the 

censored variable the number sign (#) followed by the number 1.  The 

default estimator for this type of analysis is maximum likelihood with 

robust standard errors.  The ESTIMATOR option of the ANALYSIS 

command can be used to select a different estimator.  An explanation of 

the other commands can be found in Example 3.1. 
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EXAMPLE 3.4: PROBIT REGRESSION 
 

 
TITLE: this is an example of a probit regression 

for a binary or categorical observed 

dependent variable with two covariates 

DATA: FILE IS ex3.4.dat; 

VARIABLE: NAMES ARE u1-u6 x1-x4; 

 USEVARIABLES ARE u1 x1 x3; 

 CATEGORICAL = u1; 

MODEL: u1 ON x1 x3; 

 

The difference between this example and Example 3.1 is that the 

dependent variable is a binary or ordered categorical (ordinal) variable 

instead of a continuous variable.  The CATEGORICAL option is used to 

specify which dependent variables are treated as binary or ordered 

categorical (ordinal) variables in the model and its estimation.  In the 

example above, u1 is a binary or ordered categorical variable.  The 

program determines the number of categories.  The ON statement 

describes the probit regression of u1 on the covariates x1 and x3.  The 

default estimator for this type of analysis is a robust weighted least 

squares estimator.  The ESTIMATOR option of the ANALYSIS 

command can be used to select a different estimator.  An explanation of 

the other commands can be found in Example 3.1. 

 

EXAMPLE 3.5: LOGISTIC REGRESSION 
 

 
TITLE: this is an example of a logistic 

regression for a categorical observed 

dependent variable with two covariates 

DATA: FILE IS ex3.5.dat; 

VARIABLE: NAMES ARE u1-u6 x1-x4; 

 USEVARIABLES ARE u1 x1 x3; 

 CATEGORICAL IS u1; 

ANALYSIS: ESTIMATOR = ML; 

MODEL: u1 ON x1 x3; 

 

The difference between this example and Example 3.1 is that the 

dependent variable is a binary or ordered categorical (ordinal) variable 

instead of a continuous variable.  The CATEGORICAL option is used to 

specify which dependent variables are treated as binary or ordered 

categorical (ordinal) variables in the model and its estimation.  In the 
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example above, u1 is a binary or ordered categorical variable.  The 

program determines the number of categories.   By specifying 

ESTIMATOR=ML, a logistic regression will be estimated.  The ON 

statement describes the logistic regression of u1 on the covariates x1 and 

x3.  An explanation of the other commands can be found in Example 3.1. 

 

EXAMPLE 3.6: MULTINOMIAL LOGISTIC REGRESSION 
 

 
TITLE: this is an example of a multinomial 

logistic regression for an unordered 

categorical (nominal) dependent variable 

with two covariates 

DATA: FILE IS ex3.6.dat; 

VARIABLE: NAMES ARE u1-u6 x1-x4; 

 USEVARIABLES ARE u1 x1 x3; 

 NOMINAL IS u1; 

MODEL: u1 ON x1 x3; 

 

The difference between this example and Example 3.1 is that the 

dependent variable is an unordered categorical (nominal) variable 

instead of a continuous variable.  The NOMINAL option is used to 

specify which dependent variables are treated as unordered categorical 

variables in the model and its estimation.  In the example above, u1 is a 

three-category unordered variable.  The program determines the number 

of categories.  The ON statement describes the multinomial logistic 

regression of u1 on the covariates x1 and x3 when comparing categories 

one and two of u1 to the third category of u1.  The intercept and slopes 

of the last category are fixed at zero as the default.  The default estimator 

for this type of analysis is maximum likelihood with robust standard 

errors.  The ESTIMATOR option of the ANALYSIS command can be 

used to select a different estimator.  An explanation of the other 

commands can be found in Example 3.1. 

 

Following is an alternative specification of the multinomial logistic 

regression of u1 on the covariates x1 and x3: 

 

u1#1 u1#2 ON x1 x3; 

 

where u1#1 refers to the first category of u1 and u1#2 refers to the 

second category of u1.  The categories of an unordered categorical 

variable are referred to by adding to the name of the unordered 
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categorical variable the number sign (#) followed by the number of the 

category.  This alternative specification allows individual parameters to 

be referred to in the MODEL command for the purpose of giving starting 

values or placing restrictions. 

 

EXAMPLE 3.7: POISSON REGRESSION 
 

 
TITLE: this is an example of a Poisson regression 

for a count dependent variable with two 

covariates 

DATA: FILE IS ex3.7.dat; 

VARIABLE: NAMES ARE u1-u6 x1-x4; 

 USEVARIABLES ARE u1 x1 x3; 

 COUNT IS u1; 

MODEL: u1 ON x1 x3; 

     

The difference between this example and Example 3.1 is that the 

dependent variable is a count variable instead of a continuous variable.  

The COUNT option is used to specify which dependent variables are 

treated as count variables in the model and its estimation and whether a 

Poisson or zero-inflated Poisson model will be estimated.  In the 

example above, u1 is a count variable that is not inflated.  The ON 

statement describes the Poisson regression of u1 on the covariates x1 

and x3.  The default estimator for this type of analysis is maximum 

likelihood with robust standard errors.  The ESTIMATOR option of the 

ANALYSIS command can be used to select a different estimator.  An 

explanation of the other commands can be found in Example 3.1. 
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EXAMPLE 3.8: ZERO-INFLATED POISSON AND NEGATIVE 

BINOMIAL REGRESSION 
 

 
TITLE: this is an example of a zero-inflated 

Poisson regression for a count dependent 

variable with two covariates 

DATA: FILE IS ex3.8a.dat; 

VARIABLE: NAMES ARE u1-u6 x1-x4; 

 USEVARIABLES ARE u1 x1 x3; 

 COUNT IS u1 (i); 

MODEL: u1 ON x1 x3; 

 u1#1 ON x1 x3; 

     

The difference between this example and Example 3.1 is that the 

dependent variable is a count variable instead of a continuous variable.  

The COUNT option is used to specify which dependent variables are 

treated as count variables in the model and its estimation and whether a 

Poisson or zero-inflated Poisson model will be estimated.  In the first 

part of this example, a zero-inflated Poisson regression is estimated.  In 

the example above, u1 is a count variable.  The i in parentheses 

following u1 indicates that a zero-inflated Poisson model will be 

estimated.  In the second part of this example, a negative binomial model 

is estimated.   

 

With a zero-inflated Poisson model, two regressions are estimated.  The 

first ON statement describes the Poisson regression of the count part of 

u1 on the covariates x1 and x3.  This regression predicts the value of the 

count dependent variable for individuals who are able to assume values 

of zero and above. The second ON statement describes the logistic 

regression of the binary latent inflation variable u1#1 on the covariates 

x1 and x3.   This regression predicts the probability of being unable to 

assume any value except zero.  The inflation variable is referred to by 

adding to the name of the count variable the number sign (#) followed by 

the number 1.  The default estimator for this type of analysis is 

maximum likelihood with robust standard errors.  The ESTIMATOR 

option of the ANALYSIS command can be used to select a different 

estimator.  An explanation of the other commands can be found in 

Example 3.1. 

 

An alternative way of specifying this model is presented in Example 

7.25.  In Example 7.25, a categorical latent variable with two classes is 
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used to represent individuals who are able to assume values of zero and 

above and individuals who are unable to assume any value except zero.  

This approach allows the estimation of the probability of being in each 

class and the posterior probabilities of being in each class for each 

individual.   

 
TITLE: this is an example of a negative binomial 

model for a count dependent variable with 

two covariates 

DATA: FILE IS ex3.8b.dat; 

VARIABLE: NAMES ARE u1-u6 x1-x4; 

 USEVARIABLES ARE u1 x1 x3; 

 COUNT IS u1 (nb); 

MODEL: u1 ON x1 x3; 

 

The difference between this part of the example and the first part is that 

a regression for a count outcome using a negative binomial model is 

estimated instead of a zero-inflated Poisson model.    The negative 

binomial model estimates a dispersion parameter for each of the 

outcomes (Long, 1997; Hilbe, 2011). 

 

The COUNT option is used to specify which dependent variables are 

treated as count variables in the model and its estimation and which type 

of model is estimated.  The nb in parentheses following u1 indicates that 

a negative binomial model will be estimated.  The dispersion parameter 

can be referred to using the name of the count variable.   An explanation 

of the other commands can be found in the first part of this example and 

in Example 3.1. 

 

EXAMPLE 3.9: RANDOM COEFFICIENT REGRESSION 
 

 
TITLE: this is an example of a random coefficient 

regression 

DATA: FILE IS ex3.9.dat; 

VARIABLE: NAMES ARE y x1 x2; 

DEFINE: CENTER x1 x2 (GRANDMEAN); 

ANALYSIS: TYPE = RANDOM; 

MODEL: s | y ON x1; 

 s WITH y; 

 y s ON x2;  
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In this example a regression with random coefficients shown in the 

picture above is estimated.  Random coefficient regression uses random 

slopes to model heterogeneity in the residual variance as a function of a 

covariate that has a random slope (Hildreth & Houck, 1968; Johnston, 

1984).  The s shown in a circle represents the random slope.  The broken 

arrow from s to the arrow from x1 to y indicates that the slope in this 

regression is random.  The random slope is predicted by the covariate 

x2. 

 

The CENTER option is used to specify the type of centering to be used 

in an analysis and the variables that will be centered.  Centering 

facilitates the interpretation of the results.  In this example, the 

covariates are centered using the grand means, that is, the sample means 

of x1 and x2 are subtracted from the values of the covariates x1 and x2.  

The TYPE option is used to describe the type of analysis that is to be 

performed.   

 

By selecting RANDOM, a model with random slopes will be estimated.  

The | symbol is used in conjunction with TYPE=RANDOM to name and 

define the random slope variables in the model.  The name on the left-

hand side of the | symbol names the random slope variable.  The 

statement on the right-hand side of the | symbol defines the random slope 

variable.  The random slope s is defined by the linear regression of y on 

the covariate x1.  The residual variance in the regression of y on x is 

estimated as the default.  The residual covariance between s and y is 

fixed at zero as the default.  The WITH statement is used to free this 

parameter.  The ON statement describes the linear regressions of the 

dependent variable y and the random slope s on the covariate x2.  The 

default estimator for this type of analysis is maximum likelihood with 

robust standard errors.  The estimator option of the ANALYSIS 
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command can be used to select a different estimator. An explanation of 

the other commands can be found in Example 3.1. 

 

EXAMPLE 3.10: NON-LINEAR CONSTRAINT ON THE LOGIT 

PARAMETERS OF AN UNORDERED CATEGORICAL 

(NOMINAL) VARIABLE 
 

 
TITLE: this is an example of non-linear 

constraint on the logit parameters of an 

unordered categorical (nominal) variable 

DATA: FILE IS ex3.10.dat; 

VARIABLE: NAMES ARE u; 

 NOMINAL = u; 

MODEL: [u#1] (p1); 

 [u#2] (p2); 

 [u#3] (p2); 

MODEL CONSTRAINT: 

 p2 = log ((exp (p1) – 1)/2 – 1); 

 

In this example, theory specifies the following probabilities for the four 

categories of an unordered categorical (nominal) variable:  ½  + ¼ p, ¼ 

(1-p), ¼ (1-p), ¼ p, where p is a probability parameter to be estimated.  

These restrictions on the category probabilities correspond to non-linear 

constraints on the logit parameters for the categories in the multinomial 

logistic model.  This example is based on Dempster, Laird, and Rubin 

(1977, p. 2).   

 

The NOMINAL option is used to specify which dependent variables are 

treated as unordered categorical (nominal) variables in the model and its 

estimation.  In the example above, u is a four-category unordered 

variable. The program determines the number of categories.   The 

categories of an unordered categorical variable are referred to by adding 

to the name of the unordered categorical variable the number sign (#) 

followed by the number of the category.  In this example, u#1 refers to 

the first category of u, u#2 refers to the second category of u, and u#3 

refers to the third category of u. 

 

In the MODEL command, parameters are given labels by placing a name 

in parentheses after the parameter.  The logit parameter for category one 

is referred to as p1; the logit parameter for category two is referred to as 

p2; and the logit parameter for category three is also referred to as p2.  
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When two parameters are referred to using the same label, they are held 

equal.  The MODEL CONSTRAINT command is used to define linear 

and non-linear constraints on the parameters in the model.  The non-

linear constraint for the logits follows from the four probabilities given 

above after some algebra.  The default estimator for this type of analysis 

is maximum likelihood with robust standard errors.  The ESTIMATOR 

option of the ANALYSIS command can be used to select a different 

estimator.  An explanation of the other commands can be found in 

Example 3.1. 

 

EXAMPLE 3.11: PATH ANALYSIS WITH CONTINUOUS 

DEPENDENT VARIABLES 
 

 
TITLE: this is an example of a path analysis 

 with continuous dependent variables 

DATA: FILE IS ex3.11.dat; 

VARIABLE: NAMES ARE y1-y6 x1-x4; 

 USEVARIABLES ARE y1-y3 x1-x3; 

MODEL: y1 y2 ON x1 x2 x3; 

 y3 ON y1 y2 x2; 

 

 

 
 

 

In this example, the path analysis model shown in the picture above is 

estimated.  The dependent variables in the analysis are continuous.  Two 

of the dependent variables y1 and y2 mediate the effects of the 

covariates x1, x2, and x3 on the dependent variable y3.    
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The first ON statement describes the linear regressions of y1 and y2 on 

the covariates x1, x2, and x3.  The second ON statement describes the 

linear regression of y3 on the mediating variables y1 and y2 and the 

covariate x2. The residual variances of the three dependent variables are 

estimated as the default.  The residuals are not correlated as the default.  

As in regression analysis, it is not necessary to refer to the means, 

variances, and covariances among the x variables in the MODEL 

command because the parameters of the x variables are not part of the 

model estimation.  Because the model does not impose restrictions on 

the parameters of the x variables, these parameters can be estimated 

separately as the sample values.  The default estimator for this type of 

analysis is maximum likelihood.  The ESTIMATOR option of the 

ANALYSIS command can be used to select a different estimator. An 

explanation of the other commands can be found in Example 3.1. 

 

EXAMPLE 3.12: PATH ANALYSIS WITH CATEGORICAL 

DEPENDENT VARIABLES 
 

 
TITLE: this is an example of a path analysis 

 with categorical dependent variables 

DATA: FILE IS ex3.12.dat; 

VARIABLE: NAMES ARE u1-u6 x1-x4; 

 USEVARIABLES ARE u1-u3 x1-x3; 

 CATEGORICAL ARE u1-u3; 

MODEL: u1 u2 ON x1 x2 x3; 

 u3 ON u1 u2 x2; 

 

The difference between this example and Example 3.11 is that the 

dependent variables are binary and/or ordered categorical (ordinal) 

variables instead of continuous variables.  The CATEGORICAL option 

is used to specify which dependent variables are treated as binary or 

ordered categorical (ordinal) variables in the model and its estimation.  

In the example above, u1, u2, and u3 are binary or ordered categorical 

variables.  The program determines the number of categories for each 

variable.  The first ON statement describes the probit regressions of u1 

and u2 on the covariates x1, x2, and x3.  The second ON statement 

describes the probit regression of u3 on the mediating variables u1 and 

u2 and the covariate x2.  The default estimator for this type of analysis is 

a robust weighted least squares estimator.  The ESTIMATOR option of 

the ANALYSIS command can be used to select a different estimator.  If 

the maximum likelihood estimator is selected, the regressions are 
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logistic regressions.  An explanation of the other commands can be 

found in Example 3.1. 

 

EXAMPLE 3.13: PATH ANALYSIS WITH CATEGORICAL 

DEPENDENT VARIABLES USING THE THETA 

PARAMETERIZATION 
 

 
TITLE: this is an example of a path analysis 

 with categorical dependent variables using 

the Theta parameterization 

DATA: FILE IS ex3.13.dat; 

VARIABLE: NAMES ARE u1-u6 x1-x4; 

 USEVARIABLES ARE u1-u3 x1-x3; 

 CATEGORICAL ARE u1-u3; 

ANALYSIS: PARAMETERIZATION = THETA; 

MODEL: u1 u2 ON x1 x2 x3; 

 u3 ON u1 u2 x2; 

 

The difference between this example and Example 3.12 is that the Theta 

parameterization is used instead of the default Delta parameterization.  

In the Delta parameterization, scale factors for continuous latent 

response variables of observed categorical dependent variables are 

allowed to be parameters in the model, but residual variances for 

continuous latent response variables are not.  In the Theta 

parameterization, residual variances for continuous latent response 

variables of observed categorical dependent variables are allowed to be 

parameters in the model, but scale factors for continuous latent response 

variables are not.  An explanation of the other commands can be found 

in Examples 3.1 and 3.12. 
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EXAMPLE 3.14: PATH ANALYSIS WITH A COMBINATION 

OF CONTINUOUS AND CATEGORICAL DEPENDENT 

VARIABLES 
 

 
TITLE: this is an example of a path analysis 

 with a combination of continuous and 

 categorical dependent variables 

DATA: FILE IS ex3.14.dat; 

VARIABLE: NAMES ARE y1 y2 u1 y4-y6 x1-x4; 

 USEVARIABLES ARE y1-u1 x1-x3; 

 CATEGORICAL IS u1; 

MODEL: y1 y2 ON x1 x2 x3; 

 u1 ON y1 y2 x2; 

 

The difference between this example and Example 3.11 is that the 

dependent variables are a combination of continuous and binary or 

ordered categorical (ordinal) variables instead of all continuous 

variables.  The CATEGORICAL option is used to specify which 

dependent variables are treated as binary or ordered categorical (ordinal) 

variables in the model and its estimation.  In the example above, y1 and 

y2 are continuous variables and u1 is a binary or ordered categorical 

variable.  The program determines the number of categories.  The first 

ON statement describes the linear regressions of y1 and y2 on the 

covariates x1, x2, and x3.  The second ON statement describes the probit 

regression of u1 on the mediating variables y1 and y2 and the covariate 

x2. The default estimator for this type of analysis is a robust weighted 

least squares estimator.  The ESTIMATOR option of the ANALYSIS 

command can be used to select a different estimator.  If a maximum 

likelihood estimator is selected, the regression for u1 is a logistic 

regression.  An explanation of the other commands can be found in 

Example 3.1. 
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EXAMPLE 3.15: PATH ANALYSIS WITH A COMBINATION 

OF CENSORED, CATEGORICAL, AND UNORDERED 

CATEGORICAL (NOMINAL) DEPENDENT VARIABLES 
 

 
TITLE: this is an example of a path analysis 

 with a combination of censored, 

categorical, and unordered categorical 

(nominal) dependent variables 

DATA: FILE IS ex3.15.dat; 

VARIABLE: NAMES ARE y1 u1 u2 y4-y6 x1-x4; 

 USEVARIABLES ARE y1-u2 x1-x3; 

 CENSORED IS y1 (a); 

 CATEGORICAL IS u1; 

 NOMINAL IS u2; 

MODEL: y1 u1 ON x1 x2 x3; 

 u2 ON y1 u1 x2; 

 

The difference between this example and Example 3.11 is that the 

dependent variables are a combination of censored, binary or ordered 

categorical (ordinal), and unordered categorical (nominal) variables 

instead of continuous variables.  The CENSORED option is used to 

specify which dependent variables are treated as censored variables in 

the model and its estimation, whether they are censored from above or 

below, and whether a censored or censored-inflated model will be 

estimated.  In the example above, y1 is a censored variable.  The a in 

parentheses following y1 indicates that y1 is censored from above, that 

is, has a ceiling effect, and that the model is a censored regression 

model.  The censoring limit is determined from the data.  The 

CATEGORICAL option is used to specify which dependent variables 

are treated as binary or ordered categorical (ordinal) variables in the 

model and its estimation.  In the example above, u1 is a binary or 

ordered categorical variable.  The program determines the number of 

categories.  The NOMINAL option is used to specify which dependent 

variables are treated as unordered categorical (nominal) variables in the 

model and its estimation.  In the example above, u2 is a three-category 

unordered variable.  The program determines the number of categories.   

 

The first ON statement describes the censored regression of y1 and the 

logistic regression of u1 on the covariates x1, x2, and x3.  The second 

ON statement describes the multinomial logistic regression of u2 on the 

mediating variables y1 and u1 and the covariate x2 when comparing 
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categories one and two of u2 to the third category of u2.  The intercept 

and slopes of the last category are fixed at zero as the default.  The 

default estimator for this type of analysis is maximum likelihood with 

robust standard errors.  The ESTIMATOR option of the ANALYSIS 

command can be used to select a different estimator.  An explanation of 

the other commands can be found in Example 3.1. 

 

Following is an alternative specification of the multinomial logistic 

regression of u2 on the mediating variables y1 and u1 and the covariate 

x2: 

 

u2#1 u2#2 ON y1 u1 x2; 

 

where u2#1 refers to the first category of u2 and u2#2 refers to the 

second category of u2.  The categories of an unordered categorical 

variable are referred to by adding to the name of the unordered 

categorical variable the number sign (#) followed by the number of the 

category.  This alternative specification allows individual parameters to 

be referred to in the MODEL command for the purpose of giving starting 

values or placing restrictions. 

 

EXAMPLE 3.16: PATH ANALYSIS WITH CONTINUOUS 

DEPENDENT VARIABLES, BOOTSTRAPPED STANDARD 

ERRORS, INDIRECT EFFECTS, AND NON-SYMMETRIC 

BOOTSTRAP CONFIDENCE INTERVALS 
 

 
TITLE: this is an example of a path analysis 

 with continuous dependent variables,   

 bootstrapped standard errors, indirect  

 effects, and non-symmetric bootstrap 

confidence intervals 

DATA: FILE IS ex3.16.dat; 

VARIABLE: NAMES ARE y1-y6 x1-x4; 

 USEVARIABLES ARE y1-y3 x1-x3; 

ANALYSIS: BOOTSTRAP = 1000; 

MODEL: y1 y2 ON x1 x2 x3; 

 y3 ON y1 y2 x2; 

MODEL INDIRECT: 

 y3 IND y1 x1; 

 y3 IND y2 x1; 

OUTPUT: CINTERVAL (BOOTSTRAP); 
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The difference between this example and Example 3.11 is that 

bootstrapped standard errors, indirect effects, and non-symmetric 

bootstrap confidence intervals are requested.  The BOOTSTRAP option 

is used to request bootstrapping and to specify the number of bootstrap 

draws to be used in the computation.  When the BOOTSTRAP option is 

used alone, bootstrap standard errors of the model parameter estimates 

are obtained.  When the BOOTSTRAP option is used in conjunction 

with the CINTERVAL(BOOTSTRAP) option of the OUTPUT 

command, bootstrap standard errors of the model parameter estimates 

and non-symmetric bootstrap confidence intervals for the model 

parameter estimates are obtained.  The BOOTSTRAP option can be used 

in conjunction with the MODEL INDIRECT command to obtain 

bootstrap standard errors for indirect effects.  When both MODEL 

INDIRECT and CINTERVAL(BOOTSTRAP) are used, bootstrapped 

standard errors and bootstrap confidence intervals are obtained for the 

indirect effects.  By selecting BOOTSTRAP=1000, bootstrapped 

standard errors will be computed using 1000 draws.   

 

The MODEL INDIRECT command is used to request indirect effects 

and their standard errors.  Total indirect, specific indirect, and total 

effects are obtained using the IND and VIA options of the MODEL 

INDIRECT command.  The IND option is used to request a specific 

indirect effect or a set of indirect effects.  In the IND statements above, 

the variable on the left-hand side of IND is the dependent variable.  The 

last variable on the right-hand side of IND is the independent variable.  

Other variables on the right-hand side of IND are mediating variables.  

The first IND statement requests the specific indirect effect from x1 to 

y1 to y3.  The second IND statement requests the specific indirect effect 

from x1 to y2 to y3.  Total effects are computed for all IND statements 

that start and end with the same variables.  An explanation of the other 

commands can be found in Examples 3.1 and 3.11. 
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EXAMPLE 3.17: PATH ANALYSIS WITH A CATEGORICAL 

DEPENDENT VARIABLE AND A CONTINUOUS MEDIATING 

VARIABLE WITH MISSING DATA 
 

 
TITLE: this is an example of a path analysis 

 with a categorical dependent variable and 

a continuous mediating variable with 

missing data 

DATA: FILE IS ex3.17.dat; 

VARIABLE: NAMES ARE u y x; 

 CATEGORICAL IS u; 

 MISSING IS y (999); 

ANALYSIS: ESTIMATOR = MLR; 

 INTEGRATION = MONTECARLO; 

MODEL: y ON x;  

 u ON y x; 

OUTPUT: TECH1 TECH8; 

 

In this example, the dependent variable is binary or ordered categorical 

(ordinal) and the continuous mediating variable has missing values.  The 

CATEGORICAL option is used to specify which dependent variables 

are treated as binary or ordered categorical (ordinal) variables in the 

model and its estimation.  In the example above, u is a binary or ordered 

categorical variable.  The program determines the number of categories.  

The MISSING option is used to identify the values or symbols in the 

analysis data set that will be treated as missing or invalid.  In this 

example, the number 999 is the missing value flag.  By specifying 

ESTIMATOR=MLR, a maximum likelihood estimator with robust 

standard errors using a numerical integration algorithm will be used.  

Note that numerical integration becomes increasingly more 

computationally demanding as the number of mediating variables with 

missing data and the sample size increase.  In this example, Monte Carlo 

integration with 500 integration points is used.  The ESTIMATOR 

option can be used to select a different estimator.   

 

The first ON statement describes the linear regression of y on the 

covariate x.  The second ON statement describes the logistic regression 

of u on the mediating variable y and the covariate x.  The OUTPUT 

command is used to request additional output not included as the default.  

The TECH1 option is used to request the arrays containing parameter 

specifications and starting values for all free parameters in the model.  
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The TECH8 option is used to request that the optimization history in 

estimating the model be printed in the output.  TECH8 is printed to the 

screen during the computations as the default.  TECH8 screen printing is 

useful for determining how long the analysis takes.  An explanation of 

the other commands can be found in Example 3.1. 

         

EXAMPLE 3.18:  MODERATED MEDIATION WITH A PLOT 

OF THE INDIRECT EFFECT    
 

 
TITLE: this is an example of moderated mediation 

with a plot of the indirect effect 

DATA: FILE = ex3.18.dat; 

VARIABLE: NAMES = y m x z; 

 USEVARIABLES = y m x z xz; 

DEFINE: xz = x*z; 

ANALYSIS: ESTIMATOR = BAYES; 

 PROCESSORS = 2; 

 BITERATIONS = (30000); 

MODEL: y ON m (b) 

 x z; 

      m ON x (gamma1) 

 z 

 xz (gamma2); 

MODEL CONSTRAINT: 

 PLOT(indirect); 

 LOOP(mod,-2,2,0.1); 

 indirect = b*(gamma1+gamma2*mod);  

PLOT: TYPE = PLOT2; 

OUTPUT: TECH8;      

 

In this example, a moderated mediation analysis with a plot of the 

indirect effect is carried out (Preacher, Rucker, & Hayes, 2007).  The 

variable z moderates the relationship between the mediator m and the 

covariate x.  The DEFINE command is used to create the variable xz 

which is the interaction between the moderator z and the covariate x.  

The variable xz must be included on the USEVARIABLES list after the 

original variables in order to be used in the analysis.   

 

By specifying ESTIMATOR=BAYES, a Bayesian analysis will be 

carried out.  In Bayesian estimation, the default is to use two 

independent Markov chain Monte Carlo (MCMC) chains.  If multiple 

processors are available, using PROCESSORS=2 will speed up 

computations.  The BITERATIONS option is used to specify the 
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maximum and minimum number of iterations for each Markov chain 

Monte Carlo (MCMC) chain when the potential scale reduction (PSR) 

convergence criterion (Gelman & Rubin, 1992) is used.  Using a number 

in parentheses, the BITERATIONS option specifies that a minimum of 

30,000 and a maximum of the default of 50,000 iterations will be used.  

The large minimum value is chosen to obtain a smooth plot.  

 

In the MODEL command, the first ON statement describes the linear 

regression of y on the mediator m, the covariate x, and the moderator z.  

The second ON statement describes the linear regression of the mediator 

m on the covariate x, the moderator z, and the interaction xz.  The 

intercepts and residual variances of y and m are estimated and the 

residuals are not correlated as the default.    

 

In MODEL CONSTRAINT, the LOOP option is used in conjunction 

with the PLOT option to create plots of variables.  In this example, the 

indirect effect defined in MODEL CONSTRAINT will be plotted.  The 

PLOT option names the variable that will be plotted on the y-axis.  The 

LOOP option names the variable that will be plotted on the x-axis, gives 

the numbers that are the lower and upper values of the variable, and the 

incremental value of the variable to be used in the computations.  In this 

example, the variable indirect will be on the y-axis and the variable mod 

will be on the x-axis.  The variable mod, as in moderation, varies over 

the range of z that is of interest such as two standard deviations away 

from its mean.  Corresponding to the case of z being standardized, the 

lower and upper values of mod are -2 and 2 and 0.1 is the incremental 

value of mod to use in the computations.  When mod appears in a 

MODEL CONSTRAINT statement involving a new parameter, that 

statement is evaluated for each value of mod specified by the LOOP 

option.  For example, the first value of mod is -2; the second value of 

mod is -2 plus 0.1 or -1.9; the third value of mod is -1.9 plus 0.1 or -1.8; 

the last value of mod is 2.  

 

Using TYPE=PLOT2 in the PLOT command, the plot of indirect and 

mod can be viewed by choosing Loop plots from the Plot menu of the 

Mplus Editor.  The plot presents the computed values along with a 95% 

confidence interval.  For Bayesian estimation, the default is credibility 

intervals of the posterior distribution with equal tail percentages.  The 

CINTERVAL option of the OUTPUT command can be used to obtain 

credibility intervals of the posterior distribution that give the highest 



CHAPTER 3 

 42 

posterior density.  An explanation of the other commands can be found 

in Example 3.1. 
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CHAPTER 4 

EXAMPLES: EXPLORATORY 

FACTOR ANALYSIS 
 

 

Exploratory factor analysis (EFA) is used to determine the number of 

continuous latent variables that are needed to explain the correlations 

among a set of observed variables.  The continuous latent variables are 

referred to as factors, and the observed variables are referred to as factor 

indicators.  In EFA, factor indicators can be continuous, censored, 

binary, ordered categorical (ordinal), counts, or combinations of these 

variable types.  EFA can also be carried out using exploratory structural 

equation modeling (ESEM; Asparouhov & Muthén, 2009a) when factor 

indicators are continuous, censored, binary, ordered categorical 

(ordinal), and combinations of these variable types.  ESEM examples are 

shown under Confirmatory Factor Analysis in Chapter 5.  

 

Several rotations are available using both orthogonal and oblique 

procedures.  The algorithms used in the rotations are described in 

Jennrich and Sampson (1966), Browne (2001), Bernaards and Jennrich 

(2005), Browne et al. (2004), and Jennrich and Bentler (2011, 2012).  

Standard errors for the rotated solutions are available using algorithms 

described in Jennrich (1973, 1974, 2007).  Cudeck and O’Dell (1994) 

discuss the benefits of standard errors for rotated solutions.  Chi-square 

difference testing comparing m-1 factors to m factors is carried out 

automatically using scaling correction factors for MLM, MLR, and 

WLSM and using the DIFFTEST option for WLSMV and MLMV. 

 

All EFA models can be estimated using the following special features: 

 

 Missing data 

 Complex survey data 

 Mixture modeling 

 

The default is to estimate the model under missing data theory using all 

available data.  The LISTWISE option of the DATA command can be 

used to delete all observations from the analysis that have missing values 

on one or more of the analysis variables.  Corrections to the standard 

errors and chi-square test of model fit that take into account 
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stratification, non-independence of observations, and unequal probability 

of selection are obtained by using the TYPE=COMPLEX option of the 

ANALYSIS command in conjunction with the STRATIFICATION, 

CLUSTER, and WEIGHT options of the VARIABLE command. The 

SUBPOPULATION option is used to select observations for an analysis 

when a subpopulation (domain) is analyzed.   

 

Graphical displays of observed data and analysis results can be obtained 

using the PLOT command in conjunction with a post-processing 

graphics module.  The PLOT command provides histograms, 

scatterplots, plots of eigenvalues, individual observed and estimated 

values, and plots of sample and estimated means and 

proportions/probabilities.  These are available for the total sample, by 

group, by class, and adjusted for covariates.  The PLOT command 

includes a display showing a set of descriptive statistics for each 

variable.  The graphical displays can be edited and exported as a DIB, 

EMF, or JPEG file.  In addition, the data for each graphical display can 

be saved in an external file for use by another graphics program.  

 

Following is the set of EFA examples included in this chapter. 

 

 4.1:  Exploratory factor analysis with continuous factor indicators  

 4.2:  Exploratory factor analysis with categorical factor indicators 

 4.3:  Exploratory factor analysis with continuous, censored, 

categorical, and count factor indicators*  

 4.4:  Exploratory factor mixture analysis with continuous latent class 

indicators 

 4.5:  Two-level exploratory factor analysis with continuous factor 

indicators  

 4.6:  Two-level exploratory factor analysis with both individual- and 

cluster-level factor indicators 

 4.7:  Bi-factor exploratory factor analysis with continuous factor 

indicators  

 

*  Example uses numerical integration in the estimation of the model.  

This can be computationally demanding depending on the size of the 

problem. 
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EXAMPLE 4.1: EXPLORATORY FACTOR ANALYSIS WITH 

CONTINUOUS FACTOR INDICATORS 
 

 
TITLE: this is an example of an exploratory 

factor analysis with continuous factor 

indicators 

DATA: FILE IS ex4.1a.dat; 

VARIABLE: NAMES ARE y1-y12; 

ANALYSIS: TYPE = EFA 1 4; 

OUTPUT: MODINDICES; 

 

In the first part of this example, an exploratory factor analysis with 

continuous factor indicators is carried out.  Rotated solutions with 

standard errors are obtained for each number of factors.  Modification 

indices are requested for the residual correlations.  In the second part of 

this example, the same exploratory factor analysis for four factors is 

carried out using exploratory structural equation modeling (ESEM). 

 
TITLE: this is an example of an exploratory 

factor analysis with continuous factor 

indicators 

 

The TITLE command is used to provide a title for the analysis.  The title 

is printed in the output just before the Summary of Analysis. 

 
DATA: FILE IS ex4.1.dat; 

 

The DATA command is used to provide information about the data set 

to be analyzed.  The FILE option is used to specify the name of the file 

that contains the data to be analyzed, ex4.1.dat.  Because the data set is 

in free format, the default, a FORMAT statement is not required. 

 
VARIABLE: NAMES ARE y1-y12; 

 

The VARIABLE command is used to provide information about the 

variables in the data set to be analyzed.  The NAMES option is used to 

assign names to the variables in the data set.  The data set in this 

example contains 12 variables:  y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, 

y11, and y12.  Note that the hyphen can be used as a convenience feature 

in order to generate a list of names.  
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ANALYSIS: TYPE = EFA 1 4; 

 

The ANALYSIS command is used to describe the technical details of the 

analysis.  The TYPE option is used to describe the type of analysis that 

is to be performed.  By specifying TYPE=EFA, an exploratory factor 

analysis will be carried out.  The numbers following EFA give the lower 

and upper limits on the number of factors to be extracted.  The default 

rotation is the oblique rotation of GEOMIN.  The ROTATION option of 

the ANALYSIS command can be used to select a different rotation.  The 

default estimator for this type of analysis is maximum likelihood.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 

a different estimator.   

 
OUTPUT: MODINDICES; 

 

The MODINDICES option is used with EFA to request modification 

indices and expected parameter change indices for the residual 

correlations which are fixed at zero in EFA.    

 
TITLE: this is an example of an exploratory 

factor analysis with continuous factor 

indicators using exploratory structural 

equation modeling (ESEM) 

DATA: FILE IS ex4.1b.dat; 

VARIABLE: NAMES ARE y1-y12; 

MODEL: f1-f4 BY y1-y12 (*1); 

OUTPUT: MODINDICES; 

  

The difference between this part of the example and the first part is that 

an exploratory factor analysis for four factors is carried out using 

exploratory structural equation modeling (ESEM).  In the MODEL 

command, the BY statement specifies that the factors f1 through f4 are 

measured by the continuous factor indicators y1 through y12.  The label 

1 following an asterisk (*) in parentheses following the BY statement is 

used to indicate that f1, f2, f3, and f4 are a set of EFA factors.  When no 

rotation is specified using the ROTATION option of the ANALYSIS 

command, the default oblique GEOMIN rotation is used.  The intercepts 

and residual variances of the factor indicators are estimated and the 

residuals are not correlated as the default.  The variances of the factors 

are fixed at one as the default.  The factors are correlated under the 

default oblique GEOMIN rotation.  The results are the same as for the 

four-factor EFA in the first part of the example. 
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EXAMPLE 4.2: EXPLORATORY FACTOR ANALYSIS WITH 

CATEGORICAL FACTOR INDICATORS 
 

 
TITLE: this is an example of an exploratory  

 factor analysis with categorical factor  

indicators 

DATA: FILE IS ex4.2.dat; 

VARIABLE: NAMES ARE  u1-u12; 

 CATEGORICAL ARE u1-u12; 

ANALYSIS: TYPE = EFA 1 4; 

 

The difference between this example and Example 4.1 is that the factor 

indicators are binary or ordered categorical (ordinal) variables instead of 

continuous variables.  Estimation of factor analysis models with binary 

variables is discussed in Muthén (1978) and Muthén et al. (1997).  The 

CATEGORICAL option is used to specify which dependent variables 

are treated as binary or ordered categorical (ordinal) variables in the 

model and its estimation.  In the example above, all twelve factor 

indicators are binary or ordered categorical variables.  Categorical 

variables can be binary or ordered categorical.  The program determines 

the number of categories for each variable.  The default estimator for 

this type of analysis is a robust weighted least squares estimator.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 

a different estimator.  With maximum likelihood estimation, numerical 

integration is used with one dimension of integration for each factor.  To 

reduce computational time with several factors, the number of 

integration points per dimension can be reduced from the default of 7 for 

exploratory factor analysis to as few as 3 for an approximate solution.  

An explanation of the other commands can be found in Example 4.1. 
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EXAMPLE 4.3: EXPLORATORY FACTOR ANALYSIS WITH 

CONTINUOUS, CENSORED, CATEGORICAL, AND COUNT 

FACTOR INDICATORS 
 

 
TITLE: this is an example of an exploratory 

factor analysis with continuous, censored, 

categorical, and count factor indicators  

DATA: FILE = ex4.3.dat; 

VARIABLE:  NAMES = u4-u6 y4-y6 u1-u3 y1-y3; 

 CENSORED = y4-y6(b); 

 CATEGORICAL = u1-u3; 

 COUNT = u4-u6; 

ANALYSIS: TYPE = EFA 1 4; 

  

The difference between this example and Example 4.1 is that the factor 

indicators are a combination of continuous, censored, binary or ordered 

categorical (ordinal), and count variables instead of all continuous 

variables.  The CENSORED option is used to specify which dependent 

variables are treated as censored variables in the model and its 

estimation, whether they are censored from above or below, and whether 

a censored or censored-inflated model will be estimated.  In the example 

above, y4, y5, and y6 are censored variables.  The b in parentheses 

indicates that they are censored from below, that is, have a floor effect, 

and that the model is a censored regression model.  The censoring limit 

is determined from the data.  The CATEGORICAL option is used to 

specify which dependent variables are treated as binary or ordered 

categorical (ordinal) variables in the model and its estimation.  In the 

example above, the factor indicators u1, u2, and u3 are binary or ordered 

categorical variables.  The program determines the number of categories 

for each variable.  The COUNT option is used to specify which 

dependent variables are treated as count variables in the model and its 

estimation and whether a Poisson or zero-inflated Poisson model will be 

estimated.  In the example above, u4, u5, and u6 are count variables.  

The variables y1, y2, and y3 are continuous variables.   

 

The default estimator for this type of analysis is maximum likelihood 

with robust standard errors using a numerical integration algorithm.  

Note that numerical integration becomes increasingly more 

computationally demanding as the number of factors and the sample size 

increase.  In this example, the four-factor solution requires four 
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dimensions of integration.  Using the default of 7 integration points per 

factor for exploratory factor analysis, a total of 2,401 integration points 

is required for this analysis.  To reduce computational time with several 

factors, the number of integration points per dimension can be reduced 

from the default of 7 for exploratory factor analysis to as few as 3 for an 

approximate solution.  The ESTIMATOR option of the ANALYSIS 

command can be used to select a different estimator.  An explanation of 

the other commands can be found in Example 4.1. 

 

EXAMPLE 4.4: EXPLORATORY FACTOR MIXTURE 

ANALYSIS WITH CONTINUOUS LATENT CLASS 

INDICATORS 
 

 
TITLE: this is an example of an exploratory 

factor mixture analysis with continuous 

latent class indicators  

DATA: FILE = ex4.4.dat; 

VARIABLE: NAMES = y1-y8; 

 CLASSES = c(2); 

ANALYSIS: TYPE = MIXTURE EFA 1 2; 

 

In this example, an exploratory factor mixture analysis with continuous 

latent class indicators is carried out.  Factor mixture analysis uses a 

combination of categorical and continuous latent variables. Mixture 

modeling refers to modeling with categorical latent variables that 

represent subpopulations where population membership is not known 

but is inferred from the data.  With continuous latent class indicators, the 

means of the latent class indicators vary across the classes as the default.   

The continuous latent variables describe within-class correlations among 

the latent class indicators.  The within-class correlations follow an 

exploratory factor analysis model that varies across the latent classes.  

This is the mixtures of factor analyzers model discussed in McLachlan 

and Peel (2000) and McLachlan et al. (2004).  Rotated solutions with 

standard errors are obtained for each latent class.  See Example 7.27 for 

a confirmatory factor mixture analysis. 

 

The CLASSES option is used to assign names to the categorical latent 

variables in the model and to specify the number of latent classes in the 

model for each categorical latent variable.  In the example above, there 

is one categorical latent variable c that has two latent classes.  The 



CHAPTER 4 

 50 

ANALYSIS command is used to describe the technical details of the 

analysis.  The TYPE option is used to describe the type of analysis that 

is to be performed.  By specifying TYPE=MIXTURE EFA, an 

exploratory factor mixture analysis will be carried out.  The numbers 

following EFA give the lower and upper limits on the number of factors 

to be extracted.  The default rotation is the oblique rotation of GEOMIN.  

The ROTATION option of the ANALYSIS command can be used to 

select a different rotation.  The default estimator for this type of analysis 

is maximum likelihood with robust standard errors.  The ESTIMATOR 

option of the ANALYSIS command can be used to select a different 

estimator.  An explanation of the other commands can be found in 

Example 4.1. 

 

EXAMPLE 4.5: TWO-LEVEL EXPLORATORY FACTOR 

ANALYSIS WITH CONTINUOUS FACTOR INDICATORS 
 

 
TITLE: this is an example of a two-level 

exploratory factor analysis with 

 continuous factor indicators  

DATA: FILE IS ex4.5.dat; 

VARIABLE: NAMES ARE y1-y6 x1 x2 w clus; 

 USEVARIABLES = y1-y6; 

 CLUSTER = clus; 

ANALYSIS: TYPE = TWOLEVEL EFA 1 2 UW 1 1 UB; 

 

In this example, a two-level exploratory factor analysis model with 

individual-level continuous factor indicators is carried out.  Two-level 

analysis models non-independence of observations due to cluster 

sampling.  An exploratory factor analysis is specified for both the within 

and between parts of the model.  Rotated solutions with standard errors 

are obtained for both the within and between parts of the model.  See 

Example 9.6 for a two-level confirmatory factor analysis.   

 

The CLUSTER option is used to identify the variable that contains 

clustering information.  The ANALYSIS command is used to describe 

the technical details of the analysis.  The TYPE option is used to 

describe the type of analysis that is to be performed.  By specifying 

TYPE=TWOLEVEL EFA, a two-level exploratory factor analysis will 

be carried out.  The numbers following EFA give the lower and upper 

limits on the number of factors to be extracted.  The first set of numbers 

are for the within part of the model.  The second set of numbers are for 
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the between part of the model.  In both parts of the model, one- and two-

factors solutions and an unrestricted solution will be obtained.  The 

unrestricted solution for the within part of the model is specified by UW 

and the unrestricted solution for the between part of the model is 

specified by UB.  The within and between specifications are crossed.  

Factor solutions will be obtained for one factor within and one factor 

between, two factors within and one factor between, unrestricted within 

and one factor between, one factor within and unrestricted between, and 

two factors within and unrestricted between.  Rotations are not given for 

unrestricted solutions.  The default rotation is the oblique rotation of 

GEOMIN.  The ROTATION option of the ANALYSIS command can be 

used to select a different rotation.  The default estimator for this type of 

analysis is maximum likelihood with robust standard errors.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 

a different estimator.  An explanation of the other commands can be 

found in Example 4.1. 

 

EXAMPLE 4.6: TWO-LEVEL EXPLORATORY FACTOR 

ANALYSIS WITH BOTH INDIVIDUAL- AND CLUSTER-

LEVEL FACTOR INDICATORS 
 

 
TITLE: this is an example of a two-level 

exploratory factor analysis with both 

individual- and cluster-level factor 

indicators  

DATA: FILE = ex4.6.dat; 

VARIABLE: NAMES = u1-u6 y1-y4 x1 x2 w clus; 

 USEVARIABLES = u1-u6 y1-y4; 

 CATEGORICAL = u1-u6; 

 CLUSTER = clus; 

 BETWEEN = y1-y4; 

ANALYSIS: TYPE = TWOLEVEL EFA 1 2 UW 1 2 UB;  

SAVEDATA: SWMATRIX = ex4.6sw.dat; 

 

The difference between this example and Example 4.5 is that there is a 

combination of individual-level categorical factor indicators and 

between-level continuous factor indicators.  The exploratory factor 

analysis structure for the within part of the model includes only the 

individual-level factor indicators whereas the exploratory factor analysis 

structure for the between part of the model includes the between part of 

the individual-level factor indicators and the between-level factor 
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indicators.  Rotated solutions with standard errors are obtained for both 

the within and between parts of the model.   

 

The BETWEEN option is used to identify the variables in the data set 

that are measured on the cluster level and modeled only on the between 

level.  Variables not mentioned on the WITHIN or the BETWEEN 

statements are measured on the individual level and can be modeled on 

both the within and between levels.  The default rotation is the oblique 

rotation of GEOMIN.  The ROTATION option of the ANALYSIS 

command can be used to select a different rotation.  The default 

estimator for this type of analysis is a robust weighted least squares 

estimator using a diagonal weight matrix (Asparouhov & Muthén, 2007).  

The ESTIMATOR option of the ANALYSIS command can be used to 

select a different estimator.  The SWMATRIX option of the 

SAVEDATA command is used with TYPE=TWOLEVEL and weighted 

least squares estimation to specify the name and location of the file that 

contains the within- and between-level sample statistics and their 

corresponding estimated asymptotic covariance matrix.  It is 

recommended to save this information and use it in subsequent analyses 

along with the raw data to reduce computational time during model 

estimation.  An explanation of the other commands can be found in 

Examples 4.1, 4.3, and 4.5. 

 

EXAMPLE 4.7: BI-FACTOR EXPLORATORY FACTOR 

ANALYSIS WITH CONTINUOUS FACTOR INDICATORS 
 

 
TITLE: this is an example of a bi-factor 

exploratory factor analysis with 

continuous factor indicators  

DATA: FILE = ex4.7.dat; 

VARIABLE: NAMES = y1-y10; 

ANALYSIS: TYPE = EFA 2 3; 

 ROTATION = BI-GEOMIN; 

 

In this example, a bi-factor exploratory factor analysis (Jennrich & 

Bentler, 2011, 2012) with continuous factor indicators is carried out 

using a Geomin rotation.  By specifying TYPE=EFA, an exploratory 

factor analysis will be carried out.  The number 2 is the lower limit and 

the number 3 is the upper limit on the number of factors to be extracted.  

By specifying BI-GEOMIN, a bi-factor EFA will be carried out using a 
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bi-factor Geomin rotation.  Because this is a bi-factor analysis, the two-

factor solution will have one general factor and one specific factor.  The 

three-factor solution will have one general factor and two specific 

factors.  The default for the BI-GEOMIN rotation is an oblique rotation 

where the specific factors are correlated with the general factor and are 

correlated with each other.  In the orthogonal rotation, the specific 

factors are uncorrelated with the general factor and are uncorrelated with 

each other.  An orthogonal rotation is obtained by specifying 

ROTATION=BI-GEOMIN(ORTHOGONAL).  An alternative bi-factor 

rotation can be obtained using the BI-CF-QUARTIMAX setting of the 

ROTATION option.  The default estimator for this type of analysis is 

maximum likelihood.  The ESTIMATOR option of the ANALYSIS 

command can be used to select a different estimator.  An explanation of 

the other commands can be found in Example 4.1.  
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CHAPTER 5 

EXAMPLES: CONFIRMATORY 

FACTOR ANALYSIS AND 

STRUCTURAL EQUATION 

MODELING 
 

 

Confirmatory factor analysis (CFA) is used to study the relationships 

between a set of observed variables and a set of continuous latent 

variables.  When the observed variables are categorical, CFA is also 

referred to as item response theory (IRT) analysis (Fox, 2010; van der 

Linden, 2016).  CFA with covariates (MIMIC) includes models where 

the relationship between factors and a set of covariates are studied to 

understand measurement invariance and population heterogeneity.  

These models can include direct effects, that is, the regression of a factor 

indicator on a covariate in order to study measurement non-invariance.  

Structural equation modeling (SEM) includes models in which 

regressions among the continuous latent variables are estimated (Bollen, 

1989; Browne & Arminger, 1995; Joreskog & Sorbom, 1979).  In all of 

these models, the latent variables are continuous.  Observed dependent 

variable variables can be continuous, censored, binary, ordered 

categorical (ordinal), unordered categorical (nominal), counts, or 

combinations of these variable types.  

 

CFA is a measurement model.  SEM has two parts: a measurement 

model and a structural model.  The measurement model for both CFA 

and SEM is a multivariate regression model that describes the 

relationships between a set of observed dependent variables and a set of 

continuous latent variables.  The observed dependent variables are 

referred to as factor indicators and the continuous latent variables are 

referred to as factors.  The relationships are described by a set of linear 

regression equations for continuous factor indicators, a set of censored 

normal or censored-inflated normal regression equations for censored 

factor indicators, a set of probit or logistic regression equations for 

binary or ordered categorical factor indicators, a set of multinomial 

logistic regression equations for unordered categorical factor indicators, 
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and a set of Poisson or zero-inflated Poisson regression equations for 

count factor indicators.   

 

The structural model describes three types of relationships in one set of 

multivariate regression equations:  the relationships among factors, the 

relationships among observed variables, and the relationships between 

factors and observed variables that are not factor indicators.  These 

relationships are described by a set of linear regression equations for the 

factors that are dependent variables and for continuous observed 

dependent variables, a set of censored normal or censored-inflated 

normal regression equations for censored observed dependent variables, 

a set of probit or logistic regression equations for binary or ordered 

categorical observed dependent variables, a set of multinomial logistic 

regression equations for unordered categorical observed dependent 

variables, and a set of Poisson or zero-inflated Poisson regression 

equations for count observed dependent variables.  For logistic 

regression, ordered categorical variables are modeled using the 

proportional odds specification. Both maximum likelihood and weighted 

least squares estimators are available.     

  

All CFA, MIMIC and SEM models can be estimated using the following 

special features: 

 

 Single or multiple group analysis 

 Missing data 

 Complex survey data 

 Latent variable interactions and non-linear factor analysis using 

maximum likelihood 

 Random slopes 

 Linear and non-linear parameter constraints 

 Indirect effects including specific paths 

 Maximum likelihood estimation for all outcome types 

 Bootstrap standard errors and confidence intervals 

 Wald chi-square test of parameter equalities 

 

For continuous, censored with weighted least squares estimation, binary, 

and ordered categorical (ordinal) outcomes, multiple group analysis is 

specified by using the GROUPING option of the VARIABLE command 

for individual data or the NGROUPS option of the DATA command for 

summary data.  For censored with maximum likelihood estimation, 

unordered categorical (nominal), and count outcomes, multiple group 
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analysis is specified using the KNOWNCLASS option of the 

VARIABLE command in conjunction with the TYPE=MIXTURE  

option of the ANALYSIS command.  The default is to estimate the 

model under missing data theory using all available data.  The 

LISTWISE option of the DATA command can be used to delete all 

observations from the analysis that have missing values on one or more 

of the analysis variables.  Corrections to the standard errors and chi-

square test of model fit that take into account stratification, non-

independence of observations, and unequal probability of selection are 

obtained by using the TYPE=COMPLEX option of the ANALYSIS 

command in conjunction with the STRATIFICATION, CLUSTER, and 

WEIGHT options of the VARIABLE command. The 

SUBPOPULATION option is used to select observations for an analysis 

when a subpopulation (domain) is analyzed.  Latent variable interactions 

are specified by using the | symbol of the MODEL command in 

conjunction with the XWITH option of the MODEL command.  Random 

slopes are specified by using the | symbol of the MODEL command in 

conjunction with the ON option of the MODEL command.  Linear and 

non-linear parameter constraints are specified by using the MODEL 

CONSTRAINT command.  Indirect effects are specified by using the 

MODEL INDIRECT command.  Maximum likelihood estimation is 

specified by using the ESTIMATOR option of the ANALYSIS 

command.  Bootstrap standard errors are obtained by using the 

BOOTSTRAP option of the ANALYSIS command.  Bootstrap 

confidence intervals are obtained by using the BOOTSTRAP option of 

the ANALYSIS command in conjunction with the CINTERVAL option 

of the OUTPUT command.  The MODEL TEST command is used to test 

linear restrictions on the parameters in the MODEL and MODEL 

CONSTRAINT commands using the Wald chi-square test.      

  

Graphical displays of observed data and analysis results can be obtained 

using the PLOT command in conjunction with a post-processing 

graphics module.  The PLOT command provides histograms, 

scatterplots, plots of individual observed and estimated values, plots of 

sample and estimated means and proportions/probabilities, and plots of 

item characteristic curves and information curves.  These are available 

for the total sample, by group, by class, and adjusted for covariates.  The 

PLOT command includes a display showing a set of descriptive statistics 

for each variable.  The graphical displays can be edited and exported as a 

DIB, EMF, or JPEG file.  In addition, the data for each graphical display 

can be saved in an external file for use by another graphics program.  
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Following is the set of CFA examples included in this chapter: 

 

 5.1:   CFA with continuous factor indicators 

 5.2:  CFA with categorical factor indicators  

 5.3:  CFA with continuous and categorical factor indicators  

 5.4:  CFA with censored and count factor indicators* 

 5.5:  Item response theory (IRT) models*  

 5.6:  Second-order factor analysis 

 5.7:  Non-linear CFA* 

 5.8:  CFA with covariates (MIMIC) with continuous factor 

indicators 

 5.9:   Mean structure CFA for continuous factor indicators 

 5.10: Threshold structure CFA for categorical factor indicators 

 

Following is the set of SEM examples included in this chapter: 

 

 5.11:  SEM with continuous factor indicators  

 5.12:  SEM with continuous factor indicators and an indirect effect 

for factors 

 5.13:  SEM with continuous factor indicators and an interaction 

between two factors*  

 

Following is the set of multiple group examples included in this chapter: 

 

 5.14:  Multiple group CFA with covariates (MIMIC) with 

continuous factor indicators and no mean structure 

 5.15:  Multiple group CFA with covariates (MIMIC) with 

continuous factor indicators and a mean structure     

 5.16:  Multiple group CFA with covariates (MIMIC) with 

categorical factor indicators and a threshold structure  

 5.17:  Multiple group CFA with covariates (MIMIC) with 

categorical factor indicators and a threshold structure using the 

Theta parameterization   

 5.18:  Two-group twin model for continuous outcomes where factors 

represent the ACE components 

 5.19:  Two-group twin model for categorical outcomes where factors 

represent the ACE components 
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Following is the set of examples included in this chapter that estimate 

models with parameter constraints: 

 

 5.20:  CFA with parameter constraints 

 5.21:  Two-group twin model for continuous outcomes using 

parameter constraints 

 5.22:  Two-group twin model for categorical outcomes using 

parameter constraints 

 5.23:  QTL sibling model for a continuous outcome using parameter 

constraints 

 

Following is the set of exploratory structural equation modeling (ESEM) 

examples included in this chapter: 

 

 5.24:  EFA with covariates (MIMIC) with continuous factor 

indicators and direct effects 

 5.25:  SEM with EFA and CFA factors with continuous factor 

indicators 

 5.26:  EFA at two time points with factor loading invariance and 

correlated residuals across time  

 5.27:  Multiple-group EFA with continuous factor indicators 

 5.28:  EFA with residual variances constrained to be greater than 

zero 

 5.29:  Bi-factor EFA using ESEM 

 5.30:  Bi-factor EFA with two items loading on only the general 

factor 

 

Following is the set of Bayesian CFA examples included in this chapter: 

 

 5.31:  Bayesian bi-factor CFA with two items loading on only the 

general factor and cross-loadings with zero-mean and small-variance 

priors 

 5.32:  Bayesian MIMIC model with cross-loadings and direct effects 

with zero-mean and small-variance priors 

 5.33:  Bayesian multiple group model with approximate 

measurement invariance using zero-mean and small-variance priors 

 

*  Example uses numerical integration in the estimation of the model.  

This can be computationally demanding depending on the size of the 

problem. 
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EXAMPLE 5.1: CFA WITH CONTINUOUS FACTOR 

INDICATORS 
 

 
TITLE: this is an example of a CFA with 

continuous factor indicators  

DATA: FILE IS ex5.1.dat; 

VARIABLE: NAMES ARE y1-y6; 

MODEL: f1 BY y1-y3; 

 f2 BY y4-y6; 

 

 

 
 

 

In this example, the confirmatory factor analysis (CFA) model with 

continuous factor indicators shown in the picture above is estimated.  

The model has two correlated factors that are each measured by three 

continuous factor indicators. 
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TITLE: this is an example of a CFA with 

continuous factor indicators 

 

The TITLE command is used to provide a title for the analysis.  The title 

is printed in the output just before the Summary of Analysis. 

 
DATA:  FILE IS ex5.1.dat; 

 

The DATA command is used to provide information about the data set 

to be analyzed.  The FILE option is used to specify the name of the file 

that contains the data to be analyzed, ex5.1.dat.  Because the data set is 

in free format, the default, a FORMAT statement is not required.   

 
VARIABLE: NAMES ARE y1-y6; 

 

The VARIABLE command is used to provide information about the 

variables in the data set to be analyzed.  The NAMES option is used to 

assign names to the variables in the data set.  The data set in this 

example contains six variables: y1, y2, y3, y4, y5, y6.  Note that the 

hyphen can be used as a convenience feature in order to generate a list of 

names.     

 
MODEL: f1 BY y1-y3; 

  f2 BY y4-y6; 

 

The MODEL command is used to describe the model to be estimated.  

Here the two BY statements specify that f1 is measured by y1, y2, and 

y3, and f2 is measured by y4, y5, and y6.  The metric of the factors is set 

automatically by the program by fixing the first factor loading in each 

BY statement to 1.  This option can be overridden.  The intercepts and 

residual variances of the factor indicators are estimated and the residuals 

are not correlated as the default.  The variances of the factors are 

estimated as the default.  The factors are correlated as the default 

because they are independent (exogenous) variables.  The default 

estimator for this type of analysis is maximum likelihood.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 

a different estimator.     
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EXAMPLE 5.2: CFA WITH CATEGORICAL FACTOR 

INDICATORS  
 

 
TITLE: this is an example of a CFA with 

categorical factor indicators 

DATA: FILE IS ex5.2.dat; 

VARIABLE: NAMES ARE u1-u6; 

 CATEGORICAL ARE u1-u6; 

MODEL: f1 BY u1-u3; 

 f2 BY u4-u6; 

 

The difference between this example and Example 5.1 is that the factor 

indicators are binary or ordered categorical (ordinal) variables instead of 

continuous variables.  The CATEGORICAL option is used to specify 

which dependent variables are treated as binary or ordered categorical 

(ordinal) variables in the model and its estimation.  In the example 

above, all six factor indicators are binary or ordered categorical 

variables.  The program determines the number of categories for each 

factor indicator.  The default estimator for this type of analysis is a 

robust weighted least squares estimator (Muthén, 1984; Muthén, du Toit, 

& Spisic, 1997).  With this estimator, probit regressions for the factor 

indicators regressed on the factors are estimated.  The ESTIMATOR 

option of the ANALYSIS command can be used to select a different 

estimator.  An explanation of the other commands can be found in 

Example 5.1. 

 

With maximum likelihood estimation, logistic regressions for the factor 

indicators regressed on the factors are estimated using a numerical 

integration algorithm.  This is shown in Example 5.5.  Note that 

numerical integration becomes increasingly more computationally 

demanding as the number of factors and the sample size increase.   
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EXAMPLE 5.3: CFA WITH CONTINUOUS AND 

CATEGORICAL FACTOR INDICATORS 
 

 
TITLE: this is an example of a CFA with 

continuous and categorical factor 

indicators  

DATA: FILE IS ex5.3.dat; 

VARIABLE: NAMES ARE u1-u3 y4-y6; 

 CATEGORICAL ARE u1 u2 u3; 

MODEL: f1 BY u1-u3; 

 f2 BY y4-y6; 

 

The difference between this example and Example 5.1 is that the factor 

indicators are a combination of binary or ordered categorical (ordinal) 

and continuous variables instead of all continuous variables.  The 

CATEGORICAL option is used to specify which dependent variables 

are treated as binary or ordered categorical (ordinal) variables in the 

model and its estimation.  In the example above, the factor indicators u1, 

u2, and u3 are binary or ordered categorical variables whereas the factor 

indicators y4, y5, and y6 are continuous variables.  The program 

determines the number of categories for each factor indicator.  The 

default estimator for this type of analysis is a robust weighted least 

squares estimator.  With this estimator, probit regressions are estimated 

for the categorical factor indicators, and linear regressions are estimated 

for the continuous factor indicators.  The ESTIMATOR option of the 

ANALYSIS command can be used to select a different estimator.  With 

maximum likelihood estimation, logistic regressions are estimated for 

the categorical dependent variables using a numerical integration 

algorithm.  Note that numerical integration becomes increasingly more 

computationally demanding as the number of factors and the sample size 

increase.   An explanation of the other commands can be found in 

Example 5.1. 
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EXAMPLE 5.4: CFA WITH CENSORED AND COUNT FACTOR 

INDICATORS 
 

 
TITLE: this is an example of a CFA with censored 

and count factor indicators  

DATA: FILE IS ex5.4.dat; 

VARIABLE: NAMES ARE y1-y3 u4-u6; 

 CENSORED ARE y1-y3 (a);  

 COUNT ARE u4-u6; 

MODEL: f1 BY y1-y3; 

 f2 BY u4-u6; 

OUTPUT: TECH1 TECH8; 

 

The difference between this example and Example 5.1 is that the factor 

indicators are a combination of censored and count variables instead of 

all continuous variables.  The CENSORED option is used to specify 

which dependent variables are treated as censored variables in the model 

and its estimation, whether they are censored from above or below, and 

whether a censored or censored-inflated model will be estimated.  In the 

example above, y1, y2, and y3 are censored variables.  The a in 

parentheses following y1-y3 indicates that y1, y2, and y3 are censored 

from above, that is, have ceiling effects, and that the model is a censored 

regression model.  The censoring limit is determined from the data.  The 

COUNT option is used to specify which dependent variables are treated 

as count variables in the model and its estimation and whether a Poisson 

or zero-inflated Poisson model will be estimated.  In the example above, 

u4, u5, and u6 are count variables.  Poisson regressions are estimated for 

the count dependent variables and censored regressions are estimated for 

the censored dependent variables.   

 

The default estimator for this type of analysis is maximum likelihood 

with robust standard errors using a numerical integration algorithm.  

Note that numerical integration becomes increasingly more 

computationally demanding as the number of factors and the sample size 

increase.  In this example, two dimensions of integration are used with a 

total of 225 integration points.  The ESTIMATOR option of the 

ANALYSIS command can be used to select a different estimator.  The 

OUTPUT command is used to request additional output not included as 

the default.  The TECH1 option is used to request the arrays containing 

parameter specifications and starting values for all free parameters in the 

model.  The TECH8 option is used to request that the optimization 
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history in estimating the model be printed in the output.  TECH8 is 

printed to the screen during the computations as the default.  TECH8 

screen printing is useful for determining how long the analysis takes.  An 

explanation of the other commands can be found in Example 5.1. 

 

EXAMPLE 5.5: ITEM RESPONSE THEORY (IRT) MODELS  
 

In this example, four logistic IRT models are estimated:  the generalized 

partial credit model (GPCM), the two-parameter logistic model (2PL), 

the three-parameter logistic model (3PL) with a guessing parameter, and 

the four-parameter logistic model (4PL) with a lower (guessing) 

parameter and an upper asymptote parameter.  In all examples, a single 

continuous factor is measured by 20 categorical factor indicators.   

 
TITLE: this is an example of a generalized 

partial credit item response theory (IRT) 

model 

DATA: FILE IS ex5.5part1.dat; 

VARIABLE: NAMES ARE u1-u20; 

 CATEGORICAL ARE u1-u20 (gpcm); 

ANALYSIS: ESTIMATOR = MLR; 

MODEL: f BY u1-u20*; 

 f@1; 

OUTPUT: TECH1 TECH8; 

PLOT: TYPE = PLOT3; 

 

In the first part of the example shown above, the GPCM model is 

estimated.  The CATEGORICAL option is used to specify which 

dependent variables are treated as binary or ordered categorical (ordinal) 

variables in the model and its estimation.  In the example above, the 

factor indicators u1 through u20 are ordered categorical (ordinal) 

variables.  The letters gpcm in parentheses specify that a GPCM model 

is estimated.  The program determines the number of categories for each 

factor indicator.  By specifying ESTIMATOR=MLR, a maximum 

likelihood estimator with robust standard errors using a numerical 

integration algorithm will be used.  Note that numerical integration 

becomes increasingly more computationally demanding as the number of 

factors and the sample size increase.  In this example, one dimension of 

integration is used with 15 integration points.  The ESTIMATOR option 

of the ANALYSIS command can be used to select a different estimator.   
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In the MODEL command, the BY statement specifies that f is measured 

by u1 through u20.  The asterisk (*) frees the first factor loading which 

is fixed at one as the default to define the metric of the factor.  Instead 

the metric of the factor is defined by fixing the factor variance at one in 

line with IRT.  For one-factor models with no covariates, results are 

presented both in a factor model parameterization and in a conventional 

IRT parameterization.   

 

With the following MODEL command, a partial credit model is 

estimated: 

 
MODEL: f BY u1-u20@1; 

 f*1; 

 

The OUTPUT command is used to request additional output not 

included as the default.  The TECH1 option is used to request the arrays 

containing parameter specifications and starting values for all free 

parameters in the model.  The TECH8 option is used to request that the 

optimization history in estimating the model be printed in the output.  

TECH8 is printed to the screen during the computations as the default.  

TECH8 screen printing is useful for determining how long the analysis 

takes.  The PLOT command is used to request graphical displays of 

observed data and analysis results.  These graphical displays can be 

viewed after the analysis is completed using a post-processing graphics 

module.  Item characteristic curves and information curves are available.  

When covariates are included in the model with direct effects on one or 

more factor indicators, item characteristic curves can be plotted for each 

value of the covariate to show differential item functioning (DIF).  An 

explanation of the other commands can be found in Example 5.1. 

 
TITLE: this is an example of a two-parameter 

logistic item response theory (IRT) model 

DATA: FILE IS ex5.5part2.dat; 

VARIABLE: NAMES ARE u1-u20; 

 CATEGORICAL ARE u1-u20; 

ANALYSIS: ESTIMATOR = MLR; 

MODEL: f BY u1-u20*; 

 f@1; 

OUTPUT: TECH1 TECH8; 

PLOT: TYPE = PLOT3; 

 

In the second part of the example shown above, a two-parameter logistic 

model is estimated.  The difference between the specification for the 
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GPCM and the 2PL models is that nothing is placed in parentheses after 

the variable names in the CATEGORICAL option.  The factor indicators 

u1 through u20 are binary variables.  If the factor indicators are ordered 

categorical (ordinal) variables, the input is the same but a graded-

response model is estimated.    

 
TITLE: this is an example of a three-parameter 

logistic item response theory (IRT) model 

using priors for the guessing parameters 

DATA: FILE = ex5.5part3.dat; 

VARIABLE: NAMES = u1-u20; 

 CATEGORICAL = u1-u20(3pl); 

ANALYSIS: ESTIMATOR = MLR; 

MODEL: f BY u1-u20*;  

 f@1; 

 [u1$2-u20$2] (a1-a20); 

OUTPUT: TECH1 TECH8;  

PLOT: TYPE = PLOT3; 

MODEL PRIORS:    

 a1-a20~N(1.386,1); 

 

In the third part of the example shown above, a three-parameter logistic 

model is estimated.  One difference between the specification for the 

GPCM and the 3PL models is that 3pl is placed in parentheses after the 

variable names in the CATEGORICAL option.  The factor indicators u1 

through u20 are binary variables.  In addition, because convergence 

problems are common with the 3PL model, the MODEL PRIORS 

command is used to provide priors for the second thresholds.   The 

second thresholds are parameters related to the guessing parameters 

which cannot be referred to directly.  The first thresholds are referred to 

by adding $1 to the variable names.  The second thresholds are referred 

to by adding $2 to the variable names.  In the MODEL command, labels 

are given to the second thresholds.  These labels are used in MODEL 

PRIORS to assign priors to the second thresholds.  Prior mean values for 

the second thresholds of 1.386 correspond to guessing values of 0.25 

(Asparouhov & Muthén, 2016). 

 
TITLE: this is an example of a four-parameter 

logistic item response theory (IRT) model  

 using priors for the lower (guessing) and 

upper asymptote parameters 

DATA: FILE = ex5.5part4.dat; 

VARIABLE: NAMES = u1-u20; 

 CATEGORICAL = u1-u20(4pl); 

ANALYSIS: ESTIMATOR = MLR; 
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MODEL: f BY u1-u20*;  

 f@1; 

 [u1$2-u20$2] (a1-a20); 

 [u1$3-u20$3] (b1-b20); 

OUTPUT: TECH1 TECH8; 

PLOT: TYPE = PLOT3; 

MODEL PRIORS:    

 a1-a20~N(1.386,1); 

 b1-b20~N(-2,1); 

 

In the fourth part of the example shown above, a four-parameter logistic 

model is estimated.  One difference between the specification for the 

GPCM and the 4PL models is that 4pl is placed in parentheses after the 

variable names in the CATEGORICAL option.  The factor indicators u1 

through u20 are binary variables.  In addition, because convergence 

problems are common with the 4PL model, the MODEL PRIORS 

command is used to provide priors for the second and third thresholds.  

The second and third thresholds are parameters related to the upper 

asymptote (guessing) and lower asymptote parameters, respectively, 

which cannot be referred to directly.  The first thresholds are referred to 

by adding $1 to the variable names.  The second thresholds are referred 

to by adding $2 to the variable names.  The third thresholds are referred 

to by adding $3 to the variable names.  In the MODEL command, labels 

are given to the second and third thresholds.  These labels are used in 

MODEL PRIORS to assign priors to the second and third thresholds.  

Prior mean values for the second thresholds of 1.386 correspond to 

guessing values of 0.25.  Prior mean values for the third thresholds of -2 

correspond to upper asymptote values of 0.88 (Asparouhov & Muthén, 

2016).   

 

EXAMPLE 5.6: SECOND-ORDER FACTOR ANALYSIS  
 

 
TITLE: this is an example of a second-order 

factor analysis  

DATA: FILE IS ex5.6.dat; 

VARIABLE: NAMES ARE y1-y12; 

MODEL: f1 BY y1-y3;  

 f2 BY y4-y6; 

 f3 BY y7-y9; 

 f4 BY y10-y12; 

 f5 BY f1-f4; 
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In this example, the second-order factor analysis model shown in the 

picture above is estimated.  The factor indicators of the first-order 

factors f1, f2, f3, and f4 are continuous.  The first-order factors are 

indicators of the second-order factor f5. 

 

The first four BY statements specify that f1 is measured by y1, y2, and 

y3; f2 is measured by y4, y5, and y6; f3 is measured by y7, y8, and y9; 

and f4 is measured by y10, y11, and y12.  The fifth BY statement 

specifies that the second-order factor f5 is measured by f1, f2, f3, and f4.  

The metrics of the first- and second-order factors are set automatically 

by the program by fixing the first factor loading in each BY statement to 

1.  This option can be overridden.  The intercepts and residual variances 

of the first-order factor indicators are estimated and the residuals are not 

correlated as the default.  The residual variances of the first-order factors 

are estimated as the default.  The residuals of the first-order factors are 

not correlated as the default.  The variance of the second-order factor is 

estimated as the default.  The default estimator for this type of analysis 

is maximum likelihood.  The ESTIMATOR option of the ANALYSIS 

command can be used to select a different estimator.  An explanation of 

the other commands can be found in Example 5.1. 
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EXAMPLE 5.7: NON-LINEAR CFA 
 

 
TITLE: this is an example of a non-linear CFA  

DATA: FILE IS ex5.7.dat; 

VARIABLE: NAMES ARE y1-y5; 

ANALYSIS: TYPE = RANDOM; 

 ALGORITHM = INTEGRATION; 

MODEL: f BY y1-y5;   

 fxf | f XWITH f; 

 y1-y5 ON fxf; 

OUTPUT: TECH1 TECH8; 

 

In this example, a non-linear CFA model is estimated (McDonald, 1967).  

The factor indicators are quadratic functions of the factor.  The TYPE 

option is used to describe the type of analysis that is to be performed.  

By selecting RANDOM, a model with a random effect will be estimated.  

By specifying ALGORITHM=INTEGRATION, a maximum likelihood 

estimator with robust standard errors using a numerical integration 

algorithm will be used.  Note that numerical integration becomes 

increasingly more computationally demanding as the number of factors 

and the sample size increase.  In this example, one dimension of 

integration is used with 15 integration points.  The ESTIMATOR option 

of the ANALYSIS command can be used to select a different estimator.   

 

The BY statement specifies that f is measured by y1 through y5.  This 

specifies the linear part of the quadratic function.  The | statement in 

conjunction with the XWITH option of the MODEL command is used to 

define the quadratic factor term.  The name on the left-hand side of the | 

symbol names the quadratic factor term.  The XWITH statement on the 

right-hand side of the | symbol defines the quadratic factor term fxf.  The 

ON statement specifies the quadratic part of the quadratic function.  The 

OUTPUT command is used to request additional output not included as 

the default.  The TECH1 option is used to request the arrays containing 

parameter specifications and starting values for all free parameters in the 

model.  The TECH8 option is used to request that the optimization 

history in estimating the model be printed in the output.  TECH8 is 

printed to the screen during the computations as the default.  TECH8 

screen printing is useful for determining how long the analysis takes.  An 

explanation of the other commands can be found in Example 5.1. 
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EXAMPLE 5.8: CFA WITH COVARIATES (MIMIC) WITH 

CONTINUOUS FACTOR INDICATORS 
 

 
TITLE: this is an example of a CFA with 

covariates (MIMIC) with continuous factor 

indicators  

DATA: FILE IS ex5.8.dat; 

VARIABLE: NAMES ARE y1-y6 x1-x3; 

MODEL: f1 BY y1-y3; 

 f2 BY y4-y6; 

 f1 f2 ON x1-x3; 

 

 

 
 

 

In this example, the CFA model with covariates (MIMIC) shown in the 

picture above is estimated.  The two factors are regressed on three 

covariates.   
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The first BY statement specifies that f1 is measured by y1, y2, and y3.  

The second BY statement specifies that f2 is measured by y4, y5, and y6.  

The metric of the factors is set automatically by the program by fixing 

the first factor loading in each BY statement to 1.  This option can be 

overridden.  The intercepts and residual variances of the factor 

indicators are estimated and the residuals are not correlated as the 

default.  The residual variances of the factors are estimated as the 

default.  The residuals of the factors are correlated as the default because 

residuals are correlated for latent variables that do not influence any 

other variable in the model except their own indicators.  The ON 

statement describes the linear regressions of f1 and f2 on the covariates 

x1, x2, and x3.  The ESTIMATOR option of the ANALYSIS command 

can be used to select a different estimator.  An explanation of the other 

commands can be found in Example 5.1. 

 

EXAMPLE 5.9: MEAN STRUCTURE CFA FOR CONTINUOUS 

FACTOR INDICATORS 
 

 
TITLE: this is an example of a mean structure CFA  

 for continuous factor indicators 

DATA: FILE IS ex5.9.dat; 

VARIABLE: NAMES ARE y1a-y1c y2a-y2c; 

MODEL: f1 BY y1a y1b@1 y1c@1;  

 f2 BY y2a y2b@1 y2c@1; 

 [y1a y1b y1c] (1);  

 [y2a y2b y2c] (2); 
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In this example, the CFA model in which two factors are measured by 

three equivalent tests forms shown in the picture above is estimated.    

The three equivalent test forms are referred to as a, b, and c.   

 

The first BY statement specifies that f1 is measured by y1a, y1b, and 

y1c.  The second BY statement specifies that f2 is measured by y2a, y2b, 

and y2c. The letters a, b, and c are used to represent three equivalent test 

forms, and 1 and 2 represent two different topics.  The metric of the 

factors is set automatically by the program by fixing the first factor 

loading in each BY statement to 1.  This option can be overridden.  The 

second and third factor loadings for both factors are fixed at one using 

the @ option to reflect the hypothesis that the two test forms are 

equivalent.  The intercepts and residual variances of the factor indicators 

are estimated and the residuals are not correlated as the default.  The 

variances of the factors are estimated as the default.  The covariance 

between f1 and f2 is estimated as the default because f1 and f2 are 

independent (exogenous) variables.  

 

To reflect the hypothesis that the three test forms are equivalent with 

respect to their measurement intercepts, the first bracket statement 

specifies that the intercepts for y1a, y1b, and y1c are equal and the 
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second bracket statement specifies that the intercepts for y2a, y2b, and 

y2c are equal.  Equalities are designated by a number in parentheses.  All 

parameters in a statement followed by the same number in parentheses 

are held equal.  The means of the two factors are fixed at zero as the 

default.  The default estimator for this type of analysis is maximum 

likelihood.  The ESTIMATOR option of the ANALYSIS command can 

be used to select a different estimator.  An explanation of the other 

commands can be found in Example 5.1. 

 

EXAMPLE 5.10: THRESHOLD STRUCTURE CFA FOR 

CATEGORICAL FACTOR INDICATORS 
 

 
TITLE: this is an example of a threshold 

structure CFA for categorical factor 

indicators 

DATA: FILE IS ex5.10.dat; 

VARIABLE: NAMES ARE u1a-u1c u2a-u2c; 

 CATEGORICAL ARE u1a-u1c u2a-u2c; 

MODEL: f1 BY u1a u1b@1 u1c@1;  

 f2 BY u2a u2b@1 u2c@1; 

 [u1a$1 u1b$1 u1c$1] (1);  

 [u2a$1 u2b$1 u2c$1] (2); 

 

The difference between this example and Example 5.9 is that the factor 

indicators are binary or ordered categorical (ordinal) variables instead of 

continuous variables.  The CATEGORICAL option is used to specify 

which dependent variables are treated as binary or ordered categorical 

(ordinal) variables in the model and its estimation.  In the example 

above, all six factor indicators are binary or ordered categorical 

variables.  The program determines the number of categories for each 

factor indicator.  In this example, it is assumed that the factor indicators 

are binary variables with one threshold each.   

 

For binary and ordered categorical factor indicators, thresholds are 

modeled rather than intercepts or means.  The number of thresholds for a 

categorical variable is equal to the number of categories minus one.  In 

the example above, the categorical variables are binary so they have one 

threshold.  Thresholds are referred to by adding to the variable name a $ 

followed by a number.  The thresholds of the factor indicators are 

referred to as u1a$1, u1b$1, u1c$1, u2a$1, u2b$1, and u2c$1.  

Thresholds are referred to in square brackets.  To reflect the hypothesis 
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that the three test forms are equivalent with respect to their measurement 

thresholds, the (1) after the first bracket statement specifies that the 

thresholds for u1a, u1b, and u1c are constrained to be equal and the (2) 

after the second bracket statement specifies that the thresholds for u2a, 

u2b, and u2c are constrained to be equal.  The default estimator for this 

type of analysis is a robust weighted least squares estimator.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 

a different estimator.  With maximum likelihood, logistic regressions are 

estimated using a numerical integration algorithm.  Note that numerical 

integration becomes increasingly more computationally demanding as 

the number of factors and the sample size increase.  An explanation of 

the other commands can be found in Examples 5.1 and 5.9. 

 

EXAMPLE 5.11: SEM WITH CONTINUOUS FACTOR 

INDICATORS  
 

 
TITLE: this is an example of a SEM with 

continuous factor indicators  

DATA: FILE IS ex5.11.dat; 

VARIABLE: NAMES ARE y1-y12; 

MODEL: f1 BY y1-y3;  

 f2 BY y4-y6; 

 f3 BY y7-y9; 

 f4 BY y10-y12; 

 f4 ON f3; 

 f3 ON f1 f2;  
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In this example, the SEM model with four continuous latent variables 

shown in the picture above is estimated.  The factor indicators are 

continuous variables. 

   

The first BY statement specifies that f1 is measured by y1, y2 and y3.  

The second BY statement specifies that f2 is measured by y4, y5, and y6.  

The third BY statement specifies that f3 is measured by y7, y8, and y9.  

The fourth BY statement specifies that f4 is measured by y10, y11, and 

y12.  The metric of the factors is set automatically by the program by 

fixing the first factor loading in each BY statement to 1.  This option can 

be overridden.  The intercepts and residual variances of the factor 

indicators are estimated and the residuals are not correlated as the 

default.  The variances of the factors are estimated as the default.  The 

covariance between f1 and f2 is estimated as the default because f1 and 

f2 are independent (exogenous) variables.  The other factor covariances 

are not estimated as the default.   

 

The first ON statement describes the linear regression of f4 on f3.  The 

second ON statement describes the linear regression of f3 on f1 and f2.  

The default estimator for this type of analysis is maximum likelihood.  

The ESTIMATOR option of the ANALYSIS command can be used to 

select a different estimator.  An explanation of the other commands can 

be found in Example 5.1. 
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EXAMPLE 5.12: SEM WITH CONTINUOUS FACTOR 

INDICATORS AND AN INDIRECT EFFECT FOR FACTORS 
 

 
TITLE: this is an example of a SEM with 

continuous factor indicators and an 

indirect effect for factors  

DATA: FILE IS ex5.12.dat; 

VARIABLE: NAMES ARE y1-y12; 

MODEL: f1 BY y1-y3;  

 f2 BY y4-y6; 

 f3 BY y7-y9; 

 f4 BY y10-y12; 

 f4 ON f3; 

 f3 ON f1 f2;  

MODEL INDIRECT:   

 f4 IND f3 f1; 

 

The difference between this example and Example 5.11 is that an 

indirect effect is estimated.  Indirect effects and their standard errors can 

be requested using the MODEL INDIRECT command.  Total indirect, 

specific indirect, and total effects are specified by using the IND and 

VIA statements.  Total effects include all indirect effects and the direct 

effect.  The IND statement is used to request a specific indirect effect or 

set of indirect effects.  The VIA statement is used to request a set of 

indirect effects that include specific mediators. 

  

In the IND statement above, the variable on the left-hand side of IND is 

the dependent variable.  The last variable on the right-hand side of IND 

is the independent variable.  Other variables on the right-hand side of 

IND are mediating variables.  The IND statement requests the specific 

indirect effect from f1 to f3 to f4.  The default estimator for this type of 

analysis is maximum likelihood.  The ESTIMATOR option of the 

ANALYSIS command can be used to select a different estimator.  An 

explanation of the other commands can be found in Examples 5.1 and 

5.11. 
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EXAMPLE 5.13: SEM WITH CONTINUOUS FACTOR 

INDICATORS AND AN INTERACTION BETWEEN TWO 

LATENT VARIABLES 
 

 
TITLE: this is an example of a SEM with 

continuous factor indicators and an 

interaction between two latent variables  

DATA: FILE IS ex5.13.dat; 

VARIABLE: NAMES ARE y1-y12; 

ANALYSIS: TYPE = RANDOM; 

 ALGORITHM = INTEGRATION; 

MODEL: f1 BY y1-y3;  

 f2 BY y4-y6; 

 f3 BY y7-y9; 

 f4 BY y10-y12; 

 f4 ON f3; 

 f3 ON f1 f2;  

 f1xf2 | f1 XWITH f2; 

 f3 ON f1xf2; 

OUTPUT: TECH1 TECH8; 

 

 

 
 

 

The difference between this example and Example 5.11 is that an 

interaction between two latent variables is included in the model.  The 
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interaction is shown in the picture above as a filled circle.  The model is 

estimated using maximum likelihood (Klein & Moosbrugger, 2000). 

  

The TYPE option is used to describe the type of analysis that is to be 

performed.  By selecting RANDOM, a model with a random effect will 

be estimated.  By specifying ALGORITHM=INTEGRATION, a 

maximum likelihood estimator with robust standard errors using a 

numerical integration algorithm will be used.  Note that numerical 

integration becomes increasingly more computationally demanding as 

the number of factors and the sample size increase.  In this example, two 

dimensions of integration are used with a total of 225 integration points.  

The ESTIMATOR option of the ANALYSIS command can be used to 

select a different estimator.   

 

Latent variable interactions are specified by using the | statement in 

conjunction with the XWITH option of the MODEL command.  The 

name on the left-hand side of the | symbol names the latent variable 

interaction.  The XWITH statement on the right-hand side of the | 

symbol defines the latent variable interaction.  The latent variable f1xf2 

is the interaction between f1 and f2.  The last ON statement uses the 

latent variable interaction as an independent variable.  The OUTPUT 

command is used to request additional output not included as the default.  

The TECH1 option is used to request the arrays containing parameter 

specifications and starting values for all free parameters in the model.  

The TECH8 option is used to request that the optimization history in 

estimating the model be printed in the output.  TECH8 is printed to the 

screen during the computations as the default.  TECH8 screen printing is 

useful for determining how long the analysis takes.  An explanation of 

the other commands can be found in Examples 5.1 and 5.11. 
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EXAMPLE 5.14: MULTIPLE GROUP CFA WITH 

COVARIATES (MIMIC) WITH CONTINUOUS FACTOR 

INDICATORS AND NO MEAN STRUCTURE 
 

 
TITLE: this is an example of a multiple group CFA 

with covariates (MIMIC) with continuous 

factor indicators and no mean structure 

DATA: FILE IS ex5.14.dat; 

VARIABLE: NAMES ARE y1-y6 x1-x3 g; 

 GROUPING IS g (1 = male 2 = female); 

ANALYSIS: MODEL = NOMEANSTRUCTURE; 

 INFORMATION = EXPECTED; 

MODEL: f1 BY y1-y3; 

 f2 BY y4-y6; 

 f1 f2 ON x1-x3; 

MODEL female:  

 f1 BY y3;  

 

The difference between this example and Example 5.8 is that this is a 

multiple group rather than a single group analysis.  The GROUPING 

option is used to identify the variable in the data set that contains 

information on group membership when the data for all groups are 

stored in a single data set.  The information in parentheses after the 

grouping variable name assigns labels to the values of the grouping 

variable found in the data set.  In the example above, observations with g 

equal to 1 are assigned the label male, and individuals with g equal to 2 

are assigned the label female.  These labels are used in conjunction with 

the MODEL command to specify model statements specific to each 

group. 

 

The NOMEANSTRUCTURE setting for the MODEL option of the 

ANALYSIS command is used with TYPE=GENERAL to specify that 

means, intercepts, and thresholds are not included in the analysis model.  

As a result, a covariance structure model is estimated.  The 

INFORMATION option is used to select the estimator of the information 

matrix to be used in computing standard errors when the ML or MLR 

estimators are used for analysis.  The default is the observed information 

matrix.  In this example, the expected information matrix is used in line 

with conventional covariance structure analysis. 
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In multiple group analysis, two variations of the MODEL command are 

used.  They are MODEL and MODEL followed by a label.  MODEL 

describes the overall model to be estimated for each group.  The factor 

loading measurement parameters are held equal across groups as the 

default to specify measurement invariance.  MODEL followed by a label 

describes differences between the overall model and the model for the 

group designated by the label.  In the group-specific MODEL command 

for females, the factor loading for variable y3 and factor f1 is specified 

to be free and not equal to the same factor loading for males.  The 

default estimator for this type of analysis is maximum likelihood.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 

a different estimator.  An explanation of the other commands can be 

found in Examples 5.1 and 5.8. 

     

EXAMPLE 5.15: MULTIPLE GROUP CFA WITH 

COVARIATES (MIMIC) WITH CONTINUOUS FACTOR 

INDICATORS AND A MEAN STRUCTURE 
 

 
TITLE: this is an example of a multiple group CFA 

with covariates (MIMIC) with continuous 

factor indicators and a mean structure 

DATA: FILE IS ex5.15.dat; 

VARIABLE: NAMES ARE y1-y6 x1-x3 g; 

 GROUPING IS g (1 = male 2 = female); 

MODEL: f1 BY y1-y3; 

 f2 BY y4-y6; 

 f1 f2 ON x1-x3; 

MODEL female:  

 f1 BY y3;  

 [y3]; 

 

The difference between this example and Example 5.14 is that means are 

included in the model.  In multiple group analysis, when a model 

includes a mean structure, both the intercepts and factor loadings of the 

continuous factor indicators are held equal across groups as the default 

to specify measurement invariance.  The intercepts of the factors are 

fixed at zero in the first group and are free to be estimated in the other 

groups as the default.  The group-specific MODEL command for 

females specifies that the intercept of y3 for females is free and not 

equal to the intercept for males.  Intercepts are referred to by using 

square brackets.  The default estimator for this type of analysis is 
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maximum likelihood.  The ESTIMATOR option of the ANALYSIS 

command can be used to select a different estimator.  An explanation of 

the other commands can be found in Examples 5.1, 5.8, and 5.14. 

 

EXAMPLE 5.16: MULTIPLE GROUP CFA WITH 

COVARIATES (MIMIC) WITH CATEGORICAL FACTOR 

INDICATORS AND A THRESHOLD STRUCTURE 
 

 
TITLE: this is an example of a multiple group CFA 

with covariates (MIMIC) with categorical 

factor indicators and a threshold 

structure 

DATA: FILE IS ex5.16.dat; 

VARIABLE: NAMES ARE u1-u6 x1-x3 g; 

 CATEGORICAL ARE u1-u6; 

 GROUPING IS g (1 = male 2 = female); 

MODEL: f1 BY u1-u3; 

 f2 BY u4-u6; 

 f1 f2 ON x1-x3; 

MODEL female:  

 f1 BY u3;  

 [u3$1]; 

 {u3@1}; 

     

The difference between this example and Example 5.15 is that the factor 

indicators are binary or ordered categorical (ordinal) variables instead of 

continuous variables.  For multiple-group CFA with categorical factor 

indicators, see  Muthén  and Christoffersson (1981) and Muthén and 

Asparouhov (2002). 

 

The CATEGORICAL option is used to specify which dependent 

variables are treated as binary or ordered categorical (ordinal) variables 

in the model and its estimation.  In the example above, all six factor 

indicators are binary or ordered categorical variables.  The program 

determines the number of categories for each factor indicator.   

 

For binary and ordered categorical factor indicators, thresholds are 

modeled rather than intercepts or means.  The number of thresholds for a 

categorical variable is equal to the number of categories minus one. In 

the above example, u3 is a binary variable with two categories. 

Thresholds are referred to by adding to the variable name a $ followed 

by a number.  The threshold for u3 is u3$1.  Thresholds are referred to in 
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square brackets.  When a model includes a mean structure, the 

thresholds of the factor indicators are held equal across groups as the 

default to specify measurement invariance.  In the group-specific 

MODEL command for females, the threshold and factor loading of u3 

for females are specified to be free and not equal to the threshold and 

factor loading for males. 

 

Because the factor indicators are categorical, scale factors are required 

for multiple group analysis when the default Delta parameterization is 

used.  Scale factors are referred to using curly brackets ({}).  By default, 

scale factors are fixed at one in the first group and are free to be 

estimated in the other groups.  When a threshold and a factor loading for 

a categorical factor indicator are free across groups, the scale factor for 

that variable must be fixed at one in all groups for identification 

purposes.  Therefore, the scale factor for u3 is fixed at one for females.     

 

The default estimator for this type of analysis is a robust weighted least 

squares estimator.  The ESTIMATOR option of the ANALYSIS 

command can be used to select a different estimator.  With maximum 

likelihood, logistic regressions are estimated using a numerical 

integration algorithm.  Note that numerical integration becomes 

increasingly more computationally demanding as the number of factors 

and the sample size increase.  An explanation of the other commands can 

be found in Examples 5.1, 5.8, 5.14, and 5.15. 
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EXAMPLE 5.17: MULTIPLE GROUP CFA WITH 

COVARIATES (MIMIC) WITH CATEGORICAL FACTOR 

INDICATORS AND A THRESHOLD STRUCTURE USING THE 

THETA PARAMETERIZATION 
 

 
TITLE: this is an example of a multiple group CFA 

with covariates (MIMIC) with categorical 

factor indicators and a threshold 

structure using the Theta parameterization 

DATA: FILE IS ex5.17.dat; 

VARIABLE: NAMES ARE u1-u6 x1-x3 g; 

 CATEGORICAL ARE u1-u6; 

 GROUPING IS g (1 = male 2 = female); 

ANALYSIS: PARAMETERIZATION = THETA; 

MODEL: f1 BY u1-u3; 

 f2 BY u4-u6; 

 f1 f2 ON x1-x3; 

MODEL female:  

 f1 BY u3;  

 [u3$1]; 

 u3@1; 

     

The difference between this example and Example 5.16 is that the Theta 

parameterization is used instead of the Delta parameterization.  In the 

Delta parameterization, scale factors are allowed to be parameters in the 

model, but residual variances for latent response variables of observed 

categorical dependent variables are not.  In the alternative Theta 

parameterization, residual variances for latent response variables are 

allowed to be parameters in the model but scale factors are not.   The 

Theta parameterization is selected by specifying 

PARAMETERIZATION=THETA in the ANALYSIS command.    

 

When the Theta parameterization is used, the residual variances for the 

latent response variables of the observed categorical dependent variables 

are fixed at one in the first group and are free to be estimated in the other 

groups as the default.  When a threshold and a factor loading for a 

categorical factor indicator are free across groups, the residual variance 

for the variable must be fixed at one in these groups for identification 

purposes.  In the group-specific MODEL command for females, the 

residual variance for u3 is fixed at one.  An explanation of the other 

commands can be found in Examples 5.1, 5.8, 5.14, 5.15, and 5.16. 
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EXAMPLE 5.18: TWO-GROUP TWIN MODEL FOR 

CONTINUOUS OUTCOMES WHERE FACTORS REPRESENT 

THE ACE COMPONENTS 
 

 
TITLE: this is an example of a two-group twin 

 model for continuous outcomes where 

 factors represent the ACE components  

DATA: FILE = ex5.18.dat; 

VARIABLE: NAMES = y1 y2 g; 

 GROUPING = g (1 = mz 2 = dz); 

ANALYSIS: MODEL = NOCOVARIANCES; 

MODEL: [y1-y2]   (1); 

 y1-y2@0; 

 a1 BY y1* (2); 

 a2 BY y2* (2); 

 c1 BY y1* (3); 

 c2 BY y2* (3); 

 e1 BY y1* (4); 

 e2 BY y2* (4); 

 a1-e2@1; 

 [a1-e2@0]; 

 a1 WITH a2@1;  

 c1 WITH c2@1; 

MODEL dz: a1 WITH a2@.5;   

 

 

 
 

 

In this example, the univariate twin model shown in the picture above is 

estimated.  This is a two-group twin model for a continuous outcome 

where factors represent the ACE components (Neale & Cardon, 1992).  
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The variables y1 and y2 represent a univariate outcome for each member 

of the twin pair.  The A factors represent the additive genetic 

components which correlate 1.0 for monozygotic twin pairs and 0.5 for 

dizygotic twin pairs.  The C factors represent common environmental 

effects which correlate 1.0 for all twin pairs.  The E factors represent 

uncorrelated environmental effects.  A simpler alternative way of 

specifying this model is shown in Example 5.21 where parameter 

constraints are used instead of the A, C, and E factors.   

 

Exogenous factors are correlated as the default.  By specifying 

MODEL=NOCOVARIANCES in the ANALYSIS command, all 

covariances in the model are fixed at zero.  The WITH option of the 

MODEL command can be used to override the default for selected 

covariances as shown in the three WITH statements.  In the MODEL 

command, the (1) following the first bracket statement specifies that the 

intercepts of y1 and y2 are held equal across twins.  The second 

statement fixes the residual variances of y1 and y2 to zero.  The residual 

variances of y1 and y2 are instead captured by the loadings of the E 

factors.  The six BY statements are used to define the six factors.  The 

asterisk (*) is used to free the factor loadings because the default is that 

the factor loading for the first factor indicator is fixed at one.  The 

loadings for the A, C, and E factors are held equal across twins by 

placing (2) following the two BY statements for the A factors,  (3) 

following the two BY statements for the C factors, and (4) following the 

two BY statements for the E factors.  In the next two statements, the A, 

C, and E factor variances are fixed at one and the A, C, and E factor 

means are fixed at zero.  Because the factor means are fixed at zero, the 

intercepts of y1 and y2 are their means. 

 

The WITH statement for the A factors is used to fix the covariance 

(correlation) between the A factors to 1.0 for monozygotic twin pairs.  

The group-specific MODEL command is used to fix the covariance 

between the A factors to 0.5 for the dizygotic twin pairs.  The WITH 

statement for the C factors is used to fix the covariance between the C 

factors to 1.  The default estimator for this type of analysis is maximum 

likelihood.  The ESTIMATOR option of the ANALYSIS command can 

be used to select a different estimator.  An explanation of the other 

commands can be found in Examples 5.1 and 5.14. 
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EXAMPLE 5.19: TWO-GROUP TWIN MODEL FOR 

CATEGORICAL OUTCOMES WHERE FACTORS 

REPRESENT THE ACE COMPONENTS 
 

 
TITLE: this is an example of a two-group twin 

model for categorical outcomes where 

factors represent the ACE components  

DATA: FILE = ex5.19.dat;  

VARIABLE: NAMES = u1 u2 g; 

 CATEGORICAL = u1-u2; 

 GROUPING = g (1 = mz 2 = dz); 

ANALYSIS: MODEL = NOCOVARIANCES; 

MODEL: [u1$1-u2$1] (1); 

 a1 BY u1*   (2); 

 a2 BY u2*   (2); 

 c1 BY u1*   (3); 

 c2 BY u2*   (3); 

 a1-c2@1; 

 [a1-c2@0]; 

 a1 WITH a2@1;  

 c1 WITH c2@1; 

MODEL dz: a1 WITH a2@.5;   

 {u1-u2@1}; 

 

The difference between this example and Example 5.18 is that the 

outcomes are binary or ordered categorical instead of continuous 

variables.  Because of this, the outcomes have no freely estimated 

residual variances and therefore the E factors are not part of the model.  

With categorical outcomes, the twin model is formulated for normally-

distributed latent response variables underlying the categorical outcomes 

which are also called liabilities.  This model is referred to as the 

threshold model for liabilities (Neale & Cardon, 1992).  More complex 

examples of such models are given in Prescott (2004).  A simpler 

alternative way of specifying this model is shown in Example 5.22 

where parameter constraints are used instead of the A and C factors.   

 

The CATEGORICAL option is used to specify which dependent 

variables are treated as binary or ordered categorical (ordinal) variables 

in the model and its estimation.  In the example above, u1 and u2 are 

binary or ordered categorical variables.  The program determines the 

number of categories for each variable.   
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For binary and ordered categorical outcomes, thresholds are modeled 

rather than intercepts or means.  The number of thresholds for a 

categorical variable is equal to the number of categories minus one.  In 

the example above, the categorical variables are binary so they have one 

threshold.  Thresholds are referred to by adding to the variable name a $ 

followed by a number.  The thresholds of u1 and u2 are referred to as 

u1$1 and u2$1.  Thresholds are referred to in square brackets.  The (1) 

after the first bracket statement specifies that the thresholds for u1$1 and 

u2$1 are constrained to be equal. 

 

Because the outcomes are categorical, scale factors are required for 

multiple group analysis when the default Delta parameterization is used.  

Scale factors are referred to using curly brackets ({}).  By default, scale 

factors are fixed at one in the first group and are free to be estimated in 

the other groups.  In this model where the variance contributions from 

the A and C factors are assumed equal across the two groups, the scale 

factors are fixed at one in both groups to represent the equality of 

variance for latent response variables underlying u1 and u2.  The 

statement in curly brackets in the group-specific MODEL command 

specifies that the scale factors are fixed at one.  The variance 

contribution from the E factor is a remainder obtained by subtracting the 

variance contributions of the A and C factors from the unit variance of 

the latent response variables underlying u1 and u2.  These are obtained 

as part of the STANDARDIZED option of the OUTPUT command. 

 

The default estimator for this type of analysis is a robust weighted least 

squares estimator.  The ESTIMATOR option of the ANALYSIS 

command can be used to select a different estimator.  With maximum 

likelihood and categorical factor indicators, numerical integration is 

required.  Note that numerical integration becomes increasingly more 

computationally demanding as the number of factors and the sample size 

increase.  An explanation of the other commands can be found in 

Examples 5.1, 5.14, and 5.18. 
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EXAMPLE 5.20:  CFA WITH PARAMETER CONSTRAINTS 
 

 
TITLE: this is an example of a CFA with parameter  

 constraints 

DATA: FILE = ex5.20.dat;  

VARIABLE:  NAMES = y1-y6; 

MODEL: f1 BY y1 

 y2-y3(lam2-lam3); 

 f2 BY y4  

 y5-y6(lam5-lam6); 

 f1 (vf1); 

 f2 (vf2); 

 y1-y3 (ve1-ve3);  

 y4-y6 (ve4-ve6);  

MODEL CONSTRAINT: 

 NEW(rel2 rel5 stan3 stan6); 

 rel2 = lam2**2*vf1/(lam2**2*vf1 + ve2);  

 rel5 = lam5**2*vf2/(lam5**2*vf2 + ve5);  

 rel5 = rel2; 

 stan3 = lam3*SQRT(vf1)/SQRT(lam3**2*vf1 + 

ve3); 

 stan6 = lam6*SQRT(vf2)/SQRT(lam6**2*vf2 + 

ve6); 

 0 = stan6 - stan3; 

 ve2 > ve5; 

 ve4 > 0; 

OUTPUT: STANDARDIZED; 

 

In this example, parameter constraints are used to estimate reliabilities, 

estimate standardized coefficients, constrain functions of parameters to 

be equal, and constrain parameters to be greater than a value.  This 

example uses the model from Example 5.1.   

 

The MODEL CONSTRAINT command specifies parameter constraints 

using labels defined for parameters in the MODEL command, labels 

defined for parameters not in the MODEL command using the NEW 

option of the MODEL CONSTRAINT command, and names of observed 

variables that are identified using the CONSTRAINT option of the 

VARIABLE command.  This example illustrates constraints using labels 

defined for parameters in the MODEL command and labels defined 

using the NEW option.  The NEW option is used to assign labels and 

starting values to parameters not in the analysis model.  Parameters in 

the analysis model are given labels by placing a name in parentheses 

after the parameter in the MODEL command.   
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In the MODEL command, labels are defined for twelve parameters.  The 

list function can be used when assigning labels to a list of parameters.  

The labels lam2, lam3, lam5, and lam6 are assigned to the factor 

loadings for y2, y3, y5, and y6.  The labels vf1 and vf2 are assigned to 

the factor variances for f1 and f2.  The labels ve1, ve2, ve3, ve4, ve5, 

and ve6 are assigned to the residual variances of y1, y2, y3, y4, y5, and 

y6.   

 

In the MODEL CONSTRAINT command, the NEW option is used to 

assign labels to four parameters that are not in the analysis model:  rel2, 

rel5, stan3, and stan6.  The parameters rel2 and rel6 estimate the 

reliability of y2 and y6 where reliability is defined as variance explained 

divided by total variance.  The parameters stan3 and stan6 estimate the 

standardized coefficients for y3 and y6 using conventional 

standardization formulas.  In the statement that begins 0=, two 

parameters are held equal to each other by defining their difference as 

zero.  In the last two statements, the residual variance of y2 is 

constrained to be greater than the residual variance of y5, and the 

residual variance of y4 is constrained to be greater than zero.  The 

STANDARDIZED option of the OUTPUT command is requested to 

illustrate that the R-square values found in the output are the same as the 

estimated reliabilities, and the standardized values found in the output 

are the same as the estimated standardized values.  Standard errors for 

parameters named using the NEW option are given.  The default 

estimator for this type of analysis is maximum likelihood.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 

a different estimator.  An explanation of the other commands can be 

found in Example 5.1. 
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EXAMPLE 5.21: TWO-GROUP TWIN MODEL FOR 

CONTINUOUS OUTCOMES USING PARAMETER 

CONSTRAINTS 
 

 
TITLE: this is an example of a two-group twin 

 model for  continuous outcomes using 

parameter constraints  

DATA: FILE = ex5.21.dat;  

VARIABLE: NAMES = y1 y2 g; 

 GROUPING = g(1 = mz 2 = dz); 

MODEL: [y1-y2]    (1); 

 y1-y2      (var); 

 y1 WITH y2 (covmz); 

MODEL dz: y1 WITH y2 (covdz); 

MODEL CONSTRAINT: 

 NEW(a c e h); 

 var = a**2 + c**2 + e**2; 

 covmz = a**2 + c**2; 

 covdz = 0.5*a**2 + c**2; 

 h = a**2/(a**2 + c**2 + e**2); 

 

 

 
 

 

In this example, the model shown in the picture above is estimated using 

parameter constraints.  The model estimated is the same as the model in 

Example 5.18. 

 

In the MODEL command, labels are defined for three parameters.  The 

label var is assigned to the variances of y1 and y2.  Because they are 

given the same label, these parameters are held equal.  In the overall 

MODEL command, the label covmz is assigned to the covariance 

between y1 and y2 for the monozygotic twins.  In the group-specific 

MODEL command, the label covdz is assigned to the covariance 

between y1 and y2 for the dizygotic twins.   

 

In the MODEL CONSTRAINT command, the NEW option is used to 

assign labels to four parameters that are not in the analysis model:  a, c, 
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e, and h. The three parameters a, c, and e are used to decompose the 

variances and covariances of y1 and y2 into genetic and environmental 

components.  The parameter h does not impose restrictions on the model 

parameters but is used to compute the heritability estimate and its 

standard error.  The default estimator for this type of analysis is 

maximum likelihood.  The ESTIMATOR option of the ANALYSIS 

command can be used to select a different estimator.  An explanation of 

the other commands can be found in Examples 5.1, 5.14, 5.18, and 5.20. 

 

EXAMPLE 5.22: TWO-GROUP TWIN MODEL FOR 

CATEGORICAL OUTCOMES USING PARAMETER 

CONSTRAINTS 
 

 
TITLE: this is an example of a two-group twin 

 model for categorical outcomes using 

parameter constraints  

DATA: FILE = ex5.22.dat; 

VARIABLE: NAMES = u1 u2 g; 

 GROUPING = g(1 = mz 2 = dz); 

 CATEGORICAL = u1 u2; 

MODEL: [u1$1-u2$1](1); 

 u1 WITH u2(covmz); 

MODEL dz: u1 WITH u2(covdz); 

MODEL CONSTRAINT: 

 NEW(a c e h);  

 covmz = a**2 + c**2; 

 covdz = 0.5*a**2 + c**2; 

 e = 1 - (a**2 + c**2); 

 h = a**2/1; 

 

The difference between this example and Example 5.21 is that the 

outcomes are binary or ordered categorical instead of continuous 

variables.  Because of this, the outcomes have no freely estimated 

residual variances.  The ACE variance and covariance restrictions are 

placed on normally-distributed latent response variables underlying the 

categorical outcomes which are also called liabilities.  This model is 

referred to as the threshold model for liabilities (Neale & Cardon, 1992).  

The model estimated is the same as the model in Example 5.19. 

 

The variance contribution from the E factor is not a freely estimated 

parameter with categorical outcomes.  It is a remainder obtained by 

subtracting the variance contributions of the A and C factors from the 
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unit variance of the latent response variables underlying u1 and u2 as 

shown in the MODEL CONSTRAINT command.  The denominator for 

the heritability estimate is one with categorical outcomes because the 

latent response variables have unit variances. 

 

The default estimator for this type of analysis is a robust weighted least 

squares estimator.  The ESTIMATOR option of the ANALYSIS 

command can be used to select a different estimator.  With maximum 

likelihood, logistic or probit regressions are estimated using a numerical 

integration algorithm.  Note that numerical integration becomes 

increasingly more computationally demanding as the number of factors 

and the sample size increase.  An explanation of the other commands can 

be found in Examples 5.1, 5.14, 5.19 and 5.21. 

 

EXAMPLE 5.23:  QTL SIBLING MODEL FOR A CONTINUOUS 

OUTCOME USING PARAMETER CONSTRAINTS 
 

 

TITLE: this is an example of a QTL sibling model 

for a continuous outcome using parameter 

constraints 

DATA: FILE = ex5.23.dat; 

VARIABLE: NAMES = y1 y2 pihat; 

 USEVARIABLES = y1 y2; 

 CONSTRAINT = pihat; 

MODEL: [y1-y2] (1); 

 y1-y2 (var); 

 y1 WITH y2 (cov); 

MODEL CONSTRAINT: 

 NEW(a e q); 

 var = a**2 + e**2 + q**2; 

 cov = 0.5*a**2 + pihat*q**2; 
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In this example, the model shown in the picture above is estimated.  This 

is a QTL model for two siblings (Marlow et al. 2003; Posthuma et al. 

2004) for continuous outcomes where parameter constraints are used to 

represent the A, E, and Q components. The A component represents the 

additive genetic effects which correlate 0.5 for siblings.  The E 

component represents uncorrelated environmental effects.  The Q 

component represents a quantitative trait locus (QTL).  The observed 

variable pihat contains the estimated proportion alleles shared identity-

by-descent (IBD) by the siblings and moderates the effect of the Q 

component on the covariance between the outcomes.     

 

The CONSTRAINT option in the VARIABLE command is used to 

identify the variables that can be used in the MODEL CONSTRAINT 

command.  These can be not only variables used in the MODEL 

command but also other variables.  In this example, the variable pihat is 

used in the MODEL CONSTRAINT command although it is not used in 

the MODEL command.  

 

In the MODEL command, the (1) following the first bracket statement 

specifies that the intercepts of y1 and y2 are held equal across the two 

siblings.  In addition, labels are defined for two parameters.  The label 

var is assigned to the variances of y1 and y2.  Because they are given the 

same label, these parameters are held equal. The label cov is assigned to 

the covariance between y1 and y2. 

 

In the MODEL CONSTRAINT command, the NEW option is used to 

assign labels to three parameters that are not in the analysis model:  a, e, 

and q.  The three parameters a, e, and q and the variable pihat are used to 

decompose the variances and covariances of y1 and y2 into genetic, 

environmental, and QTL components.  The default estimator for this 

type of analysis is maximum likelihood.  The ESTIMATOR option of 

the ANALYSIS command can be used to select a different estimator.  

An explanation of the other commands can be found in Examples 5.1 

and 5.20. 
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EXAMPLE 5.24:  EFA WITH COVARIATES (MIMIC) WITH 

CONTINUOUS FACTOR INDICATORS AND DIRECT 

EFFECTS 
 

 
TITLE: this is an example of an EFA with 

covariates (MIMIC) with continuous factor 

indicators and direct effects 

DATA: FILE IS ex5.24.dat; 

VARIABLE: NAMES ARE y1-y8 x1 x2; 

MODEL: f1-f2 BY y1-y8(*1); 

     f1-f2 ON x1-x2; 

     y1 ON x1; 

     y8 ON x2; 

OUTPUT: TECH1; 

 

 

 
 

In this example, the EFA with covariates (MIMIC) with continuous 

factor indicators and direct effects shown in the picture above is 



CHAPTER 5 

 96 

estimated.  This is an exploratory structural equation model (ESEM; 

Asparouhov & Muthén, 2009a).  The factors f1 and f2 are EFA factors 

which have the same factor indicators.  Unlike CFA, no factor loadings 

are fixed at zero.  Instead, the four restrictions on the factor loadings, 

factor variances, and factor covariances necessary for identification are 

imposed by rotating the factor loading matrix and fixing the factor 

residual variances at one. 

 

In the MODEL command, the BY statement specifies that the factors f1 

and f2 are measured by the continuous factor indicators y1 through y8.  

The label 1 following an asterisk (*) in parentheses following the BY 

statement is used to indicate that f1 and f2 are a set of EFA factors.  

When no rotation is specified using the ROTATION option of the 

ANALYSIS command, the default oblique GEOMIN rotation is used.  

The intercepts and residual variances of the factor indicators are 

estimated and the residuals are not correlated as the default.  The 

residual variances of the factors are fixed at one as the default.  The 

residuals of the factors are correlated under the default oblique 

GEOMIN rotation.  The first ON statement describes the linear 

regressions of f1 and f2 on the covariates x1 and x2.  The second and 

third ON statements describe the linear regressions of y1 on x1 and y8 

on x2.  These regressions represent direct effects used to test for 

measurement non-invariance.   

 

The default estimator for this type of analysis is maximum likelihood. 

The ESTIMATOR option of the ANALYSIS command can be used to 

select a different estimator.  An explanation of the other commands can 

be found in Example 5.1. 
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EXAMPLE 5.25:  SEM WITH EFA AND CFA FACTORS WITH 

CONTINUOUS FACTOR INDICATORS 
 

 
TITLE: this is an example of a SEM with EFA and 

CFA factors with continuous factor 

indicators 

DATA: FILE IS ex5.25.dat; 

VARIABLE: NAMES ARE y1-y12; 

MODEL: f1-f2 BY y1-y6 (*1); 

 f3 BY y7-y9; 

 f4 BY y10-y12; 

 f3 ON f1-f2; 

 f4 ON f3; 

 

 

 
 

 

In this example, the SEM with EFA and CFA factors with continuous 

factor indicators shown in the picture above is estimated.  This is an 

exploratory structural equation model (ESEM; Asparouhov & Muthén, 

2009a).  The factors f1 and f2 are EFA factors which have the same 

factor indicators.  Unlike CFA, no factor loadings are fixed at zero.  

Instead, the four restrictions on the factor loadings, factor variances, and 

factor covariances necessary for identification are imposed by rotating 
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the factor loading matrix and fixing the factor variances at one.  The 

factors f3 and f4 are CFA factors.   

 

In the MODEL command, the first BY statement specifies that the 

factors f1 and f2 are measured by the continuous factor indicators y1 

through y6.  The label 1 following an asterisk (*) in parentheses 

following the BY statement is used to indicate that f1 and f2 are a set of 

EFA factors.  When no rotation is specified using the ROTATION 

option of the ANALYSIS command, the default oblique GEOMIN 

rotation is used.  For EFA factors, the intercepts and residual variances 

of the factor indicators are estimated and the residuals are not correlated 

as the default.  The variances of the factors are fixed at one as the 

default.  The factors are correlated under the default oblique GEOMIN 

rotation.  The second BY statement specifies that f3 is measured by y7, 

y8, and y9.  The third BY statement specifies that f4 is measured by y10, 

y11, and y12.  The metric of the factors is set automatically by the 

program by fixing the first factor loading in each BY statement to 1.  

This option can be overridden.  The intercepts and residual variances of 

the factor indicators are estimated and the residual are not correlated as 

the default.  The residual variances of the factors are estimated as the 

default.   

 

The first ON statement describes the linear regression of f3 on the set of 

EFA factors f1 and f2.  The second ON statement describes the linear 

regression of f4 on f3.  The default estimator for this type of analysis is 

maximum likelihood. The ESTIMATOR option of the ANALYSIS 

command can be used to select a different estimator.  An explanation of 

the other commands can be found in Example 5.1. 
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EXAMPLE 5.26:  EFA AT TWO TIME POINTS WITH FACTOR 

LOADING INVARIANCE AND CORRELATED RESIDUALS 

ACROSS TIME 
 
 

TITLE: this is an example of an EFA at two time 

points with factor loading invariance and 

correlated residuals across time 

DATA: FILE IS ex5.26.dat; 

VARIABLE: NAMES ARE y1-y12; 

MODEL: f1-f2 BY y1-y6 (*t1 1); 

 f3-f4 BY y7-y12 (*t2 1); 

 y1-y6 PWITH y7-y12; 

OUTPUT: TECH1 STANDARDIZED; 

 

 

 
 

In this example, the EFA at two time points with factor loading 

invariance and correlated residuals across time shown in the picture 

above is estimated.  This is an exploratory structural equation model 

(ESEM; Asparouhov & Muthén, 2009a).  The factor indicators y1 

through y6 and y7 through y12 are the same variables measured at two 

time points.  The factors f1 and f2 are one set of EFA factors which have 

the same factor indicators and the factors f3 and f4 are a second set of 

EFA factors which have the same factor indicators.  Unlike CFA, no 

factor loadings are fixed at zero in either set.  Instead, for each set, the 

four restrictions on the factor loadings, factor variances, and factor 

covariances necessary for identification are imposed by rotating the 

factor loading matrix and fixing the factor variances at one at the first 

time point.  For the other time point, factor variances are free to be 
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estimated as the default when factor loadings are constrained to be equal 

across time.   

 

In the MODEL command, the first BY statement specifies that the 

factors f1 and f2 are measured by the continuous factor indicators y1 

through y6.  The label t1 following an asterisk (*) in parentheses 

following the BY statement is used to indicate that f1 and f2 are a set of 

EFA factors.  The second BY statement specifies that the factors f3 and 

f4 are measured by the continuous factor indicators y7 through y12.  The 

label t2 following an asterisk (*) in parentheses following the BY 

statement is used to indicate that f3 and f4 are a set of EFA factors.  The 

number 1 following the labels t1 and t2 specifies that the factor loadings 

matrices for the two sets of EFA factors are constrained to be equal.  

When no rotation is specified using the ROTATION option of the 

ANALYSIS command, the default oblique GEOMIN rotation is used.   

 

For EFA factors, the intercepts and residual variances of the factor 

indicators are estimated and the residuals are not correlated as the 

default.  The intercepts are not held equal across time as the default.  

The means of the factors are fixed at zero at both time points and the 

variances of the factors are fixed at one as the default.  In this example 

because the factor loadings are constrained to be equal across time, the 

factor variances are fixed at one at the first time point and are free to be 

estimated at the other time point.  The factors are correlated as the 

default under the oblique GEOMIN rotation.  The PWITH statement 

specifies that the residuals for each factor indicator are correlated over 

time.  The default estimator for this type of analysis is maximum 

likelihood.  The ESTIMATOR option of the ANALYSIS command can 

be used to select a different estimator.  An explanation of the other 

commands can be found in Example 5.1. 
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EXAMPLE 5.27:  MULTIPLE-GROUP EFA WITH 

CONTINUOUS FACTOR INDICATORS 
 
 

TITLE: this is an example of multiple-group EFA 

with continuous factor indicators with no 

measurement invariance 

DATA: FILE IS ex5.27.dat; 

VARIABLE: NAMES ARE y1-y10 group; 

 GROUPING IS group (1 = g1 2 = g2); 

MODEL: f1-f2 BY y1-y10 (*1); 

 [f1-f2@0]; 

MODEL g2: f1-f2 BY y1-y10 (*1); 

 [y1-y10]; 

OUTPUT: TECH1; 

 

 

 
 

In this example, the multiple-group EFA with continuous indicators 

shown in the picture above is estimated.  This is an exploratory 

structural equation model (ESEM; Asparouhov & Muthén, 2009a).  The 

factors f1 and f2 are EFA factors which have the same factor indicators.  

Unlike CFA, no factor loadings are fixed at zero.  Instead, for the first 

group the four restrictions on the factor loadings, factor variances, and 

factor covariances necessary for model identification are imposed by 

rotating the factor loading matrix and fixing the factor variances at one 

in all groups.  The first model in this example imposes no equality 

constraints on the model parameters across the two groups.  Four 

subsequent models impose varying degrees of invariance on the model 

parameters.   

 

In the MODEL command, the BY statement specifies that the factors f1 

and f2 are measured by the continuous factor indicators y1 through y10.  
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The label 1 following an asterisk (*) in parentheses following the BY 

statement is used to indicate that f1 and f2 are a set of EFA factors.  

When no rotation is specified using the ROTATION option of the 

ANALYSIS command, the default oblique GEOMIN rotation is used.  

 

The intercepts and residual variances of the factor indicators are 

estimated and the residuals are not correlated as the default.  The 

variances of the factors are fixed at one in both groups.  The factors are 

correlated under the default oblique GEOMIN rotation.  The bracket 

statement specifies that the factor means are fixed at zero in both groups 

to override the default of the factor means being fixed at zero in the first 

group and being free in the other group.  

 

In the group-specific MODEL command for g2, the BY statement 

relaxes the default equality constraint on the factor loading matrices in 

the two groups.  The bracket statement relaxes the default equality 

constraint on the intercepts of the factor indicators y1 through y10 in the 

two groups.  The default estimator for this type of analysis is maximum 

likelihood. The ESTIMATOR option of the ANALYSIS command can 

be used to select a different estimator.  An explanation of the other 

commands can be found in Example 5.1 

 

Following is the second part of the example where equality of factor 

loading matrices across the two groups is imposed.  The variances of the 

factors are fixed at one in the first group and are free to be estimated in 

the other group.   

 
MODEL: f1-f2 BY y1-y10 (*1); 

 [f1-f2@0]; 

MODEL g2: [y1-y10]; 

 

Equality of factor loading matrices is accomplished by removing the BY 

statement from the group-specific MODEL command for g2.  Equality 

of factor loading matrices is the default. 

 

Following is the third part of the example where equality of factor 

loading matrices and intercepts of the factor indicators across the two 

groups is imposed.   

 
MODEL: f1-f2 by y1-y10 (*1); 
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Equality of factor indicator intercepts is accomplished by removing the 

bracket statement for y1 through y10 from the group-specific MODEL 

command for g2.  Equality of factor indicator intercepts is the default.  

This specification is the default setting in multiple group analysis, 

specifying measurement invariance of the intercepts of the factor 

indicators and the factor loading matrices.  The factor means are fixed at 

zero in the first group and are free to be estimated in the other group as 

the default. 

 

Following is the fourth part of the example where equality of factor 

variances and the factor covariance is imposed in addition to 

measurement invariance of the intercepts and factor loading matrices.  

 
MODEL: f1-f2 by y1-y10 (*1); 

 f1 WITH f2 (1); 

 f1-f2@1;  

 

In the MODEL command, the number one in parentheses following the 

WITH statement specifies that the covariance between f1 and f2 is held 

equal across the two groups.  The default in multiple group EFA when 

factor loading matrices are held equal across groups is that the factor 

variances are fixed to one in the first group and are free to be estimated 

in the other group.  The third statement in the MODEL command 

overrides this default by specifing that the factor variances are fixed at 

one in both groups.   

 

Following is the fifth part of the example where in addition to equality 

of factor variances and the factor covariance, equality of the factor 

means is imposed in addition to measurement invariance of the 

intercepts and factor loading matrices.  

 
MODEL: f1-f2 by y1-y10 (*1); 

 f1 WITH f2 (1); 

 f1-f2@1; 

 [f1-f2@0]; 

 

The default in multiple group EFA is that the factor means are fixed to 

zero in the first group and are free to be estimated in the other groups.  

The bracket statement in the MODEL command specifies that the factor 

means are fixed at zero in both groups.   



CHAPTER 5 

 104 

EXAMPLE 5.28:  EFA WITH RESIDUAL VARIANCES 

CONSTRAINED TO BE GREATER THAN ZERO 
 

 
TITLE: this is an example of an EFA with residual 

variances constrained to be greater than 

zero 

DATA: FILE = ex5.28.dat; 

VARIABLE: NAMES = y1-y10; 

ANALYSIS: ROTATION = GEOMIN; 

MODEL: f1-f2 BY y1-y10 (*1); 

 y1-y10 (v1-v10); 

MODEL CONSTRAINT: 

 DO(1,10) v#>0; 

OUTPUT: STDY; 

 

In this example, an exploratory factor analysis with residual variances 

constrained to be greater than zero is carried out using a Geomin 

rotation.  This is an exploratory structural equation model (ESEM; 

Asparouhov & Muthén, 2009a).  The factors f1 and f2 are EFA factors 

which have the same factor indicators.  By specifying GEOMIN, an EFA 

will be carried out using the Geomin rotation.  The default is an oblique 

rotation.  An orthogonal rotation can be obtained by specifying 

ROTATION=GEOMIN(ORTHOGONAL).  The ROTATION option can 

be used to specify other rotations.  

 

In the MODEL command, the BY statement specifies that the factors f1 

and f2 are measured by the continuous factor indicators y1 through y10.  

The label 1 following an asterisk (*) in parentheses following the BY 

statement is used to indicate that f1 and f2 are a set of EFA factors.  The 

intercepts and residual variances of the factor indicators are estimated 

and the residuals are not correlated as the default.  The variances of the 

factors are fixed at one as the default.  The DO option of the MODEL 

CONSTRAINT command is used to constrain the residual variances of 

the factor indicators to be greater than zero.  The DO option provides a 

do loop to facilitate specifying the same expression for a set of 

parameters.  The parameters are given labels in the MODEL command.  

In the DO option, the numbers in parentheses give the range of values 

for the do loop.  The number sign (#) is replaced by these values during 

the execution of the do loop.  In the OUTPUT command, the STDY 

option is chosen for standardization with respect to y.  This puts the 

results in the metric of an EFA.  The default estimator for this type of 
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analysis is maximum likelihood. The ESTIMATOR option of the 

ANALYSIS command can be used to select a different estimator.  An 

explanation of the other commands can be found in Examples 5.1. 

   

EXAMPLE 5.29:  BI-FACTOR EFA USING ESEM 
 

 
TITLE: this is an example of a bi-factor EFA 

using ESEM 

DATA: FILE = ex5.29.dat; 

VARIABLE: NAMES = y1-y10; 

ANALYSIS: ROTATION = BI-GEOMIN; 

MODEL: fg f1 f2 BY y1-y10 (*1); 

OUTPUT: STDY; 

 

In this example, a bi-factor exploratory factor analysis (Jennrich & 

Bentler, 2011, 2012) using ESEM with continuous factor indicators is 

carried out using a bi-factor Geomin rotation.  This is an exploratory 

structural equation model (ESEM; Asparouhov & Muthén, 2009a).  The 

factors fg, f1, and f2 are EFA factors which have the same factor 

indicators.  By specifying BI-GEOMIN, a bi-factor EFA will be carried 

out using a bi-factor Geomin rotation.  The default is an oblique solution 

where the specific factors are correlated with the general factor and are 

correlated with each other.  In the orthogonal solution, the specific 

factors are uncorrelated with the general factor and are uncorrelated with 

each other.  An orthogonal rotation is obtained by specifying 

ROTATION=BI-GEOMIN(ORTHOGONAL).  An alternative bi-factor 

rotation can be obtained using the BI-CF-QUARTIMAX setting of the 

ROTATION option.  

  

In the MODEL command, the BY statement specifies that the factors fg, 

f1, and f2 are measured by the continuous factor indicators y1 through 

y10.  The factor fg is a general factor and f1 and f2 are specific factors.  

The label 1 following an asterisk (*) in parentheses following the BY 

statement is used to indicate that fg, f1, and f2 are a set of EFA factors.  

The intercepts and residual variances of the factor indicators are 

estimated and the residuals are not correlated as the default.  The 

variances of the factors are fixed at one as the default.  In the OUTPUT 

command, the STDY option is chosen for standardization with respect to 

y.  This puts the results in the metric of an EFA.  The default estimator 

for this type of analysis is maximum likelihood.  The ESTIMATOR 

option of the ANALYSIS command can be used to select a different 
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estimator.  An explanation of the other commands can be found in 

Example 5.1. 

   

EXAMPLE 5.30:  BI-FACTOR EFA WITH TWO ITEMS 

LOADING ON ONLY THE GENERAL FACTOR 
 

 
TITLE: this is an example of bi-factor EFA with  

 two items loading on only the general 

 factor 

DATA: FILE = ex5.30.dat; 

VARIABLE: NAMES = y1-y10; 

ANALYSIS: ROTATION = GEOMIN; 

MODEL: fg BY y1-y10*; 

 fg@1; 

 f1-f2 BY y1-y8 (*1); 

 fg WITH f1-f2@0; 

OUTPUT: STDY; 

 

In this example, a bi-factor exploratory factor analysis with continuous 

factor indicators is carried out using a Geomin rotation.  This is an 

exploratory structural equation model (ESEM; Asparouhov & Muthén, 

2009a).  The general factor fg is a CFA factor.  The specific factors f1 

and f2 are EFA factors which have the same factor indicators.  Only the 

specific factors are rotated.  By specifying GEOMIN, an EFA will be 

carried out using the Geomin rotation for the specific factors.  The 

default is an oblique rotation.  An orthogonal rotation can be obtained by 

specifying ROTATION=GEOMIN(ORTHOGONAL).  The ROTATION 

option can be used to specify other rotations.  

 

In the MODEL command, the first BY statement specifies that the 

general factor fg is measured by y1 through y10.  The asterisk (*) frees 

the first factor loading which is fixed at one as the default to define the 

metric of the factor.  Instead the metric of the factor is defined by fixing 

the factor variance at one.  The second BY statement specifies that the 

specific factors f1 and f2 are measured by the continuous factor 

indicators y1 through y8.  The label following an asterisk (*) in 

parentheses following the BY statement is used to indicate that f1 and f2 

are a set of EFA factors.  The variances of the factors are fixed at one as 

the default.  The specific factors are correlated under the oblique 

Geomin rotation.  The WITH statement specifies that the general and 

specific factors are not correlated.  The intercepts and residual variances 
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of the factor indicators are estimated and the residuals are not correlated 

as the default.  In the OUTPUT command, the STDY option is chosen 

for standardization with respect to y.  This puts the results in the metric 

of an EFA.  The default estimator for this type of analysis is maximum 

likelihood.  The ESTIMATOR option of the ANALYSIS command can 

be used to select a different estimator.  An explanation of the other 

commands can be found in Example 5.1.     

 

EXAMPLE 5.31:  BAYESIAN BI-FACTOR CFA WITH TWO 

ITEMS LOADING ON ONLY THE GENERAL FACTOR AND 

CROSS-LOADINGS WITH ZERO-MEAN AND SMALL-

VARIANCE PRIORS  
 

 
TITLE: this is an example of a Bayesian bi-factor 

CFA with two items loading on only the 

general factor and cross-loadings with 

zero-mean and small-variance priors 

DATA: FILE = ex5.31.dat; 

VARIABLE: NAMES = y1-y10; 

ANALYSIS: ESTIMATOR = BAYES; 

 PROCESSORS = 2; 

MODEL: fg BY y1-y10*; 

 fg@1; 

 f1 BY y1-y4 

 y5-y10 (f1xlam5-f1xlam10); 

 f2 BY y5-y8 

 y1-y4 y9-y10(f2xlam1-f2xlam6); 

 fg WITH f1-f2@0; 

MODEL PRIORS: 

 f1xlam5-f2xlam6~N(0,0.01); 

PLOT: TYPE = PLOT2; 

 

In this example, a bi-factor CFA with two items loading on only the 

general factor and cross-loadings with zero-mean and small-variance 

priors is carried out using the Bayes estimator.  This is a Bayesian 

structural equation model (BSEM; Muthén & Asparouhov, 2012).  By 

specifying ESTIMATOR=BAYES, a Bayesian analysis will be carried 

out.  In Bayesian estimation, the default is to use two independent 

Markov chain Monte Carlo (MCMC) chains.  If multiple processors are 

available, using PROCESSORS=2 will speed up computations.   
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In the MODEL command, the first BY statement specifies that the 

general factor, fg, is measured by the continuous factor indicators y1 

through y10.  The asterisk (*) frees the first factor loading which is fixed 

at one as the default to define the metric of the factor.  Instead the metric 

of the factor is defined by fixing the factor variance at one.  The second 

and third BY statements specify that the specific factors, f1 and f2, are 

measured by y1 through y10.  The first factor loadings are fixed at one to 

set the metric of the factors.  The first line of each BY statement shows 

the major loadings for each factor.  The second line shows the cross-

loadings which are assigned labels.  For f1, labels are assigned to cross-

loadings for y5 through y10.  For f2, labels are assigned to cross-

loadings for y1 through y4, y9, and y10.  The WITH statement specifies 

that the general and specific factors are not correlated.  The intercepts 

and residual variances of the factor indicators are estimated and the 

residuals are not correlated as the default.  In MODEL PRIORS, the 

labels assigned in the MODEL command are used to assign zero-mean 

and small-variance priors to the cross-loadings.  By specifying 

TYPE=PLOT2 in the PLOT command, the following plots are available:  

posterior parameter distributions, posterior parameter trace plots, 

autocorrelation plots, posterior predictive checking scatterplots, and 

posterior predictive checking distribution plots.  An explanation of the 

other commands can be found in Example 5.1.     
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EXAMPLE 5.32:  BAYESIAN MIMIC MODEL WITH CROSS-

LOADINGS AND DIRECT EFFECTS WITH ZERO-MEAN AND 

SMALL-VARIANCE PRIORS  
 

 
TITLE: this is an example of a Bayesian MIMIC 

model with cross-loadings and direct 

effects with zero-mean and small-variance 

priors 

DATA: FILE = ex5.32.dat; 

VARIABLE: NAMES = y1-y6 x1-x3; 

ANALYSIS: ESTIMATOR = BAYES; 

 PROCESSORS = 2; 

MODEL: f1 BY y1-y3 

 y4-y6 (xload4-xload6);               

 f2 BY y4-y6 

 y1-y3 (xload1-xload3); 

 f1-f2 ON x1-x3; 

 y1-y6 ON x1-x3 (dir1-dir18); 

MODEL PRIORS: 

 xload1-xload6~N(0,0.01); 

 dir1-dir18~N(0,0.01); 

PLOT: TYPE = PLOT2;  

 

In this example, a MIMIC model with cross-loadings and direct effects  

with zero-mean and small-variance priors is carried out using the Bayes 

estimator.  This is a Bayesian structural equation model (BSEM; Muthén 

& Asparouhov, 2012). 

 

In the MODEL command, the first BY statement specifies that f1 is 

measured by the continuous factor indicators y1 through y6.  The second 

BY statements specifies that f2 is measured by the continuous factor 

indicators y1 through y6.  The first factor loadings are fixed at one to set 

the metric of the factors.  The first line of each BY statement shows the 

major loadings for each factor.  The second line shows the cross-

loadings which are assigned labels.  For f1, labels are assigned to y4 

through y6.  For f2, labels are assigned to y1 through y3.  The intercepts 

and residual variances of the factor indicators are estimated and the 

residuals are not correlated as the default.  In MODEL PRIORS, the 

labels assigned in the MODEL command are used to assign zero-mean 

and small-variance priors to the factor loadings.  The first ON statement   

describes the linear regressions of f1 and f2 on the covariates x1, x2, and 

x3.  The residual variances of f1 and f2 are estimated and the residuals 
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are correlated as the default.  The second ON statement describes the 

linear regressions of y1 through y6 on the covariates x1, x2, and x3.  

These are direct effects which are assumed to be small.  Labels are 

assigned to these regression coefficients.  In MODEL PRIORS, the 

labels assigned in the MODEL command are used to assign zero-mean 

and small-variance priors to the factor loadings and regression 

coefficients.  By specifying TYPE=PLOT2 in the PLOT command, the 

following plots are available:  posterior parameter distributions, 

posterior parameter trace plots, autocorrelation plots, posterior 

predictive checking scatterplots, and posterior predictive checking 

distribution plots.  An explanation of the other commands can be found 

in Examples 5.1 and 5.31.     

 

EXAMPLE 5.33:  BAYESIAN MULTIPLE GROUP MODEL 

WITH APPROXIMATE MEASUREMENT INVARIANCE 

USING ZERO-MEAN AND SMALL-VARIANCE PRIORS 
 

 
TITLE: this is an example of a Bayesian       

 multiple group model with approximate 

 measurement invariance using zero-mean and 

small-variance priors 

DATA: FILE = ex5.33.dat; 

VARIABLE: NAMES = u y1-y6 group; 

 USEVARIABLES = y1-y6 group; 

 CLASSES = c(10); 

 KNOWNCLASS = c(group = 1-10); 

ANALYSIS: TYPE = MIXTURE; 

 ESTIMATOR = BAYES; 

 PROCESSORS = 2; 

 MODEL = ALLFREE; 

MODEL: %OVERALL% 

 f1 BY y1-y3* (lam#_1-lam#_3);  

 f2 BY y4-y6* (lam#_4-lam#_6);  

 [y1-y6] (nu#_1-nu#_6); 

 %c#10% 

 f1-f2@1; 

 [f1-f2@0]; 

MODEL PRIORS: 

 DO(1,6) DIFF(lam1_#-lam10_#)~N(0,0.01); 

 DO(1,6) DIFF(nu1_#-nu10_#)~N(0,0.01); 

PLOT: TYPE = PLOT2; 

OUTPUT: TECH1 TECH8; 
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In this example, a multiple group model with approximate measurement 

invariance using zero-mean and small-variance priors is carried out using 

the Bayes estimator.  This is a Bayesian structural equation model 

(BSEM; Muthén & Asparouhov, 2012).  In Bayesian estimation, 

multiple group analysis is carried out using the CLASSES and 

KNOWNCLASS options and TYPE=MIXTURE.  The CLASSES option 

is used to assign names to the categorical latent variables in the model 

and to specify the number of latent classes in the model for each 

categorical latent variable.  In the example above, there is one 

categorical latent variable c that has ten latent classes.  The 

KNOWNCLASS option identifies c as the categorical latent variable for 

which latent class membership is known.  The information in 

parentheses following the categorical latent variable name defines the 

known classes using an observed variable.  In this example, the observed 

variable group is used to define the known classes.  The first class 

consists of individuals with the value 1 on the variable group.  The 

second class consists of individuals with the value 2 on the variable 

group etc. 

 

MODEL=ALLFREE is used with TYPE=MIXTURE, the 

KNOWNCLASS option, ESTIMATOR=BAYES, and a special labeling 

function to assign zero-mean and small-variance priors to differences in 

intercepts, thresholds, and factor loadings across groups.  By specifying 

MODEL=ALLFREE, factor means, variances, and covariances are free 

across groups except for factor means in the last group which are fixed 

at zero.  In addition, intercepts, thresholds, factor loadings, and residual 

variances of the factor indicators are free across the groups.    

 

In the overall model, the first BY statement specifies that f1 is measured 

by the continuous factor indicators y1 through y3.  The second BY 

statement specifies that f2 is measured by the continuous factor 

indicators y4 through y6.  In both BY statements the asterisk (*) frees 

the first factor loadings which are fixed at one as the default to set the 

metric of the factors.  The metric of the factors is set instead by fixing 

the factor variances to one in class 10.  The residual variances of the 

factor indicators are estimated and the residuals are not correlated as the 

default.   

 

In the overall part of the model, labels are assigned to the factor loadings 

and the intercepts using automatic labeling for groups.  The labels must 

include the number sign (#) followed by the underscore (_) symbol 
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followed by a number.  The number sign (#) refers to a group and the 

number refers to a parameter.  The label lam#_1 is assigned to the factor 

loading for y1; the label lam#_2 is assigned to the factor loading for y2; 

and the label lam#_3 is assigned to the factor loading for y3.  These 

labels are expanded to include group information.  For example, the 

label for parameter 1 is expanded across the ten groups to give labels 

lam1_1, lam2_1 through lam10_1.  In MODEL PRIORS, these expanded 

labels are used to assign zero-mean and small-variance priors to the 

differences across groups of the factor loadings and intercepts using the 

DO and DIFFERENCE options.  They can be used together to simplify 

the assignment of priors to a large set of difference parameters for 

models with multiple groups and multiple time points.  For the DO 

option, the numbers in parentheses give the range of values for the do 

loop.  The number sign (#) is replaced by these values during the 

execution of the do loop.  The numbers refer to the six factor indicators.   

 

By specifying TYPE=PLOT2 in the PLOT command, the following 

plots are available:  posterior parameter distributions, posterior 

parameter trace plots, autocorrelation plots, posterior predictive 

checking scatterplots, and posterior predictive checking distribution 

plots.  An explanation of the other commands can be found in Example 

5.1 and 5.31. 
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CHAPTER 6 

EXAMPLES: GROWTH 

MODELING, SURVIVAL 

ANALYSIS, AND N=1 TIME 

SERIES ANALYSIS 
 

 

Growth models examine the development of individuals on one or more 

outcome variables over time.  These outcome variables can be observed 

variables or continuous latent variables.  Observed outcome variables 

can be continuous, censored, binary, ordered categorical (ordinal), 

counts, or combinations of these variable types if more than one growth 

process is being modeled.  In growth modeling, random effects are used 

to capture individual differences in development.  In a latent variable 

modeling framework, the random effects are reconceptualized as 

continuous latent variables, that is, growth factors.   

 

Mplus takes a multivariate approach to growth modeling such that an 

outcome variable measured at four occasions gives rise to a four-variate 

outcome vector.  In contrast, multilevel modeling typically takes a 

univariate approach to growth modeling where an outcome variable 

measured at four occasions gives rise to a single outcome for which 

observations at the different occasions are nested within individuals, 

resulting in two-level data.  Due to the use of the multivariate approach, 

Mplus does not consider a growth model to be a two-level model as in 

multilevel modeling but a single-level model.  With longitudinal data, 

the number of levels in Mplus is one less than the number of levels in 

conventional multilevel modeling.  The multivariate approach allows 

flexible modeling of the outcomes such as differences in residual 

variances over time, correlated residuals over time, and regressions 

among the outcomes over time.   

 

In Mplus, there are two options for handling the relationship between the 

outcome and time.  One approach allows time scores to be parameters in 

the model so that the growth function can be estimated.  This is the 

approach used in structural equation modeling.  The second approach 

allows time to be a variable that reflects individually-varying times of 
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observations.  This variable has a random slope.  This is the approach 

used in multilevel modeling.  Random effects in the form of random 

slopes are also used to represent individual variation in the influence of 

time-varying covariates on outcomes.  

  

Growth modeling in Mplus allows the analysis of multiple processes, 

both parallel and sequential; regressions among growth factors and 

random effects; growth modeling of factors measured by multiple 

indicators; and growth modeling as part of a larger latent variable model.   

 

Survival modeling in Mplus includes both discrete-time and continuous-

time analyses.  Both types of analyses consider the time to an event.  

Discrete-time survival analysis is used when the outcome is recorded 

infrequently such as monthly or annually, typically leading to a limited 

number of measurements.  Continuous-time survival analysis is used 

when the outcome is recorded more frequently such as hourly or daily, 

typically leading to a large number of measurements.  Survival modeling 

is integrated into the general latent variable modeling framework so that 

it can be part of a larger model. 

 

N=1 time series analysis is used to analyze intensive longitudinal data 

such as those obtained with ecological momentary assessments, 

experience sampling methods, daily diary methods, and ambulatory 

assessments for a single person.  Such data typically have a large number 

of time points, for example, twenty to two hundred.  The measurements 

are typically closely spaced in time.  In Mplus, univariate autoregressive, 

regression, cross-lagged, confirmatory factor analysis, Item Response 

Theory, and structural equation models can be estimated for continuous, 

binary, ordered categorical (ordinal), or combinations of these variable 

types.  Multilevel extensions of these models can be found in Chapter 9. 

 

All growth and survival models can be estimated using the following 

special features: 

 

 Single or multiple group analysis 

 Missing data 

 Complex survey data 

 Latent variable interactions and non-linear factor analysis using 

maximum likelihood 

 Random slopes 

 Individually-varying times of observations 
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 Linear and non-linear parameter constraints 

 Indirect effects including specific paths 

 Maximum likelihood estimation for all outcome types 

 Bootstrap standard errors and confidence intervals 

 Wald chi-square test of parameter equalities 

 

For continuous, censored with weighted least squares estimation, binary, 

and ordered categorical (ordinal) outcomes, multiple group analysis is 

specified by using the GROUPING option of the VARIABLE command 

for individual data or the NGROUPS option of the DATA command for 

summary data.  For censored with maximum likelihood estimation, 

unordered categorical (nominal), and count outcomes, multiple group 

analysis is specified using the KNOWNCLASS option of the 

VARIABLE command in conjunction with the TYPE=MIXTURE 

option of the ANALYSIS command.  The default is to estimate the 

model under missing data theory using all available data.  The 

LISTWISE option of the DATA command can be used to delete all 

observations from the analysis that have missing values on one or more 

of the analysis variables.  Corrections to the standard errors and chi-

square test of model fit that take into account stratification, non-

independence of observations, and unequal probability of selection are 

obtained by using the TYPE=COMPLEX option of the ANALYSIS 

command in conjunction with the STRATIFICATION, CLUSTER, and 

WEIGHT options of the VARIABLE command. The 

SUBPOPULATION option is used to select observations for an analysis 

when a subpopulation (domain) is analyzed.  Latent variable interactions 

are specified by using the | symbol of the MODEL command in 

conjunction with the XWITH option of the MODEL command.  Random 

slopes are specified by using the | symbol of the MODEL command in 

conjunction with the ON option of the MODEL command.  Individually-

varying times of observations are specified by using the | symbol of the 

MODEL command in conjunction with the AT option of the MODEL 

command and the TSCORES option of the VARIABLE command.  

Linear and non-linear parameter constraints are specified by using the 

MODEL CONSTRAINT command.  Indirect effects are specified by 

using the MODEL INDIRECT command.  Maximum likelihood 

estimation is specified by using the ESTIMATOR option of the 

ANALYSIS command.  Bootstrap standard errors are obtained by using 

the BOOTSTRAP option of the ANALYSIS command.  Bootstrap 

confidence intervals are obtained by using the BOOTSTRAP option of 

the ANALYSIS command in conjunction with the CINTERVAL option 
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of the OUTPUT command.  The MODEL TEST command is used to test 

linear restrictions on the parameters in the MODEL and MODEL 

CONSTRAINT commands using the Wald chi-square test.      

 

Graphical displays of observed data and analysis results can be obtained 

using the PLOT command in conjunction with a post-processing 

graphics module.  The PLOT command provides histograms, 

scatterplots, plots of individual observed and estimated values, and plots 

of sample and estimated means and proportions/probabilities.  These are 

available for the total sample, by group, by class, and adjusted for 

covariates.  The PLOT command includes a display showing a set of 

descriptive statistics for each variable.  The graphical displays can be 

edited and exported as a DIB, EMF, or JPEG file.  In addition, the data 

for each graphical display can be saved in an external file for use by 

another graphics program.  

 

Following is the set of growth modeling examples included in this 

chapter:   

 

 6.1:  Linear growth model for a continuous outcome 

 6.2:  Linear growth model for a censored outcome using a censored 

model* 

 6.3:  Linear growth model for a censored outcome using a censored-

inflated model* 

 6.4:  Linear growth model for a categorical outcome 

 6.5:  Linear growth model for a categorical outcome using the Theta 

parameterization 

 6.6:  Linear growth model for a count outcome using a Poisson 

model* 

 6.7:  Linear growth model for a count outcome using a zero-inflated 

Poisson model* 

 6.8:  Growth model for a continuous outcome with estimated time 

scores 

 6.9:  Quadratic growth model for a continuous outcome 

 6.10:  Linear growth model for a continuous outcome with time-

invariant and time-varying covariates  

 6.11:  Piecewise growth model for a continuous outcome 

 6.12:  Growth model with individually-varying times of observation 

and a random slope for time-varying covariates for a continuous 

outcome 
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 6.13:  Growth model for two parallel processes for continuous 

outcomes with regressions among the random effects 

 6.14:  Multiple indicator linear growth model for continuous 

outcomes 

 6.15:  Multiple indicator linear growth model for categorical 

outcomes 

 6.16:  Two-part (semicontinuous) growth model for a continuous 

outcome* 

 6.17:  Linear growth model for a continuous outcome with first-

order auto correlated residuals using non-linear constraints 

 6.18:  Multiple group multiple cohort growth model 

 

Following is the set of survival analysis examples included in this 

chapter:   

 

 6.19: Discrete-time survival analysis 

 6.20: Continuous-time survival analysis using the Cox regression 

model  

 6.21: Continuous-time survival analysis using a parametric 

proportional hazards model 

 6.22: Continuous-time survival analysis using a parametric 

proportional hazards model with a factor influencing survival* 

 

Following is the set of N=1 time series analysis examples included in 

this chapter:   

 

 6.23: N=1 time series analysis with a univariate first-order 

autoregressive AR(1) model for a continuous dependent variable 

 6.24: N=1 time series analysis with a univariate first-order 

autoregressive AR(1) model for a continuous dependent variable 

with a covariate 

 6.25: N=1 time series analysis with a bivariate cross-lagged model 

for continuous dependent variables 

 6.26: N=1 time series analysis with a first-order autoregressive 

AR(1) confirmatory factor analysis (CFA) model with continuous 

factor indicators 

 6.27: N=1 time series analysis with a first-order autoregressive 

AR(1) IRT model with binary factor indicators 

 6.28: N=1 time series analysis with a bivariate cross-lagged model 

with two factors and continuous factor indicators 
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*  Example uses numerical integration in the estimation of the model.  

This can be computationally demanding depending on the size of the 

problem. 

 

EXAMPLE 6.1: LINEAR GROWTH MODEL FOR A 

CONTINUOUS OUTCOME 
  

 
TITLE: this is an example of a linear growth 

model for a continuous outcome  

DATA: FILE IS ex6.1.dat; 

VARIABLE: NAMES ARE y11-y14 x1 x2 x31-x34; 

 USEVARIABLES ARE y11-y14; 

MODEL: i s | y11@0 y12@1 y13@2 y14@3; 

 

 

 
 

In this example, the linear growth model for a continuous outcome at 

four time points shown in the picture above is estimated. 

 
TITLE: this is an example of a linear growth 

model for a continuous outcome 

 

The TITLE command is used to provide a title for the analysis.  The title 

is printed in the output just before the Summary of Analysis. 

 
DATA: FILE IS ex6.1.dat; 

 

The DATA command is used to provide information about the data set 

to be analyzed.  The FILE option is used to specify the name of the file 
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that contains the data to be analyzed, ex6.1.dat.  Because the data set is 

in free format, the default, a FORMAT statement is not required. 

 
VARIABLE: NAMES ARE y11-y14 x1 x2 x31-x34; 

 USEVARIABLES ARE y11-y14; 

 

The VARIABLE command is used to provide information about the 

variables in the data set to be analyzed.  The NAMES option is used to 

assign names to the variables in the data set.  The data set in this 

example contains ten variables:  y11, y12, y13, y14, x1, x2, x31, x32, 

x33, and x34.  Note that the hyphen can be used as a convenience feature 

in order to generate a list of names.  If not all of the variables in the data 

set are used in the analysis, the USEVARIABLES option can be used to 

select a subset of variables for analysis.  Here the variables y11, y12, 

y13, and y14 have been selected for analysis.  They represent the 

outcome measured at four equidistant occasions.  

 
MODEL: i s | y11@0 y12@1 y13@2 y14@3;  

 

The MODEL command is used to describe the model to be estimated.  

The | symbol is used to name and define the intercept and slope factors 

in a growth model.  The names i and s on the left-hand side of the | 

symbol are the names of the intercept and slope growth factors, 

respectively.  The statement on the right-hand side of the | symbol 

specifies the outcome and the time scores for the growth model.  The 

time scores for the slope growth factor are fixed at 0, 1, 2, and 3 to 

define a linear growth model with equidistant time points.  The zero time 

score for the slope growth factor at time point one defines the intercept 

growth factor as an initial status factor.  The coefficients of the intercept 

growth factor are fixed at one as part of the growth model 

parameterization.  The residual variances of the outcome variables are 

estimated and allowed to be different across time and the residuals are 

not correlated as the default.  

 

In the parameterization of the growth model shown here, the intercepts 

of the outcome variables at the four time points are fixed at zero as the 

default.  The means and variances of the growth factors are estimated as 

the default, and the growth factor covariance is estimated as the default 

because the growth factors are independent (exogenous) variables.  The 

default estimator for this type of analysis is maximum likelihood.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 

a different estimator.   
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EXAMPLE 6.2: LINEAR GROWTH MODEL FOR A 

CENSORED OUTCOME USING A CENSORED MODEL 
  

 
TITLE: this is an example of a linear growth 

model for a censored outcome using a 

censored model  

DATA: FILE IS ex6.2.dat; 

VARIABLE: NAMES ARE y11-y14 x1 x2 x31-x34; 

 USEVARIABLES ARE y11-y14; 

 CENSORED ARE y11-y14 (b); 

ANALYSIS: ESTIMATOR = MLR; 

MODEL: i s | y11@0 y12@1 y13@2 y14@3; 

OUTPUT: TECH1 TECH8; 

 

The difference between this example and Example 6.1 is that the 

outcome variable is a censored variable instead of a continuous variable. 

The CENSORED option is used to specify which dependent variables 

are treated as censored variables in the model and its estimation, whether 

they are censored from above or below, and whether a censored or 

censored-inflated model will be estimated.  In the example above, y11, 

y12, y13, and y14 are censored variables.  They represent the outcome 

variable measured at four equidistant occasions.  The b in parentheses 

following y11-y14 indicates that y11, y12, y13, and y14 are censored 

from below, that is, have floor effects, and that the model is a censored 

regression model.  The censoring limit is determined from the data.  The 

residual variances of the outcome variables are estimated and allowed to 

be different across time and the residuals are not correlated as the 

default. 

  

The default estimator for this type of analysis is a robust weighted least 

squares estimator.  By specifying ESTIMATOR=MLR, maximum 

likelihood estimation with robust standard errors using a numerical 

integration algorithm is used.  Note that numerical integration becomes 

increasingly more computationally demanding as the number of factors 

and the sample size increase.  In this example, two dimensions of 

integration are used with a total of 225 integration points.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 

a different estimator.   

 

In the parameterization of the growth model shown here, the intercepts 

of the outcome variables at the four time points are fixed at zero as the 
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default.  The means and variances of the growth factors are estimated as 

the default, and the growth factor covariance is estimated as the default 

because the growth factors are independent (exogenous) variables.  The 

OUTPUT command is used to request additional output not included as 

the default.  The TECH1 option is used to request the arrays containing 

parameter specifications and starting values for all free parameters in the 

model.  The TECH8 option is used to request that the optimization 

history in estimating the model be printed in the output.  TECH8 is 

printed to the screen during the computations as the default.  TECH8 

screen printing is useful for determining how long the analysis takes.  An 

explanation of the other commands can be found in Example 6.1. 

 

EXAMPLE 6.3: LINEAR GROWTH MODEL FOR A 

CENSORED OUTCOME USING A CENSORED-INFLATED 

MODEL 
  

 
TITLE: this is an example of a linear growth 

model for a censored outcome using a 

censored-inflated model  

DATA: FILE IS ex6.3.dat; 

VARIABLE: NAMES ARE y11-y14 x1 x2 x31-x34; 

 USEVARIABLES ARE y11-y14; 

 CENSORED ARE y11-y14 (bi); 

ANALYSIS: INTEGRATION = 7; 

MODEL: i s | y11@0 y12@1 y13@2 y14@3; 

 ii si | y11#1@0 y12#1@1 y13#1@2 y14#1@3; 

 si@0;  

OUTPUT: TECH1 TECH8; 

 

The difference between this example and Example 6.1 is that the 

outcome variable is a censored variable instead of a continuous variable. 

The CENSORED option is used to specify which dependent variables 

are treated as censored variables in the model and its estimation, whether 

they are censored from above or below, and whether a censored or 

censored-inflated model will be estimated.  In the example above, y11, 

y12, y13, and y14 are censored variables.  They represent the outcome 

variable measured at four equidistant occasions.  The bi in parentheses 

following y11-y14 indicates that y11, y12, y13, and y14 are censored 

from below, that is, have floor effects, and that a censored-inflated 

regression model will be estimated.  The censoring limit is determined 

from the data.  The residual variances of the outcome variables are 
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estimated and allowed to be different across time and the residuals are 

not correlated as the default.  

  

With a censored-inflated model, two growth models are estimated.  The 

first | statement describes the growth model for the continuous part of 

the outcome for individuals who are able to assume values of the 

censoring point and above.  The residual variances of the outcome 

variables are estimated and allowed to be different across time and the 

residuals are not correlated as the default.  The second | statement 

describes the growth model for the inflation part of the outcome, the 

probability of being unable to assume any value except the censoring 

point.  The binary latent inflation variable is referred to by adding to the 

name of the censored variable the number sign (#) followed by the 

number 1.   

 

In the parameterization of the growth model for the continuous part of 

the outcome, the intercepts of the outcome variables at the four time 

points are fixed at zero as the default.  The means and variances of the 

growth factors are estimated as the default, and the growth factor 

covariance is estimated as the default because the growth factors are 

independent (exogenous) variables.   

 

In the parameterization of the growth model for the inflation part of the 

outcome, the intercepts of the outcome variable at the four time points 

are held equal as the default.  The mean of the intercept growth factor is 

fixed at zero.  The mean of the slope growth factor and the variances of 

the intercept and slope growth factors are estimated as the default, and 

the growth factor covariance is estimated as the default because the 

growth factors are independent (exogenous) variables. 

   

In this example, the variance of the slope growth factor si for the 

inflation part of the outcome is fixed at zero.  Because of this, the 

covariances among si and all of the other growth factors are fixed at zero 

as the default.  The covariances among the remaining three growth 

factors are estimated as the default.    

 

The default estimator for this type of analysis is maximum likelihood 

with robust standard errors using a numerical integration algorithm.  

Note that numerical integration becomes increasingly more 

computationally demanding as the number of factors and the sample size 

increase.  In this example, three dimensions of integration are used with 
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a total of 343 integration points.  The INTEGRATION option of the 

ANALYSIS command is used to change the number of integration points 

per dimension from the default of 15 to 7.  The ESTIMATOR option of 

the ANALYSIS command can be used to select a different estimator.  

The OUTPUT command is used to request additional output not 

included as the default.  The TECH1 option is used to request the arrays 

containing parameter specifications and starting values for all free 

parameters in the model.  The TECH8 option is used to request that the 

optimization history in estimating the model be printed in the output.  

TECH8 is printed to the screen during the computations as the default.  

TECH8 screen printing is useful for determining how long the analysis 

takes.  An explanation of the other commands can be found in Example 

6.1. 

 

EXAMPLE 6.4: LINEAR GROWTH MODEL FOR A 

CATEGORICAL OUTCOME 
  

 
TITLE: this is an example of a linear growth 

model for a categorical outcome  

DATA: FILE IS ex6.4.dat; 

VARIABLE: NAMES ARE u11-u14 x1 x2 x31-x34; 

 USEVARIABLES ARE u11-u14; 

 CATEGORICAL ARE u11-u14; 

MODEL: i s | u11@0 u12@1 u13@2 u14@3; 

 

The difference between this example and Example 6.1 is that the 

outcome variable is a binary or ordered categorical (ordinal) variable 

instead of a continuous variable.  The CATEGORICAL option is used to 

specify which dependent variables are treated as binary or ordered 

categorical (ordinal) variables in the model and its estimation.  In the 

example above, u11, u12, u13, and u14 are binary or ordered categorical 

variables.  They represent the outcome variable measured at four 

equidistant occasions.  

 

In the parameterization of the growth model shown here, the thresholds 

of the outcome variable at the four time points are held equal as the 

default.  The mean of the intercept growth factor is fixed at zero.  The 

mean of the slope growth factor and the variances of the intercept and 

slope growth factors are estimated as the default, and the growth factor 
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covariance is estimated as the default because the growth factors are 

independent (exogenous) variables.   

 

The default estimator for this type of analysis is a robust weighted least 

squares estimator.  The ESTIMATOR option of the ANALYSIS 

command can be used to select a different estimator.  With the weighted 

least squares estimator, the probit model and the default Delta 

parameterization for categorical outcomes are used.  The scale factor for 

the latent response variable of the categorical outcome at the first time 

point is fixed at one as the default, while the scale factors for the latent 

response variables at the other time points are free to be estimated.  If a 

maximum likelihood estimator is used, the logistic model for categorical 

outcomes with a numerical integration algorithm is used (Hedeker & 

Gibbons, 1994).  Note that numerical integration becomes increasingly 

more computationally demanding as the number of factors and the 

sample size increase.  An explanation of the other commands can be 

found in Example 6.1. 

 

EXAMPLE 6.5: LINEAR GROWTH MODEL FOR A 

CATEGORICAL OUTCOME USING THE THETA 

PARAMETERIZATION 
 

 
TITLE: this is an example of a linear growth 

model for a categorical outcome using the 

Theta parameterization  

DATA: FILE IS ex6.5.dat; 

VARIABLE: NAMES ARE u11-u14 x1 x2 x31-x34; 

 USEVARIABLES ARE u11-u14; 

 CATEGORICAL ARE u11-u14; 

ANALYSIS: PARAMETERIZATION = THETA;                   

MODEL: i s | u11@0 u12@1 u13@2 u14@3; 

 

The difference between this example and Example 6.4 is that the Theta 

parameterization instead of the default Delta parameterization is used.  

In the Delta parameterization, scale factors for the latent response 

variables of the observed categorical outcomes are allowed to be 

parameters in the model, but residual variances for the latent response 

variables are not.  In the Theta parameterization, residual variances for 

latent response variables are allowed to be parameters in the model, but 

scale factors are not.  Because the Theta parameterization is used, the 
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residual variance for the latent response variable at the first time point is 

fixed at one as the default, while the residual variances for the latent 

response variables at the other time points are free to be estimated.  An 

explanation of the other commands can be found in Examples 6.1 and 

6.4. 

 

EXAMPLE 6.6: LINEAR GROWTH MODEL FOR A COUNT 

OUTCOME USING A POISSON MODEL 
 

 
TITLE: this is an example of a linear growth 

model for a count outcome using a Poisson 

model  

DATA: FILE IS ex6.6.dat; 

VARIABLE: NAMES ARE u11-u14 x1 x2 x31-x34; 

 USEVARIABLES ARE u11-u14; 

 COUNT ARE u11-u14; 

MODEL: i s | u11@0 u12@1 u13@2 u14@3; 

OUTPUT: TECH1 TECH8; 

 

The difference between this example and Example 6.1 is that the 

outcome variable is a count variable instead of a continuous variable. 

The COUNT option is used to specify which dependent variables are 

treated as count variables in the model and its estimation and whether a 

Poisson or zero-inflated Poisson model will be estimated.  In the 

example above, u11, u12, u13, and u14 are count variables.  They 

represent the outcome variable measured at four equidistant occasions.   

 

In the parameterization of the growth model shown here, the intercepts 

of the outcome variables at the four time points are fixed at zero as the 

default.  The means and variances of the growth factors are estimated as 

the default, and the growth factor covariance is estimated as the default 

because the growth factors are independent (exogenous) variables.  The 

default estimator for this type of analysis is maximum likelihood with 

robust standard errors using a numerical integration algorithm.  Note that 

numerical integration becomes increasingly more computationally 

demanding as the number of factors and the sample size increase.  In this 

example, two dimensions of integration are used with a total of 225 

integration points.  The ESTIMATOR option of the ANALYSIS 

command can be used to select a different estimator.  The OUTPUT 

command is used to request additional output not included as the default.  

The TECH1 option is used to request the arrays containing parameter 
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specifications and starting values for all free parameters in the model.  

The TECH8 option is used to request that the optimization history in 

estimating the model be printed in the output.  TECH8 is printed to the 

screen during the computations as the default.  TECH8 screen printing is 

useful for determining how long the analysis takes.  An explanation of 

the other commands can be found in Example 6.1. 

 

EXAMPLE 6.7: LINEAR GROWTH MODEL FOR A COUNT 

OUTCOME USING A ZERO-INFLATED POISSON MODEL 
 

 
TITLE: this is an example of a linear growth 

model for a count outcome using a zero-

inflated Poisson model  

DATA: FILE IS ex6.7.dat; 

VARIABLE: NAMES ARE u11-u14 x1 x2 x31-x34; 

 USEVARIABLES ARE u11-u14; 

 COUNT ARE u11-u14 (i); 

ANALYSIS: INTEGRATION = 7; 

MODEL: i s | u11@0 u12@1 u13@2 u14@3; 

 ii si | u11#1@0 u12#1@1 u13#1@2 u14#1@3; 

 s@0 si@0; 

OUTPUT: TECH1 TECH8; 

 

The difference between this example and Example 6.1 is that the 

outcome variable is a count variable instead of a continuous variable. 

The COUNT option is used to specify which dependent variables are 

treated as count variables in the model and its estimation and whether a 

Poisson or zero-inflated Poisson model will be estimated.  In the 

example above, u11, u12, u13, and u14 are count variables.  They 

represent the outcome variable u1 measured at four equidistant 

occasions.  The i in parentheses following u11-u14 indicates that a zero-

inflated Poisson model will be estimated.   

 

With a zero-inflated Poisson model, two growth models are estimated.  

The first | statement describes the growth model for the count part of the 

outcome for individuals who are able to assume values of zero and 

above.  The second | statement describes the growth model for the 

inflation part of the outcome, the probability of being unable to assume 

any value except zero.  The binary latent inflation variable is referred to 

by adding to the name of the count variable the number sign (#) followed 

by the number 1.   
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In the parameterization of the growth model for the count part of the 

outcome, the intercepts of the outcome variables at the four time points 

are fixed at zero as the default.  The means and variances of the growth 

factors are estimated as the default, and the growth factor covariance is 

estimated as the default because the growth factors are independent 

(exogenous) variables.   

 

In the parameterization of the growth model for the inflation part of the 

outcome, the intercepts of the outcome variable at the four time points 

are held equal as the default.  The mean of the intercept growth factor is 

fixed at zero.  The mean of the slope growth factor and the variances of 

the intercept and slope growth factors are estimated as the default, and 

the growth factor covariance is estimated as the default because the 

growth factors are independent (exogenous) variables.   

 

In this example, the variance of the slope growth factor s for the count 

part and the slope growth factor si for the inflation part of the outcome 

are fixed at zero.  Because of this, the covariances among s, si, and the 

other growth factors are fixed at zero as the default.  The covariance 

between the i and ii intercept growth factors is estimated as the default.     

 

The default estimator for this type of analysis is maximum likelihood 

with robust standard errors using a numerical integration algorithm.  

Note that numerical integration becomes increasingly more 

computationally demanding as the number of factors and the sample size 

increase.  In this example, two dimensions of integration are used with a 

total of 49 integration points.  The INTEGRATION option of the 

ANALYSIS command is used to change the number of integration points 

per dimension from the default of 15 to 7.  The ESTIMATOR option of 

the ANALYSIS command can be used to select a different estimator.  

The OUTPUT command is used to request additional output not 

included as the default.  The TECH1 option is used to request the arrays 

containing parameter specifications and starting values for all free 

parameters in the model.  The TECH8 option is used to request that the 

optimization history in estimating the model be printed in the output.  

TECH8 is printed to the screen during the computations as the default.  

TECH8 screen printing is useful for determining how long the analysis 

takes.  An explanation of the other commands can be found in Example 

6.1. 
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EXAMPLE 6.8: GROWTH MODEL FOR A CONTINUOUS 

OUTCOME WITH ESTIMATED TIME SCORES 
  

 
TITLE: this is an example of a growth model for a 

continuous outcome with estimated time 

scores 

DATA: FILE IS ex6.8.dat; 

VARIABLE: NAMES ARE y11-y14 x1 x2 x31-x34; 

 USEVARIABLES ARE y11-y14; 

MODEL: i s | y11@0 y12@1 y13*2 y14*3; 

 

The difference between this example and Example 6.1 is that two of the 

time scores are estimated.  The | statement highlighted above shows how 

to specify free time scores by using the asterisk (*) to designate a free 

parameter.  Starting values are specified as the value following the 

asterisk (*).  For purposes of model identification, two time scores must 

be fixed for a growth model with two growth factors.  In the example 

above, the first two time scores are fixed at zero and one, respectively.  

The third and fourth time scores are free to be estimated at starting 

values of 2 and 3, respectively.  The default estimator for this type of 

analysis is maximum likelihood.  The ESTIMATOR option of the 

ANALYSIS command can be used to select a different estimator.  An 

explanation of the other commands can be found in Example 6.1. 

 

EXAMPLE 6.9: QUADRATIC GROWTH MODEL FOR A 

CONTINUOUS OUTCOME 
 

 
TITLE: this is an example of a quadratic growth 

model for a continuous outcome 

DATA: FILE IS ex6.9.dat; 

VARIABLE: NAMES ARE y11-y14 x1 x2 x31-x34; 

 USEVARIABLES ARE y11-y14; 

MODEL: i s q | y11@0 y12@1 y13@2 y14@3; 
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The difference between this example and Example 6.1 is that the 

quadratic growth model shown in the picture above is estimated.  A 

quadratic growth model requires three random effects: an intercept 

factor (i), a linear slope factor (s), and a quadratic slope factor (q).  The | 

symbol is used to name and define the intercept and slope factors in the 

growth model.  The names i, s, and q on the left-hand side of the | 

symbol are the names of the intercept, linear slope, and quadratic slope 

factors, respectively.  In the example above, the linear slope factor has 

equidistant time scores of 0, 1, 2, and 3.  The time scores for the 

quadratic slope factor are the squared values of the linear time scores.  

These time scores are automatically computed by the program. 

 

In the parameterization of the growth model shown here, the intercepts 

of the outcome variable at the four time points are fixed at zero as the 

default.  The means and variances of the three growth factors are 

estimated as the default, and the three growth factors are correlated as 

the default because they are independent (exogenous) variables.  The 

default estimator for this type of analysis is maximum likelihood.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 

a different estimator.  An explanation of the other commands can be 

found in Example 6.1. 
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EXAMPLE 6.10: LINEAR GROWTH MODEL FOR A 

CONTINUOUS OUTCOME WITH TIME-INVARIANT AND 

TIME-VARYING COVARIATES 
 

 
TITLE: this is an example of a linear growth 

model for a continuous outcome with time-

invariant and time-varying covariates 

DATA: FILE IS ex6.10.dat; 

VARIABLE: NAMES ARE y11-y14 x1 x2 a31-a34; 

MODEL: i s | y11@0 y12@1 y13@2 y14@3; 

 i s ON x1 x2; 

 y11 ON a31; 

 y12 ON a32; 

 y13 ON a33; 

 y14 ON a34; 

 

 

 
 

 

The difference between this example and Example 6.1 is that time-

invariant and time-varying covariates as shown in the picture above are 

included in the model.   
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The first ON statement describes the linear regressions of the two 

growth factors on the time-invariant covariates x1 and x2.  The next four 

ON statements describe the linear regressions of the outcome variable on 

the time-varying covariates a31, a32, a33, and a34 at each of the four 

time points.  The default estimator for this type of analysis is maximum 

likelihood.  The ESTIMATOR option of the ANALYSIS command can 

be used to select a different estimator.  An explanation of the other 

commands can be found in Example 6.1. 

 

EXAMPLE 6.11: PIECEWISE GROWTH MODEL FOR A 

CONTINUOUS OUTCOME 
 

 
TITLE: this is an example of a piecewise growth 

model for a continuous outcome 

DATA: FILE IS ex6.11.dat; 

VARIABLE: NAMES ARE y1-y5;  

MODEL: i s1 | y1@0 y2@1 y3@2 y4@2 y5@2; 

 i s2 | y1@0 y2@0 y3@0 y4@1 y5@2; 

 

 
 

 

In this example, the piecewise growth model shown in the picture above 

is estimated.  In a piecewise growth model, different phases of 

development are captured by more than one slope growth factor.  The 

first | statement specifies a linear growth model for the first phase of 

development which includes the first three time points.  The second | 

statement specifies a linear growth model for the second phase of 

development which includes the last three time points.  Note that there is 
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one intercept growth factor i.  It must be named in the specification of 

both growth models when using the | symbol.     

 

In the parameterization of the growth models shown here, the intercepts 

of the outcome variable at the five time points are fixed at zero as the 

default.  The means and variances of the three growth factors are 

estimated as the default, and the three growth factors are correlated as 

the default because they are independent (exogenous) variables.  The 

default estimator for this type of analysis is maximum likelihood.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 

a different estimator.  An explanation of the other commands can be 

found in Example 6.1. 

 

EXAMPLE 6.12: GROWTH MODEL WITH INDIVIDUALLY-

VARYING TIMES OF OBSERVATION AND A RANDOM 

SLOPE FOR TIME-VARYING COVARIATES FOR A 

CONTINUOUS OUTCOME 
 

 
TITLE: this is an example of a growth model with 

individually-varying times of observation 

and a random slope for time-varying 

covariates for a continuous outcome 

DATA: FILE IS ex6.12.dat; 

VARIABLE: NAMES ARE y1-y4 x a11-a14 a21-a24; 

 TSCORES = a11-a14; 

ANALYSIS: TYPE = RANDOM; 

MODEL: i s | y1-y4 AT a11-a14; 

 st | y1 ON a21; 

 st | y2 ON a22; 

 st | y3 ON a23; 

 st | y4 ON a24; 

 i s st ON x; 
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In this example, the growth model with individually-varying times of 

observation, a time-invariant covariate, and time-varying covariates with 

random slopes shown in the picture above is estimated. The st shown in 

a circle represents the random slope.  The broken arrows from st to the 

arrows from a21 to y1, a22 to y2, a23 to y3, and a24 to y4 indicate that 

the slopes in these regressions are random. 

 

The TSCORES option is used to identify the variables in the data set that 

contain information about individually-varying times of observation for 

the outcomes.  The TYPE option is used to describe the type of analysis 

that is to be performed.  By selecting RANDOM, a growth model with 

random slopes will be estimated.  

 

The | symbol is used in conjunction with TYPE=RANDOM to name and 

define the random effect variables in the model.  The names on the left-

hand side of the | symbol name the random effect variables.  In the first | 

statement, the AT option is used on the right-hand side of the | symbol to 

define a growth model with individually-varying times of observation for 
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the outcome variable.  Two growth factors are used in the model, a 

random intercept, i, and a random slope, s.   

 

In the parameterization of the growth model shown here, the intercepts 

of the outcome variables are fixed at zero as the default.  The residual 

variances of the outcome variables are free to be estimated as the 

default.  The residual covariances of the outcome variables are fixed at 

zero as the default.  The means, variances, and covariances of the 

intercept and slope growth factors are free as the default.   

 

The second, third, fourth, and fifth | statements use the ON option to 

name and define the random slope variables in the model.  The name on 

the left-hand side of the | symbol names the random slope variable.  The 

statement on the right-hand side of the | symbol defines the random slope 

variable.  In the second | statement, the random slope st is defined by the 

linear regression of the dependent variable y1 on the time-varying 

covariate a21.  In the third | statement, the random slope st is defined by 

the linear regression of the dependent variable y2 on the time-varying 

covariate a22.  In the fourth | statement, the random slope st is defined 

by the linear regression of the dependent variable y3 on the time-varying 

covariate a23.  In the fifth | statement, the random slope st is defined by 

the linear regression of the dependent variable y4 on the time-varying 

covariate a24.  Random slopes with the same name are treated as one 

variable during model estimation.  The ON statement describes the linear 

regressions of the intercept growth factor i, the slope growth factor s, 

and the random slope st on the covariate x.  The intercepts and residual 

variances of, i, s, and st, are free as the default.  The residual covariance 

between i and s is estimated as the default.  The residual covariances 

between st and i and s are fixed at zero as the default.  The default 

estimator for this type of analysis is maximum likelihood with robust 

standard errors.  The estimator option of the ANALYSIS command can 

be used to select a different estimator.  An explanation of the other 

commands can be found in Example 6.1. 
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EXAMPLE 6.13: GROWTH MODEL FOR TWO PARALLEL 

PROCESSES FOR CONTINUOUS OUTCOMES WITH 

REGRESSIONS AMONG THE RANDOM EFFECTS 
 

 
TITLE:  this is an example of a growth model for 

two parallel processes for continuous  

 outcomes with regressions among the random 

effects 

DATA: FILE IS ex6.13.dat; 

VARIABLE: NAMES ARE y11 y12 y13 y14 y21 y22 y23 y24; 

MODEL: i1 s1 | y11@0 y12@1 y13@2 y14@3; 

 i2 s2 | y21@0 y22@1 y23@2 y24@3; 

 s1 ON i2; 

 s2 ON i1; 
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In this example, the model for two parallel processes shown in the 

picture above is estimated.  Regressions among the growth factors are 

included in the model.   

 

The | statements are used to name and define the intercept and slope 

growth factors for the two linear growth models.  The names i1 and s1 

on the left-hand side of the first | statement are the names of the intercept 

and slope growth factors for the first linear growth model.  The names i2 

and s2 on the left-hand side of the second | statement are the names of 

the intercept and slope growth factors for the second linear growth 

model.   The values on the right-hand side of the two | statements are the 

time scores for the two slope growth factors.  For both growth models, 

the time scores of the slope growth factors are fixed at 0, 1, 2, and 3 to 

define a linear growth model with equidistant time points.  The zero time 

score for the slope growth factor at time point one defines the intercept 

factors as initial status factors.  The coefficients of the intercept growth 

factors are fixed at one as part of the growth model parameterization.  

The residual variances of the outcome variables are estimated and 

allowed to be different across time, and the residuals are not correlated 

as the default.  

 

In the parameterization of the growth model shown here, the intercepts 

of the outcome variables at the four time points are fixed at zero as the 

default.  The means and variances of the intercept growth factors are 

estimated as the default, and the intercept growth factor covariance is 

estimated as the default because the intercept growth factors are 

independent (exogenous) variables. The intercepts and residual 

variances of the slope growth factors are estimated as the default, and 

the slope growth factors are correlated as the default because residuals 

are correlated for latent variables that do not influence any other variable 

in the model except their own indicators.   

 

The two ON statements describe the regressions of the slope growth 

factor for each process on the intercept growth factor of the other 

process.  The default estimator for this type of analysis is maximum 

likelihood.  The ESTIMATOR option of the ANALYSIS command can 

be used to select a different estimator.  An explanation of the other 

commands can be found in Example 6.1. 
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EXAMPLE 6.14: MULTIPLE INDICATOR LINEAR GROWTH 

MODEL FOR CONTINUOUS OUTCOMES 
 

 
TITLE: this is an example of a multiple indicator 

linear growth model for continuous 

outcomes 

DATA: FILE IS ex6.14.dat; 

VARIABLE: NAMES ARE y11 y21 y31 y12 y22 y32 y13  

 y23 y33; 

MODEL: f1 BY y11  

                 y21-y31 (1-2); 

 f2 BY  y12  

   y22-y32 (1-2); 

 f3 BY  y13  

   y23-y33 (1-2); 

 [y11 y12 y13] (3); 

 [y21 y22 y23] (4); 

 [y31 y32 y33] (5); 

 i s | f1@0 f2@1 f3@2;          

 

 

 
 

In this example, the multiple indicator linear growth model for 

continuous outcomes shown in the picture above is estimated.  The first 

BY statement specifies that f1 is measured by y11, y21, and y31.  The 

second BY statement specifies that f2 is measured by y12, y22, and y32.  

The third BY statement specifies that f3 is measured by y13, y23, and 

y33.  The metric of the three factors is set automatically by the program 
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by fixing the first factor loading in each BY statement to one.  This 

option can be overridden.  The residual variances of the factor indicators 

are estimated and the residuals are not correlated as the default.  

 

A multiple indicator growth model requires measurement invariance of 

the three factors across time.  Measurement invariance is specified by 

holding the intercepts and factor loadings of the factor indicators equal 

over time.  The (1-2) following the factor loadings in the three BY 

statements uses the list function to assign equality labels to these 

parameters. The label 1 is assigned to the factor loadings of y21, y22, 

and y23 which holds these factor loadings equal across time.  The label 2 

is assigned to the factor loadings of y31, y32, and y33 which holds these 

factor loadings equal across time.  The factor loadings of y11, y21, and 

y31 are fixed at one as described above.   The bracket statements refer to 

the intercepts.  The (3) holds the intercepts of y11, y12, and y13 equal.  

The (4) holds the intercepts of y21, y22, and y23 equal.  The (5) holds 

the intercepts of y31, y32, and y33 equal.  

 

The | statement is used to name and define the intercept and slope factors 

in the growth model.  The names i and s on the left-hand side of the | are 

the names of the intercept and slope growth factors, respectively.  The 

values on the right-hand side of the | are the time scores for the slope 

growth factor.  The time scores of the slope growth factor are fixed at 0, 

1, and 2 to define a linear growth model with equidistant time points.  

The zero time score for the slope growth factor at time point one defines 

the intercept growth factor as an initial status factor.  The coefficients of 

the intercept growth factor are fixed at one as part of the growth model 

parameterization.  The residual variances of the factors f1, f2, and f3 are 

estimated and allowed to be different across time, and the residuals are 

not correlated as the default.  

 

In the parameterization of the growth model shown here, the intercepts 

of the factors f1, f2, and f3 are fixed at zero as the default.  The mean of 

the intercept growth factor is fixed at zero and the mean of the slope 

growth factor is estimated as the default.  The variances of the growth 

factors are estimated as the default, and the growth factors are correlated 

as the default because they are independent (exogenous) variables.  The 

default estimator for this type of analysis is maximum likelihood.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 

a different estimator.  An explanation of the other commands can be 

found in Example 6.1. 
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EXAMPLE 6.15: MULTIPLE INDICATOR LINEAR GROWTH 

MODEL FOR CATEGORICAL OUTCOMES 
 

 
TITLE: this is an example of a multiple indicator 

linear growth model for categorical 

outcomes 

DATA: FILE IS ex6.15.dat; 

VARIABLE: NAMES ARE u11 u21 u31 u12 u22 u32  

 u13 u23 u33; 

 CATEGORICAL ARE u11 u21 u31 u12 u22 u32 

u13 u23 u33; 

 

MODEL: f1 BY u11  

                 u21-u31 (1-2); 

 f2 BY  u12  

   u22-u32 (1-2); 

 f3 BY u13  

   u23-u33 (1-2); 

 [u11$1 u12$1 u13$1] (3); 

 [u21$1 u22$1 u23$1] (4); 

 [u31$1 u32$1 u33$1] (5); 

 {u11-u31@1 u12-u33}; 

 i s | f1@0 f2@1 f3@2;          

 

The difference between this example and Example 6.14 is that the factor 

indicators are binary or ordered categorical (ordinal) variables instead of 

continuous variables.  The CATEGORICAL option is used to specify 

which dependent variables are treated as binary or ordered categorical 

(ordinal) variables in the model and its estimation.  In the example 

above, all of the factor indicators are categorical variables.  The program 

determines the number of categories for each indicator. 

 

For binary and ordered categorical factor indicators, thresholds are 

modeled rather than intercepts or means.  The number of thresholds for a 

categorical variable is equal to the number of categories minus one.  In 

the example above, the categorical variables are binary so they have one 

threshold.  Thresholds are referred to by adding to the variable name a $ 

followed by a number.  The thresholds of the factor indicators are 

referred to as u11$1, u12$1, u13$1, u21$1, u22$1, u23$1, u31$1, u32$1, 

and u33$1.  Thresholds are referred to in square brackets.  

 

The growth model requires measurement invariance of the three factors 

across time.  Measurement invariance is specified by holding the 
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thresholds and factor loadings of the factor indicators equal over time. 

The (3) after the first bracket statement holds the thresholds of u11, u12, 

and u13 equal.  The (4) after the second bracket statement holds the 

thresholds of u21, u22, and u23 equal.  The (5) after the third bracket 

statement holds the thresholds of u31, u32, and u33 equal.  A list of 

observed variables in curly brackets refers to scale factors.  These are 

part of the model with weighted least squares estimation and the Delta 

parameterization.  The scale factors for the latent response variables of 

the categorical outcomes for the first factor are fixed at one, while the 

scale factors for the latent response variables for the other factors are 

free to be estimated.  An explanation of the other commands can be 

found in Examples 6.1 and 6.14. 

 

EXAMPLE 6.16: TWO-PART (SEMICONTINUOUS) GROWTH 

MODEL FOR A CONTINUOUS OUTCOME 
 

 
TITLE: this is an example of a two-part 

(semicontinuous) growth model for a 

continuous outcome 

DATA: FILE = ex6.16.dat; 

DATA TWOPART: 

 NAMES = y1-y4; 

 BINARY = bin1-bin4; 

 CONTINUOUS = cont1-cont4; 

VARIABLE: NAMES = x y1-y4; 

 USEVARIABLES = bin1-bin4 cont1-cont4; 

 CATEGORICAL = bin1-bin4; 

 MISSING = ALL(999); 

ANALYSIS: ESTIMATOR = MLR; 

MODEL: iu su | bin1@0 bin2@1 bin3@2 bin4@3; 

 iy sy | cont1@0 cont2@1 cont3@2 cont4@3; 

 su@0; iu WITH sy@0; 

OUTPUT: TECH1 TECH8; 
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In this example, the two-part (semicontinuous) growth model (Olsen & 

Schafer, 2001) for a continuous outcome shown in the picture above is 

estimated.  This is one type of model that can be considered when a 

variable has a floor effect, for example, a preponderance of zeroes.  The 

analysis requires that one binary variable and one continuous variable be 

created from the outcome being studied.   

 

The DATA TWOPART command is used to create a binary and a 

continuous variable from a variable with a floor effect.  In this example, 

a set of binary and continuous variables are created using the default 

value of zero as the cutpoint.  The CUTPOINT option of the DATA 

TWOPART command can be used to select another value.  The two 

variables are created using the following rules: 

 

1. If the value of the original variable is missing, both the new binary 

and the new continuous variable values are missing. 
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2. If the value of the original variable is greater than the cutpoint value, 

the new binary variable value is one and the new continuous variable 

value is the log of the original variable as the default. 

3. If the value of the original variable is less than or equal to the 

cutpoint value, the new binary variable value is zero and the new 

continuous variable value is missing.   

 

The TRANSFORM option of the DATA TWOPART command can be 

used to select an alternative to the default log transformation of the new 

continuous variables.  One choice is no transformation.   

 

The NAMES option of the DATA TWOPART command is used to 

identify the variables from the NAMES option of the VARIABLE 

command that are used to create a set of binary and continuous variables.  

Variables y1, y2, y3, and y4 are used.  The BINARY option is used to 

assign names to the new set of binary variables.  The names for the new 

binary variables are bin1, bin2, bin3, and bin4.  The CONTINUOUS 

option is used to assign names to the new set of continuous variables.  

The names for the new continuous variables are cont1, cont2, cont3, and 

cont4.  The new variables must be placed on the USEVARIABLES 

statement of the VARIABLE command if they are used in the analysis. 

 

The CATEGORICAL option is used to specify which dependent 

variables are treated as binary or ordered categorical (ordinal) variables 

in the model and its estimation.  In the example above, bin1, bin2, bin3, 

and bin4 are binary variables.  The MISSING option is used to identify 

the values or symbols in the analysis data set that are to be treated as 

missing or invalid.  In this example, the number 999 is the missing value 

flag.  The default is to estimate the model under missing data theory 

using all available data.  By specifying ESTIMATOR=MLR, a 

maximum likelihood estimator with robust standard errors using a 

numerical integration algorithm will be used.  Note that numerical 

integration becomes increasingly more computationally demanding as 

the number of growth factors and the sample size increase.  In this 

example, one dimension of integration is used with a total of 15 

integration points.  The ESTIMATOR option of the ANALYSIS 

command can be used to select a different estimator.     

 

The first | statement specifies a linear growth model for the binary 

outcome.  The second | statement specifies a linear growth model for the 

continuous outcome.  In the parameterization of the growth model for 
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the binary outcome, the thresholds of the outcome variable at the four 

time points are held equal as the default.  The mean of the intercept 

growth factor is fixed at zero.  The mean of the slope growth factor and 

the variances of the intercept and slope growth factors are estimated as 

the default.  In this example, the variance of the slope growth factor is 

fized at zero for simplicity.  In the parameterization of the growth model 

for the continuous outcome, the intercepts of the outcome variables at 

the four time points are fixed at zero as the default.  The means and 

variances of the growth factors are estimated as the default, and the 

growth factors are correlated as the default because they are independent 

(exogenous) variables.   

 

It is often the case that not all growth factor covariances are significant 

in two-part growth modeling.  Fixing these at zero stabilizes the 

estimation.  This is why the growth factor covariance between iu and sy 

is fixed at zero.  The OUTPUT command is used to request additional 

output not included as the default.  The TECH1 option is used to request 

the arrays containing parameter specifications and starting values for all 

free parameters in the model.  The TECH8 option is used to request that 

the optimization history in estimating the model be printed in the output.  

TECH8 is printed to the screen during the computations as the default.  

TECH8 screen printing is useful for determining how long the analysis 

takes.  An explanation of the other commands can be found in Example 

6.1. 
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EXAMPLE 6.17: LINEAR GROWTH MODEL FOR A 

CONTINUOUS OUTCOME WITH FIRST-ORDER AUTO 

CORRELATED RESIDUALS USING NON-LINEAR 

CONSTRAINTS 
 

 
TITLE: this is an example of a linear growth 

model for a continuous outcome with first-

order auto correlated residuals using non-

linear constraints 

DATA: FILE = ex6.17.dat; 

VARIABLE: NAMES = y1-y4; 

MODEL: i s | y1@0 y2@1 y3@2 y4@3; 

 y1-y4 (resvar); 

 y1-y3 PWITH y2-y4 (p1); 

 y1-y2 PWITH y3-y4 (p2); 

 y1 WITH y4 (p3); 

MODEL CONSTRAINT: 

 NEW (corr); 

 p1 = resvar*corr; 

 p2 = resvar*corr**2; 

 p3 = resvar*corr**3; 

 

The difference between this example and Example 6.1 is that first-order 

auto correlated residuals have been added to the model.  In a model with 

first-order correlated residuals, one residual variance parameter and one 

residual auto-correlation parameter are estimated.   

 

In the MODEL command, the label resvar following the residual 

variances serves two purposes.  It specifies that the residual variances 

are held equal to each other and gives that residual variance parameter a 

label to be used in the MODEL CONSTRAINT command.  The labels 

p1, p2, and p3 specify that the residual covariances at adjacent time 

points, at adjacent time points once removed, and at adjacent time points 

twice removed are held equal.  The MODEL CONSTRAINT command 

is used to define linear and non-linear constraints on the parameters in 

the model.  In the MODEL CONSTRAINT command, the NEW option 

is used to introduce a new parameter that is not part of the MODEL 

command.  This residual auto-correlation parameter is referred to as 

corr.  The p1 parameter constraint specifies that the residual covariances 

at adjacent time points are equal to the residual variance parameter 

multiplied by the auto-correlation parameter.  The p2 parameter 



Examples: Growth, Survival, And N=1 Time Series Analysis 

 

                                                                                                              145 

constraint specifies that the residual covariances at adjacent time points 

once removed are equal to the residual variance parameter multiplied by 

the auto-correlation parameter to the power of two.  The p3 parameter 

constraint specifies that the residual covariance at adjacent time points 

twice removed is equal to the residual variance parameter multiplied by 

the auto-correlation parameter to the power of three.  An explanation of 

the other commands can be found in Example 6.1. 

 

EXAMPLE 6.18:  MULTIPLE GROUP MULTIPLE COHORT 

GROWTH MODEL  
 

 
TITLE: this is an example of a multiple group  

 multiple cohort growth model 

DATA:  FILE = ex6.18.dat; 

VARIABLE: NAMES = y1-y4 x a21-a24 g; 

 GROUPING = g (1 = 1990 2 = 1989 3 = 1988); 

MODEL: i s |y1@0 y2@.2 y3@.4 y4@.6; 

 [i] (1); [s] (2); 

 i (3); s (4); 

 i WITH s (5); 

 i ON x (6); 

 s ON x (7); 

 y1 ON a21; 

 y2 ON a22 (12); 

 y3 ON a23 (14); 

 y4 ON a24 (16); 

 y2-y4 (22-24);  

MODEL 1989:  

 i s |y1@.1 y2@.3 y3@.5 y4@.7; 

 y1 ON a21; 

 y2 ON a22; 

 y3 ON a23; 

 y4 ON a24; 

 y1-y4; 

MODEL 1988: 

 i s |y1@.2 y2@.4 y3@.6 y4@.8; 

 y1 ON a21 (12); 

 y2 ON a22 (14); 

 y3 ON a23 (16); 

 y4 ON a24; 

 y1-y3 (22-24); 

 y4; 

OUTPUT: TECH1 MODINDICES(3.84); 
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In this example, the multiple group multiple cohort growth model shown 

in the picture above is estimated.  Longitudinal research studies often 

collect data on several different groups of individuals defined by their 

birth year or cohort.  This allows the study of development over a wider 

age range than the length of the study and is referred to as an accelerated 

or sequential cohort design.  The interest in these studies is the 

development of an outcome over age not measurement occasion.  This 

can be handled by rearranging the data so that age is the time axis using 

the DATA COHORT command or using a multiple group approach as 

described in this example.  The advantage of the multiple group 

approach is that it can be used to test assumptions of invariance of 

growth parameters across cohorts. 

 

In the multiple group approach the variables in the data set represent the 

measurement occasions.  In this example, there are four measurement 

occasions: 2000, 2002, 2004, and 2006.  Therefore there are four 

variables to represent the outcome.  In this example, there are three 

cohorts with birth years 1988, 1989, and 1990.  It is the combination of 

the time of measurement and birth year that determines the ages 

represented in the data.  This is shown in the table below where rows 

represent cohort and columns represent measurement occasion.  The 
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entries in the table represent the ages.  In this example, ages 10 to 18 are 

represented. 

 

M.O./ 

Cohort 

2000 2002 2004 2006 

1988 12 14 16 18 

1989 11 13 15 17 

1990 10 12 14 16 

 

The model that is estimated uses the time axis of age as shown in the 

table below where rows represent cohort and columns represent age.  

The entries for the first three rows in the table are the years of the 

measurement occasions.  The entries for the last row are the time scores 

for a linear model. 

 

Age/ 

Cohort 
10 11 12 13 14 15 16 17 18 

1988   2000  2002  2004  2006 

1989  2000  2002  2004  2006  

1990 2000  2002  2004  2006   

Time 

Score 
0 .1 .2 .3 .4 .5 .6 .7 .8 

 

As shown in the table, three ages are represented by more than one 

cohort.  Age 12 is represented by cohorts 1988 and 1990 measured in 

2000 and 2002; age 14 is represented by cohorts 1988 and 1990 

measured in 2002 and 2004; and age 16 is represented by cohorts 1988 

and 1990 measured in 2004 and 2006.  This information is needed to 

constrain parameters to be equal in the multiple group model.   

 

The table also provides information about the time scores for each 

cohort.  The time scores are obtained as the difference in age between 

measurement occasions divided by ten.  The division is used to avoid 

large time scores which can lead to convergence problems.  Cohort 1990 

provides information for ages 10, 12, 14, and 16.  The time scores for 

cohort 2000 are 0, .2, .4, and .6.  Cohort 1989 provides information for 

ages 11, 13, 15, and 17.  The time scores for cohort 1989 are .1, .3, .5, 

and .7.  Cohort 1988 provides information for ages 12, 14, 16, and 18.  

The time scores for cohort 1988 are .2, .4, .6, and .8.   
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The GROUPING option is used to identify the variable in the data set 

that contains information on group membership when the data for all 

groups are stored in a single data set.  The information in parentheses 

after the grouping variable name assigns labels to the values of the 

grouping variable found in the data set.  In the example above, 

observations with g equal to 1 will be assigned the label 1990, 

individuals with g equal to 2 will be assigned the label 1989, and 

individuals with g equal to 3 will be assigned the label 1988.  These 

labels are used in conjunction with the MODEL command to specify 

model statements specific to each group. 

 

In multiple group analysis, two variations of the MODEL command are 

used.  They are MODEL and MODEL followed by a label.  MODEL 

describes the overall model to be estimated for each group.  MODEL 

followed by a label describes differences between the overall model and 

the model for the group designated by the label.  In the MODEL 

command, the | symbol is used to name and define the intercept and 

slope factors in a growth model.  The names i and s on the left-hand side 

of the | symbol are the names of the intercept and slope growth factors, 

respectively.  The statement on the right-hand side of the | symbol 

specifies the outcome and the time scores for the growth model.  The 

time scores for the slope growth factor are fixed at 0, .2, .4, and .6.  

These are the time scores for cohort 1990.  The zero time score for the 

slope growth factor at time point one defines the intercept growth factor 

as an initial status factor for age 10.  The coefficients of the intercept 

growth factor are fixed at one as part of the growth model 

parameterization.  The residual variances of the outcome variables are 

estimated and allowed to be different across age and the residuals are not 

correlated as the default.  The time scores for the other two cohorts are 

specified in the group-specific MODEL commands.  The group-specific 

MODEL command for cohort 1989 fixes the time scores at .1, .3, .5, and 

.7.  The group-specific MODEL command for cohort 1988 fixes the time 

scores at .2, .4, .6, and .8. 

 

The equalities specified by the numbers in parentheses represent the 

baseline assumption that the cohorts come from the same population.  

Equalities specified in the overall MODEL command constrain 

parameters to be equal across all groups.  All parameters related to the 

growth factors are constrained to be equal across all groups.  Other 

parameters are held equal when an age is represented by more than one 

cohort.  For example, the ON statement with the (12) equality in the 
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overall MODEL command describes the linear regression of y2 on the 

time-varying covariate a22 for cohort 1990 at age 12.  In the group-

specific MODEL command for cohort 1988, the ON statement with the 

(12) equality describes the linear regression of y1 on the time-varying 

covariate a21 for cohort 1988 at age 12.  Other combinations of cohort 

and age do not involve equality constraints.  Cohort 1990 is the only 

cohort that represents age 10; cohort 1989 is the only cohort that 

represents ages 11, 13, 15, 17; and cohort 1988 is the only cohort that 

represents age 18.  Statements in the group-specific MODEL commands 

relax equality constraints specified in the overall MODEL command.  

An explanation of the other commands can be found in Example 6.1. 

 

EXAMPLE 6.19: DISCRETE-TIME SURVIVAL ANALYSIS 
 

 
TITLE: this is an example of a discrete-time 

survival analysis 

DATA: FILE IS ex6.19.dat; 

VARIABLE: NAMES ARE u1-u4 x; 

 CATEGORICAL = u1-u4; 

 MISSING = ALL (999); 

ANALYSIS: ESTIMATOR = MLR; 

MODEL: f BY u1-u4@1; 

 f ON x; 

 f@0; 

 

 

 
 

 

In this example, the discrete-time survival analysis model shown in the 

picture above is estimated.  Each u variable represents whether or not a 

single non-repeatable event has occurred in a specific time period.  The 

value 1 means that the event has occurred, 0 means that the event has not 
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occurred, and a missing value flag means that the event has occurred in a 

preceding time period or that the individual has dropped out of the study 

(Muthén & Masyn, 2005).  The factor f is used to specify a proportional 

odds assumption for the hazards of the event.   

 

The MISSING option is used to identify the values or symbols in the 

analysis data set that are to be treated as missing or invalid.  In this 

example, the number 999 is the missing value flag.  The default is to 

estimate the model under missing data theory using all available data.  

The default estimator for this type of analysis is a robust weighted least 

squares estimator.  By specifying ESTIMATOR=MLR, maximum 

likelihood estimation with robust standard errors is used.  The BY 

statement specifies that f is measured by u1, u2, u3, and u4 where the 

factor loadings are fixed at one.  This represents a proportional odds 

assumption where the covariate x has the same influence on u1, u2, u3, 

and u4.  The ON statement describes the linear regression of f on the 

covariate x.  The residual variance of f is fixed at zero to correspond to a 

conventional discrete-time survival model.  An explanation of the other 

commands can be found in Example 6.1. 

 

EXAMPLE 6.20: CONTINUOUS-TIME SURVIVAL ANALYSIS 

USING THE COX REGRESSION MODEL 
 

 
TITLE: this is an example of a continuous-time      

  survival analysis using the Cox regression 

model 

DATA: FILE = ex6.20.dat; 

VARIABLE: NAMES = t x tc; 

 SURVIVAL = t; 

 TIMECENSORED = tc (0 = NOT 1 = RIGHT); 

MODEL: t ON x; 

 

 

 

 

 

In this example, the continuous-time survival analysis model shown in 

the picture above is estimated.  This is the Cox regression model (Singer 
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& Willett, 2003).  The profile likelihood method is used for model 

estimation (Asparouhov et al., 2006).  

 

The SURVIVAL option is used to identify the variables that contain 

information about time to event and to provide information about the 

number and lengths of the time intervals in the baseline hazard function 

to be used in the analysis.  The SURVIVAL option must be used in 

conjunction with the TIMECENSORED option.  In this example, t is the 

variable that contains time-to-event information.  Because nothing is 

specified in parentheses behind t, the default baseline hazard function is 

used.  The TIMECENSORED option is used to identify the variables 

that contain information about right censoring.  In this example, the 

variable is named tc.  The information in parentheses specifies that the 

value zero represents no censoring and the value one represents right 

censoring.  This is the default.  

 

In the MODEL command, the ON statement describes the loglinear 

regression of the time-to-event variable t on the covariate x.  The default 

estimator for this type of analysis is maximum likelihood with robust 

standard errors.  The estimator option of the ANALYSIS command can 

be used to select a different estimator.  An explanation of the other 

commands can be found in Example 6.1. 

 

EXAMPLE 6.21: CONTINUOUS-TIME SURVIVAL ANALYSIS 

USING A PARAMETRIC PROPORTIONAL HAZARDS MODEL 
 

 
TITLE: this is an example of a continuous-time  

 survival analysis using a parametric 

proportional hazards model 

DATA: FILE = ex6.21.dat; 

VARIABLE: NAMES = t x tc; 

 SURVIVAL = t(20*1); 

 TIMECENSORED = tc (0 = NOT 1 = RIGHT); 

ANALYSIS: BASEHAZARD = ON; 

MODEL: [t#1-t#21]; 

 t ON x; 

 

The difference between this example and Example 6.20 is that a 

parametric proportional hazards model is used instead of a Cox 

regression model.  In contrast to the Cox regression model, the 
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parametric model estimates parameters and their standard errors for the 

baseline hazard function (Asparouhov et al., 2006). 

 

The SURVIVAL option is used to identify the variables that contain 

information about time to event and to provide information about the 

number and lengths of the time intervals in the baseline hazard function 

to be used in the analysis.  The SURVIVAL option must be used in 

conjunction with the TIMECENSORED option.  In this example, t is the 

variable that contains time-to-event information.  The numbers in 

parentheses following the time-to-event variable specify that twenty time 

intervals of length one are used in the analysis for the baseline hazard 

function.  The TIMECENSORED option is used to identify the variables 

that contain information about right censoring.  In this example, this 

variable is named tc.  The information in parentheses specifies that the 

value zero represents no censoring and the value one represents right 

censoring.  This is the default.   

 

The BASEHAZARD option of the ANALYSIS command is used with 

continuous-time survival analysis to specify whether the baseline hazard 

parameters are treated as model parameters or as auxiliary parameters.  

The ON setting specifies that the parameters are treated as model 

parameters.  There are as many baseline hazard parameters as there are 

time intervals plus one.  These parameters can be referred to in the 

MODEL command by adding to the name of the time-to-event variable 

the number sign (#) followed by a number.  In the MODEL command, 

the bracket statement specifies that the 21 baseline hazard parameters are 

part of the model. 

 

The default estimator for this type of analysis is maximum likelihood 

with robust standard errors.  The estimator option of the ANALYSIS 

command can be used to select a different estimator.  An explanation of 

the other commands can be found in Examples 6.1 and 6.20. 
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EXAMPLE 6.22: CONTINUOUS-TIME SURVIVAL ANALYSIS 

USING A PARAMETRIC PROPORTIONAL HAZARDS MODEL 

WITH A FACTOR INFLUENCING SURVIVAL 
 

 
TITLE: this is an example of a continuous-time  

 survival analysis using a parametric 

proportional hazards model with a factor 

influencing survival 

DATA: FILE = ex6.22.dat; 

VARIABLE: NAMES = t u1-u4 x tc; 

 SURVIVAL = t (20*1); 

 TIMECENSORED = tc; 

 CATEGORICAL = u1-u4; 

ANALYSIS: ALGORITHM = INTEGRATION;  

 BASEHAZARD = ON; 

MODEL: f BY u1-u4; 

 [t#1-t#21]; 

 t ON x f; 

 f ON x; 

OUTPUT: TECH1 TECH8; 

 

 

 
 

 

In this example, the continuous-time survival analysis model shown in 

the picture above is estimated.  The model is similar to Larsen (2005) 
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although in this example the analysis uses a parametric baseline hazard 

function (Asparouhov et al., 2006). 

   

By specifying ALGORITHM=INTEGRATION, a maximum likelihood 

estimator with robust standard errors using a numerical integration 

algorithm will be used.  Note that numerical integration becomes 

increasingly more computationally demanding as the number of factors 

and the sample size increase.  In this example, one dimension of 

integration is used with a total of 15 integration points.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 

a different estimator.   

 

In the MODEL command the BY statement specifies that f is measured 

by the binary indicators u1, u2, u3, and u4.  The bracket statement 

specifies that the 21 baseline hazard parameters are part of the model.  

The first ON statement describes the loglinear regression of the time-to-

event variable t on the covariate x and the factor f.  The second ON 

statement describes the linear regression of f on the covariate x.  An 

explanation of the other commands can be found in Examples 6.1 and 

6.21. 

 

EXAMPLE 6.23: N=1 TIME SERIES ANALYSIS WITH A 

UNIVARIATE FIRST-ORDER AUTOREGRESSIVE AR(1) 

MODEL FOR A CONTINUOUS DEPENDENT VARIABLE 
 

 
TITLE: this is an example of an N=1 time series 

analysis with a univariate first-order 

autoregressive AR(1) model for a 

continuous dependent variable 

DATA: FILE = ex6.23.dat; 

VARIABLE: NAMES = y; 

 LAGGED = y(1); 

ANALYSIS: ESTIMATOR = BAYES;   

 PROCESSORS = 2; 

 BITERATIONS = (2000);  

MODEL: y ON y&1; 

OUTPUT: TECH1 TECH8; 

PLOT: TYPE = PLOT3; 
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In this example, the N=1 time series analysis with a univariate first-order 

autoregressive AR(1) model for a continuous dependent variable shown 

in the picture above is estimated (Shumway & Stoffer, 2011).  The 

subscript t refers to a time point and the subscript t-1 refers to the 

previous time point.  The dots indicate that the process includes both 

previous and future time points using the same model. 

 

In the VARIABLE command, the NAMES option is used to assign 

names to the variables in the data set.  The data set in this example 

contains one variable y.  The variable y is measured over multiple time 

points.  The number of times it is measured is equal to the number of 

records in the data set.  The records must be ordered by time.  The 

LAGGED option is used to specify the maximum lag to use for an 

observed variable during model estimation.  The variable y has lag 1.  

The lagged variable is referred to by adding to the name of the variable 

an ampersand (&) and the number of the lag. 

 

In the ANALYSIS command, by specifying ESTIMATOR=BAYES, a 

Bayesian analysis will be carried out.  In Bayesian estimation, the 

default is to use two independent Markov chain Monte Carlo (MCMC) 

chains.  If multiple processors are available, using PROCESSORS=2 

will speed up computations.  The BITERATIONS option is used to 

specify the maximum and minimum number of iterations for each 

Markov chain Monte Carlo (MCMC) chain when the potential scale 

reduction (PSR) convergence criterion (Gelman & Rubin, 1992) is used.  

Using a number in parentheses, the BITERATIONS option specifies that 

a minimum of 2,000 and a maximum of the default of 50,000 iterations 

will be used. 

 

In the MODEL command, the ON statement describes the linear 

regression over multiple time points of the dependent variable y on the 

dependent variable y&1 which is y at the previous time point. An 

intercept, regression coefficient, and residual variance are estimated. 
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An N=1 time series analysis with a univariate second-order 

autoregressive AR(2) model can also be estimated.  For this analysis, the 

LAGGED option is specified as LAGGED = y (2); and the MODEL 

command is specified as follows: 

  
MODEL: y ON y&1 y&2; 

 

In the MODEL command, the ON statement describes the linear 

regression over multiple time points of the dependent variable y on the 

dependent variable y&1 which is y at the previous time point and the 

dependent variable y&2 which is y at two time points prior.  An 

intercept, two regression coefficients, and a residual variance are 

estimated.  A model where only y at lag 2 is used is specified as follows: 

 
MODEL: y ON y&1@0 y&2; 

 

where the coefficient for y at lag 1 is fixed at zero. An intercept, 

regression coefficient, and residual variance are estimated. 

  

The OUTPUT command is used to request additional output not 

included as the default.  The TECH1 option is used to request the arrays 

containing parameter specifications and starting values for all free 

parameters in the model.  The TECH8 option is used to request that the 

optimization history in estimating the model be printed in the output.  

TECH8 is printed to the screen during the computations as the default.  

TECH8 screen printing is useful for determining how long the analysis 

takes and to check convergence using the PSR convergence criterion.  

The PLOT command is used to request graphical displays of observed 

data and analysis results.  These graphical displays can be viewed after 

the analysis is completed using a post-processing graphics module.  The 

trace plot and autocorrelation plot can be used to monitor the MCMC 

iterations in terms of convergence and quality of the posterior 

distribution for each parameter. The posterior distribution plot shows the 

complete posterior distribution of the parameter estimate.  Also available 

are time series plots of observed values, autocorrelations at different 

lags, and partial autocorrelations at different lags.  An explanation of the 

other commands can be found in Example 6.1. 
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EXAMPLE 6.24: N=1 TIME SERIES ANALYSIS WITH A 

UNIVARIATE FIRST-ORDER AUTOREGRESSIVE AR(1) 

MODEL FOR A CONTINUOUS DEPENDENT VARIABLE 

WITH A COVARIATE 
 

 
TITLE: this is an example of an N=1 time series 

analysis with a univariate first-order 

autoregressive AR(1) model for a 

continuous dependent variable with a 

covariate 

DATA: FILE = ex6.24.dat; 

VARIABLE: NAMES ARE y x; 

 LAGGED = y(1) x(1); 

ANALYSIS: ESTIMATOR = BAYES;   

 PROCESSORS = 2; 

 BITERATIONS = (1000);  

MODEL: y ON y&1 x x&1; 

OUTPUT: TECH1 TECH8; 

PLOT: TYPE = PLOT3; 

 

 

 
 

 

In this example, the N=1 time series analysis with a univariate first-order 

autoregressive AR(1) model for a continuous dependent variable with a 

covariate shown in the picture above is estimated.  The subscript t refers 

to a time point and the subscript t-1 refers to the previous time point.  

The dots indicate that the process includes both previous and future time 

points using the same model. 

 

In the MODEL command, the ON statement describes the linear 

regression over multiple time points of the dependent variable y on the 
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dependent variable y&1 which is y at the previous time point, a covariate 

x, and a covariate x&1 which is x at the previous time point.  An 

intercept, three regression coefficients, and a residual variance are 

estimated.  An explanation of the other commands can be found in 

Examples 6.1 and 6.23. 

 

EXAMPLE 6.25: N=1 TIME SERIES ANALYSIS WITH A 

BIVARIATE CROSS-LAGGED MODEL FOR CONTINUOUS 

DEPENDENT VARIABLES 
 

 
TITLE: this is an example of an N=1 time series 

analysis with a bivariate cross-lagged 

model for continuous dependent variables 

DATA: FILE = ex6.25.dat; 

VARIABLE: NAMES = y1 y2; 

 LAGGED = y1(1) y2(1); 

ANALYSIS: ESTIMATOR = BAYES;   

 PROCESSORS = 2; 

 BITERATIONS = (500);  

MODEL: y1 ON y1&1 y2&1; 

 y2 ON y2&1 y1&1;   

OUTPUT: TECH1 TECH8; 

PLOT: TYPE = PLOT3; 

 

 

 
 

 

In this example, the N=1 time series analysis with a bivariate cross-

lagged model for continuous dependent variables shown in the picture 

above is estimated.  This model is also referred to as a first-order vector 

autoregressive VAR(1) model, see e.g., Shumway and Stoffer (2011).  

The subscript t refers to a time point and the subscript t-1 refers to the 
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previous time point.  The dots indicate that the process includes both 

previous and future time points using the same model. 

 

In the MODEL command, the first ON statement describes the linear 

regression over multiple time points of the dependent variable y1 on the 

dependent variable y1&1 which is y1 at the previous time point, and the 

dependent variable y2&1 which is y2 at the previous time point.  The 

second ON statement describes the linear regression over multiple time 

points of the dependent variable y2 on the dependent variable y2&1 

which is y2 at the previous time point, and the dependent variable y1&1 

which is y1 at the previous time point.  Two intercepts, four regression 

coefficients, two residual variances, and one residual covariance are 

estimated.  An explanation of the other commands can be found in 

Examples 6.1 and 6.23. 

 

EXAMPLE 6.26: N=1 TIME SERIES ANALYSIS WITH A 

FIRST-ORDER AUTOREGRESSIVE AR(1) CONFIRMATORY 

FACTOR ANALYSIS (CFA) MODEL WITH CONTINUOUS 

FACTOR INDICATORS 
 

 
TITLE: this is an example of an N=1 time series 

analysis with a first-order autoregressive 

AR(1) confirmatory factor analysis (CFA) 

model with continuous factor indicators 

DATA: FILE = ex6.26.dat; 

VARIABLE: NAMES = y1-y4; 

ANALYSIS: ESTIMATOR = BAYES; 

 PROCESSORS = 2; 

 BITERATIONS = (2000);  

MODEL: f BY y1-y4 (&1);  

 f ON f&1; 

OUTPUT: TECH1 TECH8; 

PLOT: TYPE = PLOT3; 
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In this example, the N=1 time series analysis with a first-order 

autoregressive AR(1) confirmatory factor analysis (CFA) model with 

continuous factor indicators shown in the picture above is estimated.  

This model is also referred to as a direct autoregressive factor score 

(DAFS) model.  For a discussion of N=1 time series factor analysis, also 

referred to as dynamic factor analysis, see e.g., Molenaar (1985); Zhang, 

Hamaker, and Nesselroade (2008); and Asparouhov, Hamaker, and 

Muthén (2017).  The subscript t refers to a time point and the subscript t-

1 refers to the previous time point.  The dots indicate that the process 

includes both previous and future time points using the same model. 

 

In the MODEL command, the BY statement specifies that f is measured 

by y1, y2, y3, and y4.  The metric of the factor is set automatically by 

the program by fixing the first factor loading to one.  This option can be 

overridden.  An ampersand (&) followed by the number 1 is placed in 

parentheses following the BY statement to indicate that the factor f at 

lag 1 can be used in the analysis.  The factor f at lag 1 is referred to as 

f&1.  The intercepts and residual variances of the factor indicators are 

estimated and the residuals are not correlated as the default.  The ON 

statement describes the linear regression over multiple time points of the 

factor f on the factor f&1 which is f at the previous time point.  A 

regression coefficient and residual variance of the factor are estimated.  

The intercept of the factor is fixed at zero as the default.   

 

A white noise factor score (WNFS) model (Zhang & Nesselroade,  2007) 

can be estimated using the MODEL command below where instead of 

regressing the factor f on f&1, the factor indicators y1, y2, y3, and y4 are 

regressed on f&1. 
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MODEL: f BY y1-y4 (&1);  

 y1-y4 ON f&1; 

 

An explanation of the other commands can be found in Examples 6.1 

and 6.23.   

 

EXAMPLE 6.27: N=1 TIME SERIES ANALYSIS WITH A 

FIRST-ORDER AUTOREGRESSIVE AR(1) IRT MODEL WITH 

BINARY FACTOR INDICATORS 
 

 
TITLE: this is an example of an N=1 time series 

analysis with a first-order autoregressive 

AR(1) IRT model with binary factor 

indicators 

DATA: FILE = ex6.27.dat; 

VARIABLE: NAMES = u1-u4; 

 CATEGORICAL = u1-u4; 

ANALYSIS: ESTIMATOR = BAYES; 

 PROCESSORS = 2; 

 BITERATIONS = (2000); 

MODEL: f BY u1-u4*(&1);  

 f@1; 

 f ON f&1; 

OUTPUT: TECH1 TECH8; 

PLOT: TYPE = PLOT3; 

 

In this example, an N=1 time series analysis with a first-order 

autoregressive AR(1) IRT model with binary factor indicators is 

estimated.  The subscript t refers to a time point and the subscript t-1 

refers to the previous time point.  The dots indicate that the process 

includes both previous and future time points using the same model. 

 

The CATEGORICAL option specifies that the variables u1, u2, u3, and 

u4 are binary.  In the MODEL command, the BY statement specifies that 

f is measured by u1, u2, u3, and u4.  The metric of the factor is set 

automatically by the program by fixing the first factor loading to one.  

The asterisk following u1-u4 overrides this default.  The metric of the 

factor is set by fixing the factor residual variance to one.  An ampersand 

(&) followed by the number 1 is placed in parentheses following the BY 

statement to indicate that the factor f at lag 1 can be used in the analysis.  

The factor f at lag 1 is referred to as f&1.  The thresholds of the factor 

indicators are estimated as the default.  The ON statement describes the 
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linear regression over multiple time points of the factor f on the factor 

f&1 which is f at the previous time point.  A regression coefficient and 

residual variance of the factor are estimated.  The intercept of the factor 

is fixed at zero as the default.  An explanation of the other commands 

can be found in Examples 6.1, 6.4, and 6.23.   

 

EXAMPLE 6.28: N=1 TIME SERIES ANALYSIS WITH A 

BIVARIATE CROSS-LAGGED MODEL WITH TWO FACTORS 

AND CONTINUOUS FACTOR INDICATORS 
 

 
TITLE: this is an example of an N=1 time series 

analysis with a bivariate cross-lagged 

model with two factors and continuous 

factor indicators 

DATA: FILE = ex6.28.dat; 

VARIABLE: NAMES = y11-y14 y21-y24; 

ANALYSIS: ESTIMATOR = BAYES; 

 PROCESSORS = 2; 

 BITERATIONS = (2000); 

MODEL: f1 BY y11-y14 (&1);  

 f2 BY y21-y24 (&1);  

 f1 ON f1&1 f2&1; 

 f2 ON f2&1 f1&1; 

OUTPUT: TECH1 TECH8; 

PLOT: TYPE = PLOT3; 
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In this example, the N=1 time series analysis with a bivariate cross-

lagged model with two factors and continuous factor indicators shown in 

the picture above is estimated.  The subscript t refers to a time point and 

the subscript t-1 refers to the previous time point.  The dots indicate that 

the process includes both previous and future time points using the same 

model.  

 

In the MODEL command, the first BY statement specifies that f1 is 

measured by y11, y12, y13, and y14.  The second BY statement specifies 

that f2 is measured by y21, y22, y23, and y24.  The metric of the factors 

is set automatically by the program by fixing the first factor loading to 

one.  This option can be overridden.  An ampersand (&) followed by the 

number 1 is placed in parentheses following the BY statements to 

indicate that the factors f1 and f2 at lag 1 are used during model 

estimation. The factors f1 and f2 at lag 1 are referred to as f1&1 and 

f2&1, respectively.  The intercepts and residual variances of the factor 

indicators are estimated and the residuals are not correlated as the 

default.  The first ON statement describes the linear regression over 
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multiple time points of the factor f1 on the factor f1&1 which is f1 at the 

previous time point and the factor f2&1 which is f2 at the previous time 

point.  The second ON statement describes the linear regression over 

multiple time points of the factor f2 on the factor f2&1 which is f2 at the 

previous time point and the factor f1&1 which is f1 at the previous time 

point.  Four regression coefficients, two residual variances, and one 

residual covariance of the factors are estimated.  The intercepts of the 

factors are fixed at zero as the default.  An explanation of the other 

commands can be found in Examples 6.1 and 6.23. 
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CHAPTER 7 

EXAMPLES: MIXTURE 

MODELING WITH CROSS-

SECTIONAL DATA 
 

  

Mixture modeling refers to modeling with categorical latent variables 

that represent subpopulations where population membership is not 

known but is inferred from the data.  This is referred to as finite mixture 

modeling in statistics (McLachlan & Peel, 2000).  A special case is 

latent class analysis (LCA) where the latent classes explain the 

relationships among the observed dependent variables similar to factor 

analysis.  In contrast to factor analysis, however, LCA provides 

classification of individuals.  In addition to conventional exploratory 

LCA, confirmatory LCA and LCA with multiple categorical latent 

variables can be estimated.  In Mplus, mixture modeling can be applied 

to any of the analyses discussed in the other example chapters including 

regression analysis, path analysis, confirmatory factor analysis (CFA), 

item response theory (IRT) analysis, structural equation modeling 

(SEM), growth modeling, survival analysis, and multilevel modeling.  

Observed dependent variables can be continuous, censored, binary, 

ordered categorical (ordinal), unordered categorical (nominal), counts, 

or combinations of these variable types.  LCA and general mixture 

models can be extended to include continuous latent variables.  An 

overview can be found in Muthén (2008). 

 

LCA is a measurement model.  A general mixture model has two parts: a 

measurement model and a structural model.  The measurement model for 

LCA and the general mixture model is a multivariate regression model 

that describes the relationships between a set of observed dependent 

variables and a set of categorical latent variables.  The observed 

dependent variables are referred to as latent class indicators.  The 

relationships are described by a set of linear regression equations for 

continuous latent class indicators, a set of censored normal or censored-

inflated normal regression equations for censored latent class indicators, 

a set of logistic regression equations for binary or ordered categorical 

latent class indicators, a set of multinomial logistic regressions for 

unordered categorical latent class indicators, and a set of Poisson or 
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zero-inflated Poisson regression equations for count latent class 

indicators.   

 

The structural model describes three types of relationships in one set of 

multivariate regression equations:  the relationships among the 

categorical latent variables, the relationships among observed variables, 

and the relationships between the categorical latent variables and 

observed variables that are not latent class indicators.  These 

relationships are described by a set of multinomial logistic regression 

equations for the categorical latent dependent variables and unordered 

observed dependent variables, a set of linear regression equations for 

continuous observed dependent variables, a set of censored normal or 

censored normal regression equations for censored-inflated observed 

dependent variables, a set of logistic regression equations for binary or 

ordered categorical observed dependent variables, and a set of Poisson 

or zero-inflated Poisson regression equations for count observed 

dependent variables.  For logistic regression, ordered categorical 

variables are modeled using the proportional odds specification. 

Maximum likelihood estimation is used.  

 

The general mixture model can be extended to include continuous latent 

variables.  The measurement and structural models for continuous latent 

variables are described in Chapter 5.  In the extended general mixture 

model, relationships between categorical and continuous latent variables 

are allowed.  These relationships are described by a set of multinomial 

logistic regression equations for the categorical latent dependent 

variables and a set of linear regression equations for the continuous 

latent dependent variables. 

 

In mixture modeling, some starting values may result in local solutions 

that do not represent the global maximum of the likelihood.  To avoid 

this, different sets of starting values are automatically produced and the 

solution with the best likelihood is reported.  

 

All cross-sectional mixture models can be estimated using the following 

special features: 

 

 Single or multiple group analysis 

 Missing data 

 Complex survey data 
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 Latent variable interactions and non-linear factor analysis using 

maximum likelihood 

 Random slopes 

 Linear and non-linear parameter constraints 

 Indirect effects including specific paths 

 Maximum likelihood estimation for all outcome types 

 Bootstrap standard errors and confidence intervals 

 Wald chi-square test of parameter equalities 

 Test of equality of means across latent classes using posterior 

probability-based multiple imputations 

 

For TYPE=MIXTURE, multiple group analysis is specified by using the 

KNOWNCLASS option of the VARIABLE command.  The default is to 

estimate the model under missing data theory using all available data.  

The LISTWISE option of the DATA command can be used to delete all 

observations from the analysis that have missing values on one or more 

of the analysis variables.  Corrections to the standard errors and chi-

square test of model fit that take into account stratification, non-

independence of observations, and unequal probability of selection are 

obtained by using the TYPE=COMPLEX option of the ANALYSIS 

command in conjunction with the STRATIFICATION, CLUSTER, and 

WEIGHT options of the VARIABLE command. The 

SUBPOPULATION option is used to select observations for an analysis 

when a subpopulation (domain) is analyzed.  Latent variable interactions 

are specified by using the | symbol of the MODEL command in 

conjunction with the XWITH option of the MODEL command.  Random 

slopes are specified by using the | symbol of the MODEL command in 

conjunction with the ON option of the MODEL command.  Linear and 

non-linear parameter constraints are specified by using the MODEL 

CONSTRAINT command.  Indirect effects are specified by using the 

MODEL INDIRECT command.  Maximum likelihood estimation is 

specified by using the ESTIMATOR option of the ANALYSIS 

command.  Bootstrap standard errors are obtained by using the 

BOOTSTRAP option of the ANALYSIS command.  Bootstrap 

confidence intervals are obtained by using the BOOTSTRAP option of 

the ANALYSIS command in conjunction with the CINTERVAL option 

of the OUTPUT command.  The MODEL TEST command is used to test 

linear restrictions on the parameters in the MODEL and MODEL 

CONSTRAINT commands using the Wald chi-square test.  The 

AUXILIARY option is used to test the equality of means across latent 

classes using posterior probability-based multiple imputations. 
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Graphical displays of observed data and analysis results can be obtained 

using the PLOT command in conjunction with a post-processing 

graphics module.  The PLOT command provides histograms, 

scatterplots, plots of individual observed and estimated values, plots of 

sample and estimated means and proportions/probabilities, and plots of 

estimated probabilities for a categorical latent variable as a function of 

its covariates.  These are available for the total sample, by group, by 

class, and adjusted for covariates.  The PLOT command includes 

a display showing a set of descriptive statistics for each variable.  The 

graphical displays can be edited and exported as a DIB, EMF, or JPEG 

file.  In addition, the data for each graphical display can be saved in an 

external file for use by another graphics program.  

 

Following is the set of examples included in this chapter.   

 

 7.1:  Mixture regression analysis for a continuous dependent 

variable using automatic starting values with random starts 

 7.2:  Mixture regression analysis for a count variable using a zero-

inflated Poisson model using automatic starting values with random 

starts 

 7.3:  LCA with binary latent class indicators using automatic starting 

values with random starts 

 7.4:  LCA with binary latent class indicators using user-specified 

starting values without random starts 

 7.5:  LCA with binary latent class indicators using user-specified 

starting values with random starts 

 7.6:  LCA with three-category latent class indicators using user-

specified starting values without random starts 

 7.7:  LCA with unordered categorical latent class indicators using 

automatic starting values with random starts 

 7.8:  LCA with unordered categorical latent class indicators using 

user-specified starting values with random starts 

 7.9:  LCA with continuous latent class indicators using automatic 

starting values with random starts 

 7.10:  LCA with continuous latent class indicators using user-

specified starting values without random starts 

 7.11:  LCA with binary, censored, unordered, and count latent class 

indicators using user-specified starting values without random starts 

 7.12:  LCA with binary latent class indicators using automatic 

starting values with random starts with a covariate and a direct effect 
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 7.13:  Confirmatory LCA with binary latent class indicators and 

parameter constraints 

 7.14:  Confirmatory LCA with two categorical latent variables 

 7.15:  Loglinear model for a three-way table with conditional 

independence between the first two variables 

 7.16:  LCA with partial conditional independence* 

 7.17:  Mixture CFA modeling 

 7.18:  LCA with a second-order factor (twin analysis)* 

 7.19:  SEM with a categorical latent variable regressed on a 

continuous latent variable* 

 7.20:  Structural equation mixture modeling 

 7.21:  Mixture modeling with known classes (multiple group 

analysis) 

 7.22:  Mixture modeling with continuous variables that correlate 

within class 

 7.23:  Mixture randomized trials modeling using CACE estimation 

with training data 

 7.24:  Mixture randomized trials modeling using CACE estimation 

with missing data on the latent class indicator 

 7.25: Zero-inflated Poisson regression carried out as a two-class 

model  

 7.26: CFA with a non-parametric representation of a non-normal 

factor distribution 

 7.27:  Factor (IRT) mixture analysis with binary latent class and 

factor indicators* 

 7.28:  Two-group twin model for categorical outcomes using 

maximum likelihood and parameter constraints* 

 7.29:  Two-group IRT twin model for factors with categorical factor 

indicators using parameter constraints*  

 7.30:  Continuous-time survival analysis using a Cox regression 

model to estimate a treatment effect  

 

*  Example uses numerical integration in the estimation of the model.  

This can be computationally demanding depending on the size of the 

problem. 
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EXAMPLE 7.1: MIXTURE REGRESSION ANALYSIS FOR A 

CONTINUOUS DEPENDENT VARIABLE USING AUTOMATIC 

STARTING VALUES WITH RANDOM STARTS 
 

 
TITLE: this is an example of a mixture regression 

analysis for a continuous dependent 

variable using automatic starting values 

with random starts 

DATA: FILE IS ex7.1.dat; 

VARIABLE: NAMES ARE y x1 x2; 

 CLASSES = c (2); 

ANALYSIS: TYPE = MIXTURE; 

MODEL:  

 %OVERALL% 

 y ON x1 x2; 

 c ON x1; 

 %c#2% 

 y ON x2; 

 y; 

OUTPUT: TECH1 TECH8; 
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In this example, the mixture regression model for a continuous 

dependent variable shown in the picture above is estimated using 

automatic starting values with random starts.  Because c is a categorical 

latent variable, the interpretation of the picture is not the same as for 

models with continuous latent variables.  The arrow from c to y indicates 

that the intercept of y varies across the classes of c.  This corresponds to 

the regression of y on a set of dummy variables representing the 

categories of c.  The broken arrow from c to the arrow from x2 to y 

indicates that the slope in the regression of y on x2 varies across the 

classes of c.  The arrow from x1 to c represents the multinomial logistic 

regression of c on x1.   

  
TITLE: this is an example of a mixture regression 

analysis for a continuous dependent 

variable 

 

The TITLE command is used to provide a title for the analysis.  The title 

is printed in the output just before the Summary of Analysis. 

 
DATA:  FILE IS ex7.1.dat; 

 

The DATA command is used to provide information about the data set 

to be analyzed.  The FILE option is used to specify the name of the file 

that contains the data to be analyzed, ex7.1.dat.  Because the data set is 

in free format, the default, a FORMAT statement is not required. 

 
VARIABLE: NAMES ARE y x1 x2; 

  CLASSES = c (2); 

 

The VARIABLE command is used to provide information about the 

variables in the data set to be analyzed.  The NAMES option is used to 

assign names to the variables in the data set.  The data set in this 

example contains three variables: y, x1, and x2.  The CLASSES option 

is used to assign names to the categorical latent variables in the model 

and to specify the number of latent classes in the model for each 

categorical latent variable.  In the example above, there is one 

categorical latent variable c that has two latent classes.    

 
ANALYSIS: TYPE = MIXTURE; 

 

The ANALYSIS command is used to describe the technical details of the 

analysis.  The TYPE option is used to describe the type of analysis that 
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is to be performed.  By selecting MIXTURE, a mixture model will be 

estimated.   

 

When TYPE=MIXTURE is specified, either user-specified or automatic 

starting values are used to create randomly perturbed sets of starting 

values for all parameters in the model except variances and covariances. 

In this example, the random perturbations are based on automatic 

starting values.  Maximum likelihood optimization is done in two stages. 

In the initial stage, 20 random sets of starting values are generated.  An 

optimization is carried out for ten iterations using each of the 20 random 

sets of starting values.  The ending values from the 4 optimizations with 

the highest loglikelihoods are used as the starting values in the final 

stage optimizations which are carried out using the default optimization 

settings for TYPE=MIXTURE.  A more thorough investigation of 

multiple solutions can be carried out using the STARTS and 

STITERATIONS options of the ANALYSIS command.   

 
MODEL: 

  %OVERALL% 

  y ON x1 x2; 

  c ON x1; 

  %c#2% 

  y ON x2; 

  y; 

 

The MODEL command is used to describe the model to be estimated.  

For mixture models, there is an overall model designated by the label 

%OVERALL%.  The overall model describes the part of the model that 

is in common for all latent classes.  The part of the model that differs for 

each class is specified by a label that consists of the categorical latent 

variable followed by the number sign followed by the class number.  In 

the example above, the label %c#2% refers to the part of the model for 

class 2 that differs from the overall model.   

 

In the overall model, the first ON statement describes the linear 

regression of y on the covariates x1 and x2.  The second ON statement 

describes the multinomial logistic regression of the categorical latent 

variable c on the covariate x1 when comparing class 1 to class 2.  The 

intercept in the regression of c on x1 is estimated as the default.  

 

In the model for class 2, the ON statement describes the linear regression 

of y on the covariate x2.  This specification relaxes the default equality 



Examples: Mixture Modeling With Cross-Sectional Data 

                                                                                                               173 

constraint for the regression coefficient.  By mentioning the residual 

variance of y, it is not held equal across classes.  The intercepts in class 

1 and class 2 are free and unequal as the default.  The default estimator 

for this type of analysis is maximum likelihood with robust standard 

errors.  The ESTIMATOR option of the ANALYSIS command can be 

used to select a different estimator. 

 

Following is an alternative specification of the multinomial logistic 

regression of c on the covariate x1: 

 

c#1 ON x1; 

 

where c#1 refers to the first class of c.  The classes of a categorical latent 

variable are referred to by adding to the name of the categorical latent 

variable the number sign (#) followed by the number of the class.  This 

alternative specification allows individual parameters to be referred to in 

the MODEL command for the purpose of giving starting values or 

placing restrictions. 

  
OUTPUT: TECH1 TECH8; 

 

The OUTPUT command is used to request additional output not 

included as the default.  The TECH1 option is used to request the arrays 

containing parameter specifications and starting values for all free 

parameters in the model.  The TECH8 option is used to request that the 

optimization history in estimating the model be printed in the output.  

TECH8 is printed to the screen during the computations as the default.  

TECH8 screen printing is useful for determining how long the analysis 

takes.   
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EXAMPLE 7.2: MIXTURE REGRESSION ANALYSIS FOR A 

COUNT VARIABLE USING A ZERO-INFLATED POISSON 

MODEL USING AUTOMATIC STARTING VALUES WITH 

RANDOM STARTS 
 

 
TITLE: this is an example of a mixture regression 

analysis for a count variable using a 

zero-inflated Poisson model using 

automatic starting values with random 

starts 

DATA: FILE IS ex7.2.dat; 

VARIABLE: NAMES ARE u x1 x2; 

 CLASSES = c (2); 

 COUNT = u (i); 

ANALYSIS: TYPE = MIXTURE; 

MODEL:  

 %OVERALL% 

 u ON x1 x2; 

 u#1 ON x1 x2; 

 c ON x1; 

 %c#2% 

 u ON x2; 

OUTPUT: TECH1 TECH8; 

  

The difference between this example and Example 7.1 is that the 

dependent variable is a count variable instead of a continuous variable. 

The COUNT option is used to specify which dependent variables are 

treated as count variables in the model and its estimation and whether a 

Poisson or zero-inflated Poisson model will be estimated.  In the 

example above, u is a count variable.  The i in parentheses following u 

indicates that a zero-inflated Poisson model will be estimated.   

 

With a zero-inflated Poisson model, two regressions are estimated.  In 

the overall model, the first ON statement describes the Poisson 

regression of the count part of u on the covariates x1 and x2.  This 

regression predicts the value of the count dependent variable for 

individuals who are able to assume values of zero and above.  The 

second ON statement describes the logistic regression of the binary 

latent inflation variable u#1 on the covariates x1 and x2.   This 

regression describes the probability of being unable to assume any value 

except zero.  The inflation variable is referred to by adding to the name 

of the count variable the number sign (#) followed by the number 1.  The 
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third ON statement specifies the multinomial logistic regression of the 

categorical latent variable c on the covariate x1 when comparing class 1 

to class 2.  The intercept in the regression of c on x1 is estimated as the 

default.  

 

In the model for class 2, the ON statement describes the Poisson 

regression of the count part of u on the covariate x2.  This specification 

relaxes the default equality constraint for the regression coefficient.  The 

intercepts of u are free and unequal across classes as the default.  All 

other parameters are held equal across classes as the default.  The 

default estimator for this type of analysis is maximum likelihood with 

robust standard errors.  The ESTIMATOR option of the ANALYSIS 

command can be used to select a different estimator.  An explanation of 

the other commands can be found in Example 7.1. 

 

EXAMPLE 7.3: LCA WITH BINARY LATENT CLASS 

INDICATORS USING AUTOMATIC STARTING VALUES 

WITH RANDOM STARTS 
 

 
TITLE: this is an example of a LCA with binary 

latent class indicators using automatic 

starting values with random starts 

DATA: FILE IS ex7.3.dat; 

VARIABLE: NAMES ARE u1-u4 x1-x10; 

 USEVARIABLES = u1-u4; 

 CLASSES = c (2); 

 CATEGORICAL = u1-u4; 

 AUXILIARY = x1-x10 (R3STEP); 

ANALYSIS: TYPE = MIXTURE; 

OUTPUT: TECH1 TECH8 TECH10; 
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In this example, the latent class analysis (LCA) model with binary latent 

class indicators shown in the picture above is estimated using automatic 

starting values and random starts. Because c is a categorical latent 

variable, the interpretation of the picture is not the same as for models 

with continuous latent variables.  The arrows from c to the latent class 

indicators u1, u2, u3, and u4 indicate that the thresholds of the latent 

class indicators vary across the classes of c.  This implies that the 

probabilities of the latent class indicators vary across the classes of c.  

The arrows correspond to the regressions of the latent class indicators on 

a set of dummy variables representing the categories of c.   

 

The CATEGORICAL option is used to specify which dependent 

variables are treated as binary or ordered categorical (ordinal) variables 

in the model and its estimation.  In the example above, the latent class 

indicators u1, u2, u3, and u4, are binary or ordered categorical variables.  

The program determines the number of categories for each indicator.  

The AUXILIARY option is used to specify variables that are not part of 

the analysis that are important predictors of latent classes using a three-

step approach (Vermunt, 2010; Asparouhov & Muthén, 2012b).  The 

letters R3STEP in parentheses is placed behind the variables in the 

AUXILIARY statement that that will be used as covariates in the third 

step multinomial logistic regression in a mixture model. 
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The MODEL command does not need to be specified when automatic 

starting values are used.  The thresholds of the observed variables and 

the mean of the categorical latent variable are estimated as the default.  

The thresholds are not held equal across classes as the default.  The 

default estimator for this type of analysis is maximum likelihood with 

robust standard errors.  The ESTIMATOR option of the ANALYSIS 

command can be used to select a different estimator. 

 

The TECH10 option is used to request univariate, bivariate, and 

response pattern model fit information for the categorical dependent 

variables in the model.  This includes observed and estimated (expected) 

frequencies and standardized residuals.  An explanation of the other 

commands can be found in Example 7.1. 

 

EXAMPLE 7.4: LCA WITH BINARY LATENT CLASS 

INDICATORS USING USER-SPECIFIED STARTING VALUES 

WITHOUT RANDOM STARTS 
 

 
TITLE: this is an example of a LCA with binary 

latent class indicators using user-

specified starting values without random 

starts 

DATA: FILE IS ex7.4.dat; 

VARIABLE: NAMES ARE u1-u4; 

 CLASSES = c (2); 

 CATEGORICAL = u1-u4; 

ANALYSIS: TYPE = MIXTURE; 

 STARTS = 0; 

MODEL:  

 %OVERALL% 

 %c#1%  

 [u1$1*1 u2$1*1 u3$1*-1 u4$1*-1]; 

 %c#2%  

 [u1$1*-1 u2$1*-1 u3$1*1 u4$1*1]; 

OUTPUT: TECH1 TECH8; 

 

The differences between this example and Example 7.3 are that user-

specified starting values are used instead of automatic starting values 

and there are no random starts.  By specifying STARTS=0 in the 

ANALYSIS command, random starts are turned off. 
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In the MODEL command, user-specified starting values are given for the 

thresholds of the binary latent class indicators.  For binary and ordered 

categorical dependent variables, thresholds are referred to by adding to a 

variable name a dollar sign ($) followed by a threshold number.  The 

number of thresholds is equal to the number of categories minus one.  

Because the latent class indicators are binary, they have one threshold.  

The thresholds of the latent class indicators are referred to as u1$1, 

u2$1, u3$1, and u4$1.  Square brackets are used to specify starting 

values in the logit scale for the thresholds of the binary latent class 

indicators.  The asterisk (*) is used to assign a starting value.  It is placed 

after a variable with the starting value following it.  In the example 

above, the threshold of u1 is assigned the starting value of 1 for class 1 

and -1 for class 2.  The threshold of u4 is assigned the starting value of -

1 for class 1 and 1 for class 2.  The default estimator for this type of 

analysis is maximum likelihood with robust standard errors.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 

a different estimator. An explanation of the other commands can be 

found in Examples 7.1 and 7.3.  

 

EXAMPLE 7.5: LCA WITH BINARY LATENT CLASS 

INDICATORS USING USER-SPECIFIED STARTING VALUES 

WITH RANDOM STARTS 
  

 
TITLE: this is an example of a LCA with binary 

latent class indicators using user-

specified starting values with random 

starts 

DATA: FILE IS ex7.5.dat; 

VARIABLE: NAMES ARE u1-u4; 

 CLASSES = c (2); 

 CATEGORICAL = u1-u4; 

ANALYSIS: TYPE = MIXTURE; 

 STARTS = 100 10; 

 STITERATIONS = 20; 

MODEL:  

 %OVERALL% 

 %c#1%  

 [u1$1*1 u2$1*1 u3$1*-1 u4$1*-1]; 

 %c#2%  

 [u1$1*-1 u2$1*-1 u3$1*1 u4$1*1]; 

OUTPUT: TECH1 TECH8; 
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The difference between this example and Example 7.4 is that random 

starts are used.  In this example, the random perturbations are based on 

user-specified starting values.  The STARTS option is used to specify 

the number of initial stage random sets of starting values to generate and 

the number of final stage optimizations to use.  The default is 20 random 

sets of starting values for the initial stage and 4 optimizations for the 

final stage.  In the example above, the STARTS option specifies that 100 

random sets of starting values for the initial stage and 10 final stage 

optimizations will be used.  The STITERATIONS option is used to 

specify the maximum number of iterations allowed in the initial stage.  

In this example, 20 iterations are allowed in the initial stage instead of 

the default of 10. The default estimator for this type of analysis is 

maximum likelihood with robust standard errors.  The ESTIMATOR 

option of the ANALYSIS command can be used to select a different 

estimator.  An explanation of the other commands can be found in 

Examples 7.1, 7.3, and 7.4.  

 

EXAMPLE 7.6: LCA WITH THREE-CATEGORY LATENT 

CLASS INDICATORS USING USER-SPECIFIED STARTING 

VALUES WITHOUT RANDOM STARTS 
 

 
TITLE: this is an example of a LCA with three-

category latent class indicators using 

user-specified starting values without 

random starts 

DATA: FILE IS ex7.6.dat; 

VARIABLE: NAMES ARE u1-u4; 

 CLASSES = c (2); 

 CATEGORICAL = u1-u4; 

ANALYSIS: TYPE = MIXTURE; 

 STARTS = 0; 

MODEL:  

 %OVERALL% 

 %c#1%  

 [u1$1*.5 u2$1*.5 u3$1*-.5 u4$1*-.5]; 

 [u1$2*1 u2$2*1 u3$2*0 u4$2*0]; 

 %c#2%  

 [u1$1*-.5 u2$1*-.5 u3$1*.5 u4$1*.5]; 

 [u1$2*0 u2$2*0 u3$2*1 u4$2*1]; 

OUTPUT: TECH1 TECH8; 
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The difference between this example and Example 7.4 is that the latent 

class indicators are ordered categorical (ordinal) variables with three 

categories instead of binary variables.  When latent class indicators are 

ordered categorical variables, each latent class indicator has more than 

one threshold.  The number of thresholds is equal to the number of 

categories minus one.  When user-specified starting values are used, they 

must be specified for all thresholds and they must be in increasing order 

for each variable within each class.  For example, in class 1 the threshold 

starting values for latent class indicator u1 are .5 for the first threshold 

and 1 for the second threshold.  The default estimator for this type of 

analysis is maximum likelihood with robust standard errors.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 

a different estimator.  An explanation of the other commands can be 

found in Examples 7.1, 7.3, and 7.4.   

 

EXAMPLE 7.7: LCA WITH UNORDERED CATEGORICAL 

LATENT CLASS INDICATORS USING AUTOMATIC 

STARTING VALUES WITH RANDOM STARTS 
 

 
TITLE: this is an example of a LCA with unordered 

categorical latent class indicators using 

automatic starting values with random 

starts 

DATA: FILE IS ex7.7.dat; 

VARIABLE: NAMES ARE u1-u4; 

 CLASSES = c (2); 

 NOMINAL = u1-u4; 

ANALYSIS: TYPE = MIXTURE; 

OUTPUT: TECH1 TECH8; 

 

The difference between this example and Example 7.3 is that the latent 

class indicators are unordered categorical (nominal) variables instead of 

binary variables.  The NOMINAL option is used to specify which 

dependent variables are treated as unordered categorical (nominal) 

variables in the model and its estimation.  In the example above, u1, u2, 

u3, and u4 are three-category unordered variables.  The categories of an 

unordered categorical variable are referred to by adding to the name of 

the unordered categorical variable the number sign (#) followed by the 

number of the category.  The default estimator for this type of analysis is 

maximum likelihood with robust standard errors.  The ESTIMATOR 

option of the ANALYSIS command can be used to select a different 
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estimator.  An explanation of the other commands can be found in 

Examples 7.1 and 7.3.   

 

EXAMPLE 7.8: LCA WITH UNORDERED CATEGORICAL 

LATENT CLASS INDICATORS USING USER-SPECIFIED 

STARTING VALUES WITH RANDOM STARTS 
 

 
TITLE: this is an example of a LCA with unordered 

categorical latent class indicators using 

user-specified starting values with random 

starts 

DATA: FILE IS ex7.8.dat; 

VARIABLE: NAMES ARE u1-u4; 

 CLASSES = c (2); 

 NOMINAL = u1-u4; 

ANALYSIS: TYPE = MIXTURE; 

MODEL: %OVERALL% 

 %c#1% 

 [u1#1-u4#1*0]; 

 [u1#2-u4#2*1]; 

 %c#2% 

 [u1#1-u4#1*-1]; 

 [u1#2-u4#2*-1]; 

OUTPUT: TECH1 TECH8; 

 

The difference between this example and Example 7.7 is that user-

specified starting values are used instead of automatic starting values. 

Means are referred to by using bracket statements.  The categories of an 

unordered categorical variable are referred to by adding to the name of 

the unordered categorical variable the number sign (#) followed by the 

number of the category.  In this example, u1#1 refers to the first category 

of u1 and u1#2 refers to the second category of u1.  Starting values of 0 

and 1 are given for the means in class 1 and starting values of -1 are 

given for the means in class 2.  The default estimator for this type of 

analysis is maximum likelihood with robust standard errors.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 

a different estimator.  An explanation of the other commands can be 

found in Examples 7.1, 7.3, and 7.7.  
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EXAMPLE 7.9: LCA WITH CONTINUOUS LATENT CLASS 

INDICATORS USING AUTOMATIC STARTING VALUES 

WITH RANDOM STARTS 
 

 
TITLE: this is an example of a LCA with 

continuous latent class indicators using 

automatic starting values with random 

starts 

DATA: FILE IS ex7.9.dat; 

VARIABLE: NAMES ARE y1-y4; 

 CLASSES = c (2); 

ANALYSIS: TYPE = MIXTURE; 

OUTPUT: TECH1 TECH8; 

 

 

 
 

 

The difference between this example and Example 7.3 is that the latent 

class indicators are continuous variables instead of binary variables.  

When there is no specification in the VARIABLE command regarding 

the scale of the dependent variables, it is assumed that they are 

continuous.  Latent class analysis with continuous latent class indicators 

is often referred to as latent profile analysis.   
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The MODEL command does not need to be specified when automatic 

starting values are used.  The means and variances of the latent class 

indicators and the mean of the categorical latent variable are estimated 

as the default.  The means of the latent class indicators are not held 

equal across classes as the default.  The variances are held equal across 

classes as the default and the covariances among the latent class 

indicators are fixed at zero as the default.  The default estimator for this 

type of analysis is maximum likelihood with robust standard errors.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 

a different estimator.  An explanation of the other commands can be 

found in Examples 7.1 and 7.3.   

 

EXAMPLE 7.10: LCA WITH CONTINUOUS LATENT CLASS 

INDICATORS USING USER-SPECIFIED STARTING VALUES 

WITHOUT RANDOM STARTS 
 

 
TITLE: this is an example of a LCA with 

continuous latent class indicators using 

user-specified starting values without 

random starts 

DATA: FILE IS ex7.10.dat; 

VARIABLE: NAMES ARE y1-y4; 

 CLASSES = c (2); 

ANALYSIS: TYPE = MIXTURE; 

 STARTS = 0; 

MODEL:  

 %OVERALL% 

 %c#1% 

 [y1–y4*1]; 

 y1-y4; 

 %c#2% 

 [y1–y4*-1]; 

 y1-y4; 

OUTPUT: TECH1 TECH8; 

 

The difference between this example and Example 7.4 is that the latent 

class indicators are continuous variables instead of binary variables.  As 

a result, starting values are given for means instead of thresholds.    

 

The means and variances of the latent class indicators and the mean of 

the categorical latent variable are estimated as the default.  In the models 

for class 1 and class 2, by mentioning the variances of the latent class 
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indicators, the default constraint of equality of variances across classes 

is relaxed.  The covariances among the latent class indicators within 

class are fixed at zero as the default.  The default estimator for this type 

of analysis is maximum likelihood with robust standard errors.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 

a different estimator.  An explanation of the other commands can be 

found in Examples 7.1 and 7.4.   

 

EXAMPLE 7.11: LCA WITH BINARY, CENSORED, 

UNORDERED, AND COUNT LATENT CLASS INDICATORS 

USING USER-SPECIFIED STARTING VALUES WITHOUT 

RANDOM STARTS 
 

 
TITLE: this is an example of a LCA with binary, 

censored, unordered, and count latent 

class indicators using user-specified 

starting values without random starts  

DATA: FILE IS ex7.11.dat; 

VARIABLE: NAMES ARE u1 y1 u2 u3; 

 CLASSES = c (2); 

 CATEGORICAL = u1; 

 CENSORED = y1 (b); 

 NOMINAL = u2; 

 COUNT = u3 (i); 

ANALYSIS: TYPE = MIXTURE; 

 STARTS = 0; 

MODEL:  

 %OVERALL% 

 %c#1%  

 [u1$1*-1 y1*3 u2#1*0 u2#2*1 u3*.5 

u3#1*1.5]; 

 y1*2; 

 %c#2%  

 [u1$1*0 y1*1 u2#1*-1 u2#2*0 u3*1 u3#1*1]; 

 y1*1; 

OUTPUT: TECH1 TECH8; 

 

The difference between this example and Example 7.4 is that the latent 

class indicators are a combination of binary, censored, unordered 

categorical (nominal) and count variables instead of binary variables.  

 

The CATEGORICAL option is used to specify which dependent 

variables are treated as binary or ordered categorical (ordinal) variables 
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in the model and its estimation.  In the example above, the latent class 

indicator u1 is a binary variable.  The CENSORED option is used to 

specify which dependent variables are treated as censored variables in 

the model and its estimation, whether they are censored from above or 

below, and whether a censored or censored-inflated model will be 

estimated.  In the example above, y1 is a censored variable.  The b in 

parentheses following y1 indicates that y1 is censored from below, that 

is, has a floor effect, and that the model is a censored regression model.  

The censoring limit is determined from the data.  The NOMINAL option 

is used to specify which dependent variables are treated as unordered 

categorical (nominal) variables in the model and its estimation.  In the 

example above, u2 is a three-category unordered variable.  The program 

determines the number of categories.  The categories of an unordered 

categorical variable are referred to by adding to the name of the 

unordered categorical variable the number sign (#) followed by the 

number of the category.  In this example, u2#1 refers to the first category 

of u2 and u2#2 refers to the second category of u2.  The COUNT option 

is used to specify which dependent variables are treated as count 

variables in the model and its estimation and whether a Poisson or zero-

inflated Poisson model will be estimated.  In the example above, u3 is a 

count variable.  The i in parentheses following u3 indicates that a zero-

inflated model will be estimated.  The inflation part of the count variable 

is referred to by adding to the name of the count variable the number 

sign (#) followed by the number 1.  The default estimator for this type of 

analysis is maximum likelihood with robust standard errors.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 

a different estimator.  An explanation of the other commands can be 

found in Examples 7.1 and 7.4.   
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EXAMPLE 7.12: LCA WITH BINARY LATENT CLASS 

INDICATORS USING AUTOMATIC STARTING VALUES 

WITH RANDOM STARTS WITH A COVARIATE AND A 

DIRECT EFFECT 
 
 
TITLE: this is an example of a LCA with binary 

latent class indicators using automatic 

starting values with random starts with a 

covariate and a direct effect 

DATA: FILE IS ex7.12.dat; 

VARIABLE: NAMES ARE u1-u4 x; 

 CLASSES = c (2); 

 CATEGORICAL = u1-u4; 

ANALYSIS: TYPE = MIXTURE; 

MODEL:  

 %OVERALL% 

 c ON x;  

 u4 ON x; 

OUTPUT: TECH1 TECH8; 

 

 

 
 

 

The difference between this example and Example 7.3 is that the model 

contains a covariate and a direct effect.  The first ON statement 
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describes the multinomial logistic regression of the categorical latent 

variable c on the covariate x when comparing class 1 to class 2.  The 

intercepts of this regression are estimated as the default.  The second ON 

statement describes the logistic regression of the binary indicator u4 on 

the covariate x.  This is referred to as a direct effect from x to u4.  The 

regression coefficient is held equal across classes as the default.  The 

default estimator for this type of analysis is maximum likelihood with 

robust standard errors.  The ESTIMATOR option of the ANALYSIS 

command can be used to select a different estimator.  An explanation of 

the other commands can be found in Examples 7.1 and 7.3.   

 

EXAMPLE 7.13: CONFIRMATORY LCA WITH BINARY 

LATENT CLASS INDICATORS AND PARAMETER 

CONSTRAINTS 
 

 
TITLE: this is an example of a confirmatory LCA 

with binary latent class indicators and 

parameter constraints 

DATA: FILE IS ex7.13.dat; 

VARIABLE: NAMES ARE u1-u4; 

 CLASSES = c (2); 

 CATEGORICAL = u1-u4; 

ANALYSIS: TYPE = MIXTURE; 

MODEL: 

 %OVERALL% 

 %c#1% 

 [u1$1*-1]; 

 [u2$1-u3$1*-1] (1); 

 [u4$1*-1] (p1); 

 %c#2% 

 [u1$1@-15]; 

 [u2$1-u3$1*1] (2); 

 [u4$1*1] (p2); 

MODEL CONSTRAINT: 

 p2 = - p1; 

OUTPUT: TECH1 TECH8; 

 

In this example, constraints are placed on the measurement parameters 

of the latent class indicators to reflect three hypotheses:  (1) u2 and u3 

are parallel measurements, (2) u1 has a probability of one in class 2, and 

(3) the error rate for u4 is the same in the two classes (McCutcheon, 

2002, pp. 70-72).   
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The first hypothesis is specified by placing (1) following the threshold 

parameters for u2 and u3 in class 1 and (2) following the threshold 

parameters for u2 and u3 in class 2.  This holds the thresholds for the 

two latent class indicators equal to each other but not equal across 

classes.  The second hypothesis is specified by fixing the threshold of u1 

in class 2 to the logit value of -15.  The third hypothesis is specified 

using the MODEL CONSTRAINT command.  The MODEL 

CONSTRAINT command is used to define linear and non-linear 

constraints on the parameters in the model.  Parameters are given labels 

by placing a name in parentheses after the parameter in the MODEL 

command.  In the MODEL command, the threshold of u4 in class 1 is 

given the label p1 and the threshold of u4 in class 2 is given the label p2.  

In the MODEL CONSTRAINT command, the linear constraint is 

defined.  The threshold of u4 in class 1 is equal to the negative value of 

the threshold of u4 in class 2.  The default estimator for this type of 

analysis is maximum likelihood with robust standard errors.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 

a different estimator.  An explanation of the other commands can be 

found in Example 7.1. 

 

EXAMPLE 7.14: CONFIRMATORY LCA WITH TWO 

CATEGORICAL LATENT VARIABLES 
 

 
TITLE: this is an example of a confirmatory LCA 

with two categorical latent variables 

DATA: FILE IS ex7.14.dat; 

VARIABLE: NAMES ARE u1-u4 y1-y4; 

 CLASSES = cu (2) cy (3); 

 CATEGORICAL = u1-u4; 

ANALYSIS: TYPE = MIXTURE; 

 PARAMETERIZATION = LOGLINEAR; 

MODEL: 

 %OVERALL% 

 cu WITH cy; 
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MODEL cu: 

 %cu#1% 

 [u1$1-u4$1]; 

 %cu#2% 

 [u1$1-u4$1]; 

MODEL cy: 

 %cy#1% 

 [y1-y4]; 

 %cy#2% 

 [y1-y4]; 

 %cy#3% 

 [y1-y4]; 

OUTPUT: TECH1 TECH8; 

 

 

 
 

 

In this example, the confirmatory LCA with two categorical latent 

variables shown in the picture above is estimated.  The two categorical 

latent variables are correlated and have their own sets of latent class 

indicators.   
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The CLASSES option is used to assign names to the categorical latent 

variables in the model and to specify the number of latent classes in the 

model for each categorical latent variable.  In the example above, there 

are two categorical latent variables cu and cy.  The categorical latent 

variable cu has two latent classes and the categorical latent variable cy 

has three latent classes. PARAMETERIZATION=LOGLINEAR is used 

to specify associations among categorical latent variables.  In the 

LOGLINEAR parameterization, the WITH option of the MODEL 

command is used to specify the relationships between the categorical 

latent variables.  When a model has more than one categorical latent 

variable, MODEL followed by a label is used to describe the analysis 

model for each categorical latent variable.  Labels are defined by using 

the names of the categorical latent variables.  The categorical latent 

variable cu has four binary indicators u1 through u4.  Their thresholds 

are specified to vary only across the classes of the categorical latent 

variable cu.  The categorical latent variable cy has four continuous 

indicators y1 through y4.  Their means are specified to vary only across 

the classes of the categorical latent variable cy.  The default estimator 

for this type of analysis is maximum likelihood with robust standard 

errors.  The ESTIMATOR option of the ANALYSIS command can be 

used to select a different estimator.  An explanation of the other 

commands can be found in Example 7.1. 

 

Following is an alternative specification of the associations among cu 

and cy: 

 

cu#1 WITH cy#1 cy#2; 

 

where cu#1 refers to the first class of cu, cy#1 refers to the first class of 

cy, and cy#2 refers to the second class of cy.  The classes of a 

categorical latent variable are referred to by adding to the name of the 

categorical latent variable the number sign (#) followed by the number 

of the class.  This alternative specification allows individual parameters 

to be referred to in the MODEL command for the purpose of giving 

starting values or placing restrictions. 
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EXAMPLE 7.15: LOGLINEAR MODEL FOR A THREE-WAY 

TABLE WITH CONDITIONAL INDEPENDENCE BETWEEN 

THE FIRST TWO VARIABLES 
 

 
TITLE: this is an example of a loglinear model 

for a three-way table with conditional 

independence between the first two 

variables  

DATA: FILE IS ex7.15.dat;  

VARIABLE: NAMES ARE u1 u2 u3 w; 

 FREQWEIGHT = w; 

 CATEGORICAL = u1-u3; 

 CLASSES = c1 (2) c2 (2) c3 (2); 

ANALYSIS: TYPE = MIXTURE; 

 STARTS = 0; 

 PARAMETERIZATION = LOGLINEAR; 

MODEL: 

 %OVERALL% 

 c1 WITH c3; 

 c2 WITH c3; 

MODEL c1: 

 %c1#1% 

 [u1$1@15]; 

 %c1#2% 

 [u1$1@-15]; 

MODEL c2: 

 %c2#1% 

 [u2$1@15]; 

 %c2#2% 

 [u2$1@-15]; 

MODEL c3: 

 %c3#1% 

 [u3$1@15]; 

 %c3#2% 

 [u3$1@-15]; 

OUTPUT: TECH1 TECH8; 

 

In this example, a loglinear model for a three-way frequency table with 

conditional independence between the first two variables is estimated.  

The loglinear model is estimated using categorical latent variables that 

are perfectly measured by observed categorical variables.  It is also 

possible to estimate loglinear models for categorical latent variables that 

are measured with error by observed categorical variables.  The 

conditional independence is specified by the two-way interaction 
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between the first two variables being zero for each of the two levels of 

the third variable.   

 

PARAMETERIZATION=LOGLINEAR is used to estimate loglinear 

models with two- and three-way interactions.  In the LOGLINEAR 

parameterization, the WITH option of the MODEL command is used to 

specify the associations among the categorical latent variables.  When a 

model has more than one categorical latent variable, MODEL followed 

by a label is used to describe the analysis model for each categorical 

latent variable.  Labels are defined by using the names of the categorical 

latent variables. In the example above, the categorical latent variables 

are perfectly measured by the latent class indicators. This is specified by 

fixing their thresholds to the logit value of plus or minus 15, 

corresponding to probabilities of zero and one.  The default estimator for 

this type of analysis is maximum likelihood with robust standard errors.  

The ESTIMATOR option of the ANALYSIS command can be used to 

select a different estimator.  An explanation of the other commands can 

be found in Examples 7.1 and 7.14. 

 

EXAMPLE 7.16: LCA WITH PARTIAL CONDITIONAL 

INDEPENDENCE 
 

 
TITLE: this is an example of LCA with partial 

conditional independence 

DATA: FILE IS ex7.16.dat; 

VARIABLE: NAMES ARE u1-u4; 

 CATEGORICAL = u1-u4; 

 CLASSES = c(2); 

ANALYSIS: TYPE = MIXTURE; 

 PARAMETERIZATION = RESCOVARIANCES; 

MODEL:  

 %OVERALL%  

 %c#1% 

 [u1$1-u4$1*-1]; 

 u2 WITH u3; 

OUTPUT: TECH1 TECH8; 
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In this example, the LCA with partial conditional independence shown 

in the picture above is estimated.  A similar model is described in Qu, 

Tan, and Kutner (1996). 

 

By specifying PARAMETERIZATION=RESCOVARIANCES, the 

WITH option can be used to specify residual covariances for binary and 

ordered categorical outcomes using maximum likelihood estimation 

Asparouhov & Muthén, 2015b).  In the example above, the WITH 

statement in class 1 specifies the residual covariance between u2 and u3 

for class 1.  The conditional independence assumption of u2 and u3 is 

not violated for class 2.  An explanation of the other commands can be 

found in Example 7.1. 
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EXAMPLE 7.17: MIXTURE CFA MODELING 
 

 
TITLE: this is an example of mixture CFA modeling 

DATA: FILE IS ex7.17.dat; 

VARIABLE: NAMES ARE y1-y5; 

 CLASSES = c(2); 

ANALYSIS: TYPE = MIXTURE; 

MODEL: %OVERALL% 

 f BY y1-y5; 

 %c#1% 

 [f*1]; 

OUTPUT: TECH1 TECH8; 

 

 

 
 

 

In this example, the mixture CFA model shown in the picture above is 

estimated (Muthén, 2008).  The mean of the factor f varies across the 

classes of the categorical latent variable c.  The residual arrow pointing 

to f indicates that the factor varies within class.  This implies that the 

distribution of f is allowed to be non-normal.  It is possible to allow 

other parameters of the CFA model to vary across classes.  

 

The BY statement specifies that f is measured by y1, y2, y3, y4, and y5.  

The factor mean varies across the classes.  All other model parameters 

are held equal across classes as the default.  The default estimator for 

this type of analysis is maximum likelihood with robust standard errors.  

The ESTIMATOR option of the ANALYSIS command can be used to 

select a different estimator.  An explanation of the other commands can 

be found in Example 7.1. 
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EXAMPLE 7.18: LCA WITH A SECOND-ORDER FACTOR 

(TWIN ANALYSIS) 
 

 
TITLE: this is an example of a LCA with a second-

order factor (twin analysis)  

DATA: FILE IS ex7.18.dat; 

VARIABLE: NAMES ARE u11-u13 u21-u23; 

 CLASSES = c1(2) c2(2); 

 CATEGORICAL = u11-u23; 

ANALYSIS: TYPE = MIXTURE; 

 ALGORITHM = INTEGRATION; 

MODEL: 

 %OVERALL% 

 f BY; 

 f@1; 

 c1 c2 ON f*1 (1); 

MODEL c1: 

 %c1#1% 

 [u11$1-u13$1*-1]; 

 %c1#2% 

 [u11$1-u13$1*1]; 

MODEL c2: 

 %c2#1% 

 [u21$1-u23$1*-1]; 

 %c2#2% 

 [u21$1-u23$1*1]; 

OUTPUT: TECH1 TECH8; 
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In this example, the second-order factor model shown in the picture 

above is estimated.  The first-order factors are categorical latent 

variables and the second-order factor is a continuous latent variable.  

This is a model that can be used for studies of twin associations where 

the categorical latent variable c1 refers to twin 1 and the categorical 

latent variable c2 refers to twin 2.   

 

By specifying ALGORITHM=INTEGRATION, a maximum likelihood 

estimator with robust standard errors using a numerical integration 

algorithm will be used.  Note that numerical integration becomes 

increasingly more computationally demanding as the number of factors 

and the sample size increase.  In this example, one dimension of 

integration is used with 15 integration points.  The ESTIMATOR option 

can be used to select a different estimator.  When a model has more than 

one categorical latent variable, MODEL followed by a label is used to 

describe the analysis model for each categorical latent variable.  Labels 

are defined by using the names of the categorical latent variables.   

 

In the overall model, the BY statement names the second order factor f.  

The ON statement specifies that f influences both categorical latent 

variables in the same amount by imposing an equality constraint on the 

two multinomial logistic regression coefficients.  The slope in the 

multinomial regression of c on f reflects the strength of association 
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between the two categorical latent variables.  An explanation of the 

other commands can be found in Examples 7.1 and 7.14. 

 

EXAMPLE 7.19: SEM WITH A CATEGORICAL LATENT 

VARIABLE REGRESSED ON A CONTINUOUS LATENT 

VARIABLE 
 

 
TITLE: this is an example of a SEM with a 

categorical latent variable regressed on a 

continuous latent variable 

DATA:  FILE IS ex7.19.dat; 

VARIABLE: NAMES ARE u1-u8; 

 CATEGORICAL = u1-u8; 

 CLASSES = c (2); 

ANALYSIS: TYPE = MIXTURE;  

 ALGORITHM = INTEGRATION; 

MODEL:  

 %OVERALL% 

 f BY u1-u4; 

 c ON f; 

 %c#1% 

 [u5$1-u8$1]; 

 %c#2% 

 [u5$1-u8$1]; 

OUTPUT: TECH1 TECH8; 
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In this example, the model with both a continuous and categorical latent 

variable shown in the picture above is estimated.  The categorical latent 

variable c is regressed on the continuous latent variable f in a 

multinomial logistic regression.   

 

By specifying ALGORITHM=INTEGRATION, a maximum likelihood 

estimator with robust standard errors using a numerical integration 

algorithm will be used.  Note that numerical integration becomes 

increasingly more computationally demanding as the number of factors 

and the sample size increase.  In this example, one dimension of 

integration is used with 15 integration points.  The ESTIMATOR option 

can be used to select a different estimator.  In the overall model, the BY 

statement specifies that f is measured by the categorical factor indicators 

u1 through u4.  The categorical latent variable c has four binary latent 

class indicators u5 through u8.  The ON statement specifies the 

multinomial logistic regression of the categorical latent variable c on the 

continuous latent variable f.  An explanation of the other commands can 

be found in Example 7.1. 

 

EXAMPLE 7.20: STRUCTURAL EQUATION MIXTURE 

MODELING 
 

 
TITLE: this is an example of structural equation 

mixture modeling 

DATA: FILE IS ex7.20.dat; 

VARIABLE: NAMES ARE y1-y6; 

 CLASSES = c (2); 

ANALYSIS: TYPE = MIXTURE; 

MODEL: 

 %OVERALL% 

 f1 BY y1-y3; 

 f2 BY y4-y6; 

 f2 ON f1; 

 %c#1% 

 [f1*1 f2]; 

 f2 ON f1; 

OUTPUT: TECH1 TECH8; 
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In this example, the structural equation mixture model shown in the 

picture above is estimated.  A continuous latent variable f2 is regressed 

on a second continuous latent variable f1.  The solid arrows from the 

categorical latent variable c to f1 and f2 indicate that the mean of f1 and 

the intercept of f2 vary across classes.  The broken arrow from c to the 

arrow from f1 to f2 indicates that the slope in the linear regression of f2 

on f1 varies across classes.  For related models, see Jedidi, Jagpal, and 

DeSarbo (1997). 

 

In the overall model, the first BY statement specifies that f1 is measured 

by y1 through y3.  The second BY statement specifies that f2 is 

measured by y4 through y6.  The ON statement describes the linear 

regression of f2 on f1.  In the model for class 1, the mean of f1, the 

intercept of f2, and the slope in the regression of f2 on f1 are specified to 

be free across classes.  All other parameters are held equal across classes 

as the default.  The default estimator for this type of analysis is 

maximum likelihood with robust standard errors.  The ESTIMATOR 

option of the ANALYSIS command can be used to select a different 

estimator.  An explanation of the other commands can be found in 

Example 7.1. 
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EXAMPLE 7.21: MIXTURE MODELING WITH KNOWN 

CLASSES (MULTIPLE GROUP ANALYSIS) 
 

 
TITLE: this is an example of mixture modeling 

 with known classes (multiple group  

 analysis) 

DATA: FILE IS ex7.21.dat; 

VARIABLE: NAMES = g y1-y4; 

 CLASSES = cg (2) c (2); 

 KNOWNCLASS = cg (g = 0 g = 1); 

ANALYSIS: TYPE = MIXTURE; 

MODEL: 

 %OVERALL% 

 c ON cg; 

MODEL c: 

 %c#1% 

 [y1-y4]; 

 %c#2% 

 [y1-y4]; 

MODEL cg: 

 %cg#1% 

 y1-y4; 

 %cg#2% 

 y1-y4; 

OUTPUT: TECH1 TECH8; 

 

 

 
 

 

In this example, the multiple group mixture model shown in the picture 

above is estimated.  The groups are represented by the classes of the 

categorical latent variable cg, which has known class (group) 

membership. 
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The KNOWNCLASS option is used for multiple group analysis with 

TYPE=MIXTURE.  It is used to identify the categorical latent variable 

for which latent class membership is known and is equal to observed 

groups in the sample.  The KNOWNCLASS option identifies cg as the 

categorical latent variable for which latent class membership is known.   

The information in parentheses following the categorical latent variable 

name defines the known classes using an observed variable.  In this 

example, the observed variable g is used to define the known classes.  

The first class consists of individuals with the value 0 on the variable g.  

The second class consists of individuals with the value 1 on the variable 

g.  The means of y1, y2, y3, and y4 vary across the classes of c, while 

the variances of y1, y2, y3, and y4 vary across the classes of cg.  An 

explanation of the other commands can be found in Example 7.1. 

 

EXAMPLE 7.22: MIXTURE MODELING WITH CONTINUOUS 

VARIABLES THAT CORRELATE WITHIN CLASS 

(MULTIVARIATE NORMAL MIXTURE MODEL) 
 

 
TITLE: this is an example of mixture modeling 

with continuous variables that correlate 

within class (multivariate normal mixture 

model) 

DATA: FILE IS ex7.22.dat; 

VARIABLE: NAMES ARE y1-y4; 

 CLASSES = c (3); 

ANALYSIS: TYPE = MIXTURE; 

MODEL:  

 %OVERALL% 

 y1 WITH y2-y4; 

 y2 WITH y3 y4; 

 y3 WITH y4; 

 %c#2% 

 [y1–y4*-1]; 

 %c#3% 

 [y1–y4*1]; 

OUTPUT: TECH1 TECH8; 
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In this example, the mixture model shown in the picture above is 

estimated.  Because c is a categorical latent variable, the interpretation of 

the picture is not the same as for models with continuous latent 

variables.  The arrows from c to the observed variables y1, y2, y3, and 

y4 indicate that the means of the observed variables vary across the 

classes of c.  The arrows correspond to the regressions of the observed 

variables on a set of dummy variables representing the categories of c.  

The observed variables correlate within class.  This is a conventional 

multivariate mixture model (Everitt & Hand, 1981; McLachlan & Peel, 

2000).     

 

In the overall model, by specifying the three WITH statements the 

default of zero covariances within class is relaxed and the covariances 

among y1, y2, y3, and y4 are estimated.  These covariances are held 

equal across classes as the default.  The variances of y1, y2, y3, and y4 

are estimated and held equal as the default.  These defaults can be 

overridden.  The means of the categorical latent variable c are estimated 

as the default. 

 

When WITH statements are included in a mixture model, starting values 

may be useful.  In the class-specific model for class 2, starting values of 

-1 are given for the means of y1, y2, y3, and y4.  In the class-specific 

model for class 3, starting values of 1 are given for the means of y1, y2, 
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y3, and y4.  The default estimator for this type of analysis is maximum 

likelihood with robust standard errors.  The ESTIMATOR option of the 

ANALYSIS command can be used to select a different estimator.  An 

explanation of the other commands can be found in Example 7.1. 

 

EXAMPLE 7.23: MIXTURE RANDOMIZED TRIALS 

MODELING USING CACE ESTIMATION WITH TRAINING 

DATA 
 

 
TITLE: this is an example of mixture randomized 

trials modeling using CACE estimation with 

 training data 

DATA: FILE IS ex7.23.dat; 

VARIABLE: NAMES ARE y x1 x2 c1 c2; 

 CLASSES = c (2); 

 TRAINING = c1 c2; 

ANALYSIS: TYPE = MIXTURE; 

MODEL:  

 %OVERALL% 

 y ON x1 x2; 

 c ON x1; 

 %c#1% 

 [y]; 

 y; 

 y ON x2@0; 

 %c#2% 

 [y*.5]; 

 y; 

OUTPUT: TECH1 TECH8; 

 

 



CHAPTER 7 

204 

 
 

 

In this example, the mixture model for randomized trials using CACE 

(Complier-Average Causal Effect) estimation with training data shown 

in the picture above is estimated (Little & Yau, 1998).  The continuous 

dependent variable y is regressed on the covariate x1 and the treatment 

dummy variable x2.  The categorical latent variable c is compliance 

status, with class 1 referring to non-compliers and class 2 referring to 

compliers.  Compliance status is observed in the treatment group and 

unobserved in the control group.  Because c is a categorical latent 

variable, the interpretation of the picture is not the same as for models 

with continuous latent variables. The arrow from c to the y variable 

indicates that the intercept of y varies across the classes of c.  The arrow 

from c to the arrow from x2 to y indicates that the slope in the regression 

of y on x2 varies across the classes of c.  The arrow from x1 to c 

represents the multinomial logistic regression of c on x1. 

 

The TRAINING option is used to identify the variables that contain 

information about latent class membership.  Because there are two 

classes, there are two training variables c1 and c2.  Individuals in the 

treatment group are assigned values of 1 for c1 and 0 for c2 if they are 

non-compliers and 0 for c1 and 1 for c2 if they are compliers.  

Individuals in the control group are assigned values of 1 for both c1 and 
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c2 to indicate that they are allowed to be a member of either class and 

that their class membership is estimated.  

 

In the overall model, the first ON statement describes the linear 

regression of y on the covariate x1 and the treatment dummy variable x2.  

The intercept and residual variance of y are estimated as the default.  

The second ON statement describes the multinomial logistic regression 

of the categorical latent variable c on the covariate x1 when comparing 

class 1 to class 2.  The intercept in the regression of c on x1 is estimated 

as the default.   

 

In the model for class 1, a starting value of zero is given for the intercept 

of y as the default.  The residual variance of y is specified to relax the 

default across class equality constraint.  The ON statement describes the 

linear regression of y on x2 where the slope is fixed at zero.  This is 

done because non-compliers do not receive treatment.  In the model for 

class 2, a starting value of .5 is given for the intercept of y.  The residual 

variance of y is specified to relax the default across class equality 

constraint.  The regression of y ON x2, which represents the CACE 

treatment effect, is not fixed at zero for class 2.  The default estimator 

for this type of analysis is maximum likelihood with robust standard 

errors.  The ESTIMATOR option of the ANALYSIS command can be 

used to select a different estimator. An explanation of the other 

commands can be found in Example 7.1. 

 

EXAMPLE 7.24: MIXTURE RANDOMIZED TRIALS 

MODELING USING CACE ESTIMATION WITH MISSING 

DATA ON THE LATENT CLASS INDICATOR 
 

  
TITLE: this is an example of mixture randomized 

trials modeling using CACE estimation with 

missing data on the latent class indicator 

DATA: FILE IS ex7.24.dat; 

VARIABLE: NAMES ARE u y x1 x2; 

 CLASSES = c (2); 

 CATEGORICAL = u; 

 MISSING = u (999); 

ANALYSIS: TYPE = MIXTURE; 
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MODEL:  

 %OVERALL% 

 y ON x1 x2; 

 c ON x1; 

 

 %c#1% 

 [u$1@15]; 

 [y]; 

 y; 

 y ON x2@0; 

 

 %c#2% 

 [u$1@-15]; 

 [y*.5]; 

 y; 

OUTPUT: TECH1 TECH8; 

 

 

 
 

 

The difference between this example and Example 7.23 is that a binary 

latent class indicator u has been added to the model.  This binary 

variable represents observed compliance status.  Treatment compliers 

have a value of 1 on this variable; treatment non-compliers have a value 

of 0 on this variable; and individuals in the control group have a missing 

value on this variable.  The latent class indicator u is used instead of 

training data.     
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In the model for class 1, the threshold of the latent class indicator 

variable u is set to a logit value of 15. In the model for class 2, the 

threshold of the latent class indicator variable u is set to a logit value of 

–15.  These logit values reflect that c is perfectly measured by u.  

Individuals in the non-complier class (class 1) have probability zero of 

observed compliance and individuals in the complier class (class 2) have 

probability one of observed compliance.  The default estimator for this 

type of analysis is maximum likelihood with robust standard errors.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 

a different estimator. An explanation of the other commands can be 

found in Examples 7.1 and 7.23. 

 

EXAMPLE 7.25: ZERO-INFLATED POISSON REGRESSION 

CARRIED OUT AS A TWO-CLASS MODEL 
 

 
TITLE: this is an example of a zero-inflated  

 Poisson regression carried out as a two-

class model 

DATA: FILE IS ex3.8.dat; 

VARIABLE: NAMES ARE u1 x1 x3; 

 COUNT IS u1; 

 CLASSES = c (2); 

ANALYSIS: TYPE = MIXTURE; 

MODEL:  

 %OVERALL% 

 u1 ON x1 x3; 

 c ON x1 x3; 

 %c#1% 

 [u1@-15]; 

 u1 ON x1@0 x3@0;  

OUTPUT: TECH1 TECH8; 
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In this example, the zero-inflated Poisson regression model shown in the 

picture above is estimated.  This is an alternative to the way zero-

inflated Poisson regression was carried out in Example 3.8.  In the 

example above, a categorical latent variable c with two classes is used to 

represent individuals who are able to assume values of zero and above 

and individuals who are unable to assume any value except zero.  The 

categorical latent variable c corresponds to the binary latent inflation 

variable u1#1 in Example 3.8.  This approach has the advantage of 

allowing the estimation of the probability of being in each class and the 

posterior probabilities of being in each class for each individual.  

 

The COUNT option is used to specify which dependent variables are 

treated as count variables in the model and its estimation and whether a 

Poisson or zero-inflated Poisson model will be estimated.  In the 

example above, u1 is a specified as count variable without inflation 

because the inflation is captured by the categorical latent variable c.   

 

In the overall model, the first ON statement describes the Poisson 

regression of the count variable u1 on the covariates x1 and x3.  The 

second ON statement describes the multinomial logistic regression of the 

categorical latent variable c on the covariates x1 and x3 when comparing 

class 1 to class 2.  In this example, class 1 contains individuals who are 

unable to assume any value except zero on u1.  Class 2 contains 

individuals whose values on u1 are distributed as a Poisson variable 

without inflation.  Mixing the two classes results in u1 having a zero-

inflated Poisson distribution.  In the class-specific model for class 1, the 

intercept of u1 is fixed at -15 to represent a low log rate at which the 

probability of a count greater than zero is zero.  Therefore, all 

individuals in class 1 have a value of 0 on u1.  Because u1 has no 

variability, the slopes in the Poisson regression of u1 on the covariates 

x1 and x3 in class 1 are fixed at zero.  The default estimator for this type 

of analysis is maximum likelihood with robust standard errors.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 

a different estimator. An explanation of the other commands can be 

found in Example 7.1. 
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EXAMPLE 7.26: CFA WITH A NON-PARAMETRIC 

REPRESENTATION OF A NON-NORMAL FACTOR 

DISTRIBUTION  
 

 
TITLE: this is an example of CFA with a non-

parametric representation of a non-normal 

factor distribution 

DATA: FILE IS ex7.26.dat; 

VARIABLE: NAMES ARE y1-y5 c; 

 USEV = y1-y5; 

 CLASSES = c (3); 

ANALYSIS: TYPE = MIXTURE; 

MODEL: %OVERALL% 

 f BY y1-y5; 

 f@0; 

OUTPUT: TECH1 TECH8; 

 

In this example, a CFA model with a non-parametric representation of a 

non-normal factor distribution is estimated.  One difference between this 

example and Example 7.17 is that the factor variance is fixed at zero in 

each class.  This is done to capture a non-parametric representation of 

the factor distribution (Aitkin, 1999) where the latent classes are used to 

represent non-normality not unobserved heterogeneity with substantively 

meaningful latent classes.  This is also referred to as semiparametric 

modeling.  The factor distribution is represented by a histogram with as 

many bars as there are classes.  The bars represent scale steps on the 

continuous latent variable.  The spacing of the scale steps is obtained by 

the factor means in the different classes with a factor mean for one class 

fixed at zero for identification, and the percentage of individuals at the 

different scale steps is obtained by the latent class percentages.  This 

means that continuous factor scores are obtained for the individuals 

while not assuming normality for the factor but estimating its 

distribution.  Factor variances can also be estimated to obtain a more 

general mixture although this reverts to the parametric assumption of 

normality, in this case, within each class.  When the latent classes are 

used to represent non-normality, the mixed parameter values are of 

greater interest than the parameters for each mixture component 

(Muthén, 2002, p. 102; Muthén, 2004).  An explanation of the other 

commands can be found in Example 7.1. 
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EXAMPLE 7.27:  FACTOR (IRT) MIXTURE ANALYSIS WITH 

BINARY LATENT CLASS AND FACTOR INDICATORS   
 

 
TITLE: this is an example of a factor (IRT) 

mixture analysis with binary latent class 

and factor indicators  

DATA: FILE = ex7.27.dat; 

VARIABLE: NAMES = u1-u8; 

 CATEGORICAL = u1-u8; 

 CLASSES = c (2); 

ANALYSIS: TYPE = MIXTURE; 

 ALGORITHM = INTEGRATION; 

 STARTS = 100 20; 

MODEL: %OVERALL% 

 f BY u1-u8; 

 [f@0];  

 %c#1% 

 f BY u1@1 u2-u8; 

 f; 

 [u1$1-u8$1]; 

 %c#2% 

 f BY u1@1 u2-u8; 

 f; 

 [u1$1-u8$1]; 

OUTPUT: TECH1 TECH8; 
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In this example, the factor (IRT) mixture model shown in the picture 

above is estimated (Muthén, 2008).  The model is a generalization of the 

latent class model where the latent class model assumption of 

conditional independence between the latent class indicators within class 

is relaxed using a factor that influences the items within each class 

(Muthén, 2006; Muthén & Asparouhov, 2006; Muthén, Asparouhov, & 

Rebollo, 2006).  The factor represents individual variation in response 

probabilities within class.  Alternatively, this model may be seen as an 

Item Response Theory (IRT) mixture model.  The broken arrows from 

the categorical latent variable c to the arrows from the factor f to the 

latent class indicators u1 to u8 indicate that the factor loadings vary 

across classes. 

 

By specifying ALGORITHM=INTEGRATION, a maximum likelihood 

estimator with robust standard errors using a numerical integration 

algorithm will be used.  Note that numerical integration becomes 

increasingly more computationally demanding as the number of factors 

and the sample size increase.  In this example, one dimension of 

integration is used with 15 integration points.  The ESTIMATOR option 

can be used to select a different estimator.  The STARTS option is used 

to specify the number of initial stage random sets of starting values to 

generate and the number of final stage optimizations to use.  The default 

is 20 random sets of starting values for the initial stage and 4 

optimizations for the final stage.  In the example above, the STARTS 

option specifies that 100 random sets of starting values for the initial 

stage and 20 final stage optimizations will be used. 

 

In the overall model, the BY statement specifies that the factor f is 

measured by u1, u2, u3, u4, u5, u6, u7, and u8.  The mean of the factor is 

fixed at zero which implies that the mean is zero in both classes.  The 

factor variance is held equal across classes as the default.  The 

statements in the class-specific parts of the model relax the equality 

constraints across classes for the factor loadings, factor variance, and the 

thresholds of the indicators.  An explanation of the other commands can 

be found in Examples 7.1 and 7.3. 
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EXAMPLE 7.28:  TWO-GROUP TWIN MODEL FOR 

CATEGORICAL OUTCOMES USING MAXIMUM 

LIKELIHOOD AND PARAMETER CONSTRAINTS 
 

 

TITLE: this is an example of a two-group twin 

model for categorical outcomes using 

maximum likelihood and parameter 

constraints 

DATA: FILE = ex7.28.dat; 

VARIABLE: NAMES = u1 u2 dz; 

 CATEGORICAL = u1 u2; 

 CLASSES = cdz (2); 

 KNOWNCLASS = cdz (dz = 0 dz = 1); 

ANALYSIS: TYPE = MIXTURE; 

 ALGORITHM = INTEGRATION; 

 LINK = PROBIT; 

MODEL: %OVERALL% 

 [u1$1-u2$1] (1); 

 f1 BY u1; 

 f2 BY u2; 

     [f1-f2@0];  

     f1-f2 (varf); 

     %cdz#1%  

     f1 WITH f2(covmz);  

     %cdz#2%  

     f1 WITH f2(covdz); 

MODEL CONSTRAINT: 

 NEW(a c h);      

  varf = a**2 + c**2 + .001;   

  covmz = a**2 + c**2; 

 covdz = 0.5*a**2 + c**2; 

  h = a**2/(a**2 + c**2 + 1); 
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In this example, the model shown in the picture above is estimated.  The 

variables u1 and u2 represent a univariate outcome for each member of a 

twin pair.  Monozygotic and dizygotic twins are considered in a two-

group twin model for categorical outcomes using maximum likelihood 

estimation.  Parameter constraints are used to represent the ACE model 

restrictions.  The ACE variance and covariance restrictions are placed on 

normally-distributed latent response variables, which are also called 

liabilities, underlying the categorical outcomes.  This model is referred 

to as the threshold model for liabilities (Neale & Cardon, 1992).  The 

monozygotic and dizygotic twin groups are represented by latent classes 

with known class membership. 

 

The CATEGORICAL option is used to specify which dependent 

variables are treated as binary or ordered categorical (ordinal) variables 

in the model and its estimation.  In the example above, the variables u1 

and u2 are binary or ordered categorical variables.  The program 

determines the number of categories for each indicator.  The 

KNOWNCLASS option identifies cdz as the categorical latent variable 

for which latent class membership is known.   The information in 

parentheses following the categorical latent variable name defines the 

known classes using an observed variable.  In this example, the observed 

variable dz is used to define the known classes.  The first class consists 

of the monozygotic twins who have the value 0 on the variable dz.  The 

second class consists of the dizygotic twins who have the value 1 on the 

variable dz.   

 

By specifying ALGORITHM=INTEGRATION, a maximum likelihood 

estimator with robust standard errors using a numerical integration 
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algorithm will be used.  Note that numerical integration becomes 

increasingly more computationally demanding as the number of factors 

and the sample size increase.  In this example, two dimensions of 

integration are used with 225 integration points.  The ESTIMATOR 

option can be used to select a different estimator.  The LINK option is 

used with maximum likelihood estimation to select a logit or a probit 

link for models with categorical outcomes.  The default is a logit link.  In 

this example, the probit link is used because the threshold model for 

liabilities uses normally-distributed latent response variables. 

 

In the overall model, the (1) following the first bracket statement 

specifies that the thresholds of u1 and u2 are held equal across twins.  

The two BY statements define a factor behind each outcome.  This is 

done because covariances of categorical outcomes are not part of the 

model when maximum likelihood estimation is used.  The covariances of 

the factors become the covariances of the categorical outcomes or more 

precisely the covariances of the latent response variables underlying the 

categorical outcomes.  The means of the factors are fixed at zero and 

their variances are held equal across twins.  The variance of each 

underlying response variable is obtained as the sum of the factor 

variance plus one where one is the residual variance in the probit 

regression of the categorical outcome on the factor.   

 

In the MODEL command, labels are defined for three parameters.  The 

label varf is assigned to the variances of f1 and f2.  Because they are 

given the same label, these parameters are held equal.  The label covmz 

is assigned to the covariance between f1 and f2 for the monozygotic 

twins and the label covdz is assigned to the covariance between f1 and f2 

for the dizygotic twins.  In the MODEL CONSTRAINT command, the 

NEW option is used to assign labels to three parameters that are not in 

the analysis model: a, c, and h.  The two parameters a and c are used to 

decompose the covariances of u1 and u2 into genetic and environmental 

components.   The value .001 is added to the variance of the factors to 

avoid a singular factor covariance matrix which comes about because the 

factor variances and covariances are the same.  The parameter h does not 

impose restrictions on the model parameters but is used to compute the 

heritability estimate and its standard error.  This heritability estimate 

uses the residual variances for the latent response variables which are 

fixed at one.  An explanation of the other commands can be found in 

Example 7.1. 
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EXAMPLE 7.29: TWO-GROUP IRT TWIN MODEL FOR 

FACTORS WITH CATEGORICAL FACTOR INDICATORS 

USING PARAMETER CONSTRAINTS 
 

 
TITLE: this is an example of a two-group IRT twin 

model for factors with categorical factor 

indicators using parameter constraints   

DATA: FILE = ex7.29.dat; 

VARIABLE: NAMES = u11-u14 u21-u24 dz; 

 CATEGORICAL = u11-u24; 

 CLASSES = cdz (2); 

 KNOWNCLASS = cdz (dz = 0 dz = 1); 

ANALYSIS: TYPE = MIXTURE; 

 ALGORITHM = INTEGRATION; 

MODEL: %OVERALL% 

 f1 BY u11 

       u12-u14 (lam2-lam4);  

 f2 BY u21 

       u22-u24 (lam2-lam4);  

 [f1-f2@0];  

 f1-f2 (var); 

 [u11$1-u14$1] (t1-t4); 

 [u21$1-u24$1] (t1-t4); 

 %cdz#1% 

 f1 WITH f2(covmz);  

 %cdz#2% 

 f1 WITH f2(covdz); 

MODEL CONSTRAINT: 

 NEW(a c e h);  

 var = a**2 + c**2 + e**2; 

 covmz = a**2 + c**2; 

 covdz = 0.5*a**2 + c**2; 

 h = a**2/(a**2 + c**2 + e**2); 
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In this example, the model shown in the picture above is estimated. The 

factors f1 and f2 represent a univariate variable for each member of the 

twin pair.  Monozygotic and dizygotic twins are considered in a two-

group twin model for factors with categorical factor indicators using 

parameter constraints and maximum likelihood estimation.  Parameter 

constraints are used to represent the ACE model restrictions.  The ACE 

variance and covariance restrictions are placed on two factors instead of 

two observed variables as in Example 7.28.  The relationships between 

the categorical factor indicators and the factors are logistic regressions.  

Therefore, the factor model for each twin is a two-parameter logistic 

Item Response Theory model (Muthén, Asparouhov, & Rebollo, 2006).   

The monozygotic and dizygotic twin groups are represented by latent 

classes with known class membership. 

 

By specifying ALGORITHM=INTEGRATION, a maximum likelihood 

estimator with robust standard errors using a numerical integration 

algorithm will be used.  Note that numerical integration becomes 

increasingly more computationally demanding as the number of factors 

and the sample size increase.  In this example, two dimensions of 

integration are used with 225 integration points.  The ESTIMATOR 

option can be used to select a different estimator. 

 

In the overall model, the two BY statements specify that f1 is measured 

by u11, u12, u13, and u14 and that f2 is measured by u21, u22, u23, and 

u24.  The means of the factors are fixed at zero.  In the class-specific 

models, the threshold of the dz variable is fixed at 15 in class one and -

15 in class 2.   
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In the MODEL command, labels are defined for nine parameters.  The 

list function can be used when assigning labels.  The label lam2 is 

assigned to the factor loadings for u12 and u22; the label lam3 is 

assigned to the factor loadings for u13 and u23; and the label lam4 is 

assigned to the factor loadings for u14 and u24.  Factor loadings with the 

same label are held equal.  The label t1 is assigned to the thresholds of 

u11 and u21; the label t2 is assigned to the thresholds of u12 and u22;  

the label t3 is assigned to the thresholds of u13 and u23;  and the label t4 

is assigned to the thresholds of u14 and u24.  Parameters with the same 

label are held equal.  The label covmz is assigned to the covariance 

between f1 and f2 for the monozygotic twins and the label covdz is 

assigned to the covariance between f1 and f2 for the dizygotic twins.   

 

In the MODEL CONSTRAINT command, the NEW option is used to 

assign labels to four parameters that are not in the analysis model:  a, c, 

e, and h. The three parameters a, c, and e are used to decompose the 

variances and covariances of f1 and f2 into genetic and environmental 

components.  The parameter h does not impose restrictions on the model 

parameters but is used to compute the heritability estimate and its 

standard error.  An explanation of the other commands can be found in 

Examples 7.1 and 7.28. 

 

EXAMPLE 7.30: CONTINUOUS-TIME SURVIVAL ANALYSIS 

USING A COX REGRESSION MODEL TO ESTIMATE A 

TREATMENT EFFECT   
 

 
TITLE: this is an example of continuous-time 

survival analysis using a Cox regression 

model to estimate a treatment effect 

DATA: FILE = ex7.30.dat; 

VARIABLE: NAMES are t u x tcent class; 

 USEVARIABLES = t-tcent; 

 SURVIVAL = t; 

 TIMECENSORED = tcent; 

 CATEGORICAL = u; 

 CLASSES = c (2); 

ANALYSIS: TYPE = MIXTURE;  
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MODEL:  

 %OVERALL% 

 t ON x; 

 %c#1%  

 [u$1@15]; 

 [t@0]; 

 %c#2%    

 [u$1@-15]; 

 [t]; 

OUTPUT: TECH1 LOGRANK; 

PLOT: TYPE = PLOT2; 

 

 

 
 

 

In this example, the continuous-time survival analysis model shown in 

the picture above is estimated.  The model is similar to Larsen (2004).  A 

treatment and a control group are analyzed as two known latent classes.  

The baseline hazards are held equal across the classes and the treatment 

effect is expressed as the intercept of the survival variable in the 

treatment group.  For applications of this model, see Muthén et al. 

(2009). 

 

The CATEGORICAL option is used to specify that the variable u is a 

binary variable.  This variable is a treatment dummy variable where zero 

represents the control group and one represents the treatment group.  In 

this example, the categorical latent variable c has two classes.  In the 

MODEL command, in the model for class 1, the threshold for u is fixed 

at 15 so that the probability that u equals one is zero.  By this 
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specification, class 1 is the control group.  In the model for class 2, the 

threshold for u is fixed at -15 so that the probability that u equals one is 

one.  By this specification, class 2 is the treatment group.  In the overall 

model, the ON statement describes the Cox regression for the survival 

variable t on the covariate x.  In class 1, the intercept in the Cox 

regression is fixed at zero.  In class 2, it is free.  This intercept represents 

the treatment effect.  The LOGRANK option of the OUTPUT command 

provides a logrank test of the equality of the treatment and control 

survival curves (Mantel, 1966).  By specifying PLOT2 in the PLOT 

command, the following plots are obtained: 

 

 Kaplan-Meier curve 

 Sample log cumulative hazard curve 

 Estimated baseline hazard curve 

 Estimated baseline survival curve 

 Estimated log cumulative baseline curve 

 Kaplan-Meier curve with estimated baseline survival curve 

 Sample log cumulative hazard curve with estimated log 

cumulative baseline curve 

 

An explanation of the other commands can be found in Example 7.1. 
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CHAPTER 8 

EXAMPLES: MIXTURE 

MODELING WITH 

LONGITUDINAL DATA 
 

 

Mixture modeling refers to modeling with categorical latent variables 

that represent subpopulations where population membership is not 

known but is inferred from the data.  This is referred to as finite mixture 

modeling in statistics (McLachlan & Peel, 2000).  For an overview of 

different mixture models, see Muthén (2008).  In mixture modeling with 

longitudinal data, unobserved heterogeneity in the development of an 

outcome over time is captured by categorical and continuous latent 

variables.  The simplest longitudinal mixture model is latent class 

growth analysis (LCGA).  In LCGA, the mixture corresponds to 

different latent trajectory classes.  No variation across individuals is 

allowed within classes (Nagin, 1999; Roeder, Lynch, & Nagin, 1999; 

Kreuter & Muthén, 2008).  Another longitudinal mixture model is the 

growth mixture model (GMM; Muthén & Shedden, 1999; Muthén et al., 

2002; Muthén, 2004; Muthén & Asparouhov, 2009).  In GMM, within-

class variation of individuals is allowed for the latent trajectory classes.  

The within-class variation is represented by random effects, that is, 

continuous latent variables, as in regular growth modeling.  All of the 

growth models discussed in Chapter 6 can be generalized to mixture 

modeling.  Yet another mixture model for analyzing longitudinal data is 

latent transition analysis (LTA; Collins & Wugalter, 1992; Reboussin et 

al., 1998), also referred to as hidden Markov modeling, where latent 

class indicators are measured over time and individuals are allowed to 

transition between latent classes.  With discrete-time survival mixture 

analysis (DTSMA; Muthén & Masyn, 2005), the repeated observed 

outcomes represent event histories.  Continuous-time survival mixture 

modeling is also available (Asparouhov et al., 2006).  For mixture 

modeling with longitudinal data, observed outcome variables can be 

continuous, censored, binary, ordered categorical (ordinal), counts, or 

combinations of these variable types.    
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All longitudinal mixture models can be estimated using the following 

special features: 

 

 Single or multiple group analysis 

 Missing data 

 Complex survey data 

 Latent variable interactions and non-linear factor analysis using 

maximum likelihood 

 Random slopes 

 Individually-varying times of observations 

 Linear and non-linear parameter constraints 

 Indirect effects including specific paths 

 Maximum likelihood estimation for all outcome types 

 Bootstrap standard errors and confidence intervals 

 Wald chi-square test of parameter equalities 

 Test of equality of means across latent classes using posterior 

probability-based multiple imputations 

 

For TYPE=MIXTURE, multiple group analysis is specified by using the 

KNOWNCLASS option of the VARIABLE command.  The default is to 

estimate the model under missing data theory using all available data.  

The LISTWISE option of the DATA command can be used to delete all 

observations from the analysis that have missing values on one or more 

of the analysis variables.  Corrections to the standard errors and chi-

square test of model fit that take into account stratification, non-

independence of observations, and unequal probability of selection are 

obtained by using the TYPE=COMPLEX option of the ANALYSIS 

command in conjunction with the STRATIFICATION, CLUSTER, and 

WEIGHT options of the VARIABLE command. The 

SUBPOPULATION option is used to select observations for an analysis 

when a subpopulation (domain) is analyzed.  Latent variable interactions 

are specified by using the | symbol of the MODEL command in 

conjunction with the XWITH option of the MODEL command.  Random 

slopes are specified by using the | symbol of the MODEL command in 

conjunction with the ON option of the MODEL command.  Individually-

varying times of observations are specified by using the | symbol of the 

MODEL command in conjunction with the AT option of the MODEL 

command and the TSCORES option of the VARIABLE command.  

Linear and non-linear parameter constraints are specified by using the 

MODEL CONSTRAINT command.  Indirect effects are specified by 

using the MODEL INDIRECT command.  Maximum likelihood 
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estimation is specified by using the ESTIMATOR option of the 

ANALYSIS command.  Bootstrap standard errors are obtained by using 

the BOOTSTRAP option of the ANALYSIS command.  Bootstrap 

confidence intervals are obtained by using the BOOTSTRAP option of 

the ANALYSIS command in conjunction with the CINTERVAL option 

of the OUTPUT command.  The MODEL TEST command is used to test 

linear restrictions on the parameters in the MODEL and MODEL 

CONSTRAINT commands using the Wald chi-square test.  The 

AUXILIARY option is used to test the equality of means across latent 

classes using posterior probability-based multiple imputations. 

 

Graphical displays of observed data and analysis results can be obtained 

using the PLOT command in conjunction with a post-processing 

graphics module.  The PLOT command provides histograms, 

scatterplots, plots of individual observed and estimated values, plots of 

sample and estimated means and proportions/probabilities, and plots of 

estimated probabilities for a categorical latent variable as a function of 

its covariates.  These are available for the total sample, by group, by 

class, and adjusted for covariates.  The PLOT command includes 

a display showing a set of descriptive statistics for each variable.  The 

graphical displays can be edited and exported as a DIB, EMF, or JPEG 

file.  In addition, the data for each graphical display can be saved in an 

external file for use by another graphics program.  

 

Following is the set of GMM examples included in this chapter: 

 

 8.1:  GMM for a continuous outcome using automatic starting values 

and random starts 

 8.2:  GMM for a continuous outcome using user-specified starting 

values and random starts 

 8.3:  GMM for a censored outcome using a censored model with 

automatic starting values and random starts* 

 8.4:  GMM for a categorical outcome using automatic starting values 

and random starts* 

 8.5:  GMM for a count outcome using a zero-inflated Poisson model 

and a negative binomial model with automatic starting values and 

random starts* 

 8.6:  GMM with a categorical distal outcome using automatic 

starting values and random starts 

 8.7:  A sequential process GMM for continuous outcomes with two 

categorical latent variables 
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 8.8:  GMM with known classes (multiple group analysis)  

 

Following is the set of LCGA examples included in this chapter: 

 

 8.9:  LCGA for a binary outcome 

 8.10:  LCGA for a three-category outcome 

 8.11:  LCGA for a count outcome using a zero-inflated Poisson 

model 

 

Following is the set of hidden Markov and LTA examples included in 

this chapter: 

 

 8.12:  Hidden Markov model with four time points 

 8.13:  LTA for two time points with a binary covariate influencing 

the latent transition probabilities 

 8.14:  LTA for two time points with a continuous covariate 

influencing the latent transition probabilities 

 8.15:  Mover-stayer LTA for three time points using a probability 

parameterization 

 

Following are the discrete-time and continuous-time survival mixture 

analysis examples included in this chapter: 

 

 8.16:  Discrete-time survival mixture analysis with survival 

predicted by growth trajectory classes 

 8.17:  Continuous-time survival mixture analysis using a Cox 

regression model 

 

*  Example uses numerical integration in the estimation of the model.  

This can be computationally demanding depending on the size of the 

problem. 
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EXAMPLE 8.1: GMM FOR A CONTINUOUS OUTCOME 

USING AUTOMATIC STARTING VALUES AND RANDOM 

STARTS 
 

 
TITLE: this is an example of a GMM for a 

continuous outcome using automatic 

starting values and random starts  

DATA: FILE IS ex8.1.dat; 

VARIABLE: NAMES ARE y1–y4 x; 

 CLASSES = c (2); 

ANALYSIS: TYPE = MIXTURE; 

 STARTS = 40 8; 

MODEL:  

 %OVERALL% 

 i s | y1@0 y2@1 y3@2 y4@3; 

 i s ON x; 

 c ON x; 

OUTPUT: TECH1 TECH8; 

 

 

 
 

 

In the example above, the growth mixture model (GMM) for a 

continuous outcome shown in the picture above is estimated.  Because c 

is a categorical latent variable, the interpretation of the picture is not the 

same as for models with continuous latent variables.  The arrows from c 
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to the growth factors i and s indicate that the intercepts in the regressions 

of the growth factors on x vary across the classes of c.  This corresponds 

to the regressions of i and s on a set of dummy variables representing the 

categories of c.  The arrow from x to c represents the multinomial 

logistic regression of c on x.  GMM is discussed in Muthén and Shedden 

(1999), Muthén (2004), and Muthén and Asparouhov (2009). 

 
TITLE: this is an example of a growth mixture 

model for a continuous outcome 

 

The TITLE command is used to provide a title for the analysis.  The title 

is printed in the output just before the Summary of Analysis. 

 
DATA:  FILE IS ex8.1.dat; 

 

The DATA command is used to provide information about the data set 

to be analyzed.  The FILE option is used to specify the name of the file 

that contains the data to be analyzed, ex8.1.dat.  Because the data set is 

in free format, the default, a FORMAT statement is not required. 

 
VARIABLE: NAMES ARE y1–y4 x; 

  CLASSES = c (2); 

 

The VARIABLE command is used to provide information about the 

variables in the data set to be analyzed.  The NAMES option is used to 

assign names to the variables in the data set.  The data set in this 

example contains five variables:  y1, y2, y3, y4, and x. Note that the 

hyphen can be used as a convenience feature in order to generate a list of 

names.  The CLASSES option is used to assign names to the categorical 

latent variables in the model and to specify the number of latent classes 

in the model for each categorical latent variable.  In the example above, 

there is one categorical latent variable c that has two latent classes.    

 
ANALYSIS: TYPE = MIXTURE; 

  STARTS = 40 8; 

 

The ANALYSIS command is used to describe the technical details of the 

analysis.  The TYPE option is used to describe the type of analysis that 

is to be performed.  By selecting MIXTURE, a mixture model will be 

estimated.  
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When TYPE=MIXTURE is specified, either user-specified or automatic 

starting values are used to create randomly perturbed sets of starting 

values for all parameters in the model except variances and covariances. 

In this example, the random perturbations are based on automatic 

starting values.  Maximum likelihood optimization is done in two stages. 

In the initial stage, 20 random sets of starting values are generated.  An 

optimization is carried out for 10 iterations using each of the 20 random 

sets of starting values.  The ending values from the 4 optimizations with 

the highest loglikelihoods are used as the starting values in the final 

stage optimizations which is carried out using the default optimization 

settings for TYPE=MIXTURE.  A more thorough investigation of 

multiple solutions can be carried out using the STARTS and 

STITERATIONS options of the ANALYSIS command.  In this example, 

40 initial stage random sets of starting values are used and 8 final stage 

optimizations are carried out.   

 
MODEL:  

 %OVERALL% 

 i s | y1@0 y2@1 y3@2 y4@3; 

 i s ON x; 

 c ON x; 

 

The MODEL command is used to describe the model to be estimated.  

For mixture models, there is an overall model designated by the label 

%OVERALL%.  The overall model describes the part of the model that 

is in common for all latent classes.  The | symbol is used to name and 

define the intercept and slope growth factors in a growth model.  The 

names i and s on the left-hand side of the | symbol are the names of the 

intercept and slope growth factors, respectively.  The statement on the 

right-hand side of the | symbol specifies the outcome and the time scores 

for the growth model.  The time scores for the slope growth factor are 

fixed at 0, 1, 2, and 3 to define a linear growth model with equidistant 

time points.  The zero time score for the slope growth factor at time 

point one defines the intercept growth factor as an initial status factor.  

The coefficients of the intercept growth factor are fixed at one as part of 

the growth model parameterization.  The residual variances of the 

outcome variables are estimated and allowed to be different across time 

and the residuals are not correlated as the default.  

 

In the parameterization of the growth model shown here, the intercepts 

of the outcome variable at the four time points are fixed at zero as the 

default.  The intercepts and residual variances of the growth factors are 
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estimated as the default, and the growth factor residual covariance is 

estimated as the default because the growth factors do not influence any 

variable in the model except their own indicators.  The intercepts of the 

growth factors are not held equal across classes as the default.  The 

residual variances and residual covariance of the growth factors are held 

equal across classes as the default.   

 

The first ON statement describes the linear regressions of the intercept 

and slope growth factors on the covariate x.  The second ON statement 

describes the multinomial logistic regression of the categorical latent 

variable c on the covariate x when comparing class 1 to class 2.  The 

intercept of this regression is estimated as the default. The default 

estimator for this type of analysis is maximum likelihood with robust 

standard errors.  The ESTIMATOR option of the ANALYSIS command 

can be used to select a different estimator. 

 

Following is an alternative specification of the multinomial logistic 

regression of c on the covariate x: 

 

c#1 ON x; 

 

where c#1 refers to the first class of c.  The classes of a categorical latent 

variable are referred to by adding to the name of the categorical latent 

variable the number sign (#) followed by the number of the class.  This 

alternative specification allows individual parameters to be referred to in 

the MODEL command for the purpose of giving starting values or 

placing restrictions. 

 
OUTPUT: TECH1 TECH8; 

 

The OUTPUT command is used to request additional output not 

included as the default.  The TECH1 option is used to request the arrays 

containing parameter specifications and starting values for all free 

parameters in the model.  The TECH8 option is used to request that the 

optimization history in estimating the model be printed in the output.  

TECH8 is printed to the screen during the computations as the default.  

TECH8 screen printing is useful for determining how long the analysis 

takes.   
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EXAMPLE 8.2: GMM FOR A CONTINUOUS OUTCOME 

USING USER-SPECIFIED STARTING VALUES AND RANDOM 

STARTS 
 

 
TITLE: this is an example of a GMM for a 

continuous outcome using user-specified 

starting values and random starts  

DATA: FILE IS ex8.2.dat; 

VARIABLE: NAMES ARE y1–y4 x; 

 CLASSES = c (2); 

ANALYSIS: TYPE = MIXTURE; 

MODEL:  

 %OVERALL% 

 i s | y1@0 y2@1 y3@2 y4@3; 

 i s ON x; 

 c ON x; 

 %c#1% 

 [i*1 s*.5]; 

 %c#2% 

 [i*3 s*1]; 

OUTPUT: TECH1 TECH8; 

 

The difference between this example and Example 8.1 is that user-

specified starting values are used instead of automatic starting values.  In 

the MODEL command, user-specified starting values are given for the 

intercepts of the intercept and slope growth factors.  Intercepts are 

referred to using brackets statements.  The asterisk (*) is used to assign a 

starting value for a parameter.  It is placed after the parameter with the 

starting value following it.  In class 1, a starting value of 1 is given for 

the intercept growth factor and a starting value of .5 is given for the 

slope growth factor.  In class 2, a starting value of 3 is given for the 

intercept growth factor and a starting value of 1 is given for the slope 

growth factor.  The default estimator for this type of analysis is 

maximum likelihood with robust standard errors.  The ESTIMATOR 

option of the ANALYSIS command can be used to select a different 

estimator. An explanation of the other commands can be found in 

Example 8.1.  
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EXAMPLE 8.3: GMM FOR A CENSORED OUTCOME USING A 

CENSORED MODEL WITH AUTOMATIC STARTING 

VALUES AND RANDOM STARTS 
 

 
TITLE: this is an example of a GMM for a censored 

outcome using a censored model with 

automatic starting values and random 

starts  

DATA: FILE IS ex8.3.dat; 

VARIABLE: NAMES ARE y1-y4 x; 

 CLASSES = c (2); 

 CENSORED = y1-y4 (b); 

ANALYSIS: TYPE = MIXTURE; 

 ALGORITHM = INTEGRATION; 

MODEL:  

 %OVERALL% 

 i s | y1@0 y2@1 y3@2 y4@3; 

 i s ON x; 

 c ON x; 

OUTPUT: TECH1 TECH8; 

 

The difference between this example and Example 8.1 is that the 

outcome variable is a censored variable instead of a continuous variable.  

The CENSORED option is used to specify which dependent variables 

are treated as censored variables in the model and its estimation, whether 

they are censored from above or below, and whether a censored or 

censored-inflated model will be estimated.  In the example above, y1, y2, 

y3, and y4 are censored variables.  They represent the outcome variable 

measured at four equidistant occasions.  The b in parentheses following 

y1-y4 indicates that y1, y2, y3, and y4 are censored from below, that is, 

have floor effects, and that the model is a censored regression model.  

The censoring limit is determined from the data.   

 

By specifying ALGORITHM=INTEGRATION, a maximum likelihood 

estimator with robust standard errors using a numerical integration 

algorithm will be used.  Note that numerical integration becomes 

increasingly more computationally demanding as the number of factors 

and the sample size increase.  In this example, two dimensions of 

integration are used with a total of 225 integration points.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 

a different estimator.   
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In the parameterization of the growth model shown here, the intercepts 

of the outcome variable at the four time points are fixed at zero as the 

default.  The intercepts and residual variances of the growth factors are 

estimated as the default, and the growth factor residual covariance is 

estimated as the default because the growth factors do not influence any 

variable in the model except their own indicators.  The intercepts of the 

growth factors are not held equal across classes as the default.  The 

residual variances and residual covariance of the growth factors are held 

equal across classes as the default.  An explanation of the other 

commands can be found in Example 8.1. 

 

EXAMPLE 8.4: GMM FOR A CATEGORICAL OUTCOME 

USING AUTOMATIC STARTING VALUES AND RANDOM 

STARTS 
 

 
TITLE: this is an example of a GMM for a 

categorical outcome using automatic 

starting values and random starts  

DATA: FILE IS ex8.4.dat; 

VARIABLE: NAMES ARE u1–u4 x; 

 CLASSES = c (2); 

 CATEGORICAL = u1-u4; 

ANALYSIS: TYPE = MIXTURE; 

 ALGORITHM = INTEGRATION; 

MODEL:  

 %OVERALL% 

 i s | u1@0 u2@1 u3@2 u4@3; 

 i s ON x; 

 c ON x; 

OUTPUT: TECH1 TECH8; 

 

The difference between this example and Example 8.1 is that the 

outcome variable is a binary or ordered categorical (ordinal) variable 

instead of a continuous variable.  The CATEGORICAL option is used to 

specify which dependent variables are treated as binary or ordered 

categorical (ordinal) variables in the model and its estimation.  In the 

example above, u1, u2, u3, and u4 are binary or ordered categorical 

variables.  They represent the outcome variable measured at four 

equidistant occasions.   

 

By specifying ALGORITHM=INTEGRATION, a maximum likelihood 

estimator with robust standard errors using a numerical integration 
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algorithm will be used.  Note that numerical integration becomes 

increasingly more computationally demanding as the number of factors 

and the sample size increase.  In this example, two dimensions of 

integration are used with a total of 225 integration points.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 

a different estimator.  

 

In the parameterization of the growth model shown here, the thresholds 

of the outcome variable at the four time points are held equal as the 

default.  The intercept of the intercept growth factor is fixed at zero in 

the last class and is free to be estimated in the other classes.  The 

intercept of the slope growth factor and the residual variances of the 

intercept and slope growth factors are estimated as the default, and the 

growth factor residual covariance is estimated as the default because the 

growth factors do not influence any variable in the model except their 

own indicators.  The intercepts of the growth factors are not held equal 

across classes as the default.  The residual variances and residual 

covariance of the growth factors are held equal across classes as the 

default.  An explanation of the other commands can be found in 

Example 8.1. 

 

EXAMPLE 8.5: GMM FOR A COUNT OUTCOME USING A 

ZERO-INFLATED POISSON MODEL AND A NEGATIVE 

BINOMIAL MODEL WITH AUTOMATIC STARTING VALUES 

AND RANDOM STARTS 
 

 
TITLE: this is an example of a GMM for a count 

outcome using a zero-inflated Poisson 

model with automatic starting values and 

random starts  

DATA: FILE IS ex8.5a.dat; 

VARIABLE: NAMES ARE u1–u8 x; 

 CLASSES = c (2); 

 COUNT ARE u1-u8 (i); 

ANALYSIS: TYPE = MIXTURE; 

 STARTS = 40 8; 

 STITERATIONS = 20; 

 ALGORITHM = INTEGRATION; 
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MODEL:  

 %OVERALL% 

 i s q | u1@0 u2@.1 u3@.2 u4@.3 u5@.4 u6@.5  

 u7@.6 u8@.7; 

 ii si qi | u1#1@0 u2#1@.1 u3#1@.2 u4#1@.3 

u5#1@.4 u6#1@.5 u7#1@.6 u8#1@.7; 

 s-qi@0; 

 i s ON x; 

 c ON x; 

OUTPUT: TECH1 TECH8; 

 

The difference between this example and Example 8.1 is that the 

outcome variable is a count variable instead of a continuous variable.  In 

addition, the outcome is measured at eight occasions instead of four and 

a quadratic rather than a linear growth model is estimated.  The COUNT 

option is used to specify which dependent variables are treated as count 

variables in the model and its estimation and the type of model that will 

be estimated.  In the first part of this example a zero-inflated Poisson 

model is estimated.  In the example above, u1, u2, u3, u4, u5, u6, u7, and 

u8 are count variables.  They represent the outcome variable measured at 

eight equidistant occasions.  The i in parentheses following u1-u8 

indicates that a zero-inflated Poisson model will be estimated.   

 

A more thorough investigation of multiple solutions can be carried out 

using the STARTS and STITERATIONS options of the ANALYSIS 

command.  In this example, 40 initial stage random sets of starting 

values are used and 8 final stage optimizations are carried out.  In the 

initial stage analyses, 20 iterations are used instead of the default of 10 

iterations.  By specifying ALGORITHM=INTEGRATION, a maximum 

likelihood estimator with robust standard errors using a numerical 

integration algorithm will be used.  Note that numerical integration 

becomes increasingly more computationally demanding as the number of 

factors and the sample size increase.  In this example, one dimension of 

integration is used with 15 integration points.   The ESTIMATOR option 

of the ANALYSIS command can be used to select a different estimator.   

 

With a zero-inflated Poisson model, two growth models are estimated.  

The first | statement describes the growth model for the count part of the 

outcome for individuals who are able to assume values of zero and 

above. The second | statement describes the growth model for the 

inflation part of the outcome, the probability of being unable to assume 

any value except zero.  The binary latent inflation variable is referred to 



CHAPTER 8 

 234 

by adding to the name of the count variable the number sign (#) followed 

by the number 1.   

 

In the parameterization of the growth model for the count part of the 

outcome, the intercepts of the outcome variable at the eight time points 

are fixed at zero as the default.  The intercepts and residual variances of 

the growth factors are estimated as the default, and the growth factor 

residual covariances are estimated as the default because the growth 

factors do not influence any variable in the model except their own 

indicators.  The intercepts of the growth factors are not held equal across 

classes as the default.  The residual variances and residual covariances 

of the growth factors are held equal across classes as the default.  In this 

example, the variances of the slope growth factors s and q are fixed at 

zero.  This implies that the covariances between i, s, and q are fixed at 

zero.  Only the variance of the intercept growth factor i is estimated. 

 

In the parameterization of the growth model for the inflation part of the 

outcome, the intercepts of the outcome variable at the eight time points 

are held equal as the default.  The intercept of the intercept growth factor 

is fixed at zero in all classes as the default.  The intercept of the slope 

growth factor and the residual variances of the intercept and slope 

growth factors are estimated as the default, and the growth factor 

residual covariances are estimated as the default because the growth 

factors do not influence any variable in the model except their own 

indicators.  The intercept of the slope growth factor, the residual 

variances of the growth factors, and residual covariance of the growth 

factors are held equal across classes as the default.  These defaults can 

be overridden, but freeing too many parameters in the inflation part of 

the model can lead to convergence problems.  In this example, the 

variances of the intercept and slope growth factors are fixed at zero.  

This implies that the covariances between ii, si, and qi are fixed at zero.  

An explanation of the other commands can be found in Example 8.1. 

 
TITLE: this is an example of a GMM for a count  

 outcome using a negative binomial model 

with automatic starting values and random 

starts  

DATA: FILE IS ex8.5b.dat; 

VARIABLE: NAMES ARE u1-u8 x; 

 CLASSES = c(2); 

  COUNT = u1-u8(nb); 

ANALYSIS: TYPE = MIXTURE; 

 ALGORITHM = INTEGRATION; 
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MODEL: 

 %OVERALL% 

 i s q | u1@0 u2@.1 u3@.2 u4@.3 u5@.4 u6@.5 

u7@.6 u8@.7; 

 s-q@0;  

 i s ON x; 

 c ON x; 

OUTPUT: TECH1 TECH8; 

 

The difference between this part of the example and the first part is that 

a growth mixture model (GMM) for a count outcome using a negative 

binomial model is estimated instead of a zero-inflated Poisson model.    

The negative binomial model estimates a dispersion parameter for each 

of the outcomes (Long, 1997; Hilbe, 2011). 

 

The COUNT option is used to specify which dependent variables are 

treated as count variables in the model and its estimation and which type 

of model is estimated.  The nb in parentheses following u1-u8 indicates 

that a negative binomial model will be estimated.  The dispersion 

parameters for each of the outcomes are held equal across classes as the 

default.  The dispersion parameters can be referred to using the names of 

the count variables.   An explanation of the other commands can be 

found in the first part of this example and in Example 8.1. 

 

EXAMPLE 8.6: GMM WITH A CATEGORICAL DISTAL 

OUTCOME USING AUTOMATIC STARTING VALUES AND 

RANDOM STARTS 
 

 
TITLE: this is an example of a GMM with a 

categorical distal outcome using automatic 

starting values and random starts 

DATA: FILE IS ex8.6.dat; 

VARIABLE: NAMES ARE y1–y4 u x; 

 CLASSES = c(2); 

 CATEGORICAL = u; 

ANALYSIS: TYPE = MIXTURE; 

MODEL:  

 %OVERALL% 

 i s | y1@0 y2@1 y3@2 y4@3; 

 i s ON x; 

 c ON x; 

OUTPUT: TECH1 TECH8; 
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The difference between this example and Example 8.1 is that a binary or 

ordered categorical (ordinal) distal outcome has been added to the model 

as shown in the picture above.  The distal outcome u is regressed on the 

categorical latent variable c using logistic regression.  This is 

represented as the thresholds of u varying across classes.   

 

The CATEGORICAL option is used to specify which dependent 

variables are treated as binary or ordered categorical (ordinal) variables 

in the model and its estimation.  In the example above, u is a binary or 

ordered categorical variable.  The program determines the number of 

categories for each indicator.  The default is that the thresholds of u are 

estimated and vary across the latent classes.  Because automatic starting 

values are used, it is not necessary to include these class-specific 

statements in the model command.  The default estimator for this type of 

analysis is maximum likelihood with robust standard errors.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 

a different estimator.  An explanation of the other commands can be 

found in Example 8.1. 
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EXAMPLE 8.7: A SEQUENTIAL PROCESS GMM FOR 

CONTINUOUS OUTCOMES WITH TWO CATEGORICAL 

LATENT VARIABLES 
 

 
TITLE:      this is an example of a sequential   

            process GMM for continuous outcomes with  

            two categorical latent variables 

DATA:       FILE IS ex8.7.dat; 

VARIABLE:   NAMES ARE y1-y8; 

            CLASSES = c1 (3) c2 (2); 

ANALYSIS:   TYPE = MIXTURE; 

MODEL: 

            %OVERALL% 

            i1 s1 | y1@0 y2@1 y3@2 y4@3; 

            i2 s2 | y5@0 y6@1 y7@2 y8@3; 

            c2 ON c1;  

MODEL c1: 

            %c1#1% 

            [i1 s1]; 

 

            %c1#2% 

            [i1*1 s1]; 

 

            %c1#3% 

            [i1*2 s1]; 

MODEL c2: 

            %c2#1% 

            [i2 s2]; 

 

            %c2#2% 

            [i2*-1 s2]; 

OUTPUT: TECH1 TECH8; 
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In this example, the sequential process growth mixture model for 

continuous outcomes shown in the picture above is estimated.  The latent 

classes of the second process are related to the latent classes of the first 

process.  This is a type of latent transition analysis.  Latent transition 

analysis is shown in Examples 8.12, 8.13, and 8.14. 

 

The | statements in the overall model are used to name and define the 

intercept and slope growth factors in the growth models.  In the first | 

statement, the names i1 and s1 on the left-hand side of the | symbol are 

the names of the intercept and slope growth factors, respectively. In the 

second | statement, the names i2 and s2 on the left-hand side of the | 

symbol are the names of the intercept and slope growth factors, 

respectively.   In both | statements, the values on the right-hand side of 

the | symbol are the time scores for the slope growth factor.  For both 

growth processes, the time scores of the slope growth factors are fixed at 

0, 1, 2, and 3 to define linear growth models with equidistant time 

points.  The zero time scores for the slope growth factors at time point 

one define the intercept growth factors as initial status factors.  The 

coefficients of the intercept growth factors i1 and i2 are fixed at one as 

part of the growth model parameterization.  In the parameterization of 

the growth model shown here, the means of the outcome variables at the 

four time points are fixed at zero as the default.  The intercept and slope 

growth factor means are estimated as the default.  The variances of the 

growth factors are also estimated as the default.  The growth factors are 
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correlated as the default because they are independent (exogenous) 

variables.  The means of the growth factors are not held equal across 

classes as the default.  The variances and covariances of the growth 

factors are held equal across classes as the default.   

 

In the overall model, the ON statement describes the probabilities of 

transitioning from a class of the categorical latent variable c1 to a class 

of the categorical latent variable c2.  The ON statement describes the 

multinomial logistic regression of c2 on c1 when comparing class 1 of c2 

to class 2 of c2.  In this multinomial logistic regression, coefficients 

corresponding to the last class of each of the categorical latent variables 

are fixed at zero.  The parameterization of models with more than one 

categorical latent variable is discussed in Chapter 14.  Because c1 has 

three classes and c2 has two classes, two regression coefficients are 

estimated.  The means of c1 and the intercepts of c2 are estimated as the 

default.  

 

When there are multiple categorical latent variables, each one has its 

own MODEL command.  The MODEL command for each latent 

variable is specified by MODEL followed by the name of the latent 

variable.  For each categorical latent variable, the part of the model that 

differs for each class is specified by a label that consists of the 

categorical latent variable followed by the number sign followed by the 

class number.  In the example above, the label %c1#1% refers to the part 

of the model for class one of the categorical latent variable c1 that 

differs from the overall model.  The label %c2#1% refers to the part of 

the model for class one of the categorical latent variable c2 that differs 

from the overall model.  The class-specific part of the model for each 

categorical latent variable specifies that the means of the intercept and 

slope growth factors are free to be estimated for each class.  The default 

estimator for this type of analysis is maximum likelihood with robust 

standard errors.  The ESTIMATOR option of the ANALYSIS command 

can be used to select a different estimator.  An explanation of the other 

commands can be found in Example 8.1. 

 

Following is an alternative specification of the multinomial logistic 

regression of c2 on c1: 

 

c2#1 ON c1#1 c1#2; 
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where c2#1 refers to the first class of c2, c1#1 refers to the first class of 

c1, and c1#2 refers to the second class of c1.  The classes of a 

categorical latent variable are referred to by adding to the name of the 

categorical latent variable the number sign (#) followed by the number 

of the class.  This alternative specification allows individual parameters 

to be referred to in the MODEL command for the purpose of giving 

starting values or placing restrictions. 

 

EXAMPLE 8.8: GMM WITH KNOWN CLASSES (MULTIPLE 

GROUP ANALYSIS) 
 

 
TITLE: this is an example of GMM with known 

classes (multiple group analysis) 

DATA: FILE IS ex8.8.dat; 

VARIABLE: NAMES ARE g y1-y4 x; 

 USEVARIABLES ARE y1-y4 x; 

 CLASSES = cg (2) c (2); 

 KNOWNCLASS = cg (g = 0 g = 1); 

ANALYSIS: TYPE = MIXTURE; 

MODEL: 

 %OVERALL% 

 i s | y1@0 y2@1 y3@2 y4@3; 

 i s ON x; 

 c ON cg x; 

 %cg#1.c#1% 

 [i*2 s*1]; 

 %cg#1.c#2% 

 [i*0 s*0]; 

 %cg#2.c#1% 

 [i*3 s*1.5]; 

 %cg#2.c#2% 

 [i*1 s*.5]; 

OUTPUT: TECH1 TECH8; 
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The difference between this example and Example 8.1 is that this 

analysis includes a categorical latent variable for which class 

membership is known resulting in a multiple group growth mixture 

model.  The CLASSES option is used to assign names to the categorical 

latent variables in the model and to specify the number of latent classes 

in the model for each categorical latent variable.  In the example above, 

there are two categorical latent variables cg and c.  Both categorical 

latent variables have two latent classes. The KNOWNCLASS option is 

used for multiple group analysis with TYPE=MIXTURE to identify the 

categorical latent variable for which latent class membership is known 

and is equal to observed groups in the sample.  The KNOWNCLASS 

option identifies cg as the categorical latent variable for which class 

membership is known.   The information in parentheses following the 

categorical latent variable name defines the known classes using an 

observed variable.  In this example, the observed variable g is used to 

define the known classes.  The first class consists of individuals with the 

value 0 on the variable g.  The second class consists of individuals with 

the value 1 on the variable g.   

 

In the overall model, the second ON statement describes the multinomial 

logistic regression of the categorical latent variable c on the known class 

variable cg and the covariate x.  This allows the class probabilities to 

vary across the observed groups in the sample.  In the four class-specific 
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parts of the model, starting values are given for the growth factor 

intercepts.  The four classes correspond to a combination of the classes 

of cg and c.  They are referred to by combining the class labels using a 

period (.).  For example, the combination of class 1 of cg and class 1 of c 

is referred to as cg#1.c#1.  The default estimator for this type of analysis 

is maximum likelihood with robust standard errors.  The ESTIMATOR 

option of the ANALYSIS command can be used to select a different 

estimator.  An explanation of the other commands can be found in 

Example 8.1. 

 

EXAMPLE 8.9: LCGA FOR A BINARY OUTCOME 
 

 
TITLE:      this is an example of a LCGA for a binary  

            outcome 

DATA:       FILE IS ex8.9.dat;  

VARIABLE:   NAMES ARE u1-u4; 

            CLASSES = c (2); 

            CATEGORICAL = u1-u4; 

ANALYSIS:   TYPE = MIXTURE; 

MODEL: 

            %OVERALL% 

            i s | u1@0 u2@1 u3@2 u4@3; 

OUTPUT:     TECH1 TECH8; 
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The difference between this example and Example 8.4 is that a LCGA 

for a binary outcome as shown in the picture above is estimated instead 

of a GMM.  The difference between these two models is that GMM 

allows within class variability and LCGA does not (Kreuter & Muthén, 

2008; Muthén, 2004; Muthén & Asparouhov, 2009). 

 

When TYPE=MIXTURE without ALGORITHM=INTEGRATION is 

selected, a LCGA is carried out.  In the parameterization of the growth 

model shown here, the thresholds of the outcome variable at the four 

time points are held equal as the default.  The intercept growth factor 

mean is fixed at zero in the last class and estimated in the other classes.  

The slope growth factor mean is estimated as the default in all classes.  

The variances of the growth factors are fixed at zero as the default 

without ALGORITHM=INTEGRATION.  Because of this, the growth 

factor covariance is fixed at zero.  The default estimator for this type of 

analysis is maximum likelihood with robust standard errors.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 

a different estimator. An explanation of the other commands can be 

found in Examples 8.1 and 8.4. 

 

EXAMPLE 8.10: LCGA FOR A THREE-CATEGORY 

OUTCOME 
 

 
TITLE: this is an example of a LCGA for a three-

category outcome 

DATA: FILE IS ex8.10.dat; 

VARIABLE: NAMES ARE u1-u4; 

 CLASSES = c(2); 

 CATEGORICAL = u1-u4; 

ANALYSIS: TYPE = MIXTURE; 

MODEL:  

 %OVERALL% 

 i s | u1@0 u2@1 u3@2 u4@3; 

! [u1$1-u4$1*-.5] (1); 

! [u1$2-u4$2* .5] (2); 

! %c#1% 

!  [i*1 s*0]; 

! %c#2%  

! [i@0 s*0]; 

OUTPUT: TECH1 TECH8; 
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The difference between this example and Example 8.9 is that the 

outcome variable is an ordered categorical (ordinal) variable instead of a 

binary variable.  Note that the statements that are commented out are not 

necessary.  This results in an input identical to Example 8.9.  The 

statements are shown to illustrate how starting values can be given for 

the thresholds and growth factor means in the model if this is needed.  

Because the outcome is a three-category variable, it has two thresholds.  

An explanation of the other commands can be found in Examples 8.1, 

8.4 and 8.9. 

 

EXAMPLE 8.11: LCGA FOR A COUNT OUTCOME USING A 

ZERO-INFLATED POISSON MODEL 
 

 
TITLE: this is an example of a LCGA for a count  

 outcome using a zero-inflated Poisson  

 model 

DATA: FILE IS ex8.11.dat; 

VARIABLE: NAMES ARE u1-u4; 

 COUNT = u1-u4 (i); 

 CLASSES = c (2); 

ANALYSIS: TYPE = MIXTURE; 

MODEL: 

 %OVERALL% 

 i s | u1@0 u2@1 u3@2 u4@3; 

 ii si | u1#1@0 u2#1@1 u3#1@2 u4#1@3; 

OUTPUT:  TECH1 TECH8; 

 

The difference between this example and Example 8.9 is that the 

outcome variable is a count variable instead of a continuous variable. 

The COUNT option is used to specify which dependent variables are 

treated as count variables in the model and its estimation and whether a 

Poisson or zero-inflated Poisson model will be estimated.  In the 

example above, u1, u2, u3, and u4 are count variables and a zero-inflated 

Poisson model is used.  The count variables represent the outcome 

measured at four equidistant occasions.   

 

With a zero-inflated Poisson model, two growth models are estimated.  

The first | statement describes the growth model for the count part of the 

outcome for individuals who are able to assume values of zero and 

above. The second | statement describes the growth model for the 

inflation part of the outcome, the probability of being unable to assume 

any value except zero.  The binary latent inflation variable is referred to 
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by adding to the name of the count variable the number sign (#) followed 

by the number 1.   

 

In the parameterization of the growth model for the count part of the 

outcome, the intercepts of the outcome variable at the four time points 

are fixed at zero as the default.  The means of the growth factors are 

estimated as the default.   The variances of the growth factors are fixed 

at zero.  Because of this, the growth factor covariance is fixed at zero as 

the default.  The means of the growth factors are not held equal across 

classes as the default.   

 

In the parameterization of the growth model for the inflation part of the 

outcome, the intercepts of the outcome variable at the four time points 

are held equal as the default.  The mean of the intercept growth factor is 

fixed at zero in all classes as the default.  The mean of the slope growth 

factor is estimated and held equal across classes as the default.  These 

defaults can be overridden, but freeing too many parameters in the 

inflation part of the model can lead to convergence problems.  The 

variances of the growth factors are fixed at zero.  Because of this, the 

growth factor covariance is fixed at zero.  The default estimator for this 

type of analysis is maximum likelihood with robust standard errors.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 

a different estimator.  An explanation of the other commands can be 

found in Examples 8.1 and 8.9. 

 

EXAMPLE 8.12: HIDDEN MARKOV MODEL WITH FOUR 

TIME POINTS 
 

 
TITLE: this is an example of a hidden Markov  

 model with four time points 

DATA: FILE IS ex8.12.dat; 

VARIABLE: NAMES ARE u1-u4; 

 CATEGORICAL = u1-u4; 

 CLASSES = c1(2) c2(2) c3(2) c4(2); 

ANALYSIS: TYPE = MIXTURE; 

MODEL: 

 %OVERALL% 

 [c2#1-c4#1]  (1); 

 c4 ON c3 (2);  

 c3 ON c2 (2); 

 c2 ON c1 (2); 
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MODEL c1: 

 %c1#1% 

 [u1$1] (3); 

 %c1#2% 

 [u1$1] (4); 

MODEL c2: 

 %c2#1% 

 [u2$1] (3); 

 %c2#2% 

 [u2$1] (4); 

MODEL c3: 

 %c3#1% 

 [u3$1] (3); 

 %c3#2% 

 [u3$1] (4); 

MODEL c4: 

 %c4#1% 

 [u4$1] (3); 

 %c4#2% 

 [u4$1] (4); 

OUTPUT: TECH1 TECH8; 

 

 

 
 

 

In this example, the hidden Markov model for a single binary outcome 

measured at four time points shown in the picture above is estimated.  

Although each categorical latent variable has only one latent class 

indicator, this model allows the estimation of measurement error by 

allowing latent class membership and observed response to disagree. 

This is a first-order Markov process where the transition matrices are 

specified to be equal over time (Langeheine & van de Pol, 2002).  The 

parameterization of this model is described in Chapter 14. 

 

The CLASSES option is used to assign names to the categorical latent 

variables in the model and to specify the number of latent classes in the 
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model for each categorical latent variable.  In the example above, there 

are four categorical latent variables c1, c2, c3, and c4.  All of the 

categorical latent variables have two latent classes.  In the overall model, 

the transition matrices are held equal over time.  This is done by placing 

(1) after the bracket statement for the intercepts of c2, c3, and c4 and by 

placing (2) after each of the ON statements that represent the first-order 

Markov relationships.  When a model has more than one categorical 

latent variable, MODEL followed by a label is used to describe the 

analysis model for each categorical latent variable.  Labels are defined 

by using the names of the categorical latent variables.  The class-specific 

equalities (3) and (4) represent measurement invariance across time.  An 

explanation of the other commands can be found in Example 8.1. 

 

EXAMPLE 8.13: LTA FOR TWO TIME POINTS WITH A 

BINARY COVARIATE INFLUENCING THE LATENT 

TRANSITION PROBABILITIES 
 

 
TITLE:  this is an example of a LTA for two time 

points with a binary covariate influencing 

the latent transition probabilities 

DATA: FILE = ex8.13.dat; 

VARIABLE: NAMES = u11-u15 u21-u25 g; 

 CATEGORICAL = u11-u15 u21-u25; 

 CLASSES = cg (2) c1 (3) c2 (3); 

 KNOWNCLASS = cg (g = 0 g = 1); 

ANALYSIS: TYPE = MIXTURE; 

MODEL: %OVERALL% 

 c1 c2 ON cg; 

MODEL cg: %cg#1% 

 c2 ON c1; 

 %cg#2%  

 c2 ON c1; 

MODEL c1: %c1#1%  

 [u11$1] (1);  

 [u12$1] (2); 

 [u13$1] (3); 

 [u14$1] (4); 

 [u15$1] (5); 

 %c1#2% 

 [u11$1] (6);  

 [u12$1] (7); 

 [u13$1] (8); 

 [u14$1] (9); 

 [u15$1] (10); 
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 %c1#3% 

 [u11$1] (11);  

 [u12$1] (12); 

 [u13$1] (13); 

 [u14$1] (14); 

 [u15$1] (15); 

MODEL c2: 

 %c2#1%  

 [u21$1] (1);  

 [u22$1] (2); 

 [u23$1] (3); 

 [u24$1] (4); 

 [u25$1] (5); 

 %c2#2% 

 [u21$1] (6);  

 [u22$1] (7); 

 [u23$1] (8); 

 [u24$1] (9); 

 [u25$1] (10); 

 %c2#3% 

 [u21$1] (11);  

 [u22$1] (12); 

 [u23$1] (13); 

 [u24$1] (14); 

 [u25$1] (15); 

OUTPUT: TECH1 TECH8 TECH15; 
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In this example, the latent transition analysis (LTA; Mooijaart, 1998; 

Reboussin et al., 1998; Kaplan, 2007; Nylund, 2007; Collins & Lanza, 

2010) model for two time points with a binary covariate influencing the 

latent transition probabilities shown in the picture above is estimated.   

The same five latent class indicators are measured at two time points.  

The model assumes measurement invariance across time for the five 

latent class indicators.  The parameterization of this model is described 

in Chapter 14. 

 

The KNOWNCLASS option is used for multiple group analysis with 

TYPE=MIXTURE to identify the categorical latent variable for which 

latent class membership is known and is equal to observed groups in the 

sample.  The KNOWNCLASS option identifies cg as the categorical 

latent variable for which class membership is known.   The information 

in parentheses following the categorical latent variable name defines the 

known classes using an observed variable.  In this example, the observed 

variable g is used to define the known classes.  The first class consists of 

individuals with the value 0 on the variable g.  The second class consists 

of individuals with the value 1 on the variable g.   

 

In the overall model, the first ON statement describes the multinomial 

logistic regression of the categorical latent variables c1 and c2 on the 

known class variable cg.  This allows the class probabilities to vary 

across the observed groups in the sample. 

 

When there are multiple categorical latent variables, each one has its 

own MODEL command.  The MODEL command for each categorical 

latent variable is specified by MODEL followed by the name of the 

categorical latent variable.  In this example, MODEL cg describes the 

group-specific parameters of the regression of c2 on c1.  This allows the 

binary covariate to influence the latent transition probabilities.  MODEL 

c1 describes the class-specific measurement parameters for variable c1 

and MODEL c2 describes the class-specific measurement parameters for 

variable c2.  The model for each categorical latent variable that differs 

for each class of that variable is specified by a label that consists of the 

categorical latent variable name followed by the number sign followed 

by the class number.  For example, in the example above, the label 

%c1#1% refers to class 1 of categorical latent variable c1.   

 

In this example, the thresholds of the latent class indicators for a given 

class are held equal for the two categorical latent variables.  The (1-5), 
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(6-10), and (11-15) following the bracket statements containing the 

thresholds use the list function to assign equality labels to these 

parameters.  For example, the label 1 is assigned to the thresholds u11$1 

and u21$1 which holds these thresholds equal over time.   

 

The TECH15 option is used to obtain the transition probabilities for 

each of the two known classes.  The default estimator for this type of 

analysis is maximum likelihood with robust standard errors.  The 

estimator option of the ANALYSIS command can be used to select a 

different estimator.  An explanation of the other commands can be found 

in Example 8.1. 

 

Following is the second part of the example that shows an alternative 

parameterization.  The PARAMETERIZATION option is used to select 

a probability parameterization rather than a logit parameterization.  This 

allows latent transition probabilities to be expressed directly in terms of 

probability parameters instead of via logit parameters.  In the overall 

model, only the c1 on cg regression is specified, not the c2 on cg 

regression.  Other specifications are the same as in the first part of the 

example.  

 
ANALYSIS: TYPE = MIXTURE; 

 PARAMETERIZATION = PROBABILITY; 

MODEL: %OVERALL% 

 c1 ON cg; 

MODEL cg: %cg#1% 

 c2 ON c1; 

 %cg#2%  

 c2 ON c1; 

 

EXAMPLE 8.14:  LTA FOR TWO TIME POINTS WITH A 

CONTINUOUS COVARIATE INFLUENCING THE LATENT 

TRANSITION PROBABILITIES  
 

 
TITLE: this is an example of a LTA for two time 

points with a continuous covariate 

influencing the latent transition 

probabilities  

DATA: FILE = ex8.14.dat; 

VARIABLE: NAMES = u11-u15 u21-u25 x; 

 CATEGORICAL = u11-u15 u21-u25; 

 CLASSES = c1 (3) c2 (3); 
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ANALYSIS: TYPE = MIXTURE;  

 PROCESSORS = 8;  

MODEL: %OVERALL% 

 c1 ON x; 

 c2 ON c1; 

MODEL c1: %c1#1%  

 c2 ON x;  

 [u11$1] (1);  

 [u12$1] (2); 

 [u13$1] (3); 

 [u14$1] (4); 

 [u15$1] (5); 

 %c1#2% 

 c2 ON x; 

 [u11$1] (6);  

 [u12$1] (7); 

 [u13$1] (8); 

 [u14$1] (9); 

 [u15$1] (10); 

 %c1#3% 

 c2 ON x; 

 [u11$1] (11);  

 [u12$1] (12); 

 [u13$1] (13); 

 [u14$1] (14); 

 [u15$1] (15); 

MODEL c2: %c2#1%  

 [u21$1] (1);  

 [u22$1] (2); 

 [u23$1] (3); 

 [u24$1] (4); 

 [u25$1] (5); 

 %c2#2% 

 [u21$1] (6);  

 [u22$1] (7); 

 [u23$1] (8); 

 [u24$1] (9); 

 [u25$1] (10); 

 %c2#3% 

 [u21$1] (11);  

 [u22$1] (12); 

 [u23$1] (13); 

 [u24$1] (14); 

 [u25$1] (15); 

OUTPUT: TECH1 TECH8; 
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In this example, the latent transition analysis (LTA; Reboussin et al., 

1998; Kaplan, 2007; Nylund, 2007; Collins & Lanza, 2010) model for 

two time points with a continuous covariate influencing the latent 

transition probabilities shown in the picture above is estimated.   The 

same five latent class indicators are measured at two time points.  The 

model assumes measurement invariance across time for the five latent 

class indicators.  The parameterization of this model is described in 

Chapter 14. 

 

In the overall model, the first ON statement describes the multinomial 

logistic regression of the categorical latent variable c1 on the continuous 

covariate x.  The second ON statement describes the multinomial logistic 

regression of c2 on c1.  The multinomial logistic regression of c2 on the 

continuous covariate x is specified in the class-specific parts of MODEL 

c1.  This follows parameterization 2 discussed in Muthén and 

Asparouhov (2011).  The class-specific regressions of c2 on x allow the 

continuous covariate x to influence the latent transition probabilities.  

The latent transition probabilities for different values of the covariates 

can be computed by choosing LTA calculator from the Mplus menu of 

the Mplus Editor. 

 

When there are multiple categorical latent variables, each one has its 

own MODEL command.  The MODEL command for each categorical 

latent variable is specified by MODEL followed by the name of the 

categorical latent variable.  MODEL c1 describes the class-specific 
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multinomial logistic regression of c2 on x and the class-specific 

measurement parameters for variable c1.  MODEL c2 describes the 

class-specific measurement parameters for variable c2.  The model for 

each categorical latent variable that differs for each class of that variable 

is specified by a label that consists of the categorical latent variable 

name followed by the number sign followed by the class number.  For 

example, in the example above, the label %c1#1% refers to class 1 of 

categorical latent variable c1.   

 

In this example, the thresholds of the latent class indicators for a given 

class are held equal for the two categorical latent variables.  The (1-5), 

(6-10), and (11-15) following the bracket statements containing the 

thresholds use the list function to assign equality labels to these 

parameters.  For example, the label 1 is assigned to the thresholds u11$1 

and u21$1 which holds these thresholds equal over time.  The default 

estimator for this type of analysis is maximum likelihood with robust 

standard errors.  The estimator option of the ANALYSIS command can 

be used to select a different estimator.  An explanation of the other 

commands can be found in Example 8.1. 

 

EXAMPLE 8.15:  MOVER-STAYER LTA FOR THREE TIME 

POINTS USING A PROBABILITY PARAMETERIZATION 
 

 
TITLE: this is an example of a mover-stayer LTA 

for three time points using a probability 

parameterization 

DATA: FILE = ex8.15.dat; 

VARIABLE: NAMES = u11-u15 u21-u25 u31-u35; 

 CATEGORICAL = u11-u15 u21-u25 u31-u35; 

 CLASSES = c(2) c1(3) c2(3) c3(3); 

ANALYSIS: TYPE = MIXTURE; 

 PARAMETERIZATION = PROBABILITY; 

 STARTS = 100 20; 

 PROCESSORS = 8; 

MODEL: %OVERALL% 

 c1 ON c; 

MODEL c: %c#1% !mover class 

 c2 ON c1; 

 c3 ON c2; 

 %c#2% ! stayer class 

 c2#1 ON c1#1@1; c2#2 ON c1#1@0; 

 c2#1 ON c1#2@0; c2#2 ON c1#2@1; 

 c2#1 ON c1#3@0; c2#2 ON c1#3@0; 
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 c3#1 ON c2#1@1; c3#2 ON c2#1@0; 

 c3#1 ON c2#2@0; c3#2 ON c2#2@1; 

 c3#1 ON c2#3@0; c3#2 ON c2#3@0; 

MODEL c1: %c1#1%  

 [u11$1] (1); 

 [u12$1] (2); 

 [u13$1] (3); 

 [u14$1] (4); 

 [u15$1] (5); 

 %c1#2% 

 [u11$1] (6);  

 [u12$1] (7); 

 [u13$1] (8); 

 [u14$1] (9); 

 [u15$1] (10); 

 %c1#3% 

 [u11$1] (11); 

  [u12$1] (12); 

 [u13$1] (13); 

 [u14$1] (14); 

 [u15$1] (15); 

MODEL c2:   

 %c2#1%  

 [u21$1] (1); 

 [u22$1] (2); 

 [u23$1] (3); 

 [u24$1] (4); 

 [u25$1] (5); 

 %c2#2% 

 [u21$1] (6);  

 [u22$1] (7); 

 [u23$1] (8); 

 [u24$1] (9); 

 [u25$1] (10); 

 %c2#3% 

 [u21$1] (11); 

 [u22$1] (12); 

 [u23$1] (13); 

  [u24$1] (14); 

 [u25$1] (15); 

MODEL c3: 

 %c3#1%  

 [u31$1] (1); 

 [u32$1] (2); 

 [u33$1] (3); 

 [u34$1] (4); 

 [u35$1] (5); 

 %c3#2% 

 [u31$1] (6);  

 [u32$1] (7); 

 [u33$1] (8); 
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 [u34$1] (9); 

  [u35$1] (10); 

 %c3#3% 

 [u31$1] (11); 

 [u32$1] (12); 

 [u33$1] (13); 

 [u34$1] (14); 

 [u35$1] (15); 

OUTPUT: TECH1 TECH8 TECH15; 

 

 

 

 
 

 

In this example, the mover-stayer (Langeheine & van de Pol, 2002) 

latent transition analysis (LTA) for three time points using a probability 

parameterization shown in the picture above is estimated.  The same five 

latent class indicators are measured at three time points.  The model 

assumes measurement invariance across time for the five latent class 

indicators.  The parameterization of this model is described in Chapter 

14. 

  

The PARAMETERIZATION option is used to select a probability 

parameterization rather than a logit parameterization.  This allows latent 

transition probabilities to be expressed directly in terms of probability 

parameters instead of via logit parameters.  The alternative logit 
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parameterization of mover-stayer LTA is described in the document 

LTA With Movers-Stayers (see FAQ, www.statmodel.com). 

 

In the overall model, the ON statement describes the multinomial 

logistic regression of the categorical latent variable c1 on the mover-

stayer categorical latent variable c.  The multinomial logistic regressions 

of c2 on c1 and c3 on c2 are specified in the class-specific parts of 

MODEL c.   

 

When there are multiple categorical latent variables, each one has its 

own MODEL command.  The MODEL command for each categorical 

latent variable is specified by MODEL followed by the name of the 

categorical latent variable.  MODEL c describes the class-specific 

multinomial logistic regressions of c2 on c1 and c3 on c2 where the first 

c class is the mover class and the second c class is the stayer class.  

MODEL c1 describes the class-specific measurement parameters for 

variable c1; MODEL c2 describes the class-specific measurement 

parameters for variable c2; and MODEL c3 describes the class-specific 

measurement parameters for variable c3.  The model for each categorical 

latent variable that differs for each class of that variable is specified by a 

label that consists of the categorical latent variable name followed by the 

number sign followed by the class number.  For example, in the example 

above, the label %c1#1% refers to class 1 of categorical latent variable 

c1.   

 

In class 1, the mover class of MODEL c, the two ON statements specify 

that the latent transition probabilities are estimated.  In class 2, the stayer 

class, the ON statements specify that the latent transition probabilities 

are fixed at either zero or one.  A latent transition probability of one 

specifies that an observation stays in the same class across time. 

 

In this example, the thresholds of the latent class indicators for a given 

class are held equal for the three categorical latent variables.  The (1-5), 

(6-10), and (11-15) following the bracket statements containing the 

thresholds use the list function to assign equality labels to these 

parameters.  For example, the label 1 is assigned to the thresholds 

u11$1, u21$1, and u31$1 which holds these thresholds equal over time.   

 

The TECH15 option is used to obtain the transition probabilities for both 

the mover and stayer classes. The default estimator for this type of 

analysis is maximum likelihood with robust standard errors.  The 
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estimator option of the ANALYSIS command can be used to select a 

different estimator.  An explanation of the other commands can be found 

in Example 8.1. 

 

EXAMPLE 8.16: DISCRETE-TIME SURVIVAL MIXTURE 

ANALYSIS WITH SURVIVAL PREDICTED BY GROWTH 

TRAJECTORY CLASSES 
 

 
TITLE: this is an example of a discrete-time 

survival mixture analysis with survival 

predicted by growth trajectory classes 

DATA: FILE IS ex8.16.dat; 

VARIABLE: NAMES ARE y1-y3 u1-u4; 

 CLASSES = c(2); 

 CATEGORICAL = u1-u4; 

 MISSING = u1-u4 (999); 

ANALYSIS: TYPE = MIXTURE; 

MODEL:  

 %OVERALL% 

 i s | y1@0 y2@1 y3@2; 

 f BY u1-u4@1; 

OUTPUT: TECH1 TECH8; 
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In this example, the discrete-time survival mixture analysis model shown 

in the picture above is estimated.  In this model, a survival model for u1, 

u2, u3, and u4 is specified for each class of c defined by a growth 

mixture model for y1-y3 (Muthén & Masyn, 2005).  Each u variable 

represents whether or not a single non-repeatable event has occurred in a 

specific time period.  The value 1 means that the event has occurred, 0 

means that the event has not occurred, and a missing value flag means 

that the event has occurred in a preceding time period or that the 

individual has dropped out of the study.  The factor f is used to specify a 

proportional odds assumption for the hazards of the event.  The arrows 

from c to the growth factors i and s indicate that the means of the growth 

factors vary across the classes of c.    

 

In the overall model, the | symbol is used to name and define the 

intercept and slope growth factors in a growth model.  The names i and s 

on the left-hand side of the | symbol are the names of the intercept and 

slope growth factors, respectively.  The statement on the right-hand side 

of the | symbol specifies the outcomes and the time scores for the growth 

model.  The time scores for the slope growth factor are fixed at 0, 1, and 

2 to define a linear growth model with equidistant time points.  The zero 

time score for the slope growth factor at time point one defines the 

intercept growth factor as an initial status factor.  The coefficients of the 

intercept growth factor are fixed at one as part of the growth model 

parameterization.  The residual variances of the outcome variables are 

estimated and allowed to be different across time and the residuals are 

not correlated as the default.  

 

In the parameterization of the growth model shown here, the intercepts 

of the outcome variable at the four time points are fixed at zero as the 

default.  The means and variances of the growth factors are estimated as 

the default, and the growth factor covariance is estimated as the default 

because they are independent (exogenous) variables.  The means of the 

growth factors are not held equal across classes as the default.  The 

variances and covariance of the growth factors are held equal across 

classes as the default.   

 

In the overall model, the BY statement specifies that f is measured by 

u1, u2, u3, and u4 where the factor loadings are fixed at one.  This 

represents a proportional odds assumption.  The mean of f is fixed at 

zero in class two as the default.  The variance of f is fixed at zero in both 

classes.  The ESTIMATOR option of the ANALYSIS command can be 
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used to select a different estimator.  An explanation of the other 

commands can be found in Example 8.1. 

 

EXAMPLE 8.17:  CONTINUOUS-TIME SURVIVAL MIXTURE 

ANALYSIS USING A COX REGRESSION MODEL   
 

 
TITLE: this is an example of a continuous-time 

survival mixture analysis using a Cox 

regression model 

DATA: FILE = ex8.17.dat; 

VARIABLE: NAMES = t u1-u5 x tc; 

 CATEGORICAL = u1-u5; 

 CLASSES = c (2); 

 SURVIVAL = t (ALL); 

 TIMECENSORED = tc (0 = NOT 1 = RIGHT); 

ANALYSIS: TYPE = MIXTURE; 

MODEL: %OVERALL% 

 t ON x;  

 c ON x; 

 %c#1% 

 [u1$1-u5$1]; 

 t ON x; 

 %c#2% 

 [u1$1-u5$1]; 

 t ON x; 

OUTPUT: TECH1 TECH8; 
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In this example, the continuous-time survival analysis model shown in 

the picture above is estimated.  This is a Cox regression mixture model 

similar to the model of Larsen (2004) as discussed in Asparouhov et al. 

(2006).  The profile likelihood method is used for estimation.  

 

The SURVIVAL option is used to identify the variables that contain 

information about time to event and to provide information about the 

number and lengths of the time intervals in the baseline hazard function 

to be used in the analysis.  The SURVIVAL option must be used in 

conjunction with the TIMECENSORED option.  In this example, t is the 

variable that contains time-to-event information.  By specifying the 

keyword ALL in parenthesis following the time-to-event variable, the 

time intervals are taken from the data.  The TIMECENSORED option is 

used to identify the variables that contain information about right 

censoring.  In this example, the variable is named tc.  The information in 

parentheses specifies that the value zero represents no censoring and the 

value one represents right censoring.  This is the default.   

 

In the overall model, the first ON statement describes the loglinear 

regression of the time-to-event variable t on the covariate x.  The second 

ON statement describes the multinomial logistic regression of the 

categorical latent variable c on the covariate x.  In the class-specific 

models, by specifying the thresholds of the latent class indicator 

variables and the regression of the time-to-event t on the covariate x, 

these parameters will be estimated separately for each class.  The non-

parametric baseline hazard function varies across class as the default. 

The default estimator for this type of analysis is maximum likelihood 

with robust standard errors.  The estimator option of the ANALYSIS 

command can be used to select a different estimator.  An explanation of 

the other commands can be found in Example 8.1. 
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CHAPTER 9 

EXAMPLES: MULTILEVEL 

MODELING WITH COMPLEX 

SURVEY DATA 
 

 

Complex survey data refers to data obtained by stratification, cluster 

sampling and/or sampling with an unequal probability of selection.  

Complex survey data are also referred to as multilevel or hierarchical 

data.  For an overview, see Muthén and Satorra (1995).  There are two 

approaches to the analysis of complex survey data in Mplus.   

 

One approach is to compute standard errors and a chi-square test of 

model fit taking into account stratification, non-independence of 

observations due to cluster sampling, and/or unequal probability of 

selection.  Subpopulation analysis is also available.  With sampling 

weights, parameters are estimated by maximizing a weighted 

loglikelihood function.  Standard error computations use a sandwich 

estimator.  This approach can be obtained by specifying 

TYPE=COMPLEX in the ANALYSIS command in conjunction with the 

STRATIFICATION, CLUSTER, WEIGHT, and/or SUBPOPULATION 

options of the VARIABLE command.  Observed outcome variables can 

be continuous, censored, binary, ordered categorical (ordinal), unordered 

categorical (nominal), counts, or combinations of these variable types.  

The implementation of these methods in Mplus is discussed in 

Asparouhov (2005, 2006) and Asparouhov and Muthén (2005, 2006a).   

 

A second approach is to specify a model for each level of the multilevel 

data thereby modeling the non-independence of observations due to 

cluster sampling.  This is commonly referred to as multilevel modeling.  

The use of sampling weights in the estimation of parameters, standard 

errors, and the chi-square test of model fit is allowed.  Both individual-

level and cluster-level weights can be used.  With sampling weights, 

parameters are estimated by maximizing a weighted loglikelihood 

function.  Standard error computations use a sandwich estimator.  This 

approach can be obtained for two-level data by specifying 

TYPE=TWOLEVEL in the ANALYSIS command in conjunction with 

the CLUSTER, WEIGHT, WTSCALE, BWEIGHT, and/or BWTSCALE 



CHAPTER 9 

 

262 

options of the VARIABLE command.  For TYPE=TWOLEVEL, 

observed outcome variables can be continuous, censored, binary, ordered 

categorical (ordinal), unordered categorical (nominal), counts, or 

combinations of these variable types.  This approach can also be 

obtained for three-level data by specifying TYPE=THREELEVEL in 

conjunction with the CLUSTER, WEIGHT, WTSCALE, B2WEIGHT, 

B3WEIGHT and/or BWTSCALE options of the VARIABLE command.  

For TYPE=THREELEVEL, observed outcome variables can be 

continuous.  Complex survey features are not available for 

TYPE=THREELEVEL with categorical variables or  

TYPE=CROSSCLASSIFIED because these models are estimated using 

Bayesian analysis for which complex survey features have not been 

generally developed.  

 

The approaches described above can be combined by specifying 

TYPE=COMPLEX TWOLEVEL in the ANALYSIS command in 

conjunction with the STRATIFICATION, CLUSTER, WEIGHT, 

WTSCALE, BWEIGHT, and/or BWTSCALE options of the 

VARIABLE command or TYPE=COMPLEX THREELEVEL in 

conjunction with the STRATIFICATION, CLUSTER, WEIGHT, 

WTSCALE, B2WEIGHT, B3WEIGHT, and/or BWTSCALE options of 

the VARIABLE command    For TYPE=TWOLEVEL, when there is 

clustering due to two cluster variables, the standard errors and chi-square 

test of model fit are computed taking into account the clustering due to 

the highest cluster level using TYPE=COMPLEX whereas clustering 

due to the lowest cluster level is modeled using TYPE=TWOLEVEL.  

For TYPE=THREELEVEL, when there is clustering due to three cluster 

variables, the standard errors and chi-square test of model fit are 

computed taking into account the clustering due to the highest cluster 

level using TYPE=COMPLEX whereas clustering due to the other 

cluster levels is modeled using TYPE=THREELEVEL.   

 

A distinction can be made between cross-sectional data in which non-

independence arises because of cluster sampling and longitudinal data in 

which non-independence arises because of repeated measures of the 

same individuals across time.  With cross-sectional data, the number of 

levels in Mplus is the same as the number of levels in conventional 

multilevel modeling programs.  Mplus allows three-level modeling.  

With longitudinal data, the number of levels in Mplus is one less than 

the number of levels in conventional multilevel modeling programs 

because Mplus takes a multivariate approach to repeated measures 
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analysis. Longitudinal models are two-level models in conventional 

multilevel programs, whereas they are single-level models in Mplus.  

These models are discussed in Chapter 6.  Three-level analysis where 

time is the first level, individual is the second level, and cluster is the 

third level is handled by two-level modeling in Mplus (see also Muthén, 

1997).  Four-level analysis where time is the first level, individual is the 

second level, classroom is the third level, and school is the fourth level is 

handled by three-level modeling in Mplus.  

 

Time series analysis is used to analyze intensive longitudinal data such 

as those obtained with ecological momentary assessments, experience 

sampling methods, daily diary methods, and ambulatory assessments.  

Such data typically have a large number of time points, for example, 

twenty to two hundred.  The measurements are typically closely spaced 

in time.  In Mplus, a variety of two-level and cross-classified time series 

models can be estimated.  These include univariate autoregressive, 

regression, cross-lagged, confirmatory factor analysis, Item Response 

Theory, and structural equation models for continuous, binary, ordered 

categorical (ordinal), or combinations of these variable types.  N=1 

versions of these models can be found in Chapter 6. 

 

The general latent variable modeling framework of Mplus allows the 

integration of random effects and other continuous latent variables 

within a single analysis model.  Random effects are allowed for both 

independent and dependent variables and both observed and latent 

variables.  Random effects representing across-cluster variation in 

intercepts and slopes or individual differences in growth can be 

combined with factors measured by multiple indicators on both the 

individual and cluster levels.  Random factor loadings are available as a 

special case of random slopes.  Random variances are also available.  In 

line with SEM, regressions among random effects, among factors, and 

between random effects and factors are allowed.    

 

Multilevel models can include regression analysis, path analysis, 

confirmatory factor analysis (CFA), item response theory (IRT) analysis, 

structural equation modeling (SEM), latent class analysis (LCA), latent 

transition analysis (LTA), latent class growth analysis (LCGA), growth 

mixture modeling (GMM), discrete-time survival analysis, continuous-

time survival analysis, and combinations of these models.     
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For TYPE=TWOLEVEL, there are four estimator options.  The first 

estimator option is full-information maximum likelihood which allows 

continuous, censored, binary, ordered categorical (ordinal), unordered 

categorical (nominal), counts, or combinations of these variable types; 

random intercepts and slopes; and missing data.  With longitudinal data, 

maximum likelihood estimation allows modeling of individually-varying 

times of observation and random slopes for time-varying covariates.  

Non-normality robust standard errors and a chi-square test of model fit 

are available.  The second estimator option is limited-information 

weighted least squares (Asparouhov & Muthén, 2007) which allows 

continuous, binary, ordered categorical (ordinal), and combinations of 

these variables types; random intercepts; and missing data.  The third 

estimator option is the Muthén limited information estimator (MUML; 

Muthén, 1994) which is restricted to models with continuous variables, 

random intercepts, and no missing data.  The fourth estimator option is 

Bayes which allows continuous, categorical, and combinations of these 

variable types; random intercepts and slopes; and missing data.  

  

All two-level models can be estimated using the following special 

features: 

 

 Multiple group analysis 

 Missing data 

 Complex survey data 

 Latent variable interactions and non-linear factor analysis using 

maximum likelihood 

 Random slopes 

 Individually-varying times of observations 

 Linear and non-linear parameter constraints 

 Indirect effects including specific paths 

 Maximum likelihood estimation for all outcome types 

 Wald chi-square test of parameter equalities 

 

For continuous, censored with weighted least squares estimation, binary, 

and ordered categorical (ordinal) outcomes, multiple group analysis is 

specified by using the GROUPING option of the VARIABLE command 

for individual data.  For censored with maximum likelihood estimation, 

unordered categorical (nominal), and count outcomes, multiple group 

analysis is specified using the KNOWNCLASS option of the 

VARIABLE command in conjunction with the TYPE=MIXTURE 

option of the ANALYSIS command.  The default is to estimate the 
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model under missing data theory using all available data.  The 

LISTWISE option of the DATA command can be used to delete all 

observations from the analysis that have missing values on one or more 

of the analysis variables.  Corrections to the standard errors and chi-

square test of model fit that take into account stratification, non-

independence of observations, and unequal probability of selection are 

obtained by using the TYPE=COMPLEX option of the ANALYSIS 

command in conjunction with the STRATIFICATION, CLUSTER, and 

WEIGHT options of the VARIABLE command.  Latent variable 

interactions are specified by using the | symbol of the MODEL command 

in conjunction with the XWITH option of the MODEL command.  

Random slopes are specified by using the | symbol of the MODEL 

command in conjunction with the ON option of the MODEL command.  

Individually-varying times of observations are specified by using the | 

symbol of the MODEL command in conjunction with the AT option of 

the MODEL command and the TSCORES option of the VARIABLE 

command.  Linear and non-linear parameter constraints are specified by 

using the MODEL CONSTRAINT command.  Indirect effects are 

specified by using the MODEL INDIRECT command.  Maximum 

likelihood estimation is specified by using the ESTIMATOR option of 

the ANALYSIS command.  The MODEL TEST command is used to test 

linear restrictions on the parameters in the MODEL and MODEL 

CONSTRAINT commands using the Wald chi-square test.   

 

For TYPE=THREELEVEL, there are two estimator options.  The first 

estimator option is full-information maximum likelihood which allows 

continuous variables; random intercepts and slopes; and missing data.  

Non-normality robust standard errors and a chi-square test of model fit 

are available.  The second estimator option is Bayes which allows 

continuous, categorical, and combinations of these variable types; 

random intercepts and slopes; and missing data. 

 

All three-level models can be estimated using the following special 

features: 

 

 Multiple group analysis 

 Missing data 

 Complex survey data 

 Random slopes 

 Linear and non-linear parameter constraints 

 Maximum likelihood estimation for all outcome types 
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 Wald chi-square test of parameter equalities 

 

For continuous outcomes, multiple group analysis is specified by using 

the GROUPING option of the VARIABLE command.  The default is to 

estimate the model under missing data theory using all available data.  

The LISTWISE option of the DATA command can be used to delete all 

observations from the analysis that have missing values on one or more 

of the analysis variables.  Corrections to the standard errors and chi-

square test of model fit that take into account stratification, non-

independence of observations, and unequal probability of selection are 

obtained by using the TYPE=COMPLEX option of the ANALYSIS 

command in conjunction with the STRATIFICATION, CLUSTER, and 

WEIGHT options of the VARIABLE command.  Random slopes are 

specified by using the | symbol of the MODEL command in conjunction 

with the ON option of the MODEL command.  Linear and non-linear 

parameter constraints are specified by using the MODEL 

CONSTRAINT command.  Maximum likelihood estimation is specified 

by using the ESTIMATOR option of the ANALYSIS command.  The 

MODEL TEST command is used to test linear restrictions on the 

parameters in the MODEL and MODEL CONSTRAINT commands 

using the Wald chi-square test.   

 

For TYPE=CROSSCLASSIFIED, there is one estimator option, Bayes, 

which allows continuous, categorical, and combinations of these variable 

types; random intercepts and slopes; and missing data. 

 

All cross-classified models can be estimated using the following special 

features: 

 

 Missing data 

 Random slopes 

 Random factor loadings 

 Random variances 

 

The default is to estimate the model under missing data theory using all 

available data.  The LISTWISE option of the DATA command can be 

used to delete all observations from the analysis that have missing values 

on one or more of the analysis variables.  Random slopes are specified 

by using the | symbol of the MODEL command in conjunction with the 

ON option of the MODEL command.   
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Graphical displays of observed data and analysis results can be obtained 

using the PLOT command in conjunction with a post-processing 

graphics module.  The PLOT command provides histograms, 

scatterplots, plots of individual observed and estimated values, and plots 

of sample and estimated means and proportions/probabilities.  These are 

available for the total sample, by group, by class, and adjusted for 

covariates.  The PLOT command includes a display showing a set of 

descriptive statistics for each variable.  The graphical displays can be 

edited and exported as a DIB, EMF, or JPEG file.  In addition, the data 

for each graphical display can be saved in an external file for use by 

another graphics program.  

 

Following is the set of cross-sectional two-level modeling examples 

included in this chapter:   

 

 9.1:  Two-level regression analysis for a continuous dependent 

variable with a random intercept 

 9.2:  Two-level regression analysis for a continuous dependent 

variable with a random slope 

 9.3:  Two-level path analysis with a continuous and a categorical 

dependent variable* 

 9.4:  Two-level path analysis with a continuous, a categorical, and a 

cluster-level observed dependent variable 

 9.5:  Two-level path analysis with continuous dependent variables 

and random slopes* 

 9.6:  Two-level CFA with continuous factor indicators and 

covariates 

 9.7:  Two-level CFA with categorical factor indicators and 

covariates* 

 9.8:  Two-level CFA with continuous factor indicators, covariates, 

and random slopes 

 9.9:  Two-level SEM with categorical factor indicators on the within 

level and cluster-level continuous observed and random intercept 

factor indicators on the between level 

 9.10:  Two-level SEM with continuous factor indicators and a 

random slope for a factor* 

 9.11: Two-level multiple group CFA with continuous factor 

indicators 

 

Following is the set of longitudinal two-level modeling examples 

included in this chapter:   
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 9.12:  Two-level growth model for a continuous outcome (three-

level analysis) 

 9.13:  Two-level growth model for a categorical outcome (three-

level analysis)* 

 9.14:  Two-level growth model for a continuous outcome (three-

level analysis) with variation on both the within and between levels 

for a random slope of a time-varying covariate* 

 9.15:  Two-level multiple indicator growth model with categorical 

outcomes (three-level analysis) 

 9.16:  Linear growth model for a continuous outcome with time-

invariant and time-varying covariates carried out as a two-level 

growth model using the DATA WIDETOLONG command 

 9.17:  Two-level growth model for a count outcome using a zero-

inflated Poisson model (three-level analysis)* 

 9.18:  Two-level continuous-time survival analysis using Cox 

regression with a random intercept 

 9.19:  Two-level mimic model with continuous factor indicators, 

random factor loadings, two covariates on within, and one covariate 

on between with equal loadings across levels 

 

Following is the set of three-level and cross-classified modeling 

examples included in this chapter:   

 

 9.20:  Three-level regression for a continuous dependent variable 

 9.21:  Three-level path analysis with a continuous and a categorical 

dependent variable 

 9.22:  Three-level MIMIC model with continuous factor indicators, 

two covariates on within, one covariate on between level 2, one 

covariate on between level 3 with random slopes on both within and 

between level 2 

 9.23:  Three-level growth model with a continuous outcome and one 

covariate on each of the three levels 

 9.24:  Regression for a continuous dependent variable using cross-

classified data 

 9.25:  Path analysis with continuous dependent variables using 

cross-classified data 

 9.26:  IRT with random binary items using cross-classified data 

 9.27:  Multiple indicator growth model with random intercepts and 

factor loadings using cross-classified data 
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Following is the set of cross-sectional two-level modeling examples with 

random residual variances included in this chapter:   

 

 9.28:  Two-level regression analysis for a continuous dependent 

variable with a random intercept and a random residual variance   

 9.29:  Two-level confirmatory factor analysis (CFA) with continuous 

factor indicators, covariates, and a factor with a random residual 

variance 

 

Following is the set of two-level time series analysis examples with 

random effects included in this chapter:  

  

 9.30:  Two-level time series analysis with a univariate first-order 

autoregressive AR(1) model for a continuous dependent variable 

with a random intercept, random AR(1) slope, and random residual 

variance 

 9.31:  Two-level time series analysis with a univariate first-order 

autoregressive AR(1) model for a continuous dependent variable 

with a covariate, random intercept, random AR(1) slope, random 

slope, and random residual variance 

 9.32:  Two-level time series analysis with a bivariate cross-lagged 

model for continuous dependent variables with random intercepts 

and random slopes 

 9.33:  Two-level time series analysis with a first-order 

autoregressive AR(1) factor analysis model for a single continuous 

indicator and measurement error 

 9.34:  Two-level time series analysis with a first-order 

autoregressive AR(1) confirmatory factor analysis (CFA) model for 

continuous factor indicators with random intercepts, a random 

AR(1) slope, and a random residual variance 

 9.35:  Two-level time series analysis with a first-order 

autoregressive AR(1) IRT model for binary factor indicators with 

random thresholds, a random AR(1) slope, and a random residual 

variance 

 9.36:  Two-level time series analysis with a bivariate cross-lagged 

model for two factors and continuous factor indicators with random 

intercepts and random slopes 

 9.37:  Two-level time series analysis with a univariate first-order 

autoregressive AR(1) model for a continuous dependent variable 

with a covariate, linear trend, random slopes, and a random residual 

variance  
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Following is the set of cross-classified time series analysis examples 

with random effects included in this chapter: 

 

 9.38:  Cross-classified time series analysis with a univariate first-

order autoregressive AR(1) model for a continuous dependent 

variable with a covariate, random intercept, and random slope 

 9.39:  Cross-classified time series analysis with a univariate first-

order autoregressive AR(1) model for a continuous dependent 

variable with a covariate, linear trend, and random slope 

 9.40:  Cross-classified time series analysis with a first-order 

autoregressive AR(1) confirmatory factor analysis (CFA) model for 

continuous factor indicators with random intercepts and a factor 

varying across both subjects and time 

 

*  Example uses numerical integration in the estimation of the model.  

This can be computationally demanding depending on the size of the 

problem. 

 

EXAMPLE 9.1: TWO-LEVEL REGRESSION ANALYSIS FOR A 

CONTINUOUS DEPENDENT VARIABLE WITH A RANDOM 

INTERCEPT 
 

 
TITLE: this is an example of a two-level  

 regression analysis for a continuous  

 dependent variable with a random intercept 

and an observed covariate 

DATA: FILE = ex9.1a.dat; 

VARIABLE: NAMES = y x w xm clus; 

 WITHIN = x; 

 BETWEEN = w xm; 

 CLUSTER = clus; 

DEFINE: CENTER x (GRANDMEAN); 

ANALYSIS: TYPE = TWOLEVEL; 

MODEL: 

 %WITHIN%  

 y ON x; 

 %BETWEEN% 

 y ON w xm; 
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In this example, the two-level regression model shown in the picture 

above is estimated.  The dependent variable y in this regression is 

continuous.  Two ways of treating the covariate x are described.  In this 

part of the example, the covariate x is treated as an observed variable in 

line with conventional multilevel regression modeling.  In the second 

part of the example, the covariate x is decomposed into two latent 

variable parts. 

 

The within part of the model describes the regression of y on an 

observed covariate x where the intercept is a random effect that varies 

across the clusters.  In the within part of the model, the filled circle at the 

end of the arrow from x to y represents a random intercept that is 

referred to as y in the between part of the model.  In the between part of 

the model, the random intercept is shown in a circle because it is a 

continuous latent variable that varies across clusters.  The between part 

of the model describes the linear regression of the random intercept y on 

observed cluster-level covariates w and xm.  The observed cluster-level 

covariate xm takes the value of the mean of x for each cluster.  The 

within and between parts of the model correspond to level 1 and level 2 

of a conventional multilevel regression model with a random intercept. 
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TITLE: this is an example of a two-level  

  regression analysis for a continuous  

  dependent variable with a random intercept 

and an observed covariate 

 

The TITLE command is used to provide a title for the analysis.  The title 

is printed in the output just before the Summary of Analysis. 

 
DATA:  FILE = ex9.1a.dat; 

 

The DATA command is used to provide information about the data set 

to be analyzed.  The FILE option is used to specify the name of the file 

that contains the data to be analyzed, ex9.1a.dat.  Because the data set is 

in free format, the default, a FORMAT statement is not required. 

 
VARIABLE: NAMES = y x w xm clus; 

  WITHIN = x; 

  BETWEEN = w xm; 

  CLUSTER = clus; 

 

The VARIABLE command is used to provide information about the 

variables in the data set to be analyzed.  The NAMES option is used to 

assign names to the variables in the data set.  The data set in this 

example contains five variables: y, x, w, xm, and clus.   

 

The WITHIN option is used to identify the variables in the data set that 

are measured on the individual level and modeled only on the within 

level.  They are specified to have no variance in the between part of the 

model.  The BETWEEN option is used to identify the variables in the 

data set that are measured on the cluster level and modeled only on the 

between level.  Variables not mentioned on the WITHIN or the 

BETWEEN statements are measured on the individual level and can be 

modeled on both the within and between levels.  Because y is not 

mentioned on the WITHIN statement, it is modeled on both the within 

and between levels.  On the between level, it is a random intercept.  The 

CLUSTER option is used to identify the variable that contains clustering 

information. The CENTER option is used to specify the type of 

centering to be used in an analysis and the variables that are to be 

centered.  In this example, grand-mean centering is chosen. 
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DEFINE: CENTER x (GRANDMEAN); 

 

The DEFINE command is used to transform existing variables and create 

new variables.  The CENTER option is used to specify the type of 

centering to be used in an analysis and the variables that will be 

centered.  Centering facilitates the interpretation of the results.  In this 

example, the covariate is centered using the grand mean, that is, the 

sample mean of  x is subtracted from the values of the covariate x. 

 
ANALYSIS: TYPE = TWOLEVEL; 

 

The ANALYSIS command is used to describe the technical details of the 

analysis.  By selecting TWOLEVEL, a multilevel model with random 

intercepts will be estimated.   

 
MODEL: 

  %WITHIN%  

  y ON x; 

  %BETWEEN% 

  y ON w xm; 

 

The MODEL command is used to describe the model to be estimated.  In 

multilevel models, a model is specified for both the within and between 

parts of the model.  In the within part of the model, the ON statement 

describes the linear regression of y on the observed individual-level 

covariate x.   The within-level residual variance in the regression of y on 

x is estimated as the default.     

 

In the between part of the model, the ON statement describes the linear 

regression of the random intercept y on the observed cluster-level 

covariates w and xm.  The intercept and residual variance of y are 

estimated as the default.  The default estimator for this type of analysis 

is maximum likelihood with robust standard errors.  The ESTIMATOR 

option of the ANALYSIS command can be used to select a different 

estimator.  

 

Following is the second part of the example where the covariate x is 

decomposed into two latent variable parts. 
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TITLE: this is an example of a two-level  

 regression analysis for a continuous  

 dependent variable with a random intercept 

and a latent covariate 

DATA: FILE = ex9.1b.dat; 

VARIABLE: NAMES = y x w clus; 

 BETWEEN = w; 

 CLUSTER = clus; 

DEFINE: CENTER = x (GRANDMEAN); 

ANALYSIS: TYPE = TWOLEVEL; 

MODEL: 

 %WITHIN%  

 y ON x (gamma10); 

 %BETWEEN% 

 y ON w  

 x (gamma01); 

MODEL CONSTRAINT: 

 NEW(betac); 

 betac = gamma01 - gamma10; 

 

The difference between this part of the example and the first part is that 

the covariate x is decomposed into two latent variable parts instead of 

being treated as an observed variable as in conventional multilevel 

regression modeling.  The decomposition occurs when the covariate x is 

not mentioned on the WITHIN statement and is therefore modeled on 

both the within and between levels.  When a covariate is not mentioned 

on the WITHIN statement, it is decomposed into two uncorrelated latent 

variables, 

 

xij = xwij + xbj , 

 

where i represents individual, j represents cluster, xwij is the latent 

variable covariate used on the within level, and xbj is the latent variable 

covariate used on the between level.  This model is described in Muthén 

(1989, 1990, 1994).  The latent variable covariate xb is not used in 

conventional multilevel analysis.  Using a latent covariate may, however, 

be advantageous when the observed cluster-mean covariate xm does not 

have sufficient reliability resulting in biased estimation of the between-

level slope (Asparouhov & Muthén, 2006b; Ludtke et al., 2008). 

 

The decomposition can be expressed as, 

 

xwij =  xij   -  xbj , 
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which can be viewed as an implicit, latent group-mean centering of the 

latent within-level covariate.  To obtain results that are not group-mean 

centered, a linear transformation of the within and between slopes can be 

done as described below using the MODEL CONSTRAINT command.  

 

In the MODEL command, the label gamma10 in the within part of the 

model and the label gamma01 in the between part of the model are 

assigned to the regression coefficients in the linear regression of y on x 

in both parts of the model for use in the MODEL CONSTRAINT 

command.  The MODEL CONSTRAINT command is used to define 

linear and non-linear constraints on the parameters in the model.  In the 

MODEL CONSTRAINT command, the NEW option is used to 

introduce a new parameter that is not part of the MODEL command.  

This parameter is called betac and is defined as the difference between 

gamma01 and gamma10.  It corresponds to a “contextual effect” as 

described in Raudenbush and Bryk (2002, p. 140, Table 5.11).  

 

EXAMPLE 9.2: TWO-LEVEL REGRESSION ANALYSIS FOR A 

CONTINUOUS DEPENDENT VARIABLE WITH A RANDOM 

SLOPE 
 

  
TITLE: this is an example of a two-level  

 regression analysis for a continuous  

 dependent variable with a random slope and 

an observed covariate 

DATA: FILE = ex9.2a.dat; 

VARIABLE: NAMES = y x w xm clus; 

 WITHIN = x; 

 BETWEEN = w xm; 

 CLUSTER = clus; 

DEFINE: CENTER x (GROUPMEAN); 

ANALYSIS: TYPE = TWOLEVEL RANDOM; 

MODEL: 

 %WITHIN%  

 s | y ON x; 

 %BETWEEN%  

 y s ON w xm; 

 y WITH s; 
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The difference between this example and the first part of Example 9.1 is 

that the model has both a random intercept and a random slope.  In the 

within part of the model, the filled circle at the end of the arrow from x 

to y represents a random intercept that is referred to as y in the between 

part of the model.  The filled circle on the arrow from x to y represents a 

random slope that is referred to as s in the between part of the model.  In 

the between part of the model, the random intercept and random slope 

are shown in circles because they are continuous latent variables that 

vary across clusters.  The observed cluster-level covariate xm takes the 

value of the mean of x for each cluster.  The within and between parts of 

the model correspond to level 1 and level 2 of a conventional multilevel 

regression model with a random intercept and a random slope. 

 

In the DEFINE command, the individual-level covariate x is centered 

using the cluster means for x.  This is recommended when a random 

slope is estimated (Raudenbush & Bryk, 2002, p. 143). 

 

In the within part of the model, the | symbol is used in conjunction with 

TYPE=RANDOM to name and define the random slope variables in the 

model.  The name on the left-hand side of the | symbol names the 

random slope variable.  The statement on the right-hand side of the | 

symbol defines the random slope variable.  Random slopes are defined 

using the ON option.  The random slope s is defined by the linear 
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regression of the dependent variable y on the observed individual-level 

covariate x.  The within-level residual variance in the regression of y on 

x is estimated as the default.  

    

In the between part of the model, the ON statement describes the linear 

regressions of the random intercept y and the random slope s on the 

observed cluster-level covariates w and xm.  The intercepts and residual 

variances of s and y are estimated and the residuals are not correlated as 

the default.  The WITH statement specifies that the residuals of s and y 

are correlated.  The default estimator for this type of analysis is 

maximum likelihood with robust standard errors.  The ESTIMATOR 

option of the ANALYSIS command can be used to select a different 

estimator.  An explanation of the other commands can be found in 

Example 9.1. 

 

Following is the second part of the example that shows how to plot a 

cross-level interaction where the cluster-level covariate w moderates the 

influence of the within-level covariate x on y.   

 
MODEL: %WITHIN%  

 s | y ON x; 

 %BETWEEN%  

 y ON w xm; 

 [s] (gam0); 

 s ON w (gam1) 

 xm; 

 y WITH s; 

MODEL CONSTRAINT: 

 PLOT(ylow yhigh); 

 LOOP(level1,-3,3,0.01);           

 ylow = (gam0+gam1*(-1))*level1; 

 yhigh = (gam0+gam1*1)*level1; 

PLOT: TYPE = PLOT2; 

 

In MODEL CONSTRAINT, the LOOP option is used in conjunction 

with the PLOT option to create plots of variables.  In this example, 

cross-level interaction effects defined in MODEL CONSTRAINT will 

be plotted.  The PLOT option names the variables that will be plotted on 

the y-axis.  The LOOP option names the variable that will be plotted on 

the x-axis, gives the numbers that are the lower and upper values of the 

variable, and the incremental value of the variable to be used in the 

computations.  In this example, the variables ylow and yhigh will be on 

the y-axes and the variable level1 will be on the x-axes.  The variable 

level1, representing the x covariate, varies over the range of x that is of 
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interest such as three standard deviations away from its mean.  The 

lower and upper values of level1 are -3 and 3 and 0.01 is the incremental 

value of level1 to use in the computations.  When level1 appears in a 

MODEL CONSTRAINT statement involving a new parameter, that 

statement is evaluated for each value of level1 specified by the LOOP 

option.  For example, the first value of level1 is -3; the second value of 

level1 is -3 plus 0.01 or -2.99; the third value of level1 is -2.99 plus 0.01 

or -2.98; the last value of level1 is 3.  Ylow and yhigh use the values -1 

and 1 of the cluster-level covariate w to represent minus one standard 

deviation and plus one standard deviation from the mean for w.  The 

cross-level interaction effects are evaluated at the value zero for the 

cluster-level covariate xm.  

 

Using TYPE=PLOT2 in the PLOT command, the plots of ylow and 

yhigh and level1 can be viewed by choosing Loop plots from the Plot 

menu of the Mplus Editor.  The plots present the computed values along 

with a 95% confidence interval.  For Bayesian estimation, the default is 

credibility intervals of the posterior distribution with equal tail 

percentages.  The CINTERVAL option of the OUTPUT command can 

be used to obtain credibility intervals of the posterior distribution that 

give the highest posterior density. 

 

Following is the third part of the example that shows an alternative 

treatment of the observed covariate x.  

 
TITLE: this is an example of a two-level  

 regression analysis for a continuous  

 dependent variable with a random slope and 

a latent covariate 

DATA: FILE = ex9.2c.dat; 

VARIABLE: NAMES = y x w clus; 

 BETWEEN = w; 

 CLUSTER = clus; 

ANALYSIS: TYPE = TWOLEVEL RANDOM; 

MODEL: 

 %WITHIN%  

  s | y ON x;   

 %BETWEEN%  

 y s ON w x; 

 y WITH s; 

 

The difference between this part of the example and the first part of the 

example is that the covariate x is latent instead of observed on the 

between level.  This is achieved when the individual-level observed 
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covariate is modeled in both the within and between parts of the model.  

This is requested by not mentioning the observed covariate x on the 

WITHIN statement in the VARIABLE command.  When a random slope 

is estimated, the observed covariate x is used on the within level and the 

latent variable covariate xbj is used on the between level.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 

a different estimator.  An explanation of the other commands can be 

found in Example 9.1. 

 

EXAMPLE 9.3: TWO-LEVEL PATH ANALYSIS WITH A 

CONTINUOUS AND A CATEGORICAL DEPENDENT 

VARIABLE 
 

 
TITLE: this is an example of a two-level path  

 analysis with a continuous and a 

categorical dependent variable 

DATA: FILE IS ex9.3.dat; 

VARIABLE: NAMES ARE u y x1 x2 w clus; 

 CATEGORICAL = u; 

 WITHIN = x1 x2; 

 BETWEEN = w; 

 CLUSTER IS clus; 

ANALYSIS: TYPE = TWOLEVEL; 

 ALGORITHM = INTEGRATION; 

MODEL: 

 %WITHIN% 

 y ON x1 x2; 

 u ON y x2; 

 %BETWEEN% 

 y u ON w; 

OUTPUT: TECH1 TECH8; 
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In this example, the two-level path analysis model shown in the picture 

above is estimated.  The mediating variable y is a continuous variable 

and the dependent variable u is a binary or ordered categorical variable.  

The within part of the model describes the linear regression of y on x1 

and x2 and the logistic regression of u on y and x2 where the intercepts 

in the two regressions are random effects that vary across the clusters 

and the slopes are fixed effects that do not vary across the clusters.  In 

the within part of the model, the filled circles at the end of the arrows 

from x1 to y and x2 to u represent random intercepts that are referred to 

as y and u in the between part of the model.    In the between part of the 

model, the random intercepts are shown in circles because they are 

continuous latent variables that vary across clusters.  The between part 

of the model describes the linear regressions of the random intercepts y 

and u on a cluster-level covariate w.   

 

The CATEGORICAL option is used to specify which dependent 

variables are treated as binary or ordered categorical (ordinal) variables 

in the model and its estimation.  The program determines the number of 

categories of u.  The dependent variable u could alternatively be an 

unordered categorical (nominal) variable.  The NOMINAL option is 

used and a multinomial logistic regression is estimated.   
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In the within part of the model, the first ON statement describes the 

linear regression of y on the individual-level covariates x1 and x2 and 

the second ON statement describes the logistic regression of u on the 

mediating variable y and the individual-level covariate x2.  The slopes in 

these regressions are fixed effects that do not vary across the clusters.  

The residual variance in the linear regression of y on x1 and x2 is 

estimated as the default.  There is no residual variance to be estimated in 

the logistic regression of u on y and x2 because u is a binary or ordered 

categorical variable.  In the between part of the model, the ON statement 

describes the linear regressions of the random intercepts y and u on the 

cluster-level covariate w.  The intercept and residual variance of y and u 

are estimated as the default.  The residual covariance between y and u is 

free to be estimated as the default.   

   

By specifying ALGORITHM=INTEGRATION, a maximum likelihood 

estimator with robust standard errors using a numerical integration 

algorithm will be used.  Note that numerical integration becomes 

increasingly more computationally demanding as the number of factors 

and the sample size increase.  In this example, two dimensions of 

integration are used with a total of 225 integration points.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 

a different estimator.  The OUTPUT command is used to request 

additional output not included as the default.  The TECH1 option is used 

to request the arrays containing parameter specifications and starting 

values for all free parameters in the model.  The TECH8 option is used 

to request that the optimization history in estimating the model be 

printed in the output.  TECH8 is printed to the screen during the 

computations as the default.  TECH8 screen printing is useful for 

determining how long the analysis takes.  An explanation of the other 

commands can be found in Example 9.1. 
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EXAMPLE 9.4:  TWO-LEVEL PATH ANALYSIS WITH A 

CONTINUOUS, A CATEGORICAL, AND A CLUSTER-LEVEL 

OBSERVED DEPENDENT VARIABLE 
 

 
TITLE: this is an example of a two-level path 

analysis with a continuous, a categorical, 

and a cluster-level observed dependent 

variable 

DATA: FILE = ex9.4.dat; 

VARIABLE: NAMES ARE u z y x w clus; 

 CATEGORICAL = u; 

 WITHIN = x; 

 BETWEEN = w z; 

 CLUSTER = clus; 

ANALYSIS: TYPE = TWOLEVEL; 

 ESTIMATOR = WLSM; 

MODEL:  

 %WITHIN% 

 u ON y x; 

 y ON x; 

 %BETWEEN% 

 u ON w y z; 

 y ON w; 

 z ON w; 

 y WITH z; 

OUTPUT: TECH1; 
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The difference between this example and Example 9.3 is that the 

between part of the model has an observed cluster-level mediating 

variable z and a latent mediating variable y that is a random intercept.  

The model is estimated using weighted least squares estimation instead 

of maximum likelihood. 

 

By specifying ESTIMATOR=WLSM, a robust weighted least squares 

estimator using a diagonal weight matrix is used (Asparouhov & 

Muthén, 2007).  The ESTIMATOR option of the ANALYSIS command 

can be used to select a different estimator.   

 

In the between part of the model, the first ON statement describes the 

linear regression of the random intercept u on the cluster-level covariate 

w, the random intercept y, and the observed cluster-level mediating 

variable z.  The third ON statement describes the linear regression of the 

observed cluster-level mediating variable z on the cluster-level covariate 

w.  An explanation of the other commands can be found in Examples 9.1 

and 9.3. 
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EXAMPLE 9.5: TWO-LEVEL PATH ANALYSIS WITH 

CONTINUOUS DEPENDENT VARIABLES AND RANDOM 

SLOPES 
 

 
TITLE: this is an example of two-level path  

 analysis with continuous dependent 

variables and random slopes 

DATA: FILE IS ex9.5.dat; 

VARIABLE: NAMES ARE y1 y2 x1 x2 w clus; 

 WITHIN = x1 x2; 

 BETWEEN = w; 

 CLUSTER IS clus; 

ANALYSIS: TYPE = TWOLEVEL RANDOM; 

MODEL: 

 %WITHIN% 

 s2 | y2 ON y1; 

 y2 ON x2; 

 s1 | y1 ON x2; 

 y1 ON x1; 

 %BETWEEN% 

 y1 y2 s1 s2 ON w; 

OUTPUT: TECH1 TECH8; 
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The difference between this example and Example 9.3 is that the model 

includes two random intercepts and two random slopes instead of two 

random intercepts and two fixed slopes and the dependent variable is 

continuous.  In the within part of the model, the filled circle on the arrow 

from the covariate x2 to the mediating variable y1 represents a random 

slope and is referred to as s1 in the between part of the model.  The filled 

circle on the arrow from the mediating variable y1 to the dependent 

variable y2 represents a random slope and is referred to as s2 in the 

between part of the model.   In the between part of the model, the 

random slopes s1 and s2 are shown in circles because they are 

continuous latent variables that vary across clusters. 

 

In the within part of the model, the | symbol is used in conjunction with 

TYPE=RANDOM to name and define the random slope variables in the 

model.  The name on the left-hand side of the | symbol names the 

random slope variable.  The statement on the right-hand side of the | 

symbol defines the random slope variable.  Random slopes are defined 
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using the ON option.  In the first | statement, the random slope s2 is 

defined by the linear regression of the dependent variable y2 on the 

mediating variable y1.  In the second | statement, the random slope s1 is 

defined by the linear regression of the mediating variable y1 on the 

individual-level covariate x2.  The within-level residual variances of y1 

and y2 are estimated as the default.  The first ON statement describes the 

linear regression of the dependent variable y2 on the individual-level 

covariate x2.  The second ON statement describes the linear regression 

of the mediating variable y1 on the individual-level covariate x1. 

 

In the between part of the model, the ON statement describes the linear 

regressions of the random intercepts y1 and y2 and the random slopes s1 

and s2 on the cluster-level covariate w.  The intercepts and residual 

variances of y1, y2, s2, and s1 are estimated as the default.  The residual 

covariances between y1, y2, s2, and s1 are fixed at zero as the default.  

This default can be overridden.  The default estimator for this type of 

analysis is maximum likelihood with robust standard errors.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 

a different estimator.  An explanation of the other commands can be 

found in Examples 9.1 and 9.3. 

 

EXAMPLE 9.6: TWO-LEVEL CFA WITH CONTINUOUS 

FACTOR INDICATORS AND COVARIATES 
 

 
TITLE: this is an example of a two-level CFA with  

 continuous factor indicators and 

covariates 

DATA: FILE IS ex9.6.dat; 

VARIABLE: NAMES ARE y1-y4 x1 x2 w clus;  

 WITHIN = x1 x2; 

 BETWEEN = w; 

 CLUSTER = clus; 

ANALYSIS: TYPE = TWOLEVEL;  

MODEL: 

 %WITHIN% 

 fw BY y1-y4;  

 fw ON x1 x2; 

 %BETWEEN% 

 fb BY y1-y4;  

 y1-y4@0; 

 fb ON w; 
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In this example, the two-level CFA model with continuous factor 

indicators, a between factor, and covariates shown in the picture above is 

estimated.  In the within part of the model, the filled circles at the end of 

the arrows from the within factor fw to y1, y2, y3, and y4 represent 

random intercepts that are referred to as y1, y2, y3, and y4 in the 

between part of the model.  In the between part of the model, the random 

intercepts are shown in circles because they are continuous latent 

variables that vary across clusters.  They are indicators of the between 

factor fb.  In this model, the residual variances for the factor indicators 

in the between part of the model are fixed at zero.  If factor loadings are 
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constrained to be equal across the within and the between levels, this 

implies a model where the regression of the within factor on x1 and x2 

has a random intercept varying across the clusters.   

 

In the within part of the model, the BY statement specifies that fw is 

measured by y1, y2, y3, and y4.  The metric of the factor is set 

automatically by the program by fixing the first factor loading to one.  

This option can be overridden.  The residual variances of the factor 

indicators are estimated and the residuals are not correlated as the 

default.  The ON statement describes the linear regression of fw on the 

individual-level covariates x1 and x2.  The residual variance of the 

factor is estimated as the default.  The intercept of the factor is fixed at 

zero.   

 

In the between part of the model, the BY statement specifies that fb is 

measured by the random intercepts y1, y2, y3, and y4.  The metric of the 

factor is set automatically by the program by fixing the first factor 

loading to one.  This option can be overridden.  The residual variances 

of the factor indicators are set to zero.  The ON statement describes the 

regression of fb on the cluster-level covariate w.  The residual variance 

of the factor is estimated as the default.  The intercept of the factor is 

fixed at zero as the default.  The default estimator for this type of 

analysis is maximum likelihood with robust standard errors.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 

a different estimator.  An explanation of the other commands can be 

found in Example 9.1. 
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EXAMPLE 9.7: TWO-LEVEL CFA WITH CATEGORICAL 

FACTOR INDICATORS AND COVARIATES 
 

 
TITLE: this is an example of a two-level CFA with  

 categorical factor indicators and 

covariates 

DATA: FILE IS ex9.7.dat; 

VARIABLE: NAMES ARE u1-u4 x1 x2 w clus; 

 CATEGORICAL = u1-u4;  

 WITHIN = x1 x2; 

 BETWEEN = w; 

 CLUSTER = clus; 

 MISSING = ALL (999); 

ANALYSIS: TYPE = TWOLEVEL;  

MODEL: 

 %WITHIN% 

 fw BY u1-u4;  

 fw ON x1 x2; 

 %BETWEEN% 

 fb BY u1-u4;   

 fb ON w; 

OUTPUT: TECH1 TECH8; 

 

The difference between this example and Example 9.6 is that the factor 

indicators are binary or ordered categorical (ordinal) variables instead of 

continuous variables. The CATEGORICAL option is used to specify 

which dependent variables are treated as binary or ordered categorical 

(ordinal) variables in the model and its estimation.  In the example 

above, all four factor indicators are binary or ordered categorical.  The 

program determines the number of categories for each indicator.  The 

default estimator for this type of analysis is maximum likelihood with 

robust standard errors using a numerical integration algorithm.  Note that 

numerical integration becomes increasingly more computationally 

demanding as the number of factors and the sample size increase.  In this 

example, two dimensions of integration are used with a total of 225 

integration points.  The ESTIMATOR option of the ANALYSIS 

command can be used to select a different estimator. 

 

In the between part of the model, the residual variances of the random 

intercepts of the categorical factor indicators are fixed at zero as the 

default because the residual variances of random intercepts are often 

very small and require one dimension of numerical integration each.  

Weighted least squares estimation of between-level residual variances 
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does not require numerical integration in estimating the model.  An 

explanation of the other commands can be found in Examples 9.1 and 

9.6. 

 

EXAMPLE 9.8: TWO-LEVEL CFA WITH CONTINUOUS 

FACTOR INDICATORS, COVARIATES, AND RANDOM 

SLOPES 
 

 
TITLE: this is an example of a two-level CFA with 

continuous factor indicators, covariates, 

and random slopes  

DATA: FILE IS ex9.8.dat; 

VARIABLE: NAMES ARE y1-y4 x1 x2 w clus;  

 CLUSTER = clus; 

 WITHIN = x1 x2; 

 BETWEEN = w; 

ANALYSIS: TYPE = TWOLEVEL RANDOM; 

MODEL:  

 %WITHIN% 

 fw BY y1-y4; 

 s1 | fw ON x1; 

 s2 | fw ON x2; 

 %BETWEEN% 

 fb BY y1-y4; 

 y1-y4@0; 

 fb s1 s2 ON w; 
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The difference between this example and Example 9.6 is that the model 

has random slopes in addition to random intercepts and the random 

slopes are regressed on a cluster-level covariate.  In the within part of the 

model, the filled circles on the arrows from x1 and x2 to fw represent 

random slopes that are referred to as s1 and s2 in the between part of the 

model.  In the between part of the model, the random slopes are shown 

in circles because they are latent variables that vary across clusters.      
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In the within part of the model, the | symbol is used in conjunction with 

TYPE=RANDOM to name and define the random slope variables in the 

model.  The name on the left-hand side of the | symbol names the 

random slope variable.  The statement on the right-hand side of the | 

symbol defines the random slope variable.  Random slopes are defined 

using the ON option.  In the first | statement, the random slope s1 is 

defined by the linear regression of the factor fw on the individual-level 

covariate x1.  In the second | statement, the random slope s2 is defined 

by the linear regression of the factor fw on the individual-level covariate 

x2.  The within-level residual variance of f1 is estimated as the default.   

 

In the between part of the model, the ON statement describes the linear 

regressions of fb, s1, and s2 on the cluster-level covariate w.  The 

residual variances of fb, s1, and s2 are estimated as the default.  The 

residuals are not correlated as the default.  The default estimator for this 

type of analysis is maximum likelihood with robust standard errors.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 

a different estimator.  An explanation of the other commands can be 

found in Examples 9.1 and 9.6. 
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EXAMPLE 9.9: TWO-LEVEL SEM WITH CATEGORICAL 

FACTOR INDICATORS ON THE WITHIN LEVEL AND 

CLUSTER-LEVEL CONTINUOUS OBSERVED AND RANDOM 

INTERCEPT FACTOR INDICATORS ON THE BETWEEN 

LEVEL 
 

 
TITLE: this is an example of a two-level SEM with 

categorical factor indicators on the 

within level and cluster-level continuous 

observed and random intercept factor 

indicators on the between level 

DATA:    FILE IS ex9.9.dat; 

VARIABLE: NAMES ARE u1-u6 y1-y4 x1 x2 w clus; 

 CATEGORICAL = u1-u6; 

 WITHIN = x1 x2; 

          BETWEEN = w y1-y4; 

           CLUSTER IS clus; 

ANALYSIS: TYPE IS TWOLEVEL; 

 ESTIMATOR = WLSMV; 

MODEL: 

 %WITHIN% 

 fw1 BY u1-u3; 

 fw2 BY u4-u6; 

 fw1 fw2 ON x1 x2; 

 %BETWEEN% 

 fb BY u1-u6; 

 f BY y1-y4; 

 fb ON w f; 

 f ON w; 

SAVEDATA: SWMATRIX = ex9.9sw.dat; 
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In this example, the model with two within factors and two between 

factors shown in the picture above is estimated.  The within-level factor 

indicators are categorical.  In the within part of the model, the filled 

circles at the end of the arrows from  the within factor fw1 to u1, u2, and 

u3 and fw2 to u4, u5, and u6 represent random intercepts that are 

referred to as u1, u2, u3, u4, u5, and u6 in the between part of the model.  

In the between part of the model, the random intercepts are shown in 

circles because they are continuous latent variables that vary across 

clusters.  The random intercepts are indicators of the between factor fb.  

This example illustrates the common finding of fewer between factors 

than within factors for the same set of factor indicators.  The between 

factor f has observed cluster-level continuous variables as factor 

indicators. 

 

By specifying ESTIMATOR=WLSMV, a robust weighted least squares 

estimator using a diagonal weight matrix will be used.  The default 

estimator for this type of analysis is maximum likelihood with robust 

standard errors using a numerical integration algorithm.  Note that 

numerical integration becomes increasingly more computationally 

demanding as the number of factors and the sample size increase.  In this 

example, three dimensions of integration would be used with a total of 

3,375 integration points. For models with many dimensions of 

integration and categorical outcomes, the weighted least squares 

estimator may improve computational speed.   The ESTIMATOR option 

of the ANALYSIS command can be used to select a different estimator.   

 

In the within part of the model, the first BY statement specifies that fw1 

is measured by u1, u2, and u3.  The second BY statement specifies that 

fw2 is measured by u4, u5, and u6.  The metric of the factors are set 

automatically by the program by fixing the first factor loading for each 

factor to one.  This option can be overridden.  Residual variances of the 

latent response variables of the categorical factor indicators are not 

parameters in the model.  They are fixed at one in line with the Theta 

parameterization.  Residuals are not correlated as the default.  The ON 

statement describes the linear regressions of fw1 and fw2 on the 

individual-level covariates x1 and x2.  The residual variances of the 

factors are estimated as the default.  The residuals of the factors are 

correlated as the default because residuals are correlated for latent 

variables that do not influence any other variable in the model except 

their own indicators.  The intercepts of the factors are fixed at zero as 

the default.  
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In the between part of the model, the first BY statement specifies that fb 

is measured by the random intercepts u1, u2, u3, u4, u5, and u6.  The 

metric of the factor is set automatically by the program by fixing the first 

factor loading to one.  This option can be overridden.  The residual 

variances of the factor indicators are estimated and the residuals are not 

correlated as the default.  Unlike maximum likelihood estimation, 

weighted least squares estimation of between-level residual variances 

does not require numerical integration in estimating the model.  The 

second BY statement specifies that f is measured by the cluster-level 

factor indicators y1, y2, y3, and y4.  The residual variances of the factor 

indicators are estimated and the residuals are not correlated as the 

default.  The first ON statement describes the linear regression of fb on 

the cluster-level covariate w and the factor f.  The second ON statement 

describes the linear regression of f on the cluster-level covariate w.  The 

residual variances of the factors are estimated as the default.  The 

intercepts of the factors are fixed at zero as the default. 

 

The SWMATRIX option of the SAVEDATA command is used with 

TYPE=TWOLEVEL and weighted least squares estimation to specify 

the name and location of the file that contains the within- and between-

level sample statistics and their corresponding estimated asymptotic 

covariance matrix.  It is recommended to save this information and use it 

in subsequent analyses along with the raw data to reduce computational 

time during model estimation.  An explanation of the other commands 

can be found in Example 9.1. 
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EXAMPLE 9.10: TWO-LEVEL SEM WITH CONTINUOUS 

FACTOR INDICATORS AND A RANDOM SLOPE FOR A 

FACTOR 
 

 
TITLE: this is an example of a two-level SEM with  

 continuous factor indicators and a random  

 slope for a factor 

DATA:  FILE IS ex9.10.dat; 

VARIABLE: NAMES ARE y1-y5 w clus; 

 BETWEEN = w; 

 CLUSTER = clus; 

ANALYSIS: TYPE = TWOLEVEL RANDOM;  

 ALGORITHM = INTEGRATION; 

 INTEGRATION = 10; 

MODEL:  

 %WITHIN% 

 fw BY y1-y4; 

 s | y5 ON fw; 

 %BETWEEN% 

 fb BY y1-y4; 

 y1-y4@0; 

 y5 s ON fb w; 

OUTPUT: TECH1 TECH8; 



CHAPTER 9 

 

298 

 
 

 

In this example, the two-level SEM with continuous factor indicators 

shown in the picture above is estimated.  In the within part of the model, 

the filled circles at the end of the arrows from fw to the factor indicators 

y1, y2, y3, and y4 and the filled circle at the end of the arrow from fw to 

y5  represent random intercepts that are referred to as y1, y2, y3, y4, and 

y5 in the between part of the model.  The filled circle on the arrow from 

fw to y5 represents a random slope that is referred to as s in the between 
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part of the model.  In the between part of the model, the random 

intercepts and random slope are shown in circles because they are 

continuous latent variables that vary across clusters. 

 

By specifying TYPE=TWOLEVEL RANDOM in the ANALYSIS 

command, a multilevel model with random intercepts and random slopes 

will be estimated.  By specifying ALGORITHM=INTEGRATION, a 

maximum likelihood estimator with robust standard errors using a 

numerical integration algorithm will be used.  Note that numerical 

integration becomes increasingly more computationally demanding as 

the number of factors and the sample size increase.  In this example, four 

dimensions of integration are used with a total of 10,000 integration 

points.  The INTEGRATION option of the ANALYSIS command is 

used to change the number of integration points per dimension from the 

default of 15 to 10.  The ESTIMATOR option of the ANALYSIS 

command can be used to select a different estimator.   

 

In the within part of the model, the BY statement specifies that fw is 

measured by the factor indicators y1, y2, y3, and y4.  The metric of the 

factor is set automatically by the program by fixing the first factor 

loading in each BY statement to one.  This option can be overridden.  

The residual variances of the factor indicators are estimated and the 

residuals are uncorrelated as the default.  The variance of the factor is 

estimated as the default.   

 

In the within part of the model, the | symbol is used in conjunction with 

TYPE=RANDOM to name and define the random slope variables in the 

model.  The name on the left-hand side of the | symbol names the 

random slope variable.  The statement on the right-hand side of the | 

symbol defines the random slope variable.  Random slopes are defined 

using the ON option.  In the | statement, the random slope s is defined by 

the linear regression of the dependent variable y5 on the within factor 

fw.  The within-level residual variance of y5 is estimated as the default.   

 

In the between part of the model, the BY statement specifies that fb is 

measured by the random intercepts y1, y2, y3, and y4.  The metric of the 

factor is set automatically by the program by fixing the first factor 

loading in the BY statement to one.  This option can be overridden.  The 

residual variances of the factor indicators are fixed at zero.  The variance 

of the factor is estimated as the default.  The ON statement describes the 

linear regressions of the random intercept y5 and the random slope s on 
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the factor fb and the cluster-level covariate w.   The intercepts and 

residual variances of y5 and s are estimated and their residuals are 

uncorrelated as the default.  

 

The OUTPUT command is used to request additional output not 

included as the default.  The TECH1 option is used to request the arrays 

containing parameter specifications and starting values for all free 

parameters in the model.  The TECH8 option is used to request that the 

optimization history in estimating the model be printed in the output.  

TECH8 is printed to the screen during the computations as the default.  

TECH8 screen printing is useful for determining how long the analysis 

takes.  An explanation of the other commands can be found in Example 

9.1. 

 

EXAMPLE 9.11: TWO-LEVEL MULTIPLE GROUP CFA WITH 

CONTINUOUS FACTOR INDICATORS 
 

 
TITLE: this is an example of a two-level  

 multiple group CFA with continuous 

 factor indicators 

DATA:  FILE IS ex9.11.dat; 

VARIABLE: NAMES ARE y1-y6 g clus; 

 GROUPING = g (1 = g1 2 = g2); 

 CLUSTER = clus; 

ANALYSIS: TYPE = TWOLEVEL; 

MODEL:  

 %WITHIN% 

 fw1 BY y1-y3; 

 fw2 BY y4-y6; 

 %BETWEEN% 

 fb1 BY y1-y3; 

 fb2 BY y4-y6; 

MODEL g2: %WITHIN% 

 fw1 BY y2-y3; 

 fw2 BY y5-y6; 
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In this example, the two-level multiple group CFA with continuous 

factor indicators shown in the picture above is estimated.  In the within 

part of the model, the filled circles at the end of the arrows from the 

within factors fw1 to y1, y2, and y3 and fw2 to y4, y5, and y6 represent 

random intercepts that are referred to as y1, y2, y3, y4, y5, and y6 in the 

between part of the model.  In the between part of the model, the random 

intercepts are shown in circles because they are continuous latent 

variables that vary across clusters.  The random intercepts are indicators 

of the between factors fb1 and fb2.   

 

The GROUPING option of the VARIABLE command is used to identify 

the variable in the data set that contains information on group 

membership when the data for all groups are stored in a single data set.  

The information in parentheses after the grouping variable name assigns 

labels to the values of the grouping variable found in the data set.  In the 

example above, observations with g equal to 1 are assigned the label g1, 
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and individuals with g equal to 2 are assigned the label g2.  These labels 

are used in conjunction with the MODEL command to specify model 

statements specific to each group.  The grouping variable should be a 

cluster-level variable. 

 

In multiple group analysis, two variations of the MODEL command are 

used.  They are MODEL and MODEL followed by a label.  MODEL 

describes the model to be estimated for all groups.  The factor loadings 

and intercepts are held equal across groups as the default to specify 

measurement invariance.  MODEL followed by a label describes 

differences between the overall model and the model for the group 

designated by the label.   

 

In the within part of the model, the BY statements specify that fw1 is 

measured by y1, y2, and y3, and fw2 is measured by y4, y5, and y6.  The 

metric of the factors is set automatically by the program by fixing the 

first factor loading in each BY statement to one.  This option can be 

overridden.  The variances of the factors are estimated as the default.  

The factors fw1 and fw2 are correlated as the default because they are 

independent (exogenous) variables.  In the between part of the model, 

the BY statements specify that fb1 is measured by y1, y2, and y3, and 

fb2 is measured by y4, y5, and y6.  The metric of the factor is set 

automatically by the program by fixing the first factor loading in each 

BY statement to one.  This option can be overridden.  The variances of 

the factors are estimated as the default.  The factors fb1 and fb2 are 

correlated as the default because they are independent (exogenous) 

variables.   

 

In the group-specific MODEL command for group 2, by specifying the 

within factor loadings for fw1 and fw2, the default equality constraints 

are relaxed and the factor loadings are no longer held equal across 

groups.  The factor indicators that are fixed at one remain the same, in 

this case y1 and y4.  The default estimator for this type of analysis is 

maximum likelihood with robust standard errors.  The ESTIMATOR 

option of the ANALYSIS command can be used to select a different 

estimator.  An explanation of the other commands can be found in 

Example 9.1. 
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EXAMPLE 9.12: TWO-LEVEL GROWTH MODEL FOR A 

CONTINUOUS OUTCOME (THREE-LEVEL ANALYSIS) 
 

 
TITLE: this is an example of a two-level growth 

model for a continuous outcome (three-

level analysis) 

DATA: FILE IS ex9.12.dat; 

VARIABLE: NAMES ARE y1-y4 x w clus; 

 WITHIN = x; 

 BETWEEN = w; 

 CLUSTER = clus; 

ANALYSIS: TYPE = TWOLEVEL; 

MODEL: 

 %WITHIN% 

 iw sw | y1@0 y2@1 y3@2 y4@3; 

 y1-y4 (1); 

 iw sw ON x; 

 %BETWEEN% 

 ib sb | y1@0 y2@1 y3@2 y4@3; 

 y1-y4@0; 

 ib sb ON w; 
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In this example, the two-level growth model for a continuous outcome 

(three-level analysis) shown in the picture above is estimated. In the 

within part of the model, the filled circles at the end of the arrows from 

the within growth factors iw and sw to y1, y2, y3, and y4 represent 

random intercepts that are referred to as y1, y2, y3, and y4 in the 

between part of the model.  In the between part of the model, the random 

intercepts are shown in circles because they are continuous latent 

variables that vary across clusters.   

 

In the within part of the model, the | statement names and defines the 

within intercept and slope factors for the growth model.  The names iw 

and sw on the left-hand side of the | symbol are the names of the 

intercept and slope growth factors, respectively.  The values on the right-

hand side of the | symbol are the time scores for the slope growth factor.  

The time scores of the slope growth factor are fixed at 0, 1, 2, and 3 to 

define a linear growth model with equidistant time points.  The zero time 

score for the slope growth factor at time point one defines the intercept 

growth factor as an initial status factor.  The coefficients of the intercept 

growth factor are fixed at one as part of the growth model 

parameterization.  The residual variances of the outcome variables are 

constrained to be equal over time in line with conventional multilevel 

growth modeling.  This is done by placing (1) after them.  The residual 

covariances of the outcome variables are fixed at zero as the default.  

Both of these restrictions can be overridden.  The ON statement 

describes the linear regressions of the growth factors on the individual-

level covariate x.  The residual variances of the growth factors are free 

to be estimated as the default.  The residuals of the growth factors are 

correlated as the default because residuals are correlated for latent 

variables that do not influence any other variable in the model except 

their own indicators. 

 

In the between part of the model, the | statement names and defines the 

between intercept and slope factors for the growth model.  The names ib 

and sb on the left-hand side of the | symbol are the names of the intercept 

and slope growth factors, respectively.  The values on the right-hand side 

of the | symbol are the time scores for the slope growth factor.  The time 

scores of the slope growth factor are fixed at 0, 1, 2, and 3 to define a 

linear growth model with equidistant time points.  The zero time score 

for the slope growth factor at time point one defines the intercept factor 

as an initial status factor.  The coefficients of the intercept growth factor 

are fixed at one as part of the growth model parameterization.  The 
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residual variances of the outcome variables are fixed at zero on the 

between level in line with conventional multilevel growth modeling.  

These residual variances can be estimated.  The ON statement describes 

the linear regressions of the growth factors on the cluster-level covariate 

w.  The residual variances and the residual covariance of the growth 

factors are free to be estimated as the default. 

 

In the parameterization of the growth model shown here, the intercepts 

of the outcome variable at the four time points are fixed at zero as the 

default.  The intercepts of the growth factors are estimated as the default 

in the between part of the model.  The default estimator for this type of 

analysis is maximum likelihood with robust standard errors.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 

a different estimator.   An explanation of the other commands can be 

found in Example 9.1. 

 

EXAMPLE 9.13: TWO-LEVEL GROWTH MODEL FOR A 

CATEGORICAL OUTCOME (THREE-LEVEL ANALYSIS) 
 

 
TITLE: this is an example of a two-level   

 growth model for a categorical outcome 

(three-level analysis) 

DATA: FILE IS ex9.13.dat; 

VARIABLE: NAMES ARE u1-u4 x w clus; 

 CATEGORICAL = u1-u4; 

 WITHIN = x; 

 BETWEEN = w; 

 CLUSTER = clus; 

ANALYSIS: TYPE = TWOLEVEL; 

 INTEGRATION = 7; 

MODEL: 

 %WITHIN% 

 iw sw | u1@0 u2@1 u3@2 u4@3; 

 iw sw ON x; 

 %BETWEEN% 

 ib sb | u1@0 u2@1 u3@2 u4@3; 

 ib sb ON w; 

OUTPUT: TECH1 TECH8; 

 

The difference between this example and Example 9.12 is that the 

outcome variable is a binary or ordered categorical (ordinal) variable 

instead of a continuous variable.   
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The CATEGORICAL option is used to specify which dependent 

variables are treated as binary or ordered categorical (ordinal) variables 

in the model and its estimation.  In the example above, u1, u2, u3, and u4 

are binary or ordered categorical variables.  They represent the outcome 

measured at four equidistant occasions.   

 

The default estimator for this type of analysis is maximum likelihood 

with robust standard errors using a numerical integration algorithm.  

Note that numerical integration becomes increasingly more 

computationally demanding as the number of factors and the sample size 

increase.  In this example, four dimensions of integration are used with a 

total of 2,401 integration points.  The INTEGRATION option of the 

ANALYSIS command is used to change the number of integration points 

per dimension from the default of 15 to 7.  The ESTIMATOR option of 

the ANALYSIS command can be used to select a different estimator.  

For models with many dimensions of integration and categorical 

outcomes, the weighted least squares estimator may improve 

computational speed. 

 

In the parameterization of the growth model shown here, the thresholds 

of the outcome variable at the four time points are held equal as the 

default and are estimated in the between part of the model.  The 

intercept of the intercept growth factor is fixed at zero.  The intercept of 

the slope growth factor is estimated as the default in the between part of 

the model.  The residual variances of the growth factors are estimated as 

the default.  The residuals of the growth factors are correlated as the 

default because residuals are correlated for latent variables that do not 

influence any other variable in the model except their own indicators.  

On the between level, the residual variances of the random intercepts u1, 

u2, u3, and u4 are fixed at zero as the default. 

 

The OUTPUT command is used to request additional output not 

included as the default.  The TECH1 option is used to request the arrays 

containing parameter specifications and starting values for all free 

parameters in the model.  The TECH8 option is used to request that the 

optimization history in estimating the model be printed in the output.  

TECH8 is printed to the screen during the computations as the default.  

TECH8 screen printing is useful for determining how long the analysis 

takes.  An explanation of the other commands can be found in Examples 

9.1 and 9.12. 
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EXAMPLE 9.14: TWO-LEVEL GROWTH MODEL FOR A 

CONTINUOUS OUTCOME (THREE-LEVEL ANALYSIS) WITH 

VARIATION ON BOTH THE WITHIN AND BETWEEN 

LEVELS FOR A RANDOM SLOPE OF A TIME-VARYING 

COVARIATE  
 

 
TITLE: this is an example of a two-level growth  

 model for a continuous outcome (three- 

 level analysis) with variation on both the 

within and between levels for a random 

slope of a time-varying covariate  

DATA: FILE IS ex9.14.dat; 

VARIABLE: NAMES ARE y1-y4 x a1-a4 w clus; 

 WITHIN = x a1-a4; 

 BETWEEN = w; 

 CLUSTER = clus; 

ANALYSIS: TYPE = TWOLEVEL RANDOM; 

 ALGORITHM = INTEGRATION; 

 INTEGRATION = 10; 

MODEL: 

 %WITHIN% 

 iw sw | y1@0 y2@1 y3@2 y4@3; 

 y1-y4 (1); 

 iw sw ON x; 

 s* | y1 ON a1; 

 s* | y2 ON a2; 

 s* | y3 ON a3; 

 s* | y4 ON a4; 

 %BETWEEN% 

 ib sb | y1@0 y2@1 y3@2 y4@3; 

 y1-y4@0; 

 ib sb s ON w; 

OUTPUT: TECH1 TECH8; 
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The difference between this example and Example 9.12 is that the model 

includes an individual-level time-varying covariate with a random slope 

that varies on both the within and between levels.  In the within part of 

the model, the filled circles at the end of the arrows from a1 to y1, a2 to 

y2, a3 to y3, and a4 to y4 represent random intercepts that are referred to 
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as y1, y2, y3, and y4 in the between part of the model.  In the between 

part of the model, the random intercepts are shown in circles because 

they are continuous latent variables that vary across classes.  The broken 

arrows from s to the arrows from a1 to y1, a2 to y2, a3 to y3, and a4 to 

y4 indicate that the slopes in these regressions are random.  The s is 

shown in a circle in both the within and between parts of the model to 

represent a decomposition of the random slope into its within and 

between components. 

 

By specifying TYPE=TWOLEVEL RANDOM in the ANALYSIS 

command, a multilevel model with random intercepts and random slopes 

will be estimated.  By specifying ALGORITHM=INTEGRATION, a 

maximum likelihood estimator with robust standard errors using a 

numerical integration algorithm will be used.  Note that numerical 

integration becomes increasingly more computationally demanding as 

the number of factors and the sample size increase.  In this example, four 

dimensions of integration are used with a total of 10,000 integration 

points.  The INTEGRATION option of the ANALYSIS command is 

used to change the number of integration points per dimension from the 

default of 15 to 10.  The ESTIMATOR option of the ANALYSIS 

command can be used to select a different estimator.   

 

The | symbol is used in conjunction with TYPE=RANDOM to name and 

define the random slope variables in the model.  The name on the left-

hand side of the | symbol names the random slope variable.  The 

statement on the right-hand side of the | symbol defines the random slope 

variable.  The random slope s is defined by the linear regressions of y1 

on a1, y2 on a2, y3 on a3, and y4 on a4.  Random slopes with the same 

name are treated as one variable during model estimation.  The random 

intercepts for these regressions are referred to by using the name of the 

dependent variables in the regressions, that is, y1, y2, y3, and y4.  The 

asterisk (*) following the s specifies that s will have variation on both 

the within and between levels.  Without the asterisk (*), s would have 

variation on only the between level.  An explanation of the other 

commands can be found in Examples 9.1 and 9.12. 
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EXAMPLE 9.15: TWO-LEVEL MULTIPLE INDICATOR 

GROWTH MODEL WITH CATEGORICAL OUTCOMES 

(THREE-LEVEL ANALYSIS) 
 

 
TITLE: this is an example of a two-level multiple 

 indicator growth model with categorical  

 outcomes (three-level analysis) 

DATA: FILE IS ex9.15.dat; 

VARIABLE: NAMES ARE u11 u21 u31 u12 u22 u32 u13 u23  

 u33 clus; 

 CATEGORICAL = u11-u33; 

 CLUSTER = clus; 

ANALYSIS: TYPE IS TWOLEVEL; 

 ESTIMATOR = WLSM; 

MODEL: 

 %WITHIN%  

 f1w BY u11  

 u21-u31 (1-2);  

 f2w BY u12  

 u22-u32 (1-2); 

 f3w BY u13  

 u23-u33 (1-2); 

 iw sw | f1w@0 f2w@1 f3w@2;     

 %BETWEEN%  

 f1b BY u11  

 u21-u31 (1-2);  

 f2b BY u12  

 u22-u32 (1-2); 

 f3b BY u13  

 u23-u33 (1-2); 

 [u11$1 u12$1 u13$1] (3); 

 [u21$1 u22$1 u23$1] (4); 

 [u31$1 u32$1 u33$1] (5); 

 ib sb | f1b@0 f2b@1 f3b@2;     

 [f1b-f3b@0 ib@0 sb]; 

 f1b-f3b (6); 

SAVEDATA: SWMATRIX = ex9.15sw.dat; 
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In this example, the two-level multiple indicator growth model with 

categorical outcomes (three-level analysis) shown in the picture above is 

estimated.  The picture shows a factor measured by three indicators at 

three time points.  In the within part of the model, the filled circles at the 

end of the arrows from the within factors f1w to u11, u21, and u31; f2w 

to u12, u22, and u32; and f3w to u13, u23, and u33 represent random 

intercepts that are referred to as u11, u21, u31, u12, u22, u32, u13, u23, 

and u33 in the between part of the model.  In the between part of the 

model, the random intercepts are continuous latent variables that vary 

across clusters.  The random intercepts are indicators of the between 

factors f1b, f2b, and f3b.  In this model, the residual variances of the 
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factor indicators in the between part of the model are estimated.  The 

residuals are not correlated as the default.  Taken together with the 

specification of equal factor loadings on the within and the between 

parts of the model, this implies a model where the regressions of the 

within factors on the growth factors have random intercepts that vary 

across the clusters. 

 

By specifying ESTIMATOR=WLSM, a robust weighted least squares 

estimator using a diagonal weight matrix will be used.  The default 

estimator for this type of analysis is maximum likelihood with robust 

standard errors using a numerical integration algorithm.  Note that 

numerical integration becomes increasingly more computationally 

demanding as the number of factors and the sample size increase.  For 

models with many dimensions of integration and categorical outcomes, 

the weighted least squares estimator may improve computational speed. 

 

In the within part of the model, the three BY statements define a within-

level factor at three time points.  The metric of the three factors is set 

automatically by the program by fixing the first factor loading to one.  

This option can be overridden.  The (1-2) following the factor loadings 

uses the list function to assign equality labels to these parameters. The 

label 1 is assigned to the factor loadings of u21, u22, and u23 which 

holds these factor loadings equal across time.  The label 2 is assigned to 

the factor loadings of u31, u32, and u33 which holds these factor 

loadings equal across time.  Residual variances of the latent response 

variables of the categorical factor indicators are not free parameters to be 

estimated in the model.  They are fixed at one in line with the Theta 

parameterization.  Residuals are not correlated as the default.  The | 

statement names and defines the within intercept and slope growth 

factors for the growth model.  The names iw and sw on the left-hand side 

of the | symbol are the names of the intercept and slope growth factors, 

respectively.  The names and values on the right-hand side of the | 

symbol are the outcome and time scores for the slope growth factor.  The 

time scores of the slope growth factor are fixed at 0, 1, and 2 to define a 

linear growth model with equidistant time points.  The zero time score 

for the slope growth factor at time point one defines the intercept growth 

factor as an initial status factor.  The coefficients of the intercept growth 

factor are fixed at one as part of the growth model parameterization.  

The variances of the growth factors are free to be estimated as the 

default.  The covariance between the growth factors is free to be 

estimated as the default.  The intercepts of the factors defined using BY 
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statements are fixed at zero.  The residual variances of the factors are 

free and not held equal across time.  The residuals of the factors are 

uncorrelated in line with the default of residuals for first-order factors.   

 

In the between part of the model, the first three BY statements define a 

between-level factor at three time points.  The (1-2) following the factor 

loadings uses the list function to assign equality labels to these 

parameters. The label 1 is assigned to the factor loadings of u21, u22, 

and u23 which holds these factor loadings equal across time as well as 

across levels.  The label 2 is assigned to the factor loadings of u31, u32, 

and u33 which holds these factor loadings equal across time as well as 

across levels.  Time-invariant thresholds for the three indicators are 

specified using (3), (4), and (5) following the bracket statements.  The 

residual variances of the factor indicators are free to be estimated.  The | 

statement names and defines the between intercept and slope growth 

factors for the growth model.  The names ib and sb on the left-hand side 

of the | symbol are the names of the intercept and slope growth factors, 

respectively.  The values on the right-hand side of the | symbol are the 

time scores for the slope growth factor.  The time scores of the slope 

growth factor are fixed at 0, 1, and 2 to define a linear growth model 

with equidistant time points.  The zero time score for the slope growth 

factor at time point one defines the intercept growth factor as an initial 

status factor.  The coefficients of the intercept growth factor are fixed at 

one as part of the growth model parameterization.  In the 

parameterization of the growth model shown here, the intercept growth 

factor mean is fixed at zero as the default for identification purposes.  

The variances of the growth factors are free to be estimated as the 

default.  The covariance between the growth factors is free to be 

estimated as the default.  The intercepts of the factors defined using BY 

statements are fixed at zero.  The residual variances of the factors are 

held equal across time.  The residuals of the factors are uncorrelated in 

line with the default of residuals for first-order factors.  

 

The SWMATRIX option of the SAVEDATA command is used with 

TYPE=TWOLEVEL and weighted least squares estimation to specify 

the name and location of the file that contains the within- and between-

level sample statistics and their corresponding estimated asymptotic 

covariance matrix.  It is recommended to save this information and use it 

in subsequent analyses along with the raw data to reduce computational 

time during model estimation.  An explanation of the other commands 

can be found in Example 9.1 
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EXAMPLE 9.16:  LINEAR GROWTH MODEL FOR A 

CONTINUOUS OUTCOME WITH TIME-INVARIANT AND 

TIME-VARYING COVARIATES CARRIED OUT AS A TWO-

LEVEL GROWTH MODEL USING THE DATA WIDETOLONG 

COMMAND 
 

 
TITLE: this is an example of a linear growth 

model for a continuous outcome with time-

invariant and time-varying covariates 

carried out as a two-level growth model 

using the DATA WIDETOLONG command  

DATA: FILE IS ex9.16.dat; 

DATA WIDETOLONG: 

 WIDE = y11-y14 | a31-a34; 

 LONG = y | a3; 

 IDVARIABLE = person; 

 REPETITION = time; 

VARIABLE: NAMES ARE y11-y14 x1 x2 a31-a34; 

 USEVARIABLE = x1 x2 y a3 person time; 

 CLUSTER = person;  

 WITHIN = time a3; 

 BETWEEN = x1 x2; 

ANALYSIS: TYPE = TWOLEVEL RANDOM;  

MODEL: %WITHIN% 

 s | y ON time; 

 y ON a3; 

 %BETWEEN% 

 y s ON x1 x2; 

 y WITH s;  
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In this example, a linear growth model for a continuous outcome with 

time-invariant and time-varying covariates as shown in the picture above 

is estimated.  As part of the analysis, the DATA WIDETOLONG 

command is used to rearrange the data from a multivariate wide format 

to a univariate long format.  The model is similar to the one in Example 

6.10 using multivariate wide format data.  The differences are that the 

current model restricts the within-level residual variances to be equal 

across time and the within-level influence of the time-varying covariate 

on the outcome to be equal across time. 

 

The WIDE option of the DATA WIDETOLONG command is used to 

identify sets of variables in the wide format data set that are to be 

converted into single variables in the long format data set.  These 

variables must variables from the NAMES statement of the VARIABLE 

command.  The two sets of variables y11, y12, y13, and y14 and a31, 

a32, a33, and a34 are identified. The LONG option is used to provide 

names for the new variables in the long format data set.  The names y 

and a3 are the names of the new variables.  The IDVARIABLE option is 

used to provide a name for the variable that provides information about 

the unit to which the record belongs.  In univariate growth modeling, this 

is the person identifier which is used as a cluster variable.  In this 

example, the name person is used.  This option is not required.  The 
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default variable name is id.  The REPETITION option is used to provide 

a name for the variable that contains information on the order in which 

the variables were measured.  In this example, the name time is used.  

This option is not required.  The default variable name is rep.  The new 

variables must be mentioned on the USEVARIABLE statement of the 

VARIABLE command if they are used in the analysis.  They must be 

placed after any original variables.  The USEVARIABLES option lists 

the original variables x1 and x2 followed by the new variables y, a3, 

person, and time.   

 

The CLUSTER option of the VARIABLE command is used to identify 

the variable that contains clustering information.  In this example, the 

cluster variable person is the variable that was created using the 

IDVARIABLE option of the DATA WIDETOLONG command.  The 

WITHIN option is used to identify the variables in the data set that are 

measured on the individual level and modeled only on the within level.  

They are specified to have no variance in the between part of the model.  

The BETWEEN option is used to identify the variables in the data set 

that are measured on the cluster level and modeled only on the between 

level.  Variables not mentioned on the WITHIN or the BETWEEN 

statements are measured on the individual level and can be modeled on 

both the within and between levels.   

 

In the within part of the model, the | symbol is used in conjunction with 

TYPE=RANDOM to name and define the random slope variables in the 

model.  The name on the left-hand side of the | symbol names the 

random slope variable.  The statement on the right-hand side of the | 

symbol defines the random slope variable.  Random slopes are defined 

using the ON option.  In the | statement, the random slope s is defined by 

the linear regression of the dependent variable y on time.  The within-

level residual variance of y is estimated as the default.  The ON 

statement describes the linear regression of y on the covariate a3.   

 

In the between part of the model, the ON statement describes the linear 

regressions of the random intercept y and the random slope s on the 

covariates x1 and x2.  The WITH statement is used to free the 

covariance between y and s.  The default estimator for this type of 

analysis is maximum likelihood with robust standard errors.  The 

estimator option of the ANALYSIS command can be used to select a 

different estimator.  An explanation of the other commands can be found 

in Example 9.1. 
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EXAMPLE 9.17:  TWO-LEVEL GROWTH MODEL FOR A 

COUNT OUTCOME USING A ZERO-INFLATED POISSON 

MODEL (THREE-LEVEL ANALYSIS)    
 

 
TITLE: this is an example of a two-level growth 

model for a count outcome using a zero-

inflated Poisson model (three-level 

analysis) 

DATA: FILE = ex9.17.dat; 

VARIABLE: NAMES = u1-u4 x w clus; 

 COUNT = u1-u4 (i); 

 CLUSTER = clus; 

 WITHIN = x; 

 BETWEEN = w; 

ANALYSIS: TYPE = TWOLEVEL; 

 ALGORITHM = INTEGRATION; 

 INTEGRATION = 10; 

 MCONVERGENCE = 0.01; 

MODEL: %WITHIN% 

 iw sw | u1@0 u2@1 u3@2 u4@3; 

 iiw siw | u1#1@0 u2#1@1 u3#1@2 u4#1@3; 

 sw@0; 

 siw@0; 

 iw WITH iiw; 

 iw ON x; 

 sw ON x; 

 %BETWEEN% 

 ib sb | u1@0 u2@1 u3@2 u4@3; 

 iib sib | u1#1@0 u2#1@1 u3#1@2 u4#1@3; 

 sb-sib@0; 

 ib ON w; 

OUTPUT: TECH1 TECH8; 

 

The difference between this example and Example 9.12 is that the 

outcome variable is a count variable instead of a continuous variable.   

 

The COUNT option is used to specify which dependent variables are 

treated as count variables in the model and its estimation and whether a 

Poisson or zero-inflated Poisson model will be estimated.  In the 

example above, u1, u2, u3, and u4 are count variables.  The i in 

parentheses following u indicates that a zero-inflated Poisson model will 

be estimated.   
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By specifying ALGORITHM=INTEGRATION, a maximum likelihood 

estimator with robust standard errors using a numerical integration 

algorithm will be used.  Note that numerical integration becomes 

increasingly more computationally demanding as the number of factors 

and the sample size increase.  In this example, three dimensions of 

integration are used with a total of 1,000 integration points.  The 

INTEGRATION option of the ANALYSIS command is used to change 

the number of integration points per dimension from the default of 15 to 

10.  The ESTIMATOR option of the ANALYSIS command can be used 

to select a different estimator.  The MCONVERGENCE option is used 

to change the observed-data log likelihood derivative convergence 

criterion for the EM algorithm from the default value of .001 to .01 

because it is difficult to obtain high numerical precision in this example. 

 

With a zero-inflated Poisson model, two growth models are estimated.  

In the within and between parts of the model, the first | statement 

describes the growth model for the count part of the outcome for 

individuals who are able to assume values of zero and above.  The 

second | statement describes the growth model for the inflation part of 

the outcome, the probability of being unable to assume any value except 

zero.  The binary latent inflation variable is referred to by adding to the 

name of the count variable the number sign (#) followed by the number 

1.  In the parameterization of the growth model for the count part of the 

outcome, the intercepts of the outcome variables at the four time points 

are fixed at zero as the default.  In the parameterization of the growth 

model for the inflation part of the outcome, the intercepts of the outcome 

variable at the four time points are held equal as the default.  In the 

within part of the model, the variances of the growth factors are 

estimated as the default, and the growth factor covariances are fixed at 

zero as the default.  In the between part of the model, the mean of the 

growth factors for the count part of outcome are free.  The mean of the 

intercept growth factor for the inflation part of the outcome is fixed at 

zero and the mean for the slope growth factor for the inflation part of the 

outcome is free.  The variances of the growth factors are estimated as the 

default, and the growth factor covariances are fixed at zero as the 

default. 

 

In the within part of the model, the variances of the slope growth factors 

sw and siw are fixed at zero.  The ON statements describes the linear 

regressions of the intercept and slope growth factors iw and sw for the 

count part of the outcome on the covariate x.  In the between part of the 
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model, the variances of the intercept growth factor iib and the slope 

growth factors sb and sib are fixed at zero.  The ON statement describes 

the linear regression of the intercept growth factor ib on the covariate w. 

An explanation of the other commands can be found in Examples 9.1 

and 9.12. 

 

EXAMPLE 9.18:  TWO-LEVEL CONTINUOUS-TIME 

SURVIVAL ANALYSIS USING COX REGRESSION WITH A 

RANDOM INTERCEPT  
 

 
TITLE: this is an example of a two-level 

continuous-time survival analysis using 

Cox regression with a random intercept 

DATA: FILE = ex9.18.dat; 

VARIABLE: NAMES = t x w tc clus; 

 CLUSTER = clus; 

 WITHIN = x; 

 BETWEEN = w; 

 SURVIVAL = t (ALL); 

 TIMECENSORED = tc (0 = NOT 1 = RIGHT); 

ANALYSIS: TYPE = TWOLEVEL; 

 BASEHAZARD = OFF; 

MODEL: %WITHIN% 

 t ON x; 

 %BETWEEN% 

 t ON w; 

 t; 
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In this example, the two-level continuous-time survival analysis model 

shown in the picture above is estimated.  This is the Cox regression 

model with a random intercept (Klein & Moeschberger, 1997; Hougaard,  

2000).  The profile likelihood method is used for estimation 

(Asparouhov et al., 2006). 

 

The SURVIVAL option is used to identify the variables that contain 

information about time to event and to provide information about the 

time intervals in the baseline hazard function to be used in the analysis.  

The SURVIVAL option must be used in conjunction with the 

TIMECENSORED option.  In this example, t is the variable that 

contains time to event information.  By specifying the keyword ALL in 

parenthesis following the time-to-event variable, the time intervals are 

taken from the data.  The TIMECENSORED option is used to identify 

the variables that contain information about right censoring.  In this 

example, this variable is named tc.  The information in parentheses 

specifies that the value zero represents no censoring and the value one 

represents right censoring.  This is the default.  The BASEHAZARD 

option of the ANALYSIS command is used with continuous-time 

survival analysis to specify if a non-parametric or a parametric baseline 

hazard function is used in the estimation of the model.  The setting OFF 

specifies that a non-parametric baseline hazard function is used.  This is 

the default. 

 

The MODEL command is used to describe the model to be estimated.  In 

multilevel models, a model is specified for both the within and between 

parts of the model.  In the within part of the model, the loglinear 

regression of the time-to-event t on the covariate x is specified.  In the 

between part of the model, the linear regression of the random intercept t 

on the cluster-level covariate w is specified.  The residual variance of t is 

estimated.  The default estimator for this type of analysis is maximum 

likelihood with robust standard errors.  The estimator option of the 

ANALYSIS command can be used to select a different estimator.  An 

explanation of the other commands can be found in Example 9.1. 
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EXAMPLE 9.19:  TWO-LEVEL MIMIC MODEL WITH 

CONTINUOUS FACTOR INDICATORS, RANDOM FACTOR 

LOADINGS, TWO COVARIATES ON WITHIN, AND ONE 

COVARIATE ON BETWEEN WITH EQUAL LOADINGS 

ACROSS LEVELS 
 

 
TITLE: this is an example of a two-level MIMIC  

 model with continuous factor indicators,  

 random factor loadings, two covariates on  

 within, and one covariate on between      

 with equal loadings across levels 

DATA: FILE = ex9.19.dat; 

VARIABLE: NAMES = y1-y4 x1 x2 w clus; 

 WITHIN = x1 x2; 

 BETWEEN = w; 

 CLUSTER = clus; 

ANALYSIS: TYPE = TWOLEVEL RANDOM;  

 ESTIMATOR = BAYES; 

 PROCESSORS = 2; 

 BITERATIONS = (1000); 

MODEL: %WITHIN% 

 s1-s4 | f BY y1-y4; 

 f@1; 

 f ON x1 x2; 

 %BETWEEN% 

 f ON w; 

 f; 

PLOT: TYPE = PLOT2; 

OUTPUT: TECH1 TECH8; 

 

In this example, a two-level MIMIC model with continuous factor 

indicators, random factor loadings, two covariates on within, and one 

covariate on between with equal loadings across levels is estimated.  In 

the ANALYSIS command, TYPE=TWOLEVEL RANDOM is specified 

indicating that a two-level model will be estimated.  By specifying 

ESTIMATOR=BAYES, a Bayesian analysis will be carried out.  In 

Bayesian estimation, the default is to use two independent Markov chain 

Monte Carlo (MCMC) chains.  If multiple processors are available, 

using PROCESSORS=2 will speed up computations.  The 

BITERATIONS option is used to specify the maximum and minimum 

number of iterations for each Markov chain Monte Carlo (MCMC) chain 

when the potential scale reduction (PSR) convergence criterion (Gelman 
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& Rubin, 1992) is used.  Using a number in parentheses, the 

BITERATIONS option specifies that a minimum of 1000 and a 

maximum of the default of 50,000 iterations will be used.  

 

In the within part of the model, the | symbol is used in conjunction with 

TYPE=RANDOM to name and define the random factor loading 

variables in the model.  The name on the left-hand side of the | symbol 

names the random factor loading variable.  The statement on the right-

hand side of the | symbol defines the random factor loading variable.  

Random factor loadings are defined using the BY option.  The random 

factor loading variables s1, s2, s3, and s4 are defined by the linear 

regression of the factor indicators y1, y2, y3, and y4 on the factor f.  The 

factor variance is fixed at one to set the metric of the factor.  The 

residual variances of y1 through y4 are estimated and the residuals are 

not correlated as the default.  The ON statement describes the linear 

regression of f on the individual-level covariates x1 and x2.  In the 

between part of the model, the ON statement describes the linear 

regression of the random intercept f on the cluster-level covariate w.  

The cluster-level residual variance of the factor is estimated.  The 

intercepts and the cluster-level residual variances of y1 through y4 are 

estimated and the residuals are not correlated as the default.      

 

By specifying TYPE=PLOT2 in the PLOT command, the following 

plots are available:  posterior parameter distributions, posterior 

parameter trace plots, autocorrelation plots, posterior predictive 

checking scatterplots, and posterior predictive checking distribution 

plots.  An explanation of the other commands can be found in Example 

9.1. 

 

Following is one alternative specification of the MODEL command 

where a different factor fb is specified in the between part of the model 

using the random intercepts as factor indicators.  The residual variance 

of fb is estimated as the default. 

 
MODEL: %WITHIN% 

 s1-s4 | f BY y1-y4; 

 f@1; 

 f ON x1 x2; 

 %BETWEEN% 

 fb BY y1-y4; 

 fb ON w; 
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Following is another alternative specification of the MODEL command 

where a factor is specified in the between part of the model using the 

random intercepts as factors indicators.  The factor loadings of this 

factor are held equal to the means of the random factor loadings defined 

in the within part of the model.   

 
MODEL: %WITHIN% 

 s1-s4 | f BY y1-y4; 

 f@1; 

 f ON x1 x2; 

 %BETWEEN% 

 fb BY y1-y4* (lam1-lam4); 

 fb ON w; 

 [s1-s4] (lam1-lam4); 

 

EXAMPLE 9.20:  THREE-LEVEL REGRESSION FOR A 

CONTINUOUS DEPENDENT VARIABLE 
 

 
TITLE: this is an example of a three-level  

 regression for a continuous dependent 

variable 

DATA: FILE = ex9.20.dat; 

VARIABLE: NAMES = y x w z level2 level3; 

 CLUSTER = level3 level2; 

 WITHIN = x; 

 BETWEEN =(level2) w (level3) z; 

ANALYSIS: TYPE = THREELEVEL RANDOM; 

MODEL:  

 %WITHIN% 

 s1 | y ON x; 

 %BETWEEN level2% 

 s2 | y ON w; 

 s12 | s1 ON w; 

 y WITH s1; 

 %BETWEEN level3% 

 y ON z; 

 s1 ON z; 

 s2 ON z; 

 s12 ON z; 

 y WITH s1 s2 s12; 

 s1 WITH s2 s12; 

 s2 WITH s12; 

OUTPUT: TECH1 TECH8; 

 

 



Examples:  Multilevel Modeling With Complex Survey Data 

 

                                                                                                               325 

 
 

In this example, the three-level regression with a continuous dependent 

variable shown in the picture above is estimated.  The CLUSTER option 

is used to identify the variables in the data set that contain clustering 

information.  Two cluster variables are used for a three-level model.  

The CLUSTER option specifies that level3 is the cluster variable for 

level 3 and level2 is the cluster variable for level 2.  The cluster variable 

for the highest level must come first, that is, level 2 is nested in level 3. 

 

The WITHIN option is used to identify the variables in the data set that 

are measured on the individual level and to specify the levels on which 
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they are modeled.  All variables on the WITHIN list must be measured 

on the individual level.  An individual-level variable can be modeled on 

all or some levels.  If a variable measured on the individual level is 

mentioned on the WITHIN list without a label, it is modeled on only 

level 1.  It has no variance on levels 2 and 3.  If a variable is not 

mentioned on the WITHIN list, it is modeled on all levels.  The variable 

x can be modeled on only level 1.  The variable y can be modeled on all 

levels. 

 

The BETWEEN option is used to identify the variables in the data set 

that are measured on the cluster level(s) and to specify the level(s) on 

which they are modeled.  All variables on the BETWEEN list must be 

measured on a cluster level.  A cluster-level variable can be modeled on 

all or some cluster levels.  For TYPE=THREELEVEL, if a variable 

measured on level 2 is mentioned on the BETWEEN list with a level 2 

cluster label, it is modeled on only level 2.  It has no variance on level 3.  

A variable measured on level 3 must be mentioned on the BETWEEN 

list with a level 3 cluster label.  The variable w can be modeled on only 

level 2.  The variable z can be modeled on only level 3.   

 

In the ANALYSIS command, TYPE=THREELEVEL RANDOM is 

specified indicating that a three-level model will be estimated.  In the 

within and level 2 parts of the model, the | symbol is used in conjunction 

with TYPE=RANDOM to name and define the random slope variables 

in the model.  The name on the left-hand side of the | symbol names the 

random slope variable.  The statement on the right-hand side of the | 

symbol defines the random slope variable.  Random slopes are defined 

using the ON option.  In the within part of the model, the random slope 

s1 is defined by the linear regression of y on the individual-level 

covariate x.  The within-level residual variance of y is estimated as the 

default.  In the level 2 part of the model, two random slopes are defined.  

The random slope s2 is defined by the linear regression of the level 2 

random intercept y on the level 2 covariate w.  The random slope s12 is 

defined by the linear regression of the level 2 random slope s1 on the 

level 2 covariate w.  The level 2 residual variances of y and s1 are 

estimated and the residuals are not correlated as the default.  The WITH 

statement specifies that the level 2 residuals of y and s1 are correlated.   

    

In the level 3 part of the model, the first ON statement describes the 

linear regression of the level 3 random intercept y on the level 3 

covariate z.  The next three ON statements describe the linear 
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regressions of the level 3 random slopes s1, s2, and s12 on the level 3 

covariate z.  The intercepts and level 3 residual variances of y, s1, s2, 

and s12 are estimated and the residuals are not correlated as the default.  

The WITH statements specify that the level 3 residuals of y, s1, s2, and 

s12 are correlated.  The default estimator for this type of analysis is 

maximum likelihood with robust standard errors.  The ESTIMATOR 

option of the ANALYSIS command can be used to select a different 

estimator.  An explanation of the other commands can be found in 

Examples 9.1 and 9.3. 

 

EXAMPLE 9.21:  THREE-LEVEL PATH ANALYSIS WITH A 

CONTINUOUS AND A CATEGORICAL DEPENDENT 

VARIABLE 
 

 
TITLE: this an example of a three-level path  

 analysis with a continuous and a 

categorical dependent variable  

DATA: FILE = ex9.21.dat; 

VARIABLE: NAMES = u y2 y y3 x w z level2 level3; 

 CATEGORICAL  = u; 

 CLUSTER = level3 level2; 

 WITHIN = x; 

 BETWEEN = y2 (level2) w (level3) z y3; 

ANALYSIS: TYPE = THREELEVEL; 

 ESTIMATOR = BAYES; 

 PROCESSORS = 2; 

 BITERATIONS = (1000); 

MODEL: %WITHIN% 

 u ON y x; 

 y ON x; 

 %BETWEEN level2% 

 u ON w y y2; 

 y ON w; 

 y2 ON w; 

 y WITH y2; 

 %BETWEEN level3% 

 u ON y y2; 

 y ON z; 

 y2 ON z; 

 y3 ON y y2; 

 y WITH y2; 

 u WITH y3; 

OUTPUT: TECH1 TECH8; 
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In this example, the three-level path analysis with a continuous and a 

categorical dependent variable shown in the picture above is estimated.  

The CATEGORICAL option is used to specify which dependent 

variables are treated as binary or ordered categorical (ordinal) variables 
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in the model and its estimation.  In the example above, the variable u is 

binary or ordered categorical. 

   

The WITHIN option is used to identify the variables in the data set that 

are measured on the individual level and to specify the levels on which 

they are modeled.  All variables on the WITHIN list must be measured 

on the individual level.  An individual-level variable can be modeled on 

all or some levels.  If a variable measured on the individual level is 

mentioned on the WITHIN list without a label, it is modeled on only 

level 1.  It has no variance on levels 2 and 3.  If a variable is not 

mentioned on the WITHIN list, it is modeled on all levels.  The variable 

x can be modeled on only level 1.  The variables u and y can be modeled 

on all levels. 

 

The BETWEEN option is used to identify the variables in the data set 

that are measured on the cluster level(s) and to specify the level(s) on 

which they are modeled.  All variables on the BETWEEN list must be 

measured on a cluster level.  A cluster-level variable can be modeled on 

all or some cluster levels.  For TYPE=THREELEVEL, if a variable 

measured on level 2 is mentioned on the BETWEEN list without a label, 

it is modeled on levels 2 and 3.  If a variable measured on level 2 is 

mentioned on the BETWEEN list with a level 2 cluster label, it is 

modeled on only level 2.  It has no variance on level 3.  A variable 

measured on level 3 must be mentioned on the BETWEEN list with a 

level 3 cluster label.  The variable y2 can be modeled on levels 2 and 3.  

The variable w can be modeled on only level 2.  The variables z and y3 

can be modeled on only level 3.   

   

In the ANALYSIS command, TYPE=THREELEVEL is specified 

indicating that a three-level model will be estimated.  By specifying 

ESTIMATOR=BAYES, a Bayesian analysis will be carried out.  In 

Bayesian estimation, the default is to use two independent Markov chain 

Monte Carlo (MCMC) chains.  If multiple processors are available, 

using PROCESSORS=2 will speed up computations.  The 

BITERATIONS option is used to specify the maximum and minimum 

number of iterations for each Markov chain Monte Carlo (MCMC) chain 

when the potential scale reduction (PSR) convergence criterion (Gelman 

& Rubin, 1992) is used.  Using a number in parentheses, the 

BITERATIONS option specifies that a minimum of 1,000 and a 

maximum of the default of 50,000 iterations will be used.  
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In the within part of the model, the first ON statement describes the 

probit regression of u on the mediator y and the individual-level 

covariate x.  The second ON statement describes the linear regression of 

the mediator y on the covariate x.  The within-level residual variance of 

y is estimated as the default.  In the level 2 part of the model, the first 

ON statement describes the linear regression of the level 2 random 

intercept u on the level 2 covariate w, the level 2 random intercept y, and 

the level 2 mediator y2.  The second ON statement describes the linear 

regression of the level 2 random intercept y on the level 2 covariate w.  

The third ON statement describes the linear regression of the level 2 

mediator y2 on the level 2 covariate w.  The level 2 residual variances of 

u, y, and y2 are estimated and the residuals are not correlated as the 

default.  The WITH statement specifies that the level 2 residuals of y and 

y2 are correlated.  In the level 3 part of the model, the first ON statement 

describes the linear regression of the level 3 random intercept u on the 

level 3 random intercepts y and y2.  The second ON statement describes 

the linear regression of the level 3 random intercept y on the level 3 

covariate z.  The third ON statement describes the linear regression of 

the level 3 random intercept y2 on the level 3 covariate z.  The fourth 

ON statement describes the linear regression of the level 3 variable y3 

on the level 3 random intercepts y and y2.  The threshold of u; the 

intercepts of y, y2, and y3; and the level 3 residual variances of u, y, y2, 

and y3 are estimated and the residuals are not correlated as the default.  

The first WITH statement specifies that the residuals of y and y2 are 

correlated.  The second WITH statement specifies that the residuals of u 

and y3 are correlated.  An explanation of the other commands can be 

found in Examples 9.1, 9.3, and 9.20. 
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EXAMPLE 9.22:  THREE-LEVEL MIMIC MODEL WITH 

CONTINUOUS FACTOR INDICATORS, TWO COVARIATES 

ON WITHIN, ONE COVARIATE ON BETWEEN LEVEL 2, AND 

ONE COVARIATE ON BETWEEN LEVEL 3 WITH RANDOM 

SLOPES ON BOTH WITHIN AND BETWEEN LEVEL 2 
 

 
TITLE: this is an example of a three-level MIMIC  

 model with continuous factor indicators,  

 two covariates on within, one covariate on  

 between level 2, one covariate on between  

 level 3 with random slopes on both within  

 and between level 2 

DATA: FILE = ex9.22.dat; 

VARIABLE: NAMES = y1-y6 x1 x2 w z level2 level3; 

 CLUSTER = level3 level2; 

 WITHIN = x1 x2; 

 BETWEEN = (level2) w (level3) z; 

ANALYSIS: TYPE = THREELEVEL RANDOM;  

MODEL: %WITHIN% 

 fw1 BY y1-y3; 

 fw2 BY y4-y6; 

 fw1 ON x1; 

 s | fw2 ON x2; 

 %BETWEEN level2% 

 fb2 BY y1-y6; 

 sf2 | fb2 ON w; 

 ss | s ON w; 

 fb2 WITH s; 

 %BETWEEN level3% 

 fb3 BY y1-y6; 

 fb3 ON z; 

 s ON z; 

 sf2 ON z; 

 ss ON z; 

 fb3 WITH s sf2 ss; 

 s WITH sf2 ss; 

 sf2 WITH ss; 

OUTPUT: TECH1 TECH8; 
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In this example, the three-level MIMIC model with continuous factor 

indicators, two covariates on within, one covariate on between level 2, 

one covariate on between level 3 with random slopes on both within and 

between level 2 shown in the picture above is estimated.   

 

The WITHIN option is used to identify the variables in the data set that 

are measured on the individual level and to specify the levels on which 

they are modeled.  All variables on the WITHIN list must be measured 

on the individual level.  An individual-level variable can be modeled on 

all or some levels.  If a variable measured on the individual level is 

mentioned on the WITHIN list without a label, it is modeled on only 

level 1.  It has no variance on levels 2 and 3.  If a variable is not 

mentioned on the WITHIN list, it is modeled on all levels.  The variables 

x1 and x2 can be modeled on only level 1.  The variables y1 through y6 

can be modeled on all levels. 

 

The BETWEEN option is used to identify the variables in the data set 

that are measured on the cluster level(s) and to specify the level(s) on 

which they are modeled.  All variables on the BETWEEN list must be 

measured on a cluster level.  A cluster-level variable can be modeled on 

all or some cluster levels.  For TYPE=THREELEVEL, if a variable 

measured on level 2 is mentioned on the BETWEEN list with a level 2 

cluster label, it is modeled on only level 2.  It has no variance on level 3.  

A variable measured on level 3 must be mentioned on the BETWEEN 

list with a level 3 cluster label.  The variable w can be modeled on only 

level 2.  The variable z can be modeled on only level 3.   

 

In the ANALYSIS command, TYPE=THREELEVEL RANDOM is 

specified indicating that a three-level model will be estimated.  In the 

within part of the model, the first BY statement specifies that the factor 

fw1 is measured by y1 through y3.  The second BY statement specifies 

that fw2 is measured by y4 through y6.  The metric of the factors is set 

automatically by the program by fixing the first factor loading in each 

BY statement to one.  This default can be overridden.  The residual 

variances of the factor indicators are estimated and the residuals are not 

correlated as the default.  The residual variances of the factors are 

estimated and the residuals are correlated as the default.  The ON 

statement describes the linear regression of fw1 on the individual-level 

covariate x1. 
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In the within and level 2 parts of the model, the | symbol is used in 

conjunction with TYPE=RANDOM to name and define the random 

slope variables in the model.  The name on the left-hand side of the | 

symbol names the random slope variable.  The statement on the right-

hand side of the | symbol defines the random slope variable.  Random 

slopes are defined using the ON option.  In the within part of the model, 

the random slope s is defined by the linear regression of fw2 on the 

individual-level covariate x2.  

 

In the level 2 part of the model, the BY statement specifies that the 

factor fb2 is measured by the level 2 random intercepts y1 through y6.  

The metric of the factors is set automatically by the program by fixing 

the first factor loading in each BY statement to one.  This default can be 

overridden.  The level 2 residual variances of the factor indicators are 

estimated and the residuals are not correlated as the default.  The 

variance of the factor is estimated as the default.  The random slope sf2 

is defined by the linear regression of fb2 on the level 2 covariate w.  The 

random slope ss is defined by the linear regression of the random slope s 

on the level 2 covariate w.  The level 2 residual variances of fb2 and s 

are estimated and the residuals are not correlated as the default. 

 

In the level 3 part of the model, the BY statement specifies that the 

factor fb3 is measured by the level 3 random intercepts y1 through y6.   

The metric of the factors is set automatically by the program by fixing 

the first factor loading in each BY statement to one.  This default can be 

overridden.  The intercept and level 3 residual variances of the factor 

indicators are estimated and the residuals are not correlated as the 

default.  The residual variance of the factor is estimated as the default.  

The first ON statement describes the linear regression of fb3 on the level 

3 covariate z.  The second ON statement describes the linear regression 

of the random slope s on the level 3 covariate z.  The third ON statement 

describes the linear regression of the random slope sf2 on the level 3 

covariate z.  The fourth ON statement specifies the linear regression of 

the random slope ss on the level 3 covariate z.  The intercepts of y1 

through y6, s, sf2, and ss; and the level 3 residual variances of fb3, s, 

sf2, and ss are estimated and the residuals are not correlated as the 

default.  The WITH statements specify that the level 3 residuals of fb3, 

s, sf2, and ss are correlated.  The default estimator for this type of 

analysis is maximum likelihood with robust standard errors.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 
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a different estimator.  An explanation of the other commands can be 

found in Examples 9.1, 9.3, and 9.20. 

 

EXAMPLE 9.23:  THREE-LEVEL GROWTH MODEL WITH A 

CONTINUOUS OUTCOME AND ONE COVARIATE ON EACH 

OF THE THREE LEVELS 
 

 
TITLE: this is an example of a three-level growth  

 model with a continuous outcome and one  

 covariate on each of the three levels 

DATA: FILE = ex9.23.dat; 

VARIABLE: NAMES = y1-y4 x w z level2 level3; 

 CLUSTER = level3 level2; 

 WITHIN = x; 

 BETWEEN = (level2) w (level3) z; 

ANALYSIS: TYPE = THREELEVEL;  

MODEL: %WITHIN% 

 iw sw | y1@0 y2@1 y3@2 y4@3; 

 iw sw ON x; 

 %BETWEEN level2% 

 ib2 sb2 | y1@0 y2@1 y3@2 y4@3; 

 ib2 sb2 ON w; 

 %BETWEEN level3% 

 ib3 sb3 | y1@0 y2@1 y3@2 y4@3; 

 ib3 sb3 ON z; 

 y1-y4@0; 

OUTPUT: TECH1 TECH8; 
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In this example, the three-level growth model with a continuous outcome 

and one covariate on each of the three levels shown in the picture above 

is estimated.   

 

The WITHIN option is used to identify the variables in the data set that 

are measured on the individual level and to specify the levels on which 

they are modeled.  All variables on the WITHIN list must be measured 

on the individual level.  An individual-level variable can be modeled on 

all or some levels.  If a variable measured on the individual level is 

mentioned on the WITHIN list without a label, it is modeled on only 

level 1.  It has no variance on levels 2 and 3.  If a variable is not 

mentioned on the WITHIN list, it is modeled on all levels.  The variable 

x can be modeled on only level 1.  The variables y1 through y4 can be 

modeled on all levels. 

 

The BETWEEN option is used to identify the variables in the data set 

that are measured on the cluster level(s) and to specify the level(s) on 

which they are modeled.  All variables on the BETWEEN list must be 

measured on a cluster level.  A cluster-level variable can be modeled on 

all or some cluster levels.  For TYPE=THREELEVEL, if a variable 

measured on level 2 is mentioned on the BETWEEN list with a level 2 

cluster label, it is modeled on only level 2.  It has no variance on level 3.  

A variable measured on level 3 must be mentioned on the BETWEEN 

list with a level 3 cluster label.  The variable w can be modeled on only 

level 2.  The variable z can be modeled on only level 3.  

 

In the ANALYSIS command, TYPE=THREELEVEL is specified 

indicating that a three-level model will be estimated.  In the within part 

of the model,  the | symbol is used to name and define the within 

intercept and slope factors in a growth model.  The names iw and sw on 

the left-hand side of the | symbol are the names of the intercept and slope 

growth factors, respectively.  The statement on the right-hand side of the 

| symbol specifies the outcome and the time scores for the growth model.  

The time scores for the slope growth factor are fixed at 0, 1, 2, and 3 to 

define a linear growth model with equidistant time points.  The zero time 

score for the slope growth factor at time point one defines the intercept 

growth factor as an initial status factor.  The coefficients of the intercept 

growth factor are fixed at one as part of the growth model 

parameterization.  The residual variances of y1 through y4 are estimated 

and allowed to be different across time and the residuals are not 

correlated as the default.  In the parameterization of the growth model 
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shown here, the intercepts of the outcome variables at the four time 

points are fixed at zero as the default.  The ON statement describes the 

linear regression of the intercept and slope growth factors on the 

individual-level covariate x.  The residual variances of the growth 

factors are estimated and the residuals are correlated as the default.  The 

level 2 residual variances of y1 through y4 are estimated and allowed to 

be different across time and the residuals are not correlated as the 

default.     

 

The growth model specified in the within part of the model is also 

specified on levels 2 and 3.  In the level 2 part of the model, the ON 

statement describes the linear regression of the level 2 intercept and 

slope growth factors on the level 2 covariate w.  The level 2 residual 

variances of the growth factors are estimated and the residuals are 

correlated as the default.  In the level 3 part of the model, the ON 

statement describes the linear regression of the level 3 intercept and 

slope growth factors on the level 3 covariate z.  The intercepts and level 

3 residual variances of the growth factors are estimated and the residuals 

are correlated as the default.  The level 3 residual variances of y1 

through y4 are fixed at zero.  The default estimator for this type of 

analysis is maximum likelihood with robust standard errors.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 

a different estimator.  An explanation of the other commands can be 

found in Examples 9.1, 9.3, and 9.20. 
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EXAMPLE 9.24:  REGRESSION FOR A CONTINUOUS 

DEPENDENT VARIABLE USING CROSS-CLASSIFIED DATA  
 

 
TITLE: this is an example of a regression for a 

continuous dependent variable using cross-

classified data 

DATA: FILE = ex9.24.dat; 

VARIABLE: NAMES = y x1 x2 w z level2a level2b; 

 CLUSTER = level2b level2a; 

 WITHIN = x1 x2; 

 BETWEEN = (level2a) w (level2b) z; 

ANALYSIS: TYPE = CROSSCLASSIFIED RANDOM; 

 ESTIMATOR = BAYES; 

 PROCESSORS = 2; 

 BITERATIONS = (2000); 

MODEL: %WITHIN% 

 y ON x1; 

 s | y ON x2; 

 %BETWEEN level2a% 

 y ON w; 

 s ON w; 

 y WITH s; 

 %BETWEEN level2b% 

 y ON z; 

 s ON z; 

 y WITH s; 

OUTPUT: TECH1 TECH8; 
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In this example, the regression for a continuous dependent variable using 

cross-classified data shown in the picture above is estimated.  The 

CLUSTER option is used to identify the variables in the data set that 

contain clustering information.  Two cluster variables are used for a 

cross-classified model.  The CLUSTER option specifies that level2b is 

the cluster variable for level 2b and level2a is the cluster variable for 

level 2a. 
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The WITHIN option is used to identify the variables in the data set that 

are measured on the individual level and to specify the levels on which 

they are modeled.  All variables on the WITHIN list must be measured 

on the individual level.  An individual-level variable can be modeled on 

all or some levels.  If a variable measured on the individual level is 

mentioned on the WITHIN list without a label, it is modeled on only 

level 1.  It has no variance on levels 2a and 2b.  If a variable is not 

mentioned on the WITHIN list, it is modeled on all levels.  The variables 

x1 and x2 can be modeled on only level 1.  The variable y can be 

modeled on all levels. 

 

The BETWEEN option is used to identify the variables in the data set 

that are measured on the cluster level(s) and to specify the level(s) on 

which they are modeled.  All variables on the BETWEEN list must be 

measured on a cluster level.  For TYPE=CROSSCLASSIFIED, a 

variable measured on level 2a must be mentioned on the BETWEEN list 

with a level 2a cluster label.  It can be modeled on only level 2a.  A 

variable measured on level 2b must be mentioned on the BETWEEN list 

with a level 2b cluster label.  It can be modeled on only level 2b.  The 

variable w can be modeled on only level 2a.  The variable z can be 

modeled on only level 2b.   

 

In the ANALYSIS command, TYPE=CROSSCLASSIFIED RANDOM 

is specified indicating that a cross-classified model will be estimated.  

By specifying ESTIMATOR=BAYES, a Bayesian analysis will be 

carried out.  In Bayesian estimation, the default is to use two 

independent Markov chain Monte Carlo (MCMC) chains.  If multiple 

processors are available, using PROCESSORS=2 will speed up 

computations.  The BITERATIONS option is used to specify the 

maximum and minimum number of iterations for each Markov chain 

Monte Carlo (MCMC) chain when the potential scale reduction (PSR) 

convergence criterion (Gelman & Rubin, 1992) is used.  Using a number 

in parentheses, the BITERATIONS option specifies that a minimum of 

2000 and a maximum of the default of 50,000 iterations will be used.  

 

In the within part of the model, the ON statement describes the linear 

regression of y on the individual-level covariate x1.  The residual 

variance of y is estimated as the default.  The | symbol is used in 

conjunction with TYPE=RANDOM to name and define the random 

slope variables in the model.  The name on the left-hand side of the | 

symbol names the random slope variable.  The statement on the right-
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hand side of the | symbol defines the random slope variable.  Random 

slopes are defined using the ON option.  The random slope s is defined 

by the linear regression of y on the individual-level covariate x2.  In the 

level 2a part of the model, the first ON statement describes the linear 

regression of the level 2a random intercept y on the level 2a covariate w.  

The second ON statement describes the linear regression of the level 2a 

random slope s on the level 2a covariate w.  The residuals of y and s are 

estimated and the residuals are not correlated as the default.  The WITH 

statement specifies that the residuals of y and s are correlated.  In the 

level 2b part of the model, the first ON statement describes the linear 

regression of the level 2b random intercept y on the level 2b covariate z.  

The second ON statement describes the linear regression of the level 2b 

random slope s on the level 2b covariate z.  The residual variances of y 

and s are estimated and the residuals are not correlated as the default.  

The WITH statement specifies that the residuals of y and s are 

correlated.  The intercepts of y and s are estimated as the default on level 

2b.  An explanation of the other commands can be found in Examples 

9.1 and 9.3. 

   

EXAMPLE 9.25:  PATH ANALYSIS WITH CONTINUOUS 

DEPENDENT VARIABLES USING CROSS-CLASSIFIED DATA 
 

 
TITLE: this is an example of path analysis with 

continuous dependent variables using 

cross-classified data 

DATA: FILE =   ex9.25.dat; 

VARIABLE: NAMES = y1 y2 x w z level2a level2b; 

 CLUSTER = level2b level2a; 

 WITHIN = x; 

 BETWEEN = (level2a) w (level2b) z; 

ANALYSIS: TYPE = CROSSCLASSIFIED; 

 ESTIMATOR = BAYES; 

 PROCESSORS = 2; 

MODEL: %WITHIN% 

 y2 ON y1 x; 

 y1 ON x; 

 %BETWEEN level2a% 

 y1 y2 ON w; 

 y1 WITH y2; 

 %BETWEEN level2b% 

 y1 y2 ON z; 

 y1 WITH y2; 

OUTPUT: TECH1 TECH8; 
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In this example, the path analysis with continuous dependent variables 

using cross-classified data shown in the picture above is estimated.  The 

WITHIN option is used to identify the variables in the data set that are 

measured on the individual level and to specify the levels on which they 

are modeled.  All variables on the WITHIN list must be measured on the 

individual level.  An individual-level variable can be modeled on all or 

some levels.  If a variable measured on the individual level is mentioned 
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on the WITHIN list without a label, it is modeled on only level 1.  It has 

no variance on levels 2a and 2b.  If a variable is not mentioned on the 

WITHIN list, it is modeled on all levels.  The variable x can be modeled 

on only level 1.  The variables y1 and y2 can be modeled on all levels. 

 

The BETWEEN option is used to identify the variables in the data set 

that are measured on the cluster level(s) and to specify the level(s) on 

which they are modeled.  All variables on the BETWEEN list must be 

measured on a cluster level.  For TYPE=CROSSCLASSIFIED, a 

variable measured on level 2a must be mentioned on the BETWEEN list 

with a level 2a cluster label.  It can be modeled on only level 2a.  A 

variable measured on level 2b must be mentioned on the BETWEEN list 

with a level 2b cluster label.  It can be modeled on only level 2b.  The 

variable w can be modeled on only level 2a.  The variable z can be 

modeled on only level 2b.   

 

In the ANALYSIS command, TYPE=CROSSCLASSIFIED is specified 

indicating that a cross-classified model will be estimated.  By specifying 

ESTIMATOR=BAYES, a Bayesian analysis will be carried out.  No 

other estimators are available.  In Bayesian estimation, the default is to 

use two independent Markov chain Monte Carlo (MCMC) chains.  If 

multiple processors are available, using PROCESSORS=2 will speed up 

computations. 

 

In the within part of the model, the first ON statement describes the 

linear regression of y2 on the mediator y1 and the individual-level 

covariate x.  The second ON statement describes the linear regression of 

y1 on the individual-level covariate x.  The residuals of y1 and y2 are 

estimated and the residual are not correlated as the default.  In the level 

2a part of the model, the first ON statement describes the linear 

regressions of the level 2a intercepts y1 and y2 on the level 2a covariate 

w.  The level 2a residuals are estimated and the residuals are not 

correlated as the default.  The WITH statement specifies that the level 2a 

residuals of y1 and y2 are correlated.  In the level 2b part of the model, 

the first ON statement describes the linear regression of the level 2b 

random intercepts y1 and y2 on the level 2b covariate z.  The level 2b 

residuals are estimated and the residuals are not correlated as the default.  

The WITH statement specifies that the level 2b residuals of y1 and y2 

are correlated.  The intercepts of y1 and y2 are estimated as the default 

on level 2b.  An explanation of the other commands can be found in 

Examples 9.1, 9.3, and 9.24. 
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EXAMPLE 9.26:  IRT WITH RANDOM BINARY ITEMS USING 

CROSS-CLASSIFIED DATA 
 

 
TITLE: this is an example of IRT with random 

binary items using cross-classified  

 data 

DATA: FILE = ex9.26.dat; 

VARIABLE: NAMES = u subject item; 

 CATEGORICAL = u; 

 CLUSTER = item subject; 

ANALYSIS: TYPE = CROSSCLASSIFIED RANDOM; 

 ESTIMATOR = BAYES; 

 PROCESSORS = 2; 

MODEL: %WITHIN% 

 %BETWEEN subject% 

 s | f BY u; 

 f@1; 

 u@0; 

 %BETWEEN item% 

 u; [u$1]; 

 s; [s]; 

OUTPUT: TECH1 TECH8; 

 

In this example, an IRT with random binary items using cross-classified 

data is estimated (Fox, 2010).  Both the intercepts and factor loadings of 

the set of items are random.  The CATEGORICAL option is used to 

specify which dependent variables are treated as binary or ordered 

categorical (ordinal) variables in the model and its estimation.  In the 

example above, the variable u is binary or ordered categorical.  The 

CLUSTER option is used to identify the variables in the data set that 

contain clustering information.  Two cluster variables are used for a 

cross-classified model.  The CLUSTER option specifies that item is the 

cluster variable for the item level and subject is the cluster variable for 

the subject level.  The fastest moving level must come first. 

  

The WITHIN option is used to identify the variables in the data set that 

are measured on the individual level and to specify the levels on which 

they are modeled.  If a variable is not mentioned on the WITHIN list, it 

is modeled on all levels.  The variable u can be modeled on the subject 

and item levels. 

 

In the ANALYSIS command, TYPE=CROSSCLASSIFIED RANDOM 

is specified indicating that a cross-classified model will be estimated.  
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By specifying ESTIMATOR=BAYES, a Bayesian analysis will be 

carried out.  In Bayesian estimation, the default is to use two 

independent Markov chain Monte Carlo (MCMC) chains.  If multiple 

processors are available, using PROCESSORS=2 will speed up 

computations.  

 

The within part of the model is not used in this example.  In the subject 

part of the model, the | symbol is used in conjunction with 

TYPE=RANDOM to name and define the random factor loading 

variables in the model.  The name on the left-hand side of the | symbol 

names the random factor loading variable.  The statement on the right-

hand side of the | symbol defines the random factor loading variable.  

Random factor loadings are defined using the BY option.  The random 

factor loading variable s is defined by the probit regression of u on the 

factor f.  The factor variance is fixed at one to set the metric of the 

factor.  The across-subject variance of u is fixed at zero.  In the item part 

of the model, the variance of the random intercept u, the threshold of u, 

and the mean and variance of the random factor loading s are estimated 

as the default.  An explanation of the other commands can be found in 

Examples 9.1, 9.3, and 9.24. 
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EXAMPLE 9.27:  MULTIPLE INDICATOR GROWTH MODEL 

WITH RANDOM INTERCEPTS AND FACTOR LOADINGS 

USING CROSS-CLASSIFIED DATA   
 

 
TITLE: this is an example of a multiple indicator 

growth model with random intercepts and 

factor loadings using cross-classified 

data  

DATA: FILE = ex9.27.dat; 

VARIABLE: NAMES = y1-y3 time subject;  

 USEVARIABLES = y1-y3 timescor;    

 CLUSTER = subject time; 

 WITHIN = timescor (time) y1-y3; 

DEFINE: timescor = (time-1)/100; 

ANALYSIS: TYPE = CROSSCLASSIFIED RANDOM;  

 ESTIMATOR = BAYES;  

 PROCESSORS = 2;  

 BITERATIONS = (1000); 

MODEL: %WITHIN% 

 s1-s3 | f BY y1-y3;  

 f@1; 

 s | f ON timescor; 

 y1-y3; [y1-y3@0];  

 %BETWEEN time% 

 s1-s3; [s1-s3]; 

 y1-y3; [y1-y3@0]; 

 s@0; [s@0]; 

 %BETWEEN subject% 

 f; [f];    

 s1-s3@0; [s1-s3@0]; 

 s; [s];        

OUTPUT: TECH1 TECH8; 

 

In this example, a multiple indicator growth model with random 

intercepts and factor loadings using cross-classified data is estimated.  

The WITHIN option is used to identify the variables in the data set that 

are measured on the individual level and to specify the levels on which 

they are modeled.  All variables on the WITHIN list must be measured 

on the individual level.  An individual-level variable can be modeled on 

all or some levels.  If a variable measured on the individual level is 

mentioned on the WITHIN list without a label, it is modeled on only 

level 1.  It has no variance on the time and subject levels.  If it is 

mentioned on the WITHIN list with a time cluster label, it is modeled on 

levels 1 and on the time level.  It has no variance on the subject level.  
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The variable timescor can be modeled on only level 1.  The variables y1, 

y2, and y3 can be modeled on levels 1 and the time level.  The DEFINE 

command is used to transform existing variables and to create new 

variables.  The new variable timescor is a time score variable centered at 

the first time point. 

 

In the ANALYSIS command, TYPE=CROSSCLASSIFIED RANDOM 

is specified indicating that a cross-classified model will be estimated.  

By specifying ESTIMATOR=BAYES, a Bayesian analysis will be 

carried out.  In Bayesian estimation, the default is to use two 

independent Markov chain Monte Carlo (MCMC) chains.  If multiple 

processors are available, using PROCESSORS=2 will speed up 

computations.  The BITERATIONS option is used to specify the 

maximum and minimum number of iterations for each Markov chain 

Monte Carlo (MCMC) chain when the potential scale reduction (PSR) 

convergence criterion (Gelman & Rubin, 1992) is used.  Using a number 

in parentheses, the BITERATIONS option specifies that a minimum of 

1000 and a maximum of the default of 50,000 iterations will be used. 

 

In the within part of the model, the | symbol is used in conjunction with 

TYPE=RANDOM to name and define the random factor loading 

variables in the model.  The name on the left-hand side of the | symbol 

names the random factor loading variable.  The statement on the right-

hand side of the | symbol defines the random factor loading variable.  

Random factor loadings are defined using the BY option.  The random 

factor loading variables s1, s2, and s3 are defined by the linear 

regression of the factor indicators y1, y2, and y3 on the factor f.  The 

factor variance is fixed to one to set the metric of the factor.  The 

intercepts of the factor indicators are fixed at zero as part of the growth 

model parameterization.  The residual variances are estimated and the 

residuals are not correlated as the default.       

  

The | symbol is used in conjunction with TYPE=RANDOM to name and 

define the random slope variables in the model.  The name on the left-

hand side of the | symbol names the random slope variable.  The 

statement on the right-hand side of the | symbol defines the random slope 

variable.  Random slopes are defined using the ON option.  The random 

slope growth factor s is defined by the linear regression of f on the 

individual-level covariate timescor. 
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In the time part of the model, the means and variances of the random 

factor loadings s1, s2, and s3 and the variances of the random intercepts 

y1, y2, and y3 are estimated.  The intercepts of y1, y2, and y3 are fixed 

at zero as part of the growth model parameterization.  The variances of 

the random factor loadings s1, s2, and s3 and the variances of the 

random intercepts y1, y2, and y3 represent measurement non-invariance 

across time.  The mean and variance of the random slope growth factor s 

are fixed at zero.   

 

In the subject part of the model, f is a random intercept growth factor.  

Its mean and variance are estimated.  The means and variances of the 

random factor loadings s1, s2, and s3 are fixed at zero.  The mean and 

variance of the random slope growth factor s are estimated.  An 

explanation of the other commands can be found in Examples 9.1, 9.3, 

and 9.24. 

 

EXAMPLE 9.28:  TWO-LEVEL REGRESSION ANALYSIS FOR 

A CONTINUOUS DEPENDENT VARIABLE WITH A RANDOM 

INTERCEPT AND A RANDOM RESIDUAL VARIANCE   
 

 
TITLE: this is an example of a two-level 

regression analysis for a continuous 

dependent variable with a random intercept 

and a random residual variance 

DATA: FILE = ex9.28.dat; 

VARIABLE: NAMES ARE z y x w xm clus; 

 WITHIN = x; 

 BETWEEN = w xm z; 

 CLUSTER = clus; 

ANALYSIS: TYPE = TWOLEVEL RANDOM; 

 ESTIMATOR = BAYES; 

 PROCESSORS = 2; 

  BITERATIONS = (2000);  

MODEL: %WITHIN% 

 y ON x; 

 logv | y;  

 %BETWEEN% 

 y ON w xm; 

 logv ON w xm; 

 y WITH logv; 

 z ON y logv; 

OUTPUT: TECH1 TECH8; 

PLOT: TYPE = PLOT3; 
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In this example, the two-level regression analysis for a continuous 

dependent variable with a random intercept and a random residual 

variance shown in the picture above is estimated.  The dependent 

variable y in this regression is continuous.  Both the intercept and 

residual variance are random.  In the within part of the model, the filled 

circle at the end of the arrow from x to y represents a random intercept 

that is referred to as y in the between part of the model.  The filled circle 

at the end of the residual arrow pointing to y represents a random 

residual variance that is referred to as logv in the between part of the 

model.  In the between part of the model, the random intercept and 

random residual variance are shown in circles because they are 

continuous latent variables that vary across clusters.  The log of the 

random residual variance is used in the model. 

 

In the ANALYSIS command, TYPE=TWOLEVEL RANDOM is 

specified indicating that a two-level model will be estimated.  By 

specifying ESTIMATOR=BAYES, a Bayesian analysis will be carried 

out.  In Bayesian estimation, the default is to use two independent 

Markov chain Monte Carlo (MCMC) chains.  If multiple processors are 

available, using PROCESSORS=2 will speed up computations.  The 

BITERATIONS option is used to specify the maximum and minimum 

number of iterations for each Markov chain Monte Carlo (MCMC) chain 

when the potential scale reduction (PSR) convergence criterion (Gelman 

& Rubin, 1992) is used.  Using a number in parentheses, the 

BITERATIONS option specifies that a minimum of 2,000 and a 

maximum of the default of 50,000 iterations will be used.  
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In the within part of the model, the ON statement describes the linear 

regression of y on the observed individual-level covariate x.  The 

residual variance of y is estimated as the default.  The | symbol is used in 

conjunction with TYPE=RANDOM to name and define the random 

residual variance.  The name on the left-hand side of the | symbol names 

the log of the random residual variance.  The name on the right-hand 

side of the | symbol specifies the name of the variable that has a random 

residual variance.  Logv is the random residual variance for y.  

 

In the between part of the model, the first ON statement describes the 

linear regression of the random intercept y on the observed cluster-level 

covariates w and xm.  The second ON statement describes the linear 

regression of the log of the random residual variance logv on the cluster-

level covariates w and xm.  The intercept and residual variance of y and 

logv are estimated as the default.  The WITH statement specifies that the 

residuals of y and logv are correlated.   The third ON statement describes 

the linear regression of the cluster-level dependent variable z on the 

random intercept and the log of the random residual variance.  The 

intercept and residual variance of z are estimated as the default.  

 

The OUTPUT command is used to request additional output not 

included as the default.  The TECH1 option is used to request the arrays 

containing parameter specifications and starting values for all free 

parameters in the model.  The TECH8 option is used to request that the 

optimization history in estimating the model be printed in the output.  

TECH8 is printed to the screen during the computations as the default.  

TECH8 screen printing is useful for determining how long the analysis 

takes and to check convergence using the PSR convergence criterion.  

The PLOT command is used to request graphical displays of observed 

data and analysis results.  These graphical displays can be viewed after 

the analysis is completed using a post-processing graphics module.  The 

trace plot and autocorrelation plot can be used to monitor the MCMC 

iterations in terms of convergence and quality of the posterior 

distribution for each parameter. The posterior distribution plot shows the 

complete posterior distribution of the parameter estimate.  An 

explanation of the other commands can be found in Example 9.1. 
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EXAMPLE 9.29:  TWO-LEVEL CONFIRMATORY FACTOR 

ANALYSIS (CFA) WITH CONTINUOUS FACTOR 

INDICATORS, COVARIATES, AND A FACTOR WITH A 

RANDOM RESIDUAL VARIANCE 
 

 
TITLE: this is an example of a two-level 

confirmatory factor analysis (CFA)  

 with continuous factor indicators, 

 covariates, and a factor with a random 

residual variance 

DATA: FILE = ex9.29.dat; 

VARIABLE: NAMES ARE y1-y4 x1 x2 w clus; 

 WITHIN = x1 x2; 

 BETWEEN = w; 

 CLUSTER = clus; 

ANALYSIS: TYPE = TWOLEVEL RANDOM; 

 ESTIMATOR = BAYES; 

 PROCESSORS = 2; 

 BITERATIONS = (10000); 

MODEL: %WITHIN% 

 fw BY y1-y4;  

 fw ON x1 x2; 

 logv | fw; 

 %BETWEEN% 

 fb BY y1-y4;  

 fb ON w; 

 logv ON w; 

OUTPUT: TECH1 TECH8; 

PLOT: TYPE = PLOT3; 
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In this example, the two-level CFA model with continuous factor 

indicators, covariates, and a factor with a random residual variance 

shown in the picture above is estimated.  In the within part of the model, 

the filled circles at the end of the arrows from the within factor fw to y1, 

y2, y3, and y4 represent random intercepts that are referred to as y1, y2, 

y3, and y4 in the between part of the model.  The filled circle at the end 

of the residual arrow pointing to fw represents a random residual 

variance that is referred to as logv in the between part of the model.  In 

the between part of the model, the random intercepts are shown in 

circles because they are continuous latent variables that vary across 
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clusters.  They are indicators of the between factor fb.  The log of the 

random residual variance is used in the model. 

 

The BITERATIONS option is used to specify the maximum and 

minimum number of iterations for each Markov chain Monte Carlo 

(MCMC) chain when the potential scale reduction (PSR) convergence 

criterion (Gelman & Rubin, 1992) is used.  Using a number in 

parentheses, the BITERATIONS option specifies that a minimum of 

10,000 and a maximum of the default of 50,000 iterations will be used.  

The minimum is relatively large because this model may be more 

difficult to estimate.  

 

In the within part of the model, the BY statement specifies that fw is 

measured by y1, y2, y3, and y4.  The metric of the factor is set 

automatically by the program by fixing the first factor loading to one.  

This option can be overridden.  The residual variances of the factor 

indicators are estimated and the residuals are not correlated as the 

default.  The ON statement describes the linear regression of fw on the 

individual-level covariates x1 and x2.  The | symbol is used in 

conjunction with TYPE=RANDOM to name and define the random 

residual variance.  The name on the left-hand side of the | symbol names 

the log of the random residual variance.  The name on the right-hand 

side of the | symbol specifies the name of the variable that has a random 

residual variance.  Logv is the random residual variance for fw.  

 

In the between part of the model, the BY statement specifies that fb is 

measured by the random intercepts y1, y2, y3, and y4.  The metric of the 

factor is set automatically by the program by fixing the first factor 

loading to one.  This option can be overridden.  The intercepts and 

residual variances of the factor indicators are estimated and the residuals 

are not correlated as the default. The first ON statement describes the 

regression of fb on the cluster-level covariate w.  The residual variance 

of the factor is estimated as the default.  The intercept of the factor is 

fixed at zero as the default.  The second ON statement describes the 

regression of the log of the random residual variance logv on the cluster-

level covariate w.  The intercept and residual variance of logv are 

estimated as the default.  An explanation of the other commands can be 

found in Examples 9.1 and 9.28. 
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EXAMPLE 9.30:  TWO-LEVEL TIME SERIES ANALYSIS 

WITH A UNIVARIATE FIRST-ORDER AUTOREGRESSIVE 

AR(1) MODEL FOR A CONTINUOUS DEPENDENT 

VARIABLE WITH A RANDOM INTERCEPT, RANDOM AR(1) 

SLOPE, AND RANDOM RESIDUAL VARIANCE 
 

 
TITLE: this is an example of a two-level time 

series analysis with a univariate first-

order autoregressive AR(1) model for a 

continuous dependent variable with a 

random intercept, random AR(1) slope, and 

random residual variance 

DATA: FILE = ex9.30.dat; 

VARIABLE: NAMES = z y w time subject; 

 BETWEEN = z w; 

 CLUSTER = subject; 

 LAGGED = y(1); 

 TINTERVAL = time (1); 

ANALYSIS: TYPE = TWOLEVEL RANDOM; 

 ESTIMATOR = BAYES; 

 PROCESSORS = 2; 

 BITERATIONS = (2000); 

MODEL: %WITHIN% 

 s | y ON y&1; 

 logv | y; 

 %BETWEEN% 

 y ON w; 

 s ON w; 

 logv ON w; 

 y s logv WITH y s logv; 

 z ON y s logv; 

OUTPUT: TECH1 TECH8 FSCOMPARISON; 

PLOT: TYPE = PLOT3;  

 FACTORS = ALL; 

 

 



CHAPTER 9 

 

356 

 
 

In this example, the two-level time series analysis with a univariate first-

order autoregressive AR(1) model for a continuous dependent variable 

with a random intercept, random AR(1) slope, and random residual 

variance shown in the picture above is estimated (Asparouhov, Hamaker, 

& Muthén, 2017).  The subscript t refers to a time point and the 

subscript t-1 refers to the previous time point.  The dots indicate that the 

process includes both previous and future time points using the same 

model.  In the within part of the model, the filled circle at the end of the 

arrow from yt-1 to yt  represents a random intercept that is referred to as y 

in the between part of the model.  The filled circle on the arrow from yt-1 

to yt  represents a random AR(1) slope that is referred to as s in the 

between part of the model.  The filled circle at the end of the residual 

arrow pointing to y represents a random residual variance that is referred 

to as logv in the between part of the model.  In the between part of the 

model, the random intercept, random AR(1) slope, and random residual 

variance are shown in circles because they are continuous latent 

variables that vary across clusters.  In this model, the random intercept is 

the random mean because y in the within part of the model is centered.   

The log of the random residual variance is used in the model. 
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The LAGGED option of the VARIABLE command is used to specify 

the maximum lag to use for an observed variable during model 

estimation.  The variable y has lag 1.  The lagged variable is referred to 

by adding to the name of the variable an ampersand (&) and the number 

of the lag. 

 

The TINTERVAL option is used in time series analysis to specify the 

time interval that is used to create a time variable when data are 

misaligned with respect to time due to missed measurement occasions 

that are not assigned a missing value flag and when measurement 

occasions are random.  The data set must be sorted by the time interval 

variable.  In this example, the time interval value is one and the time 

interval variable values are 1, 2, 3, etc..  This results in intervals of -.5 to 

1.5, 1.5 to 2.5, and 2.5 to 3.5, etc. 

 

In the within part of the model, the | symbol is used in conjunction with 

TYPE=RANDOM to name and define the random variables in the 

model.  The name on the left-hand side of the | symbol names the 

random variable.  The statement on the right-hand side of the | symbol 

defines the random variable.  In the first | statement, the random AR(1) 

slope s is defined by the linear regression over multiple time points of 

the dependent variable y on the dependent variable y&1 which is y at the 

previous time point.  In the second | statement, the random residual 

variance logv is defined as the log of the residual variance of the 

dependent variable y.   

 

In the between part of the model, the first ON statement describes the 

linear regression of the random intercept y on the observed cluster-level 

covariate w.  The second ON statement describes the linear regression of 

the random AR(1) slope s on the observed cluster-level covariate w.  The 

third ON statement describes the linear regression of the log of the 

random residual variance logv on the observed cluster-level covariate w.  

The intercepts and residual variances of y, s, and logv are estimated and 

the residuals are not correlated as the default.  The WITH statement 

specifies that the residuals among y, s, and logv are correlated.  The 

fourth ON statement describes the linear regression of the observed 

cluster-level dependent variable z on the random intercept y, the random 

AR(1) slope s, and the log of the random residual variance logv.  

 

A two-level time series analysis with a univariate second-order 

autoregressive AR(2) model can also be estimated.  For this analysis, the 
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LAGGED option is specified as LAGGED = y (2); and the MODEL 

command is specified as follows: 

  
MODEL: %WITHIN% 

 s1 | y ON y&1; 

 s2 | y ON y&2; 

 logv | y; 

 %BETWEEN% 

 y ON w; 

 s1-s2 ON w; 

 logv ON w; 

 y s1 s2 logv WITH y s1 s2 logv; 

 z ON y s1 s2 logv; 

 

In the first | statement, the random AR(1) slope s1 is defined by the 

linear regression over multiple time points of the dependent variable y 

on the dependent variable y&1 which is y at the previous time point.  In 

the second | statement,  the random AR(2) slope s2 is defined by the 

linear regression over multiple time points of the dependent variable y 

on the dependent variable y&2 which is y at two time points prior.  A 

model where only y at lag 2 is used is specified as follows: 

 
MODEL: %WITHIN% 

 y ON y&1@0; 

 s2 | y ON y&2; 

 

where the coefficient for y at lag 1 is fixed at zero.  

 

In the OUTPUT command, the FSCOMPARISON option is used to 

request a comparison of between-level estimated factor scores.  In the 

PLOT command, the FACTORS option is used with the keyword ALL 

to request that estimated factor scores for all between-level random 

effects be available for plotting.  An explanation of the other commands 

can be found in Examples 9.1 and 9.28.    
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A more detailed picture of the model is shown above.  This picture 

reflects that the dependent variable y is decomposed into two 

uncorrelated latent variables,   

 

yit = ywit + ybi , 

 

where i represents individual, t represents time, ywit is the latent variable 

used on the within level, and ybi is the latent variable used on the 

between level.  This model is described in Asparouhov, Hamaker, and 

Muthén (2017).  The decomposition can also be expressed as 

 

ywit =  yit   -  ybi , 

 

which can be viewed as a latent group-mean centering of the within-level 

latent variable.  For a further discussion of centering and latent variable 

decomposition, see Ludtke et al. (2008). 
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EXAMPLE 9.31:  TWO-LEVEL TIME SERIES ANALYSIS 

WITH A UNIVARIATE FIRST-ORDER AUTOREGRESSIVE 

AR(1) MODEL FOR A CONTINUOUS DEPENDENT 

VARIABLE WITH A COVARIATE, RANDOM INTERCEPT, 

RANDOM AR(1) SLOPE, RANDOM SLOPE, AND RANDOM 

RESIDUAL VARIANCE 
 

 
TITLE: this is an example of a two-level time 

 series analysis with a univariate first-

order autoregressive AR(1) model for a 

continuous dependent variable with a 

covariate, random intercept, random AR(1) 

slope, random slope, and random residual 

variance  

DATA: FILE = ex9.31.dat; 

VARIABLE: NAMES = y x w xm subject; 

 WITHIN = x; 

 BETWEEN = w xm; 

 CLUSTER = subject; 

 LAGGED = y(1); 

DEFINE: CENTER X (GROUPMEAN); 

ANALYSIS: TYPE = TWOLEVEL RANDOM; 

 ESTIMATOR = BAYES;   

 PROCESSORS = 2; 

 BITERATIONS = (2000); 

MODEL: %WITHIN% 

 sy | y ON y&1; 

 sx | y ON x; 

 logv | y;   

 %BETWEEN% 

 y ON w xm; 

 sy ON w xm; 

 sx ON w xm; 

 logv ON w xm; 

 y sy sx logv WITH y sy sx logv;  

OUTPUT: TECH1 TECH8; 

PLOT: TYPE= PLOT3; 

 



Examples:  Multilevel Modeling With Complex Survey Data 

 

                                                                                                               361 

 
 

 

The difference between this example and Example 9.30 is that a 

covariate with a random slope is added and no cluster-level dependent 

variable is used.  In this example, the two-level time series analysis with 

a univariate first-order autoregressive AR(1) model for a continuous 

dependent variable with a covariate, random intercept, random AR(1) 

slope, random slope, and random residual variance shown in the picture 

above is estimated.  The log of the random residual variance is used in 

the model.   
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In the DEFINE command, the individual-level covariate x is centered 

using the cluster means for x.  In this analysis, the cluster means are the 

means for each subject. 

 

In the within part of the model, the | symbol is used in conjunction with 

TYPE=RANDOM to name and define the random variables in the 

model.  The name on the left-hand side of the | symbol names the 

random variable.  The statement on the right-hand side of the | symbol 

defines the random variable.  In the first | statement, the random AR(1) 

slope sy is defined by the linear regression over multiple time points of 

the dependent variable y on the dependent variable y&1 which is y at the 

previous time point.  In the second | statement, the random slope sx is 

defined by the linear regression over multiple time points of the 

dependent variable y on the observed individual-level covariate x.  In the 

third | statement, the random residual variance logv is defined as the log 

of the residual variance of the dependent variable y.   

 

In the between part of the model, the first ON statement describes the 

linear regression of the random intercept y on the observed cluster-level 

covariates w and xm.  The second ON statement describes the linear 

regression of the random AR(1) slope sy on the observed cluster-level 

covariates w and xm.  The third ON statement describes the linear 

regression of the random slope sx on the observed cluster-level 

covariates w and xm. The fourth ON statement describes the linear 

regression of the random residual variance logv on the observed cluster-

level covariates w and xm.  The intercepts and residual variances of y, 

sy, sx, and logv are estimated and the residuals are not correlated as the 

default.  The WITH statement specifies that the residuals among y, sy, 

sx, and logv are correlated.  An explanation of the other commands can 

be found in Examples 9.1, 9.28, and 9.30.    
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EXAMPLE 9.32:  TWO-LEVEL TIME SERIES ANALYSIS 

WITH A BIVARIATE CROSS-LAGGED MODEL FOR 

CONTINUOUS DEPENDENT VARIABLES WITH RANDOM 

INTERCEPTS AND RANDOM SLOPES 
 

 
TITLE: this is an example of a two-level time 

series analysis with a bivariate cross- 

lagged model for continuous dependent 

variables with random intercepts and 

random slopes 

DATA: FILE = ex9.32.dat; 

VARIABLE: NAMES = y1 y2 subject; 

 CLUSTER = subject; 

 LAGGED = y1(1) y2(1);  

ANALYSIS: TYPE = TWOLEVEL RANDOM; 

 ESTIMATOR = BAYES;   

 PROCESSORS = 2; 

 BITERATIONS = (2000); 

MODEL: %WITHIN% 

 s1 | y1 ON y1&1; 

 s2 | y2 ON y2&1; 

 s12 | y1 ON y2&1; 

 s21 | y2 ON y1&1; 

 %BETWEEN% 

 y1 y2 s1-s21 WITH y1 y2 s1-s21; 

OUTPUT: TECH1 TECH8 STANDARDIZED (CLUSTER); 

PLOT: TYPE = PLOT3; 
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The difference between this example and Example 9.30 is that a 

bivariate cross-lagged model rather than a univariate first-order 

autoregressive AR(1) model is estimated.  In this example, the two-level 

time series analysis with a bivariate cross-lagged model for continuous 

dependent variables with random intercepts and random slopes shown in 

the picture above is estimated.   

 

In the within part of the model, the | symbol is used in conjunction with 

TYPE=RANDOM to name and define the random variables in the 

model.  The name on the left-hand side of the | symbol names the 

random variable.  The statement on the right-hand side of the | symbol 

defines the random variable.  In the first | statement, the random AR(1) 

slope s1 is defined by the linear regression over multiple time points of 

the dependent variable y1 on the dependent variable y1&1 which is y1 at 

the previous time point.  In the second | statement, the random AR(1) 

slope s2 is defined by the linear regression over multiple time points of 

the dependent variable y2 on the dependent variable y2&1 which is y2 at 

the previous time point.  In the third | statement, the random cross-lagged 
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slope s12 is defined by the linear regression over multiple time points of 

the dependent variable y1 on the dependent variable y2&1 which is y2 at 

the previous time point.  In the fourth | statement, the random cross-

lagged slope s21 is defined by the linear regression over multiple time 

points of the dependent variable y2 on the dependent variable y1&1 

which is y1 at the previous time point.   

 

In the between part of the model, the WITH statement specifies that y1, 

y2, s1, s2, s12, s21, are correlated.   

 

In the OUTPUT command, the STANDARDIZED option is used to 

request standardized parameter estimates and their standard errors and 

R-square.  When a model has random effects, each parameter is 

standardized for each cluster.  The standardized values reported are the 

average of the standardized values across clusters for each parameter 

(Schuurman et al., 2016; Asparouhov, Hamaker, & Muthén, 2017).  The 

CLUSTER setting requests that the standardized values for each cluster 

be printed in the output.  

 

A two-level time series analysis with a bivariate cross-lagged model for 

continuous dependent variables with random residual variances and a 

random residual covariance can also be estimated.  The MODEL 

command is specified as follows: 

 
MODEL: %WITHIN% 

 s1 | y1 ON y1&1; 

 s2 | y2 ON y2&1; 

 s12 | y1 ON y2&1; 

 s21 | y2 ON y1&1; 

 logv1 | y1; 

 logv2 | y2; 

 f BY y1@1 y2@1; 

 logvf | f; 

 %BETWEEN% 

 y1 y2 s1-logvf WITH y1 y2 s1-logvf; 

 

In the fifth | statement, the random residual variance logv1 is defined as 

the residual variance of the dependent variable y1.  In the sixth | 

statement, the random residual variance logv2 is defined as the residual 

variance of the dependent variable y2.  The logs of the random residual 

variances are used in the model.  In the BY statement, the factor loadings 

for the factor f are fixed at one for the factor indicators y1 and y2.  The 

variance of the factor f is the covariance between the residuals of y1 and 
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y2.  In the seventh | statement, the random residual covariance logvf is 

defined as the variance of the factor f.  An explanation of the other 

commands can be found in Examples 9.1, 9.28, and 9.30. 

    

EXAMPLE 9.33:  TWO-LEVEL TIME SERIES ANALYSIS 

WITH A FIRST-ORDER AUTOREGRESSIVE AR(1) FACTOR 

ANALYSIS MODEL FOR A SINGLE CONTINUOUS 

INDICATOR AND MEASUREMENT ERROR 
 

 
TITLE: this is an example of a two-level time 

series analysis with a first-order 

autoregressive AR(1) factor analysis model   

 for a single continuous indicator and 

measurement error 

DATA: FILE = ex9.33.dat; 

VARIABLE: NAMES = y subject; 

 CLUSTER = subject; 

ANALYSIS: TYPE = TWOLEVEL RANDOM; 

 ESTIMATOR = BAYES;  

 PROCESSORS = 2;  

 BITERATIONS = (5000);  

MODEL: %WITHIN% 

 f BY y@1(&1);  

 s | f ON f&1;  

 %BETWEEN% 

 y WITH s; 

OUTPUT: TECH1 TECH8; 

PLOT: TYPE = PLOT3;  
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In this example, the two-level time series analysis with a first-order 

autoregressive AR(1) factor analysis model for a single continuous 

indicator and measurement error shown in the picture above is estimated. 

 

The BITERATIONS option is used to specify the maximum and 

minimum number of iterations for each Markov chain Monte Carlo 

(MCMC) chain when the potential scale reduction (PSR) convergence 

criterion (Gelman & Rubin, 1992) is used.  Using a number in 

parentheses, the BITERATIONS option specifies that a minimum of 

5,000 and a maximum of the default of 50,000 iterations will be used.  

The minimum is relatively large because this model may be more 

difficult to estimate.  

 

In the within part of the model, the BY statement specifies that the factor 

f is equivalent to the dependent variable y without measurement error.  It 

is possible to identify measurement error because the model is 

autoregressive.  An ampersand (&) followed by the number 1 is placed 

in parentheses following the BY statement to indicate that the factor f at 

lag 1 can be used in the analysis.  The factor f at lag 1 is referred to as 
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f&1.   The | symbol is used in conjunction with TYPE=RANDOM to 

name and define the random variables in the model.  The name on the 

left-hand side of the | symbol names the random variable.  The statement 

on the right-hand side of the | symbol defines the random variable.  In 

the | statement, the random AR(1) slope s is defined by the linear 

regression over multiple time points of the factor f on the factor f&1 

which is f at the previous time point. 

 

In the between part of the model, the WITH statement specifies that y 

and s are correlated.  

 

A two-level time series analysis with an ARMA (1, 1) model where AR 

stands for autoregressive and MA stands for moving average (Shumway 

& Stoffer, 2011) shown in the picture below can also be estimated.  As 

shown in Granger and Morris (1976) and Schuurman et al. (2015) for 

N=1 time series analysis, this is an alternative representation of the data 

used in the measurement error model shown above.  For this analysis, 

the LAGGED option of the VARIABLE command is specified as 

LAGGED = y (1); and the MODEL command is specified as shown 

below. 
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MODEL: %WITHIN% 

 s | y ON y&1; 

 e BY y@1 (&1); 

 y@.01; 

 y ON e&1;  

 

In the | statement, the random AR(1) slope s is defined by the linear 

regression over multiple time points of the dependent variable y on the 

dependent variable y&1 which is y at the previous time point.  The BY 

statement together with fixing the residual variance of y at a small value 

specify that the factor e is equivalent to the residual of the dependent 

variable y.  The small value of .01 is chosen rather than zero to obtain 

faster convergence.  An ampersand (&) followed by the number 1 is 

placed in parentheses following the BY statement to indicate that the 

factor e at lag 1 can be used in the analysis.  The factor e at lag 1 is 

referred to as e&1.  The ON statement describes the linear regression of 

the dependent variable y on the residual e&1 which is the residual of y at 

the previous time point.  This is the moving average component of the 

model.  An explanation of the other commands can be found in 

Examples 9.1, 9.28, and 9.30. 
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EXAMPLE 9.34:  TWO-LEVEL TIME SERIES ANALYSIS 

WITH A FIRST-ORDER AUTOREGRESSIVE AR(1) 

CONFIRMATORY FACTOR ANALYSIS (CFA) MODEL FOR 

CONTINUOUS FACTOR INDICATORS WITH RANDOM 

INTERCEPTS, A RANDOM AR(1) SLOPE, AND A RANDOM 

RESIDUAL VARIANCE    
 

 
TITLE: this is an example of a two-level time 

series analysis with a first-order 

autoregressive AR(1) confirmatory factor 

analysis (CFA) model for continuous factor 

indicators with random intercepts, a 

random AR(1) slope, and a random residual 

variance 

DATA: FILE = ex9.34.dat; 

VARIABLE: NAMES = y1-y4 subject; 

 CLUSTER = subject;   

ANALYSIS: TYPE = TWOLEVEL RANDOM; 

 ESTIMATOR = BAYES; 

 PROCESSORS = 2;   

 BITERATIONS = (2000);  

MODEL: %WITHIN% 

 f BY y1-y4(&1);  

 s | f ON f&1;  

 logv | f; 

 %BETWEEN% 

 fb BY y1-y4*; 

 fb@1; 

 fb s logv WITH fb s logv; 

OUTPUT: TECH1 TECH8; 

PLOT: TYPE = PLOT3;  

 

 

 

 



Examples:  Multilevel Modeling With Complex Survey Data 

 

                                                                                                               371 

 
 

 

In this example, the two-level time series analysis with a first-order 

autoregressive AR(1) confirmatory factor analysis (CFA) model for 

continuous factor indicators with random intercepts, a random AR(1) 

slope, and a random residual variance shown in the picture above is 

estimated.  The log of the random residual variance is used in the model. 

 

In the within part of the model, the BY statement specifies that f is 

measured by y1, y2, y3, and y4.  The metric of the factor is set 

automatically by the program by fixing the first factor loading to one.  

This option can be overridden.  An ampersand (&) followed by the 

number 1 is placed in parentheses following the BY statement to 

indicate that the factor f at lag 1 can be used in the analysis.  The factor f 
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at lag 1 is referred to as f&1.  The residual variances of the factor 

indicators are estimated and the residuals are not correlated as the 

default.  The | symbol is used in conjunction with TYPE=RANDOM to 

name and define the random variables in the model.  The name on the 

left-hand side of the | symbol names the random variable.  The statement 

on the right-hand side of the | symbol defines the random variable.  In 

the first | statement, the random AR(1) slope s is defined by the linear 

regression over multiple time points of the factor f on the factor f&1 

which is f at the previous time point.  In the second | statement, the 

random residual variance logv is defined as the log of the residual 

variance of the factor f.   

 

In the between part of the model, the BY statement specifies that fb is 

measured by the random intercepts y1, y2, y3, and y4.  The metric of the 

factor is set automatically by the program by fixing the first factor 

loading to one.  The asterisk following y1-y4 overrides this default.  The 

metric of the factor is set by fixing the factor variance to one.  The 

WITH statement specifies that fb, s, and logv are correlated.  An 

explanation of the other commands can be found in Examples 9.1, 9.28, 

and 9.30. 
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EXAMPLE 9.35:  TWO-LEVEL TIME SERIES ANALYSIS 

WITH A FIRST-ORDER AUTOREGRESSIVE AR(1) IRT  

MODEL FOR BINARY FACTOR INDICATORS WITH 

RANDOM THRESHOLDS, A RANDOM AR(1) SLOPE, AND A 

RANDOM RESIDUAL VARIANCE    
 

 
TITLE: this is an example of a two-level time 

series analysis with a first-order 

autoregressive AR(1) IRT model for binary 

factor indicators with random thresholds, 

a random AR(1) slope, and a random 

residual variance 

DATA: FILE = ex9.35part2.dat; 

VARIABLE: NAMES = u1-u4 subject; 

 CATEGORICAL = u1-u4; 

 CLUSTER = subject; 

ANALYSIS: TYPE = TWOLEVEL RANDOM; 

 ESTIMATOR = BAYES;  

 PROCESSORS = 2;  

 BITERATIONS = (3000);     

MODEL: %WITHIN% 

 f BY u1-u4*(&1 1-4);  

 s | f ON f&1;  

 logvf | f; 

 %BETWEEN% 

 fb BY u1-u4* (1-4); 

 [logvf@0]; 

 fb s logvf WITH fb s logvf;    

OUTPUT: TECH1 TECH8;  

 

In this example, a two-level time series analysis with a first-order 

autoregressive AR(1) IRT model for binary factor indicators with 

random thresholds, a random AR(1) slope, and a random residual 

variance is estimated.  The log of the random residual variance is used in 

the model. 

 

The CATEGORICAL option specifies that the variables u1, u2, u3, and 

u4 are binary.  The BITERATIONS option is used to specify the 

maximum and minimum number of iterations for each Markov chain 

Monte Carlo (MCMC) chain when the potential scale reduction (PSR) 

convergence criterion (Gelman & Rubin, 1992) is used.  Using a number 

in parentheses, the BITERATIONS option specifies that a minimum of 
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3,000 and a maximum of the default of 50,000 iterations will be used.  

The minimum is relatively large because this model may be more 

difficult to estimate 

 

In the within part of the model, the BY statement specifies that f is 

measured by u1, u2, u3, and u4.  The metric of the factor is set 

automatically by the program by fixing the first factor loading to one.  

The asterisk following u1-u4 overrides this default.  The metric of the 

factor is set by fixing the mean of the log of the random residual 

variance of the factor f to zero in the between part of the model which is 

described below.  An ampersand (&) followed by the number 1 is placed 

in parentheses following the BY statement to indicate that the factor f at 

lag 1 can be used in the analysis.  The factor f at lag 1 is referred to as 

f&1.  The numbers 1-4 in parentheses in combination with the same 

numbers in the between part of the model specify that the factor loadings 

are constrained to be equal to those of the factor fb in the between part 

of the model.  The | symbol is used in conjunction with 

TYPE=RANDOM to name and define the random variables in the 

model.  The name on the left-hand side of the | symbol names the 

random variable.  The statement on the right-hand side of the | symbol 

defines the random variable.  In the first | statement, the random AR(1) 

slope s is defined by the linear regression over multiple time points of 

the factor f on the factor f&1 which is f at the previous time point.  In the 

second | statement, the random residual variance logvf is defined as the 

log of the residual variance of the factor f.   

 

In the between part of the model, the BY statement specifies that fb is 

measured by the random intercepts u1, u2, u3, and u4.  The metric of the 

factor is set automatically by the program by fixing the first factor 

loading to one.  The asterisk following u1-u4 overrides this default.  

Because the factor loadings are constrained to be equal for the within-

level factor f and the between-level factor fb, the metric of the factors 

can be set by fixing the mean of the log of the random residual variance 

of the factor f to zero or the variance of the factor fb to one.  The WITH 

statement specifies that fb, s, and logvf are correlated.  An explanation 

of the other commands can be found in Examples 9.1, 9.28, and 9.30. 
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EXAMPLE 9.36:  TWO-LEVEL TIME SERIES ANALYSIS 

WITH A BIVARIATE CROSS-LAGGED MODEL FOR TWO 

FACTORS AND CONTINUOUS FACTOR INDICATORS WITH 

RANDOM INTERCEPTS AND RANDOM SLOPES 
 

 
TITLE: two-level time series analysis with a 

bivariate cross-lagged model for two 

factors and continuous factor indicators 

with random intercepts and random slopes  

DATA: FILE = ex9.36.dat; 

VARIABLE: NAMES = y11-y14 y21-y24 subject; 

 CLUSTER = subject; 

ANALYSIS: TYPE = TWOLEVEL RANDOM; 

 ESTIMATOR = BAYES;   

 PROCESSORS = 2; 

 BITERATIONS = (2000);  

MODEL: %WITHIN% 

 f1 BY y11-y14(&1);  

 f2 BY y21-y24(&1);  

 s11 | f1 ON f1&1; 

 s22 | f2 ON f2&1; 

 s12 | f1 ON f2&1; 

 s21 | f2 ON f1&1;        

 %BETWEEN% 

 fb1 BY y11-y14*; 

 fb2 BY y21-y24*; 

 fb1-fb2@1; 

 fb1 fb2 s11-s21 WITH fb1 fb2 s11-s21; 

OUTPUT: TECH1 TECH8; 

PLOT: TYPE = PLOT3; 
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In this example, the two-level time series analysis with a bivariate cross-

lagged model for two factors and continuous factor indicators with 

random intercepts and random slopes shown in the picture above is 

estimated.   

 

In the within part of the model, the first BY statement specifies that f1 is 

measured by y11, y12, y13, and y14.  The second BY statement specifies 

that f2 is measured by y21, y22, y23, and y24.  The metric of the factors 

is set automatically by the program by fixing the first factor loading to 

one.  This option can be overridden.  An ampersand (&) followed by the 

number 1 is placed in parentheses following the BY statements to 

indicate that the factors f1 and f2 at lag 1 are used during model 

estimation. The factors f1 and f2 at lag 1 are referred to as f1&1 and 

f2&1, respectively.  The residual variances of the factor indicators are 

estimated and the residuals are not correlated as the default.  The | 

symbol is used in conjunction with TYPE=RANDOM to name and 

define the random variables in the model.  The name on the left-hand 

side of the | symbol names the random variable.  The statement on the 

right-hand side of the | symbol defines the random variable.  In the first | 

statement, the random AR(1) slope s11 is defined by the linear 

regression over multiple time points of the factor f1 on the factor f1&1 

which is f1 at the previous time point.   In the second | statement, the 

random AR(1) slope s22 is defined by the linear regression over multiple 

time points of the factor f2 on the factor f2&1 which is f2 at the previous 

time point.  In the third | statement, the random cross-lagged slope s12 is 

defined by the linear regression over multiple time points of the factor f1 

on the factor f2&1 which is f2 at the previous time point.  In the fourth | 

statement, the random cross-lagged slope s21 is defined by the linear 

regression over multiple time points of the factor f2 on the factor f1&1 

which is f1 at the previous time point.   

 

In the between part of the model, the first BY statement specifies that f1 

is measured by the random intercepts y11, y12, y13, and y14.  The 

second BY statement specifies that f2 is measured by the random 

intercepts y21, y22, y23, and y24.  The metric of the factors is set 

automatically by the program by fixing the first factor loadings to one.  

The asterisk following y11-y14 and y21-y24 overrides this default.  The 

metric of the factors is set by fixing the factor variances to one.  The 

WITH statement specifies that fb1, fb2, s11, s22, s12, and s21 are 

correlated.  An explanation of the other commands can be found in 

Examples 9.1, 9.28, and 9.30. 
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EXAMPLE 9.37:  TWO-LEVEL TIME SERIES ANALYSIS 

WITH A UNIVARIATE FIRST-ORDER AUTOREGRESSIVE 

AR(1) MODEL FOR A CONTINUOUS DEPENDENT 

VARIABLE WITH A COVARIATE, LINEAR TREND, 

RANDOM SLOPES, AND A RANDOM RESIDUAL VARIANCE 
 

 
TITLE: two-level time series analysis with a 

univariate first-order autoregressive 

AR(1) model for a continuous dependent 

variable with a covariate, linear trend, 

random slopes, and a random residual 

variance 

DATA: FILE = ex9.37.dat; 

VARIABLE: NAMES = y x w xm time subject; 

 WITHIN = x time; 

 BETWEEN = w xm; 

 CLUSTER = subject; 

 LAGGED = y(1); 

DEFINE: CENTER x (GROUPMEAN); 

ANALYSIS: TYPE = TWOLEVEL RANDOM; 

 ESTIMATOR = BAYES;   

 PROCESSORS = 2; 

 BITERATIONS = (10000); 

MODEL: %WITHIN% 

 sy | y ON y&1; 

 sx | y ON x; 

 s | y ON time;  

 logv | y;  

 %BETWEEN% 

 sy ON w xm;                                   

 sx ON w xm; 

 s ON w xm; 

 logv ON w xm;   

 y ON w xm;  

 sy-logv y WITH sy-logv y;        

OUTPUT: TECH1 TECH8; 

PLOT: TYPE= PLOT3; 
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In this example, the two-level time series analysis with a univariate first-

order autoregressive AR(1) model for a continuous dependent variable 

with a covariate, linear trend, random slopes, and a random residual 

variance shown in the picture above is estimated.  The log of the random 

residual variance is used in the model. 

 

The BITERATIONS option is used to specify the maximum and 

minimum number of iterations for each Markov chain Monte Carlo 

(MCMC) chain when the potential scale reduction (PSR) convergence 

criterion (Gelman & Rubin, 1992) is used.  Using a number in 
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parentheses, the BITERATIONS option specifies that a minimum of 

10,000 and a maximum of the default of 50,000 iterations will be used.  

The minimum is relatively large because this model may be more 

difficult to estimate.  

 

In the within part of the model, the | symbol is used in conjunction with 

TYPE=RANDOM to name and define the random variables in the 

model.  The name on the left-hand side of the | symbol names the 

random variable.  The statement on the right-hand side of the | symbol 

defines the random variable.  In the first | statement, the random AR(1) 

slope sy is defined by the linear regression over multiple time points of 

the dependent variable y on the dependent variable y&1 which is y at the 

previous time point.  In the second | statement, the random slope sx is 

defined by the linear regression over multiple time points of the 

dependent variable y on the observed individual-level covariate x.  In the 

third | statement, the random linear trend s is defined by the linear 

regression over multiple time points of the dependent variable y on the 

observed individual-level covariate time.  In the fourth | statement, the 

random residual variance logv is defined as the log of the residual 

variance of the dependent variable y.   

 

In the between part of the model, the first ON describes the linear 

regression of the random AR(1) slope sy on the observed cluster-level 

covariates w and xm.  The second ON statement describes the linear 

regression of the random slope sx on the observed cluster-level 

covariates w and xm. The third ON statement describes the linear 

regression of the random linear trend s on the observed cluster-level 

covariates w and xm.  The fourth ON statement describes the linear 

regression of the random residual variance logv on the observed cluster-

level covariates w and xm.  The fifth ON statement describes the linear 

regression of the random intercept y on the observed cluster-level 

covariates w and xm.  The intercepts and residual variances of sy, sx, s, 

logv, and y are estimated and the residuals are not correlated as the 

default.  The WITH statement specifies that the residuals among sy, sx, 

s, logv, and y are correlated.  An explanation of the other commands can 

be found in Examples 9.1, 9.28, 9.30, and 9.31.    
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EXAMPLE 9.38:  CROSS-CLASSIFIED TIME SERIES 

ANALYSIS WITH A UNIVARIATE FIRST-ORDER 

AUTOREGRESSIVE AR(1) MODEL FOR A CONTINUOUS 

DEPENDENT VARIABLE WITH A COVARIATE, RANDOM 

INTERCEPT, AND RANDOM SLOPE 
 

 
TITLE: cross-classified time series analysis with 

a univariate first-order autoregressive 

AR(1) model for a continuous dependent 

variable with a covariate, random 

intercept, and random slope 

DATA: FILE = ex9.38.dat; 

VARIABLE: NAMES = w xm y x time subject; 

 CLUSTER = subject time; 

 WITHIN = x; 

 BETWEEN = (subject)w xm; 

 LAGGED = y(1); 

DEFINE: CENTER x (GROUPMEAN subject); 

ANALYSIS: TYPE = CROSSCLASSIFIED RANDOM; 

 ESTIMATOR = BAYES; 

 PROCESSORS = 2; 

 BITERATIONS = (2000); 

MODEL: %WITHIN% 

 sx | y ON x; 

 y ON y&1;  

 %BETWEEN subject%   

 y sx ON w xm; 

 y WITH sx; 

 %BETWEEN time% 

 y WITH sx;  

OUTPUT: TECH1 TECH8; 

PLOT: TYPE = PLOT3; 

 FACTORS = ALL; 
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In this example, the cross-classified time series analysis with a univariate 

first-order autoregressive AR(1) model for a continuous dependent 

variable with a covariate, random intercept, and random slope shown in 

the picture above is estimated. 
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The CLUSTER option is used to identify the variables in the data set 

that contain clustering information.  Two cluster variables are used for a 

cross-classified time series model.  One is for subject and the other for 

time.  Subject and time are crossed.  There is no nesting because each 

subject is observed only once at any one time.  The cluster variable for 

subject must precede the cluster variable for time.  Within each cluster, 

data must be ordered by time. 

 

The WITHIN option is used to identify the variables in the data set that 

are measured on the individual level and to specify the levels on which 

they are modeled.  All variables on the WITHIN list must be measured 

on the individual level.  An individual-level variable can be modeled on 

all or some levels.  If a variable measured on the individual level is 

mentioned on the WITHIN list without a label, it is modeled only in the 

within part of the model.  It has no variance in the between subject and 

between time parts of the model.  If a variable is not mentioned on the 

WITHIN list, it is modeled on all levels.  The variable x can be modeled 

in only the within part of the model.   

 

The BETWEEN option is used to identify the variables in the data set 

that are measured on the cluster level(s) and to specify the level(s) on 

which they are modeled.  All variables on the BETWEEN list must be 

measured on a cluster level.  For TYPE=CROSSCLASSIFIED, a 

variable measured on the subject level must be mentioned on the 

BETWEEN list with a subject label.  It can be modeled in only the 

between subject part of the model.  A variable measured on the time 

level must be mentioned on the BETWEEN list with a time label.  It can 

be modeled in only the between time part of the model.  The variables w 

and xm can be modeled in only the between subject part of the model. 

 

In the ANALYSIS command, TYPE=CROSSCLASSIFIED RANDOM 

is specified indicating that a cross-classified model will be estimated.  In 

the within part of the model, the | symbol is used in conjunction with 

TYPE=RANDOM to name and define the random variables in the 

model.  The name on the left-hand side of the | symbol names the 

random variable.  The statement on the right-hand side of the | symbol 

defines the random variable.  In the | statement, the random slope sx is 

defined by the linear regression over multiple time points of the 

dependent variable y on the observed individual-level covariate x.  The 

ON statement describes the linear regression over multiple time points of 
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the dependent variable y on the dependent variable y&1 which is y at the 

previous time point. 

 

In the between subject part of the model, the ON statement describes the 

linear regressions of the random intercept y and the random slope sx on 

the observed cluster-level covariates w and xm.  The intercepts and 

residual variances of y and sx across subjects are estimated and the 

residuals are not correlated as the default.  The WITH statement 

specifies that the residuals among y and sx are correlated.  In the 

between time part of the model, the WITH statement specifies that y and 

sx are correlated.  The variances of y and sx across time are estimated as 

the default. 

 

A cross-classified time series analysis with a univariate first-order 

autoregressive AR(1) model for a continuous dependent variable with a 

random AR(1) slope and a random residual variance can also be 

estimated.  The estimation of this model is computationally demanding.  

The MODEL command is specified as follows: 

 
MODEL: %WITHIN% 

 sx | y ON x; 

 sy | y ON y&1;  

 logv | y; 

 %BETWEEN subject%   

 y sx sy logv ON w xm; 

 y sx-logv WITH y sx-logv; 

 %BETWEEN time%  

 y sx-sy WITH y sx-sy; 

 

In the second | statement, the random AR(1) slope sy is defined by the 

linear regression over multiple time points of the dependent variable y 

on the dependent variable y&1 which is y at the previous time point.  In 

the third | statement, the random residual variance logv is defined as the 

log of the residual variance of the dependent variable y.  The log of the 

random residual variance is used in the model.   

 

In the between subject part of the model, the ON statement describes the 

linear regression of the random intercept y, the random slope sx, the 

random AR(1) slope sy, and the random residual variance logv on the 

observed cluster-level covariates w and xm.  The intercepts and residual 

variances of y, sx, sy, and logv across subjects are estimated and the 

residuals are not correlated as the default.  The WITH statement 

specifies that the residuals among y, sx, sy, and logv are correlated.   
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In the between time part of the model, the variances of y, sx, and sy 

across subjects are estimated and they are not correlated as the default.   

The WITH statement specifies that y, sx, and sy are correlated.  An 

explanation of the other commands can be found in Examples 9.1, 9.28, 

9.30, and 9.31. 

 

EXAMPLE 9.39:  CROSS-CLASSIFIED TIME SERIES 

ANALYSIS WITH A UNIVARIATE FIRST-ORDER 

AUTOREGRESSIVE AR(1) MODEL FOR A CONTINUOUS 

DEPENDENT VARIABLE WITH A COVARIATE, LINEAR 

TREND, AND RANDOM SLOPE 
 

 
TITLE: this is an example of a cross-classified 

time series analysis with a univariate 

first-order autoregressive AR(1) model for 

a continuous dependent variable with a             

covariate, linear trend, and random slope 

DATA: FILE = ex9.39.dat; 

VARIABLE: NAMES = w xm y x time subject; 

 USEVARIABLES = w xm y x timew timet; 

 WITHIN = x timew; 

 BETWEEN = (subject) w xm (time) timet; 

 CLUSTER = subject time; 

 LAGGED = y(1); 

DEFINE: timew = time; 

 timet = time; 

 CENTER x (GROUPMEAN subject); 

ANALYSIS: TYPE = CROSSCLASSIFIED RANDOM; 

 ESTIMATOR = BAYES; 

 PROCESSORS = 2; 

 BITERATIONS = (5000); 

MODEL: %WITHIN% 

 y ON y&1;  

 s | y ON timew; 

 sx | y ON x;                         

 %BETWEEN subject%   

 y s sx ON w xm; 

 y s sx WITH y s sx; 

 %BETWEEN time%  

 sx ON timet; 

 y WITH sx; 

 s@0; 

OUTPUT: TECH1 TECH8; 

PLOT: TYPE = PLOT3; 
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In this example, the cross-classified time series analysis with a univariate 

first-order autoregressive AR(1) model for a continuous dependent 

variable with a covariate, linear trend, and random slope shown in the 

picture above is estimated. 

 

In the DEFINE command, the variables timew and timet are created as 

duplicates of the cluster variable time.  Timew is used in the within part 

of the model and timet is used in the between time part of the model.  

The variables timew and timet are placed at the end of the 

USEVARIABLES list after the original variables to indicate that they 

will be used in the analysis.  The individual-level covariate x is centered 

using the cluster means for x.  

 

The BITERATIONS option is used to specify the maximum and 

minimum number of iterations for each Markov chain Monte Carlo 

(MCMC) chain when the potential scale reduction (PSR) convergence 

criterion (Gelman & Rubin, 1992) is used.  Using a number in 

parentheses, the BITERATIONS option specifies that a minimum of 

5,000 and a maximum of the default of 50,000 iterations will be used.  

The minimum is relatively large because this model may be more 

difficult to estimate. 

 

In the within part of the model, the ON statement describes the linear 

regression over multiple time points of the dependent variable y on the 

dependent variable y&1 which is y at the previous time point.  The | 

symbol is used in conjunction with TYPE=RANDOM to name and 

define the random variables in the model.  The name on the left-hand 

side of the | symbol names the random variable.  The statement on the 

right-hand side of the | symbol defines the random variable.  In the first | 

statement, the random linear trend s is defined by the linear regression 

over multiple time points of the dependent variable y on the observed 

individual-level covariate timew.  In the second | statement, the random 

slope sx is defined by the linear regression over multiple time points of 

the dependent variable y on the observed individual-level covariate x. 

 

In the between subject part of the model, the ON statement describes the 

linear regression of the random intercept y, the random linear trend s, 

and the random slope sx on the observed subject-level covariates w and 

xm.  The WITH statement specifies that the residuals among y, s, and sx 

are correlated. 
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In the between time part of the model, the ON statement describes the 

linear regression of the random slope sx on the observed time-level 

covariate timet.  The WITH statement specifies that the residuals among 

y and sx are correlated.  The variance of the random linear trend s is free 

as the default but is fixed at zero because it can be difficult to estimate 

and is not a necessary model component.  

 

A cross-classified time series analysis with a univariate first-order 

autoregressive AR(1) model for a continuous dependent variable with a 

random AR(1) slope and a random residual variance can also be 

estimated.  The estimation of this model is very demanding 

computationally.  The MODEL command is specified as follows: 

 
MODEL: %WITHIN% 

 sy | y ON y&1;  

 s | y ON timew; 

 sx | y ON x;            

 logv | y;           

 %BETWEEN subject%   

 y sy sx logv s ON w xm; 

 y sy sx logv s WITH y sy s logv s; 

 %BETWEEN time%  

 sx ON timet; 

 y sy sx WITH y sy sx; 

 s@0; 

 

In the first | statement, the random AR(1) slope sy is defined by the 

linear regression over multiple time points of the dependent variable y 

on the dependent variable y&1 which is y at the previous time point.  In 

the fourth | statement, the random residual variance logv is defined as the 

log of the residual variance of the dependent variable y.  The log of the 

random residual variance is used in the model.  The random AR(1) slope 

sy is allowed to vary across both subjects and time whereas the random 

residual variance logv is allowed to vary only across subjects.  An 

explanation of the other commands can be found in Examples 9.1, 9.28, 

9.30, and 9.38. 
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EXAMPLE 9.40:  CROSS-CLASSIFIED TIME SERIES 

ANALYSIS WITH A UNIVARIATE FIRST-ORDER 

AUTOREGRESSIVE AR(1) CONFIRMATORY FACTOR 

ANALYSIS (CFA) MODEL FOR CONTINUOUS FACTOR 

INDICATORS WITH RANDOM INTERCEPTS AND A FACTOR 

VARYING ACROSS BOTH SUBJECTS AND TIME 
 

 
TITLE: this is an example of a cross-classified 

time series analysis with a first-order 

autoregressive AR(1) confirmatory factor 

analysis (CFA) model for continuous factor 

indicators with random intercepts and a 

factor varying across both subjects and 

time 

DATA: FILE = ex9.40.dat; 

VARIABLE: NAMES = y1-y3 time subject;  

 CLUSTER = subject time; 

ANALYSIS: TYPE = CROSSCLASSIFIED RANDOM;  

 ESTIMATOR = BAYES;  

 PROCESSORS = 2;  

 BITERATIONS = (1000); 

MODEL: %WITHIN% 

 f BY y1-y3* (&1 1-3);  

 f@1; 

 f ON f&1; 

 %BETWEEN subject%  

 fsubj BY y1-y3* (1-3);  

 %BETWEEN time% 

 ftime BY y1-y3* (1-3); 

OUTPUT: TECH1 TECH8; 

PLOT: TYPE = PLOT3; 

 FACTORS = ALL; 
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In this example, the cross-classified time series analysis with a first-

order autoregressive AR(1) confirmatory factor analysis (CFA) model 

for continuous factor indicators with random intercepts and a factor 

varying across both subjects and time shown in the picture above is 

estimated.   

 

In the within part of the model, the BY statement specifies that f is 

measured by y1, y2, and y3.  The metric of the factor is set automatically 

by the program by fixing the first factor loading to one.  The asterisk 

following y1-y3 overrides this default.  The metric of the factor is set by 

fixing the factor residual variance to one.  An ampersand (&) followed 

by the number 1 is placed in parentheses following the BY statement to 

indicate that the factor f at lag 1 can be used in the analysis.  The factor f 

at lag 1 is referred to as f&1.  The numbers 1-3 in parentheses in 

combination with the same numbers in the between subject and between 

time parts of the model specify that the factor loadings are constrained to 

be equal to those of the factor fsubj in the between subject part of the 

model and the factor ftime in the between time part of the model.  The 

ON statement describes the linear regression over multiple time points of 

the factor f on the factor f&1 which is f at the previous time point. 

 

In the between subject part of the model, the intercepts and residual 

variances of the random intercepts of the within-level factor indicators 

are estimated and the residuals are not correlated as the default.  In the 

between time part of the model, the residual variances of the random 

intercepts of the within-level factor indicators are estimated and the 

residuals are not correlated as the default. 

 

In the second part of this example, a cross-classified time series analysis 

with a first-order autoregressive AR(1) confirmatory factor analysis 

(CFA) model for continuous factor indicators with random intercepts, 

random factor loadings, and a factor varying across both subjects and 

time is estimated.   
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TITLE: this is an example of a cross-classified 

time series analysis with a first-order 

autoregressive AR(1) confirmatory factor 

analysis (CFA) model for continuous factor 

indicators with random intercepts, random 

factor loadings, and a factor varying 

across both subjects and time 

DATA: FILE = ex9.40part2.dat; 

VARIABLE: NAMES = y1-y3 time subject;  

 CLUSTER = subject time; 

ANALYSIS: TYPE = CROSSCLASSIFIED RANDOM;  

 ESTIMATOR = BAYES;  

 PROCESSORS = 2;  

 BITERATIONS = (1000); 

MODEL: %WITHIN% 

 s1-s3 | f BY y1-y3 (&1);  

 f@1; 

 f ON f&1; 

 %BETWEEN subject%  

 f;  

  %BETWEEN time% 

 f; 

OUTPUT: TECH1 TECH8; 

PLOT: TYPE = PLOT3; 

 

In the within part of the model, the | symbol is used in conjunction with 

TYPE=RANDOM to name and define the random variables in the 

model.  The name on the left-hand side of the | symbol names the 

random variable.  The statement on the right-hand side of the | symbol 

defines the random variable.  In the | statement, the random factor 

loadings s1, s2, and s3 are defined by the linear regression over multiple 

time points of the factor indicators y1, y2, and y3 on the factor f.  The 

variance of the factor is fixed at one to set the metric of the factor.  An 

ampersand (&) followed by the number 1 is placed in parentheses 

following the BY statement to indicate that the factor f at lag 1 can be 

used in the analysis.  The factor f at lag 1 is referred to as f&1.  The 

intercepts of the factor indicators are random.  The residual variances are 

estimated and the residuals are not correlated as the default.  The ON 

statement describes the linear regression of the factor f on the factor f&1 

which is f at the previous time point. 

 

In the between subject and between time parts of the model, the factor f 

does not need to be defined using a BY statement because the factor 

loadings are random.  In the between subject part of the model, the 

random intercepts and random factor loadings of the within-level factor 
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indicators and the factor f vary across subjects.  The means and 

variances of the random intercepts and random factor loadings are 

estimated and not correlated as the default.  The factor variance is 

estimated only when mentioned.    In the between time part of the model, 

the random intercepts of the within-level factor indicators and the factor 

f vary across time.  The variances of the random intercepts are estimated 

and not correlated as the default.  The factor variance is estimated only 

when mentioned.   An explanation of the other commands can be found 

in Examples 9.1, 9.28, 9.30, and 9.38. 
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CHAPTER 10 

EXAMPLES: MULTILEVEL 

MIXTURE MODELING 
 

  

Multilevel mixture modeling (Asparouhov & Muthén, 2008a) combines 

the multilevel and mixture models by allowing not only the modeling of 

multilevel data but also the modeling of subpopulations where 

population membership is not known but is inferred from the data.  

Mixture modeling can be combined with the multilevel analyses 

discussed in Chapter 9.  Observed outcome variables can be continuous, 

censored, binary, ordered categorical (ordinal), unordered categorical 

(nominal), counts, or combinations of these variable types.   

 

With cross-sectional data, the number of levels in Mplus is the same as 

the number of levels in conventional multilevel modeling programs.  

Mplus allows two-level modeling.  With longitudinal data, the number of 

levels in Mplus is one less than the number of levels in conventional 

multilevel modeling programs because Mplus takes a multivariate 

approach to repeated measures analysis.  Longitudinal models are two-

level models in conventional multilevel programs, whereas they are one-

level models in Mplus.  Single-level longitudinal models are discussed in 

Chapter 6, and single-level longitudinal mixture models are discussed in 

Chapter 8.  Three-level longitudinal analysis where time is the first level, 

individual is the second level, and cluster is the third level is handled by 

two-level growth modeling in Mplus as discussed in Chapter 9.   

 

Multilevel mixture models can include regression analysis, path analysis, 

confirmatory factor analysis (CFA), item response theory (IRT) analysis, 

structural equation modeling (SEM), latent class analysis (LCA), latent 

transition analysis (LTA), latent class growth analysis (LCGA), growth 

mixture modeling (GMM), discrete-time survival analysis, continuous-

time survival analysis, and combinations of these models.     

 

All multilevel mixture models can be estimated using the following 

special features: 

 

 Single or multiple group analysis 

 Missing data 
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 Complex survey data 

 Latent variable interactions and non-linear factor analysis using 

maximum likelihood 

 Random slopes 

 Individually-varying times of observations 

 Linear and non-linear parameter constraints 

 Maximum likelihood estimation for all outcome types 

 Wald chi-square test of parameter equalities 

 Analysis with between-level categorical latent variables 

 Test of equality of means across latent classes using posterior 

probability-based multiple imputations 

 

For TYPE=MIXTURE, multiple group analysis is specified by using the 

KNOWNCLASS option of the VARIABLE command.  The default is to 

estimate the model under missing data theory using all available data.  

The LISTWISE option of the DATA command can be used to delete all 

observations from the analysis that have missing values on one or more 

of the analysis variables.  Corrections to the standard errors and chi-

square test of model fit that take into account stratification, non-

independence of observations, and unequal probability of selection are 

obtained by using the TYPE=COMPLEX option of the ANALYSIS 

command in conjunction with the STRATIFICATION, CLUSTER, 

WEIGHT, WTSCALE, BWEIGHT, and BWTSCALE options of the 

VARIABLE command.  Latent variable interactions are specified by 

using the | symbol of the MODEL command in conjunction with the 

XWITH option of the MODEL command.  Random slopes are specified 

by using the | symbol of the MODEL command in conjunction with the 

ON option of the MODEL command.  Individually-varying times of 

observations are specified by using the | symbol of the MODEL 

command in conjunction with the AT option of the MODEL command 

and the TSCORES option of the VARIABLE command.  Linear and 

non-linear parameter constraints are specified by using the MODEL 

CONSTRAINT command.  Maximum likelihood estimation is specified 

by using the ESTIMATOR option of the ANALYSIS command.  The 

MODEL TEST command is used to test linear restrictions on the 

parameters in the MODEL and MODEL CONSTRAINT commands 

using the Wald chi-square test.  Between-level categorical latent 

variables are specified using the CLASSES and BETWEEN options of 

the VARIABLE command.  The AUXILIARY option is used to test the 

equality of means across latent classes using posterior probability-based 

multiple imputations. 
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Graphical displays of observed data and analysis results can be obtained 

using the PLOT command in conjunction with a post-processing 

graphics module.  The PLOT command provides histograms, 

scatterplots, plots of individual observed and estimated values, and plots 

of sample and estimated means and proportions/probabilities.  These are 

available for the total sample, by group, by class, and adjusted for 

covariates.  The PLOT command includes a display showing a set of 

descriptive statistics for each variable.  The graphical displays can be 

edited and exported as a DIB, EMF, or JPEG file.  In addition, the data 

for each graphical display can be saved in an external file for use by 

another graphics program.  

 

Following is the set of cross-sectional examples included in this chapter: 

 

 10.1:  Two-level mixture regression for a continuous dependent 

variable* 

 10.2:  Two-level mixture regression for a continuous dependent 

variable with a between-level categorical latent variable* 

 10.3:  Two-level mixture regression for a continuous dependent 

variable with between-level categorical latent class indicators for a 

between-level categorical latent variable* 

 10.4:  Two-level CFA mixture model with continuous factor 

indicators* 

 10.5:  Two-level IRT mixture analysis with binary factor indicators 

and a between-level categorical latent variable* 

 10.6:  Two-level LCA with categorical latent class indicators with 

covariates* 

 10.7:  Two-level LCA with categorical latent class indicators and a 

between-level categorical latent variable 

 

Following is the set of longitudinal examples included in this chapter: 

 

 10.8:  Two-level growth model for a continuous outcome (three-

level analysis) with a  between-level categorical latent variable* 

 10.9:  Two-level GMM for a continuous outcome (three-level 

analysis)* 

 10.10:  Two-level GMM for a continuous outcome (three-level 

analysis) with a between-level categorical latent variable* 

 10.11:  Two-level LCGA for a three-category outcome* 

 10.12:  Two-level LTA with a covariate* 
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 10.13:  Two-level LTA with a covariate and a between-level 

categorical latent variable 

 

*  Example uses numerical integration in the estimation of the model.  

This can be computationally demanding depending on the size of the 

problem. 

 

EXAMPLE 10.1: TWO-LEVEL MIXTURE REGRESSION FOR 

A CONTINUOUS DEPENDENT VARIABLE 
 

 
TITLE: this is an example of a two-level mixture 

regression for a continuous dependent 

variable 

DATA: FILE IS ex10.1.dat; 

VARIABLE: NAMES ARE y x1 x2 w class clus; 

 USEVARIABLES = y x1 x2 w; 

 CLASSES = c (2); 

 WITHIN = x1 x2; 

 BETWEEN = w; 

 CLUSTER = clus; 

ANALYSIS: TYPE = TWOLEVEL MIXTURE; 

 STARTS = 0; 

MODEL:  

 %WITHIN% 

 %OVERALL% 

 y ON x1 x2; 

 c ON x1; 

 %c#1% 

 y ON x2; 

 y; 

 %BETWEEN% 

 %OVERALL%  

 y ON w;   

 c#1 ON w;  

 c#1*1; 

 %c#1%  

 [y*2]; 

OUTPUT: TECH1 TECH8; 
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In this example, the two-level mixture regression model for a continuous 

dependent variable shown in the picture above is estimated.  This 

example is the same as Example 7.1 except that it has been extended to 

the multilevel framework.  In the within part of the model, the filled 

circles at the end of the arrows from x1 to c and y represent random 

intercepts that are referred to as c#1 and y in the between part of the 

model.  In the between part of the model, the random intercepts are 

shown in circles because they are continuous latent variables that vary 



CHAPTER 10 

400 

across clusters.  The random intercepts y and c#1 are regressed on a 

cluster-level covariate w. 

 

Because c is a categorical latent variable, the interpretation of the picture 

is not the same as for models with continuous latent variables.  The 

arrow from c to the y variable indicates that the intercept of the y 

variable varies across the classes of c.  This corresponds to the 

regression of y on a set of dummy variables representing the categories 

of c.  The broken arrow from c to the arrow from x2 to y indicates that 

the slope in the linear regression of y on x2 varies across the classes of c.  

The arrow from x1 to c represents the multinomial logistic regression of 

c on x1.   

 
TITLE: this is an example of a two-level mixture 

regression for a continuous dependent 

variable 

 

The TITLE command is used to provide a title for the analysis.  The title 

is printed in the output just before the Summary of Analysis. 
 

DATA:  FILE IS ex10.1.dat; 

 

The DATA command is used to provide information about the data set 

to be analyzed.  The FILE option is used to specify the name of the file 

that contains the data to be analyzed, ex10.1.dat.  Because the data set is 

in free format, the default, a FORMAT statement is not required. 
 

VARIABLE: NAMES ARE y x1 x2 w class clus; 

  USEVARIABLES = y x1 x2 w; 

  CLASSES = c (2); 

  WITHIN = x1 x2; 

  BETWEEN = w; 

  CLUSTER = clus; 

 

The VARIABLE command is used to provide information about the 

variables in the data set to be analyzed.  The NAMES option is used to 

assign names to the variables in the data set.  The data set in this 

example contains six variables: y, x1, x2, w, c, and clus.  If not all of the 

variables in the data set are used in the analysis, the USEVARIABLES 

option can be used to select a subset of variables for analysis.  Here the 

variables y1, x1, x2, and w have been selected for analysis.  The 

CLASSES option is used to assign names to the categorical latent 

variables in the model and to specify the number of latent classes in the 

model for each categorical latent variable.  In the example above, there 
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is one categorical latent variable c that has two latent classes.  The 

WITHIN option is used to identify the variables in the data set that are 

measured on the individual level and modeled only on the within level.  

They are specified to have no variance in the between part of the model.  

The BETWEEN option is used to identify the variables in the data set 

that are measured on the cluster level and modeled only on the between 

level.  Variables not mentioned on the WITHIN or the BETWEEN 

statements are measured on the individual level and can be modeled on 

both the within and between levels.  The CLUSTER option is used to 

identify the variable that contains cluster information.   
 

ANALYSIS: TYPE = TWOLEVEL MIXTURE; 

  STARTS = 0; 

 

The ANALYSIS command is used to describe the technical details of the 

analysis.  The TYPE option is used to describe the type of analysis that 

is to be performed.  By selecting TWOLEVEL MIXTURE, a multilevel 

mixture model will be estimated.  By specifying STARTS=0 in the 

ANALYSIS command, random starts are turned off. 
 

MODEL:  

  %WITHIN% 

  %OVERALL% 

  y ON x1 x2;  

  c ON x1; 

  %c#1% 

  y ON x2; 

  y; 

  %BETWEEN% 

  %OVERALL%  

  y ON w;   

  c#1 ON w;  

  c#1*1; 

  %c#1%  

  [y*2]; 

 

The MODEL command is used to describe the model to be estimated.  In 

multilevel models, a model is specified for both the within and between 

parts of the model.  For mixture models, there is an overall model 

designated by the label %OVERALL%.  The overall model describes the 

part of the model that is in common for all latent classes.  The part of the 

model that differs for each class is specified by a label that consists of 

the categorical latent variable name followed by the number sign (#) 

followed by the class number.  In the example above, the label %c#2% 
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refers to the part of the model for class 2 that differs from the overall 

model.   

 

In the overall model in the within part of the model, the first ON 

statement describes the linear regression of y on the individual-level 

covariates x1 and x2.  The second ON statement describes the 

multinomial logistic regression of the categorical latent variable c on the 

individual-level covariate x1 when comparing class 1 to class 2.  The 

intercept in the regression of c on x1 is estimated as the default.  In the 

model for class 1 in the within part of the model, the ON statement 

describes the linear regression of y on the individual-level covariate x2 

which relaxes the default equality of regression coefficients across 

classes.  By mentioning the residual variance of y, it is not held equal 

across classes.   

 

In the overall model in the between part of the model, the first ON 

statement describes the linear regression of the random intercept y on the 

cluster-level covariate w.  The second ON statement describes the linear 

regression of the random intercept c#1 of the categorical latent variable c 

on the cluster-level covariate w.  The random intercept c#1 is a 

continuous latent variable.  Each class of the categorical latent variable c 

except the last class has a random intercept.  A starting value of one is 

given to the residual variance of the random intercept c#1.  In the class-

specific part of the between part of the model, the intercept of y is given 

a starting value of 2 for class 1.  

 

The default estimator for this type of analysis is maximum likelihood 

with robust standard errors using a numerical integration algorithm.  

Note that numerical integration becomes increasingly more 

computationally demanding as the number of factors and the sample size 

increase.  In this example, two dimensions of integration are used with a 

total of 225 integration points.  The ESTIMATOR option of the 

ANALYSIS command can be used to select a different estimator.   

 

Following is an alternative specification of the multinomial logistic 

regression of c on the individual-level covariate x1 in the within part of 

the model:  

 

c#1 ON x1; 
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where c#1 refers to the first class of c.  The classes of a categorical latent 

variable are referred to by adding to the name of the categorical latent 

variable the number sign (#) followed by the number of the class.  This 

alternative specification allows individual parameters to be referred to in 

the MODEL command for the purpose of giving starting values or 

placing restrictions. 

 
OUTPUT: TECH1 TECH8; 

 

The OUTPUT command is used to request additional output not 

included as the default.  The TECH1 option is used to request the arrays 

containing parameter specifications and starting values for all free 

parameters in the model.  The TECH8 option is used to request that the 

optimization history in estimating the model be printed in the output.  

TECH8 is printed to the screen during the computations as the default.  

TECH8 screen printing is useful for determining how long the analysis 

takes.   
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EXAMPLE 10.2: TWO-LEVEL MIXTURE REGRESSION FOR 

A CONTINUOUS DEPENDENT VARIABLE WITH A 

BETWEEN-LEVEL CATEGORICAL LATENT VARIABLE 
 

 
TITLE: this is an example of a two-level mixture  

 regression for a continuous dependent 

variable with a between-level categorical 

latent variable 

DATA: FILE = ex10.2.dat; 

VARIABLE: NAMES ARE y x1 x2 w dummy clus; 

 USEVARIABLES = y-w; 

 CLASSES = cb(2); 

 WITHIN = x1 x2; 

 BETWEEN = cb w; 

 CLUSTER = clus; 

ANALYSIS: TYPE = TWOLEVEL MIXTURE RANDOM; 

 PROCESSORS = 2; 

MODEL: 

 %WITHIN% 

 %OVERALL% 

 s1 | y ON x1; 

 s2 | y ON x2; 

 %BETWEEN% 

 %OVERALL%  

 cb y ON w; s1-s2@0; 

 %cb#1% 

 [s1 s2]; 

 %cb#2% 

 [s1 s2]; 
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In this example, the two-level mixture regression model for a continuous 

dependent variable shown in the picture above is estimated.  This 

example is similar to Example 10.1 except that the categorical latent 

variable is a between-level variable.  This means that latent classes are 

formed for clusters (between-level units) not individuals.  In addition, 

the regression slopes are random not fixed.  In the within part of the 

model, the random intercept is shown in the picture as a filled circle at 
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the end of the arrow pointing to y.  It is referred to as y on the between 

level.  The random slopes are shown as filled circles on the arrows from 

x1 and x2 to y.   They are referred to as s1 and s2 on the between level.  

The random effects y, s1, and s2 are shown in circles in the between part 

of the model because they are continuous latent variables that vary 

across clusters (between-level units).  In the between part of the model, 

the arrows from cb to y, s1, and s2 indicate that the intercept of y and the 

means of s1 and s2 vary across the classes of cb.  In addition, the random 

intercept y and the categorical latent variable cb are regressed on a 

cluster-level covariate w.  The random slopes s1 and s2 have no within-

class variance.  Only their means vary across the classes of cb.  This 

implies that the distributions of s1 and s2 can be thought of as non-

parametric representations rather than normal distributions (Aitkin, 

1999; Muthén & Asparouhov, 2009).  Another example of a non-

parametric representation of a latent variable distribution is shown in 

Example 7.26.   

 

The BETWEEN option is used to identify the variables in the data set 

that are measured on the cluster level and modeled only on the between 

level and to identify between-level categorical latent variables.  In this 

example, the categorical latent variable cb is a between-level variable.  

Between-level classes consist of clusters such as schools instead of 

individuals. The PROCESSORS option of the ANALYSIS command is 

used to specify that 2 processors will be used in the analysis for parallel 

computations.   

 

In the overall part of the within part of the model, the | symbol is used in 

conjunction with TYPE=RANDOM to name and define the random 

slope variables in the model.  The name on the left-hand side of the | 

symbol names the random slope variable.  The statement on the right-

hand side of the | symbol defines the random slope variable.  Random 

slopes are defined using the ON option.  The random slopes s1 and s2 

are defined by the linear regressions of the dependent variable y on the 

individual-level covariates x1 and x2.  The within-level residual variance 

in the regression of y on x is estimated as the default.     

 

In the overall part of the between part of the model, the ON statement 

describes the multinomial logistic regression of the categorical latent 

variable cb on the cluster-level covariate w and the linear regression of 

the random intercept y on the cluster-level covariate w.  The variances of 

the random slopes s1 and s2 are fixed at zero.  In the class-specific parts 
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of the between part of the model, the means of the random slopes are 

specified to vary across the between-level classes of cb.  The intercept of 

the random intercept y varies across the between-level classes of cb as 

the default.   

 

The default estimator for this type of analysis is maximum likelihood 

with robust standard errors using a numerical integration algorithm.  

Note that numerical integration becomes increasingly more 

computationally demanding as the number of factors and the sample size 

increase.  In this example, one dimension of integration is used with a 

total of 15 integration points.  The ESTIMATOR option of the 

ANALYSIS command can be used to select a different estimator.  An 

explanation of the other commands can be found in Example 10.1. 

 

Following is an alternative specification of the MODEL command that is 

simpler when the model has many covariates and when the variances of 

the random slopes are zero: 

 
MODEL: 

 %WITHIN% 

 %OVERALL% 

 y ON x1 x2; 

 %cb#1% 

 y ON x1 x2; 

 %cb#2% 

 y ON x1 x2; 

 %BETWEEN% 

 %OVERALL%  

 cb ON w; 

 y ON w; 

 

In this specification, instead of the | statements, the random slopes are 

represented as class-varying slopes in the class-specific parts of the 

within part of the model.  This specification makes it unnecessary to 

refer to the means and variances of the random slopes in the between 

part of the model. 
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EXAMPLE 10.3: TWO-LEVEL MIXTURE REGRESSION FOR 

A CONTINUOUS DEPENDENT VARIABLE WITH BETWEEN-

LEVEL CATEGORICAL LATENT CLASS INDICATORS FOR 

A BETWEEN-LEVEL CATEGORICAL LATENT VARIABLE 
 

 
TITLE: this is an example of a two-level mixture  

 regression for a continuous dependent 

variable with between-level categorical 

latent class indicators for a between-

level categorical latent variable 

DATA: FILE = ex10.3.dat; 

VARIABLE: NAMES ARE u1-u6 y x1 x2 w dummy clus; 

 USEVARIABLES = u1-w; 

 CATEGORICAL = u1-u6; 

CLASSES = cb(2); 

 WITHIN = x1 x2; 

 BETWEEN = cb w u1-u6; 

 CLUSTER = clus; 

ANALYSIS: TYPE = TWOLEVEL MIXTURE; 

 PROCESSORS = 2; 

MODEL: 

 %WITHIN% 

 %OVERALL% 

 y ON x1 x2; 

 %BETWEEN% 

 %OVERALL%  

 cb ON w; 

 y ON w; 

OUTPUT: TECH1 TECH8;  
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In this example, the two-level mixture regression model for a continuous 

dependent variable shown in the picture above is estimated.  This 

example is similar to Example 10.2 except that the between-level 

categorical latent variable has between-level categorical latent class 

indicators and the slopes are fixed.  In the within part of the model, the 

random intercept is shown in the picture as a filled circle at the end of 

the arrow pointing to y.  It is referred to as y on the between level.  The 
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random intercept y is shown in a circle in the between part of the model 

because it is a continuous latent variable that varies across clusters 

(between-level units).  In the between part of the model, the arrow from 

cb to y indicates that the intercept of y varies across the classes of cb.  In 

addition, the random intercept y and the categorical latent variable cb are 

regressed on a cluster-level covariate w.  The arrows from cb to u1, u2, 

u3, u4, u5, and u6 indicate that these variables are between-level 

categorical latent class indicators of the categorical latent variable cb.  

 

In the overall part of the between part of the model, the first ON 

statement describes the multinomial logistic regression of the categorical 

latent variable cb on the cluster-level covariate w.  The second ON 

statement describes the linear regression of the random intercept y on the 

cluster-level covariate w.  The intercept of the random intercept y and 

the thresholds of the between-level latent class indicators u1, u2, u3, u4, 

u5, and u6 vary across the between-level classes of cb as the default. 

 

The default estimator for this type of analysis is maximum likelihood 

with robust standard errors using a numerical integration algorithm.  

Note that numerical integration becomes increasingly more 

computationally demanding as the number of factors and the sample size 

increase.  In this example, one dimension of integration is used with a 

total of 15 integration points.  The ESTIMATOR option of the 

ANALYSIS command can be used to select a different estimator.  An 

explanation of the other commands can be found in Examples 10.1 and 

10.2. 
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EXAMPLE 10.4: TWO-LEVEL CFA MIXTURE MODEL WITH 

CONTINUOUS FACTOR INDICATORS 
 

 
TITLE: this is an example of a two-level CFA 

mixture model with continuous factor 

indicators 

DATA: FILE IS ex10.4.dat; 

VARIABLE: NAMES ARE y1-y5 class clus; 

 USEVARIABLES = y1-y5; 

 CLASSES = c (2); 

 CLUSTER = clus; 

ANALYSIS: TYPE = TWOLEVEL MIXTURE; 

 STARTS = 0; 

MODEL:  

 %WITHIN% 

 %OVERALL% 

 fw BY y1-y5;  

 %BETWEEN% 

 %OVERALL% 

 fb BY y1-y5;  

 c#1*1; 

 %c#1% 

 [fb*2]; 

OUTPUT: TECH1 TECH8; 
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In this example, the two-level confirmatory factor analysis (CFA) 

mixture model with continuous factor indicators in the picture above is 

estimated.  This example is the same as Example 7.17 except that it has 

been extended to the multilevel framework.  In the within part of the 

model, the filled circles at the end of the arrows from the within factor 

fw to y1, y2, y3, y4, and y5 represent random intercepts that vary across 

clusters.  The filled circle on the circle containing c represents the 

random mean of c that varies across clusters.  In the between part of the 

model, the random intercepts are referred to as y1, y2, y3, y4, and y5  

and the random mean is referred to as c#1 where they are shown in 

circles because they are continuous latent variables that vary across 

clusters.  In the between part of the model, the random intercepts are 

indicators of the between factor fb.  In this model, the residual variances 
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for the factor indicators in the between part of the model are zero.  If 

factor loadings are constrained to be equal across the within and the 

between levels, this implies a model where the mean of the within factor 

varies across the clusters.  The between part of the model specifies that 

the random mean c#1 of the categorical latent variable c and the between 

factor fb are uncorrelated.  Other modeling possibilities are for fb and 

c#1 to be correlated, for fb to be regressed on c#1, or for c#1 to be 

regressed on fb.  Regressing c#1 on fb, however, leads to an internally 

inconsistent model where the mean of fb is influenced by c at the same 

time as c#1 is regressed on fb, leading to a reciprocal interaction. 

 

In the overall part of the within part of the model, the BY statement 

specifies that fw is measured by the factor indicators y1, y2, y3, y4, and 

y5.  The metric of the factor is set automatically by the program by 

fixing the first factor loading to one.  This option can be overridden.  

The residual variances of the factor indicators are estimated and the 

residuals are not correlated as the default.  The variance of the factor is 

estimated as the default.   

 

In the overall part of the between part of the model, the BY statement 

specifies that fb is measured by the random intercepts y1, y2, y3, y4, and 

y5.  The residual variances of the random intercepts are fixed at zero as 

the default because they are often very small and each residual variance 

requires one dimension of numerical integration.  The variance of fb is 

estimated as the default.  A starting value of one is given to the variance 

of the random mean of the categorical latent variable c referred to as 

c#1.  In the model for class 1 in the between part of the model, the mean 

of fb is given a starting value of 2.   

 

The default estimator for this type of analysis is maximum likelihood 

with robust standard errors using a numerical integration algorithm.  

Note that numerical integration becomes increasingly more 

computationally demanding as the number of factors and the sample size 

increase.  In this example, two dimensions of integration are used with a 

total of 225 integration points.  The ESTIMATOR option of the 

ANALYSIS command can be used to select a different estimator.  An 

explanation of the other commands can be found in Example 10.1. 
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EXAMPLE 10.5: TWO-LEVEL IRT MIXTURE ANALYSIS 

WITH BINARY FACTOR INDICATORS AND A BETWEEN-

LEVEL CATEGORICAL LATENT VARIABLE 
 

 
TITLE: this is an example of a two-level IRT 

mixture analysis with binary factor 

indicators and a between-level categorical 

latent variable 

DATA: FILE = ex10.5.dat; 

VARIABLE: NAMES ARE u1-u8 dumb dum clus; 

 USEVARIABLES = u1-u8; 

 CATEGORICAL = u1-u8; 

 CLASSES = cb(2) c(2); 

 BETWEEN = cb; 

 CLUSTER = clus; 

ANALYSIS: TYPE = TWOLEVEL MIXTURE; 

 ALGORITHM = INTEGRATION; 

 PROCESSORS = 2; 

MODEL: 

 %WITHIN% 

 %OVERALL% 

 f BY u1-u8; 

 [f@0]; 

 %BETWEEN% 

 %OVERALL% 

 %cb#1.c#1% 

 [u1$1-u8$1]; 

 %cb#1.c#2% 

 [u1$1-u8$1]; 

 %cb#2.c#1% 

 [u1$1-u8$1]; 

 %cb#2.c#2% 

 [u1$1-u8$1]; 

MODEL c: 

 %WITHIN% 

 %c#1% 

 f; 

 %c#2% 

 f; 

OUTPUT: TECH1 TECH8; 
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In this example, the two-level item response theory (IRT) mixture model 

with binary factor indicators shown in the picture above is estimated.  

The model has both individual-level classes and between-level classes.  

Individual-level classes consist of individuals, for example, students.  

Between-level classes consist of clusters, for example, schools.  The 

within part of the model is similar to the single-level model in Example 

7.27.  In the within part of the model, an IRT mixture model is specified 

where the factor indicators u1, u2, u3, u4, u5, u6, u7, and u8 have 

thresholds that vary across the classes of the individual-level categorical 
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latent variable c.  The filled circles at the end of the arrows pointing to 

the factor indicators show that the thresholds of the factor indicators are 

random.  They are referred to as u1, u2, u3, u4, u5, u6, u7, and u8 on the 

between level.  The random thresholds u1, u2, u3, u4, u5, u6, u7, and u8 

are shown in circles in the between part of the model because they are 

continuous latent variables that vary across clusters (between-level 

units).  The random thresholds have no within-class variance.  They vary 

across the classes of the between-level categorical latent variable cb.  

For related models, see Asparouhov and Muthén (2008a). 

 

In the class-specific part of the between part of the model, the random 

thresholds are specified to vary across classes that are a combination of 

the classes of the between-level categorical latent variable cb and the 

individual-level categorical latent variable c.  These classes are referred 

to by combining the class labels using a period (.).  For example, a 

combination of class 1 of cb and class 1 of c is referred to as cb#1.c#1.  

This represents an interaction between the two categorical latent 

variables in their influence on the thresholds. 

 

When a model has more than one categorical latent variable, MODEL 

followed by a label is used to describe the analysis model for each 

categorical latent variable.  Labels are defined by using the names of the 

categorical latent variables.  In the model for the individual-level 

categorical latent variable c, the variances of the factor f are allowed to 

vary across the classes of c. 

 

The default estimator for this type of analysis is maximum likelihood 

with robust standard errors using a numerical integration algorithm.  

Note that numerical integration becomes increasingly more 

computationally demanding as the number of factors and the sample size 

increase.  In this example, one dimension of integration is used with a 

total of 15 integration points.  The ESTIMATOR option of the 

ANALYSIS command can be used to select a different estimator.  An 

explanation of the other commands can be found in Examples 7.27, 10.1, 

and 10.2. 
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EXAMPLE 10.6: TWO-LEVEL LCA WITH CATEGORICAL 

LATENT CLASS INDICATORS WITH COVARIATES 
 

 
TITLE: this is an example of a two-level LCA with 

categorical latent class indicators with 

covariates 

DATA:  FILE IS ex10.6.dat; 

VARIABLE: NAMES ARE u1-u6 x w class clus; 

 USEVARIABLES = u1-u6 x w; 

 CATEGORICAL = u1-u6; 

 CLASSES = c (3); 

 WITHIN = x; 

 BETWEEN = w; 

 CLUSTER = clus; 

ANALYSIS: TYPE = TWOLEVEL MIXTURE; 

MODEL: 

 %WITHIN% 

 %OVERALL% 

 c ON x;  

 %BETWEEN% 

 %OVERALL%  

 f BY c#1 c#2; 

 f ON w; 

OUTPUT: TECH1 TECH8; 
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In this example, the two-level latent class analysis (LCA) with 

categorical latent class indicators and covariates shown in the picture 

above is estimated (Vermunt, 2003).  This example is similar to Example 

7.12 except that it has been extended to the multilevel framework.  In the 
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within part of the model, the categorical latent variable c is regressed on 

the individual-level covariate x.  The filled circles at the end of the 

arrow from x to c represent the random intercepts for classes 1 and 2 of 

the categorical latent variable c which has three classes.  The random 

intercepts are referred to as c#1 and c#2 in the between part of the model 

where they are shown in circles instead of squares because they are 

continuous latent variables that vary across clusters.  Because the 

random intercepts in LCA are often highly correlated and to reduce the 

dimensions of integration, a factor is used to represent the random 

intercept variation.  This factor is regressed on the cluster-level covariate 

w.  

 

The CATEGORICAL option is used to specify which dependent 

variables are treated as binary or ordered categorical (ordinal) variables 

in the model and its estimation.  In the example above, the latent class 

indicators u1, u2, u3, u4, u5, and u6 are binary or ordered categorical 

variables.  The program determines the number of categories for each 

indicator. 

 

In the within part of the model, the ON statement describes the 

multinomial logistic regression of the categorical latent variable c on the 

individual-level covariate x when comparing classes 1 and 2 to class 3.  

The intercepts of the random intercepts in the regression of c on x are 

estimated as the default.  The random intercept for class 3 is zero 

because it is the reference class.  In the between part of the model, the 

BY statement specifies that f is measured by the random intercepts c#1 

and c#2.  The metric of the factor is set automatically by the program by 

fixing the first factor loading to one.  The residual variances of the 

random intercepts are fixed at zero as the default.  The ON statement 

describes the linear regression of the between factor f on the cluster-

level covariate w. 

 

The default estimator for this type of analysis is maximum likelihood 

with robust standard errors using a numerical integration algorithm.  

Note that numerical integration becomes increasingly more 

computationally demanding as the number of factors and the sample size 

increase.  In this example, one dimension of integration is used with 15 

integration points.  The ESTIMATOR option of the ANALYSIS 

command can be used to select a different estimator.  An explanation of 

the other commands can be found in Example 10.1. 
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EXAMPLE 10.7: TWO-LEVEL LCA WITH CATEGORICAL 

LATENT CLASS INDICATORS AND A BETWEEN-LEVEL 

CATEGORICAL LATENT VARIABLE 
 

 
TITLE: this is an example of a two-level LCA with 

categorical latent class indicators and a 

between-level categorical latent variable 

DATA: FILE = ex10.7.dat; 

VARIABLE: NAMES ARE u1-u10 dumb dumw clus; 

 USEVARIABLES = u1-u10; 

 CATEGORICAL = u1-u10; 

           CLASSES = cb(5) cw(4); 

           WITHIN = u1-u10; 

           BETWEEN = cb; 

 CLUSTER = clus; 

ANALYSIS: TYPE = TWOLEVEL MIXTURE;  

 PROCESSORS = 2; 

 STARTS = 100 10; 

MODEL: 

 %WITHIN% 

 %OVERALL% 

 %BETWEEN% 

 %OVERALL% 

 cw#1-cw#3 ON cb; 

MODEL cw: 

 %WITHIN% 

 %cw#1% 

 [u1$1-u10$1]; 

 [u1$2-u10$2]; 

 %cw#2% 

 [u1$1-u10$1]; 

 [u1$2-u10$2]; 

 %cw#3% 

 [u1$1-u10$1]; 

 [u1$2-u10$2]; 

 %cw#4% 

 [u1$1-u10$1]; 

 [u1$2-u10$2]; 

OUTPUT: TECH1 TECH8; 
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In this example, the two-level latent class analysis (LCA) with 

categorical latent class indicators shown in the picture above is 

estimated.  This example is similar to Example 10.6 except that the 

between level random means are influenced by the between-level 

categorical latent variable cb.  In the within part of the model, the filled 

circles represent the three random means of the four classes of the 

individual-level categorical latent variable cw.  They are referred to as 

cw#1, cw#2, and cw#3 on the between level.  The random means are 

shown in circles in the between part of the model because they are 

continuous latent variables that vary across clusters (between-level 

units).  The random means have means that vary across the classes of the 

categorical latent variable cb but the within-class variances of the 

random means are zero (Bijmolt, Paas, & Vermunt, 2004). 
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In the overall part of the between part of the model, the ON statement 

describes the linear regressions of cw#1, cw#2, and cw#3 on the 

between-level categorical latent variable cb.  This regression implies that 

the means of these random means vary across the classes of the 

categorical latent variable cb.   

 

The default estimator for this type of analysis is maximum likelihood 

with robust standard errors.  The ESTIMATOR option of the 

ANALYSIS command can be used to select a different estimator.  An 

explanation of the other commands can be found in Examples 10.1, 10.2, 

and 10.6. 
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EXAMPLE 10.8: TWO-LEVEL GROWTH MODEL FOR A 

CONTINUOUS OUTCOME (THREE-LEVEL ANALYSIS) WITH 

A BETWEEN-LEVEL CATEGORICAL LATENT VARIABLE 
 

 
TITLE: this is an example of a two-level growth  

 model for a continuous outcome (three- 

 level analysis) with a between-level  

categorical latent variable 

DATA: FILE = ex10.8.dat; 

VARIABLE: NAMES ARE y1-y4 x w dummy clus; 

 USEVARIABLES = y1-w; 

 CLASSES = cb(2); 

 WITHIN = x; 

 BETWEEN = cb w; 

 CLUSTER = clus; 

ANALYSIS: TYPE = TWOLEVEL MIXTURE RANDOM; 

 PROCESSORS = 2; 

MODEL: 

 %WITHIN% 

 %OVERALL% 

 iw sw | y1@0 y2@1 y3@2 y4@3; 

 y1-y4 (1); 

 iw sw ON x; 

 s | sw ON iw; 

 %BETWEEN% 

 %OVERALL% 

 ib sb | y1@0 y2@1 y3@2 y4@3; 

 y1-y4@0; 

 ib sb ON w; 

 cb ON w; 

 s@0; 

 %cb#1% 

 [ib sb s]; 

 %cb#2% 

 [ib sb s]; 

OUTPUT: TECH1 TECH8; 
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In this example, the two-level growth model for a continuous outcome 

(three-level analysis) shown in the picture above is estimated.  This 

example is similar to Example 9.12 except that a random slope is 

estimated in the within-level regression of the slope growth factor on the 

intercept growth factor and a between-level latent class variable cb is 

part of the model.  This means that latent classes are formed for clusters 

(between-level units) not individuals.  In the within part of the model, 

the random slope is shown in the picture as a filled circle on the arrow 

from iw to sw.   It is referred to as s on the between level.  The random 

slope s is shown in a circle in the between part of the model because it is 

a continuous latent variable that varies across clusters (between-level 

units).  In the between part of the model, the arrows from cb to ib, sb, 

and s indicate that the intercepts of ib and sb and the mean of s vary 

across the classes of cb.  In addition, the categorical latent variable cb is 

regressed on a cluster-level covariate w.  The random slope s has no 

within-class variance.  Only its mean varies across the classes of cb.  

This implies that the distributions of s can be thought of as a non-

parametric representation rather than a normal distribution (Aitkin, 

1999; Muthén & Asparouhov, 2007). 

 

In the overall part of the within part of the model, the | statement is used 

to name and define the random slope s which is used in the between part 

of the model.  In the overall part of the between part of the model, the 

second ON statement describes the multinomial logistic regression of the 

categorical latent variable cb on a cluster-level covariate w.  The 

variance of the random slope s is fixed at zero.  In the class-specific parts 

of the between part of the model, the intercepts of the growth factors ib 

and sb and the mean of the random slope s are specified to vary across 

the between-level classes of cb.   

 

The default estimator for this type of analysis is maximum likelihood 

with robust standard errors using a numerical integration algorithm.  

Note that numerical integration becomes increasingly more 

computationally demanding as the number of factors and the sample size 

increase.  In this example, two dimensions of integration are used with a 

total of 225 integration points.  The ESTIMATOR option of the 

ANALYSIS command can be used to select a different estimator.  An 

explanation of the other commands can be found in Examples 9.12, 10.1, 

and 10.2. 
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Following is an alternative specification of the MODEL command that is 

simpler when the variances of the random slopes are zero: 

 
MODEL: 

 %WITHIN% 

 %OVERALL% 

 iw sw | y1@0 y2@1 y3@2 y4@3; 

 y1-y4 (1); 

 iw ON x; 

 sw ON x iw; 

 %cb#1% 

 sw ON iw; 

 %cb#2% 

 sw ON iw; 

 %BETWEEN% 

 %OVERALL% 

 ib sb | y1@0 y2@1 y3@2 y4@3; 

 y1-y4@0; 

 ib sb ON w; 

 cb ON w; 

 %cb#1% 

 [ib sb]; 

 %cb#2% 

 [ib sb]; 

 

In this specification, instead of the | statement, the random slope is 

represented as class-varying slopes in the class-specific parts of the 

within part of the model.  This specification makes it unnecessary to 

refer to the means and variances of the random slopes in the between 

part of the model. 
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EXAMPLE 10.9: TWO-LEVEL GMM FOR A CONTINUOUS 

OUTCOME (THREE-LEVEL ANALYSIS) 
 

 
TITLE: this is an example of a two-level GMM for 

a continuous outcome (three-level 

analysis) 

DATA: FILE IS ex10.9.dat; 

VARIABLE: NAMES ARE y1-y4 x w class clus; 

 USEVARIABLES = y1-y4 x w; 

 CLASSES = c (2); 

 WITHIN = x; 

 BETWEEN = w; 

 CLUSTER = clus; 

ANALYSIS: TYPE = TWOLEVEL MIXTURE; 

 STARTS = 0; 

MODEL:  

 %WITHIN% 

 %OVERALL% 

 iw sw | y1@0 y2@1 y3@2 y4@3; 

 iw sw ON x; 

 c ON x; 

 %BETWEEN% 

 %OVERALL% 

 ib sb | y1@0 y2@1 y3@2 y4@3; 

 y1-y4@0; 

 ib sb ON w; 

 sb@0; 

 c#1 ON w; 

 c#1*1; 

 %c#1% 

 [ib sb]; 

 %c#2% 

 [ib*3 sb*1]; 

OUTPUT: TECH1 TECH8; 
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In this example, the two-level growth mixture model (GMM; Muthén, 

2004; Muthén & Asparouhov, 2009) for a continuous outcome (three-

level analysis) shown in the picture above is estimated. This example is 

similar to Example 8.1 except that it has been extended to the multilevel 
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framework.  In the within part of the model, the filled circles at the end 

of the arrows from the within growth factors iw and sw to y1, y2, y3, and 

y4 represent random intercepts that vary across clusters.  The filled 

circle at the end of the arrow from x to c represents a random intercept.  

The random intercepts are referred to in the between part of the model as 

y1, y2, y3, y4, and c#1.  In the between-part of the model, the random 

intercepts are shown in circles because they are continuous latent 

variables that vary across clusters.    

 

In the within part of the model, the | statement names and defines the 

within intercept and slope factors for the growth model.  The names iw 

and sw on the left-hand side of the | symbol are the names of the 

intercept and slope growth factors, respectively.  The values on the right-

hand side of the | symbol are the time scores for the slope growth factor.  

The time scores of the slope growth factor are fixed at 0, 1, 2, and 3 to 

define a linear growth model with equidistant time points.  The zero time 

score for the slope growth factor at time point one defines the intercept 

growth factor as an initial status factor.  The coefficients of the intercept 

growth factor are fixed at one as part of the growth model 

parameterization.  The residual variances of the outcome variables are 

estimated and allowed to be different across time and the residuals are 

not correlated as the default.  The first ON statement describes the linear 

regressions of the growth factors on the individual-level covariate x.  

The residual variances of the growth factors are free to be estimated as 

the default.  The residuals of the growth factors are correlated as the 

default because residuals are correlated for latent variables that do not 

influence any other variable in the model except their own indicators.  

The second ON statement describes the multinomial logistic regression 

of the categorical latent variable c on the individual-level covariate x 

when comparing class 1 to class 2.  The intercept in the regression of c 

on x is estimated as the default.   

 

In the overall model in the between part of the model, the | statement 

names and defines the between intercept and slope factors for the growth 

model.  The names ib and sb on the left-hand side of the | symbol are the 

names of the intercept and slope growth factors, respectively.  The 

values of the right-hand side of the | symbol are the time scores for the 

slope growth factor.  The time scores of the slope growth factor are fixed 

at 0, 1, 2, and 3 to define a linear growth model with equidistant time 

points.  The zero time score for the slope growth factor at time point one 

defines the intercept growth factor as an initial status factor.  The 
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coefficients of the intercept growth factor are fixed at one as part of the 

growth model parameterization.  The residual variances of the outcome 

variables are fixed at zero on the between level in line with conventional 

multilevel growth modeling.  This can be overridden.  The first ON 

statement describes the linear regressions of the growth factors on the 

cluster-level covariate w.  The residual variance of the intercept growth 

factor is free to be estimated as the default.  The residual variance of the 

slope growth factor is fixed at zero because it is often small and each 

residual variance requires one dimension of numerical integration.  

Because the slope growth factor residual variance is fixed at zero, the 

residual covariance between the growth factors is automatically fixed at 

zero.  The second ON statement describes the linear regression of the 

random intercept c#1 of the categorical latent variable c on the cluster-

level covariate w.  A starting value of one is given to the residual 

variance of the random intercept of the categorical latent variable c 

referred to as c#1.   

 

In the parameterization of the growth model shown here, the intercepts 

of the outcome variable at the four time points are fixed at zero as the 

default.  The growth factor intercepts are estimated as the default in the 

between part of the model.  In the model for class 2 in the between part 

of the model, the mean of ib and sb are given a starting value of zero in 

class 1 and three and one in class 2.    

 

The default estimator for this type of analysis is maximum likelihood 

with robust standard errors using a numerical integration algorithm.  

Note that numerical integration becomes increasingly more 

computationally demanding as the number of factors and the sample size 

increase.  In this example, two dimensions of integration are used with a 

total of 225 integration points.  The ESTIMATOR option of the 

ANALYSIS command can be used to select a different estimator.  An 

explanation of the other commands can be found in Example 10.1. 
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EXAMPLE 10.10: TWO-LEVEL GMM FOR A CONTINUOUS 

OUTCOME (THREE-LEVEL ANALYSIS) WITH A BETWEEN-

LEVEL CATEGORICAL LATENT VARIABLE 
 

 
TITLE: this is an example of a two-level GMM for 

a continuous outcome (three-level 

analysis) with a between-level categorical 

latent variable 

DATA: FILE = ex10.10.dat; 

VARIABLE: NAMES ARE y1-y4 x w dummyb dummy clus; 

 USEVARIABLES = y1-w; 

 CLASSES = cb(2) c(2); 

 WITHIN = x; 

 BETWEEN = cb w; 

 CLUSTER = clus; 

ANALYSIS: TYPE = TWOLEVEL MIXTURE; 

 PROCESSORS = 2; 

MODEL: 

 %WITHIN% 

 %OVERALL% 

 iw sw | y1@0 y2@1 y3@2 y4@3; 

 iw sw ON x; 

 c ON x; 

 %BETWEEN% 

 %OVERALL% 

 ib sb | y1@0 y2@1 y3@2 y4@3; 

 ib2 | y1-y4@1; 

 y1-y4@0; 

 ib sb ON w; 

 c#1 ON w; 

 sb@0; c#1; 

 ib2@0; 

 cb ON w; 

MODEL c: 

 %BETWEEN% 

 %c#1% 

 [ib sb]; 

 %c#2% 

 [ib sb]; 

MODEL cb: 

 %BETWEEN% 

 %cb#1% 

 [ib2@0]; 

 %cb#2% 

 [ib2]; 

OUTPUT: TECH1 TECH8;  
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In this example, the two-level growth mixture model (GMM; Muthén & 

Asparouhov, 2009) for a continuous outcome (three-level analysis) 

shown in the picture above is estimated.  This example is similar to 

Example 10.9 except that a between-level categorical latent variable cb 

has been added along with a second between-level intercept growth 

factor ib2.  The second intercept growth factor is added to the model so 
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that the intercept growth factor mean can vary across not only the classes 

of the individual-level categorical latent variable c but also across the 

classes of the between-level categorical latent variable cb.  Individual-

level classes consist of individuals, for example, students.  Between-

level classes consist of clusters, for example, schools. 

 

In the overall part of the between part of the model, the second | 

statement names and defines the second between-level intercept growth 

factor ib2.  This growth factor is used to represent differences in 

intercept growth factor means across the between-level classes of the 

categorical latent variable cb. 

 

When a model has more than one categorical latent variable, MODEL 

followed by a label is used to describe the analysis model for each 

categorical latent variable.  Labels are defined by using the names of the 

categorical latent variables.  In the model for the individual-level 

categorical latent variable c, the intercepts of the intercept and slope 

growth factors ib and sb are allowed to vary across the classes of the 

individual-level categorical latent variable c.  In the model for the 

between-level categorical latent variable cb, the means of the intercept 

growth factor ib2 are allowed to vary across clusters (between-level 

units).  The mean in one class is fixed at zero for identification purposes.   

 

The default estimator for this type of analysis is maximum likelihood 

with robust standard errors using a numerical integration algorithm.  

Note that numerical integration becomes increasingly more 

computationally demanding as the number of factors and the sample size 

increase.  In this example, two dimensions of integration are used with a 

total of 225 integration points.  The ESTIMATOR option of the 

ANALYSIS command can be used to select a different estimator.  An 

explanation of the other commands can be found in Examples 10.1, 10.2, 

and 10.4. 
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EXAMPLE 10.11: TWO-LEVEL LCGA FOR A THREE-

CATEGORY OUTCOME 
 

 
TITLE: this is an example of a two-level LCGA for 

a three-category outcome 

DATA: FILE IS ex10.11.dat; 

VARIABLE: NAMES ARE u1-u4 class clus; 

 USEVARIABLES = u1-u4; 

 CATEGORICAL = u1-u4; 

 CLASSES = c(2); 

 CLUSTER = clus; 

ANALYSIS: TYPE = TWOLEVEL MIXTURE; 

MODEL: 

 %WITHIN% 

 %OVERALL% 

 i s | u1@0 u2@1 u3@2 u4@3; 

 i-s@0;  

 %c#1% 

 [i*1 s*1]; 

 %c#2% 

 [i@0 s]; 

 %BETWEEN% 

 %OVERALL% 

 c#1*1; 

 [u1$1-u4$1*1] (1); 

 [u1$2-u4$2*1.5] (2); 

OUTPUT: TECH1 TECH8; 
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In this example, the two-level latent class growth analysis (LCGA) 

shown in the picture above is estimated.  This example is the same as 

Example 8.10 except that it has been extended to the multilevel 

framework.  A growth model is not specified in the between part of the 

model because the variances of the growth factors i and s are zero in 

LCGA.  The filled circle on the circle containing the categorical latent 

variable c represents the random mean of c.  In the between part of the 

model, the random mean is shown in a circle because it is a continuous 

latent variable that varies across clusters.  

 

The CATEGORICAL option is used to specify which dependent 

variables are treated as binary or ordered categorical (ordinal) variables 

in the model and its estimation.  In the example above, the latent class 

indicators u1, u2, u3, u4, u5, and u6 are binary or ordered categorical 

variables.  The program determines the number of categories for each 

indicator.  In this example, u1, u2, u3, and u4 are three-category 

variables.  
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In the overall part of the of the within part of the model, the variances of 

the growth factors i and s are fixed at zero because latent class growth 

analysis has no within class variability.  In the overall part of the of the 

between part of the model, the two thresholds for the outcome are held 

equal across the four time points.  The growth factor means are specified 

in the within part of the model because there are no between growth 

factors.     

 

The default estimator for this type of analysis is maximum likelihood 

with robust standard errors using a numerical integration algorithm.  

Note that numerical integration becomes increasingly more 

computationally demanding as the number of factors and the sample size 

increase.  In this example, one dimension of integration is used with 15 

integration points.  The ESTIMATOR option of the ANALYSIS 

command can be used to select a different estimator.  An explanation of 

the other commands can be found in Example 10.1. 

 

EXAMPLE 10.12: TWO-LEVEL LTA WITH A COVARIATE 
 

 
TITLE: this is an example of a two-level LTA with 

a covariate  

DATA: FILE = ex10.12.dat; 

VARIABLE: NAMES ARE u11-u14 u21-u24 x w dum1 dum2 

clus; 

 USEVARIABLES = u11-w; 

 CATEGORICAL = u11-u14 u21-u24; 

 CLASSES = c1(2) c2(2); 

 WITHIN = x; 

 BETWEEN = w; 

 CLUSTER = clus; 

ANALYSIS: TYPE = TWOLEVEL MIXTURE; 

 PROCESSORS = 2; 

MODEL: 

 %WITHIN% 

 %OVERALL% 

 c2 ON c1 x; 

 c1 ON x; 

 %BETWEEN% 

 %OVERALL% 

 c1#1 ON w; 

 c2#1 ON c1#1 w;  

 c1#1 c2#1; 
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MODEL c1: 

 %BETWEEN% 

 %c1#1% 

 [u11$1-u14$1] (1-4); 

 %c1#2% 

 [u11$1-u14$1] (5-8); 

MODEL c2: 

 %BETWEEN% 

 %c2#1% 

 [u21$1-u24$1] (1-4); 

 %c2#2% 

 [u21$1-u24$1] (5-8); 

OUTPUT: TECH1 TECH8; 
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In this example, the two-level latent transition analysis (LTA) with a 

covariate shown in the picture above is estimated.  This example is 

similar to Example 8.13 except that the categorical latent variables are 

allowed to have random intercepts that vary on the between level.  This 

model is described in Asparouhov and Muthén (2008a).  In the within 

part of the model, the random intercepts are shown in the picture as 

filled circles at the end of the arrows pointing to c1 and c2.  They are 

referred to as c1#1 and c2#1 on the between level.  The random 

intercepts c1#1 and c2#1 are shown in circles in the between part of the 

model because they are continuous latent variables that vary across 

clusters (between-level units). 

 

In the overall part of the between part of the model, the first ON 

statement describes the linear regression of the random intercept c1#1 on 

a cluster-level covariate w.  The second ON statement describes the 

linear regression of the random intercept c2#1 on the random intercept 

c1#1 and the cluster-level covariate w.  The residual variances of the 

random intercepts c1#1 and c2#1 are estimated instead of being fixed at 

the default value of zero.  

 

The default estimator for this type of analysis is maximum likelihood 

with robust standard errors using a numerical integration algorithm.  

Note that numerical integration becomes increasingly more 

computationally demanding as the number of factors and the sample size 

increase.  In this example, two dimensions of integration are used with a 

total of 225 integration points.  The ESTIMATOR option of the 

ANALYSIS command can be used to select a different estimator.  An 

explanation of the other commands can be found in Examples 8.13, 10.1, 

and 10.2. 
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EXAMPLE 10.13: TWO-LEVEL LTA WITH A COVARIATE 

AND A BETWEEN-LEVEL CATEGORICAL LATENT 

VARIABLE 
 

 
TITLE: this is an example of a two-level LTA with 

a covariate and a between-level 

categorical latent variable 

DATA: FILE = ex10.13.dat; 

VARIABLE: NAMES ARE u11-u14 u21-u24 x w dumb dum1 

dum2 clus; 

 USEVARIABLES = u11-w; 

 CATEGORICAL = u11-u14 u21-u24; 

 CLASSES = cb(2) c1(2) c2(2); 

 WITHIN = x; 

 BETWEEN = cb w; 

 CLUSTER = clus; 

ANALYSIS: TYPE = TWOLEVEL MIXTURE; 

 PROCESSORS = 2; 

MODEL: 

 %WITHIN% 

 %OVERALL% 

 c2 ON c1 x; 

 c1 ON x; 

 %BETWEEN% 

 %OVERALL% 

 c1#1 ON cb; 

 c2#1 ON cb; 

 cb ON w; 

MODEL cb: 

 %WITHIN% 

%cb#1% 

 c2 ON c1; 

MODEL c1: 

 %BETWEEN% 

 %c1#1% 

 [u11$1-u14$1] (1-4); 

 %c1#2% 

 [u11$1-u14$1] (5-8); 

MODEL c2: 

 %BETWEEN% 

 %c2#1% 

 [u21$1-u24$1] (1-4); 

 %c2#2% 

 [u21$1-u24$1] (5-8); 

OUTPUT: TECH1 TECH8; 
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In this example, the two-level latent transition analysis (LTA) with a 

covariate shown in the picture above is estimated.  This example is 

similar to Example 10.12 except that a between-level categorical latent 

variable cb has been added, a random slope has been added, and the 

random intercepts and random slope have no variance within the classes 

of the between-level categorical latent variable cb (Asparouhov & 

Muthén, 2008a).  In the within part of the model, the random intercepts 

are shown in the picture as filled circles at the end of the arrows pointing 

to c1 and c2.  The random slope is shown as a filled circle on the arrow 

from c1 to c2.   In the between part of the model, the random intercepts 

are referred to as c1#1 and c2#1 and the random slope is referred to as s. 

The random intercepts c1#1 and c2#1 and the random slope s are shown 

in circles in because they are continuous latent variables that vary across 
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clusters (between-level units).  In the between part of the model, the 

arrows from cb to c1#1, c2#1, and s indicate that the means of c1#1, 

c2#1, and s vary across the classes of cb.   

 

In the overall part of the between part of the model, the first two ON 

statements describe the linear regressions of c1#1 and c2#1 on the 

between-level categorical latent variable cb.  These regressions imply 

that the means of the random intercepts vary across the classes of the 

categorical latent variable cb.  The variances of c1#1 and c2#1 within 

the cb classes are zero as the default. 

 

When a model has more than one categorical latent variable, MODEL 

followed by a label is used to describe the analysis model for each 

categorical latent variable.  Labels are defined by using the names of the 

categorical latent variables.  In the class-specific part of the within part 

of the model for the between-level categorical latent variable cb, the ON 

statement describes the multinomial regression of c2 on c1.  This implies 

that the random slope s varies across the classes of cb.  The within-class 

variance of s is zero as the default.   

 

The default estimator for this type of analysis is maximum likelihood 

with robust standard errors.  The ESTIMATOR option of the 

ANALYSIS command can be used to select a different estimator.  An 

explanation of the other commands can be found in Examples 8.13, 10.1, 

10.2, and 10.12. 
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CHAPTER 11 

EXAMPLES: MISSING DATA 

MODELING AND BAYESIAN 

ANALYSIS 
 

Mplus provides estimation of models with missing data using both 

frequentist and Bayesian analysis.  Descriptive statistics and graphics are 

available for understanding dropout in longitudinal studies.  Bayesian 

analysis provides multiple imputation for missing data as well as 

plausible values for latent variables.   

 

With frequentist analysis, Mplus provides maximum likelihood 

estimation under MCAR (missing completely at random), MAR (missing 

at random), and NMAR (not missing at random) for continuous, 

censored, binary, ordered categorical (ordinal), unordered categorical 

(nominal), counts, or combinations of these variable types (Little & 

Rubin, 2002).  MAR means that missingness can be a function of 

observed covariates and observed outcomes.  For censored and 

categorical outcomes using weighted least squares estimation, 

missingness is allowed to be a function of the observed covariates but 

not the observed outcomes.  When there are no covariates in the model, 

this is analogous to pairwise present analysis.  Non-ignorable missing 

data (NMAR) modeling is possible using maximum likelihood 

estimation where categorical outcomes are indicators of missingness and 

where missingness can be predicted by continuous and categorical latent 

variables (Muthén, Jo, & Brown, 2003; Muthén et al., 2011).  This 

includes selection models, pattern-mixture models, and shared-parameter 

models (see, e.g., Muthén et al., 2011).  In all models, observations with 

missing data on covariates are deleted because models are estimated 

conditional on the covariates.  Covariate missingness can be modeled if 

the covariates are brought into the model and distributional assumptions 

such as normality are made about them.   With missing data, the standard 

errors for the parameter estimates are computed using the observed 

information matrix (Kenward & Molenberghs, 1998).  Bootstrap 

standard errors and confidence intervals are also available with missing 

data.   

 



CHAPTER 11 

 

 

 444 

With Bayesian analysis, modeling with missing data gives 

asymptotically the same results as maximum-likelihood estimation under 

MAR.  Multiple imputation of missing data using Bayesian analysis 

(Rubin, 1987; Schafer, 1997) is also available.  For an overview, see 

Enders (2010).  Both unrestricted H1 models and restricted H0 models 

can be used for imputation.  Several different algorithms are available 

for H1 imputation, including sequential regression, also referred to as 

chained regression, in line with Raghunathan et al. (2001); see also van 

Buuren (2007).  Multiple imputation of plausible values for latent 

variables is provided.  For applications of plausible values in the context 

of Item Response Theory, see Mislevy et al. (1992) and von Davier et al. 

(2009).  Multiple data sets generated using multiple imputation can be 

analyzed with frequentist estimators using a special feature of Mplus.  

Parameter estimates are averaged over the set of analyses, and standard 

errors are computed using the average of the standard errors over the set 

of analyses and the between analysis parameter estimate variation 

(Rubin, 1987; Schafer, 1997).  A chi-square test of overall model fit is 

provided with maximum-likelihood estimation (Asparouhov & Muthén, 

2008c; Enders, 2010). 

 

Following is the set of frequentist examples included in this chapter:  

 

 11.1:  Growth model with missing data using a missing data 

correlate 

 11.2:  Descriptive statistics and graphics related to dropout in a 

longitudinal study 

 11.3:  Modeling with data not missing at random (NMAR) using the 

Diggle-Kenward selection model* 

 11.4:  Modeling with data not missing at random (NMAR) using a 

pattern-mixture model 

 

Following is the set of Bayesian examples included in this chapter:  

 

 11.5:  Multiple imputation for a set of variables with missing values  

 11.6:  Multiple imputation followed by the estimation of a growth 

model using maximum likelihood 

 11.7:  Multiple imputation of plausible values using Bayesian 

estimation of a growth model 

 11.8:  Multiple imputation using a two-level factor model with 

categorical outcomes followed by the estimation of a growth model  
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*  Example uses numerical integration in the estimation of the model.  

This can be computationally demanding depending on the size of the 

problem. 

 

EXAMPLE 11.1: GROWTH MODEL WITH MISSING DATA 

USING A MISSING DATA CORRELATE 
 

 
TITLE: this is an example of a linear growth 

model with missing data on a continuous 

outcome using a missing data correlate to 

improve the plausibility of MAR 

DATA: FILE = ex11.1.dat; 

VARIABLE: NAMES = x1 x2 y1-y4 z; 

 USEVARIABLES = y1-y4; 

 MISSING = ALL (999); 

 AUXILIARY = (m) z; 

ANALYSIS: ESTIMATOR = ML; 

MODEL: i s | y1@0 y2@1 y3@2 y4@3; 

OUTPUT: TECH1; 

 

 

 
 

 

In this example, the linear growth model at four time points with missing 

data on a continuous outcome shown in the picture above is estimated 

using a missing data correlate.  The missing data correlate is not part of 

the growth model but is used to improve the plausibility of the MAR 

assumption of maximum likelihood estimation (Collins, Schafer, & 

Kam, 2001; Graham, 2003; Enders, 2010).  The missing data correlate is 

allowed to correlate with the outcome while providing the correct 
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number of parameters and chi-square test for the analysis model as 

described in Asparouhov and Muthén (2008b).   

 
TITLE: this is an example of a linear growth 

model with missing data on a continuous 

outcome using a missing data correlate to 

improve the plausibility of MAR 

 

The TITLE command is used to provide a title for the analysis.  The title 

is printed in the output just before the Summary of Analysis. 

 
DATA: FILE = ex11.1.dat; 

 

The DATA command is used to provide information about the data set 

to be analyzed.  The FILE option is used to specify the name of the file 

that contains the data to be analyzed, ex11.1.dat.  Because the data set is 

in free format, the default, a FORMAT statement is not required. 

 
VARIABLE: NAMES = x1 x2 y1-y4 z; 

 USEVARIABLES = y1-y4; 

 MISSING = ALL (999);  

 AUXILIARY = (m) z;  

 

The VARIABLE command is used to provide information about the 

variables in the data set to be analyzed.  The NAMES option is used to 

assign names to the variables in the data set.  The data set in this 

example contains seven variables:  x1, x2, y1, y2, y3, y4, and z.  Note 

that the hyphen can be used as a convenience feature in order to generate 

a list of names.  If not all of the variables in the data set are used in the 

analysis, the USEVARIABLES option can be used to select a subset of 

variables for analysis.  Here the variables y1, y2, y3, and y4 have been 

selected for analysis.  They represent the outcome measured at four 

equidistant occasions.  The MISSING option is used to identify the 

values or symbol in the analysis data set that are treated as missing or 

invalid.  The keyword ALL specifies that all variables in the analysis 

data set have the missing value flag of 999.  The AUXILIARY option 

using the m setting is used to identify a set of variables that will be used 

as missing data correlates in addition to the analysis variables.  In this 

example, the variable z is a missing data correlate.  
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ANALYSIS: ESTIMATOR = ML; 

 

The ANALYSIS command is used to describe the technical details of the 

analysis.  The ESTIMATOR option is used to specify the estimator to be 

used in the analysis.  By specifying ML, maximum likelihood estimation 

is used. 

 
MODEL: i s | y1@0 y2@1 y3@2 y4@3; 

 

The MODEL command is used to describe the model to be estimated.  

The | symbol is used to name and define the intercept and slope factors 

in a growth model.  The names i and s on the left-hand side of the | 

symbol are the names of the intercept and slope growth factors, 

respectively.  The statement on the right-hand side of the | symbol 

specifies the outcome and the time scores for the growth model.  The 

time scores for the slope growth factor are fixed at 0, 1, 2, and 3 to 

define a linear growth model with equidistant time points.  The zero time 

score for the slope growth factor at time point one defines the intercept 

growth factor as an initial status factor.  The coefficients of the intercept 

growth factor are fixed at one as part of the growth model 

parameterization.  The residual variances of the outcome variables are 

estimated and allowed to be different across time and the residuals are 

not correlated as the default.  

 

In the parameterization of the growth model shown here, the intercepts 

of the outcome variables at the four time points are fixed at zero as the 

default.  The means and variances of the growth factors are estimated as 

the default, and the growth factor covariance is estimated as the default 

because the growth factors are independent (exogenous) variables.  The 

default estimator for this type of analysis is maximum likelihood.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 

a different estimator.   

 
OUTPUT: TECH1; 

 

The OUTPUT command is used to request additional output not 

included as the default.  The TECH1 option is used to request the arrays 

containing parameter specifications and starting values for all free 

parameters in the model.  
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EXAMPLE 11.2: DESCRIPTIVE STATISTICS AND GRAPHICS 

RELATED TO DROPOUT IN A LONGITUDINAL STUDY  
 

 
TITLE: this is an example of descriptive 

statistics and graphics related to dropout 

in a longitudinal study 

DATA: FILE = ex11.2.dat; 

VARIABLE: NAMES = z1-z5 y0 y1-y5; 

 USEVARIABLES = z1-z5 y0-y5 d1-d5; 

 MISSING = ALL (999); 

DATA MISSING: 

 NAMES = y0-y5; 

 TYPE = DDROPOUT; 

 BINARY = d1-d5; 

 DESCRIPTIVE = y0-y5 | * z1-z5; 

ANALYSIS: TYPE = BASIC; 

PLOT: TYPE = PLOT2; 

 SERIES = y0-y5(*); 

 

In this example, descriptive statistics and graphics related to dropout in a 

longitudinal study are obtained.  The descriptive statistics show the 

mean and standard deviation for sets of variables related to the outcome 

for those who drop out or not before the next time point.  These means 

are plotted to help in understanding dropout. 

 

The DATA MISSING command is used to create a set of binary 

variables that are indicators of missing data or dropout for another set of 

variables.  Dropout indicators can be scored as discrete-time survival 

indicators or dummy dropout indicators.  The NAMES option identifies 

the set of variables that are used to create a set of binary variables that 

are indicators of missing data.  In this example, they are y0, y1, y2, y3, 

y4, and y5.  These variables must be variables from the NAMES 

statement of the VARIABLE command.  The TYPE option is used to 

specify how missingness is coded.  In this example, the DDROPOUT 

setting specifies that binary dummy dropout indicators will be used.  The 

BINARY option is used to assign the names d1, d2, d3, d4, and d5 to the 

new set of binary variables.  There is one less dummy dropout indicator 

than there are time points.  The DESCRIPTIVE option is used in 

conjunction with TYPE=BASIC of the ANALYSIS command and the 

DDROPOUT setting to specify the sets of variables for which additional 

descriptive statistics are computed.  For each variable, the mean and 

standard deviation are computed using all observations without missing 
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on the variable and for those who drop out or not before the next time 

point.   

 

The PLOT command is used to request graphical displays of observed 

data and analysis results.  These graphical displays can be viewed after 

the analysis is completed using a post-processing graphics module.  The 

TYPE option is used to specify the types of plots that are requested.  The 

setting PLOT2 is used to obtain missing data plots of dropout means and 

sample means.  The SERIES option is used to list the names of the set of 

variables to be used in plots where the values are connected by a line.  

The asterisk (*) in parentheses following the variable names indicates 

that the values 1, 2, 3, 4, 5, and 6 will be used on the x-axis.   An 

explanation of the other commands can be found in Example 11.1. 

 

EXAMPLE 11.3: MODELING WITH DATA NOT MISSING AT 

RANDOM (NMAR) USING THE DIGGLE-KENWARD 

SELECTION MODEL 
 

 
TITLE: this is an example of modeling with data 

not missing at random (NMAR) using the 

Diggle-Kenward selection model         

DATA: FILE = ex11.3.dat; 

VARIABLE: NAMES = z1-z5 y0 y1-y5; 

 USEVARIABLES = y0-y5 d1-d5; 

 MISSING = ALL (999); 

 CATEGORICAL = d1-d5; 

DATA MISSING:  

 NAMES = y0-y5; 

 TYPE = SDROPOUT; 

 BINARY = d1-d5; 

ANALYSIS: ESTIMATOR = ML; 

 ALGORITHM = INTEGRATION; 

 INTEGRATION = MONTECARLO; 

 PROCESSORS = 2; 
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MODEL: i s | y0@0 y1@1 y2@2 y3@3 y4@4 y5@5; 

 d1 ON y0 (1) 

 y1 (2); 

 d2 ON y1 (1) 

 y2 (2); 

 d3 ON y2 (1) 

 y3 (2); 

 d4 ON y3 (1) 

 y4 (2); 

 d5 ON y4 (1) 

 y5 (2); 

OUTPUT: TECH1; 

 

 

 
 

 

In this example, the linear growth model at six time points with missing 

data on a continuous outcome shown in the picture above is estimated.  

The data are not missing at random because dropout is related to both 

past and current outcomes where the current outcome is missing for 

those who drop out.  In the picture above, y1 through y5 are shown in 

both circles and squares where circles imply that dropout has occurred 

and squares imply that dropout has not occurred.  The Diggle-Kenward 

selection model (Diggle & Kenward, 1994) is used to jointly estimate a 



Examples: Missing Data Modeling And Bayesian Analysis 

 

 

                                                                                                              451 

growth model for the outcome and a discrete-time survival model for the 

dropout indicators (see also Muthén et al, 2011). 

 

In this example, the SDROPOUT setting of the TYPE option specifies 

that binary discrete-time (event-history) survival dropout indicators will 

be used.  In the ANALYSIS command, ALGORITHM=INTEGRATION 

is required because latent continuous variables corresponding to missing 

data on the outcome influence the binary dropout indicators.   

INTEGRATION=MONTECARLO is required because the dimensions 

of integration vary across observations.  In the MODEL command, the 

ON statements specify the logistic regressions of a dropout indicator at a 

given time point regressed on the outcome at the previous time point and 

the outcome at the current time point.  The outcome at the current time 

point is latent, missing, for those who have dropped out since the last 

time point.  The logistic regression coefficients are held equal across 

time.  An explanation of the other commands can be found in Examples 

11.1 and 11.2. 

 

EXAMPLE 11.4: MODELING WITH DATA NOT MISSING AT 

RANDOM (NMAR) USING A PATTERN-MIXTURE MODEL 
 

 
TITLE: this is an example of modeling with data 

not missing at random (NMAR) using a 

pattern-mixture model         

DATA: FILE = ex11.4.dat; 

VARIABLE: NAMES = z1-z5 y0 y1-y5; 

 USEVARIABLES = y0-y5 d1-d5; 

 MISSING = ALL (999); 

DATA MISSING: 

 NAMES = y0-y5; 

 TYPE = DDROPOUT; 

 BINARY = d1-d5; 

MODEL: i s | y0@0 y1@1 y2@2 y3@3 y4@4 y5@5; 

 i ON d1-d5; 

 s ON d3-d5; 

 s ON d1 (1); 

 s ON d2 (1); 

OUTPUT: TECH1; 
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In this example, the linear growth model at six time points with missing 

data on a continuous outcome shown in the picture above is estimated.  

The data are not missing at random because dropout is related to both 

past and current outcomes where the current outcome is missing for 

those who drop out.  A pattern-mixture model (Little, 1995; Hedeker & 

Gibbons, 1997; Demirtas & Schafer, 2003) is used to estimate a growth 

model for the outcome with binary dummy dropout indicators used as 

covariates (see also Muthén et al, 2011).   

 

The MODEL command is used to specify that the dropout indicators 

influence the growth factors.  The ON statements specify the linear 

regressions of the intercept and slope growth factors on the dropout 

indicators.  The coefficient in the linear regression of s on d1 is not 

identified because the outcome is observed only at the first time point for 

the dropout pattern with d1 equal to one.  This regression coefficient is 

held equal to the linear regression of s on d2 for identification purposes.  

An explanation of the other commands can be found in Examples 11.1 

and 11.2. 

 



Examples: Missing Data Modeling And Bayesian Analysis 

 

 

                                                                                                              453 

EXAMPLE 11.5:  MULTIPLE IMPUTATION FOR A SET OF 

VARIABLES WITH MISSING VALUES 
 

 
TITLE: this is an example of multiple imputation  

 for a set of variables with missing values 

DATA: FILE = ex11.5.dat; 

VARIABLE: NAMES = x1 x2 y1-y4 v1-v50 z1-z5; 

 USEVARIABLES = x1 x2 y1-y4 z1-z5; 

 AUXILIARY = v1-v10; 

 MISSING = ALL (999); 

DATA IMPUTATION: 

 IMPUTE = y1-y4 x1 (c) x2; 

 NDATASETS = 10; 

 SAVE = missimp*.dat; 

ANALYSIS: TYPE = BASIC; 

OUTPUT: TECH8; 

 

In this example, multiple imputation for a set of variables with missing 

values is carried out using Bayesian analysis (Rubin, 1987; Schafer, 

1997).  The NAMES option is used to assign names to the variables in 

the original data set.  The variables on the USEVARIABLES list are 

used to create the imputed data sets.  The AUXILIARY option is used to 

specify the variables that are not used in the data imputation but that will 

be saved with the imputed data sets.   In the DATA IMPUTATION 

command, the IMPUTE option is used to specify the variables for which 

missing values will be imputed.  A c in parentheses following a variable 

indicates that it is categorical.  The NDATASETS option is used to 

specify the number of imputed data sets to create.  In this example, ten 

imputed data sets will be created.  The SAVE option is used to save the 

imputed data sets for further analysis using TYPE=IMPUTATION in the 

DATA command.  All variables on the USEVARIABLES and 

AUXILIARY lists are saved.  The asterisk in the data set name is 

replaced by the number of the imputation.  The data sets saved are 

missimp1.dat, missimp2.dat, etc.  The imputed data sets will contain the 

variables x1, x2, y1-y4, z1-z5, and v1-v10 in that order.  The data sets 

can be used in a subsequent analysis using TYPE=IMPUTATION in the 

DATA command.  See Example 13.13.  An explanation of the other 

commands can be found in Example 11.1.   

 

 



CHAPTER 11 

 

 

 454 

EXAMPLE 11.6: MULTIPLE IMPUTATION FOLLOWED BY 

THE ESTIMATION OF A GROWTH MODEL USING 

MAXIMUM LIKELIHOOD 
 

 
TITLE: this is an example of multiple imputation 

followed by the estimation of a growth 

model using maximum likelihood  

DATA: FILE = ex11.6.dat; 

VARIABLE: NAMES = x1 y1-y4 z x2; 

 USEVARIABLES = y1-y4 x1 x2; 

 MISSING = ALL(999); 

DATA IMPUTATION: 

 IMPUTE = y1-y4 x1 (c) x2; 

 NDATASETS = 10; 

ANALYSIS: ESTIMATOR = ML; 

MODEL: i s | y1@0 y2@1 y3@2 y4@3; 

 i s ON x1 x2; 

OUTPUT: TECH1 TECH8; 

 

 

 
 

 



Examples: Missing Data Modeling And Bayesian Analysis 

 

 

                                                                                                              455 

In this example, multiple imputation for a set of variables with missing 

values is carried out using Bayesian analysis (Rubin, 1987; Schafer, 

1997).  The imputed data sets are used in the estimation of the growth 

model shown in the picture above using maximum likelihood estimation.   

 

The DATA IMPUTATION command is used when a data set contains 

missing values to create a set of imputed data sets using multiple 

imputation methodology.  Multiple imputation is carried out using 

Bayesian estimation.  Data are imputed using an unrestricted H1 model.  

The IMPUTE option is used to specify the analysis variables for which 

missing values will be imputed.  In this example, missing values will be 

imputed for y1, y2, y3, y4, x1, and x2.  The c in parentheses after x1 

specifies that x1 is treated as a categorical variable for data imputation.  

The NDATASETS option is used to specify the number of imputed data 

sets to create.  The default is five.  In this example, 10 data sets will be 

imputed.   

 

The maximum likelihood parameter estimates for the growth model are 

averaged over the set of 10 analyses and standard errors are computed 

using the average of the standard errors over the set of 10 analyses and 

the between analysis parameter estimate variation (Rubin, 1987; Schafer, 

1997).  A chi-square test of overall model fit is provided (Asparouhov & 

Muthén, 2008c; Enders, 2010).  The ESTIMATOR option is used to 

specify the estimator to be used in the analysis.  By specifying ML, 

maximum likelihood estimation is used.  An explanation of the other 

commands can be found in Examples 11.1 and 11.5. 

 

EXAMPLE 11.7: MULTIPLE IMPUTATION OF PLAUSIBLE 

VALUES USING BAYESIAN ESTIMATION OF A GROWTH 

MODEL 
 

 
TITLE: this is an example of multiple imputation 

of plausible values generated from a 

multiple indicator linear growth model for 

categorical outcomes using Bayesian 

estimation 

DATA: FILE = ex11.7.dat; 

VARIABLE: NAMES = u11 u21 u31 u12 u22 u32 u13 u23 

u33; 

 CATEGORICAL = u11-u33; 

ANALYSIS: ESTIMATOR = BAYES; 
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 PROCESSORS = 2; 

MODEL: f1 BY u11  

 u21-u31 (1-2); 

 f2 BY  u12  

 u22-u32 (1-2); 

 f3 BY  u13  

 u23-u33 (1-2); 

 [u11$1 u12$1 u13$1] (3); 

 [u21$1 u22$1 u23$1] (4); 

 [u31$1 u32$1 u33$1] (5); 

 i s | f1@0 f2@1 f3@2;  

DATA IMPUTATION:  

 NDATASETS = 20; 

 SAVE = ex11.7imp*.dat; 

SAVEDATA: FILE = ex11.7plaus.dat; 

 SAVE = FSCORES (20); 

 FACTORS = f1-f3 i s; 

 SAVE = LRESPONSES (20); 

 LRESPONSES = u11-u33; 

OUTPUT: TECH1 TECH8; 

 

 

 
 

 

In this example, plausible values (Mislevy et al., 1992; von Davier et al., 

2009) are obtained by multiple imputation (Rubin, 1987; Schafer, 1997) 

based on a multiple indicator linear growth model for categorical 

outcomes shown in the picture above using Bayesian estimation.  The 
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plausible values in the multiple imputation data sets can be used for 

subsequent analysis.   

 

The ANALYSIS command is used to describe the technical details of the 

analysis.  The ESTIMATOR option is used to specify the estimator to be 

used in the analysis.  By specifying BAYES, Bayesian estimation is used 

to estimate the model.  The DATA IMPUTATION command is used 

when a data set contains missing values to create a set of imputed data 

sets using multiple imputation methodology.  Multiple imputation is 

carried out using Bayesian estimation.  When a MODEL command is 

used with ESTIMATOR=BAYES, data are imputed using the H0 model 

specified in the MODEL command.  The IMPUTE option is used to 

specify the analysis variables for which missing values will be imputed.  

When the IMPUTE option is not used, no imputation of missing data for 

the analysis variables is done. 

   

In the DATA IMPUTATION command, the NDATASETS option is 

used to specify the number of imputed data sets to create.  The default is 

five.  In this example, 20 data sets will be imputed to more fully 

represent the variability in the latent variables.  The SAVE option is 

used to save the imputed data sets for subsequent analysis.  The asterisk 

(*) is replaced by the number of the imputed data set.  A file is also 

produced that contains the names of all of the data sets.  To name this 

file, the asterisk (*) is replaced by the word list.  In this example, the file 

is called ex11.7implist.dat.  The multiple imputation data sets named 

using the SAVE option contain the imputed values for each observation 

for the observed variables u11 through u33; the continuous latent 

response variables u11* through u33* for the categorical outcomes u11 

through u33; and the factor scores for the latent variables f1, f2, f3, i, 

and s. 

 

In the SAVEDATA command, the FILE option is used to specify the 

name of the ASCII file in which the individual-level data used in the 

analysis will be saved.  In this example, the file is called 

ex11.7plaus.dat.  When SAVE=FSCORES is used with 

ESTIMATOR=BAYES, a distribution of factor scores, called plausible 

values, is obtained for each observation.  The following summaries are 

saved along with the other analysis variables:  mean, median, standard 

deviation, lower 2.5% limit, and upper 97.5% limit.  The number 20 in 

parentheses is the number of imputations or draws that are used from the 

Bayesian posterior distribution to compute the plausible value 
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distribution for each observation.  The FACTORS option is used to 

specify the names of the factors for which the plausible value 

distributions will also be saved.  In this example, the plausible value 

distributions will be saved for f1, f2, f3, i, and s.     

 

When SAVE=LRESPONSES is used with ESTIMATOR=BAYES, a 

distribution of latent response variable scores is obtained for each 

observation.  The following summaries are saved along with the other 

analysis variables:  mean, median, standard deviation, lower 2.5% limit, 

and upper 97.5% limit.   The number 20 in parentheses is the number of 

imputations or draws that are used from the Bayesian posterior 

distribution to compute the latent response variable distribution for each 

observation.  The LRESPONSES option is used to specify the names of 

the latent response variables underlying categorical outcomes for which 

the latent response variable distributions will also be saved.  In this 

example, the latent response variable distributions will be saved for u11 

through u33.  An explanation of the other commands can be found in 

Examples 11.1 and 11.2. 

 

EXAMPLE 11.8: MULTIPLE IMPUTATION USING A TWO-

LEVEL FACTOR MODEL WITH CATEGORICAL OUTCOMES 

FOLLOWED BY THE ESTIMATION OF A GROWTH MODEL  
 

 
TITLE: this is an example of multiple imputation 

using a two-level factor model with 

categorical outcomes  

DATA: FILE = ex11.8.dat; 

VARIABLE: NAMES are u11 u21 u31 u12 u22 u32 u13 u23 

u33 clus; 

 CATEGORICAL = u11-u33; 

 CLUSTER = clus; 

 MISSING = ALL (999); 

ANALYSIS: TYPE = TWOLEVEL; 

 ESTIMATOR = BAYES; 

 PROCESSORS = 2; 
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MODEL: %WITHIN% 

 f1w BY u11  

 u21 (1) 

 u31 (2); 

 f2w BY u12  

 u22 (1) 

 u32 (2); 

 f3w BY u13  

 u23 (1) 

 u33 (2); 

 %BETWEEN% 

 fb BY u11-u33*1; 

 fb@1; 

DATA IMPUTATION: 

 IMPUTE = u11-u33(c); 

 SAVE = ex11.8imp*.dat; 

OUTPUT: TECH1 TECH8; 
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In this example, missing values are imputed for a set of variables using 

multiple imputation (Rubin, 1987; Schafer, 1997).  In the first part of 

this example, imputation is done using the two-level factor model with 

categorical outcomes shown in the picture above.  In the second part of 

this example, the multiple imputation data sets are used for a two-level 

multiple indicator growth model with categorical outcomes using two-

level weighted least squares estimation.   

 

The ANALYSIS command is used to describe the technical details of the 

analysis.  The TYPE option is used to describe the type of analysis.  By 

selecting TWOLEVEL, a multilevel model with random intercepts is 

estimated.  The ESTIMATOR option is used to specify the estimator to 

be used in the analysis.  By specifying BAYES, Bayesian estimation is 

used to estimate the model.   The DATA IMPUTATION command is 

used when a data set contains missing values to create a set of imputed 

data sets using multiple imputation methodology.  Multiple imputation is 

carried out using Bayesian estimation.  When a MODEL command is 

used, data are imputed using the H0 model specified in the MODEL 

command.  The IMPUTE option is used to specify the analysis variables 

for which missing values will be imputed.  In this example, missing 

values will be imputed for u11, u21, u31, u12, u22, u32, u13, u23, and 

u33.  The c in parentheses after the list of variables specifies that they 

are treated as categorical variables for data imputation.  An explanation 

of the other commands can be found in Examples 11.1, 11.2, and 11.5. 
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TITLE: this is an example of a two-level multiple 

 indicator growth model with categorical 

outcomes using multiple imputation data  

DATA: FILE = ex11.8implist.dat; 

 TYPE = IMPUTATION; 

VARIABLE: NAMES are u11 u21 u31 u12 u22 u32 u13 u23 

u33 clus; 

 CATEGORICAL = u11-u33; 

 CLUSTER = clus; 

ANALYSIS: TYPE = TWOLEVEL; 

 ESTIMATOR = WLSMV; 

 PROCESSORS = 2; 

MODEL: %WITHIN% 

 f1w BY u11  

        u21 (1) 

   u31 (2); 

 f2w BY u12  

   u22 (1) 

   u32 (2); 

 f3w BY u13  

   u23 (1) 

   u33 (2); 

 iw sw | f1w@0 f2w@1 f3w@2;     

  %BETWEEN% 

 f1b BY u11  

   u21 (1) 

   u31 (2); 

 f2b BY u12  

   u22 (1) 

   u32 (2); 

 f3b BY u13  

   u23 (1) 

   u33 (2); 

 [u11$1 u12$1 u13$1] (3); 

 [u21$1 u22$1 u23$1] (4); 

 [u31$1 u32$1 u33$1] (5); 

 u11-u33; 

 ib sb | f1b@0 f2b@1 f3b@2;     

 [f1b-f3b@0 ib@0 sb]; 

 f1b-f3b (6);    

OUTPUT: TECH1 TECH8; 

SAVEDATA: SWMATRIX = ex11.8sw*.dat;  
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In the second part of this example, the data sets saved in the first part of 

the example are used in the estimation of a two-level multiple indicator 

growth model with categorical outcomes.  The model is the same as in 

Example 9.15.  The two-level weighted least squares estimator described 

in Asparouhov and Muthén (2007) is used in this example.  This 

estimator does not handle missing data using MAR.  By doing Bayesian 

multiple imputation as a first step, this disadvantage is avoided given 

that there is no missing data for the weighted least squares analysis.  To 

save computational time in subsequent analyses, the two-level weighted 

least squares sample statistics and weight matrix for each of the imputed 

data sets are saved.   
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The ANALYSIS command is used to describe the technical details of the 

analysis.  The TYPE option is used to describe the type of analysis.  By 

selecting TWOLEVEL, a multilevel model with random intercepts is 

estimated.  The ESTIMATOR option is used to specify the estimator to 

be used in the analysis.  By specifying WLSMV, a robust weighted least 

squares estimator is used.  The SAVEDATA command is used to save 

the analysis data, auxiliary variables, and a variety of analysis results.  

The SWMATRIX option is used with TYPE=TWOLEVEL and 

weighted least squares estimation to specify the name of the ASCII file 

in which the within- and between-level sample statistics and their 

corresponding estimated asymptotic covariance matrix will be saved.  In 

this example, the files are called ex11.8sw*.dat where the asterisk (*) is 

replaced by the number of the imputed data set.  A file is also produced 

that contains the names of all of the imputed data sets.  To name this file, 

the asterisk (*) is replaced by the word list.  The file, in this case 

ex11.8swlist.dat, contains the names of the imputed data sets.  

 

To use the saved within- and between-level sample statistics and their 

corresponding estimated asymptotic covariance matrix for each 

imputation in a subsequent analysis, specify: 

 

DATA: 

FILE = ex11.8implist.dat; 

TYPE = IMPUTATION; 

SWMATRIX = ex11.8swlist.dat; 

 

An explanation of the other commands can be found in Examples 9.15, 

11.1, 11.2, and 11.5. 
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CHAPTER 12 

EXAMPLES: MONTE CARLO 

SIMULATION STUDIES 
 

Monte Carlo simulation studies are often used for methodological 

investigations of the performance of statistical estimators under various 

conditions.  They can also be used to decide on the sample size needed 

for a study and to determine power (Muthén & Muthén, 2002).  Monte 

Carlo studies are sometimes referred to as simulation studies.  

 

Mplus has extensive Monte Carlo simulation facilities for both data 

generation and data analysis.  Several types of data can be generated:  

simple random samples, clustered (multilevel) data, missing data, and 

data from populations that are observed (multiple groups) or unobserved 

(latent classes). Data generation models can include random effects, 

interactions between continuous latent variables, interactions between 

continuous latent variables and observed variables, and between 

categorical latent variables.  Dependent variables can be continuous, 

censored, binary, ordered categorical (ordinal), unordered categorical 

(nominal), counts, or combinations of these variable types.  In addition, 

two-part (semicontinuous) variables and time-to-event variables can be 

generated.  Independent variables can be binary or continuous.  All or 

some of the Monte Carlo generated data sets can be saved. 

 

The analysis model can be different from the data generation model.  For 

example, variables can be generated as categorical and analyzed as 

continuous or data can be generated as a three-class model and analyzed 

as a two-class model.  In some situations, a special external Monte Carlo 

feature is needed to generate data by one model and analyze it by a 

different model.  For example, variables can be generated using a 

clustered design and analyzed ignoring the clustering.  Data generated 

outside of Mplus can also be analyzed using this special Monte Carlo 

feature.   

 

Other special features that can be used with Monte Carlo simulation 

studies include saving parameter estimates from the analysis of real data 

to be used as population parameter and/or coverage values for data 

generation in a Monte Carlo simulation study.  In addition, analysis 

results from each replication of a Monte Carlo simulation study can be 
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saved in an external file for further investigation.  Chapter 19 discusses 

the options of the MONTECARLO command.  

 

Monte Carlo data generation can include the following special features: 

 

 Single or multiple group analysis for non-mixture models 

 Missing data 

 Complex survey data 

 Latent variable interactions and non-linear factor analysis using 

maximum likelihood 

 Random slopes 

 Individually-varying times of observations 

 Linear and non-linear parameter constraints 

 Indirect effects including specific paths 

 Maximum likelihood estimation for all outcome types 

 Wald chi-square test of parameter equalities 

 Analysis with between-level categorical latent variables 

 

Multiple group data generation is specified by using the NGROUPS 

option of the MONTECARLO command and the MODEL 

POPULATION-label command.  Missing data generation is specified by 

using the PATMISS and PATPROBS options of the MONTECARLO 

command or the MISSING option of the MONTECARLO command in 

conjunction with the MODEL MISSING command.  Complex survey 

data are generated by using the TYPE=TWOLEVEL option of the 

ANALYSIS command in conjunction with the NCSIZES and CSIZES 

options of the MONTECARLO command.  Latent variable interactions 

are generated by using the | symbol of the MODEL POPULATION 

command in conjunction with the XWITH option of the MODEL 

POPULATION command.   Random slopes are generated by using the | 

symbol of the MODEL POPULATION command in conjunction with 

the ON option of the MODEL POPULATION command.  Individually-

varying times of observations are generated by using the | symbol of the 

MODEL POPULATION command in conjunction with the AT option of 

the MODEL POPULATION command and the TSCORES option of the 

MONTECARLO command. Linear and non-linear parameter constraints 

are specified by using the MODEL CONSTRAINT command.  Indirect 

effects are specified by using the MODEL INDIRECT command. 

Maximum likelihood estimation is specified by using the ESTIMATOR 

option of the ANALYSIS command.  The MODEL TEST command is 

used to test linear restrictions on the parameters in the MODEL and 
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MODEL CONSTRAINT commands using the Wald chi-square test.  

Between-level categorical latent variables are generated using the 

GENCLASSES option and specified using the CLASSES and 

BETWEEN options.   

 

Besides the examples in this chapter, Monte Carlo versions of most of 

the examples in the previous example chapters are included on the CD 

that contains the Mplus program and at www.statmodel.com.  Following 

is the set of Monte Carlo examples included in this chapter: 

 

 12.1:  Monte Carlo simulation study for a CFA with covariates 

(MIMIC) with continuous factor indicators and patterns of missing 

data 

 12.2:  Monte Carlo simulation study for a linear growth model for a 

continuous outcome with missing data where attrition is predicted by 

time-invariant covariates (MAR) 

 12.3:  Monte Carlo simulation study for a growth mixture model 

with two classes and a misspecified model 

 12.4:  Monte Carlo simulation study for a two-level growth model 

for a continuous outcome (three-level analysis) 

 12.5:  Monte Carlo simulation study for an exploratory factor 

analysis with continuous factor indicators  

 12.6 Step 1: Monte Carlo simulation study where clustered data for a 

two-level growth model for a continuous outcome (three-level 

analysis) are generated, analyzed, and saved  

 12.6 Step 2:  External Monte Carlo analysis of clustered data 

generated for a two-level growth model for a continuous outcome 

using TYPE=COMPLEX for a single-level growth model 

 12.7 Step 1: Real data analysis of a CFA with covariates (MIMIC) 

for continuous factor indicators where the parameter estimates are 

saved for use in a Monte Carlo simulation study 

 12.7 Step 2: Monte Carlo simulation study where parameter 

estimates saved from a real data analysis are used for population 

parameter values for data generation and coverage 

 12.8:  Monte Carlo simulation study for discrete-time survival 

analysis*   

 12.9:  Monte Carlo simulation study for a two-part (semicontinuous) 

growth model for a continuous outcome* 

 12.10: Monte Carlo simulation study for a two-level continuous-time 

survival analysis using Cox regression with a random intercept and a 

frailty* 
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 12.11:  Monte Carlo simulation study for a two-level mediation 

model with random slopes 

 12.12  Monte Carlo simulation study for a multiple group EFA with 

continuous factor indicators with measurement invariance of 

intercepts and factor loadings 

 

*  Example uses numerical integration in the estimation of the model.  

This can be computationally demanding depending on the size of the 

problem. 

 

MONTE CARLO DATA GENERATION  
 

Data are generated according to the following steps.  First, multivariate 

normal data are generated for the independent variables in the model.  

Second, the independent variables are categorized if requested.  The 

third step varies depending on the dependent variable type and the model 

used.  Data for continuous dependent variables are generated according 

to a distribution that is multivariate normal conditional on the 

independent variables.  For categorical dependent variables under the 

probit model using weighted least squares estimation, data for 

continuous dependent variables are generated according to a distribution 

that is multivariate normal conditional on the independent variables.  

These dependent variables are then categorized using the thresholds 

provided in the MODEL POPULATION command or the 

POPULATION option of the MONTECARLO command. For 

categorical dependent variables under the probit model using maximum 

likelihood estimation, the dependent variables are generated according to 

the probit model using the values of the thresholds and slopes from the 

MODEL POPULATION command or the POPULATION option of the 

MONTECARLO command.  For categorical dependent variables under 

the logistic model using maximum likelihood estimation, the dependent 

variables are generated according to the logistic model using the values 

of the thresholds and slopes from the MODEL POPULATION command 

or the POPULATION option of the MONTECARLO command.  For 

censored dependent variables, the dependent variables are generated 

according to the censored normal model using the values of the 

intercepts and slopes from the MODEL POPULATION command or the 

POPULATION option of the MONTECARLO command.  For 

unordered categorical (nominal) dependent variables, the dependent 

variables are generated according to the multinomial logistic model 

using the values of the intercepts and slopes from the MODEL 
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POPULATION command or the POPULATION option of the 

MONTECARLO command.  For count dependent variables, the 

dependent variables are generated according to the log rate model using 

the values of the intercepts and slopes from the MODEL POPULATION 

command or the POPULATION option of the MONTECARLO 

command.  For time-to-event variables in continuous-time survival 

analysis, the dependent variables are generated according to the loglinear 

model using the values of the intercepts and slopes from the MODEL 

POPULATION command or the POPULATION option of the 

MONTECARLO command.   

 

To save the generated data for subsequent analysis without analyzing 

them, use the TYPE=BASIC option of the ANALYSIS command in 

conjunction with the REPSAVE and SAVE options of the 

MONTECARLO command.    

 

MONTE CARLO DATA ANALYSIS 
 

There are two ways to carry out a Monte Carlo simulation study in 

Mplus: an internal Monte Carlo simulation study or an external Monte 

Carlo simulation study.  In an internal Monte Carlo simulation study, 

data are generated and analyzed in one step using the MONTECARLO 

command.  In an external Monte Carlo simulation study, multiple data 

sets are generated in a first step using either Mplus or another computer 

program.  These data are analyzed and the results summarized in a 

second step using regular Mplus analysis facilities in conjunction with 

the TYPE=MONTECARLO option of the DATA command.   

 

Internal Monte Carlo can be used whenever the analysis type and scales 

of the dependent variables remain the same for both data generation and 

analysis.  Internal Monte Carlo can also be used with TYPE=GENERAL 

when dependent variables are generated as categorical and analyzed as 

continuous.  Internal Monte Carlo can also be used when data are 

generated and analyzed for a different number of latent classes.  In all 

other cases, data from all replications can be saved and subsequently 

analyzed using external Monte Carlo.    
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MONTE CARLO OUTPUT 
 

The default output for the MONTECARLO command includes a listing 

of the input setup, a summary of the analysis specifications, sample 

statistics from the first replication, the analysis results summarized over 

replications, and TECH1 which shows the free parameters in the model 

and the starting values.  Following is an example of the output for tests 

of model fit for the chi-square test statistic.  The same format is used 

with other fit statistics. 

 
Chi-Square Test of Model Fit 

 

        Degrees of freedom                       5 

 

        Mean                                 5.253 

        Std Dev                              3.325 

        Number of successful computations      500 

 

             Proportions                   Percentiles 

        Expected    Observed         Expected       Observed 

           0.990       0.988            0.554          0.372 

           0.980       0.976            0.752          0.727 

           0.950       0.958            1.145          1.193 

           0.900       0.894            1.610          1.539 

           0.800       0.804            2.343          2.367 

           0.700       0.710            3.000          3.090 

           0.500       0.532            4.351          4.555 

           0.300       0.330            6.064          6.480 

           0.200       0.242            7.289          7.870 

           0.100       0.136            9.236          9.950 

           0.050       0.062           11.070         11.576 

           0.020       0.022           13.388         13.394 

           0.010       0.014           15.086         15.146 

 

The mean and standard deviation of the chi-square test statistic over the 

replications of the Monte Carlo analysis are given.  The column labeled 

Proportions Expected (column 1) should be understood in conjunction 

with the column labeled Percentiles Expected (column 3).  Each value in 

column 1 gives the probability of observing a chi-square value greater 

than the corresponding value in column 3.  The column 3 percentile 

values are determined from a chi-square distribution with the degrees of 

freedom given by the model, in this case 5.  In this output, the column 1 

value of 0.05 gives the probability that the chi-square value exceeds the 

column 3 percentile value (the critical value of the chi-square 

distribution) of 11.070.   Columns 2 and 4 give the corresponding values 

observed in the Monte Carlo replications.  Column 2 gives the 

proportion of replications for which the critical value is exceeded, which 
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in this example is 0.062, close to the expected value 0.05 which 

indicates that the chi-square distribution is well approximated in this 

case. The column 4 value of 11.576 is the chi-square value at this 

percentile from the Monte Carlo analysis that has 5% of the values in the 

replications above it.  The fact that it deviates little from the theoretical 

value of 11.070 is again an indication that the chi-square distribution is 

well approximated in this case.  For the other fit statistics, the normal 

distribution is used to obtain the critical values of the test statistic. 

 

The summary of the analysis results includes the population value for 

each parameter, the average of the parameter estimates across 

replications, the standard deviation of the parameter estimates across 

replications, the average of the estimated standard errors across 

replications, the mean square error for each parameter (M.S.E.), 95 

percent coverage, and the proportion of replications for which the null 

hypothesis that a parameter is equal to zero is rejected at the .05 level.   

 
MODEL RESULTS 

 

                           ESTIMATES              S. E.     M. S. E.  95%  % Sig 

              Population   Average   Std. Dev.   Average             Cover Coeff 

 I        | 

  Y1               1.000     1.0000     0.0000     0.0000     0.0000 1.000 0.000 

  Y2               1.000     1.0000     0.0000     0.0000     0.0000 1.000 0.000 

  Y3               1.000     1.0000     0.0000     0.0000     0.0000 1.000 0.000 

  Y4               1.000     1.0000     0.0000     0.0000     0.0000 1.000 0.000 

 

 S        | 

  Y1               0.000     0.0000     0.0000     0.0000     0.0000 1.000 0.000 

  Y2               1.000     1.0000     0.0000     0.0000     0.0000 1.000 0.000 

  Y3               2.000     2.0000     0.0000     0.0000     0.0000 1.000 0.000 

  Y4               3.000     3.0000     0.0000     0.0000     0.0000 1.000 0.000 

 

 I        WITH 

  S                0.000     0.0006     0.0301     0.0306     0.0009 0.958 0.042 

 

 Means 

  I                0.000    -0.0006     0.0473     0.0460     0.0022 0.950 0.050 

  S                0.200     0.2015     0.0278     0.0274     0.0008 0.946 1.000 

 

Variances 

  I                0.500     0.4969     0.0704     0.0685     0.0050 0.936 1.000 

  S                0.200     0.1997     0.0250     0.0237     0.0006 0.930 1.000 

 

 Residual Variances 

  Y1               0.500     0.5016     0.0683     0.0657     0.0047 0.934 1.000 

  Y2               0.500     0.5018     0.0460     0.0451     0.0021 0.958 1.000 

  Y3               0.500     0.5025     0.0515     0.0532     0.0027 0.956 1.000 

  Y4               0.500     0.4991     0.0932     0.0918     0.0087 0.946 1.000 
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The column labeled Population gives the population parameter values 

that are given in the MODEL command, the MODEL COVERAGE 

command, or using the COVERAGE option of the MONTECARLO 

command.  The column labeled Average gives the average of the 

parameter estimates across the replications of the Monte Carlo 

simulation study.  These two values are used to evaluate parameter bias.  

To determine the percentage of parameter bias, subtract the population 

parameter value from the average parameter value, divide this number by 

the population parameter value, and multiply by 100.  The parameter 

bias for the variance of i would be 

 

100 (.4969 - .5000) / .5000 =  -0.62. 

 

This results in a bias of -0.62 percent. 

 

The column labeled Std. Dev. gives the standard deviation of the 

parameter estimates across the replications of the Monte Carlo 

simulation study.  When the number of replications is large, this is 

considered to be the population standard error.  The column labeled S.E. 

Average gives the average of the estimated standard errors across 

replications of the Monte Carlo simulation study.  To determine standard 

error bias, subtract the population standard error value from the average 

standard error value, divide this number by the population standard error 

value, and multiply by 100. 

 

The column labeled M.S.E. gives the mean square error for each 

parameter.  M.S.E. is equal to the variance of the estimates across the 

replications plus the square of the bias. For example, the M.S.E. for the 

variance of i is equal to 0.0704 squared plus (0.4969 - 0.5) squared 

which is equal to 0.00497 or 0.0050.  The column labeled 95% Cover 

gives the proportion of replications for which the 95% confidence 

interval contains the population parameter value.  This gives the 

coverage which indicates how well the parameters and their standard 

errors are estimated.  In this output, all coverage values are close to the 

correct value of 0.95.     

 

The column labeled % Sig Coeff gives the proportion of replications for 

which the null hypothesis that a parameter is equal to zero is rejected at 

the .05 level (two-tailed test with a critical value of 1.96).  The statistical 

test is the ratio of the parameter estimate to its standard error, an 

approximately normally distributed quantity (z-score) in large samples.  
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For parameters with population values different from zero, this value is 

an estimate of power with respect to a single parameter, that is, the 

probability of rejecting the null hypothesis when it is false.  For 

parameters with population values equal to zero, this value is an estimate 

of Type I error, that is, the probability of rejecting the null hypothesis 

when it is true.  In this output, the power to reject that the slope growth 

factor mean is zero is estimated as 1.000, that is, exceeding the standard 

of 0.8 power.   

      

MONTE CARLO EXAMPLES 
 

Following is the set of Monte Carlo simulation study examples.  Besides 

the examples in this chapter, Monte Carlo versions of most of the 

examples in the previous example chapters are included on the CD that 

contains the Mplus program and at www.statmodel.com.   
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EXAMPLE 12.1: MONTE CARLO SIMULATION STUDY FOR 

A CFA WITH COVARIATES (MIMIC) WITH CONTINUOUS 

FACTOR INDICATORS AND PATTERNS OF MISSING DATA 
 

 
TITLE: this is an example of a Monte Carlo 

simulation study for a CFA with covariates 

(MIMIC) with continuous factor indicators 

and patterns of missing data  

MONTECARLO: 

 NAMES ARE y1-y4 x1 x2; 

 NOBSERVATIONS = 500; 

 NREPS = 500; 

 SEED = 4533; 

 CUTPOINTS = x2(1);  

 PATMISS = y1(.1) y2(.2) y3(.3) y4(1) | 

           y1(1) y2(.1) y3(.2) y4(.3); 

 PATPROBS = .4 | .6; 

MODEL POPULATION: 

 [x1-x2@0];  

 x1-x2@1; 

 f BY y1@1 y2-y4*1; 

 f*.5; 

 y1-y4*.5; 

 f ON x1*1 x2*.3; 

MODEL: f BY y1@1 y2-y4*1; 

 f*.5; 

 y1-y4*.5; 

 f ON x1*1 x2*.3; 

OUTPUT: TECH9; 

 

In this example, data are generated and analyzed according to the CFA 

with covariates (MIMIC) model described in Example 5.8.  Two factors 

are regressed on two covariates and data are generated with patterns of 

missing data. 

 
TITLE: this is an example of a Monte Carlo 

simulation study for a CFA with covariates 

(MIMIC) with continuous factor indicators 

and patterns of missing data  

 

The TITLE command is used to provide a title for the output.  The title 

is printed in the output just before the Summary of Analysis. 
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MONTECARLO: 

 NAMES ARE y1-y4 x1 x2; 

 NOBSERVATIONS = 500; 

 NREPS = 500; 

 SEED = 4533; 

 CUTPOINTS = x2(1);  

 PATMISS = y1(.1) y2(.2) y3(.3) y4(1) | 

           y1(1) y2(.1) y3(.2) y4(.3); 

 PATPROBS = .4 | .6; 

 

The MONTECARLO command is used to describe the details of a 

Monte Carlo simulation study.  The NAMES option is used to assign 

names to the variables in the generated data sets.  The data sets in this 

example each have six variables: y1, y2, y3, y4, x1, and x2.  Note that a 

hyphen can be used as a convenience feature in order to generate a list of 

names.  The NOBSERVATIONS option is used to specify the sample 

size to be used for data generation and for analysis.  In this example, the 

sample size is 500.  The NREPS option is used to specify the number of 

replications, that is, the number of samples to draw from a specified 

population.  In this example, 500 samples will be drawn.  The SEED 

option is used to specify the seed to be used for the random draws.  The 

seed 4533 is used here.  The default seed value is zero. 

 

The GENERATE option is used to specify the scale of the dependent 

variables for data generation.  In this example, the dependent variables 

are continuous which is the default for the GENERATE option.  

Therefore, the GENERATE option is not necessary and is not used here.  

The CUTPOINTS option is used to create binary variables from the 

multivariate normal independent variables generated by the program.  In 

this example, the variable x2 is cut at the value of one which is one 

standard deviation above the mean because the mean and variance used 

for data generation are zero and one.  This implies that after the cut x2 is 

a 0/1 binary variable where 16 percent of the population have the value 

of 1.  The mean and variance of x2 for data generation are specified in 

the MODEL POPULATION command.   

 

The PATMISS and PATPROBS options are used together to describe 

the patterns of missing data to be used in data generation.  The 

PATMISS option is used to specify the missing data patterns and the 

proportion missing for each variable.  The patterns are separated using 

the | symbol.  The PATPROBS option is used to specify the proportion 

of individuals for each missing data pattern.  In this example, there are 

two missing value patterns.  In the first pattern, y1 has 10 percent 
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missing, y2 has 20 percent missing, y3 has 30 percent missing, and y4 

has 100 percent missing.  In the second pattern, y1 has 100 percent 

missing, y2 has 10 percent missing, y3 has 20 percent missing, and y4 

has 30 percent missing.  As specified in the PATPROBS option, 40 

percent of the individuals in the generated data have missing data pattern 

1 and 60 percent have missing data pattern 2.  This may correspond to a 

situation of planned missingness where a measurement instrument is 

administered in two different versions given to randomly chosen parts of 

the population.  In this example, some individuals answer items y1, y2, 

and y3, while others answer y2, y3, and y4.    

 
MODEL POPULATION: 

 [x1-x2@0];  

 x1-x2@1; 

 f BY y1@1 y2-y4*1; 

 f*.5; 

 y1-y4*.5; 

 f ON x1*1 x2*.3; 

 

The MODEL POPULATION command is used to provide the 

population parameter values to be used in data generation.  Each 

parameter in the model must be specified followed by the @ symbol or 

the asterisk (*) and the population parameter value.  Any model 

parameter not given a population parameter value will be assigned the 

value of zero as the population parameter value.  The first two lines in 

the MODEL POPULATION command refer to the means and variances 

of the independent variables x1 and x2.  The covariances between the 

independent variables can also be specified.  Variances of the 

independent variables in the model must be specified.  Means and 

covariances of the independent variables do not need to be specified if 

their values are zero.   

 
MODEL: f BY y1@1 y2-y4*1; 

 f*.5; 

 y1-y4*.5; 

 f ON x1*1 x2*.3; 

 

The MODEL command is used to describe the analysis model as in 

regular analyses.  In Monte Carlo simulation studies, the MODEL 

command is also used to provide values for each parameter that are used 

as population parameter values for computing coverage and mean square 

error and starting values in the estimation of the model.  They are printed 

in the first column of the output labeled Population.  Population 
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parameter values for the analysis model can also be provided using the 

MODEL COVERAGE command or the COVERAGE option of the 

MONTECARLO command.  Alternate starting values can be provided 

using the STARTING option of the MONTECARLO command.  Note 

that the population parameter values for coverage given in the analysis 

model are different from the population parameter values used for data 

generation if the analysis model is misspecified.   

 
OUTPUT: TECH9; 

 

The OUTPUT command is used to request additional output not 

included as the default.  The TECH9 option is used to request error 

messages related to convergence for each replication of the Monte Carlo 

simulation study. 

 

EXAMPLE 12.2: MONTE CARLO SIMULATION STUDY FOR 

A LINEAR GROWTH MODEL FOR A CONTINUOUS 

OUTCOME WITH MISSING DATA WHERE ATTRITION IS 

PREDICTED BY TIME-INVARIANT COVARIATES (MAR) 
 

 
TITLE: this is an example of a Monte Carlo  

 simulation study for a linear growth model  

 for a continuous outcome with missing data  

 where attrition is predicted by time- 

 invariant covariates (MAR) 

MONTECARLO: 

 NAMES ARE y1-y4 x1 x2; 

 NOBSERVATIONS = 500; 

 NREPS = 500; 

 SEED = 4533; 

 CUTPOINTS = x2(1);  

 MISSING = y1-y4; 

MODEL POPULATION: 

 x1-x2@1; 

 [x1-x2@0];  

 i s | y1@0 y2@1 y3@2 y4@3; 

 [i*1 s*2]; 

 i*1; s*.2; i WITH s*.1; 

 y1-y4*.5; 

 i ON x1*1 x2*.5; 

 s ON x1*.4 x2*.25; 
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MODEL MISSING: 

 [y1-y4@-1]; 

 y1 ON x1*.4 x2*.2; 

 y2 ON x1*.8 x2*.4; 

 y3 ON x1*1.6 x2*.8; 

 y4 ON x1*3.2 x2*1.6; 

MODEL: i s | y1@0 y2@1 y3@2 y4@3; 

 [i*1 s*2]; 

 i*1; s*.2; i WITH s*.1; 

 y1-y4*.5; 

 i ON x1*1 x2*.5; 

 s ON x1*.4 x2*.25; 

OUTPUT: TECH9; 

 

In this example, missing data are generated to illustrate both random 

missingness and attrition predicted by time-invariant covariates (MAR).  

This Monte Carlo simulation study can be used to estimate the power to 

detect that the binary covariate x2 has a significant effect on the growth 

slope factor s.  The binary covariate x2 may correspond to a treatment 

variable or a gender variable.   

 

The MISSING option in the MONTECARLO command is used to 

identify the dependent variables in the data generation model for which 

missing data will be generated.  The MODEL MISSING command is 

used to provide information about the population parameter values for 

the missing data model to be used in the generation of data.  The 

MODEL MISSING command specifies a logistic regression model for a 

set of binary dependent variables that represent not missing (scored as 0) 

and missing (scored as 1) for the dependent variables in the data 

generation model.  The first statement in the MODEL MISSING 

command defines the intercepts in the logistic regressions for each of the 

binary dependent variables.  If the covariates predicting missingness all 

have values of zero, the logistic regression intercept value of -1 

corresponds to a probability of 0.27 of having missing data on the 

dependent variables.    This would reflect missing completely at random.  

The four ON statements specify the logistic regression of the four binary 

dependent variables on the two covariates x1 and x2 to reflect attrition 

predicted by the covariates.  Because the values of the logistic regression 

slopes increase over time as seen in the increase of the slopes from y1 to 

y4, attrition also increases over time and becomes more selective over 

time. An explanation of the other commands can be found in Example 

12.1. 
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EXAMPLE 12.3: MONTE CARLO SIMULATION STUDY FOR 

A GROWTH MIXTURE MODEL WITH TWO CLASSES AND A 

MISSPECIFIED MODEL 
 

 
TITLE: this is an example of a Monte Carlo 

simulation study for a growth mixture 

model with two classes and a misspecified 

model 

MONTECARLO: 

 NAMES ARE u y1-y4 x; 

 NOBSERVATIONS = 500; 

 NREPS = 10; 

 SEED = 53487; 

 GENERATE = u (1); 

 CATEGORICAL = u; 

 GENCLASSES = c (2); 

 CLASSES = c (1); 

MODEL POPULATION: 

 %OVERALL% 

 [x@0]; 

 x@1; 

 i s | y1@0 y2@1 y3@2 y4@3; 

 i*.25 s*.04; 

 i WITH s*0; 

 y1*.4 y2*.35 y3*.3 y4*.25; 

 i ON x*.5; 

 s ON x*.1; 

 c#1 ON x*.2; 

 [c#1*0]; 

 %c#1% 

 [u$1*1 i*3 s*.5]; 

 %c#2% 

 [u$1*-1 i*1 s*0]; 
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ANALYSIS: TYPE = MIXTURE; 

MODEL: 

 %OVERALL%  

 i s | y1@0 y2@1 y3@2 y4@3; 

 i*.25 s*.04; 

 i WITH s*0; 

 y1*.4 y2*.35 y3*.3 y4*.25; 

 i ON x*.5; 

 s ON x*.1; 

! c#1 ON x*.2; 

! [c#1*0]; 

 u ON x; 

 %c#1% 

 [u$1*1 i*3 s*.5]; 

! %c#2% 

! [u$1*-1 i*1 s*0]; 

OUTPUT: TECH9; 

 

In this example, data are generated according the two class model 

described in Example 8.1 and analyzed as a one class model.  This 

results in a misspecified model.  Differences between the parameter 

values that generated the data and the estimated parameters can be 

studied to determine the extent of the distortion.   

 

The GENERATE option is used to specify the scale of the dependent 

variables for data generation.  In this example, the dependent variable u 

is binary because it has one threshold.  For binary variables, this is 

specified by placing the number one in parenthesis following the 

variable name.  The CATEGORICAL option is used to specify which 

dependent variables are treated as binary or ordered categorical (ordinal) 

variables in the model and its estimation.  In the example above, the 

variable u is generated and analyzed as a binary variable.  The 

GENCLASSES option is used to assign names to the categorical latent 

variables in the data generation model and to specify the number of 

latent classes to be used for data generation.  In the example above, there 

is one categorical latent variable c that has two latent classes for data 

generation.  The CLASSES option is used to assign names to the 

categorical latent variables in the analysis model and to specify the 

number of latent classes to be used for analysis.  In the example above, 

there is one categorical latent variable c that has one latent class for 

analysis.  The ANALYSIS command is used to describe the technical 

details of the analysis.  The TYPE option is used to describe the type of 

analysis that is to be performed.  By selecting MIXTURE, a mixture 

model will be estimated.  



Examples: Monte Carlo Simulation Studies 

 

                                                                                                               481 

The commented out lines in the MODEL command show how the 

MODEL command is changed from a two class model to a one class 

model.   An explanation of the other commands can be found in 

Examples 12.1 and 8.1. 

 

EXAMPLE 12.4: MONTE CARLO SIMULATION STUDY FOR 

A TWO-LEVEL GROWTH MODEL FOR A CONTINUOUS 

OUTCOME (THREE-LEVEL ANALYSIS) 
 

 
TITLE: this is an example of a Monte Carlo 

simulation study for a two-level growth  

 model for a continuous outcome (three- 

 level analysis) 

MONTECARLO: 

 NAMES ARE y1-y4 x w; 

 NOBSERVATIONS = 1000; 

 NREPS = 500; 

 SEED = 58459; 

 CUTPOINTS = x (1) w (0); 

 MISSING = y1-y4; 

 NCSIZES = 3; 

 CSIZES = 40 (5) 50 (10) 20 (15); 

 WITHIN = x; 

 BETWEEN = w; 

MODEL POPULATION: 

 %WITHIN% 

 x@1; 

 iw sw | y1@0 y2@1 y3@2 y4@3; 

 y1-y4*.5; 

 iw ON x*1; 

 sw ON x*.25; 

 iw*1; sw*.2; 

 %BETWEEN% 

 w@1; 

 ib sb | y1@0 y2@1 y3@2 y4@3; 

 y1-y4@0; 

 ib ON w*.5; 

 sb ON w*.25; 

 [ib*1 sb*.5]; 

 ib*.2; sb*.1; 
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MODEL MISSING: 

 [y1-y4@-1]; 

 y1 ON x*.4; 

 y2 ON x*.8; 

 y3 ON x*1.6; 

 y4 ON x*3.2; 

ANALYSIS: TYPE IS TWOLEVEL; 

MODEL: 

 %WITHIN% 

 iw sw | y1@0 y2@1 y3@2 y4@3; 

 y1-y4*.5; 

 iw ON x*1; 

 sw ON x*.25; 

 iw*1; sw*.2; 

 %BETWEEN% 

 ib sb | y1@0 y2@1 y3@2 y4@3; 

 y1-y4@0; 

 ib ON w*.5; 

 sb ON w*.25; 

 [ib*1 sb*.5]; 

 ib*.2; sb*.1; 

OUTPUT: TECH9 NOCHISQUARE; 

 

In this example, data for the two-level growth model for a continuous 

outcome (three-level analysis) described in Example 9.12 are generated 

and analyzed.  This Monte Carlo simulation study can be used to 

estimate the power to detect that the binary cluster-level covariate w has 

a significant effect on the growth slope factor sb.   

 

The NCSIZES option is used to specify the number of unique cluster 

sizes to be used in data generation.  In the example above, there are three 

unique cluster sizes.  The CSIZES option is used to specify the number 

of clusters and the sizes of the clusters to be used in data generation.  

The CSIZES option specifies that 40 clusters of size 5, 50 clusters of 

size 10, and 20 clusters of size 15 will be generated.  The WITHIN 

option is used to identify the variables in the data set that are measured 

on the individual level and modeled only on the within level.  They are 

specified to have no variance in the between part of the model.  The 

variable x is an individual-level variable.  The BETWEEN option is used 

to identify the variables in the data set that are measured on the cluster 

level and modeled only on the between level.  The variable w is a 

cluster-level variable.  Variables not mentioned on the WITHIN or the 

BETWEEN statements are measured on the individual level and can be 

modeled on both the within and between levels.  The NOCHISQUARE 

option of the OUTPUT command is used to request that the chi-square 
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fit statistic not be computed.  This reduces computational time.  An 

explanation of the other commands can be found in Examples 12.1 and 

12.2 and Example 9.12. 

 

EXAMPLE 12.5: MONTE CARLO SIMULATION STUDY FOR 

AN EXPLORATORY FACTOR ANALYSIS WITH 

CONTINUOUS FACTOR INDICATORS  
 

 
TITLE: this is an example of a Monte Carlo 

 simulation study for an exploratory factor 

 analysis with continuous factor indicators 

MONTECARLO: 

 NAMES ARE y1-y10; 

 NOBSERVATIONS = 500; 

 NREPS = 500; 

MODEL POPULATION: 

 f1 BY y1-y7*.5; 

 f2 BY y4-y5*.25 y6-y10*.8; 

 f1-f2@1; 

 f1 WITH f2*.5; 

 y1-y10*.36; 

MODEL: f1 BY y1-y7*.5 y8-y10*0 (*1); 

 f2 BY y1-y3*.0 y4-y5*.25 y6-y10*.8 (*1); 

 f1 WITH f2*.5; 

 y1-y10*.36; 

OUTPUT: TECH9; 

 

In this example, data are generated according to a two-factor CFA model 

with continuous outcomes and analyzed as an exploratory factor analysis 

using exploratory structural equation modeling (ESEM; Asparouhov & 

Muthén, 2009a).   

 

In the MODEL command, the BY statements specify that the factors f1 

and f2 are measured by the continuous factor indicators y1 through y10.  

The label 1 following an asterisk (*) in parentheses following the BY 

statements is used to indicate that f1 and f2 are a set of EFA factors.  

When no rotation is specified using the ROTATION option of the 

ANALYSIS command, the default oblique GEOMIN rotation is used to 

obtain factor loadings and factor correlations.  The intercepts and 

residual variances of the factor indicators are estimated and the residuals 

are not correlated as the default.  The variances of the factors are fixed at 
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one as the default.  The factors are correlated under the default oblique 

GEOMIN rotation.  

  

The default estimator for this type of analysis is maximum likelihood.  

The ESTIMATOR option of the ANALYSIS command can be used to 

select a different estimator.  An explanation of the other commands can 

be found in Examples 12.1 and 12.2. 

 

EXAMPLE 12.6 STEP 1: MONTE CARLO SIMULATION 

STUDY WHERE CLUSTERED DATA FOR A TWO-LEVEL 

GROWTH MODEL FOR A CONTINUOUS OUTCOME 

(THREE-LEVEL ANALYSIS) ARE GENERATED, ANALYZED, 

AND SAVED  
 

 
TITLE: this is an example of a Monte Carlo 

simulation study where clustered data for 

a two-level growth model for a continuous 

outcome (three-level) analysis are 

generated and analyzed  

MONTECARLO: 

 NAMES ARE y1-y4 x w; 

 NOBSERVATIONS = 1000; 

 NREPS = 100; 

 SEED = 58459; 

 CUTPOINTS = x(1) w(0); 

 MISSING = y1-y4; 

 NCSIZES = 3; 

 CSIZES = 40 (5) 50 (10) 20 (15); 

 WITHIN = x; BETWEEN = w; 

 REPSAVE = ALL; 

 SAVE = ex12.6rep*.dat; 

MODEL POPULATION: 

 %WITHIN% 

 x@1; 

 iw sw | y1@0 y2@1 y3@2 y4@3; 

 y1-y4*.5; 

 iw ON x*1; 

 sw ON x*.25; 

 iw*1; sw*.2; 

 %BETWEEN% 

 w@1; 

 ib sb | y1@0 y2@1 y3@2 y4@3; 

 y1-y4@0; 

 ib ON w*.5; 
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 sb ON w*.25; 

 [ib*1 sb*.5]; 

 ib*.2; sb*.1; 

MODEL MISSING: 

 [y1-y4@-1]; 

 y1 ON x*.4; 

 y2 ON x*.8; 

 y3 ON x*1.6; 

 y4 ON x*3.2; 

ANALYSIS: TYPE = TWOLEVEL; 

MODEL: 

 %WITHIN% 

 iw sw | y1@0 y2@1 y3@2 y4@3; 

 y1-y4*.5; 

 iw ON x*1; 

 sw ON x*.25; 

 iw*1; sw*.2; 

 %BETWEEN% 

 ib sb | y1@0 y2@1 y3@2 y4@3; 

 y1-y4@0; 

 ib ON w*.5; 

 sb ON w*.25; 

 [ib*1 sb*.5]; 

 ib*.2; sb*.1; 

OUTPUT: TECH8 TECH9; 

 

In this example, clustered data are generated and analyzed for the two-

level growth model for a continuous outcome (three-level) analysis 

described in Example 9.12.  The data are saved for a subsequent external 

Monte Carlo simulation study.  The REPSAVE and SAVE options of the 

MONTECARLO command are used  to save some or all of the data sets 

generated in a Monte Carlo simulation study.  The REPSAVE option 

specifies the numbers of the replications for which the data will be 

saved.  In the example above, the keyword ALL specifies that all of the 

data sets will be saved.  The SAVE option is used to name the files to 

which the data sets will be written.  The asterisk (*) is replaced by the 

replication number.  For example, data from the first replication will be 

saved in the file named ex12.6rep1.dat.   A file is also produced where 

the asterisk (*) is replaced by the word list.  The file, in this case 

ex12.6replist.dat, contains the names of the generated data sets.  The 

ANALYSIS command is used to describe the technical details of the 

analysis.  By selecting TYPE=TWOLEVEL, a multilevel model is 

estimated. An explanation of the other commands can be found in 

Examples 12.1, 12.2, 12.4 and Example 9.12. 
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EXAMPLE 12.6 STEP 2:  EXTERNAL MONTE CARLO 

ANALYSIS OF CLUSTERED DATA GENERATED FOR A 

TWO-LEVEL GROWTH MODEL FOR A CONTINUOUS 

OUTCOME USING TYPE=COMPLEX FOR A SINGLE-LEVEL 

GROWTH MODEL  
 

 
TITLE: this is an example of an external Monte 

Carlo analysis of clustered data generated 

for a two-level growth model for a 

continuous outcome using TYPE=COMPLEX for 

a single-level growth model 

DATA: FILE = ex12.6replist.dat; 

 TYPE = MONTECARLO; 

VARIABLE: NAMES = y1-y4 x w clus; 

 USEVARIABLES = y1-w; 

 MISSING = ALL (999); 

 CLUSTER = clus; 

ANALYSIS: TYPE = COMPLEX; 

MODEL: i s | y1@0 y2@1 y3@2 y4@3; 

 y1-y4*.5; 

 i ON x*1 w*.5; 

 s ON x*.25 w*.25; 

 i*1.2; s*.3; 

 [i*1 s*.5]; 

OUTPUT: TECH9; 

 

In this example, an external Monte Carlo simulation study of clustered 

data generated for a two-level growth model for a continuous outcome is 

carried out using TYPE=COMPLEX for a single-level growth model.  

The DATA command is used to provide information about the data sets 

to be analyzed.  The MONTECARLO setting of the TYPE option is used 

when the data sets being analyzed have been generated and saved using 

either the REPSAVE option of the MONTECARLO command or by 

another computer program.  The file named using the FILE option of the 

DATA command contains a list of the names of the data sets to be 

analyzed and summarized as in a Monte Carlo simulation study.  This 

file is created when the SAVE and REPSAVE options of the 

MONTECARLO command are used to save Monte Carlo generated data 

sets.  The CLUSTER option of the VARIABLE command is used when 

data have been collected under a complex survey data design to identify 

the variable that contains cluster information.  In the example above, the 

variable clus contains cluster information.  By selecting 
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TYPE=COMPLEX, an analysis is carried out that takes non-

independence of observations into account. 

 

In external Monte Carlo simulation studies, the MODEL command is 

also used to provide values for each parameter.  These are used as the 

population parameter values for the analysis model and are printed in the 

first column of the output labeled Population.   They are used for 

computing coverage and as starting values in the estimation of the 

model. 

 

EXAMPLE 12.7 STEP 1: REAL DATA ANALYSIS OF A CFA 

WITH COVARIATES (MIMIC) FOR CONTINUOUS FACTOR 

INDICATORS WHERE THE PARAMETER ESTIMATES ARE 

SAVED FOR USE IN A MONTE CARLO SIMULATION STUDY 
 

 
TITLE: this is an example of a real data analysis 

of a CFA with covariates (MIMIC) for 

continuous factor indicators where the 

parameter estimates are saved for use in a 

Monte Carlo simulation study  

DATA: FILE = ex12.7real.dat; 

VARIABLE: NAMES = y1-y10 x1 x2; 

MODEL: f1 BY y1@1 y2-y5*1; 

 f2 BY y6@1 y7-y10*1; 

 f1-f2*.5; 

 f1 WITH f2*.25; 

 y1-y5*.5; 

 [y1-y5*1]; 

 y6-y10*.75; 

 [y6-y10*2]; 

 f1 ON x1*.3 x2*.5; 

 f2 ON x1*.5 x2*.3; 

OUTPUT: TECH1; 

SAVEDATA: ESTIMATES = ex12.7estimates.dat; 

 

In this example, parameter estimates from a real data analysis of a CFA 

with covariates (MIMIC) for continuous factor indicators are saved for 

use as population parameter values for use in data generation and 

coverage in a subsequent internal Monte Carlo simulation study.  The 

ESTIMATES option of the SAVEDATA command is used to specify the 

name of the file in which the parameter estimates of the analysis will be 

saved.  
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EXAMPLE 12.7 STEP 2: MONTE CARLO SIMULATION 

STUDY WHERE PARAMETER ESTIMATES SAVED FROM A 

REAL DATA ANALYSIS ARE USED FOR POPULATION 

PARAMETER VALUES FOR DATA GENERATION AND 

COVERAGE 
 

 
TITLE: this is an example of a Monte Carlo 

simulation study where parameter estimates 

saved from a real data analysis are used 

for population parameter values for data 

generation and coverage 

MONTECARLO: 

 NAMES ARE y1-y10 x1 x2; 

 NOBSERVATIONS = 500; 

 NREPS = 500; 

 SEED = 45335; 

 POPULATION = ex12.7estimates.dat; 

 COVERAGE = ex12.7estimates.dat; 

MODEL POPULATION: 

 f1 BY y1-y5; 

 f2 BY y6-y10; 

 f1 ON x1 x2; 

 f2 ON x1 x2; 

MODEL: f1 BY y1-y5; 

 f2 BY y6-y10; 

 f1 ON x1 x2; 

 f2 ON x1 x2; 

OUTPUT: TECH9; 

 

In this example, parameter estimates saved from a real data analysis are 

used for population parameter values for data generation and coverage 

using the POPULATION and COVERAGE options of the 

MONTECARLO command.  The POPULATION option is used to name 

the data set that contains the population parameter values to be used in 

data generation.  The COVERAGE option is used to name the data set 

that contains the parameter values to be used for computing coverage 

and are printed in the first column of the output labeled Population.  An 

explanation of the other commands can be found in Example 12.1. 
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EXAMPLE 12.8:  MONTE CARLO SIMULATION STUDY FOR 

DISCRETE-TIME SURVIVAL ANALYSIS  
 

 
TITLE: this is an example of a Monte Carlo 

simulation study for discrete-time 

survival analysis 

MONTECARLO: 

 NAMES = u1-u4 x; 

 NOBSERVATIONS = 1000; 

 NREPS = 100; 

 GENERATE = u1-u4(1); 

 MISSING = u2-u4; 

 CATEGORICAL = u1-u4; 

MODEL POPULATION: 

 [x@0]; x@1; 

 [u1$1*2 u2$1*1.5 u3$1*1 u4$1*1]; 

 f BY u1-u4@1; 

 f ON x*.5; 

 f@0;  

MODEL MISSING:  

 [u2-u4@-15]; 

 u2 ON u1@30; 

 u3 ON u1-u2@30; 

 u4 ON u1-u3@30; 

ANALYSIS: ESTIMATOR = MLR; 

MODEL: [u1$1*2 u2$1*1.5 u3$1*1 u4$1*1]; 

 f BY u1-u4@1; 

 f ON x*.5; 

 f@0; 

OUTPUT: TECH8 TECH9; 

 

In this example, data are generated and analyzed for a discrete-time 

survival model like the one shown in Example 6.19.  Maximum 

likelihood estimation with discrete-time survival analysis for a non-

repeatable event requires that the event history indicators for an 

individual are scored as missing after an event has occurred (Muthén & 

Masyn, 2005).  This is accomplished using the MODEL MISSING 

command.  

 

The MISSING option in the MONTECARLO command is used to 

identify the dependent variables in the data generation model for which 

missing data will be generated.  The MODEL MISSING command is 

used to provide information about the population parameter values for 

the missing data model to be used in the generation of data.  The 
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MODEL MISSING command specifies a logistic regression model for a 

set of binary dependent variables that represent not missing (scored as 0) 

and missing (scored as 1) for the dependent variables in the data 

generation model.  The binary missing data indicators have the same 

names as the dependent variables in the data generation model.  The first 

statement in the MODEL MISSING command defines the intercepts in 

the logistic regressions for the binary dependent variables u2, u3, and u4.  

If the covariates predicting missingness all have values of zero, the 

logistic regression intercept value of -15 corresponds to a probability of 

zero of having missing data on the dependent variables.  The variable u1 

has no missing values.  The first ON statement describes the regression 

of the missing value indicator u2 on the event-history variable u1 where 

the logistic regression coefficient is fixed at 30 indicating that 

observations with the value one on the event-history variable u1 result in 

a logit value 15 for the missing value indicator u2 indicating that the 

probability that the event-history variable u2 is missing is one.  The 

second ON statement describes the regression of the missing value 

indicator u3 on the event-history variables u1 and u2 where the logistic 

regression coefficients are fixed at 30 indicating that observations with 

the value one on either or both of the event-history variables u1 and u2 

result in a logit value of at least 15 for the missing value indicator u3 

indicating that the probability that the event-history variable u3 is 

missing is one.  The third ON statement describes the regression of the 

missing value indicator u4 on the event-history variables u1, u2, and u3 

where the logistic regression coefficients are fixed at 30 indicating that 

observations with the value one on one or more of the event-history 

variables u1, u2, and u3 result in a logit value of at least 15 for the 

missing value indicator u4 indicating that the probability that the event-

history variable u4 is missing is one.  An explanation of the other 

commands can be found in Examples 12.1 and 12.3. 
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EXAMPLE 12.9:  MONTE CARLO SIMULATION STUDY FOR 

A TWO-PART (SEMICONTINUOUS) GROWTH MODEL FOR 

A CONTINUOUS OUTCOME  
 

 
TITLE: this is an example of a Monte Carlo 

simulation study for a two-part 

(semicontinuous) growth model for a 

continuous outcome 

MONTECARLO: 

 NAMES = u1-u4 y1-y4; 

 NOBSERVATIONS = 500; 

 NREPS = 100; 

 GENERATE = u1-u4(1); 

 MISSING = y1-y4; 

 CATEGORICAL = u1-u4; 

MODEL POPULATION: 

 iu su | u1@0 u2@1 u3@2 u4@3; 

 [u1$1-u4$1*-.5] (1);  

 [iu@0 su*.85]; 

 iu*1.45;   

 iy sy | y1@0 y2@1 y3@2 y4@3; 

 [y1-y4@0];  

 y1-y4*.5; 

 [iy*.5 sy*1]; 

 iy*1;  

 sy*.2;  

 iy WITH sy*.1; 

 iu WITH iy*0.9; 

MODEL MISSING: 

 [y1-y4@15]; 

 y1 ON u1@-30;  

 y2 ON u2@-30; 

 y3 ON u3@-30; 

 y4 ON u4@-30; 

ANALYSIS: ESTIMATOR = MLR; 
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MODEL: iu su | u1@0 u2@1 u3@2 u4@3; 

 [u1$1-u4$1*-.5] (1);  

 [iu@0 su*.85]; 

 iu*1.45;   

 su@0; 

 iy sy | y1@0 y2@1 y3@2 y4@3; 

 [y1-y4@0];  

 y1-y4*.5; 

 [iy*.5 sy*1]; 

 iy*1;  

 sy*.2;  

 iy WITH sy*.1; 

 iu WITH iy*0.9;  

 iu WITH sy@0;    

OUTPUT: TECH8; 

 

In this example, data are generated and analyzed for a two-part 

(semicontinuous) growth model for a continuous outcome like the one 

shown in Example 6.16.  If these data are saved for subsequent two-part 

analysis using the DATA TWOPART command, an adjustment to the 

saved data must be made using the DEFINE command as part of the 

analysis.  If the values of the continuous outcomes y are not 999 which is 

the value used as the missing data flag in the saved data, the exponential 

function must be applied to the continuous variables.  After that 

transformation, the value 999 must be changed to zero for the continuous 

variables.  This represents the floor of the scale.     

 

The MISSING option in the MONTECARLO command is used to 

identify the dependent variables in the data generation model for which 

missing data will be generated.  The MODEL MISSING command is 

used to provide information about the population parameter values for 

the missing data model to be used in the generation of data.  The 

MODEL MISSING command specifies a logistic regression model for a 

set of binary dependent variables that represent not missing (scored as 0) 

and missing (scored as 1) for the dependent variables in the data 

generation model.  The binary missing data indicators have the same 

names as the dependent variables in the data generation model.  The first 

statement in the MODEL MISSING command defines the intercepts in 

the logistic regressions for the binary dependent variables y1, y2, y3, and 

y4.  If the covariates predicting missingness all have values of zero, the 

logistic regression intercept value of 15 corresponds to a probability of 

one of having missing data on the dependent variables.  The four ON 

statements describe the regressions of the missing value indicators y1, 

y2, y3, and y4 on the binary outcomes u1, u2, u3, and u4 where the 
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logistic regression coefficient is fixed at -30.  This results in 

observations with the value one on u1, u2, u3, and u4 giving logit values 

-15 for the binary missing data indicators.  A logit value -15 implies that 

the probability that the continuous outcomes y are missing is zero.  An 

explanation of the other commands can be found in Examples 12.1 and 

12.3. 
 

EXAMPLE 12.10:  MONTE CARLO SIMULATION STUDY FOR 

A TWO-LEVEL CONTINUOUS-TIME SURVIVAL ANALYSIS 

USING COX REGRESSION WITH A RANDOM INTERCEPT 

AND A FRAILTY 
 

 
TITLE: this is an example of a Monte Carlo 

simulation study for a two-level 

continuous-time survival analysis using 

Cox regression with a random intercept and 

a frailty 

MONTECARLO: 

 NAMES = t x w; 

 NOBSERVATIONS = 1000; 

 NREPS = 100; 

 GENERATE = t(s 20*1); 

 NCSIZES = 3; 

 CSIZES = 40 (5) 50 (10) 20 (15); 

 HAZARDC = t (.5); 

 SURVIVAL = t (ALL);   

 WITHIN = x; 

 BETWEEN = w; 

MODEL POPULATION: 

 %WITHIN% 

 x@1; 

 t ON x*.5; 

 %BETWEEN% 

 w@1; 

 [t#1-t#21*1]; 

 t ON w*.2; 

 t*0.5; 

ANALYSIS: TYPE = TWOLEVEL; 

 BASEHAZARD = OFF; 

MODEL: %WITHIN% 

 t ON x*.5; 

 %BETWEEN% 

 t ON w*.2; 

 t*0.5; 
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In this example, data are generated and analyzed for the two-level 

continuous-time survival analysis using Cox regression with a random 

intercept and a frailty shown in Example 9.16.  Monte Carlo simulation 

of continuous-time survival models is described in Asparouhov et al. 

(2006).  

 

The GENERATE option is used to specify the scale of the dependent 

variables for data generation.  In this example, the dependent variable t 

is a time-to-event variable.  The numbers in parentheses specify that 

twenty time intervals of length one will be used for data generation.  The 

HAZARDC option is used to specify the hazard for the censoring 

process in continuous-time survival analysis when time-to-event 

variables are generated.  This information is used to create a censoring 

indicator variable where zero is not censored and one is right censored.  

A hazard for censoring of .5 is specified for the time-to-event variable t 

by placing the number .5 in parentheses following the variable name.  

The SURVIVAL option is used to identify the analysis variables that 

contain information about time to event and to provide information 

about the time intervals in the baseline hazard function to be used in the 

analysis.  The keyword ALL is used if the time intervals are taken from 

the data.   

 

The ANALYSIS command is used to describe the technical details of the 

analysis.  By selecting TYPE=TWOLEVEL, a multilevel model will be 

estimated.  The BASEHAZARD option is used with continuous-time 

survival analysis to specify if a non-parametric or a parametric baseline 

hazard function is used in the estimation of the model.  The default is 

OFF which uses the non-parametric baseline hazard function.  

  

The MODEL command is used to describe the analysis model as in 

regular analyses.  In the within part of the model, the ON statement 

describes the loglinear regression of the time-to-event variable t on the 

covariate x.  In the between part of the model, the ON statement 

describes the linear regression of the random intercept of the time-to-

event variable t on the covariate w.  The residual variance of t is 

estimated and represents a frailty parameter.  A detailed explanation of 

the MODEL command can be found in Examples 12.1 and 12.4. 
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EXAMPLE 12.11:  MONTE CARLO SIMULATION STUDY FOR 

A TWO-LEVEL MEDIATION MODEL WITH RANDOM 

SLOPES  
 

 
TITLE: this is an example of a Monte Carlo 

simulation study for a two-level mediation 

model with random slopes 

MONTECARLO:         

 NAMES ARE y m x; 

 WITHIN = x; 

 NOBSERVATIONS = 1000; 

 NCSIZES = 1; 

 CSIZES = 100 (10); 

 NREP = 100; 

ANALYSIS: TYPE = TWOLEVEL RANDOM; 

MODEL POPULATION: 

 %WITHIN% 

 x@1; 

 c | y ON x; 

 b | y ON m; 

 a | m ON x; 

 m*1; y*1; 

 %BETWEEN% 

 y WITH m*0.1 b*0.1 a*0.1 c*0.1; 

 m WITH b*0.1 a*0.1 c*0.1; 

 a WITH b*0.1 (cab); 

 a WITH c*0.1; 

 b WITH c*0.1; 

 y*1 m*1 a*1 b*1 c*1; 

 [a*0.4] (ma); 

 [b*0.5] (mb); 

 [c*0.6]; 
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MODEL: 

 %WITHIN% 

 c | y ON x; 

 b | y ON m; 

 a | m ON x; 

 m*1; y*1; 

 %BETWEEN% 

 y WITH m*0.1 b*0.1 a*0.1 c*0.1; 

 m WITH b*0.1 a*0.1 c*0.1; 

 a WITH b*0.1 (cab); 

 a WITH c*0.1; 

 b WITH c*0.1; 

 y*1 m*1 a*1 b*1 c*1; 

 [a*0.4] (ma); 

 [b*0.5] (mb); 

 [c*0.6]; 

MODEL CONSTRAINT: 

 NEW(m*0.3); 

 m=ma*mb+cab; 

 

In this example, data for a two-level mediation model with a random 

slope are generated and analyzed.  For related modeling see Bauer et al. 

(2006). 

 

The TYPE option is used to describe the type of analysis that is to be 

performed.  By selecting TWOLEVEL RANDOM, a multilevel model 

with random intercepts and random slopes will be estimated.  In the 

MODEL command, the | statement is used to name and define the 

random slopes c, b, and a.  The random intercept uses the name of the 

dependent variables c, b, and a.  The ON statements on the right-hand 

side of the | statements describe the linear regressions that have a 

random slope.   

 

The label cab is assigned to the covariance between the random slopes a 

and b.  The labels ma and mb are assigned to the means of the random 

slopes a and b.  These labels are used in the MODEL CONSTRAINT 

command.  The MODEL CONSTRAINT command is used to define 

linear and non-linear constraints on the parameters in the model.  In the 

MODEL CONSTRAINT command, the NEW option is used to 

introduce a new parameter that is not part of the MODEL command.  

The new parameter m is the indirect effect of the covariate x on the 

outcome y.  The two outcomes y and m can also be categorical.  For a 

discussion of indirect effects when the outcome y is categorical, see 

MacKinnon et al. (2007). 
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The default estimator for this type of analysis is maximum likelihood 

with robust standard errors.  An explanation of the other commands can 

be found in Examples 12.1 and 12.4. 

 

EXAMPLE 12.12:  MONTE CARLO SIMULATION STUDY FOR 

A MULTIPLE GROUP EFA WITH CONTINUOUS FACTOR 

INDICATORS WITH MEASUREMENT INVARIANCE OF 

INTERCEPTS AND FACTOR LOADINGS  
 

 
TITLE: this is an example of a Monte Carlo 

simulation study for a multiple group EFA 

with continuous factor indicators with 

measurement invariance of intercepts and 

factor loadings 

MONTECARLO: 

 NAMES ARE y1-y10; 

 NOBSERVATIONS = 500 500; 

 NREPS = 1; 

 NGROUPS = 2; 

MODEL POPULATION: 

 f1 BY y1-y5*.8 y6-y10*0; 

 f2 BY y1-y5*0 y6-y10*.8; 

 f1-f2@1; 

 f1 WITH f2*.5; 

 y1-y10*1; 

 [y1-y10*1]; 

 [f1-f2@0]; 

MODEL POPULATION-g2: 

 f1*1.5 f2*2; 

 f1 WITH f2*1; 

 y1-y10*2; 

 [f1*.5 f2*.8]; 

MODEL: f1 BY y1-y5*.8 y6-y10*0 (*1); 

 f2 BY y1-y5*0 y6-y10*.8 (*1); 

 f1-f2@1; 

 f1 WITH f2*.5; 

 y1-y10*1; 

 [y1-y10*1]; [f1-f2@0]; 

MODEL g2: f1*1.5 f2*2; 

 f1 WITH f2*1; 

 y1-y10*2; [f1*.5 f2*.8]; 

OUTPUT: TECH9; 

 

In this example, data are generated and analyzed according to a multiple 

group EFA model with continuous factor indicators with measurement 
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invariance across groups of intercepts and factor loadings. This model is 

described in Example 5.27.  The NOBSERVATIONS option specifies 

the number of observations for each group.  The NGROUPS option 

specifies the number of groups.  In this study data for two groups of 500 

observations are generated and analyzed.  One difference between the 

MODEL command when EFA factors are involved rather than CFA 

factors is that the values given using the asterisk (*) are used only for 

coverage.  Starting values are not allowed for the factor loading and 

factor covariance matrices for EFA factors.  An explanation of the other 

commands can be found in Example 12.1 and Example 5.27. 
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CHAPTER 13 

EXAMPLES: SPECIAL FEATURES 
 

 

In this chapter, special features not illustrated in the previous example 

chapters are discussed.  A cross-reference to the original example is 

given when appropriate. 

 

Following is the set of special feature examples included in this chapter:  

 

 13.1: A covariance matrix as data 

 13.2: Means and a covariance matrix as data 

 13.3: Reading data with a fixed format 

 13.4: Non-numeric missing value flags 

 13.5: Numeric missing value flags 

 13.6: Selecting observations and variables 

 13.7: Transforming variables using the DEFINE command 

 13.8: Freeing and fixing parameters and giving starting values 

 13.9: Equalities in a single group analysis 

 13.10: Equalities in a multiple group analysis 

 13.11: Using PWITH to estimate adjacent residual covariances 

 13.12: Chi-square difference testing for WLSMV and MLMV 

 13.13: Analyzing multiple imputation data sets   

 13.14: Saving data  

 13.15: Saving factor scores 

 13.16: Using the PLOT command 

 13.17: Merging data sets 

 13.18: Using replicate weights 

 13.19: Generating, using, and saving replicate weights 



CHAPTER 13 

500 

EXAMPLE 13.1: A COVARIANCE MATRIX AS DATA 
 

 
TITLE: this is an example of a CFA with 

continuous factor indicators using a 

covariance matrix as data  

DATA: FILE IS ex5.1.dat; 

 TYPE = COVARIANCE; 

 NOBSERVATIONS = 1000;  

VARIABLE: NAMES ARE y1-y6; 

MODEL: f1 BY y1-y3; 

 f2 BY y4-y6; 

 

The example above is based on Example 5.1 in which individual data are 

analyzed.  In this example, a covariance matrix is analyzed.  The TYPE 

option is used to specify that the input data set is a covariance matrix.  

The NOBSERVATIONS option is required for summary data and is 

used to indicate how many observations are in the data set used to create 

the covariance matrix.  Summary data are required to be in an external 

data file in free format.  Following is an example of the data: 

 

1.0 

.86  1.0 

.56  .76  1.0 

.78  .34  .48  1.0 

.65  .87  .32  .56  1.0 

.66  .78  .43  .45  .33  1.0 

 

EXAMPLE 13.2: MEANS AND A COVARIANCE MATRIX AS 

DATA 
 

 
TITLE: this is an example of a mean structure CFA  

 with continuous factor indicators using 

means and a covariance matrix as data 

DATA: FILE IS ex5.9.dat; 

 TYPE IS MEANS COVARIANCE; 

 NOBSERVATIONS = 1000; 

VARIABLE: NAMES ARE y1a-y1c y2a-y2c; 

MODEL: f1 BY y1a y1b@1 y1c@1;  

 f2 BY y2a y2b@1 y2c@1; 

 [y1a y1b y1c] (1);  

 [y2a y2b y2c] (2); 
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The example above is based on Example 5.9 in which individual data are 

analyzed.  In this example, means and a covariance matrix are analyzed.  

The TYPE option is used to specify that the input data set contains 

means and a covariance matrix.  The NOBSERVATIONS option is 

required for summary data and is used to indicate how many 

observations are in the data set used to create the means and covariance 

matrix. Summary data are required to be in an external data file in free 

format.  Following is an example of the data.  The means come first 

followed by the covariances.  The covariances must start on a new 

record.  

 

.4 .6 .3 .5  

1.0 

.86  1.0 

.56  .76  1.0 

.78  .34  .48  1.0 

  

EXAMPLE 13.3: READING DATA WITH A FIXED FORMAT 
 

 
TITLE: this is an example of a CFA with 

covariates (MIMIC) with continuous factor 

indicators using data in a fixed format  

DATA: FILE IS ex5.8.dat; 

 FORMAT IS 3f4.2 3f2 f1 2f2;  

VARIABLE: NAMES ARE y1-y6 x1-x3; 

MODEL: f1 BY y1-y3; 

 f2 BY y4-y6; 

 f1 f2 ON x1-x3; 

 

The example above is based on Example 5.8 in which individual data 

with a free format are analyzed.  Because the data are in free format, a 

FORMAT statement is not required.  In this example, the data have a 

fixed format.  The inclusion of a FORMAT statement is required in this 

situation.  The FORMAT statement describes the position of the nine 

variables in the data set.  In this example, the first three variables take up 

four columns each and are read such that two digits follow the decimal 

point (3f4.2).  The next three variables take three columns with no digits 

after the decimal point (3f2).  The seventh variable takes one column 

with no digits following the decimal point (f1), and the eighth and ninth 

variables each take two columns with no digits following the decimal 

point (2f2).     
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EXAMPLE 13.4: NON-NUMERIC MISSING VALUE FLAGS 
 

 
TITLE: this is an example of a SEM with 

continuous factor indicators using data 

with non-numeric missing value flags 

DATA: FILE IS ex5.11.dat; 

VARIABLE: NAMES ARE y1-y12; 

 MISSING = *; 

MODEL: f1 BY y1-y3;  

 f2 BY y4-y6; 

 f3 BY y7-y9; 

 f4 BY y10-y12; 

 f4 ON f3; 

 f3 ON f1 f2;  

 

The example above is based on Example 5.11 in which the data contain 

no missing values.  In this example, there are missing values and the 

asterisk (*) is used as a missing value flag.  The MISSING option is used 

to identify the values or symbol in the analysis data set that will be 

treated as missing or invalid.  Non-numeric missing value flags are 

applied to all variables in the data set.   

 

EXAMPLE 13.5: NUMERIC MISSING VALUE FLAGS 
 

 
TITLE: this is an example of a SEM with 

continuous factor indicators using data 

with numeric missing value flags 

DATA: FILE IS ex5.11.dat; 

VARIABLE: NAMES ARE y1-y12; 

 MISSING = y1-y3(9) y4(9 99) y5-y12(9-12); 

MODEL: f1 BY y1-y3;  

 f2 BY y4-y6; 

 f3 BY y7-y9; 

 f4 BY y10-y12; 

 f4 ON f3; 

 f3 ON f1 f2;  

 

The example above is based on Example 5.11 in which the data contain 

no missing values.  In this example, there are missing values and 

numeric missing value flags are used.  The MISSING option is used to 

identify the values or symbol in the analysis data set that will be treated 

as missing or invalid.  Numeric missing value flags can be applied to a 
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single variable, to groups of variables, or to all of the variables in a data 

set.  In the example above, y1, y2, and y3 have a missing value flag of 9; 

y4 has missing value flags of 9 and 99; and y5 through y12 have missing 

value flags of 9, 10, 11, and 12.  If all variables in a data set have the 

same missing value flags, the keyword ALL can be used as follows: 

 

MISSING = ALL (9); 

 

to indicate that all variables have the missing value flag of 9.   

 

EXAMPLE 13.6: SELECTING OBSERVATIONS AND 

VARIABLES 
 

 
TITLE: this is an example of a path analysis 

 with continuous dependent variables using 

a subset of the data 

DATA: FILE IS ex3.11.dat; 

VARIABLE: NAMES ARE y1-y6 x1-x4; 

 USEVARIABLES ARE y1-y3 x1-x3; 

 USEOBSERVATION ARE (x4 EQ 2); 

MODEL: y1 y2 ON x1 x2 x3; 

 y3 ON y1 y2 x2; 

 

The example above is based on Example 3.11 in which the entire data 

set is analyzed.  In this example, a subset of variables and a subset of 

observations are analyzed.  The USEVARIABLES option is used to 

select variables for an analysis.  In the example above, y1, y2, y3, x1, x2, 

and x3 are selected.  The USEOBSERVATIONS option is used to select 

observations for an analysis by specifying a conditional statement.  In 

the example above, individuals with the value of 2 on variable x4 are 

included in the analysis.   
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EXAMPLE 13.7: TRANSFORMING VARIABLES USING THE 

DEFINE COMMAND 
 

 
TITLE: this is an example of a path analysis 

 with continuous dependent variables where 

two variables are transformed  

DATA: FILE IS ex3.11.dat; 

DEFINE: y1 = y1/100; 

 x3 = SQRT(x3); 

VARIABLE: NAMES ARE y1-y6 x1-x4; 

 USEVARIABLES = y1-y3 x1-x3; 

MODEL: y1 y2 ON x1 x2 x3; 

 y3 ON y1 y2 x2; 

 

The example above is based on Example 3.11 where the variables are 

not transformed.  In this example, two variables are transformed using 

the DEFINE command.  The variable y1 is transformed by dividing it by 

100.  The variable x3 is transformed by taking the square root of it.  The 

transformed variables are used in the estimation of the model.  The 

DEFINE command can also be used to create new variables.  

 

EXAMPLE 13.8: FREEING AND FIXING PARAMETERS AND 

GIVING STARTING VALUES 
 

 
TITLE: this is an example of a CFA with  

 continuous factor indicators where  

 parameters are freed, fixed, and starting  

 values are given  

DATA: FILE IS ex5.1.dat; 

VARIABLE: NAMES ARE y1-y6; 

MODEL: f1 BY y1* y2*.5 y3; 

 f2 BY y4* y5 y6*.8; 

 f1-f2@1; 

 

The example above is based on Example 5.1 where default starting 

values are used.  In this example, parameters are freed, assigned starting 

values, and fixed.  In the two BY statements, the factor loadings for y1 

and y4 are fixed at one as the default because they are the first variable 

following the BY statement.  This is done to set the metric of the factors.  

To free these parameters, an asterisk (*) is placed after y1 and y4.  The 

factor loadings for variables y2, y3, y5, and y6 are free as the default 
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with starting values of one.  To assign starting values to y2 and y6, an 

asterisk (*) followed by a number is placed after y2 and y6.  The starting 

value of .5 is assigned to y2, and the starting value of .8 is assigned to 

y6.  The variances of f1 and f2 are free to be estimated as the default.  

To fix these variances to one, an @ symbol followed by 1 is placed after 

f1 and f2 in a list statement.  This is another way to set the metric of the 

factors.   

 

EXAMPLE 13.9: EQUALITIES IN A SINGLE GROUP 

ANALYSIS 
 

 
TITLE: this is an example of a CFA with 

continuous factor indicators with 

equalities  

DATA: FILE IS ex5.1.dat; 

VARIABLE: NAMES ARE y1-y6; 

MODEL: f1 BY y1 

       y2-y3 (1-2); 

 f2 BY y4 

       y5-y6 (1-2); 

 y1-y3 (3); 

 y4-y6 (4); 

 

This example is based on the model in Example 5.1 where there are no 

equality constraints on model parameters.  In the example above, several 

model parameters are constrained to be equal.  Equality constraints are 

specified by placing the same number in parentheses following the 

parameters that are to be held equal.  The label (1-2) following the factor 

loadings uses the list function to assign equality labels to these 

parameters. The label 1 is assigned to the factor loadings of y2 and y5 

which holds these factor loadings equal.  The label 2 is assigned to the 

factor loadings of y3 and y6 which holds these factor loadings equal.  

The third equality statement holds the residual variances of y1, y2, and 

y3 equal using the label (3), and the fourth equality statement holds the 

residual variances of y4, y5, and y6 equal using the label (4).    
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EXAMPLE 13.10: EQUALITIES IN A MULTIPLE GROUP 

ANALYSIS 
 

 
TITLE: this is an example of a multiple group CFA 

with covariates (MIMIC) with continuous 

factor indicators and a mean structure 

with between and within group equalities 

DATA: FILE IS ex5.15.dat; 

VARIABLE: NAMES ARE y1-y6 x1-x3 g; 

 GROUPING IS g (1=g1 2=g2 3=g3); 

MODEL: f1 BY y1-y3; 

 f2 BY y4-y6; 

 f1 f2 ON x1-x3; 

 f1 (1); 

 y1-y3 (2); 

 y4-y6 (3-5);  

MODEL g1: f1 BY y3*;  

 [y3*]; 

 f2 (6); 

MODEL g3: f2 (6); 

 

This example is based on Example 5.15 in which the model has two 

groups.  In this example, the model has three groups.  Parameters are 

constrained to be equal by placing the same number in parentheses 

following the parameters that will be held equal.  In multiple group 

analysis, the overall MODEL command is used to set equalities across 

groups.  The group-specific MODEL commands are used to specify 

equalities for specific groups or to relax equalities specified in the 

overall MODEL command.  In the example above, the first equality 

statement holds the variance of f1 equal across the three groups in the 

analysis using the equality label 1.  The second equality statement holds 

the residual variances of y1, y2, and y3 equal to each other and equal 

across groups using the equality label 2.  The third equality statement 

uses the list function to hold the residual variance of y4, y5, and y6 equal 

across groups by assigning the equality label 3 to the residual variance of 

y4, the label 4 to the residual variance of y5, and the label 5 to the 

residual variance of y6.   The fourth and fifth equality statements hold 

the variance of f2 equal across groups g1 and g3 using the equality label 

6.   
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EXAMPLE 13.11: USING PWITH TO ESTIMATE ADJACENT 

RESIDUAL COVARIANCES 
 

 
TITLE: this is an example of a linear growth 

model for a continuous outcome with 

adjacent residual covariances  

DATA: FILE IS ex6.1.dat; 

VARIABLE: NAMES ARE y11-y14 x1 x2 x31-x34; 

 USEVARIABLES ARE y11-y14; 

MODEL: i s | y11@0 y12@1 y13@2 y14@3; 

 y11-y13 PWITH y12-y14; 

 

The example above is based on Example 6.1 in which a linear growth 

model with no residual covariances for the outcome is estimated.  In this 

example, the PWITH option is used to specify adjacent residual 

covariances.  The PWITH option pairs the variables on the left-hand side 

of the PWITH statement with the variables on the right-hand side of the 

PWITH statement.  Residual covariances are estimated for the pairs of 

variables.  In the example above, residual covariances are estimated for 

y11 with y12, y12 with y13, and y13 with y14.    

 

EXAMPLE 13.12: CHI-SQUARE DIFFERENCE TESTING FOR 

WLSMV AND MLMV 
 

 

This example shows the two steps needed to do a chi-square difference 

test using the WLSMV and MLMV estimators.  For these estimators, the 

conventional approach of taking the difference between the chi-square 

values and the difference in the degrees of freedom is not appropriate 

because the chi-square difference is not distributed as chi-square.  This 

example is based on Example 5.3.    
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TITLE: this is an example of the first step 

needed for a chi-square difference test 

for the WLSMV or the MLMV estimator  

DATA: FILE IS ex5.3.dat; 

VARIABLE: NAMES ARE u1-u3 y4-y9; 

 CATEGORICAL ARE u1 u2 u3; 

MODEL: f1 BY u1-u3; 

 f2 BY y4-y6; 

 f3 BY y7-y9; 

SAVEDATA: DIFFTEST IS deriv.dat; 

 

The input setup above shows the first step needed to do a chi-square 

difference test for the WLSMV and MLMV estimators.  In this analysis, 

the less restrictive H1 model is estimated.  The DIFFTEST option of the 

SAVEDATA command is used to save the derivatives of the H1 model 

for use in the second step of the analysis.  The DIFFTEST option is used 

to specify the name of the file in which the derivatives from the H1 

model will be saved.  In the example above, the file name is deriv.dat.     

 
TITLE: this is an example of the second step 

needed for a chi-square difference test 

for the WLSMV or the MLMV estimator  

DATA: FILE IS ex5.3.dat; 

VARIABLE: NAMES ARE u1-u3 y4-y9; 

 CATEGORICAL ARE u1 u2 u3; 

ANALYSIS: DIFFTEST IS deriv.dat; 

MODEL: f1 BY u1-u3; 

 f2 BY y4-y6; 

 f3 BY y7-y9; 

 f1 WITH f2-f3@0; 

 f2 WITH f3@0; 

 

The input setup above shows the second step needed to do a chi-square 

difference test for the WLSMV and MLMV estimators.  In this analysis, 

the more restrictive H0 model is estimated.  The restriction is that the 

covariances among the factors are fixed at zero in this model.  The 

DIFFTEST option of the ANALYSIS command is used to specify the 

name of the file that contains the derivatives of the H1 model that was 

estimated in the first step of the analysis.  This file is deriv.dat.   
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EXAMPLE 13.13: ANALYZING MULTIPLE IMPUTATION 

DATA SETS  
  

 
TITLE: this is an example of a CFA with 

continuous factor indicators using 

multiple imputation data sets  

DATA: FILE IS implist.dat; 

 TYPE = IMPUTATION; 

VARIABLE: NAMES ARE y1-y6; 

MODEL: f1 BY y1-y3; 

 f2 BY y4-y6; 

 

The example above is based on Example 5.1 in which a single data set is 

analyzed.  In this example, data sets generated using multiple imputation 

are analyzed.  The FILE option of the DATA command is used to give 

the name of the file that contains the names of the multiple imputation 

data sets to be analyzed.  The file named using the FILE option of the 

DATA command must contain a list of the names of the multiple 

imputation data sets to be analyzed.  This file must be created by the 

user unless the data are imputed using the DATA IMPUTATION 

command in which case the file is created as part of the multiple 

imputation.  Each record of the file must contain one data set name.  For 

example, if five data sets are being analyzed, the contents of implist.dat 

would be: 

 

imp1.dat 

imp2.dat 

imp3.dat 

imp4.dat 

imp5.dat 

 

where imp1.dat, imp2.dat, imp3.dat, imp4.dat, and imp5.dat are the 

names of the five data sets created using multiple imputation. 

 

When TYPE=IMPUTATION is specified, an analysis is carried out for 

each data set in the file named using the FILE option.  Parameter 

estimates are averaged over the set of analyses, and standard errors are 

computed using the average of the standard errors over the set of 

analyses and the between analysis parameter estimate variation (Schafer, 

1997).    
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EXAMPLE 13.14: SAVING DATA 
 

 
TITLE: this is an example of a path analysis 

 with continuous dependent variables using 

a subset of the data which is saved for 

future analysis 

DATA: FILE IS ex3.11.dat; 

VARIABLE: NAMES ARE y1-y6 x1-x4; 

 USEOBSERVATION ARE (x4 EQ 2); 

 USEVARIABLES ARE y1-y3 x1-x3; 

MODEL: y1 y2 ON x1 x2 x3; 

 y3 ON y1 y2 x2; 

SAVEDATA: FILE IS regress.sav; 

 

The example above is based on Example 3.11 in which the analysis data 

are not saved.  In this example, the SAVEDATA command is used to 

save the analysis data set.  The FILE option is used to specify the name 

of the ASCII file in which the individual data used in the analysis will be 

saved.  In this example, the data will be saved in the file regress.sav.  

The data are saved in fixed format as the default unless the FORMAT 

option of the SAVEDATA command is used. 

 

EXAMPLE 13.15: SAVING FACTOR SCORES  
 

 
TITLE: this is an example of a CFA with 

covariates (MIMIC) with continuous factor 

indicators where factor scores are 

estimated and saved 

DATA: FILE IS ex5.8.dat; 

VARIABLE: NAMES ARE y1-y6 x1-x3; 

MODEL: f1 BY y1-y3; 

 f2 BY y4-y6; 

 f1 f2 ON x1-x3; 

SAVEDATA: FILE IS mimic.sav; SAVE = FSCORES; 

 

The example above is based on Example 5.8 in which factor scores are 

not saved.  In this example, the SAVEDATA command is used to save 

the analysis data set and factor scores.  The FILE option is used to 

specify the name of the ASCII file in which the individual data used in 

the analysis will be saved.  In this example, the data will be saved in the 

file mimic.sav.  The SAVE option is used to specify that factor scores 

will be saved along with the analysis data.  The data are saved in fixed 
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format as the default unless the FORMAT option of the SAVEDATA 

command is used.   

 

EXAMPLE 13.16: USING THE PLOT COMMAND 
 

 
TITLE: this is an example of a linear growth 

model for a continuous outcome  

DATA: FILE IS ex6.1.dat; 

VARIABLE: NAMES ARE y11-y14 x1 x2 x31-x34; 

 USEVARIABLES ARE y11-y14; 

MODEL: i s | y11@0 y12@1 y13@2 y14@3; 

PLOT: SERIES = y11-y14 (s); 

 TYPE = PLOT3; 

 

The example above is based on Example 6.1 in which no graphical 

displays of observed data or analysis results are requested.  In this 

example, the PLOT command is used to request graphical displays of 

observed data and analysis results.  These graphical outputs can be 

viewed after the Mplus analysis is completed using a post-processing 

graphics module.  The SERIES option is used to list the names of a set 

of variables along with information about the x-axis values to be used in 

the graphs.  For growth models, the set of variables is the repeated 

measures of the outcome over time, and the x-axis values are the time 

scores in the growth model.  In the example above, the s in parentheses 

after the variables listed in the SERIES statement is the name of the 

slope growth factor.  This specifies that the x-axis values are the time 

scores values specified in the growth model.  In this example, they are 0, 

1, 2, and 3.  Other ways to specify x-axis values are described in Chapter 

18.  The TYPE option is used to request specific plots.  The TYPE 

option of the PLOT command is described in Chapter 18.  
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EXAMPLE 13.17: MERGING DATA SETS 
 

 
TITLE: this is an example of merging two data 

sets 

DATA: FILE IS data1.dat; 

VARIABLE: NAMES ARE id y1-y4; 

   IDVARIABLE IS id; 

 USEVARIABLES = y1 y2; 

 MISSING IS *; 

ANALYSIS: TYPE = BASIC; 

SAVEDATA: MFILE = data2.dat; 

 MNAMES ARE id y5-y8; 

 MFORMAT IS F6 4F2;  

 MSELECT ARE y5 y8; 

 MMISSING = y5-y8 (99); 

 FILE IS data12.sav; 

 FORMAT IS FREE; 

 MISSFLAG = 999; 

 

This example shows how to merge two data sets using TYPE=BASIC.  

Merging can be done with any analysis type.  The first data set data1.dat 

is named using the FILE option of the DATA command.  The second 

data set data2.dat is named using the MFILE option of the SAVEDATA 

command.  The NAMES option of the VARIABLE command gives the 

names of the variables in data1.dat.  The MNAMES option of the 

SAVEDATA command gives the names of the variables in data2.dat.  

The IDVARIABLE option of the VARIABLE command gives the name 

of the variable to be used for merging.  This variable must appear on 

both the NAMES and MNAMES statements.  The merged data set 

data12.dat is saved in the file named using the FILE option of the 

SAVEDATA command.  The default format for this file is free and the 

default missing value flag is the asterisk (*).  These defaults can be 

changed using the FORMAT and MISSFLAG options as shown above.  

In the merged data set data12.dat, the missing value flags of asterisk (*) 

in data1.dat and 99 in data2.dat are replaced by 999. 

 

For data1.dat, the USEVARIABLES option of the VARIABLE 

command is used to select a subset of the variables to be in the analysis 

and for merging.  The MISSING option of the VARIABLE command is 

used to identify the values or symbol in the data set that are treated as 

missing or invalid.  In data1.dat, the asterisk (*) is the missing value 
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flag.  If the data are not in free format, the FORMAT statement can be 

used to specify a fixed format. 

 

For data2.dat, the MFORMAT option is used to specify a format if the 

data are not in the default free format.  The MSELECT option is used to 

select a subset of the variables to be used for merging.  The MMISSING 

option is used to identify the values or symbol in the data set that are 

treated as missing or invalid.   

 

EXAMPLE 13.18: USING REPLICATE WEIGHTS 
 

 
TITLE: this is an example of using replicate 

weights 

DATA: FILE IS rweights.dat; 

VARIABLE: NAMES ARE y1-y4 weight r1-r80; 

 WEIGHT = weight; 

 REPWEIGHTS = r1-r80; 

ANALYSIS: TYPE = COMPLEX; 

 REPSE = JACKKNIFE1; 

MODEL: f BY y1-y4;  

 

This example shows how to use replicate weights in a factor analysis.  

Replicate weights summarize information about a complex sampling 

design.  The WEIGHT option must be used when the REPWEIGHTS 

option is used.  The WEIGHT option is used to identify the variable that 

contains sampling weight information.  In this example, the sampling 

weight variable is weight.  The REPWEIGHTS option is used to identify 

the replicate weight variables.  These variables are used in the estimation 

of standard errors of parameter estimates (Asparouhov & Muthén, 

2009b).  The data set in this example contains 80 replicate weights 

variables, r1 through r80.  The STRATIFICATION and CLUSTER 

options may not be used in conjunction with the REPWEIGHTS option.  

Analysis using replicate weights is available only with 

TYPE=COMPLEX.  The REPSE option is used to specify the 

resampling method that was used to create the replicate weights.  The 

setting JACKKNIFE1 specifies that Jackknife draws were used.   
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EXAMPLE 13.19: GENERATING, USING, AND SAVING 

REPLICATE WEIGHTS 
 

 
TITLE: this is an example of generating, using, 

and saving replicate weights 

DATA: FILE IS ex13.19.dat; 

VARIABLE: NAMES ARE y1-y4 weight strat psu;   

 WEIGHT = weight; 

 STRATIFICATION = strat; 

 CLUSTER = psu; 

ANALYSIS: TYPE = COMPLEX; 

 REPSE = BOOTSTRAP; 

 BOOTSTRAP = 100; 

MODEL: f BY y1-y4; 

SAVEDATA: FILE IS rweights.sav; 

 SAVE = REPWEIGHTS;  

 

This example shows how to generate, use, and save replicate weights in 

a factor analysis.  Replicate weights summarize information about a 

complex sampling design (Korn & Graubard, 1999; Lohr, 1999; 

Asparouhov & Muthén, 2009b).  When replicate weights are generated, 

the REPSE option of the ANALYSIS command and the WEIGHT option 

of the VARIABLE command along with the STRATIFICATION and/or 

CLUSTER options of the VARIABLE command are used.  The 

WEIGHT option is used to identify the variable that contains sampling 

weight information.  In this example, the sampling weight variable is 

weight.  The STRATIFICATION option is used to identify the variable 

in the data set that contains information about the subpopulations from 

which independent probability samples are drawn.  In this example, the 

variable is strat.  The CLUSTER option is used to identify the variable 

in the data set that contains clustering information.  In this example, the 

variable is psu.  Replicate weights can be generated and analyzed only 

with TYPE=COMPLEX.  The REPSE option is used to specify the 

resampling method that will be used to create the replicate weights.  The 

setting BOOTSTRAP specifies that bootstrap draws will be used.  The 

BOOTSTRAP option specifies that 100 bootstrap draws will be carried 

out.  When replicate weights are generated, they can be saved for further 

analysis using the FILE and SAVE options of the SAVEDATA 

command.  Replicate weights will be saved along with the other analysis 

variables in the file named rweights.sav.   
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CHAPTER 14 

SPECIAL MODELING ISSUES 
 

 

In this chapter, the following special modeling issues are discussed:   

 

 Model estimation 

 Multiple group analysis 

 Missing data 

 Categorical mediating variables 

 Calculating probabilities from probit regression coefficients 

 Calculating probabilities from logistic regression coefficients 

 Parameterization of models with more than one categorical latent 

variable 

 

In the model estimation section, technical details of parameter 

specification and model estimation are discussed.  In the multiple group 

analysis section, differences in model specification, differences in data 

between single-group analysis and multiple group analysis, and testing 

for measurement invariance are described.  In the missing data section, 

estimation of models when there is missing data and special features for 

data missing by design are described.  There is a section that describes 

how categorical mediating variables are treated in model estimation.  

There is a section on calculating probabilities for probit regression 

coefficients.  In the section on calculating probabilities for logistic 

regression coefficients, a brief background with examples of converting 

logistic regression coefficients to probabilities and odds is given.  In the 

section on parameterization with multiple categorical latent variables, 

conventions related to logistic and loglinear parameterizations of these 

models are described.   

 

MODEL ESTIMATION 
 

There are several important issues involved in model estimation beyond 

specifying the model.  The following general analysis considerations are 

discussed below:  

 

 Parameter default settings 

 Parameter default starting values 
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 User-specified starting values for mixture models 

 Multiple solutions for mixture models 

 Convergence problems 

 Model identification 

 Numerical integration 

 

PARAMETER DEFAULT SETTINGS 
 

Default settings are used to simplify the model specification.  In order to 

minimize the information provided by the user, certain parameters are 

free, constrained to be equal, or fixed at zero as the default.  These 

defaults are chosen to reflect common practice and to avoid 

computational problems.  These defaults can be overridden.  Because of 

the extensive default settings, it is important to examine the analysis 

results to verify that the model that is estimated is the intended model.  

The output contains parameter estimates for all free parameters in the 

model, including those that are free by default and those that are free 

because of the model specification.  Parameters that are fixed in the 

input file are also listed with these results.  Parameters fixed by default 

are not included.  In addition, the TECH1 option of the OUTPUT 

command shows which parameters in the model are free to be estimated 

and which are fixed.    

 

Following are the default settings for means/intercepts/thresholds in the 

model when they are included: 

 

 Means of observed independent variables are not part of the model.  

The model is estimated conditioned on the observed independent 

variables. 

 In single group analysis, intercepts and thresholds of observed 

dependent variables are free. 

 In multiple group analysis and multiple class analysis, intercepts and 

thresholds of observed dependent variables that are used as factor 

indicators for continuous latent variables are free and equal across 

groups or classes.  Otherwise, they are free and unequal in the other 

groups or classes except for the inflation part of censored and count 

variables in which case they are free and equal. 

 In single group analysis, means and intercepts of continuous latent 

variables are fixed at zero.  
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 In multiple group analysis and multiple class analysis, means and 

intercepts of continuous latent variables are fixed at zero in the first 

group and last class and are free and unequal in the other groups or 

classes except when a categorical latent variable is regressed on a 

continuous latent variable.  In this case, the means and intercepts of 

continuous latent variables are fixed at zero in all classes. 

 Logit means and intercepts of categorical latent variables are fixed at 

zero in the last class and free and unequal in the other classes.    

 

Following are the default settings for variances/residual variances/scale 

factors: 

 

 Variances of observed independent variables are not part of the 

model.  The model is estimated conditioned on the observed 

independent variables. 

 In single group analysis and multiple group analysis, variances and 

residual variances of continuous and censored observed dependent 

variables and continuous latent variables are free.  In multiple class 

analysis, variances/residual variances of continuous and censored 

observed dependent variables and continuous latent variables are 

free and equal across classes. 

 In single group analysis using the Delta parameterization, scale 

factors of latent response variables for categorical observed 

dependent variables are fixed at one.  In multiple group analysis 

using the Delta parameterization, scale factors of latent response 

variables for categorical observed dependent variables are fixed at 

one in the first group and are free and unequal in the other groups.   

 In single group analysis using the Theta parameterization, variances 

and residual variances of latent response variables for categorical 

observed dependent variables are fixed at one.  In multiple group 

analysis using the Theta parameterization, variances and residual 

variances of latent response variables for categorical observed 

dependent variables are fixed at one in the first group and are free 

and unequal in the other groups.   

 

Following are the default settings for covariances/residual covariances: 

 

 Covariances among observed independent variables are not part of 

the model.  The model is estimated conditioned on the observed 

independent variables. 
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 In single group analysis and multiple group analysis, covariances 

among continuous latent independent variables are free except when 

they are random effect variables defined by using ON or XWITH in 

conjunction with the | symbol.  In these cases, the covariances 

among continuous latent independent variables are fixed at zero.  In 

multiple class analysis, free covariances among continuous latent 

independent variables are equal across classes.   

 In single group analysis and multiple group analysis, covariances 

among continuous latent independent variables and observed 

independent variables are fixed at zero. 

 Covariances among observed variables not explicitly dependent or 

independent are fixed at zero. 

 Residual covariances among observed dependent variables and 

among continuous latent dependent variables are fixed at zero with 

the following exceptions: 

 In single group analysis and multiple group analysis, 

residual covariances among observed dependent variables 

are free when neither variable influences any other variable, 

when the variables are not factor indicators, and when the 

variables are either continuous, censored (using weighted 

least squares), or categorical (using weighted least squares).  

In multiple class analysis, free residual covariances among 

observed dependent variables are equal across classes.  

 In single group analysis and multiple group analysis, 

residual covariances among continuous latent dependent 

variables that are not indicators of a second-order factor are 

free when neither variable influences any other variable 

except its own indicators, except when they are random 

effect variables defined by using ON or XWITH in 

conjunction with the | symbol.  In these cases, the 

covariances among continuous latent independent variables 

are fixed at zero.  In multiple class analysis, free residual 

covariances among continuous latent dependent variables 

are equal across classes.  

 

Following are the default settings for regression coefficients: 

 

 Regression coefficients are fixed at zero unless they are explicitly 

mentioned in the MODEL command.  In multiple group analysis, 

free regression coefficients are unequal in all groups unless they 

involve the regression of an observed dependent variable that is used 
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as a factor indicator on a continuous latent variable.  In this case, 

they are free and equal across groups.  In multiple class analysis, 

free regression coefficients are equal across classes. 

 

PARAMETER DEFAULT STARTING VALUES 
 

If a parameter is not free by default, when the parameter is mentioned in 

the MODEL command, it is free at the default starting value unless 

another starting value is specified using the asterisk (*) followed by a 

number or the parameter is fixed using the @ symbol followed by a 

number.  The exception to this is that variances and residual variances 

for latent response variables corresponding to categorical observed 

dependent variables cannot be free in the Delta parameterization.  They 

can be free in the Theta parameterization.  In the Theta parameterization, 

scale factors for latent response variables corresponding to categorical 

observed dependent variables cannot be free.  They can be free in the 

Delta parameterization. 

 

GENERAL DEFAULTS 
   

Following are the default starting values: 

 

Means/intercepts of continuous and  0 or sample mean  

censored observed variables depending on the 

analysis 

Means/intercepts of count observed variables 0 

Thresholds of categorical observed variables 0 or determined by the 

          sample proportions 

 depending on the 

analysis 

Variances/residual variances of                      .05 or 1 depending on     

continuous latent variables  the analysis 

Variances/residual variances of                         .5 of the sample                                               

continuous and censored observed variables       variance 

Variances/residual variances of                         1                          

latent response variables for categorical 

observed variables  

Scale factors     1 

 

Loadings for indicators of continuous                 1 

latent variables      
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All other parameters    0 

 

For situations where starting values depend on the analysis, the starting 

values can be found using the TECH1 option of the OUTPUT command. 

  

DEFAULTS FOR GROWTH MODELS 
 

When growth models are specified using the | symbol of the MODEL 

command and the outcome is continuous or censored, automatic starting 

values for the growth factor means and variances are generated based on 

individual regressions of the outcome variable on time.  For other 

outcome types, the defaults above apply.   

 

RANDOM STARTING VALUES FOR MIXTURE MODELS  
 

When TYPE=MIXTURE is specified, the default starting values are 

automatically generated values that are used to create randomly 

perturbed sets of starting values for all parameters in the model except 

variances and covariances.  

 

USER-SPECIFIED STARTING VALUES FOR 

MIXTURE MODELS 
 

Following are suggestions for obtaining starting values when random 

starts are not used with TYPE=MIXTURE.  User-specified starting 

values can reduce computation time with STARTS=0.  They can be 

helpful when there is substantive knowledge of the relationship between 

latent classes and the latent class indicators.  For example, it may be 

well-known that there is a normative class in which individuals have a 

very low probability of engaging in any of the behaviors represented by 

the latent class indicators.  User-specified starting values may also be 

used for confirmatory latent class analysis or confirmatory growth 

mixture modeling.       

 

LATENT CLASS INDICATORS   
 

Starting values for the thresholds of the categorical latent class 

indicators are given in the logit scale.  For ordered categorical latent 

class indicators, the threshold starting values for each variable must be 

ordered from low to high.  The exception to this is when equality 
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constraints are placed on adjacent thresholds for a variable in which case 

the same starting value is used.  It is a good idea to start the classes apart 

from each other. 

 

Following is a translation of probabilities to logit threshold values that 

can be used to help in selecting starting values.  Note that logit threshold 

values have the opposite sign from logit intercept values. The probability 

is the probability of exceeding a threshold.  High thresholds are 

associated with low probabilities.  

 

Very low probability Logit threshold of +3 

Low probability  Logit threshold of +1 

High probability  Logit threshold of -1 

Very high probability Logit threshold of -3 

 

GROWTH MIXTURE MODELS 
 

In most analyses, it is sufficient to use the default starting values 

together with random starts.  If starting values are needed, the following 

two strategies are suggested.  The first strategy is to estimate the growth 

model as either a one-class model or a regular growth model to obtain 

means and standard deviations for the intercept and slope growth factors.  

These values can be used to compute starting values.  For example, 

starting values for a 2 class model could be the mean plus or minus half 

of a standard deviation.  

 

The second strategy is to estimate a multi-class model with the variances 

and covariances of the growth factors fixed at zero.  The estimates of the 

growth factor means from this analysis can be used as starting values in 

an analysis where the growth factor variances and covariances are not 

fixed at zero.   

 

MULTIPLE SOLUTIONS FOR MIXTURE 

MODELS 
 

With mixture models, multiple maxima of the likelihood often exist.  It 

is therefore important to use more than one set of starting values to find 

the global maximum.  If the best (highest) loglikelihood value is not 

replicated in at least two final stage solutions and preferably more, it is 

possible that a local solution has been reached, and the results should not 

be interpreted without further investigation.  Following is an example of 
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a set of ten final stage solutions that point to a good solution because all 

of the final stage solutions have the same loglikelihood value: 

 
 Loglikelihood     Seed    Initial Stage Starts 

 

  -836.899    902278           21 

  -836.899    366706           29 

  -836.899    903420           5 

  -836.899    unperturbed      0 

  -836.899    27071            15 

  -836.899    967237           48 

  -836.899    462953           7 

  -836.899    749453           33 

  -836.899    637345           19 

  -836.899    392418           28    

 

Following is an example of a set of final stage solutions that may point 

to a possible local solution because the best loglikelihood value is not 

replicated: 

 
 Loglikelihood     Seed    Initial Stage Starts 

 

  -835.247    902278           21 

  -837.132    366706           29 

  -840.786    903420           5 

  -840.786    unperturbed      0 

  -840.786    27071            15 

  -853.684    967237           48 

  -867.123    462953           7 

  -890.442    749453           33 

  -905.512    637345           19 

  -956.774    392418           28    

 

Although the loglikelihood value of -840.786 is replicated three times, it 

points to a local solution because it is not the best loglikelihood value.  

The best loglikelihood value must be replicated for a trustworthy 

solution.      

 

When several final stage optimizations result in similar loglikelihood 

values that are close to the highest loglikelihood value, the parameter 

estimates for these solutions should be studied using the OPTSEED 

option of the ANALYSIS command.  If the parameter estimates are 

different across the solutions, this indicates that the model is not well-

defined for the data.  This may be because too many classes are being 

extracted.  If the parameter values are very similar across the solutions, 

the solution with the highest loglikelihood should be chosen.   
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Following is a set of recommendations for an increasingly more 

thorough investigation of multiple solutions using the STARTS and 

STITERATIONS options of the ANALYSIS command.  The first 

recommendation is:  

 

STARTS = 100 20; 

 

which increases the number of initial stage random sets of starting 

values from the default of 20 to 100 and the number of final stage 

optimizations from the default of 4 to 20.  In this recommendation, the 

default of ten STITERATIONS is used. 

 

A second recommendation is: 

 

STARTS = 100 20; 

STITERATIONS = 20; 

 

where STITERATIONS is increased from the default of 10 iterations to 

20 iterations in addition to increasing the number of initial stage random 

sets of starting values and final stage optimizations.  

 

A third recommendation is to increase the initial stage random sets of 

starting values further to 500, increase the final stage optimizations to 

100, with or without increasing STITERATIONS.  Following is the 

specification without increasing STITERATIONS. 

 

STARTS = 500 100; 

 

CONVERGENCE PROBLEMS 
 

Some combinations of models and data may cause convergence 

problems.  A message to this effect is found in the output.  Convergence 

problems are often related to variables in the model being measured on 

very different scales, poor starting values, and/or a model being 

estimated that is not appropriate for the data.  In addition, certain models 

are more likely to have convergence problems. These include mixture 

models, two-level models, and models with random effects that have 

small variances.  
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GENERAL CONVERGENCE PROBLEMS 
 

It is useful to distinguish between two types of non-convergence.  The 

type of non-convergence can be determined by examining the 

optimization history of the analysis which is obtained by using the 

TECH5 and/or TECH8 options of the OUTPUT command.  In the first 

type of non-convergence, the program stops before convergence because 

the maximum number of iterations has been reached.  In the second type 

of non-convergence, the program stops before the maximum number of 

iterations has been reached because of difficulties in optimizing the 

fitting function.   

 

For both types of convergence problems, the first thing to check is that 

the continuous observed variables are measured on similar scales.  

Convergence problems can occur when the sample variance values for 

continuous observed variables fall substantially outside of the range of 1 

to 10.  This is particularly important with a combination of categorical 

and continuous observed variables.  When variances of continuous 

observed variables are large, the DEFINE command can be used to 

divide the variables by a constant.  When they are small, the DEFINE 

command can be used to multiply them by a constant. 

 

In the first type of problem, as long as no large negative 

variances/residual variances are found in the preliminary parameter 

estimates and each iteration has not had a large number of trys, 

convergence may be reached by increasing the number of iterations or 

using the preliminary parameter estimates as starting values.  If there are 

large negative variances/residual variances, new starting values should 

be tried.  In the second type of problem, the starting values are not 

appropriate for the model and the data.  New starting values should be 

tried.  Starting values for variance/residual variance parameters are the 

most important to change.  If new starting values do not help, the model 

should be modified. 

 

A useful way to avoid convergence problems due to poor starting values 

is to build up a model by estimating the model parts separately to obtain 

appropriate starting values for the full model.   
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CONVERGENCE PROBLEMS SPECIFIC TO MODELING 

WITH RANDOM EFFECTS 
 

Random effect models can have convergence problems when the random 

effect variables have small variances.   Problems can arise in models in 

which random effect variables are defined using the ON or AT options 

of the MODEL command in conjunction with the | symbol of the 

MODEL command and in growth models for censored, categorical, and 

count outcomes.  If convergence problems arise, information in the error 

messages identifies the problematic variable.  In addition, the output can 

be examined to see the size of the random effect variable variance.  If it 

is close to zero and the random effect variable is a random slope defined 

using an ON statement in conjunction with the | symbol, a fixed effect 

should be used instead by using a regular ON statement.  If it is close to 

zero and the random effect variable is a growth factor, the growth factor 

variance and corresponding covariances should be fixed at zero.   

 

CONVERGENCE PROBLEMS SPECIFIC TO MIXTURE 

MODELS 
 

In mixture models, convergence is determined not only by the 

derivatives of the loglikelihood but also by the absolute and relative 

changes in the loglikelihood and the changes in the class counts.  

Information about changes in the loglikelihood and the class counts can 

be found in TECH8. 

 

Even when a mixture model does converge, it is possible to obtain a 

local solution.  Therefore, it is important to run the model with multiple 

sets of starting values to guarantee that the best solution is obtained.  

The best solution is the solution with the largest loglikelihood.  As 

discussed above, the STARTS option of the ANALYSIS command can 

be used for automatically generating multiple sets of randomly drawn 

starting values that are used to find the best solution.   

 

MODEL IDENTIFICATION 
 

Not all models that can be specified in the program are identified.  A 

non-identified model is one that does not have meaningful estimates for 

all of its parameters.  Standard errors cannot be computed for non-

identified models because of a singular Fisher information matrix.  

When a model is not identified, an error message is printed in the output.  
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In most cases, the error message gives the number of the parameter that 

contributes to the non-identification.  The parameter to which the 

number applies is found using the TECH1 option of the OUTPUT 

command.  Additional restrictions on the parameters of the model are 

often needed to make the model identified.   

 

Model identification can be complex for mixture models.  Mixture 

models that are in theory identified can in certain samples and with 

certain starting values be empirically non-identified.  In this situation, 

changing the starting values or changing the model is recommended.   

 

For all models, model identification can be determined by examining 

modification indices and derivatives.  If a fixed parameter for an 

outcome has a modification index or a derivative of zero, it will not be 

identified if it is free.  For an estimated model that is known to be 

identified, the model remains identified if a parameter with a non-zero 

modification index or a non-zero derivative is freed.  Derivatives are 

obtained by using the TECH2 option of the OUTPUT command.  

Modification indices are obtained by using the MODINDICES option of 

the OUTPUT command.   

 

NUMERICAL INTEGRATION 
 

Numerical integration is required for maximum likelihood estimation 

when the posterior distribution of the latent variable does not have a 

closed form expression.  In the table below, the ON and BY statements 

that require numerical integration are designated by a single or double 

asterisk (*).  A single asterisk (*) indicates that numerical integration is 

always required.  A double asterisk (*) indicates that numerical 

integration is required when the mediating variable has missing data.  

Numerical integration is also required for models with interactions 

involving continuous latent variables and for certain models with 

random slopes such as multilevel mixture models. 
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Scale of 

Dependent 
Variable 

Scale of Observed Mediating 
Variable 

Scale of Latent 
Variable 

Continuous Censored, 
Categorical, 
and Count 

Continuous  

Continuous ON ON** ON 
BY 

Censored, 
Categorical,  
and Count 

  ON** ON**  ON* 
 BY* 

Nominal   ON** ON**  ON* 

Continuous 
Latent 

ON ON** ON 
BY 

Categorical 
Latent 

  ON** ON**  ON* 
BY* 

Inflation Part of 
Censored and 

Count 

  ON** ON**  ON* 
BY* 

 

When the posterior distribution does not have a closed form, it is 

necessary to integrate over the density of the latent variable multiplied 

by the conditional distribution of the outcomes given the latent variable.  

Numerical integration approximates this integration by using a weighted 

sum over a set of integration points (quadrature nodes) representing 

values of the latent variable.   

 

Three types of numerical integration are available in Mplus with or 

without adaptive numerical integration.  They are rectangular (trapezoid) 

numerical integration with a default of 15 integration points per 

dimension, Gauss-Hermite integration with a default of 15 integration 

points per dimension, and Monte Carlo integration with integration 

points generated randomly with a default of 500 integration points in 

total.  In many cases, all three integration types are available.  When 

mediating variables have missing data, only the Monte Carlo integration 

algorithm is available. 

 

For some analyses it is necessary to increase the number of integration 

points to obtain sufficient numerical precision.  In these cases, 20-50 

integration points per dimension are recommended for rectangular and 

Gauss-Hermite integration and 5000 total integration points for Monte 

Carlo integration.  Going beyond these recommendations is not 

advisable because the precision is unlikely to be improved any further, 

computations will become slower, and numerical instability can arise 

from increased round off error. 
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In most analyses, the default of adaptive numerical integration is 

expected to outperform non-adaptive numerical integration.  In most 

analyses, 15 integration points per dimension are sufficient with adaptive 

numerical integration, whereas non-adaptive numerical integration may 

require 30-50 integration points per dimension. There are analyses, 

however, where adaptive numerical integration leads to numerical 

instability.  These include analyses with outliers, non-normality in the 

latent variable distribution, and small cluster sizes.  In such analyses, it 

is recommended to turn off the adaptive numerical integration using the 

ADAPTIVE option of the ANALYSIS command. 

 

Numerical integration is computationally heavy and thereby time-

consuming because the integration must be done at each iteration, both 

when computing the function value and when computing the derivative 

values.  The computational burden increases as a function of the number 

of integration points, increases linearly as a function of the number of 

observations, and increases exponentially as a function of the number of 

dimensions of integration.  For rectangular and Gauss-Hermite 

integration, the computational burden also increases exponentially as a 

function of the dimensions of integration, that is, the number of latent 

variables, random slopes, or latent variable interactions for which 

numerical integration is needed.  Following is a list that shows the 

computational burden in terms of the number of dimensions of 

integration using the default number of integration points.  

 

One dimension of integration   Light 

Two dimensions of integration   Moderate 

Three to four dimensions of integration  Heavy 

Five or more dimensions of integration  Very heavy 

 

Note that with several dimensions of integration it may be advantageous 

to use Monte Carlo integration.  Monte Carlo integration may, however, 

result in loglikelihood values with low numerical precision making the 

testing of nested models using likelihood ratio chi-square tests based on 

loglikelihood differences imprecise.  To reduce the computational 

burden with several dimensions of integration, it is sometimes possible 

to get sufficiently precise results by reducing the number of integration 

points per dimension from the default of 15 to 10 or 7.  For exploratory 

factor analysis, as few as three integration points per dimension may be 

sufficient. 
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PRACTICAL ASPECTS OF NUMERICAL INTEGRATION  
 

Following is a list of suggestions for using numerical integration: 

 

 Start with a model that has a small number of latent variables, 

random slopes, or latent variable interactions for which numerical 

integration is required and add to this number in small increments  

 Start with an analysis using the TECH8 and TECH1 options of the 

OUTPUT command in conjunction with the MITERATIONS and 

STARTS options of the ANALYSIS command set to 1 and 0, 

respectively, to obtain information on the time required for one 

iteration and to check that the model specifications are correct 

 With more than 3 dimensions of integration, reduce the number of 

integration points per dimension to 10 or use Monte Carlo 

integration with 5000 total integration points 

 If the TECH8 output shows large negative values in the column 

labeled ABS CHANGE, increase the number of integration points to 

improve the precision of the numerical integration and resolve 

convergence problems 

 Because non-identification based on a singular information matrix 

may be difficult to determine when numerical integration is 

involved, it is important to check for a low condition number which 

may indicate non-identification, for example, a condition number 

less than 1.0E-6 

  

MULTIPLE GROUP ANALYSIS 
 

In this section, special issues related to multiple group or multiple 

population analysis are discussed.  Multiple group analysis is used when 

data from more than one population are being examined to investigate 

measurement invariance and population heterogeneity.  Measurement 

invariance is investigated by testing the invariance of measurement 

parameters across groups.  Measurement parameters include intercepts 

or thresholds of the factor indicators, factor loadings, and residual 

variances of the factor indicators.  Population heterogeneity is 

investigated by testing the invariance of structural parameters across 

groups.  Structural parameters include factor means, variances, and 

covariances and regression coefficients.  Multiple group analysis is not 

available for TYPE=MIXTURE and EFA.  Multiple group analysis for 

TYPE=MIXTURE can be carried out using the KNOWNCLASS option 



CHAPTER 14 

 

530 

of the VARIABLE command.  Following are the topics discussed in this 

section:   

 

 Requesting a multiple group analysis 

 First group in multiple group analysis 

 Defaults for multiple group analysis 

 MODEL command in multiple group analysis 

 Equalities in multiple group analysis 

 Means/intercepts/thresholds in multiple group analysis 

 Scale factors in multiple group analysis 

 Residual variances of latent response variables in multiple group 

analysis 

 Data in multiple group analysis 

 Testing for measurement invariance using multiple group analysis 

 

REQUESTING A MULTIPLE GROUP ANALYSIS 
 

The way to request a multiple group analysis depends on the type of data 

that are being analyzed.  When individual data stored in one data set are 

analyzed, a multiple group analysis is requested by using the 

GROUPING option of the VARIABLE command.  When individual data 

stored in different data sets are analyzed, multiple group analysis is 

requested by using multiple FILE statements in the DATA command.  

When summary data are analyzed, multiple group analysis is requested 

by using the NGROUPS option of the DATA command.  

 

FIRST GROUP IN MULTIPLE GROUP ANALYSIS 
 

In some situations it is necessary to know which group the program 

considers to be the first group.  How the first group is defined differs 

depending on the type of data being analyzed.  For individual data in a 

single data set, the first group is defined as the group with the lowest 

value on the grouping variable.  For example if the grouping variable is 

gender with males having the value of 1 and females having the value of 

0, then the first group is females.  For individual data in separate data 

sets, the first group is the group represented by the first FILE statement 

listed in the DATA command.  For example, if the following FILE 

statements are specified in an input setup, 
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FILE (male) IS male.dat; 

FILE (female) IS female.dat;  

   

the first group is males.  For summary data, the first group is the group 

with the label, g1.  This group is the group represented by the first set of 

summary data found in the summary data set. 

 

DEFAULTS FOR MULTIPLE GROUP ANALYSIS 
 

In multiple group analysis, some measurement parameters are held equal 

across the groups as the default.  This is done to reflect measurement 

invariance of these parameters.  Intercepts, thresholds, and factor 

loadings are held equal across groups.  The residual variances of the 

factor indicators are not held equal across groups.   

 

All structural parameters are free and not constrained to be equal across 

groups as the default.  Structural parameters include factor means, 

variances, and covariances and regressions coefficients.  Factor means 

are fixed at zero in the first group and are free to be estimated in the 

other groups as the default.  This is because factor means generally 

cannot be identified for all groups.  The customary approach is to set the 

factor means to zero in a reference group, here the first group.   

 

For observed categorical dependent variables using the default Delta 

parameterization, the scale factors of the latent response variables of the 

categorical factor indicators are fixed at one in the first group and are 

free to be estimated in the other groups as the default.  This is because 

the latent response variables are not restricted to have across-group 

equalities of variances.  For observed categorical dependent variables 

using the Theta parameterization, the residual variances of the latent 

response variables of the categorical factor indicators are fixed at one in 

the first group and are free to be estimated in the other groups as the 

default.   
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MODEL COMMAND IN MULTIPLE GROUP 

ANALYSIS 
 

In multiple group analysis, two variations of the MODEL command are 

used.  They are MODEL and MODEL followed by a label.  MODEL is 

used to describe the overall analysis model.  MODEL followed by a 

label is used to describe differences between the overall analysis model 

and the analysis model for each group.  These are referred to as group-

specific models.  The labels are defined using the GROUPING option of 

the VARIABLE command for individual data in a single file, by the 

FILE options of the DATA command for individual data in separate 

files, and by the program for summary data and Monte Carlo simulation 

studies.  It is not necessary to describe the full model for each group in 

the group-specific models.  Group-specific models should contain only 

differences from the model described in the overall MODEL command 

and the model for that group. 

 

Following is an example of an overall MODEL command for multiple 

group analysis: 

 

MODEL:   f1 BY y1 y2 y3; 

  f2 BY y4 y5 y6; 

 

In the above overall MODEL command, the two BY statements specify 

that f1 is measured by y1, y2, and y3, and f2 is measured by y4, y5, and 

y6.  The metric of the factors is set automatically by the program by 

fixing the first factor loading in each BY statement to 1.  The intercepts 

of the factor indicators and the other factor loadings are held equal 

across the groups as the default.  The residual variances are estimated for 

each group and the residual covariances are fixed at zero as the default.  

Factor variances and the factor covariance are estimated for each group.     

 

Following is a group-specific MODEL command that relaxes the 

equality constraints on the factor loadings in a two-group analysis: 

 

MODEL g2:   f1 BY y2 y3; 

  f2 BY y5 y6; 

 

In the above group-specific MODEL command, the equality constraints 

on the factor loadings of y2, y3, y5, and y6 are relaxed by including 

them in a group-specific MODEL command.  The first factor indicator 
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of each factor should not be included because including them frees their 

factor loadings which should be fixed at one to set the metric of the 

factors.   

 

Factor means are fixed at zero in the first group and are estimated in 

each of the other groups.  The following group-specific MODEL 

command relaxes the equality constraints on the intercepts and 

thresholds of the observed dependent variables: 

 

MODEL g2:   [y1 y2 y3]; 

  [u4$1 u5$2 u6$3]; 

 

Following is a set of MODEL commands for a multiple group analysis in 

which three groups are being analyzed: g1, g2, and g3: 

 

MODEL: f1 BY y1-y5; 

  f2 BY y6-y10; 

  f1 ON f2; 

MODEL g1: f1 BY y5;  

MODEL g2: f2 BY y9; 

 

In the overall MODEL command, the first BY statement specifies that f1 

is measured by y1, y2, y3, y4, and y5.  The second BY statement 

specifies that f2 is measured by y6, y7, y8, y9, and y10.  The metric of 

the factors is set automatically by the program by fixing the first factor 

loading in each BY statement to one.  The intercepts of the factor 

indicators and the other factor loadings are held equal across the groups 

as the default.  The residual variances for y1 through y10 are estimated 

for each group and the residual covariances are fixed at zero as the 

default.  The variance of the factor f2 and the residual variance of the 

factor f1 are estimated for each group.  A regression coefficient for the 

linear regression of f1 on f2 is estimated for each group. 

 

Differences between the overall model and the group-specific models are 

specified using the MODEL command followed by a label.  The two 

group-specific MODEL commands above specify differences between 

the overall model and the group-specific models.  In the above example, 

the factor loading for y5 in group g1 is not constrained to be equal to the 

factor loading for y5 in the other two groups and the factor loading for 

y9 in group g2 is not constrained to be equal to the factor loading for y9 
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in the other two groups.  The model for g3 is identical to that of the 

overall model because there is no group-specific model statement for g3. 

 

EQUALITIES IN MULTIPLE GROUP ANALYSIS 
 

A number or list of numbers in parentheses following a parameter or list 

of parameters is used to indicate equality constraints.  Constraining 

parameters to be equal in a single group analysis is discussed in Chapter 

17.  In a single group analysis, parameters are constrained to be equal by 

placing the same number or list of numbers in parentheses following the 

parameters that are to be held equal.  For example, 

 

y1 ON x1 (1) ; 

y2 ON x2 (1) ; 

y3 ON x3 (2) ; 

y4 ON x4 (2) ; 

y5 ON x5 (2) ; 

 

constrains the regression coefficients of the first two equations to be 

equal and the regression coefficients of the last three equations to be 

equal. 

 

In multiple group analysis, the interpretation of equality constraints 

depends on whether they are part of the overall MODEL command or a 

group-specific MODEL command.  Equality constraints specified in the 

overall MODEL command apply to all groups.  Equality constraints 

specified in a group-specific MODEL command apply to only that 

group.   

 

Following is an example of how to specify across group equality 

constraints in the overall MODEL command: 

 

MODEL:  f1 BY y1-y5; 

  y1 (1) 

  y2 (2) 

  y3 (3) 

  y4 (4) 

  y5 (5); 

 

By placing a different number in parentheses after each residual 

variance, each residual variance is held equal across all groups but not 
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equal to each other.  Note that only one equality constraint can be 

specified per line. 

 

Following is another example of how to specify across group equality 

constraints in the overall MODEL command: 

 

MODEL:  f1 BY y1-y5; 

  y1-y5 (1); 

 

By placing a one in parentheses after the list of residual variances, y1 

through y5, the values of those parameters are held equal to each other 

and across groups.  If the five residual variances are free to be estimated 

across the three groups, there are fifteen parameters.  With the equality 

constraint, one parameter is estimated.   

 

Following is an example of how to specify an equality constraint in a 

group-specific MODEL command: 

 

MODEL g2: y1-y5 (2); 

 

In the group-specific MODEL command for g2, the residual variances of 

y1 through y5 are held equal for g2 but are not held equal to the residual 

variances of any other group because (2) is not specified in the overall 

MODEL command or in any other group-specific MODEL command.  

One residual variance is estimated for g2.  

 

Following is an example of how to relax an equality constraint in a 

group-specific MODEL command: 

 

MODEL g3: y1-y5; 

 

In this example, by mentioning the residual variances in a group-specific 

MODEL command, they are no longer held equal to the residual 

variances in groups 1 and 3.  Five residual variances are estimated for 

g3. 

 

The overall and group-specific MODEL commands discussed above are 

shown and interpreted together below: 

 

MODEL: f1 BY y1-y5; 

  y1-y5  (1); 
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MODEL g2: y1-y5  (2); 

MODEL g3: y1-y5; 

 

The overall MODEL command specifies the overall model for the three 

groups as described above.  Because there is no group-specific MODEL 

command for g1, g1 uses the same model as that described in the overall 

MODEL command.  The group-specific MODEL commands describe 

the differences between the overall model and the group-specific 

models.  The group g2 uses the overall model with the exception that the 

one residual variance that is estimated is not constrained to be equal to 

the other two groups.  The group g3 uses the overall model with the 

exception that five residual variances not constrained to be equal to the 

other groups are estimated. 

 

MEANS/INTERCEPTS/THRESHOLDS IN 

MULTIPLE GROUP ANALYSIS 
 

In multiple group analysis, the intercepts and thresholds of observed 

dependent variables that are factor indicators are constrained to be equal 

across groups as the default.  The means and intercepts of continuous 

latent variables are fixed at zero in the first group and are free to be 

estimated in the other groups as the default.  Means, intercepts, and 

thresholds are referred to by the use of square brackets.   

 

Following is an example how to refer to means and intercepts in a 

multiple group model. 

 

MODEL: f1 BY y1-y5; 

  f2 BY y6-y10; 

  f1 ON f2; 

MODEL g1: [f1 f2]; 

MODEL g2: [f1@0 f2@0];  

 

In the above example, the intercepts and the factor loadings for the 

factor indicators y1-y5 are held equal across the three groups as the 

default.  In the group-specific MODEL command for g1, the mean of f2 

and the intercept of f1 are specified to be free.  In the group-specific 

MODEL command for g2, the mean of f2 and the intercept of f1 are 

fixed at zero. 
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The following group-specific MODEL command relaxes the equality 

constraints on the intercepts of the observed dependent variables: 

 

MODEL g2: [y1-y10];  

 

SCALE FACTORS IN MULTIPLE GROUP 

ANALYSIS 
 

Scale factors can be used in multiple group analysis.  They are 

recommended when observed dependent variables are categorical and a 

weighted least squares estimator is used.  They capture across group 

differences in the variances of the latent response variables for the 

observed categorical dependent variables.  Scale factors are part of the 

model as the default using a weighted least squares estimator when one 

or more observed dependent variables are categorical.  In this situation, 

the first group has scale factors fixed at one.  In the other groups, scale 

factors are free to be estimated with starting values of one.  Scale factors 

are referred to using curly brackets.  Following is an example of how to 

refer to scale factors in a model with multiple groups where u1, u2, u3, 

u4, and u5 are observed categorical dependent variables:   

 

MODEL: f BY u1-u5; 

MODEL g2: {u1-u5*.5}; 

  

In the above example, the scale factors of the latent response variables of 

the observed categorical dependent variables in g1 are fixed at one as the 

default.  Starting values are given for the free scale factors in g2.   

 

RESIDUAL VARIANCES OF LATENT RESPONSE 

VARIABLES IN MULTIPLE GROUP ANALYSIS 
 

With the Theta parameterization for observed categorical dependent 

variables using a weighted least squares estimator, residual variances of 

the latent response variables for the observed categorical dependent 

variables are part of the model as the default.  In this situation, the first 

group has residual variances fixed at one for all observed categorical 

dependent variables.  In the other groups, residual variances are free to 

be estimated with starting values of one.  Residual variances of the latent 

response variables are referred to using the name of the corresponding 

observed variable.  Following is an example of how to refer to residual 
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variances in a model with multiple groups where u1, u2, u3, u4, and u5 

are observed categorical dependent variables:   

 

MODEL: f BY u1-u5; 

MODEL g2: u1-u5*2; 

 

In the above example, the residual variances of the latent response 

variables of the observed categorical dependent variables in g1 are fixed 

at one as the default.  Starting values are given for the free residual 

variances in g2.   

 

DATA IN MULTIPLE GROUP ANALYSIS 
 

One difference between single group analysis and multiple group 

analysis is related to the data to be analyzed.  For individual data, the 

data for all groups can be stored in one data set or in different data sets.  

If the data are stored in one data set, the data set must include a variable 

that identifies the group to which each observation belongs.  For 

summary data, all data must be stored in the same data set.   

 

INDIVIDUAL DATA, ONE DATA SET 
 

If individual data for several groups are stored in one data set, the data 

set must include a variable that identifies the group to which each 

observation belongs.  The name of this variable is specified using the 

GROUPING option of the VARIABLE command.  Only one grouping 

variable can be specified.  If the groups to be analyzed are a combination 

of more than one variable, for example, gender and ethnicity, a single 

grouping variable can be created using the DEFINE command.  An 

example of how to specify the GROUPING option is: 

 

GROUPING IS gender (1 = male 2 = female);  

 

The information in parentheses after the grouping variable name assigns 

labels to the values of the grouping variable found in the data set.  In the 

example above, observations with the variable gender equal to 1 are 

assigned the label male, and observations with the variable gender equal 

to 2 are assigned the label female.  These labels are used in group-

specific MODEL commands to specify differences between the overall 

model and the group-specific models.  If an observation has a value for 
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the grouping variable that is not specified using the GROUPING option, 

it is not included in the analysis.   

 

INDIVIDUAL DATA, DIFFERENT DATA SETS 
 

For individual data stored in different data sets, the specification of the 

FILE option of the DATA command has two differences for multiple 

group analysis.  First, a FILE statement is required for each data set.  

Second, the FILE option allows a label to be specified that can be used 

in the group-specific MODEL commands.  In the situation where the 

data for males are stored in a file named male.dat, and the data for 

females are stored in a file named female.dat, the FILE option is 

specified as follows: 

 

FILE  (male)  =  male.dat; 

FILE  (female) =  female.dat; 

 

The labels male and female can be used in the group-specific MODEL 

commands to specify differences between the group-specific models for 

males and females and the overall model.  

 

When individual data are stored in different data sets, all of the data sets 

must contain the same number of variables.  These variables must be 

assigned the same names and be read using the same format. 

 

SUMMARY DATA, ONE DATA SET 
 

Summary data must be stored in one data set with the data for the first 

group followed by the data for the second group, etc..  For example, in 

an analysis of means and a covariance matrix for two groups with four 

observed variables, the data would appear as follows: 

 

0 0 0 0 

2 

1 2 

1 1 2 

1 1 1 2 

1 1 1 1 
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3 

2 3 

2 2 3 

2 2 2 3 

 

where the means for group 1 come first, followed by the covariances for 

group 1, followed by the means for group 2, followed by the covariances 

for group 2. 

  

The NOBSERVATIONS and NGROUPS options have special formats 

for multiple group analysis when summary data are analyzed.  The 

NOBSERVATIONS option requires an entry for each group in the order 

that the data appear in the data set.  For example, if the summary data for 

males appear first in a data set followed by the summary data for 

females, the NOBSERVATIONS statement, 

 

NOBSERVATIONS = 180 220; 

 

indicates that the summary data for males come from 180 observations 

and the summary data for females come from 220 observations. 

 

In addition, for summary data, it is necessary to specify the number of 

groups in the analysis using the NGROUPS option of the DATA 

command.  The format of this option follows: 

 

NGROUPS = 2; 

 

which indicates that there are two groups in the analysis.  For summary 

data, the program automatically assigns the label g1 to the first group, g2 

to the second group, etc.  In this example, males would have the label g1 

and females would have the label g2. 

 

TESTING FOR MEASUREMENT INVARIANCE 

USING MULTIPLE GROUP ANALYSIS 
 

Multiple group analysis can be used to test measurement invariance of 

factors using chi-square difference tests or loglikelihood difference tests 

for a set of nested models.  For continuous, censored, and count 

variables, the measurement parameters are the intercepts, factor 

loadings, and residual variances of the factor indicators.  In many 

disciplines, invariance of intercepts or thresholds and factor loadings are 
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considered sufficient for measurement invariance.  Some disciplines also 

require invariance of residual variances.   For categorical variables, the 

measurement parameters are thresholds and factor loadings.  For the 

Delta parameterization of weighted least squares estimation, scale 

factors can also be considered.  For the Theta parameterization of 

weighted least squares estimation, residual variances can also be 

considered. 

 

Following is a description of the models to be used to test for 

measurement invariance for various variable types and estimators.  

These models can also be used to test for longitudinal measurement 

invariance.  Necessary restrictions are placed across time rather than 

across groups. 

 

MODELS FOR CONTINUOUS, CENSORED, AND COUNT 

VARIABLES  
 

Following is a set of models that can be considered for measurement 

invariance of continuous, censored, and count variables.  They are listed 

from least restrictive to most restrictive. 

 

For continuous, censored, and count variables, the configural model has 

factor loadings, intercepts, and residual variances free across groups and 

factor means fixed at zero in all groups.  If the metric of a factor is set by 

fixing a factor loading to one, factor variances are free across groups.   If 

the metric of a factor is set by freeing all factor loadings and fixing the 

factor variance to one, the factor variance is fixed at one in all groups.   

 

The metric has factor loadings constrained to be equal across groups, 

intercepts and residual variances free across groups, and factor means 

fixed at zero in all groups.  If the metric of a factor is set by fixing a 

factor loading to one, factor variances are free across groups.   If the 

metric of a factor is set by freeing all factor loadings within a group and 

fixing the factor variance to one, the factor variance is fixed at one in 

one group and is free in the other groups.   

 

The scalar model has factor loadings and intercepts constrained to be 

equal across groups, residual variances free across groups, and factor 

means fixed at zero in one group and free in the other groups.   If the 

metric of a factor is set by fixing a factor loading to one, factor variances 

are free across groups.  If the metric of a factor is set by freeing all factor 
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loadings within a group and fixing the factor variance to one, the factor 

variance is fixed at one in one group and is free in the other groups. 

 

MODELS FOR BINARY VARIABLES 
 

Following is a set of models that can be considered for measurement 

invariance of binary variables.  They are listed from least restrictive to 

most restrictive.  For binary variables and weighted least squares 

estimation, only the configural and scalar models are considered.  The 

metric model is not identified because scale factors or residual variances 

are allowed to vary across groups.  For binary variables and maximum 

likelihood estimation, the configural, metric, and scalar models are 

considered.  The metric model is identified because residual variances 

are implicitly fixed at one in all groups. 

 

WEIGHTED LEAST SQUARES ESTIMATION USING THE 

DELTA PARAMETERIZATION 
 

For binary variables using weighted least squares estimation and the 

Delta parameterization, the configural model has factor loadings and 

thresholds free across groups, scale factors fixed at one in all groups, 

and factor means fixed at zero in all groups.  If the metric of a factor is 

set by fixing a factor loading to one, factor variances are free across 

groups.   If the metric of a factor is set by freeing all factor loadings and 

fixing the factor variance to one, the factor variance is fixed at one in all 

groups.   

 

The scalar model has factor loadings and thresholds constrained to be 

equal across groups, scale factors fixed at one in one group and free in 

the other groups, and factor means fixed at zero in one group and free in 

the other groups.   If the metric of a factor is set by fixing a factor 

loading to one, factor variances are free across groups.  If the metric of a 

factor is set by freeing all factor loadings within a group and fixing the 

factor variance to one, the factor variance is fixed at one in one group 

and is free in the other groups. 

 

WEIGHTED LEAST SQUARES ESTIMATION USING THE 

THETA PARAMETERIZATION  
 

For binary variables using weighted least squares estimation and the 

Theta parameterization, the configural model has factor loadings and 
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thresholds free across groups, residual variances fixed at one in all 

groups, and factor means fixed at zero in all groups.  If the metric of a 

factor is set by fixing a factor loading to one, factor variances are free 

across groups.   If the metric of a factor is set by freeing all factor 

loadings and fixing the factor variance to one, the factor variance is 

fixed at one in all groups.   

 

The scalar model has factor loadings and thresholds constrained to be 

equal across groups, residual variances fixed at one in one group and 

free in the other groups, and factor means fixed at zero in one group and 

free in the other groups.   If the metric of a factor is set by fixing a factor 

loading to one, factor variances are free across groups.  If the metric of a 

factor is set by freeing all factor loadings within a group and fixing the 

factor variance to one, the factor variance is fixed at one in one group 

and is free in the other groups. 

 

MAXIMUM LIKELIHOOD ESTIMATION 
 

For binary variables and maximum likelihood estimation, the configural 

model has factor loadings and thresholds free across groups and factor 

means fixed at zero in all groups.  If the metric of a factor is set by fixing 

a factor loading to one, factor variances are free across groups.   If the 

metric of a factor is set by freeing all factor loadings and fixing the 

factor variance to one, the factor variance is fixed at one in all groups.  

  

The metric model has factor loadings constrained to be equal across 

groups, thresholds free across groups, and factor means fixed at zero in 

all groups.  If the metric of a factor is set by fixing a factor loading to 

one, factor variances are free across groups.   If the metric of a factor is 

set by freeing all factor loadings within a group and fixing the factor 

variance to one, the factor variance is fixed at one in one group and is 

free in the other groups.   

 

The scalar model has factor loadings and thresholds constrained to be 

equal across groups and factor means fixed at zero in one group and free 

in the other groups.   If the metric of a factor is set by fixing a factor 

loading to one, factor variances are free across groups.  If the metric of a 

factor is set by freeing all factor loadings within a group and fixing the 

factor variance to one, the factor variance is fixed at one in one group 

and is free in the other groups. 
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MODELS FOR ORDERED CATEGORICAL (ORDINAL) 

VARIABLES 
 

Following is a set of models that can be considered for measurement 

invariance of ordered categorical (ordinal) variables.  They are listed 

from least restrictive to most restrictive.  The metric model is not 

allowed for ordered categorical (ordinal) variables when a factor 

indicator loads on more than one factor, when the metric of a factor is 

set by fixing a factor variance to one, and when Exploratory Structural 

Equation Modeling (ESEM) is used.   

 

WEIGHTED LEAST SQUARES ESTIMATION USING THE 

DELTA PARAMETERIZATION 
 

For ordered categorical (ordinal) variables using weighted least squares 

estimation and the Delta parameterization, the configural model has 

factor loadings and thresholds free across groups, scale factors fixed at 

one in all groups, and factor means fixed at zero in all groups.  If the 

metric of a factor is set by fixing a factor loading to one, factor variances 

are free across groups.   If the metric of a factor is set by freeing all 

factor loadings and fixing the factor variance to one, the factor variance 

is fixed at one in all groups.  

 

The metric model has factor loadings constrained to be equal across 

groups, scale factors fixed at one in one group and free in the other 

groups, and factor means fixed at zero in one group and free in the other 

groups.  The first threshold of each item is held equal across groups.  

The second threshold of the item that is used to set the metric of the 

factor is held equal across groups.  Factor variances are free across 

groups.  For a discussion of these specifications, see Millsap (2011). 

 

The scalar model has factor loadings and thresholds constrained to be 

equal across groups, scale factors fixed at one in one group and free in 

the other groups, and factor means fixed at zero in one group and free in 

the other groups.   If the metric of a factor is set by fixing a factor 

loading to one, factor variances are free across groups.  If the metric of a 

factor is set by freeing all factor loadings within a group and fixing the 

factor variance to one, the factor variance is fixed at one in one group 

and is free in the other groups. 
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WEIGHTED LEAST SQUARES ESTIMATION USING THE 

THETA PARAMETERIZATION  
 

For ordered categorical (ordinal) variables using weighted least squares 

estimation and the Theta parameterization, the configural model has 

factor loadings and thresholds free across groups, residual variances 

fixed at one in all groups, and factor means fixed at zero in all groups.  If 

the metric of a factor is set by fixing a factor loading to one, factor 

variances are free across groups.   If the metric of a factor is set by 

freeing all factor loadings and fixing the factor variance to one, the 

factor variance is fixed at one in all groups.   

 

The metric model has factor loadings constrained to be equal across 

groups, residual variances fixed at one in one group and free in the other 

groups, and factor means fixed at zero in one group and free in the other 

groups.  The first threshold of each item is held equal across groups.  

The second threshold of the item that is used to set the metric of the 

factor is held equal across groups. Factor variances are free across 

groups.  For a discussion of these specifications, see Millsap (2011). 

 

The scalar model has factor loadings and thresholds constrained to be 

equal across groups, residual variances fixed at one in one group and 

free in the other groups, and factor means fixed at zero in one group and 

free in the other groups.   If the metric of a factor is set by fixing a factor 

loading to one, factor variances are free across groups.  If the metric of a 

factor is set by freeing all factor loadings within a group and fixing the 

factor variance to one, the factor variance is fixed at one in one group 

and is free in the other groups. 

 

MAXIMUM LIKELIHOOD ESTIMATION 
 

For ordered categorical variables and maximum likelihood estimation, 

the configural model has factor loadings and thresholds free across 

groups and factor means fixed at zero in all groups.  If the metric of a 

factor is set by fixing a factor loading to one, factor variances are free 

across groups.   If the metric of a factor is set by freeing all factor 

loadings and fixing the factor variance to one, the factor variance is 

fixed at one in all groups.   

 

The metric model has factor loadings constrained to be equal across 

groups, thresholds free across groups, and factor means fixed at zero in 
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all groups.  If the metric of a factor is set by fixing a factor loading to 

one, factor variances are free across groups.   If the metric of a factor is 

set by freeing all factor loadings within a group and fixing the factor 

variance to one, the factor variance is fixed at one in one group and is 

free in the other groups.   

 

The scalar model has factor loadings and thresholds constrained to be 

equal across groups and factor means fixed at zero in one group and free 

in the other groups.   If the metric of a factor is set by fixing a factor 

loading to one, factor variances are free across groups.  If the metric of a 

factor is set by freeing all factor loadings within a group and fixing the 

factor variance to one, the factor variance is fixed at one in one group 

and is free in the other groups. 

 

PARTIAL MEASUREMENT INVARIANCE 
 

When full measurement invariance does not hold, partial measurement 

invariance can be considered.  This involves relaxing some equality 

constraints on the measurement parameters.  For continuous variables, 

equality constraints can be relaxed for the intercepts, factor loadings, 

and residual variances.  This is shown in Example 5.15.  For categorical 

variables, equality constraints for thresholds and factor loadings for a 

variable should be relaxed in tandem.  In addition, for the Delta 

parameterization, the scale factor must be fixed at one for that variable.  

This is shown in Example 5.16.  For the Theta parameterization, the 

residual variance must be fixed at one for that variable.  This is shown in 

Example 5.17.  

 

MODEL DIFFERENCE TESTING 
 

In chi-square difference testing of measurement invariance, the chi-

square value and degrees of freedom of the less restrictive model are 

subtracted from the chi-square value and degrees of freedom of the 

nested, more restrictive model.  The chi-square difference value is 

compared to the chi-square value in a chi-square table using the 

difference in degrees of freedom between the more restrictive and less 

restrictive models.  If the chi-square difference value is significant, it 

indicates that constraining the parameters of the nested model 

significantly worsens the fit of the model.  This indicates measurement 

non-invariance.  If the chi-square difference value is not significant, this 

indicates that constraining the parameters of the nested model did not 
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significantly worsen the fit of the model.  This indicates measurement 

invariance of the parameters constrained to be equal in the nested model. 

 

For models where chi-square is not available, difference testing can be 

done using -2 times the difference of the loglikelihoods.  For the MLR, 

MLM, and WLSM estimators, difference testing must be done using the 

scaling correction factor printed in the output.  A description of how to 

do this is posted on the website.  For WLSMV and MLMV, difference 

testing must be done using the DIFFTEST option of the SAVEDATA 

and ANALYSIS commands. 

 

MISSING DATA ANALYSIS 
 

Mplus has several options for the estimation of models with missing 

data.  Mplus provides maximum likelihood estimation under MCAR 

(missing completely at random) and MAR (missing at random; Little & 

Rubin, 2002) for continuous, censored, binary, ordered categorical 

(ordinal), unordered categorical (nominal), counts, or combinations of 

these variable types.  MAR means that missingness can be a function of 

observed covariates and observed outcomes.  For censored and 

categorical outcomes using weighted least squares estimation, 

missingness is allowed to be a function of the observed covariates but 

not the observed outcomes.  When there are no covariates in the model, 

this is analogous to pairwise present analysis.  Non-ignorable missing 

data modeling is possible using maximum likelihood estimation where 

categorical outcomes are indicators of missingness and where 

missingness can be predicted by continuous and categorical latent 

variables (Muthén, Jo, & Brown, 2003; Muthén et al., 2011).  Robust 

standard errors and chi-square are available for all outcomes using the 

MLR estimator.  For non-normal continuous outcomes, this gives the T2
*
 

chi-square test statistic of Yuan and Bentler (2000).     

 

Mplus provides multiple imputation of missing data using Bayesian 

analysis (Rubin, 1987; Schafer, 1997).  Both unrestricted H1 and 

restricted H0 models can be used for imputation. 

 

Multiple data sets generated using multiple imputation (Rubin, 1987; 

Schafer, 1997) can be analyzed using a special feature of Mplus.  

Parameter estimates are averaged over the set of analyses, and standard 

errors are computed using the average of the standard errors over the set 

of analyses and the between analysis parameter estimate variation.  
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In all models, missingness is not allowed for the observed covariates 

because they are not part of the model. The model is estimated 

conditional on the covariates and no distributional assumptions are made 

about the covariates.  Covariate missingness can be modeled if the 

covariates are brought into the model and distributional assumptions 

such as normality are made about them.   With missing data, the standard 

errors for the parameter estimates are computed using the observed 

information matrix (Kenward & Molenberghs, 1998).  Bootstrap 

standard errors and confidence intervals are also available with missing 

data.   

 

With missing data, it is useful to do a descriptive analysis to study the 

percentage of missing data as a first step.  This can be accomplished by 

specifying TYPE=BASIC in the ANALYSIS command.  The output for 

this analysis produces the number of missing data patterns and the 

proportion of non-missing data, or coverage, for variables and pairs of 

variables.  A default of .10 is used as the minimum coverage proportion 

for a model to be estimated.  This minimum value can be changed by 

using the COVERAGE option of the ANALYSIS command.  

 

DATA MISSING BY DESIGN 
 

Data missing by design occurs when the study determines which subjects 

will be observed on which measures.  One example is when different 

forms of a measurement instrument are administered to randomly 

selected subgroups of individuals.  A second example is when it is 

expensive to collect data on all variables for all individuals and only a 

subset of variables is measured for a random subgroup of individuals.  A 

third example is multiple cohort analysis where individuals who are 

measured repeatedly over time represent different birth cohorts.  These 

types of studies can use the missing data method where all individuals 

are used in the analysis, including those who have missing values on 

some of the analysis variables by design.  This type of analysis is 

obtained by identifying the values in the data set that are considered to 

be missing value flags using the MISSING option of the VARIABLE 

command and identifying the variables for which individuals should 

have a value using the PATTERN option of the VARIABLE command.   
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MULTIPLE COHORT DESIGN 
 

Longitudinal research studies often collect data on several different 

groups of individuals defined by their birth year or cohort.  This allows 

the study of development over a wider age range than the length of the 

study and is referred to as an accelerated or sequential cohort design.  

The interest in these studies is the development of an outcome over age 

not measurement occasion.  When dependent variables are measured 

using a continuous scale, options are available for rearranging such a 

data set so that age rather than time of measurement is the time variable.  

This is available only for TYPE=GENERAL without 

ALGORITHM=INTEGRATION.   

 

The DATA COHORT command is used to rearrange longitudinal data 

from a format where time points represent measurement occasions to a 

format where time points represent age or another time-related variable.    

It is necessary to know the cohort (birth year) of each individual and the 

year in which each measurement was taken.  The difference between 

measurement year and cohort year is the age of the individual at the time 

of measurement.  Age is the variable that is used to determine the pattern 

of missing values for each cohort.  If an individual does not have 

information for a particular age, that value is missing for that individual.  

The transformed data set is analyzed using maximum likelihood 

estimation for missing data. 

 

REARRANGEMENT OF THE MULTIPLE COHORT DATA 
 

What is of interest in multiple cohort analysis is not how a variable 

changes from survey year to survey year, but how it changes with age.  

What is needed to answer this question is a data set where age is the time 

variable.  Following is an example of how a data set is transformed using 

the DATA COHORT command.  In the following data set, the variable 

heavy drinking (HD) is measured in 1982, 1983, 1987, and 1989.  

Missing data are indicated with an asterisk (*).  The respondents include 

individuals born in 1963, 1964, and 1965.  Although the respondents 

from any one cohort are measured on only four occasions, the cohorts 

taken together cover the ages 17 through 26.   
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Observation Cohort HD82 HD83 HD87 HD89 
1 63 3 4 5 6 
2 63 * 6 7 8 
3 63 9 8 * 3 
4 63 5 7 6 3 
5 63 5 8 7 9 
6 64 3 6 5 9 
7 64 3 8 * 5 
8 64 4 9 8 6 
9 64 4 * 6 7 

10 64 3 9 8 5 
11 65 * 4 5 6 
12 65 6 5 5 5 
13 65 5 5 5 5 
14 65 4 5 6 7 
15 65 4 5 5 4 

 

The information in the table above represents how the data look before 

they are transformed.  As a first step, each observation that does not 

have complete data for 1982, 1983, 1987, and 1989 is deleted from the 

data set.  Following is the data after this step.  

 
Observation Cohort HD82 HD83 HD87 HD89 

1 63 3 4 5 6 
4 63 5 7 6 3 
5 63 5 8 7 9 
6 64 3 6 5 9 
8 64 4 9 8 6 

10 64 3 9 8 5 
12 65 6 5 5 5 
13 65 5 5 5 5 
14 65 4 5 6 7 
15 65 4 5 5 4 

 

The second step is to rearrange the data so that age is the time 

dimension.  This results in the following data set where asterisks (*) 

represent values that are missing by design. 
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Obs Coh HD17 HD18 HD19 HD20 HD22 HD23 HD24 HD25 HD26 

1 63 * * 3 4 * * 5 * 6 
4 63 * * 5 7 * * 6 * 3 
5 63 * * 5 8 * * 7 * 9 
6 64 * 3 6 * * 5 * 9 * 
8 64 * 4 9 * * 8 * 6 * 

10 64 * 3 9 * * 8 * 5 * 
12 65 6 5 * * 5 * 5 * * 
13 65 5 5 * * 5 * 5 * * 
14 65 4 5 * * 6 * 7 * * 
15 65 4 5 * * 5 * 4 * * 

 

The model is specified in the MODEL command using the new variables 

hd17 through hd26 instead of the original variables hd82, hd83, hd87, 

and hd89.  Note that there is no hd21 because no combination of survey 

year and birth cohort represents this age.  The data are analyzed using 

the missing by design feature. 

 

CATEGORICAL MEDIATING VARIABLES 
 

The treatment of categorical mediating variables in model estimation 

differs depending on the estimator being used.  Consider the following 

model: 

 

x  ->  u  ->  y 

 

where u is a categorical variable.  The issue is how is u treated when it is 

a dependent variable predicted by x and how is it treated when it is an 

independent variable predicting y.  With weighted least squares 

estimation, a probit regression coefficient is estimated in the regression 

of u on x.  In the regression of y on u, the continuous latent response 

variable u* is used as the covariate.  With maximum likelihood 

estimation, either a logistic or probit regression coefficient is estimated 

in the regression of u on x.  In the regression of y on u, the observed 

variable u is used as the covariate.  With Bayesian estimation, a probit 

regression coefficient is estimated in the regression of u on x.  In the 

regression of y on u, either the observed variable u or the latent response 

variable u* can be used as the covariate using the MEDIATOR option of 

the ANALYSIS command.   
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CALCULATING PROBABILITIES FROM PROBIT 

REGRESSION COEFFICIENTS 
 

Following is a description of how to translate probit regression 

coefficients to probability values.  For a treatment of probit regression 

for binary and ordered categorical (ordinal) variables, see Agresti (1996, 

2002). 

 

For a binary dependent variable, the probit regression model expresses 

the probability of u given x as, 

 

P (u = 1 | x) = F (a + b*x) 

                    = F (-t + b*x), 

                   

where F is the standard normal distribution function, a is the probit 

regression intercept, b is the probit regression slope, t is the probit 

threshold where t = -a, and P (u = 0 | x) = 1 – P (u = 1 | x).   

 

Following is an output excerpt that shows the results from the probit 

regression of a binary variable u on the covariate age: 

 
                    Estimates     S.E.     Est./S.E.  

 

u        ON 

    age               0.055        0.001     43.075 

 

Thresholds                                                                     

    u$1               3.581        0.062     57.866 

 

Using the formula shown above, the probability of u = 1 for age = 62 is 

computed as follows: 

 

P (u = 1 | x = 62) =  F (-3.581 + 0.055*62) 

                            =  F (-0.171). 

 

Using the z table, the value -0.171 corresponds to a probability of 

approximately 0.43.  This means that the probability of u = 1 at age 62 is 

0.43. 

 

For an ordered categorical (ordinal) dependent variable with three 

categories, the probit regression model expresses the probability of u 
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given x using the two thresholds t1 and t2 and the single probit regression 

coefficient b, 

 

P (u = 0 | x) = F (t1 - b*x), 

P (u = 1 | x) = F (t2 - b*x) - F (t1 - b*x), 

P (u = 2 | x) = F (- t2 + b*x). 

 

CALCULATING PROBABILITIES FROM LOGISTIC 

REGRESSION COEFFICIENTS 
 

Following is a description of how to translate logistic regression 

coefficients to probability values.  Also described is how to interpret the 

coefficient estimates in terms of log odds, odds, and odds ratios.  For a 

treatment of logistic regression for binary, ordered categorical (ordinal), 

and unordered categorical (nominal) variables, see Agresti (1996, 2002) 

and Hosmer and Lemeshow (2000). 

 

An odds is a ratio of two probabilities.  A log odds is therefore the log of 

a ratio of two probabilities.  The exponentiation of a log odds is an odds. 

A logistic regression coefficient is a log odds which is also referred to as 

a logit. 

 

For a binary dependent variable u, the logistic regression model 

expresses the probability of u given x as, 

 

(1) P (u = 1 | x) = exp (a + b*x) / (1 + exp (a + b*x) )  

              = 1 / (1 + exp (-a – b*x)), 

 

where P (u = 0 | x) = 1 – P (u = 1 | x).  The probability expression in (1) 

results in the linear logistic regression expression also referred to as a 

log odds or logit,  

 

log [P (u = 1 | x) / P (u = 0 | x)] = log [exp (a + b*x)] = a + b*x, 

 

where b is the logistic regression coefficient which is interpreted as the 

increase in the log odds of u = 1 versus u = 0 for a unit increase in x.  

For example, consider the x values of x0 and x0 + 1.  The corresponding 

log odds are, 

 

log odds (x0) = a + b*x0, 
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log odds (x0 +1) = a + b*(x0 + 1) = a + b*x0 + b, 

 

such that the increase from x0 to x0 + 1 in the log odds is b.  The 

corresponding odds increase is exp (b).  For example, consider the 

continuous covariate age with a logistic regression coefficient of .75 for 

a dependent variable of being depressed (u = 1) or not being depressed 

(u = 0).  This means that for an increase of one year of age the log odds 

of being depressed versus not being depressed increases by .75.  The 

corresponding odds increase is 2.12.   

 

For a binary covariate x scored as 0 and 1, the log odds for u = 1 versus 

u = 0 are, 

 

log odds (x = 0) = a + b*0, 

log odds (x = 1) = a + b*1,  

 

such that the increase in the log odds is b as above.  Given the 

mathematical rule that log y – log z is equal to log (y / z), the difference 

in the two log odds,  

 

b = log odds (x = 1) – log odds (x = 0)   

   = log [odds (x = 1) / odds (x = 0)], 

 

is the log odds ratio for u = 1 versus u = 0 when comparing x = 1 to x = 

0.  For example, consider the binary covariate gender (1 = female, 0 = 

male) with a logistic regression coefficient of 1.0 for a dependent 

variable of being depressed (u = 1) or not being depressed (u = 0).  This 

means that the log odds for females is 1.0 higher than the log odds for 

males for being depressed versus not being depressed.  The 

corresponding odds ratio is 2.72, that is the odds for being depressed 

versus not being depressed is 2.72 times larger for females than for 

males.   

 

In the case of a binary dependent variable, it is customary to let the first 

category u = 0 be the reference category as is done in (1).  When a 

dependent variable has more than two categories, it is customary to let 

the last category be the reference category as is done below.  For an 

unordered categorical (nominal) variable with more than two categories 

R, the probability expression in (1) generalizes to the following 

multinomial logistic regression,  
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(2)  P (u = r | x) = exp (ar + br*x) / (exp (a1 + b1*x) + …  

                          + exp (aR + bR*x)), 

 

where exp (aR + bR*x) = exp (0 + 0*x) = 1 and the log odds for 

comparing category r to category R is  

 

(3)  log [P (u = r | x)/P (u = R | x)] = ar + br*x. 

 

With an ordered categorical (ordinal) variable, the logistic regression 

slopes br are the same across the categories of u.   

 

Following is an example of an unordered categorical (nominal) 

dependent variable that is the categorical latent variable in the model.  

The categorical latent variable has four classes and there are three 

covariates.  The output excerpt shows the results from the multinomial 

logistic regression of the categorical latent variable c on the covariates 

age94, male, and black: 

 
                    Estimates    S.E.   Est./S.E.  

 

 C#1      ON 

    AGE94              -.285     .028    -10.045 

    MALE               2.578     .151     17.086 

    BLACK               .158     .139      1.141 

 C#2      ON 

    AGE94               .069     .022      3.182 

    MALE                .187     .110      1.702 

    BLACK              -.606     .139     -4.357 

 C#3      ON 

    AGE94              -.317     .028    -11.311 

    MALE               1.459     .101     14.431 

    BLACK               .999     .117      8.513 

Intercepts                                                                      

    C#1               -1.822     .174    -10.485 

    C#2                -.748     .103     -7.258 

    C#3                -.324     .125     -2.600 

 

Using (3), the log odds expression for a particular class compared to the 

last class is, 

 

log odds = a + b1*age94 + b2*male + b3*black. 

 

In the first example, the values of the three covariates are all zero so that 

only the intercepts contribute to the log odds.  Probabilities are 

computed using (2).  In the first step, the estimated intercept log odds 
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values are exponentiated and summed.  In the second step, each 

exponentiated value is divided by the sum to compute the probability for 

each class of c.     

                           exp       probability  =  exp/sum 

 

log odds (c = 1) = -1.822 0.162   0.069 

log odds (c = 2) = -0.748          0.473  0.201 

log odds (c = 3) = -0.324          0.723  0.307 

log odds (c = 4) =  0                 1.0  0.424 

                                                _______          ________ 

sum                                      2.358  1.001 

 

In the second example, the values of the three covariates are all one so 

that both the intercepts and the slopes contribute to the logs odds.  In the 

first step, the log odds values for each class are computed.  In the second 

step, the log odds values are exponentiated and summed.  In the last step, 

the exponentiated value is divided by the sum to compute the probability 

for each class of c.  

     

log odds (c = 1)  =  -1.822 + (-0.285*1) + (2.578*1) + (0.158*1) 

                           =  0.629 

log odds (c = 2)  = -0.748 + 0.069*1 + 0.187*1 + (-0.606*1) 

                           = -1.098 

log odds (c = 3)  = -0.324 + (-0.317*1) + 1.459*1 + 0.999*1 

                           = 1.817 

 

     exp        probability =  exp/sum 

 

log odds (c = 1)  =   0.629 1.876  0.200                     

log odds (c = 2)  =  -1.098 0.334  0.036 

log odds (c = 3)  =   1.817 6.153  0.657 

log odds (c = 4)  =   0  1.0   0.107   

                                                   _______       ________ 

sum                               9.363  1.000 

 

The interpretation of these probabilities is that individuals who have a 

value of 1 on each of the covariates have a probability of .200 of being 

in class 1, .036 of being in class 2, .657 of being in class 3, and .107 of 

being in class 4.  
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In the output shown above, the variable male has the value of 1 for males 

and 0 for females and the variable black has the value of 1 for blacks and 

0 for non-blacks.  The variable age94 has the value of 0 for age 16, 1 for 

age 17, up to 7 for age 23.  An interpretation of the logistic regression 

coefficient for class 1 is that comparing class 1 to class 4, the log odds 

decreases by -.285 for a unit increase in age, is 2.578 higher for males 

than for females, and is .158 higher for blacks than for non-blacks.  This 

implies that the odds ratio for being in class 1 versus class 4 when 

comparing males to females is 13.17 (exp 2.578), holding the other two 

covariates constant.  

 

Following is a plot of the estimated probabilities in each of the four 

classes where age is plotted on the x-axis and the other covariates take 

on the value of one.  This plot was created and exported as an EMF file 

using the PLOT command in conjunction with the Mplus post-

processing graphics module.  
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PARAMETERIZATION OF MODELS WITH MORE THAN 

ONE CATEGORICAL LATENT VARIABLE 
 

The parameterization of models with more than one categorical latent 

variables is described in this section.  There are three parameterizations 
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available for these models.  The first parameterization is based on a 

series of logistic regressions for non-recursive models.  The second 

parameterization is that of loglinear modeling of frequency tables.  The 

third parameterization uses probabilities rather than logits.  

 

LOGIT PARAMETERIZATION 
 

Following is a description of the logistic regression parameterization, 

specified using PARAMETERIZATION=LOGIT, for the following 

MODEL command for two categorical latent variables with three classes 

each:   

 

MODEL: 

%OVERALL% 

c2#1 ON c1#1; 

c2#1 ON c1#2; 

c2#2 ON c1#1; 

c2#2 ON c1#2; 

 

The set of ON statements describes the logistic regression coefficients in 

the conditional distribution of c2 given c1.  With three classes for both 

c2 and c1, there are a total of six parameters in this conditional 

distribution.  Two of the parameters are intercepts for c2 and four are the 

logistic regression coefficients specified in the MODEL command.   

 

For the c2 classes r = 1, 2, 3, the transition probabilities going from the 

classes of c1 to the classes of c2 are given by the following unordered 

multinomial logistic regression expressions: 

 

P (c2 = r | c1 = 1) = exp (ar + br1) / sum1, 

P (c2 = r | c1 = 2) = exp (ar + br2) / sum2, 

P (c2 = r | c1 = 3) = exp (ar + br3) / sum3, 

 

where a3 = 0, b31 = 0, b32 = 0, and b33 = 0 because the last class is the 

reference class, and sumj represents the sum of the exponentiations 

across the classes of c2 for c1 = j (j = 1, 2, 3).  The corresponding log 

odds when comparing a c2 class to the last c2 class are summarized in 

the table below. 
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c2 

 
c1 

 1 2 3 

1 a1 + b11 a2 + b21 0 

2 a1 + b12 a2 + b22 0 

3 a1 a2 0 

 

The parameters in the table are referred to in the MODEL command 

using the following statements: 

 

a1 [c2#1]; 

a2 [c2#2]; 

b11 c2#1 ON c1#1; 

b12 c2#1 ON c1#2; 

b21 c2#2 ON c1#1; 

b22 c2#2 ON c1#2; 

 

The TECH15 option is used in conjunction with TYPE=MIXTURE and 

PARAMETERIZATION=LOGIT to request marginal and conditional 

probabilities, including latent transition probabilities, for the categorical 

latent variables in a model.  Conditional probabilities, including latent 

transition probabilities, for different values of a set of covariates can be 

computed using the LTA Calculator.  It is accessed by choosing LTA 

calculator from the Mplus menu of the Mplus Editor.  The logit 

parameterization with covariates is described in Muthén and Asparouhov 

(2011).   

 

LOGLINEAR PARAMETERIZATION 
 

Following is a description of the loglinear parameterization for the 

following MODEL command for two categorical latent variables with 

three classes each:   

 

MODEL: 

%OVERALL% 

c2#1 WITH c1#1; 

c2#1 WITH c1#2; 

c2#2 WITH c1#1; 

c2#2 WITH c1#2; 
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The set of WITH statements describes the relationship between c1 and 

c2.  The parameters in the table below are referred to in the MODEL 

command using the following statements: 

 

a11 [c1#1]; 

a12 [c1#2]; 

a21 [c2#1]; 

a22 [c2#2]; 

w11 c2#1 WITH c1#1; 

w12 c2#1 WITH c1#2; 

w21 c2#2 WITH c1#1; 

w22 c2#2 WITH c1#2; 

 

The joint probabilities for the classes of c1 and c2 are computed using 

the multinomial logistic regression formula (2) in the previous section, 

summing over the nine cells shown in the table below. 

 
c2 

 
c1 

 1 2 3 

1 a11 + a21 + 
w11 

a11 + a22 + 
w21 

a11  

2 a12 + a21 + 
w12 

a12 + a22 + 
w22 

a12 

3 a21  a22  0 

 

PROBABILITY PARAMETERIZATION 
 

Following is a description of the probability parameterization for the 

following MODEL command for two categorical latent variables with 

three classes each:   

 

MODEL: 

%OVERALL% 

c2#1 ON c1#1; 

c2#1 ON c1#2; 

c2#1 ON c1#3; 

c2#2 ON c1#1; 

c2#2 ON c1#2; 

c2#2 ON c1#3; 

 

The set of ON statements describes the probability parameters in the 

conditional distribution of c2 given c1.  With three classes for both c2 
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and c1, there are a total of six probabilities in this conditional 

distribution.  The last class of c2 is not referred to because the 

probabilities sum to one for each row, for example, the probability of 

being in class three of c2 for those in class 1 of c1 is 1 – (p11 + p12). 

 
c2 

 
c1 

 1 2 3 

1 p11 p12 - 

2 p21 p22 - 

3 p31 p32 - 

 

The marginal probabilities for c1 are referred to as: 

 

[c1#1]; 

[c1#2];   
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CHAPTER 15 

TITLE, DATA, VARIABLE, AND 

DEFINE COMMANDS 
 

 

In this chapter, the TITLE, DATA, VARIABLE, and DEFINE 

commands are discussed.  The TITLE command is used to provide a title 

for the analysis. The DATA command is used to provide information 

about the data set to be analyzed.  The VARIABLE command is used to 

provide information about the variables in the data set to be analyzed.  

The DEFINE command is used to transform existing variables and create 

new variables.  

 

THE TITLE COMMAND 
 

The TITLE command is used to provide a title for the analysis.   

Following is the general format for the TITLE command: 

  
TITLE: title for the analysis  

 

The TITLE command is not a required command.  Note that commands 

can be shortened to four or more letters.  

 

The TITLE command can contain any letters and symbols except the 

words used as Mplus commands when they are followed by a colon.  

These words are: title, data, variable, define, analysis, model, output, 

savedata, montecarlo, and plot.  These words can be included in the title 

if they are not followed by a colon.  Colons can be used in the title as 

long as they do not follow words that are used as Mplus commands.  

Following is an example of how to specify a title: 

 

TITLE:  confirmatory factor analysis of diagnostic criteria 

 

The title is printed in the output just before the Summary of Analysis.   
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THE DATA COMMAND 
 

The DATA command is used to provide information about the data set 

to be analyzed.  The DATA command has options for specifying the 

location of the data set to be analyzed, describing the format and type of 

data in the data set, specifying the number of observations and number 

of groups in the data set if the data are in summary form such as a 

correlation or covariance matrix, requesting listwise deletion of 

observations with missing data, and specifying whether the data should 

be checked for variances of zero.   

 

Data must be numeric except for certain missing value flags and must 

reside in an external ASCII file.  There is no limit on the number of 

variables or observations.  The maximum record length is 10,000.  

Special features of the DATA command for multiple group analysis are 

discussed in Chapter 14.  Monte Carlo data generation is discussed in 

Chapters 12 and 19.  The estimator chosen for an analysis determines the 

type of data required for the analysis.  Some estimators require a data set 

with information for each observation.  Some estimators require only 

summary information. 

 

There are six DATA transformation commands.  They are used to 

rearrange data from a wide to long format, to rearrange data from a long 

to wide format, to create a binary and a continuous variable from a 

semicontinuous variable, to create a set of binary variables that are 

indicators of missing data, to create variables for discrete-time survival 

modeling, and to rearrange longitudinal data from a format where time 

points represent measurement occasions to a format where time points 

represent age or another time-related variable.   
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Following are the options for the DATA and the DATA transformation 

commands: 

 
DATA:   
FILE IS  file name;  
FORMAT IS format statement; FREE 
 FREE;  
TYPE IS  INDIVIDUAL; INDIVIDUAL 

 COVARIANCE;  

 CORRELATION;  

 FULLCOV;  
 FULLCORR;  
 MEANS;  
 STDEVIATIONS;  

 MONTECARLO;  

 IMPUTATION;  

NOBSERVATIONS ARE number of observations;  
NGROUPS = number of groups; 1 
LISTWISE = ON; 

OFF; 

OFF 

SWMATRIX = file name;  
VARIANCES = CHECK; 

NOCHECK; 

CHECK 

DATA IMPUTATION: 
     IMPUTE = 
     
     NDATASETS = 
     SAVE = 
      
     FORMAT = 
     MODEL = 
      
 
     VALUES =  
     ROUNDING = 
      
     THIN =  

 
names of variables for which missing values 
will be imputed; 
number of imputed data sets; 
names of files in which imputed data sets 
are stored; 
format statement;                                                

COVARIANCE; 

SEQUENTIAL; 

REGRESSION; 
values imputed data can take; 
number of decimals for imputed continuous  
variables; 
k where every k-th imputation is saved; 

 
 
 
5 
 
 
F10.3 
depends on 
analysis type 
 
no restrictions 
3 
 
100 

DATA WIDETOLONG: 
     WIDE = 
     LONG = 
     IDVARIABLE = 
     REPETITION =  

 
names of old wide format variables; 
names of new long format variables; 
name of variable with ID information; 
name of variable with repetition information; 

 
 
 
ID 
REP 
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DATA LONGTOWIDE: 
     LONG =  
     WIDE =  
     IDVARIABLE =  
     REPETITION =  

 
names of old long format variables; 
names of new wide format variables; 
name of variable with ID information; 
name of variable with repetition information 
(values); 

 
 
 
 
 
0, 1, 2, etc. 

DATA TWOPART: 
     NAMES = 
      
     CUTPOINT = 
      
     
     BINARY = 
     CONTINUOUS = 
     TRANSFORM = 

 
names of variables used to create a set of 
binary and continuous variables; 
value used to divide the original variables 
into a set of  binary and continuous 
variables; 
names of new binary variables; 
names of new continuous variables; 
function to use to transform new continuous 
variables; 

 
 
 
0 
 
 
 
LOG 

DATA MISSING: 
     NAMES = 
       
     BINARY = 

 
names of variables used to create a set of 
binary variables; 
names of new binary variables; 

 
 

     TYPE =  MISSING; 

SDROPOUT; 

DDROPOUT; 

 

     DESCRIPTIVE =  sets of variables for additional descriptive 
statistics separated by the | symbol; 

 

DATA SURVIVAL: 
     NAMES = 
      
     CUTPOINT = 
       
 
     BINARY = 

 
names of variables used to create a set of 
binary event-history variables; 
value used to create a set of binary event-
history variables from a set of original 
variables;  
names of new binary variables; 

 

DATA COHORT: 
     COHORT IS 
     COPATTERN IS 
     COHRECODE = 
     TIMEMEASURES = 
      
     TNAMES = 

 
name of cohort variable (values); 
name of cohort/pattern variable (patterns); 
(old value = new value); 
list of sets of variables separated by the | 
symbol; 
list of root names for the sets of variables in 
TIMEMEASURES separated by the | 
symbol; 

 

 

The DATA command is a required command.  The FILE option is a 

required option.  The NOBSERVATIONS option is required when 
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summary data are analyzed.  This option is not required when individual 

data are analyzed.  Default settings are shown in the last column.  If the 

default settings are appropriate for the options that are not required, 

nothing needs to be specified for these options. 

 

Note that commands and options can be shortened to four or more 

letters.  Option settings can be referred to by either the complete word or 

the part of the word shown above in bold type.  

 

FILE 
 

The FILE option is used to specify the name and location of the ASCII 

file that contains the data to be analyzed.  The FILE option is required 

for each analysis.  It is specified for a single group analysis as follows:  

 

FILE IS c:\analysis\data.dat; 

 

where data.dat is the name of the ASCII file containing the data to be 

analyzed.  In this example, the file data.dat is located in the directory 

c:\analysis.  If the full path name of the data set contains any blanks, the 

full path name must have quotes around it. 

 

If the name of the data set is specified with a path, the directory 

specified by the path is checked.  If the name of the data set is specified 

without a path, the local directory is checked.  If the data set is not found 

in the local directory, the directory where the input file is located is 

checked. 

 

FORMAT 
 

The FORMAT option is used to describe the format of the data set to be 

analyzed.  Individual data can be in fixed or free format.  Free format is 

the default.  Fixed format is recommended for large data sets because it 

is faster to read data using a fixed format.  Summary data must be in free 

format. 

 

For data in free format, each entry on a record must be delimited by a 

comma, space, or tab.  When data are in free format, the use of blanks is 

not allowed.  The number of variables in the data set is determined from 
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information provided in the NAMES option of the VARIABLE 

command.  Data are read until the number of pieces of information equal 

to the number of variables is found.  The program then goes to the next 

record to begin reading information for the next observation.   

      

For data in fixed format, each observation must have the same number of 

records.  Information for a given variable must occupy the same position 

on the same record for each observation.  A FORTRAN-like format 

statement describing the position of the variables in the data set is 

required.  Following is an example of how to specify a format statement: 

 

FORMAT IS 5F4.0, 10x, 6F1.0; 

 

Although any FORTRAN format descriptor (i.e., F, I, G, E, x, t, /, etc.) is 

acceptable in a format statement, most format statements use only F, t, x, 

and /.  Following is an explanation of how to create a FORTRAN-like 

format statement using these descriptors.   

 

The F format describes the format for a real variable.  F is followed by a 

number.  It can be a whole number or a decimal, for example, F5.3.  The 

number before the decimal point describes the number of columns 

reserved for the variable; the number after the decimal point specifies 

the number of decimal places.  If the number 34234 is read with an F5.3 

format, it is read as 34.234.  If the data contain a decimal point, it is not 

necessary to specify information about the position of the decimal point.  

For example, the number 34.234 can be read with a F6 format as 34.234. 

 

The F format can also be preceded by a number.  This number represents 

the number of variables to be read using that format.  The statement 

5F5.3 is a shorthand way of saying F5.3, F5.3, F5.3, F5.3, F5.3.   

 

There are three options for the format statement related to skipping 

columns or records when reading data:  x, t, and /.  The x option instructs 

the program to skip columns.  The statement 10x says to skip 10 

columns and begin reading in column 11.  The t option instructs the 

program to go to a particular column and begin reading.  For example, 

t130 says to go to column 130 and begin reading in column 130.  The / 

option is used to instruct the program to go to the next record.  Consider 

the following format statements: 
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1.  (20F4, 13F5, 3F2) 

2.  (3F4.1,25x,5F5) 

3.  (3F4.1,t38,5F5) 

4.  (2F4/14F4.2//6F3.1) 

 

1.  In the first statement, for each record the program reads 20 four-digit 

numbers followed by 13 five-digit numbers, then three two-digit 

numbers with a total record length of 151. 

 

2.  In the second statement, for each record the program reads three four-

digit numbers with one digit to the right of the decimal, skips 25 spaces, 

and then reads five five-digit numbers with a total record length of 62. 

 

3.  The third statement is the same as the second but uses the t option 

instead of the x option.  In the third statement, for each record the 

program reads three four-digit numbers with one digit to the right of the 

decimal, goes to column 38, and then reads five five-digit numbers.   

 

4.  In the fourth statement, each observation has four records.  For record 

one the program reads two four-digit numbers; for record two the 

program reads fourteen four-digit numbers with two digits to the right of 

the decimal; record three is skipped; and for record four the program 

reads six three-digit numbers with one number to the right of the decimal 

point.    

 

Following is an example of a data set with six one-digit numbers with no 

numbers to the right of the decimal point: 

 

123234 

342765 

348765 

 

The format statement for the data set above is:   

 

FORMAT IS 6F1.0;  

 

or 

 

FORMAT IS 6F1; 
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TYPE 
 

The TYPE option is used in conjunction with the FILE option to 

describe the contents of the file named using the FILE option.  It has the 

following settings:   

 

INDIVIDUAL Data matrix where rows represent observations and 

columns represent variables 

COVARIANCE A lower triangular covariance matrix read row wise  

CORRELATION A lower triangular correlation matrix read row wise 

FULLCOV A full covariance matrix read row wise 

FULLCORR A full correlation matrix read row wise 

MEANS Means 

STDEVIATIONS Standard deviations 

MONTECARLO A list of the names of the data sets to be analyzed 

IMPUTATION A list of the names of the imputed data sets to be 

analyzed 

 

INDIVIDUAL 
 

The default for the TYPE option is INDIVIDUAL.  The TYPE option is 

not required if individual data are being analyzed where rows represent 

observations and columns represent variables.   

 

SUMMARY DATA 
 

The TYPE option is required when summary data such as a covariance 

matrix or a correlation matrix are analyzed.  The TYPE option has six 

settings related to the analysis of summary data.  They are:  

COVARIANCE, CORRELATION, FULLCOV, FULLCORR, MEANS, 

and STDEVIATIONS.  Summary data must reside in a free format 

external ASCII file.  The number of observations must be specified using 

the NOBSERVATIONS option of the DATA command. 

 

When summary data are analyzed and one or more dependent variables 

are binary or ordered categorical (ordinal), only a correlation matrix can 

be analyzed.  When summary data are analyzed and all dependent
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variables are continuous, a covariance matrix is usually analyzed.  In 

some cases, a correlation matrix can be analyzed.  
 

A data set with all continuous dependent variables in the form of a 

correlation matrix, standard deviations, and means is specified as: 

 

TYPE IS CORRELATION MEANS STDEVIATIONS; 

 

The program creates a covariance matrix using the correlations and 

standard deviations and then analyzes the means and covariance matrix. 

 

The external ASCII file for the above example contains the means, 

standard deviations, and correlations in free format.  Each type of data 

must begin on a separate record even if the data fits on less than one 

record. The means come first; the standard deviations begin on the 

record following the last mean; and the entries of the lower triangular 

correlation matrix begin on the record following the last standard 

deviation.  The data set appears as follows: 

 

.4 .6 .3 .5 .5  

.2 .5 .4 .5 .6 

1.0 

.86  1.0 

.56  .76  1.0 

.78  .34  .48  1.0 

.65  .87  .32  .56  1.0 

 

or alternatively: 

 

.4 .6 .3 .5 .5  

.2 .5 .4 .5 .6 

1.0 .86  1.0 .56  .76  1.0 .78  .34  .48  1.0 .65  .87  .32  .56  1.0 

 

MONTECARLO 
 

The MONTECARLO setting of the TYPE option is used when the data 

sets being analyzed have been generated and saved using either the 

REPSAVE option of the MONTECARLO command or by another 

computer program.  The file named using the FILE option of the DATA 

command contains a list of the names of the data sets to be analyzed and 



CHAPTER 15 

 

 

 

572 

summarized as in a Monte Carlo study.  This ASCII file is created 

automatically when the data sets are generated and saved in a prior 

analysis using the REPSAVE option of the MONTECARLO command.  

This file must be created by the user when the data sets are generated 

and saved using another computer program.  Each record of the file must 

contain one data set name.  For example, if five data sets are being 

analyzed, the contents of the file would be: 

 

data1.dat 

data2.dat 

data3.dat 

data4.dat 

data5.dat 

 

where data1.dat, data2.dat, data3.dat, data4.dat, and data5.dat are the 

names of the five data sets generated and saved using another computer 

program.  All files must be in the same format.  Files saved using the 

REPSAVE option are in free format. 

 

When the MONTECARLO option is used, the results are presented in a 

Monte Carlo summary format.  The output includes the population value 

for each parameter, the average of the parameter estimates across 

replications, the standard deviation of the parameter estimates across 

replications, the average of the estimated standard errors across 

replications, the mean square error for each parameter (M.S.E.), 95 

percent coverage, and the proportion of replications for which the null 

hypothesis that a parameter is equal to zero is rejected at the .05 level.  

In addition, the average fit statistics and the percentiles for the fit 

statistics are given if appropriate.  A description of Monte Carlo output 

is given in Chapter 12. 

 

IMPUTATION 
 

The IMPUTATION setting of the TYPE option is used when the data 

sets being analyzed have been generated using multiple imputation 

procedures.  The file named using the FILE option of the DATA 

command must contain a list of the names of the multiple imputation 

data sets to be analyzed.  Parameter estimates are averaged over the set 

of analyses.  Standard errors are computed using the average of the 

squared standard errors over the set of analyses and the between analysis 
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parameter estimate variation (Rubin, 1987; Schafer, 1997).  A chi-square 

test of overall model fit is provided (Asparouhov & Muthén, 2008c; 

Enders, 2010).  The ASCII file containing the names of the data sets 

must be created by the user.  Each record of the file must contain one 

data set name.  For example, if five data sets are being analyzed, the 

contents of the file would be: 

 

imp1.dat 

imp2.dat 

imp3.dat 

imp4.dat 

imp5.dat 

 

where imp1.dat, imp2.dat, imp3.dat, imp4.dat, and imp5.dat are the 

names of the five data sets created using multiple imputation. 

 

NOBSERVATIONS 
 

The NOBSERVATIONS option is required when summary data are 

analyzed.  When individual data are analyzed, the program counts the 

number of observations.  The NOBSERVATIONS option can, however, 

be used with individual data to limit the number of records used in the 

analysis.  For example, if a data set contains 20,000 observations, it is 

possible to analyze only the first 1,000 observations by specifying: 

 

NOBSERVATIONS = 1000; 

 

NGROUPS 
 

The NGROUPS option is used for multiple group analysis when 

summary data are analyzed.  It specifies the number of groups in the 

analysis.  It is specified as follows: 

 

NGROUPS = 3; 

 

which indicates that the analysis is a three-group analysis.  Multiple 

group analysis is discussed in Chapter 14. 
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LISTWISE 
 

The LISTWISE option is used to indicate that any observation with one 

or more missing values on the set of analysis variables not be used in the 

analysis.  The default is to estimate the model under missing data theory 

using all available data.  To turn on listwise deletion, specify: 

 

LISTWISE = ON; 

 

SWMATRIX 
 

The SWMATRIX option is used with TYPE=TWOLEVEL and 

weighted least squares estimation to specify the name and location of the 

file that contains the within- and between-level sample statistics and 

their corresponding estimated asymptotic covariance matrix.  The 

univariate and bivariate sample statistics are estimated using one- and 

two-dimensional numerical integration with a default of 7 integration 

points.  The INTEGRATION option of the ANALYSIS command can be 

used to change the default.  It is recommended to save this information 

and use it in subsequent analyses along with the raw data to reduce 

computational time during model estimation.  Analyses using this 

information must have the same set of observed dependent and 

independent variables, the same DEFINE command, the same 

USEOBSERVATIONS statement, and the same USEVARIABLES 

statement as the analysis which was used to save the information.  It is 

specified as follows: 

 

SWMATRIX = swmatrix.dat; 

 

where swmatrix.dat is the file that contains the within- and between-

level sample statistics and their corresponding estimated asymptotic 

covariance matrix.   

 

For TYPE=IMPUTATION, the file specified contains a list of file 

names.  These files contain the within- and between-level sample 

statistics and their corresponding estimated asymptotic covariance 

matrix for a set of imputed data sets. 
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VARIANCES 
 

The VARIANCES option is used to check that the analysis variables do 

not have variances of zero in the sample used for the analysis.  Checking 

for variances of zero is the default.  To turn off this check, specify: 

 

VARIANCES = NOCHECK; 

 

THE DATA IMPUTATION COMMAND 
 

The DATA IMPUTATION command is used when a data set contains 

missing values to create a set of imputed data sets using multiple 

imputation methodology.  Imputation refers to the estimation of missing 

values in a data set to create a data set without missing values.  Multiple 

imputation refers to the creation of several data sets where missing 

values have been imputed.  Multiple imputation is carried out using 

Bayesian estimation.  The multiple imputations are random draws from 

the posterior distribution of the missing values (Rubin, 1987; Schafer, 

1997).  For an overview, see Enders (2010).  The multiple imputation 

data sets can be used for subsequent model estimation using maximum 

likelihood or weighted least squares estimation of each data set where 

the parameter estimates are averaged over the data sets and the standard 

errors are computed using the Rubin formula (Rubin, 1987).  A chi-

square test of overall model fit is provided (Asparouhov & Muthén, 

2008c; Enders, 2010).  Plausible values for latent variables in the model 

can be saved by specifying SAVE=FSCORES in conjunction with the 

FACTORS option of the SAVEDATA command. 
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The figure above shows three ways that data imputation can be done.  

The first path in the figure uses an unrestricted H1 imputation model and 

saves the imputed data sets for a subsequent analysis.  In this case, 

TYPE=BASIC is specified in the ANALYSIS command.  See Example 

11.5.  To use the data sets in a subsequent analysis, specify 

TYPE=IMPUTATION in the DATA command.  See Example 13.13.  

The second path in the figure uses an unrestricted H1 imputation model 

with an estimator other than BAYES.  In this case, the model is 

estimated immediately after the data are imputed.  See Example 11.6.  

The third path in the figure uses an H0 imputation model and 

ESTIMATOR=BAYES. The H0 model specified in the MODEL 

command is used to impute the data.  See Example 11.7.  

 

IMPUTE 
 

The IMPUTE option is used to specify the analysis variables for which 

missing values will be imputed.  Data can be imputed for all or a subset 

of the analysis variables.  These variables can be continuous or 

categorical.  If they are categorical a letter c in parentheses must be 

included after the variable name.  If a variable is on the 

CATEGORICAL list in the VARIABLE command, it must have a c in 

parentheses following its name.  A variable not on the CATEGORICAL 

list can have a c in parentheses following its name.  Following is an 

example of how to specify the IMPUTE option: 
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IMPUTE = y1-y4 u1-u4 (c) x1 x2; 

 

where values will be imputed for the continuous variables y1, y2, y3, y4, 

x1, and x2 and the categorical variables u1, u2, u3, and u4. 

 

The IMPUTE option has an alternative specification that is convenient 

when there are several variables that cannot be specified using the list 

function.  When c in parentheses follows the equal sign, it means that c 

applies to all of the variables that follow.  For example, the following 

IMPUTE statement specifies that the variables x1, x3, x5, x7, and x9 are 

categorical: 

 

IMPUTE = (c) x1 x3 x5 x7 x9; 

 

The keyword ALL can be used to indicate that values are to be imputed 

for all variables in the dataset.   The ALL option can be used with the c 

setting, for example, 

 

IMPUTE = ALL (c); 

 

indicates that all of the variables in the data set are categorical.  

 

NDATASETS 
 

The NDATASETS option is used to specify the number of imputed data 

sets to create.  The default is five.  Following is an example of how to 

specify the NDATASETS option: 

 

NDATASETS = 20; 

 

where 20 is the number of imputed data sets that will be created.  The 

default for the NDATASETS option is 5.   

 

SAVE 
 

The SAVE option is used to save the imputed data sets for subsequent 

analysis using TYPE=IMPUTATION in the DATA command.  It is 

specified as follows: 

 

SAVE = impute*.dat; 
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where the asterisk (*) is replaced by the number of the imputed data set.  

A file is also produced that contains the names of all of the data sets.  To 

name this file, the asterisk (*) is replaced by the word list.   

 

FORMAT 
 

The FORMAT option is used to specify the format in which the imputed 

data will be saved.  All dependent and independent variables used in the 

analysis are saved.  In addition, all other variables that are used in 

conjunction with the analysis are saved as well as any variables specified 

using the AUXILIARY option of the VARIABLE command.  The names 

of the data sets along with the names of the variables saved and the 

format are printed in the output. The default is to save the analysis 

variables using a fixed format. 

 

Following is an example of how to specify the FORMAT option to save 

imputed data in a free format: 

 

FORMAT IS FREE; 

 

Imputed data can also be saved in a fixed format specified by the user.  

The user has the choice of which F or E format the analysis variables are 

saved in with the format of other saved variables determined by the 

program.  This option is specified as: 

 

FORMAT IS F2.0; 

 

which indicates that all analysis variables will be saved with an F2.0 

format. 

 

MODEL 
 

The MODEL option is used to specify the type of unrestricted H1 model 

to use for imputation (Asparouhov & Muthén, 2010b).  The MODEL 

option has three settings:  COVARIANCE, SEQUENTIAL, and 

REGRESSION.  The default is COVARIANCE.  The COVARIANCE 

setting uses a model of unrestricted means, variances, and covariances 

for a set of continuous variables.  The SEQUENTIAL setting uses a 

sequential regression method also referred to as the chained equations 

algorithm in line with Raghunathan et al. (2001).  The REGRESSION 
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setting uses a model where variables with missing data are regressed on 

variables without missing data (Asparouhov & Muthén, 2010b).  To 

request the sequential regression method, specify: 

 

MODEL = SEQUENTIAL; 

 

VALUES 
 

The VALUES option is used to provide the values for continuous 

variables that the imputed data can take.  The default is to put no 

restrictions on the values that the imputed data can take.  The values 

must be integers.  For example, four five-category variables not declared 

as categorical can be restricted to take on only the values of one through 

five by specifying: 

 

VALUES = y1-y4 (1-5); 

 

The closest value to the imputed value is used.  If the imputed value is 

2.7, the value 3 will be used.   

 

ROUNDING 
 

The ROUNDING option is used to specify the number of decimals that 

imputed continuous variables will have.  The default is three.  To request 

that five decimals be used, specify:    

 

ROUNDING = y1-y10 (5); 

 

The value zero is used to specify no decimals, that is, integer values. 

 

THIN 
 

The THIN option is used to specify which intervals in the draws from 

the posterior distribution are used for imputed values.  The default is to 

use every 100
th
 iteration.  To request that every 200

th
 iteration be used, 

specify: 

 

THIN = 200; 
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THE DATA TRANSFORMATION COMMANDS 
 

There are six DATA transformation commands.  They are used to 

rearrange data from a wide to long format, to rearrange data from a long 

to wide format, to create a binary and a continuous variable from a 

semicontinuous variable, to create a set of binary variables that are 

indicators of missing data for another set of variables, to create variables 

for discrete-time survival modeling where a binary variable represents 

the occurrence of a single non-repeatable event, and to rearrange 

longitudinal data from a format where time points represent 

measurement occasions to a format where time points represent age or 

another time-related variable.  The DATA transformation commands are 

executed after the statements in the DEFINE command that come before 

the CLUSTER_MEAN, CENTER, and STANDARDIZE options of the 

DEFINE command.  The CLUSTER_MEAN, CENTER, and 

STANDARDIZE options are then executed in the order mentioned 

followed by the execution of any statements that follow them.    

 

THE DATA WIDETOLONG COMMAND 
 

In growth modeling an outcome measured at four time points can be 

represented in a data set in two ways.  In the wide format, the outcome is 

represented as four variables on a single record.  In the long format, the 

outcome is represented as a single variable using four records, one for 

each time point. The DATA WIDETOLONG command is used to 

rearrange data from a multivariate wide format to a univariate long 

format.  

  

When the data are rearranged, the set of outcomes is given a new 

variable name and ID and repetition variables are created.  These new 

variable names must be placed on the USEVARIABLES statement of 

the VARIABLE command if they are used in the analysis.  They must be 

placed after any original variables.  If the ID variable is used as a cluster 

variable, this must be specified using the CLUSTER option of the 

VARIABLE command.  

 

The creation of the new variables in the DATA WIDETOLONG 

command occurs after any transformations in the DEFINE command and 

any of the other DATA transformation commands.  If listwise deletion is 
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used, it occurs after the data have been rearranged.  Following is a 

description of the options used in the DATA WIDETOLONG command. 

 

WIDE  
 

The WIDE option is used to identify sets of variables in the wide format 

data set that will be converted into single variables in the long format 

data set.  These variables must be variables from the NAMES statement 

of the VARIABLE command.  The WIDE option is specified as follows: 

 

WIDE = y1-y4 | x1-x4; 

 

where y1, y2, y3, and y4 represent one variable measured at four time 

points and x1, x2, x3, and x4 represent another variable measured at four 

time points.   

 

LONG 
 

The LONG option is used to provide names for the new variables in the 

long format data set.  There should be the same number of names as 

there are sets of variables in the WIDE statement.  The LONG option is 

specified as follows: 

 

LONG = y | x; 

 

where y is the name assigned to the set of variables y1-y4 on the WIDE 

statement and x is the name assigned to the set of variables x1-x4.   

 

IDVARIABLE 
 

The IDVARIABLE option is used to provide a name for the variable that 

provides information about the unit to which the record belongs.  In 

univariate growth modeling, this is the person identifier which is used as 

a cluster variable.  The IDVARIABLE option is specified as follows: 

 

IDVARIABLE = subject; 

 

where subject is the name of the variable that contains information about 

the unit to which the record belongs.  If an id variable is specified using 

the IDVARIABLE option of the VARIABLE command, the values of 
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this variable are used for the variable specified using the IDVARIABLE 

option.  This option is not required.  

 

REPETITION 
 

The REPETITION option is used to provide a name for the variable that 

contains information on the order in which the variables were measured.  

The REPETITION option is specified as follows: 

 

REPETITION = time; 

 

where time is the variable that contains information on the order in 

which the variables were measured.  This variable assigns consecutive 

values starting with zero to the repetitions.  This variable can be used in 

a growth model as a time score variable.  This option is not required.   

 

THE DATA LONGTOWIDE COMMAND 
 

In growth modeling an outcome measured at four time points can be 

represented in a data set in two ways.  In the long format, the outcome is 

represented as a single variable using four records, one for each time 

point.  In the wide format, the outcome is represented as four variables 

on a single record.  The DATA LONGTOWIDE command is used to 

rearrange data from a univariate long format to a multivariate wide 

format. 

 

When the data are rearranged, the outcome is given a set of new variable 

names.  These new variable names must be placed on the 

USEVARIABLES statement of the VARIABLE command if they are 

used in the analysis.  They must be placed after any original variables.   

 

The creation of the new variables in the DATA LONGTOWIDE 

command occurs after any transformations in the DEFINE command and 

any of the other DATA transformation commands.  Following is a 

description of the options used in the DATA LONGTOWIDE command. 
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LONG 
 

The LONG option is used to identify the variables in the long format 

data set that will be used to create sets of variables in the wide format 

data set.  These variables must be variables from the NAMES statement 

of the VARIABLE command.  The LONG option is specified as follows: 

 

LONG = y | x; 

 

where y and x are two variables that have been measured at multiple 

time points which are represented by multiple records.   

 

WIDE 
 

The WIDE option is used to provide sets of names for the new variables 

in the wide format data set.  There should be the same number of sets of 

names as there are variables in the LONG statement.  The number of 

names in each set corresponds to the number of time points at which the 

variables in the long data set were measured.  The WIDE option is 

specified as follows: 

 

WIDE = y1-y4 | x1-x4; 

 

where y1, y2, y3, and y4 are the names for the variable y in the wide data 

set and x1, x2, x3, and x4 are the names for the variable x in the wide 

data set.  

 

IDVARIABLE 
 

The IDVARIABLE option is used to identify the variable in the long 

data set that contains information about the unit to which each record 

belongs.  The IDVARIABLE option is specified as follows: 

 

IDVARIABLE = subject; 

 

where subject is the name of the variable that contains information about 

the unit to which each record belongs.  This variable becomes the 

identifier for each observation in the wide data set.  The IDVARIABLE 

option of the VARIABLE command cannot be used to select a different 

identifier.    
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REPETITION 
 

The REPETITION option is used to identify the variable that contains 

information about the times at which the variables in the long data set 

were measured.  The REPETITION option is specified as follows: 

 

REPETITION = time; 

 

where time is the variable that contains information about the time at 

which the variables in the long data set were measured.  If the time 

variable does not contain consecutive integer values starting at zero, the 

time values must be given.  For example, 

 

REPETITION = time (4 8 16); 

 

specifies that the values 4,  8, and 16 are the values of the variable time.  

The number of values should be equal to the number of variables in the 

WIDE option and the order of the values should correspond to the order 

of the variables. 

 

THE DATA TWOPART COMMAND 
 

The DATA TWOPART command is used to create a binary and a 

continuous variable from a continuous variable with a floor effect for 

use in two-part (semicontinuous) modeling (Duan et al., 1983; Olsen & 

Schafer, 2001).  One situation where this occurs is when variables have a 

preponderance of zeros.   

 

A set of binary and continuous variables are created using the value 

specified in the CUTPOINT option of the DATA TWOPART command 

or zero which is the default.  The two variables are created using the 

following rules: 

 

1. If the value of the original variable is missing, both the new binary 

and the new continuous variable values are missing. 

2. If the value of the original variable is greater than the cutpoint value, 

the new binary variable value is one and the new continuous variable 

value is the log of the original variable as the default. 
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3. If the value of the original variable is less than or equal to the 

cutpoint value, the new binary variable value is zero and the new 

continuous variable value is missing.   

 

The new variables must be placed on the USEVARIABLES statement of 

the VARIABLE command if they are used in the analysis.  These 

variables must come after any original variables.  If the binary variables 

are used as dependent variables in the analysis, they must be declared as 

categorical using the CATEGORICAL option of the VARIABLE 

command.   

 

The creation of the new variables in the DATA TWOPART command 

occurs after any transformations in the DEFINE command and before 

any transformations using the DATA MISSING command.  Following is 

a description of the options used in the DATA TWOPART command. 

 

NAMES 
 

The NAMES option identifies the variables that are used to create a set 

of binary and continuous variables.  These variables must be variables 

from the NAMES statement of the VARIABLE command.  The NAMES 

option is specified as follows: 

 

NAMES = smoke1-smoke4; 

 

where smoke1, smoke2, smoke3, and smoke4 are the semicontinuous 

variables that are used to create a set of  binary and continuous variables. 

 

CUTPOINT 
 

The CUTPOINT option is used to provide the value that is used to divide 

the original variables into a set of binary and continuous variables.  The 

default value for the CUTPOINT option is zero.   The CUTPOINT 

option is specified as follows: 

 

CUTPOINT = 1; 

 

where variables are created based on values being less than or equal to 

one or greater than one.  
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BINARY 
 

The BINARY option is used to assign names to the new set of binary 

variables.  The BINARY option is specified as follows: 

 

BINARY = u1-u4; 

 

where u1, u2, u3, and u4 are the names of the new set of binary 

variables. 

 

CONTINUOUS 
 

The CONTINUOUS option is used to assign names to the new set of 

continuous variables.  The CONTINUOUS option is specified as 

follows: 

 

CONTINUOUS = y1-y4; 

 

where y1, y2, y3, and y4 are the names of the new set of continuous 

variables. 

 

TRANSFORM 
 

The TRANSFORM option is used to transform the new continuous 

variables.  The LOG function is the default.  The following functions 

can be used with the TRANSFORM option: 

 

LOG  base e log  LOG (y);        

LOG10  base 10 log  LOG10 (y); 

EXP  exponential  EXP (y); 

SQRT  square root  SQRT (y); 

ABS  absolute value  ABS(y); 

SIN  sine   SIN (y); 

COS  cosine   COS (y); 

TAN  tangent   TAN(y); 

ASIN  arcsine   ASIN (y); 

ACOS  arccosine  ACOS (y); 

ATAN  arctangent  ATAN (y); 

NONE  no transformation 
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The TRANSFORM option is specified as follows: 

 

TRANSFORM = NONE; 

 

where specifying NONE results in no transformation of the new 

continuous variables. 

 

THE DATA MISSING COMMAND 
 

The DATA MISSING command is used to create a set of binary 

variables that are indicators of missing data or dropout for another set of 

variables.  Dropout indicators can be scored as discrete-time survival 

indicators or dropout dummy indicators.  The new variables can be used 

to study non-ignorable missing data (Little & Rubin, 2002; Muthén et 

al., 2011). 

 

The new variables must be placed on the USEVARIABLES statement of 

the VARIABLE command if they are used in the analysis.  These 

variables must come after any original variables.  If the binary variables 

are used as dependent variables in the analysis, they must be declared as 

categorical using the CATEGORICAL option of the VARIABLE 

command. 

 

The creation of the new variables in the DATA MISSING command 

occurs after any transformations in the DEFINE command and after any 

transformations using the DATA TWOPART command.  Following is a 

description of the options used in the DATA MISSING command. 

 

NAMES 
 

The NAMES option identifies the set of variables that are used to create 

a set of binary variables that are indicators of missing data.  These 

variables must be variables from the NAMES statement of the 

VARIABLE command.  The NAMES option is specified as follows: 

 

NAMES = drink1-drink4; 

 

where drink1, drink2, drink3, and drink4 are the set of variables for 

which a set of binary indicators of missing data are created. 
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BINARY 
 

The BINARY option is used to assign names to the new set of binary 

variables.  The BINARY option is specified as follows: 

 

BINARY = u1-u4; 

 

where u1, u2, u3, and u4 are the names of the new set of binary 

variables. 

 

For TYPE=MISSING, the number of binary indicators is equal to the 

number of variables in the NAMES statement.  For TYPE=SDROPOUT 

and TYPE=DDROPOUT, the number of binary indicators is one less 

than the number of variables in the NAMES statement because dropout 

cannot occur before the second time point an individual is observed. 

 

TYPE 
 

The TYPE option is used to specify how missingness is coded.  It has 

three settings:  MISSING, SDROPOUT, and DDROPOUT.  The default 

is MISSING.  For the MISSING setting, a binary missing data indicator 

variable is created.  For the SDROPOUT setting, which is used with 

selection missing data modeling, a binary discrete-time (event-history) 

survival dropout indicator is created.  For the DDROPOUT setting, 

which is used with pattern-mixture missing data modeling, a binary 

dummy dropout indicator is created.  The TYPE option is specified as 

follows: 

 

TYPE = SDROPOUT; 

 

Following are the rules for creating the set of binary variables for the 

MISSING setting: 

 

1. If the value of the original variable is missing, the new binary 

variable value is one. 

2. If the value of the original variable is not missing, the new binary 

variable value is zero. 

 

For the SDROPOUT and DDROPOUT settings, the set of indicator 

variables is defined by the last time point an individual is observed.    
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Following are the rules for creating the set of binary variables for the 

SDROPOUT setting: 

 

1. The value one is assigned to the time point after the last time point 

an individual is observed. 

2. The value missing is assigned to all time points after the value of 

one.   

3. The value zero is assigned to all time points before the value of one. 

 

Following are the rules for creating the set of binary variables for the 

DDROPOUT setting: 

 

1. The value one is assigned to the time point after the last time point 

an individual is observed. 

2. The value zero is assigned to all other time points. 

 

DESCRIPTIVE 
 

The DESCRIPTIVE option is used in conjunction with TYPE=BASIC 

of the ANALYSIS command and the SDROPOUT and DDROPOUT 

settings of the TYPE option to specify the sets of variables for which 

additional descriptive statistics are computed.  For each variable, the 

mean and standard deviation are computed using all observations 

without missing on the variable.  Means and standard deviations are 

provided for the following sets of observations whose definitions are 

based on missing data patterns:  

 

Dropouts after each time point – Individuals who drop out before the 

next time point and do not return to the study                                             

Non-dropouts after each time point – Individuals who do not drop out 

before the next time point                                   

Total Dropouts – Individuals who are missing at the last time point 

    Dropouts no intermittent missing – Individuals who do not return to   

    the study once they have dropped out                               

    Dropouts intermittent missing – Individuals who drop out and return  

    to the study                    
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Total Non-dropouts – Individuals who are present at the last time point                                      

    Non-dropouts complete data – Individuals with complete data                                       

    Non-dropouts intermittent missing – Individuals who have missing   

    data but are present at the last time point 

Total sample                                            

 

The first set of variables given in the DESCRIPTIVE statement is the 

outcome variable.  This set of variables defines the number of time 

points in the model.  If the other sets of variables do not have the same 

number of time points, the asterisk (*) is used as a placeholder.  Sets of 

variables are separated by the | symbol.  Following is an example of how 

to specify the DESCRIPTIVE option: 

 

DESCRIPTIVE = y0-y5 | x0-x5 | * z1-z5;  

 

The first set of variables, y0-y5 defines the number of time points as six.  

The last set of variables has only five measures.  An asterisk (*) is used 

as a placeholder for the first time point. 

 

THE DATA SURVIVAL COMMAND 
 

The DATA SURVIVAL command is used to create variables for 

discrete-time survival modeling where a binary discrete-time survival 

(event-history) variable represents whether or not a single non-

repeatable event has occurred in a specific time period.   

 

A set of binary discrete-time survival variables is created using the 

following rules: 

 

1. If the value of the original variable is missing, the new binary 

variable value is missing. 

2. If the value of the original variable is greater than the cutpoint value, 

the new binary variable value is one which represents that the event 

has occurred.  

3. If the value of the original variable is less than or equal to the 

cutpoint value, the new binary variable value is zero which 

represents that the event has not occurred.  

4. After a discrete-time survival variable for an observation is assigned 

the value one, subsequent discrete-time survival variables for that 

observation are assigned the value of the missing value flag. 
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The new variables must be placed on the USEVARIABLES statement of 

the VARIABLE command if they are used in the analysis.  These 

variables must come after any original variables.  If the binary variables 

are used as dependent variables in the analysis, they must be declared as 

categorical using the CATEGORICAL option of the VARIABLE 

command. 

 

The creation of the new variables in the DATA SURVIVAL command 

occurs after any transformations in the DEFINE command, the DATA 

TWOPART command, and the DATA MISSING command.  Following 

is a description of the options used in the DATA SURVIVAL command. 

 

NAMES 
 

The NAMES option identifies the variables that are used to create a set 

of binary event-history variables.  These variables must be variables 

from the NAMES statement of the VARIABLE command.  The NAMES 

option is specified as follows: 

 

NAMES = dropout1-dropout4; 

 

where dropout1, dropout2, dropout3, and dropout4  are the variables that 

are used to create a set of binary event-history variables. 

 

CUTPOINT 
 

The CUTPOINT option is used provide the value to use to create a set of 

binary event-history variables from a set of original variables.  The 

default value for the CUTPOINT option is zero.   The CUTPOINT 

option is specified as follows: 

 

CUTPOINT = 1; 

 

where variables are created based on values being less than or equal to 

one or greater than one.  

 

BINARY 
 

The BINARY option is used to assign names to the new set of binary 

event-history variables.  The BINARY option is specified as follows: 
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BINARY = u1-u4; 

 

where u1, u2, u3, and u4 are the names of the new set of binary event-

history variables. 

 

THE DATA COHORT COMMAND 
 

The DATA COHORT command is used to rearrange longitudinal data 

from a format where time points represent measurement occasions to a 

format where time points represent age or another time-related variable.  

It is available only for continuous outcomes.  Multiple cohort analysis is 

described in Chapter 14. 

 

The new variables must be placed on the USEVARIABLES statement of 

the VARIABLE command if they are used in the analysis.  

 

These variables must come after any original variables.  The creation of 

the new variables in the DATA COHORT command occurs after any 

transformations in the DEFINE command.  Following is a description of 

the options used in the DATA COHORT command.  

 

COHORT 
 

The COHORT option is used when data have been collected using a 

multiple cohort design.  The COHORT option is used in conjunction 

with the TIMEMEASURES and TNAMES options that are described 

below.  Variables used with the COHORT option must be variables from 

the NAMES statement of the VARIABLE command.  Following is an 

example of how the COHORT option is specified: 

 

COHORT IS birthyear (63 64 65); 

 

where birthyear is a variable in the data set to be analyzed, and the 

numbers in parentheses following the variable name are the values that 

the birthyear variable contains.  Birth years of 1963, 1964, and 1965 are 

included in the example below.  The cohort variable must contain only 

integer values.  
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COPATTERN 
 

The COPATTERN option is used when data are both missing by design 

and have been collected using a multiple cohort design.  Variables used 

with the COPATTERN option must be variables from the NAMES 

statement of the VARIABLE command.  Following is an example of 

how the COPATTERN option is specified: 

 

COPATTERN = cohort (67=y1 y2 y3 68=y4 y5 y6 69=y2 y3 y4); 

 

where cohort is a variable that provides information about both the 

cohorts included in the data set and the patterns of variables for each 

cohort.   In the example above, individuals in cohort 67 should have 

information on y1, y2, and y3; individuals in cohort 68 should have 

information on y4, y5, and y6; and individuals in cohort 69 should have 

information on y2, y3, and y4.  Individuals who have missing values on 

any variable for which they are expected to have information are 

eliminated from the analysis.  The copattern variable must contain only 

integer values.  

 

COHRECODE 
 

The COHRECODE option is used in conjunction with either the 

COHORT or COPATTERN options to recode the values of the cohort or 

copattern variable.  The COHRECODE option is specified as follows: 

 

COHRECODE = (1=67 2=68 3=69 4=70); 

 

where the original values of 1, 2, 3, and 4 of the cohort or copattern  

variable are recoded to 67, 68, 69, and 70, respectively.  If the 

COHRECODE option is used, all values of the original variable must be 

recoded to be included in the analysis.  Observations with values that are 

not recoded will be eliminated from the analysis. 

 

TIMEMEASURES 
 

The TIMEMEASURES option is used with multiple cohort data to 

specify the years in which variables to be used in the analysis were 

measured.  It is used in conjunction with the COHORT and 

COPATTERN options to determine the ages that are represented in the 
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multiple cohort data set.  Variables used with the TIMEMEASURES 

option must be variables from the NAMES statement of the VARIABLE 

command.  Following is an example of how the TIMEMEASURES 

option is specified: 

 

TIMEMEASURES = y1 (82) y2 (84) y3 (85) y4 (88) y5 (94); 

 

where y1, y2, y3, y4, and y5 are original variables that are to be used in 

the analysis, and the numbers in parentheses following each of these 

variables represent the years in which they were measured.  In this 

situation, y1, y2, y3, y4, and y5 are the same measure, for example, 

frequency of heavy drinking measured on multiple occasions.   

 

The TIMEMEASURES option can be used to identify more than one 

measure that has been measured repeatedly as shown in the following 

example: 

 

TIMEMEASURES =  y1 (82) y2 (84) y3 (85) y4 (88) y5 (94) | 

                           y6 (82) y7 (85) y8 (90) y9 (95) | 

               x1 (83) x2(88) x3 (95); 

 

where each set of variables separated by the symbol | represents repeated 

measures of that variable.  For example, y1, y2, y3, y4, and y5 may 

represent repeated measures of heavy drinking; y6, y7, y8, and y9 may 

represent repeated measures of alcohol dependence; and x1, x2, and x3 

may represent repeated measures of marital status. 

 

TNAMES 
 

The TNAMES option is used to generate variable names for the new 

multiple cohort analysis variables.  A root name is specified for each set 

of variables mentioned using the TIMEMEASURES option.  The age of 

the respondent at the time the variable was measured is attached to the 

root name.  The age is determined by subtracting the cohort value from 

the year the variable was measured.  Following is an example of how the 

TNAMES option is specified: 

 

TNAMES = hd; 

 

where hd is the root name for the new variables.    
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Following is an example of how the TNAMES option is specified for the 

TIMEMEASURES and COHORT options when multiple outcomes are 

measured: 

 

TNAMES = hd | dep | marstat;  

 

Following are the variables that would be created:     

 

hd22, hd24, hd25, hd26, hd27, hd28, hd29, hd30,  

hd31, hd32, hd33, hd34, hd36, hd37, hd38, hd39,  

dep22, dep24, dep25, dep26, dep27, dep28, dep29, dep30,  

dep32, dep33, dep35, dep36, dep37, dep38, dep39, dep40, 

marstat23, marstat25, marstat26, marstat27, marstat28 

marstat30, marstat31, marstat32, marstat33, marstat35 

marstat37, marstat38, marstat39, marstat40. 

 

There is no hd variable for ages 23 and 35, no dep variable for ages 23, 

31, and 34, and no marstat variable for ages 24, 29, 34, and 36 because 

these ages are not represented by the combination of cohort values and 

years of measurement. 

 

THE VARIABLE COMMAND 
 

The VARIABLE command is used to provide information about the 

variables in the data set to be analyzed.  The VARIABLE command has 

options for naming and describing the variables in the data set to be 

analyzed, subsetting the data set on observations, subsetting the data set 

on variables, and specifying missing values for each variable. 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 15 

 

 

 

596 

Following are the options for the VARIABLE command: 

 
VARIABLE:   
   
NAMES ARE names of variables in the data set;  
USEOBSERVATIONS ARE conditional statement to select observations; all observations 

in data set 
USEVARIABLES ARE names of analysis variables; all variables in 

NAMES 
MISSING ARE variable (#);  
 . ;  
  * ;  
 BLANK;  
CENSORED ARE names, censoring type, and inflation status for 

censored  dependent variables; 
 

CATEGORICAL ARE names of binary and ordered categorical 
(ordinal) dependent variables (model); 

 

NOMINAL ARE names of unordered categorical (nominal) 
dependent variables;  

 

COUNT ARE names of count variables (model);  
DSURVIVAL ARE names of discrete-time survival variables;  
GROUPING IS name of grouping variable (labels);  
IDVARIABLE IS name of ID variable; 

_RECNUM; 
 

FREQWEIGHT IS name of frequency (case) weight variable;  
TSCORES ARE names of observed variables with information 

on individually-varying times of observation; 
 

AUXILIARY = names of auxiliary variables;  
names of auxiliary variables (M); 

names of auxiliary variables (R3STEP); 
names of auxiliary variables (R); 
names of auxiliary variables (BCH); 

names of auxiliary variables (DU3STEP); 
names of auxiliary variables 

(DCATEGORICAL); 

names of auxiliary variables (DE3STEP); 
names of auxiliary variables 

(DCONTINUOUS); 
names of auxiliary variables (E); 

 

CONSTRAINT = names of observed variables that can be used 
in the MODEL CONSTRAINT command; 

 

PATTERN IS name of pattern variable (patterns);  
STRATIFICATION IS name of stratification variable;   
CLUSTER IS name of cluster variables;  
WEIGHT IS name of sampling weight variable;  
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WTSCALE IS UNSCALED; CLUSTER 

 CLUSTER;  

 ECLUSTER;  

BWEIGHT name of between-level sampling weight 
variable; 

 

B2WEIGHT IS name of the level 2 sampling weight variable;  
B3WEIGHT IS name of the level 3 sampling weight variable;  
BWTSCALE IS UNSCALED; 

SAMPLE; 

SAMPLE 

REPWEIGHTS ARE names of replicate weight variables;  
SUBPOPULATION IS conditional statement to select subpopulation;  all observations 

in data set 
FINITE = name of  variable; 

name of variable (FPC); 

name of variable (SFRACTION); 

name of variable (POPULATION); 

FPC 

CLASSES = names of categorical latent variables (number 
of latent classes); 

 

KNOWNCLASS = name of categorical latent variable with known 
class membership (labels);  

 

TRAINING = names of training variables; 

names of variables (MEMBERSHIP); 

names of variables (PROBABILITIES); 

names of variables (PRIORS); 

MEMBERSHIP 

WITHIN ARE 
WITHIN ARE (label) 

names of individual-level observed variables; 
names of individual-level observed variables; 

 

BETWEEN ARE 
BETWEEN ARE (label) 

names of cluster-level observed variables; 
names of cluster-level observed variables; 

 

SURVIVAL ARE names and time intervals for time-to-event 
variables; 

 

TIMECENSORED ARE 
 
LAGGED ARE 
TINTERVAL IS 

names and values of variables that contain 
right censoring information; 
names of lagged variables (lag); 
name of time variable (interval); 

(0 = NOT 
1 = RIGHT) 
 

 

The VARIABLE command is a required command.  The NAMES option 

is a required option.  Default settings are shown in the last column.  If 

the default settings are appropriate for the analysis, nothing needs to be 

specified except the NAMES option.   

 

Note that commands and options can be shortened to four or more 

letters.  Option settings can be referred to by either the complete word or 

the part of the word shown above in bold type. 
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ASSIGNING NAMES TO VARIABLES 

 

NAMES 
 

The NAMES option is used to assign names to the variables in the data 

set named using the FILE option of the DATA command.  This option is 

required.  The variable names can be separated by blanks or commas and 

can be up to 8 characters in length.  Variable names must begin with a 

letter.  They can contain only letters, numbers, and the underscore 

symbol.  The program makes no distinction between upper and lower 

case letters.  Following is an example of how the NAMES option is 

specified: 

 

NAMES ARE gender ethnic income educatn drink_st agedrink;  

 

Variable names are generated if a list of variables is specified using the 

NAMES option.  For example, 

 

NAMES ARE y1-y5 x1-x3; 

 

generates the variable names y1 y2 y3 y4 y5 x1 x2 x3. 

 

NAMES ARE itema-itemd; 

 

generates the variable names itema itemb itemc itemd. 

 

SUBSETTING OBSERVATIONS AND VARIABLES  
 

There are options for selecting a subset of observations or variables from 

the data set named using the FILE option of the DATA command.  The 

USEOBSERVATIONS option is used to select a subset of observations 

from the data set.  The USEVARIABLES option is used to select a 

subset of variables from the data set.   
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USEOBSERVATIONS 
 

The USEOBSERVATIONS option is used to select observations for an 

analysis from the data set named using the FILE option of the DATA 

command.  This option is not available for summary data.  The 

USEOBSERVATIONS option selects only those observations that 

satisfy the conditional statement specified after the equal sign.  For 

example, the following statement selects observations with the variable 

ethnic equal to 1 and the variable gender equal to 2:  

 

USEOBSERVATIONS = ethnic EQ 1 AND gender EQ 2; 

 

Only variables from the NAMES statement of the VARIABLE command 

can be used in the conditional statement of the USEOBSERVATIONS 

option.  Logical operators, not arithmetic operators, must be used in the 

conditional statement.  Following are the logical operators that can be 

used in conditional statements to select observations for analysis: 

 

AND logical and 

OR logical or 

NOT logical not 

EQ equal    == 

NE not equal   /= 

GE greater than or equal to  >= 

LE less than or equal to  <= 

GT greater than   > 

LT less than   < 

 

As shown above, some of the logical operators can be referred to in two 

different ways.  For example, equal can be referred to as EQ or ==.   

 

USEVARIABLES 
 

The USEVARIABLES option is used to select variables for an analysis. 

It can be used with individual data or summary data.  Variables included 

on the USEVARIABLES statement can be variables from the NAMES 

statement of the VARIABLE command and variables created using the 

DEFINE command and the DATA transformation commands.  New 

variables created using the DEFINE command and the DATA 
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transformation commands must be included on the USEVARIABLES 

statement. 

 

The USEVARIABLES option identifies the observed dependent and 

independent variables that are used in an analysis.  Variables with 

special functions such as grouping variables do not need to be included 

on the USEVARIABLES statement unless they are new variables 

created using the DEFINE command or the DATA transformation 

commands.  Following is an example of how to specify the 

USEVARIABLES option: 

 

USEVARIABLES ARE gender income agefirst; 

 

Variables on the USEVARIABLES statement must follow a particular 

order.  The order of the variables is important because it determines the 

order of variables used with the list function.  The set of original 

variables from the NAMES statement of the VARIABLE command must 

be listed before the set of new variables created using the DEFINE 

command or the DATA transformation commands.  Within the two sets 

of original and new variables, any order is allowed. 

 

If all of the original variables plus some of the new variables are used in 

the analysis, the keyword ALL can be used as the first entry in the 

USEVARIABLES statement.  This indicates that all of the original 

variables from the NAMES statement of the VARIABLE command are 

used in the analysis.  The keyword ALL is followed by the names of the 

new variables created using the DEFINE command or the DATA 

transformation commands that will be used in the analysis.  Following is 

an example of how to specify the USEVARIABLES option for this 

situation: 

 

USEVARIABLES = ALL hd1 hd2 hd3; 

 

where ALL refers to the total set of original variables and hd1, hd2, and 

hd3 are new variables created using the DEFINE command or the DATA 

transformation commands. 
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MISSING VALUES 
 

MISSING 
 

The MISSING option is used to identify the values or symbol in the 

analysis data set that are treated as missing or invalid.  Any numeric 

value and the non-numeric symbols of the period, asterisk (*), or blank 

can be used as missing value flags.  There is no default missing value 

flag.  Numeric and non-numeric missing value flags cannot be combined. 

The blank cannot be used as a missing value flag for data in free format.  

When a list of missing value flags contains a negative number, the 

entries must be separated by commas.   

 

NON-NUMERIC MISSING VALUE FLAGS 
 

The period (.), the asterisk (*), or the blank can be used as non-numeric 

missing value flags.  Only one non-numeric missing value flag can be 

used for a particular data set.  This missing value flag applies to all 

variables in the data set.  The blank cannot be used with free format data.  

With fixed format data, blanks in the data not declared as missing value 

flags are treated as zeroes.  

 

The following command indicates that the period is the missing value 

flag for all variables in the data set:   

 

MISSING ARE . ; 

 

The blank can be a missing value flag only in fixed format data sets.  

The following command indicates that blanks are to be considered as 

missing value flags: 

 

MISSING = BLANK; 

 

NUMERIC MISSING VALUE FLAGS 
    

Any number of numeric values can be specified as missing value flags 

for the complete data set or for individual variables.  The keyword ALL 

can be used with the MISSING option if all variables have the same 

numeric value(s) as missing value flags.   
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The following statement specifies that the number 9 is the missing value 

flag for all variables in the data set: 

 

MISSING ARE ALL (9);    

 

The following example specifies that for the variable ethnic, the 

numbers 9 and 99 are missing value flags, while for the variable y1, the 

number 1 is the missing value flag: 

  

MISSING ARE ethnic (9 99) y1 (1);  

 

The list function can be used with the MISSING option to specify a list 

of missing value flags and/or a set of variables.  The order of variables in 

the list is determined by the order of variables in the NAMES statement 

of the VARIABLE command.  Values of 9, 99, 100, 101, and 102 can be 

declared as missing value flags for all variables in a data set by the 

following specification: 

 

MISSING ARE ALL (9 99-102);  

 

Missing values can be specified for a list of variables as follows: 

 

MISSING ARE gender-income (9 30 98-102);  

 

The statement above specifies that the values of 9, 30, 98, 99, 100, 101, 

and 102 are missing value flags for the list of variables beginning with 

gender and ending with income. 

 

If a single missing value flag is negative, it can be specified as described 

above.  If there are several negative missing value flags, they must be 

separated by commas to distinguish between the list function and a 

negative value.  The following example specifies that for the variable 

ethnic, the numbers -9 and -99 are missing value flags. 

 

MISSING ARE ethnic (-9, -99); 

 

The list function can be used with negative missing value flags.  It is 

specified as: 

 

MISSING = ALL (-778- -775); 
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The statement above specifies that the values of -778, -777, -776, and -

775 are missing value flags for all variables in the data set.  

 

MEASUREMENT SCALE OF OBSERVED 

DEPENDENT VARIABLES 
 

All observed dependent variables are assumed to be measured on a 

continuous scale unless the CENSORED, CATEGORICAL, NOMINAL, 

and/or COUNT options are used.  The specification of the scale of the 

dependent variables determines how the variables are treated in the 

model and its estimation.  Independent variables can be binary or 

continuous.   The scale of the independent variables has no influence on 

the model or its estimation.  The distinction between dependent and 

independent variables is described in Chapter 17. 

 

Variables named using the CENSORED, CATEGORICAL, NOMINAL, 

and/or COUNT options can be variables from the NAMES statement of 

the VARIABLE command and variables created using the DEFINE 

command and the DATA transformation commands. 

 

CENSORED 
 

The CENSORED option is used to specify which dependent variables 

are treated as censored variables in the model and its estimation, whether 

they are censored from above or below, and whether a censored or 

censored-inflated model will be estimated.   

 

The CENSORED option is specified as follows for a censored model: 

   

CENSORED ARE y1 (a) y2 (b) y3 (a) y4 (b); 

 

where y1, y2, y3, y4 are censored dependent variables in the analysis.  

The letter a in parentheses following the variable name indicates that the 

variable is censored from above.  The letter b in parentheses following 

the variable name indicates that the variable is censored from below.  

The lower and upper censoring limits are determined from the data. 

 

The CENSORED option is specified as follows for a censored-inflated 

model: 
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CENSORED ARE y1 (ai) y2 (bi) y3 (ai) y4 (bi); 

 

where y1, y2, y3, y4 are censored dependent variables in the analysis.  

The letters ai in parentheses following the variable name indicate that 

the variable is censored from above and that a censored-inflated model 

will be estimated.  The letters bi in parentheses following the variable 

name indicate that the variable is censored from below and that a 

censored-inflated model will be estimated.  The lower and upper 

censoring limits are determined from the data.   

 

With a censored-inflated model, two variables are considered, a 

censored variable and an inflation variable.  The censored variable takes 

on values for individuals who are able to assume values of the censoring 

point and beyond.  The inflation variable is a binary latent variable for  

which the value one denotes that an individual is unable to assume any 

value except the censoring point.  The inflation variable is referred to by 

adding to the name of the censored variable the number sign (#) 

followed by the number 1.  In the example above, the censored variables 

available for use in the MODEL command are y1, y2, y3, and y4, and 

the inflation variables available for use in the MODEL command are 

y1#1, y2#1, y3#1, and y4#1. 

 

CATEGORICAL 
 

The CATEGORICAL option is used to specify which dependent 

variables are treated as binary or ordered categorical (ordinal) variables 

in the model and its estimation and the type of model to be estimated.  

Both probit and logistic regression models can be estimated for 

categorical variables.  For binary variables, the following IRT models 

can be estimated:  two-parameter normal ogive, two-parameter logistic, 

three-parameter logistic, and four-parameter logistic.  For ordered 

categorical (ordinal) variables, the following IRT models can be 

estimated:  generalized partial credit with logistic and graded-response 

with probit (normal ogive) and logistic.  For a nominal IRT model, use 

the NOMINAL option.   

 

For categorical dependent variables, there are as many thresholds as 

there are categories minus one.  The thresholds are referred to in the 

MODEL command by adding to the variable name the dollar sign ($) 

followed by a number.  The threshold for a binary variable u1 is referred 
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to as u1$1.  The two thresholds for a three-category variable u2 are 

referred to as u2$1 and u2$2.  Ordered categorical dependent variables 

cannot have more than 10 categories.  The number of categories is 

determined from the data.   

 

The CATEGORICAL option is specified as follows: 

   

CATEGORICAL ARE u2 u3 u7-u13; 

 

where u2, u3, u7, u8, u9, u10, u11, u12, and u13 are binary or ordered 

categorical dependent variables in the analysis.  With weighted least 

squares and Bayes estimation, a probit model is estimated.  For binary 

variables, this is a two-parameter normal ogive model.  For ordered 

categorical (ordinal) variables, this is a graded response model.  With 

maximum likelihood estimation, a logistic model is estimated as the 

default.  For binary variables, this is a two-parameter logistic model. For 

ordered categorical (ordinal) variables, this is a proportional odds model 

which is the same as a graded response model.   Probit models can also 

be estimated with maximum likelihood estimation using the LINK 

option of the ANALYSIS command.   

 

The CATEGORICAL option for a generalized partial credit model is 

specified as follows:   

 

CATEGORICAL = u1 –u3 (gpcm) u10 (gpcm); 

 

where the variables u1, u2, u3, and u10 are ordered categorical (ordinal) 

variables for which a generalized partial credit model will be estimated.  

The partial credit model has c-1 step parameters for an item with c 

categories and one slope parameter (Asparouhov & Muthén, 2016).  The 

step parameters are referred to in the same way as thresholds.  The first 

step parameter for a three-category ordered categorical (ordinal) variable 

u1 is referred to as u1$1.  The second step parameter is referred to as 

u1$2. 

 

The CATEGORICAL option for a three-parameter logistic model is 

specified as follows: 

 

CATEGORICAL = u1 –u3 (3pl) u10 (3pl); 
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where the variables u1, u2, u3, and u10 are binary variables for which a 

three-parameter logistic model will be estimated.  The guessing 

parameter cannot be referred to directly.  Instead a parameter related to 

the guessing parameter is referred to (Asparouhov & Muthén, 2016).  

This parameter is referred to as the second threshold.  The first threshold 

for a binary variable u1 is referred to as u1$1.  The second threshold is 

referred to as u1$2. 

 

The CATEGORICAL option for a four-parameter logistic model is 

specified as follows: 

 

CATEGORICAL = u1 –u3 (4pl) u10 (4pl); 

 

where the variables u1, u2, u3, and u10 are binary variables for which a 

four-parameter logistic model will be estimated.  The lower asymptote 

(guessing) and upper asymptote parameters cannot be referred to 

directly.  Instead a parameter which is related to the lower asymptote 

(guessing) and a parameter which is related to the upper asymptote 

parameter are referred to (Asparouhov & Muthén, 2016).  The parameter 

related to the lower asymptote (guessing) parameter is referred to as the 

second threshold.  The parameter related to the upper asymptote 

parameter is referred to as the third threshold.  The first threshold for a 

binary variable u1 is referred to as u1$1.  The second threshold is 

referred to as u1$2.  The third threshold is referred to as u1$3.  

 

RECODING OF DEPENDENT VARIABLES 
 

The estimation of the model for binary or ordered categorical dependent 

variables uses zero to denote the lowest category, one to denote the 

second lowest category, two to denote the third lowest category, etc.  If 

the variables are not coded this way in the data, they are automatically 

recoded as described below.  When data are saved for subsequent 

analyses, the recoded categories are saved. 

 

Following are examples of situations in which data are recoded by the 

program: 
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Categories in Original Data Categories in Recoded Data 

 

  1 2 3 4    0 1 2 3 

  2 3 4 5    0 1 2 3 

  2 5 8 9    0 1 2 3 

  0 1    no recode needed 

  1 2    0 1 

 

In most situations, the default recoding is appropriate.  In multiple group 

analysis and growth modeling, the default recoding may not be 

appropriate because the categories observed in the data for a variable 

may not be the same across groups or time.  For example, it is sometimes 

the case that individuals are observed in lower categories at earlier time 

points and higher categories at later time points.  Several variations of 

the CATEGORICAL option are available for these situations.  These are 

allowed only for maximum likelihood estimation.  

 

Using the automatic recoding, each variable is recoded using the 

categories found in the data for that variable.  Following is an example 

of how to specify the CATEGORICAL option so that each variable is 

recoded using the categories found in the data for a set of variables: 

 

CATEGORICAL u1-u3 (*); 

 

where u1, u2, and u3 are a set of ordered categorical variables and the 

asterisk (*) in parentheses indicates that the categories of each variable 

are to be recoded using the categories found in the data for the set of 

variables not for each variable.  Based on the original data shown in the 

table below, where the rows represent observations and the columns 

represent variables, the set of variables are found to have four possible 

categories:  1, 2, 3, and 4.   The variable u1 has observed categories 1 

and 2; u2 has observed categories 1, 2, and 3; and u3 has observed 

categories 2, 3, and 4.  The recoded values are shown in the table below.  

 

Categories in the Original Data Set Categories in the Recoded Data Set 

u1 u2 u3 u1 u2 u3 

1 2 3 0 1 2 

1 1 2 0 0 1 

2 2 2 1 1 1 

2 3 4 1 2 3 
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The CATEGORICAL option can be used to give a set of categories that 

are allowed for a variable or set of variables rather than having these 

categories determined from the data.  Following is an example of how to 

specify this: 

 

CATEGORICAL = u1-u3 (1-6); 

 

where the set of variables u1, u2, and u3 can have the categories of 1, 2, 

3, 4, 5, and 6.  In this example, 1 will be recoded as 0, 2 as 1, 3 as 2, 4 as 

3, 5 as 4, and 6 as 5.   

 

Another variation of this is: 

 

CATEGORICAL = u1-u3 (2 4 6); 

 

where the set of variables u1, u2, and u3 can have the categories 2, 4, 

and 6.  In this example, 2 will be recoded as 0, 4 as 1, and 6 as 2. 

 

The CATEGORICAL option can be used to specify that different sets of 

variables have different sets of categories by using the | symbol.  For 

example, 

 

CATEGORICAL = u1-u3 (*) | u4-u6 (2-5) | u7-u9; 

 

specifies that for the variables u1, u2, and u3, the possible categories are 

taken from the data for the set of variables; for the variables u4, u5, and 

u6, the possible categories are 2, 3, 4, and 5; and for the variables u7, u8, 

and u9, the possible categories are the default, that is, the possible 

categories are taken from the data for each variable.  

 

NOMINAL 
 

The NOMINAL option is used to specify which dependent variables are 

treated as unordered categorical (nominal) variables in the model and its 

estimation.  Unordered categorical dependent variables cannot have 

more than 10 categories.  The number of categories is determined from 

the data.  The NOMINAL option is specified as follows: 

   

NOMINAL ARE u1 u2 u3 u4; 
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where u1, u2, u3, u4 are unordered categorical dependent variables in 

the analysis.  

 

For nominal dependent variables, all categories but the last category can 

be referred to.  The last category is the reference category.  The 

categories are referred to in the MODEL command by adding to the 

variable name the number sign (#) followed by a number.  The three 

categories of a four-category nominal variable are referred to as u1#1, 

u1#2, and u1#3.  

 

The estimation of the model for unordered categorical dependent 

variables uses zero to denote the lowest category, one to denote the 

second lowest category, two to denote the third lowest category, etc.  If 

the variables are not coded this way in the data, they are automatically 

recoded as described below.  When data are saved for subsequent 

analyses, the recoded categories are saved. 

 

Following are examples of situations in which data are recoded by the 

program: 

 

 Categories in Original Data Categories in Recoded Data 

 

  1 2 3 4    0 1 2 3 

  2 3 4 5    0 1 2 3 

   

 

  2 5 8 9    0 1 2 3 

  0 1    no recode needed 

  1 2    0 1 

 

COUNT 
 

The COUNT option is used to specify which dependent variables are 

treated as count variables in the model and its estimation and the type of 

model to be estimated.  The following models can be estimated for count 

variables:  Poisson, zero-inflated Poisson, negative binomial, zero-

inflated negative binomial, zero-truncated negative binomial, and 

negative binomial hurdle (Long, 1997; Hilbe, 2011).  The negative 

binomial models use the NB-2 variance representation (Hilbe, 2011, p. 

63).  Count variables may not have negative or non-integer values.   
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The COUNT option can be specified in two ways for a Poisson model: 

 

COUNT = u1 u2 u3 u4; 

 

or 

 

COUNT = u1 (p) u2 (p) u3 (p) u4 (p); 

 

or using the list function: 

 

COUNT = u1-u4 (p); 

 

The COUNT option can be specified in two ways for a zero-inflated 

Poisson model: 

 

COUNT = u1-u4 (i); 

 

or 

 

COUNT = u1-u4 (pi); 

 

where u1, u2, u3, and u4 are count dependent variables in the analysis.  

The letter i or pi in parentheses following the variable name indicates 

that a zero-inflated Poisson model will be estimated. 

 

With a zero-inflated Poisson model, two variables are considered, a 

count variable and an inflation variable.  The count variable takes on 

values for individuals who are able to assume values of zero and above 

following the Poisson model.  The inflation variable is a binary latent 

variable with one denoting that an individual is unable to assume any 

value except zero.  The inflation variable is referred to by adding to the 

name of the count variable the number sign (#) followed by the number 

1.  If the inflation parameter value is estimated at a large negative value 

corresponding to a probability of zero, the inflation part of the model is 

not needed.  

 

Following is the specification of the COUNT option for a negative 

binomial model: 

 

COUNT = u1 (nb) u2 (nb) u3 (nb) u4 (nb); 
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or using the list function: 

 

COUNT = u1-u4 (nb); 

 

With a negative binomial model, a dispersion parameter is estimated.  

The dispersion parameter is referred to by using the name of the count 

variable.  If the dispersion parameter is estimated at zero, the model is a 

Poisson model. 

 

Following is the specification of the COUNT option for a zero-inflated 

negative binomial model: 

 

COUNT = u1- u4 (nbi); 

 

With a zero-inflated negative binomial model, two variables are 

considered, a count variable and an inflation variable.  The count 

variable takes on values for individuals who are able to assume values of 

zero and above following the negative binomial model.  The inflation 

variable is a binary latent variable with one denoting that an individual is 

unable to assume any value except zero.  The inflation variable is 

referred to by adding to the name of the count variable the number sign 

(#) followed by the number 1.  If the inflation parameter value is 

estimated at a large negative value corresponding to a probability of 

zero, the inflation part of the model is not needed.  

 

Following is the specification of the COUNT option for a zero-truncated 

negative binomial model: 

 

COUNT = u1-u4 (nbt); 

 

Count variables for the zero-truncated negative binomial model must 

have values greater than zero. 

 

Following is the specification of the COUNT option for a negative 

binomial hurdle model: 

 

COUNT = u1-u4 (nbh); 

 

With a negative binomial hurdle model, two variables are considered, a 

count variable and a hurdle variable.  The count variable takes on values 
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for individuals who are able to assume values of one and above 

following the truncated negative binomial model.  The hurdle variable is 

a binary latent variable with one denoting that an individual is unable to 

assume any value except zero.  The hurdle variable is referred to by 

adding to the name of the count variable the number sign (#) followed by 

the number 1.  

 

DSURVIVAL 
   

The DSURVIVAL option is used in conjunction with the PLOT 

command to identify the discrete-time survival variables so that survival 

curves are generated.  The DSURVIVAL option is specified as follows: 

 

DSURVIVAL = u1-u4; 

 

where u1 to u4 are discrete-time survival variables. 

 

VARIABLES WITH SPECIAL FUNCTIONS 
 

There are several options that are used to identify variables that have 

special functions.  These variables can be variables from the NAMES 

statement of the VARIABLE command and variables created using the 

DEFINE command and the DATA transformation commands.  

Following is a description of these options and their specifications. 

    

GROUPING 
 

The GROUPING option is used to identify the variable in the data set 

that contains information on group membership when the data for all 

groups are stored in a single data set.  Multiple group analysis is 

discussed in Chapter 14.  A grouping variable must contain only integer 

values.  Only one grouping variable can be used.  If the groups to be 

analyzed are a combination of more than one variable, a single grouping 

variable can be created using the DEFINE command.  Following is an 

example of how to specify the GROUPING option: 

 

GROUPING IS gender (1=male 2 = female);  
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The information in parentheses after the grouping variable name assigns 

labels to the values of the grouping variable found in the data set.  In the 

example above, observations with gender equal to 1 are assigned the 

label male, and individuals with gender equal to 2 are assigned the label 

female.  These labels are used in conjunction with the MODEL 

command to specify model statements specific to each group.  

Observations that have a value on the grouping variable that is not 

specified using the GROUPING option are not included in the analysis.   

 

In situations where there are many groups, a shorthand notation can be 

used for the GROUPING option.  It is specified as follows: 

 

GROUPING = country (101-200 225 350-360); 

 

where country is the grouping variable and 101 through 200, 225, and 

350 through 360 are the values of country that will be used as groups.  

The values of the variable country are used as labels in group-specific 

MODEL commands.   

 

The GROUPING option can be specified by mentioning only the number 

of groups, for example, 

 

GROUPING = country (34); 

 

where country is the grouping variable and the number 34 specifies that 

there are 34 groups.  The group values are taken from the data.  The 

reference group is the group with the lowest value.  Default group labels 

are used.  G1 is the label for the group with the lowest value, g2 is the 

label for the group with the next value, etc..     

 

IDVARIABLE 
 

The IDVARIABLE option is used in conjunction with the SAVEDATA 

command to provide an identifier for each observation in the data set 

that is saved.  This is useful for merging the data with another data set.  

The IDVARIABLE option is specified as follows: 

 

IDVARIABLE = id; 
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where id is a variable that contains a unique numerical identifier for each 

observation.  The length of this variable may not exceed 16. 

 

If a data set does not contain an identifier variable, the _RECNUM 

setting can be used as follows to create one: 

 

IDVARIABLE = _RECNUM; 

 

 The unique numerical identifier corresponds to the record number of the 

data set specified using the FILE option of the DATA command. 

 

FREQWEIGHT 
 

The FREQWEIGHT option is used to identify the variable that contains 

frequency (case) weight information.  Frequency weights are used when 

a single record in the data set represents the responses of more than one 

individual.  Frequency weight values must be integers.  Frequency 

weights do not have to sum to the total number of observations in the 

analysis data set and are not rescaled in any way.  Frequency weights are 

available for all analysis types except TYPE=COMPLEX, 

TYPE=TWOLEVEL, TYPE=THREELEVEL, 

TYPE=CROSSCLASSIFIED, and TYPE=EFA.  With 

TYPE=RANDOM, frequency weights are available only with 

ALGORITHM=INTEGRATION.  Following is an example of how the 

FREQWEIGHT option is specified:   

 

FREQWEIGHT IS casewgt; 

 

where casewgt is the variable that contains frequency weight 

information.   

 

TSCORES   
 

The TSCORES option is used in conjunction with TYPE=RANDOM to 

identify the variables in the data set that contain information about 

individually-varying times of observation for the outcome in a growth 

model.  Variables listed in the TSCORES statement can be used only in 

AT statements in the MODEL command to define a growth model.  For 

TYPE=TWOLEVEL, ALGORITHM=INTEGRATION must be 
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specified in the ANALYSIS command for this type of analysis.  The 

TSCORES option is specified as follows: 

 

TSCORES ARE a1 a2 a3 a4; 

 

where a1, a2, a3, and a4 are observed variables in the analysis data set 

that contain the individually-varying times of observation for an 

outcome at four time points. 

 

AUXILIARY 
 

Auxiliary variables are variables that are not part of the analysis model.  

The AUXILIARY option has three uses.  One is to identify a set of 

variables that is not used in the analysis but is saved for use in a 

subsequent analysis.  A second is to identify a set of variables that will 

be used as missing data correlates in addition to the analysis variables.  

The third is to automatically carry out the 3-step approach of 

TYPE=MIXTURE.  

 

SAVED 
 

In the first use of the AUXILIARY option, variables listed on the 

AUXILIARY statement are saved along with the analysis variables if the 

SAVEDATA command is used.  These variables can be used in 

graphical displays if the PLOT command is used.  If these variables are 

created using the DEFINE command or the DATA transformation 

commands, they must be listed on the USEVARIABLES statement of 

the VARIABLE command in addition to being listed on the 

AUXILIARY statement.  The AUXILIARY option is specified as 

follows: 

 

AUXILIARY = gender race educ; 

 

where gender, race, and educ are variables that are not used in the 

analysis but that are saved in conjunction with the SAVEDATA and/or 

the PLOT commands. 
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MISSING DATA CORRELATES 
 

In the second use of the AUXILIARY option, it is used in conjunction 

with TYPE=GENERAL with continuous dependent variables and 

maximum likelihood estimation to identify a set of variables that will be 

used as missing data correlates in addition to the analysis variables 

(Collins, Schafer, & Kam, 2001; Graham, 2003; Asparouhov & Muthén, 

2008b; Enders, 2010).  This use is not available with MODINDICES, 

BOOTSTRAP, and models with a set of exploratory factor analysis 

(EFA) factors in the MODEL command.  The setting M in parentheses is 

placed behind the variables on the AUXILIARY statement that will be 

used as missing data correlates.  Following is an example of how to 

specify the M setting: 

 

AUXILIARY = z1-z4 (M); 

 

where z1, z2, z3, and z4 are variables that will be used as missing data 

correlates in addition to the analysis variables. 

 

An alternative specification that is convenient when there are several 

variables that cannot be specified using the list function is: 

 

AUXILIARY = (M) x1 x3 x5 x7 x9; 

 

where all variables after (M) will be used as missing data correlates in 

addition to the analysis variables.  

 

3-STEP APPROACH 
 

In the third use of the AUXILIARY option, the 3-step approach using 

TYPE=MIXTURE is automatically carried out.  There are eight settings 

of the AUXILIARY option that automatically carry out the 3-step 

approach.  Two of these settings are used to identify a set of variables 

not used in the first step of the analysis that are possible covariates in a 

multinomial logistic regression for a categorical latent variable.  The 

multimonial logistic regression uses all covariates at the same time.  Six 

of the settings are used to identify a set of variables not used in the first 

step of the analysis for which the equality of means across latent classes 

will be tested.  The equality of means is tested one variable at a time.  

Only one of these eight settings can be used in an analysis at a time.  
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Only one categorical latent variable is allowed with the 3-step approach.  

The manual 3-step approach in described in Asparouhov and Muthen 

(2014a, b).  

 

The two settings that are used to identify a set of variables not used in 

the first step of the analysis that are possible covariates in a multinomial 

logistic regression for a categorical latent variable are R3STEP 

(Vermunt, 2010; Asparouhov & Muthén, 2012b) and R (Wang et al., 

2005).  R3STEP is preferred.  R is superseded by R3STEP and should be 

used only for methods research. 

 

The six settings that are used to identify a set of variables not used in the 

first step of the analysis for which the equality of means across latent 

classes will be tested are BCH (Bakk & Vermunt, 2015), DU3STEP 

(Asparouhov & Muthén, 2012b), DCATEGORICAL (Lanza et al., 

2013), DE3STEP (Asparouhov & Muthén, 2012b), DCONTINUOUS 

(Lanza et al., 2013), and E (Asparouhov, 2007).  BCH is preferred for 

continuous distal outcomes.  DU3STEP should be used only when there 

are no class changes between the first and last steps.  DCATEGORICAL 

is for categorical distal outcomes.  The following settings for continuous 

distal outcomes, DE3STEP, DCONTINUOUS, and E, should be used 

only for methods research.   

 

All of the settings are specified in the same way.  The setting in 

parentheses is placed behind the variables on the AUXILIARY 

statement that will be used as covariates in the multinomial logistic 

regression or for which the equality of means will be tested.  Following 

is an example of how to specify the R3STEP setting: 

 

AUXILIARY = race (R3STEP) ses (R3STEP) x1-x5 (R3STEP);  

 

where race, ses, x1, x2, x3, x4, and x5 will be used as covariates in a 

multinomial logistic regression in a mixture model.   

 

An alternative specification for the eight settings that is convenient when 

there are several variables that cannot be specified using the list function 

is: 

 

AUXILIARY = (R3STEP) x1 x3 x5 x7 x9; 
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where all variables after R3STEP) will be used as covariates in a 

multinomial logistic regression in a mixture model. 

 

Following is an example of how to specify more than one setting in the 

same AUXILIARY statement: 

 

AUXILIARY = gender age (BCH) educ ses (BCH) x1-x5 (BCH); 

 

where all of the variables on the AUXILIARY statement will be saved if 

the SAVEDATA command is used, will be available for plots if the 

PLOT command is used, and tests of equality of means across  latent 

classes will be carried out for the variables age, ses, x1, x2, x3, x4, and 

x5. 

 

CONSTRAINT 
 

The CONSTRAINT option is used to identify the variables that can be 

used in the MODEL CONSTRAINT command.  These can be not only 

variables used in the MODEL command but also other variables.  All 

variables on the CONSTRAINT list are treated as continuous variables 

in the analysis.  Only variables used by the following options cannot be 

included:  GROUPING, PATTERN, COHORT, COPATTERN, 

CLUSTER, STRATIFICATION, and AUXILIARY.  Variables that are 

part of these options can be used in DEFINE to create new variables that 

can be used in the CONSTRAINT statement.  The CONSTRAINT 

option is not available for TYPE=RANDOM, TYPE=TWOLEVEL, 

TYPE=THREELEVEL, TYPE=CROSSCLASSIFIED,  

TYPE=COMPLEX, and for estimators other than ML, MLR, and MLF.  

The CONSTRAINT option is specified as follows: 

 

CONSTRAINT = y1 u1; 

 

where y1 and u1 are variables that can be used in the MODEL 

CONSTRAINT command. 

 

PATTERN 
 

The PATTERN option is used when data are missing by design.  The 

typical use is in situations when, because of the design of the study, all 

variables are not measured on all individuals in the analysis.  This can 
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occur, for example, when individuals receive different forms of a 

measurement instrument that contain different sets of items.  Following 

is an example of how the PATTERN option is specified: 

 

PATTERN IS design (1= y1 y3 y5  2= y2 y3 y4 3= y1 y4 y5); 

 

where design is a variable in the data set that has integer values of 1, 2, 

and 3.  The variable names listed after each number and the equal sign 

are variables used in the analysis which should have no missing values 

for observations with that value on the pattern variable.  For example, 

observations with the value of one on the variable design should have 

information for variables y1, y3, and y5 and have missing values for y2 

and y4.  Observations with the value of three on the variable design 

should have information for variables y1, y4, and y5 and have missing 

values for variables y2 and y3.  The pattern variable must contain only 

integer values.  Observations that have a value for the pattern variable 

that is not specified using the PATTERN option are not included in the 

analysis.  

 

COMPLEX SURVEY DATA 
 
There are several options that are used for complex survey data.  These 

include options for stratification, clustering, unequal probabilities of 

selection (sampling weights), and subpopulation analysis.  The variables 

used with these options can be variables from the NAMES statement of 

the VARIABLE command and variables created using the DEFINE 

command and the DATA transformation commands.  The exception is 

that variables used with the SUBPOPULATION option must be 

variables from the NAMES statement of the VARIABLE command.  

Following is a description of these options and their specifications. 

 

STRATIFICATION 
 

The STRATIFICATION option is used with TYPE=COMPLEX to 

identify the variable in the data set that contains information about the 

subpopulations from which independent probability samples are drawn.  

Following is an example of how the STRATIFICATION option is used: 

 

STRATIFICATION IS region; 



CHAPTER 15 

 

 

 

620 

where region is the variable that contains stratification information. 

 

CLUSTER 
 

The CLUSTER option is used with TYPE=TWOLEVEL, 

TYPE=THREELEVEL, TYPE=CROSSCLASSIFIED, and 

TYPE=COMPLEX to identify the variables in the data set that contain 

clustering information.  One cluster variable is used for 

TYPE=TWOLEVEL and TYPE=COMPLEX.  Two cluster variables are 

used for TYPE=THREELEVEL, TYPE=CROSSCLASSIFIED, and 

TYPE=COMPLEX TWOLEVEL.  Three cluster variables are used for 

TYPE=COMPLEX THREELEVEL.   

 

Following is an example of how the CLUSTER option is used with 

TYPE=TWOLEVEL and TYPE=COMPLEX: 

 

CLUSTER IS school; 

 

where school is the variable that contains clustering information. 

 

Following is an example of how the CLUSTER option is used with 

TYPE=THREELEVEL: 

 

CLUSTER IS school class; 

 

where school and class are the variables that contain clustering 

information.  The cluster variable for the highest level must come first, 

that is, classrooms are nested in schools. 

 

Following is an example of how the CLUSTER option is used with 

TYPE=CROSSCLASSIFIED: 

 

CLUSTER = neighbor school; 

 

where neighbor and school are the variables that contain clustering 

information.  Students are nested in schools crossed with neighborhoods. 

 

Following is an example of how the CLUSTER option is used with 

TYPE=CROSSCLASSIFIED and time series analysis: 
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CLUSTER = subject time; 

 

where subject and time are the variables that contain clustering 

information.  In cross-classified time series analysis, subject and time are 

crossed.  There is no nesting because each subject is observed only once 

at any one time.  The cluster variable for subject must precede the 

cluster variable for time.  Within each cluster, data must be ordered by 

time. 

 

TYPE=COMPLEX TWOLEVEL can be used with either two cluster 

variables,  one stratification and two cluster variables,  or one 

stratification and one cluster variable.  Following is an example of using 

two cluster variables: 

 

CLUSTER = school class;   

 

where school and class are the variables that contain clustering 

information.  The clusters for TYPE=TWOLEVEL are classroom.  The 

standard error and chi-square computations for TYPE=COMPLEX are 

based on school.   

 

Following is an example with stratification and clustering: 

 

STRATIFICATION = region; 

CLUSTER = school; 

 

where the clusters for TYPE=TWOLEVEL are schools and the standard 

error and chi-square computations for TYPE=COMPLEX are based on 

region.  

 

TYPE=COMPLEX THREELEVEL can be used with either three cluster 

variables,  one stratification and three cluster variables,  or one 

stratification and two cluster variables.  Following is an example of how 

the CLUSTER option is used with TYPE=COMPLEX THREELEVEL: 

 

CLUSTER IS psu school class; 

 

where psu, school, and class are the variables that contain clustering 

information.  The cluster variable for the highest level must come first, 

that is, classrooms are nested in schools and schools are nested in psu’s.  
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The clusters for TYPE=THREELEVEL are classroom and school.  The 

standard error and chi-square computations for TYPE=COMPLEX are 

based on psu’s.  

 

WEIGHT 
 

The WEIGHT option is used to identify the variable that contains 

sampling weight information for non-clustered data using 

TYPE=GENERAL, clustered data using TYPE=COMPLEX, and level 1 

data using TYPE=TWOLEVEL and TYPE=THREELEVEL.  Sampling 

weights are not available for TYPE=CROSSCLASSIFIED.  Sampling 

weights are used when data have been collected with unequal 

probabilities of being selected.  Sampling weight values must be non-

negative real numbers.  If the sum of the sampling weights is not equal to 

the total number of observations in the analysis data set, the weights are 

rescaled so that they sum to the total number of observations.  Sampling 

weights are available for all analysis types.  Sampling weights are 

available for ESTIMATOR=MLR, MLM, MLMV, WLS, WLSM, 

WLSMV, and ULS.  There are two exceptions.  They are not available 

for WLS when all dependent variables are continuous and are not 

available for MLM or MLMV for EFA.  Following is an example of 

how the WEIGHT option is used to identify a sampling weight variable: 

  

WEIGHT IS sampwgt; 

 

where sampwgt is the variable that contains sampling weight 

information.  

 

WTSCALE 
 

The WTSCALE option is used with TYPE=TWOLEVEL to adjust the 

weight variable named using the WEIGHT option.  With 

TYPE=TWOLEVEL, the WEIGHT option is used to identify the 

variable that contains within-level sampling weight information.  

 

The WTSCALE option has the following settings:  UNSCALED, 

CLUSTER,  and ECLUSTER.  CLUSTER is the default. 

 

The UNSCALED setting uses the within weights from the data set with 

no adjustment.  The CLUSTER setting scales the within weights from 
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the data set so that they sum to the sample size in each cluster.  The 

ECLUSTER setting scales the within weights from the data so that they 

sum to the effective sample size (Pothoff, Woodbury, & Manton, 1992). 

 

The WTSCALE option is specified as follows: 

 

WTSCALE = ECLUSTER; 

 

where scaling the within weights so that they sum to the effective sample 

size is chosen.   

 

BWEIGHT 
 

The BWEIGHT option is used with TYPE=TWOLEVEL to identify the 

variable that contains between-level sampling weight information.   

 

The BWEIGHT option is specified as follows: 

 

BWEIGHT = bweight; 

 

where bweight is the variable that contains between-level sampling 

weight information.  

 

B2WEIGHT 
 

The B2WEIGHT option is used with TYPE=THREELEVEL to identify 

the variable that contains level 2 sampling weight information.  

Sampling weights are not available for TYPE=CROSSCLASSIFIED. 

 

The B2WEIGHT option is specified as follows: 

 

B2WEIGHT = b2weight; 

 

where b2weight is the variable that contains level 2 sampling weight 

information.  

 

 

 

 



CHAPTER 15 

 

 

 

624 

B3WEIGHT 
 

The B3WEIGHT option is used with TYPE=THREELEVEL to identify 

the variable that contains level 3 sampling weight information.  

Sampling weights are not available for TYPE=CROSSCLASSIFIED.   

 

The B3WEIGHT option is specified as follows: 

 

B3WEIGHT = b3weight; 

 

where b3weight is the variable that contains level 3 sampling weight 

information.  

 

BWTSCALE 
 

The BWTSCALE option is used in with TYPE=TWOLEVEL to adjust 

the between-level sampling weight variable named using the BWEIGHT 

option.  The BWTSCALE option is used in with TYPE=THREELEVEL 

to adjust the level 2 and level 3 sampling weight variables named using 

the B2WEIGHT and B3WEIGHT options.   

 

The BWTSCALE option has the following settings:  UNSCALED and 

SAMPLE.  SAMPLE is the default. 

 

The UNSCALED setting uses the between weights from the data set 

with no adjustment.  The SAMPLE option adjusts the between weights 

so that the product of the between and the within weights sums to the 

total sample size. 

 

The BWTSCALE option is specified as follows: 

 

BWTSCALE = UNSCALED; 

 

where no adjustment is made to the between weights. 

 

REPWEIGHTS 
 

Replicate weights summarize information about a complex sampling 

design (Korn & Graubard, 1999; Lohr, 1999).  They are used to properly 

estimate standard errors of parameter estimates.  Replicate weights are 
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available for TYPE=COMPLEX for continuous variables using 

maximum likelihood estimation and for binary, ordered categorical, and 

censored variables using weighted least squares estimation.  The 

SUBPOPULATION option is not available with replicate weights. 

Replicate weights can be used or generated.  When they are generated, 

they can be used in the analysis and/or saved (Asparouhov & Muthén, 

2009b). 

 

The REPWEIGHTS option is used to identify the replicate weight 

variables.  The STRATIFICATION and CLUSTER options may not be 

used in conjunction with the REPWEIGHTS option.  The WEIGHT 

option must be used. Following is an example of how to specify the 

REPWEIGHTS option: 

   

REPWEIGHTS = rweight1-rweight80; 

 

where rweight1 through rweight80 are replicate weight variables. 

 

USING REPLICATE WEIGHTS   

 

When existing replicate weights are used, the REPWEIGHTS option of 

the VARIABLE command is used in conjunction with the WEIGHT 

option of the VARIABLE command and the REPSE option of the 

ANALYSIS command.  The sampling weights are used in the estimation 

of parameter estimates.  The replicate weights are used in the estimation 

of standard errors of parameter estimates.  The REPSE option specifies 

the resampling method that is used in the computation of the standard 

errors.  

 

GENERATING REPLICATE WEIGHTS 

 

When replicate weights are generated, the REPSE option of the 

ANALYSIS command and the WEIGHT option of the VARIABLE 

command along with the CLUSTER and/or the STRATIFICATION 

options of the VARIABLE command are used.  

 

SUBPOPULATION 
 

The SUBPOPULATION option is used with TYPE=COMPLEX to 

select observations for an analysis when a subpopulation (domain) is 
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analyzed.  If the SUBPOPULATION option is used, the 

USEOBSERVATIONS option cannot be used.  When the 

SUBPOPULATION option is used, all observations are included in the 

analysis although observations not in the subpopulation are assigned 

weights of zero (see Korn & Graubard, 1999, pp. 207-211).  The 

SUBPOPULATION option is not available for multiple group analysis. 

 

The SUBPOPULATION option identifies those observations for 

analysis that satisfy the conditional statement specified after the equal 

sign and assigns them non-zero weights.  For example, the following 

statement identifies observations with the variable gender equal to 2:  

 

SUBPOPULATION = gender EQ 2; 

 

Only variables from the NAMES statement of the VARIABLE command 

can be used in the conditional statement of the SUBPOPULATION 

option.  Logical operators, not arithmetic operators, must be used in the 

conditional statement.  Following are the logical operators that can be 

used in the conditional statement of the SUBPOPULATION option: 

 

AND logical and 

OR logical or 

NOT logical not 

EQ equal    == 

NE not equal   /= 

GE greater than or equal to  >= 

LE less than or equal to  <= 

GT greater than   > 

LT less than   < 

 

As shown above, some of the logical operators can be referred to in two 

different ways.  For example, equal can be referred to as EQ or ==.   

   

FINITE 
 

For TYPE=COMPLEX, the FINITE option is used to identify the 

variable that contains the finite population correction factor, the 

sampling fraction, or the population size for each stratum.  If the 

sampling fraction or the population size for each stratum is provided, 

these are used to compute the finite population correction factor.  The 
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finite population correction factor is used to adjust standard errors when 

clusters have been sampled without replacement (WOR) from strata in a 

finite population.  The finite population correction factor is equal to one 

minus the sampling fraction.  The sampling fraction is equal to the 

number of sampled clusters in a stratum divided by the number of 

clusters in the population for that stratum.  The population size for each 

stratum is the number of clusters in the population for that stratum.  The 

FINITE option is not available with replicate weights.   

 

The FINITE option has three settings:  FPC, SFRACTION, and 

POPULATION.  FPC is used when the finite population correction 

factor is provided.  SFRACTION is used when the sampling fraction is 

provided.  POPULATION is used when the population size for each 

stratum is provided.  FPC is the default.  Following is an example of 

how the FINITE option is used to identify a finite population correction 

variable: 

  

FINITE IS sampfrac (SFRACTION); 

 

where sampfrac is the variable that contains the sampling fraction for 

each stratum.  

 

MIXTURE MODELS 
 

There are three options that are used specifically for mixture models.  

They are CLASSES, KNOWNCLASS, and TRAINING.    

 

CLASSES 
 

The CLASSES option is used to assign names to the categorical latent 

variables in the model and to specify the number of latent classes in the 

model for each categorical latent variable.  This option is required for 

TYPE=MIXTURE.  Between-level categorical latent variables must be 

identified as between-level variables using the BETWEEN option.  

 

Following is an example of how the CLASSES option is used: 

 

CLASSES = c1 (2) c2 (2) c3 (3); 
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where c1, c2, and c3 are the names of the three categorical latent 

variables in the model.  The numbers in parentheses specify the number 

of classes for each categorical latent variable in the model.  The 

categorical latent variable c1 has two classes, c2 has two classes, and c3 

has three classes.  

  

When there is more than one categorical latent variable in the model, 

there are rules related to the order of the categorical latent variables.  

The order is taken from the order of the categorical latent variables in 

the CLASSES statement.  Because of the order in the CLASSES 

statement above, c1 is not allowed to be regressed on c2 in the model.  It 

is only possible to regress c2 on c1 and c3 on c2 or c1.  This order 

restriction does not apply to PARAMETERIZATION=LOGLINEAR. 

 

KNOWNCLASS 
 

The KNOWNCLASS option is used for multiple group analysis with 

TYPE=MIXTURE.  The KNOWNCLASS option is used to identify the 

categorical latent variable for which latent class membership is known 

and equal to observed groups in the sample.  Only one KNOWNCLASS 

variable can be used.  Following is an example of how to specify the 

KNOWNCLASS option: 

 

KNOWNCLASS = c1 (gender = 0 1); 

 

where c1 is a categorical latent variable named and defined using the 

CLASSES option.  The information in parentheses following the 

categorical latent variable name defines the known classes using an 

observed variable.  In this example, the observed variable gender is used 

to define the known classes.  The first class consists of individuals with 

the value 0 on the variable gender.  The second class consists of 

individuals with the value 1 on the variable gender. 

 

Following is an example with many known classes that uses the list 

function: 

 

KNOWNCLASS =  c (country = 101-110 112 113-115); 

 

where c is a categorical latent variable named and defined using the 

CLASSES option.  The information in parentheses following the 
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categorical latent variable name defines the known classes using an 

observed variable.  In this example, the observed variable country is 

used to define the known classes.  The first class consists of individuals 

with the value 101 on the variable country.  The last class consists of 

individuals with the value 115 on the variable country.  There are a total 

of 14 classes. 

 

The KNOWNCLASS option can be specified by mentioning only the 

name of the observed variable that defines the known classes without 

giving the values of the observed variable: 

 

KNOWNCLASS = c (country); 

 

where c is a categorical latent variable named and defined using the 

CLASSES option.  In this example, the observed variable country is 

used to define the known classes.  The number of known classes is taken 

from the CLASSES option.  The values of the variable country are taken 

from the data.  The first class consists of individuals with the lowest 

value on the variable country.  The last class consists of individuals with 

the highest value on the variable country. 

 

TRAINING 
 

The TRAINING option is used to identify the variables that contain 

information about latent class membership and specify whether the 

information is about class membership, probability of class membership, 

or priors of class membership.  The TRAINING option has three 

settings: MEMBERSHIP, PROBABILITIES, and PRIORS.  

MEMBERSHIP is the default.  Training variables can be variables from 

the NAMES statement of the VARIABLE command and variables 

created using the DEFINE command and the DATA transformation 

commands.  This option is available only for models with a single 

categorical latent variable.   

 

Following is an example of how the TRAINING option is used for an 

example with three latent classes where the training variables contain 

information about class membership: 

 

TRAINING = t1 t2 t3; 
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where t1, t2, and t3 are variables that contain information about latent 

class membership.  The variable t1 provides information about 

membership in class 1, t2 provides information about membership in 

class 2, and t3 provides information about membership in class 3.  An 

individual is allowed to be in any class for which they have a value of 

one on a training variable.  An individual who is known to be in class 2 

would have values of 0, 1, and 0 on t1, t2, and t3, respectively.  An 

individual with unknown class membership would have the value of 1 on 

t1, t2, and t3.  An alternative specification is: 

 

 TRAINING = t1 t2 t3 (MEMBERSHIP); 

 

Fractional values can be used to provide information about the 

probability of class membership when class membership is not estimated 

but is fixed at fractional values for each individual.  For example, an 

individual who has a probability of .9 for being in class 1, .05 for being 

in class 2, and .05 for being in class 3 would have t1=.9, t2=.05, and 

t3=.05.  Fractional training data must sum to one for each individual.  

 

Following is an example of how the TRAINING option is used for an 

example with three latent classes where the training variables contain 

information about probabilities of class membership: 

 

TRAINING = t1 t2 t3 (PROBABILITIES); 

 

where t1, t2, and t3 are variables that contain information about the 

probability of latent class membership.  The variable t1 provides 

information about the probability of membership in class 1, t2 provides 

information about the probability of membership in class 2, and t3 

provides information about the probability of membership in class 3.   

 

Priors can be used when individual class membership is not known but 

when information is available on the probability of an individual being 

in a certain class.  For example, an individual who has a probability of .9 

for being in class 1, .05 for being in class 2, and .05 for being in class 3 

would have t1=.9, t2=.05, and t3=.05.  Prior values must sum to one for 

each individual.  
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Following is an example of how the PRIORS option is used for an 

example with three latent classes where the training variables contain 

information about priors of class membership: 

 

TRAINING = t1 t2 t3 (PRIORS); 

 

where t1, t2, and t3 are variables that contain information about the 

probability of being in a certain class.  The variable t1 provides 

information about the probability of membership in class 1, t2 provides 

information about the probability of membership in class 2, and t3 

provides information about the probability of membership in class 3.  

 

MULTILEVEL MODELS 
 

There are two options specific to multilevel models.  They are WITHIN 

and BETWEEN.  Variables identified using the WITHIN and 

BETWEEN options can be variables from the NAMES statement of the 

VARIABLE command and variables created using the DEFINE 

command and the DATA transformation commands.  

 

WITHIN 
 

The WITHIN option is used with TYPE=TWOLEVEL, 

TYPE=THREELEVEL, and TYPE=CROSSCLASSIFIED to identify the 

variables in the data set that are measured on the individual level and to 

specify the levels on which they are modeled.  All variables on the 

WITHIN list must be measured on the individual level.  An individual-

level variable can be modeled on all or some levels.   

 

For TYPE=TWOLEVEL, an individual-level variable can be modeled 

on only the within level or on both the within and between levels.  If a 

variable measured on the individual level is mentioned on the WITHIN 

list, it is modeled on only the within level.  It has no variance in the 

between part of the model. If it is not mentioned on the WITHIN list, it 

is modeled on both the within and between levels.  The WITHIN option 

is specified as follows: 

 

WITHIN = y1 y2 x1; 
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where y1, y2, and x1 are variables measured on the individual level and 

modeled on only the within level. 

 

For TYPE=THREELEVEL, an individual-level variable can be modeled 

on only level 1, on levels 1 and 2, levels 1 and 3, or on all levels.  

Consider a model where students are nested in classrooms and 

classrooms are nested in schools. Level 1 is student; level 2 is 

classroom; and level 3 is school.  If a variable measured on the 

individual level is mentioned on the WITHIN list without a label, it is 

modeled on only level 1.  It has no variance on levels 2 and 3.  If it is 

mentioned on the WITHIN list with a level 2 cluster label, it is modeled 

on levels 1 and 2.  It has no variance on level 3.  If it is mentioned on the 

WITHIN list with a level 3 cluster label, it is modeled on levels 1 and 3.  

It has no variance on level 2.  If it is not mentioned on the WITHIN list, 

it is modeled on all levels. 

 

Following is an example of how to specify the WITHIN option for 

TYPE=THREELEVEL: 

 

WITHIN = y1-y3 (class) y4-y6 (school) y7-y9; 

 

In the example, y1, y2, and y3 are variables measured on the individual 

level and modeled on only level 1, student.  Variables modeled on only 

level 1 must precede variables modeled on the other levels.  Y4, y5, and 

y6 are variables measured on the individual level and modeled on level 

1, student, and level 2, class, where class is the level 2 cluster variable.  

Y7, y8, and y9 are variables measured on the individual level and 

modeled on level 1, student, and level 3, school, where school is the 

level 3 cluster variable.   

 

An alternative specification of the WITHIN option above reverses the 

order of the level 2 and level 3 variables: 

 

WITHIN = y1-y3 (school) y7-y9 (class) y4-y6; 

 

Variables modeled on only level 1 must precede variables modeled on 

the other levels.  Another alternative specification is: 

 

WITHIN =  y1-y3; 

WITHIN =  (class) y4-y6; 
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WITHIN =  (school) y7-y9; 

 

In this specification, the WITHIN statement for variables modeled on 

only level 1 must precede the other WITHIN statements.  The order of 

the other WITHIN statements does not matter. 

 

For TYPE=CROSSCLASSIFIED, an individual-level variable can be 

modeled on only level 1, on levels 1 and 2a, levels 1 and 2b, or on all 

levels.  Consider a model where students are nested in schools crossed 

with neighborhoods.   Level 1 is student; level 2a is school; and level 2b 

is neighborhood.  If a variable measured on the individual level is 

mentioned on the WITHIN list without a label, it is modeled on only 

level 1.  It has no variance on levels 2a and 2b.  If it is mentioned on the 

WITHIN list with a level 2a cluster label, it is modeled on levels 1 and 

2a.  It has no variance on level 2b.  If it is mentioned on the WITHIN list 

with a level 2b cluster label, it is modeled on levels 1 and 2b.  It has no 

variance on level 2a.  If it is not mentioned on the WITHIN list, it is 

modeled on all levels. 

 

Following is an example of how to specify the WITHIN option for 

TYPE=CROSSCLASSIFIED: 

 

WITHIN = y1-y3 (school) y4-y6 (neighbor) y7-y9; 

 

In the example, y1, y2, and y3 are variables measured on the individual 

level and modeled on only level 1, student.  Variables modeled on only 

level 1 must precede variables modeled on the other levels.  Y4, y5, and 

y6 are variables measured on the individual level and modeled on level 

1, student, and level 2a, school, where school is the level 2a cluster 

variable.  Y7, y8, and y9 are variables measured on the individual level 

and modeled on level 1, student, and level 2b, neighborhood, where 

neighborhood is the level 2b cluster variable. 

 

BETWEEN 
 

The BETWEEN option is used with TYPE=TWOLEVEL, 

TYPE=THREELEVEL, and TYPE=CROSSCLASSIFIED to identify the 

variables in the data set that are measured on the cluster level(s) and to 

specify the level(s) on which they are modeled.  All variables on the 
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BETWEEN list must be measured on a cluster level.  A cluster-level 

variable can be modeled on all or some cluster levels. 

 

For TYPE=TWOLEVEL, a cluster-level variable can be modeled on 

only the between level.  The BETWEEN option is specified as follows: 

 

BETWEEN = z1 z2 x1; 

 

where z1, z2, and x1 are variables measured on the cluster level and 

modeled on the between level.  The BETWEEN option is also used to 

identify between-level categorical latent variables with 

TYPE=TWOLEVEL MIXTURE. 

 

For TYPE=THREELEVEL, a variable measured on level 2 can be 

modeled on only level 2 or on levels 2 and 3.  A variable measured on 

level 3 can be modeled on only level 3.  Consider a model where 

students are nested in classrooms and classrooms are nested in schools. 

Level 1 is student; level 2 is classroom; and level 3 is school.  If a 

variable measured on level 2 is mentioned on the BETWEEN list 

without a label, it is modeled on levels 2 and 3.  If a variable measured 

on level 2 is mentioned on the BETWEEN list with a level 2 cluster 

label, it is modeled on only level 2.  It has no variance on level 3.  A 

variable measured on level 3 must be mentioned on the BETWEEN list 

with a level 3 cluster label.  Following is an example of how to specify 

the BETWEEN option for TYPE=THREELEVEL: 

 

BETWEEN = y1-y3 (class) y4-y6 (school) y7-y9; 

 

In this example, y1, y2, and y3 are cluster-level variables measured on 

level 2, class, and modeled on both levels 2 and 3.  Variables modeled 

on both levels 2 and 3 must precede variables modeled on only level 2 or 

level 3.  Y4, y5, and y6 are cluster-level variables measured on level 2, 

class, and modeled on level 2.  Y7, y8, and y9 are cluster-level variables 

measured on level 3 and modeled on level 3. 

 

An alternative specification of the BETWEEN option above reverses the 

order of the level 2 and level 3 variables: 

 

BETWEEN = y1-y3 (school) y7-y9 (class) y4-y6; 
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Variables modeled on both levels 2 and 3 must precede variables 

modeled on only level 2 or level 3.  Another alternative specification is: 

 

BETWEEN =  y1-y3; 

BETWEEN =  (class) y4-y6; 

BETWEEN =  (school) y7-y9; 

 

In this specification, the BETWEEN statement for variables modeled on 

both levels 2 and 3 must precede the other BETWEEN statements.  The 

order of the other BETWEEN statements does not matter. 

 

For TYPE=CROSSCLASSIFIED, a variable measured on level 2a must 

be mentioned on the BETWEEN list with a level 2a cluster label.  It can 

be modeled on only level 2a.  A variable measured on level 2b must be 

mentioned on the BETWEEN list with a level 2b cluster label.  It can be 

modeled on only level 2b.  Consider a model where students are nested 

in schools crossed with neighborhoods.   Level 1 is student; level 2a is 

school; and level 2b is neighborhood.  Following is an example of how 

to specify the BETWEEN option for TYPE=CROSSCLASSIFIED: 

 

BETWEEN = (school) y1-y3 (neighbor) y4-y6; 

 

In this example, y1, y2, and y3 are cluster-level variables measured on 

level 2a, school, and modeled on only level 2a.  Y4, y5, and y6 are 

cluster-level variables measured on level 2b, neighborhood, and modeled 

on only level 2b. 

 

CONTINUOUS-TIME SURVIVAL MODELS 
 

There are two options specific to continuous-time survival models.  They 

are SURVIVAL and TIMECENSORED.  Variables identified using the 

SURVIVAL and TIMECENSORED options can be variables from the 

NAMES statement of the VARIABLE command and variables created 

using the DEFINE command and the DATA transformation commands.  

 

SURVIVAL 
 

 The SURVIVAL option is used to identify the variables that contain 

information about time to event and to provide information about the 

number and lengths of the time intervals in the baseline hazard function 
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to be used in the analysis.  The SURVIVAL option must be used in 

conjunction with the TIMECENSORED option.  The SURVIVAL 

option can be specified in five ways:  the default baseline hazard 

function, a non-parametric baseline hazard function, a semi-parametric 

baseline hazard function, a parametric baseline hazard function, and a 

constant baseline hazard function.   

 

The SURVIVAL option is specified as follows when using the default 

baseline hazard function: 

  

SURVIVAL = t; 

 

where t is the variable that contains time-to-event information.  The 

default is either a semi-parametric baseline hazard function with ten time 

intervals or a non-parametric baseline hazard function.  The default is a 

semi-parametric baseline hazard function with ten time intervals for 

models where t is regressed on a continuous latent variable, for 

multilevel models, and for models that require Monte Carlo numerical 

integration.  In this case, the lengths of the time intervals are selected 

internally in a non-parametric fashion.  For all other models, the default 

is a non-parametric baseline hazard function as in Cox regression where 

the number and lengths of the time intervals are taken from the data and 

the baseline hazard function is saturated. 

 

The SURVIVAL option is specified as follows when using a non-

parametric baseline hazard function as in Cox regression: 

 

SURVIVAL = t (ALL); 

 

where t is the variable that contains time-to-event information and ALL 

is a keyword that specifies that the number and lengths of the time 

intervals are taken from the data and the baseline hazard is saturated.  It 

is not recommended to use the keyword ALL when the BASEHAZARD 

option of the ANALYSIS command is ON because it results in a large 

number of baseline hazard parameters.  

 

The SURVIVAL option is specified as follows when using a semi-

parametric baseline hazard: 

 

SURVIVAL = t (10); 
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where t is the variable that contains time-to-event information.  The 

number in parentheses specifies that 10 intervals are used in the analysis 

where the lengths of the time intervals are selected internally in a non-

parametric fashion. 

 

The SURVIVAL option is specified as follows when using a parametric 

baseline hazard function: 

 

SURVIVAL = t (4*5 1*10); 

 

where t is the variable that contains time-to-event information.  The 

numbers in parentheses specify that four time intervals of length five and 

one time interval of length ten are used in the analysis. 

 

The SURVIVAL option is specified as follows when using a constant 

baseline hazard function: 

 

SURVIVAL = t (CONSTANT);   

 

where t is the variable that contains time-to-event information and 

CONSTANT is the keyword that specifies a constant baseline hazard 

function. 

 

TIMECENSORED 
 

The TIMECENSORED option is used in conjunction with the 

SURVIVAL option to identify the variables that contain information 

about right censoring, for example, when an individual leaves a study or 

when an individual has not experienced the event before the study ends.  

There must be the same number and order of variables in the 

TIMECENSORED option as there are in the SURVIVAL option.  The 

variables that contain information about right censoring must be coded 

so that zero is not censored and one is right censored.  If they are not, 

this can be specified as part of the TIMECENSORED option.  The 

TIMECENSORED option is specified as follows when the variable is 

coded zero for not censored and one for right censored: 

 

TIMECENSORED = tc; 
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The TIMECENSORED option is specified as follows when the variable 

is not coded zero for not censored and one for right censored: 

 

TIMECENSORED = tc (1 = NOT 999 = RIGHT); 

 

The value one is automatically recoded to zero and the value 999 is 

automatically recoded to one. 

 

LAGGED 
 

The LAGGED option is used in time series analysis to specify the 

maximum lag to use for an observed variable during model estimation.  

Following is an example of how to specify the LAGGED option: 

 

LAGGED = y (1); 

 

where y is the variable in a time series analysis and the number 1 in 

parentheses is the maximum lag that will be used in model estimation.  

The lagged variable is referred to in the MODEL command by adding to 

the name of the variable an ampersand (&) and the number of the lag.  

The variable y at lag one is referred to as y&1.   

 

Following is an example of how to specify a maximum lag of 2 for a set 

of variables: 

 

LAGGED = y1-y3 (2); 

 

where y1, y2, and y3 are variables in a time series analysis and the 

number 2 in parentheses is the maximum lag that will be used in model 

estimation.  The lagged variables are referred to in the MODEL 

command by adding to the name of the variable an ampersand (&) and 

the number of the lag.  The variable y1 at lag one is referred to as y1&1.  

The variable y1 at lag two is referred to as y1&2.   

 

TINTERVAL 
 

The TINTERVAL option is used in time series analysis to specify the 

time interval that is used to create a time variable when data are 

misaligned with respect to time due to missed measurement occasions 

that are not assigned a missing value flag and when measurement 
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occasions are random.  The data set must be sorted by the time interval 

variable.   

 

The time interval value represents the difference in time between two 

consecutive measurement occasions.   Using this value and the lowest 

value of the time interval variable, intervals are created that are used to 

create a time variable.  The first interval is the lowest value of the time 

interval variable plus/minus half of the time interval value.  The second 

interval adds the time interval value to the values of the first interval 

etc..  All values of the time interval variable that fall into the same 

interval are given the same value on the time variable.  If an interval 

does not contain a value, a missing value flag is assigned.  Following is 

an example of how to specify the TINTERVAL option: 

 

TINTERVAL = time (1); 

 

where time is the time interval variable and the value one is the time 

interval value.  If the lowest time interval variable value is one, the first 

three intervals are .5 to 1.5, 1.5 to 2.5, and 2.5 to 3.5.  The first three 

time variable values are 1, 2, and 3.  For further details, see Asparouhov, 

Hamaker, and Muthén (2017). 

 

THE DEFINE COMMAND 
 

The DEFINE command is used to transform existing variables and to 

create new variables.  It includes several options for transforming 

variables including a do loop for repeating statements.  The operations 

available in DEFINE can be executed for all observations or selectively 

using conditional statements.  Transformations of existing variables do 

not affect the original data but only the data used for the analysis.  If 

analysis data are saved using the SAVEDATA command, the 

transformed values rather than the original values are saved.   

 

The statements in the DEFINE command are executed one observation 

at a time in the order specified with one exception.   The 

CLUSTER_MEAN, CENTER, and STANDARDIZE options are 

executed in the order mentioned after all transformations specified 

before them in the DEFINE command and the DATA transformation 

commands are executed.  All statements specified after these options are 
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then executed one observation at a time in the order specified.  These 

transformations use the new values from the CLUSTER_MEAN, 

CENTER, and STANDARDIZE options where applicable.  For example, 

if two variables are centered and an interaction between them is 

specified after the CENTER option, the interaction uses the centered 

variables.  Any variable listed in the NAMES option of the VARIABLE 

command or created in the DEFINE command can be transformed or 

used to create new variables.  New variables created in the DEFINE 

command that will be used in an analysis must be listed on the 

USEVARIABLES list after the original variables.  All statements 

specified after the CLUSTER_MEAN, CENTER and STANDARDIZE 

options must refer to variables used in the analysis that are listed on the 

USEVARIABLES list. 

 

Following are examples of the types of transformations available: 

 
DEFINE:   

   

 variable = mathematical expression; 
 

 

 IF (conditional statement) THEN transformation 
statements; 
 

 

 _MISSING  

 variable = MEAN (list of variables);  

 variable = SUM (list of variables);  

 CUT variable or list of variables (cutpoints);  

 variable = CLUSTER_MEAN (variable);  

 CENTER variable or list of variables (GRANDMEAN); 

CENTER variable or list of variables (GROUPMEAN); 

CENTER variable or list of variables (GROUPMEAN 
label); 

 

 STANDARDIZE variable or list of variables;  

 DO (number, number) expression; 
DO ($, number, number) DO (#, number, number) 
expression; 

 

 

DEFINE is not a required command. 
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LOGICAL OPERATORS, ARITHMETIC 

OPERATORS, AND FUNCTIONS 
 

The following logical operators can be used in DEFINE:   

 

AND  logical and 

OR  logical or 

NOT  logical not 

EQ = = equal 

NE /= not equal 

GE >= greater than or equal to 

LE <= less than or equal to 

GT > greater than 

LT < less than 

 

As shown above, some of the logical operators can be referred to in two 

different ways.  For example, equal can be referred to as EQ or = =.   

  

The following arithmetic operations can be used in DEFINE:  

 

+ addition   y + x; 

- subtraction   y - x; 

* multiplication   y * x; 

/ division    y / x; 

 

** exponentiation   y**2; 

% remainder   remainder of y/x; 

 

The following functions can be used in DEFINE: 

 

LOG  base e log  LOG (y);   

LOG10  base 10 log  LOG10 (y); 

EXP  exponential  EXP (y); 

SQRT  square root  SQRT (y); 

ABS  absolute value  ABS(y); 

SIN  sine   SIN (y); 

COS  cosine   COS (y); 

TAN  tangent   TAN(y); 

ASIN  arcsine   ASIN (y); 



CHAPTER 15 

 

 

 

642 

ACOS  arccosine  ACOS (y); 

ATAN  arctangent  ATAN (y); 

PHI  standard normal  PHI (y); PHI (#); 

  distribution function 

 

NON-CONDITIONAL STATEMENTS 
 

When a non-conditional statement is used to transform existing variables 

or create new variables, the variable on the left-hand side of the equal 

sign is assigned the value of the expression on the right-hand side of the 

equal sign, for example, 

y = y/100; 

 

transforms the original variable y by dividing it by 100.  Non-conditional 

statements can be used to create new variables, for example, 

 

abuse = item1 + item2 + item8 + item9; 

 

An individual with a missing value on any variable used on the right-

hand side of the equal sign is assigned a missing value on the variable on 

the left-hand side of the equal sign. 

 

CONDITIONAL STATEMENTS 
 

Conditional statements can also be used to transform existing variables 

and to create new variables.  Conditional statements take the following 

form: 

 

IF (gender EQ 1 AND ses EQ 1) THEN group = 1; 

IF (gender EQ 1 AND ses EQ 2) THEN group = 2; 

IF (gender EQ 1 AND ses EQ 3) THEN group = 3; 

IF (gender EQ 2 AND ses EQ 1) THEN group = 4; 

IF (gender EQ 2 AND ses EQ 2) THEN group = 5; 

IF (gender EQ 2 AND ses EQ 3) THEN group = 6; 

 

An individual with a missing value on any variable used in the 

conditional statement is assigned a missing value on the new variable.  If 

no value is specified for a condition, individuals with that condition are 

assigned a missing value.   
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The _MISSING keyword can be used in DEFINE to refer to missing 

values.  The _MISSING keyword can be used to assign a missing value 

to a variable, for example, 

 

IF (y EQ 0) THEN u = _MISSING; 

 

It can also be used as part of the condition, for example, 

 

IF (y EQ _MISSING) THEN u = 1; 

 

OPTIONS FOR DATA TRANSFORMATION 
 

The DEFINE command has six options for data transformation.  The 

first option creates a variable that is the average of a set of variables.  

The second option creates a variable that is the sum of a set of variables.  

The third option categorizes one or several variables using the same set 

of cutpoints.  The fourth option creates a variable that is the average for 

each cluster of an individual-level variable.  The fifth option centers a 

variable by subtracting the grand mean or group mean from each value.  

The sixth option standardizes a variable to have a mean of zero and a 

standard deviation of one.    

 

MEAN 
 

The MEAN option is used to create a variable that is the average of a set 

of variables.  It is specified as follows: 

 

mean = MEAN (y1 y3 y5); 

 

where the variable mean is the average of variables y1, y3, and y5.  

Averages are based on the set of variables with no missing values.  Any 

observation that has a missing value on all of the variables being 

averaged is assigned a missing value on the mean variable. 

 

The list function can be used with the MEAN option as follows: 

 

ymean = MEAN (y1-y10); 

 

where the variable ymean is the average of variables y1 through y10.  
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Variables used with the MEAN option must be original variables from 

the NAMES statement of the VARIABLE command or temporary 

variables created using the DEFINE command.  The order of the 

variables for the list function is taken from the NAMES statement not 

the USEVARIABLES statement.  

 

SUM 
 

The SUM option is used to create a variable that is the sum of a set of 

variables.  It is specified as follows: 

 

sum = SUM (y1 y3 y5); 

 

where the variable sum is the sum of variables y1, y3, and y5.  Any 

observation that has a missing value on one or more of the variables 

being summed is assigned a missing value on the sum variable.   

 

The list function can be used with the SUM option as follows: 

 

ysum =  SUM (y1-y10); 

 

where the variable ysum is the sum of variables y1 through y10.   

 

Variables used with the SUM option must be original variables from the 

NAMES statement of the VARIABLE command or temporary variables 

created using the DEFINE command.  The order of the variables for the 

list function is taken from the NAMES statement not the 

USEVARIABLES statement. 

 

CUT 
 

The CUT option categorizes a variable or list of variables using the same 

set of cutpoints.  More than one CUT statement can be included in the 

DEFINE command.  Following is an example of how the CUT option is 

used: 

 

CUT y1  y5-y7 (30 40); 

 

This statement results in the variables y1, y5, y6, and y7 having three 

categories:  less than or equal to 30, greater than 30 and less than or 
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equal to 40, and greater than 40, with values of 0, 1, and 2, respectively.  

Any observation that has a missing value on a variable that is being cut 

is assigned a missing value on the cut variable.   

 

Variables used with the CUT option must be original variables from the 

NAMES statement of the VARIABLE command or temporary variables 

created using the DEFINE command.  The order of the variables for the 

list function is taken from the NAMES statement not the 

USEVARIABLES statement.  

 

CLUSTER_MEAN 
 

The CLUSTER_MEAN option is used with TYPE=TWOLEVEL and 

TYPE=COMPLEX along with the CLUSTER option to create a variable 

that is the average of the values of an individual-level variable for each 

cluster.  In multiple group analysis, each group’s means are used for 

creating cluster means in that group.  It is specified as follows: 

 

clusmean = CLUSTER_MEAN (x); 

 

where the variable clusmean is the average of the values of x for each 

cluster.  Averages are based on the set of non-missing values for the 

observations in each cluster.  Any cluster for which all observations have 

missing values is assigned a missing value on the cluster mean variable. 

 

All transformations specified in the DATA transformation commands or 

before the CLUSTER_MEAN option in the DEFINE command use the 

original values of the variables.  All transformations specified in the 

DEFINE command after the CLUSTER_MEAN option use the cluster-

mean values of the variables.  To be used with the CLUSTER_MEAN 

option, any new variables created using the DEFINE command must be 

placed on the USEVARIABLES list after the original variables.  The 

order of the variables for the list function is taken from the 

USEVARIALES list.  If there is not USEVARIABLES list, the order of 

the variables is taken from the NAMES list.   

 

CENTER 
 

The CENTER option is used to center continuous observed variables by 

subtracting the grand mean or group mean from each variable.  In 



CHAPTER 15 

 

 

 

646 

multiple group analysis, each group’s means are used for centering in 

that group.  Grand-mean centering is available for all analyses.  Group-

mean centering is available with TYPE=TWOLEVEL, 

TYPE=THREELEVEL, TYPE=CROSSCLASSIFIED, and 

TYPE=COMPLEX in conjunction with the CLUSTER option.  The 

CENTER option has two settings:  GRANDMEAN and GROUPMEAN.   

 

All transformations that are specified in the DATA transformation  

commands or before the CENTER option in the DEFINE command use 

the original values of the variables.  All transformations that are 

specified in the DEFINE command after the CENTER option use the 

centered values of the variables.  To be used with the CENTER option, 

any new variables created using the DEFINE command must be placed 

on the USEVARIABLES list after the original variables.  The order of 

variables for the list function is taken from the USEVARIABLES list.  If 

there is no USEVARIABLES list, the order of the variables is taken 

from the NAMES list. Any observation that has a missing value on the 

variable to be centered is assigned a missing value on the centered 

variable.  

  

GRANDMEAN  
 

Grand-mean centering subtracts the overall mean from a variable.  

Grand-mean centering is available for all continuous observed variables 

used in an analysis.  Following is an example of how to specify grand-

mean centering for TYPE=TWOLEVEL and TYPE=COMPLEX: 

 

CENTER x1-x4 (GRANDMEAN); 

 

where x1, x2, x3, and x4 are the variables to be centered using the 

overall means for these variables.  

 

For TYPE=THREELEVEL, there are three types of grand-mean 

centering.  Consider a model where students are nested in classrooms 

and classrooms are nested in schools.  Level 1 is student; level 2 is 

classroom; and level 3 is school.  For variables modeled on level 1 and 

higher, grand-mean centering subtracts the overall mean from a variable.  

For variables modeled on level 2 and higher, grand-mean centering 

subtracts the cluster 1, classroom, mean from a variable.  For variables 
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modeled on level 3, grand-mean centering subtracts the cluster 2, school, 

mean from a variable.  

 

Following is an example of how to specify grand-mean centering for 

TYPE=THREELEVEL: 

 

CENTER x1-x4 (GRANDMEAN); 

 

where x1, x2, x3, and x4 are the variables to be centered using the 

overall means for variables modeled on level 1 and higher, the cluster 1 

means for variables modeled on level 2 and higher, and the cluster 2 

means for variables modeled on level 3 and higher.   

 

For TYPE=CROSSCLASSIFIED, there are three types of grand-mean 

centering.  Consider a model where students are nested in schools 

crossed with neighborhoods.  Level 1 is student; level 2a is school; and 

level 2b is neighborhood.   For variables modeled on level 1 and higher, 

grand-mean centering subtracts the overall mean from a variable.  For 

variables modeled on level 2a, grand-mean centering subtracts the 

cluster 2a, school, mean from a variable.  For variables modeled on level 

2b, grand-mean centering subtracts the cluster 2b, neighborhood, mean 

from a variable.    

 

Following is an example of how to specify grand-mean centering for 

TYPE=CROSSCLASSIFIED: 

 

CENTER x1-x4 (GRANDMEAN); 

 

where x1, x2, x3, and x4 are the variables to be centered using the 

overall means for variables modeled on level 1 and higher, the cluster 2a 

means for variables modeled on level 2a, and the cluster 2b means for 

variables modeled on level 2b.   

 

GROUPMEAN 
 

For TYPE=TWOLEVEL and TYPE=COMPLEX, group-mean centering 

subtracts the cluster mean from a variable.  For TYPE=COMPLEX, 

group-mean centering is available for all continuous observed variables 

in an analysis.  For TYPE=TWOLEVEL, group-mean centering is 

available for all continuous observed variables used in an analysis that 
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are not modeled at the highest level.  Following is an example of how to 

specify group-mean centering: 

  

CENTER x1-x4 (GROUPMEAN); 

 

where x1, x2, x3, and x4 are the variables to be centered using the 

cluster means for these variables.   

 

For TYPE=THREELEVEL, group-mean centering is available for any 

continuous observed variable that is not modeled at the highest level.  

Consider a model where students are nested in classrooms and 

classrooms are nested in schools.  Level 1 is student; level 2 is 

classroom; and level 3 is school.  For variables modeled on levels 1 and 

2 and for variables modeled on only level 2, group-mean centering 

subtracts the cluster 2, school, mean from a variable where the cluster 2 

mean is the average of the cluster 1, class, means for each level 3, 

school, cluster. Following is an example of how to specify cluster 2 

group-mean centering: 

  

CENTER x1-x4 (GROUPMEAN school); 

 

where school is the cluster 2 variable and x1, x2, x3, and x4 are the 

variables to be centered using cluster 2 means for these variables.   

 

For variables modeled on only level 1, both cluster 1, classroom, and 

cluster 2, school, group-mean centering are available.  Following is an 

example of how to specify group-mean centering using cluster 1 and 

cluster 2 means: 

  

CENTER x1-x2 (GROUPMEAN class); 

CENTER x3 x4 (GROUPMEAN school); 

 

In this example, class is the cluster 1 variable and x1 and x2 are the 

variables to be centered using cluster 1 means for these variables.  

School is the cluster 2 variable and x3 and x4 are the variables to be 

centered using cluster 2 means for these variables.  A variable cannot be 

centered using both cluster 1 and cluster 2 means. 

 

For TYPE=CROSSCLASSIFIED, group-mean centering is available for 

any continuous observed variable that is not modeled at the highest 
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level.  Consider a model where students are nested in schools crossed 

with neighborhoods.  Level 1 is student; level 2a is school; and level 2b 

is neighborhood.   For variables modeled on only level 1, group-mean 

centering subtracts the cluster 2a, school, mean or the cluster 2b, 

neighborhood mean from a variable. Following is an example of how to 

specify cluster 2a and 2b group-mean centering: 

 

CENTER x1-x4 (GROUPMEAN school); 

CENTER x5-x8 (GROUPMEAN neighbor); 

 

In this example, school is the cluster 2a variable and x1, x2, x3, and x4 

are the variables to be centered using cluster 2a means for these 

variables.  Neighbor is the cluster 2b variable and x5, x6, x7, and x8 are 

the variables to be centered using the cluster 2b means for these 

variables.   

 

STANDARDIZE 
  

The STANDARDIZE option is used to standardize continuous variables 

by subtracting the mean from each value and dividing each value by the 

standard deviation.  In multiple group analysis, each group’s means are 

used for standardizing in that group.  Following is an example of how 

the STANDARDIZE option is used: 

 

STANDARDIZE y1 y5-y10 y14; 

 

where the variables y1, y5 through y10, and y14 will be standardized.  

Any observation that has a missing value on the variable to be 

standardized is assigned a missing value on the standardized variable.   

 

All transformations that are specified in the DATA transformation 

commands or before the STANDARDIZE option in the DEFINE 

command use the original values of the variables.  All transformations 

that are specified in the DEFINE command after the STANDARDIZE 

option use the standardized values of the variables.  To be used with the 

STANDARDIZE option, any new variables created using the DEFINE 

command must be placed on the USEVARIABLES list after the original 

variables.  The order of variables for the list function is taken from the 

USEVARIABLES list.  If there is no USEVARIABLES list, the order is 

taken from the NAMES list.   
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DO 
 

The DO option provides a do loop and a double do loop to facilitate 

specifying the same transformation for a set of variables.  Following is 

an example of how to specify a do loop: 

DO (1, 5) diff# = y# - x#; 

 

where the numbers in parentheses give the range of values the do loop 

will use.  The number sign (#) is replaced by these values during the 

execution of the do loop.  Following are the transformations that are 

executed based on the DO option specified above: 

 

diff1 = y1 - x1; 

diff2 = y2 - x2; 

diff3 = y3 - x3; 

diff4 = y4 - x4; 

diff5 = y5 - x5; 

 

Following is an example of how to specify a double do loop where x1 is 

equal to 0.1 and x2 is equal to 2: 

 

 DO ($,1,2) DO (#,1,4) y$# = x$ * u#; 

 

where the numbers in parentheses give the range of values the double do 

loop will use.  The numbers replace the symbol preceding them.  

Following are the transformations that are executed based on the DO 

option specified above: 

 

 y11 = 0.1 * u1; 

 y12 = 0.1 * u2; 

 y13 = 0.1 * u3; 

 y14 = 0.1 * u4; 

 y21 = 2 * u1; 

 y22 = 2 * u2; 

 y23 = 2 * u3; 

 y24 = 2 * u4; 
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CHAPTER 16 

ANALYSIS COMMAND 
 

 

In this chapter, the ANALYSIS command is discussed.  The ANALYSIS 

command is used to describe the technical details of the analysis 

including the type of analysis, the statistical estimator, the 

parameterization of the model, and the specifics of the computational 

algorithms. 

 

THE ANALYSIS COMMAND 
 

Following are the options for the ANALYSIS command: 

 
ANALYSIS:   
   
TYPE = GENERAL; GENERAL 

       BASIC;  

       RANDOM;  

       COMPLEX;  

 MIXTURE; 

      BASIC; 

      RANDOM; 

      COMPLEX; 

 

 TWOLEVEL; 

      BASIC; 

      RANDOM; 

      MIXTURE; 

      COMPLEX; 

  

 THREELEVEL; 

      BASIC; 

      RANDOM; 

      COMPLEX;     

 

 CROSSCLASSIFIED; 

       RANDOM; 

 

 EFA  #   #; 

      BASIC; 

      MIXTURE; 

      COMPLEX; 

      TWOLEVEL; 
            EFA #  #  UW* #  #  UB*; 
            EFA #  #  UW #  #  UB; 
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ESTIMATOR =  ML;  depends on 
 MLM; analysis type 
 MLMV;  
 MLR;  
 MLF;  
 MUML;  
 WLS;  
 WLSM;  
 WLSMV;  
 ULS;  
 ULSMV;  
 GLS;  
 BAYES;  
MODEL = CONFIGURAL;  
 METRIC;  
 SCALAR;  
 NOMEANSTRUCTURE; means 
 NOCOVARIANCES; covariances 
 ALLFREE; equal 
ALIGNMENT = FIXED; last class 
  CONFIGURAL 
 FIXED (reference class CONFIGURAL);  
 FIXED (reference class BSEM);  
 FREE; last class 
  CONFIGURAL 
 FREE (reference class CONFIGURAL);  
 FREE (reference class BSEM);  
DISTRIBUTION = NORMAL; NORMAL 
 SKEWNORMAL;  
 TDISTRIBUTION;  
 SKEWT;  
PARAMETERIZATION = DELTA; DELTA 
 THETA;  
 LOGIT; LOGIT 
 LOGLINEAR;  

 PROBABILITY; 

RESCOVARIANCES; 

 
RESCOV 

LINK = LOGIT; LOGIT 

 PROBIT;  
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ROTATION = GEOMIN; GEOMIN 
(OBLIQUE value) 

 GEOMIN (OBLIQUE value);  

 GEOMIN (ORTHOGONAL value);  

 QUARTIMIN; OBLIQUE 

 CF-VARIMAX; OBLIQUE 

 CF-VARIMAX (OBLIQUE);  

 CF-VARIMAX (ORTHOGONAL);  

 CF-QUARTIMAX; OBLIQUE 

 CF- QUARTIMAX (OBLIQUE);  

 CF- QUARTIMAX (ORTHOGONAL);  

 CF-EQUAMAX; OBLIQUE 

 CF- EQUAMAX (OBLIQUE);  

 CF- EQUAMAX (ORTHOGONAL);  

 CF-PARSIMAX; OBLIQUE 

 CF- PARSIMAX (OBLIQUE);  

 CF- PARSIMAX (ORTHOGONAL);  

 CF-FACPARSIM; OBLIQUE 

 CF- FACPARSIM (OBLIQUE);  

 CF- FACPARSIM (ORTHOGONAL);  

 CRAWFER; OBLIQUE 1/p 

 CRAWFER (OBLIQUE value);  

 CRAWFER (ORTHOGONAL value);  

 OBLIMIN; OBLIQUE 0 

 OBLIMIN (OBLIQUE value);  

 OBLIMIN (ORTHOGONAL value);  

 VARIMAX;  

 PROMAX;  

 TARGET;  

 BI-GEOMIN; OBLIQUE 

 BI-GEOMIN (OBLIQUE);  

 BI-GEOMIN (ORTHOGONAL);  

 BI-CF-QUARTIMAX; OBLIQUE 

 BI-CF-QUARTIMAX (OBLIQUE);  

 BI-CF-QUARTIMAX (ORTHOGONAL);  
ROWSTANDARDIZATION = CORRELATION; CORRELATION 

 KAISER;  

 COVARIANCE;  

PARALLEL = number; 0 
REPSE = BOOTSTRAP; 

JACKKNIFE; 

JACKKNIFE1; 

JACKKNIFE2; 
BRR; 
FAY (#); 

 
 
 
 
 
.3 
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BASEHAZARD = ON; 
OFF; 

ON (EQUAL); 

ON (UNEQUAL); 

OFF (EQUAL); 

OFF (UNEQUAL); 

depends on 
analysis type 
EQUAL 
 
EQUAL 

CHOLESKY = ON; 
OFF; 

depends on 
analysis type  

ALGORITHM = EM; depends on 
 EMA; analysis type 
 FS; 

ODLL; 

INTEGRATION;  

 

INTEGRATION = number of integration points; 

STANDARD (number of integration points) ; 
 

GAUSSHERMITE (number of integration 
points) ; 

MONTECARLO (number of integration points); 

STANDARD 
depends on 
analysis type 
15 
 
depends on 
analysis type 

MCSEED =  random seed for Monte Carlo integration; 0 
ADAPTIVE = ON; 

OFF; 
ON 

INFORMATION = OBSERVED; depends on  

 EXPECTED; analysis type 

 COMBINATION;  

BOOTSTRAP = number of bootstrap draws; 

number of bootstrap draws (STANDARD); 

number of bootstrap draws (RESIDUAL): 

STANDARD 

LRTBOOTSTRAP = number of bootstrap draws for TECH14; depends on 
analysis type 

STARTS = number of initial stage starts and number of 
final stage optimizations; 

depends on 
analysis type 

STITERATIONS = number of initial stage iterations; 10 
STCONVERGENCE = initial stage convergence criterion; 1 
STSCALE = random start scale; 5 
STSEED = random seed for generating random starts;  0 
OPTSEED = random seed for analysis;  
K-1STARTS = number of initial stage starts and number of 

final stage optimizations for the k-1 class model 
for TECH14; 

20 4 

LRTSTARTS = number of initial stage starts and number of 
final stage optimizations for TECH14; 

0 0 40 8 

RSTARTS = number of random starts for the rotation 
algorithm and number of factor solutions 
printed for exploratory factor analysis;  

depends on 
analysis type 
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ASTARTS = number of random starts for the alignment 
optimization; 

30 

H1STARTS =  Number of initial stage starts and number of 
final stage optimizations for the H1 model; 

0 0 

DIFFTEST = file name;  
MULTIPLIER = file name;  
COVERAGE =  minimum covariance coverage with missing 

data; 
.10 

ADDFREQUENCY = value divided by sample size to add to cells 
with zero frequency; 

.5 

ITERATIONS = maximum number of iterations for the Quasi-
Newton algorithm for continuous outcomes; 

1000 

SDITERATIONS = maximum number of steepest descent 
iterations for the Quasi-Newton algorithm for 
continuous outcomes; 

20 

H1ITERATIONS = maximum number of iterations for unrestricted 
model with missing data; 

2000 

MITERATIONS = number of iterations for the EM algorithm; 500 
MCITERATIONS = number of iterations for the M step of the EM 

algorithm for categorical latent variables; 
1 

MUITERATIONS = number of iterations for the M step of the EM 
algorithm for censored, categorical, and count 
outcomes; 

1 

RITERATIONS = maximum number of iterations in the rotation 
algorithm for exploratory factor analysis; 

10000 

AITERATIONS = maximum number of iterations in the 5000 
 alignment optimization;  
CONVERGENCE =  convergence criterion for the Quasi-Newton 

algorithm for continuous outcomes;  
depends on  
analysis type 

H1CONVERGENCE =  convergence criterion for unrestricted model 
with missing data; 

.0001 

LOGCRITERION = likelihood convergence criterion for the EM 
algorithm; 

depends on 
analysis type 

RLOGCRITERION = relative likelihood convergence criterion for the 
EM algorithm; 

depends on 
analysis type 

MCONVERGENCE = convergence criterion for the EM algorithm; depends on  
analysis type 

MCCONVERGENCE = convergence criterion for the M step of the EM 
algorithm for categorical latent variables; 

.000001 

MUCONVERGENCE = convergence criterion for the M step of the EM 
algorithm for censored, categorical, and count 
outcomes; 

.000001 

RCONVERGENCE = convergence criterion for the rotation algorithm 
for exploratory factor analysis; 

.00001 

ACONVERGENCE = convergence criterion for the derivatives of 
the alignment optimization;. 

.001 
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MIXC = ITERATIONS; ITERATIONS 

 CONVERGENCE;  

 M step iteration termination based on number 
of iterations or convergence for categorical 
latent variables; 

 

MIXU = ITERATIONS; ITERATIONS 

 CONVERGENCE;  

 M step iteration termination based on number 
of iterations or convergence for censored, 
categorical, and count outcomes; 

 

LOGHIGH = max value for logit thresholds; +15 
LOGLOW = min value for logit thresholds; - 15 
UCELLSIZE = minimum expected cell size; .01 
VARIANCE  = minimum variance value; .0001 
SIMPLICITY = SQRT; SQRT 
 FOURTHRT;  

TOLERANCE = simplicity tolerance value; .0001 
METRIC= REFGROUP; REFGROUP 

 PRODUCT;  

MATRIX =  COVARIANCE; COVARIANCE 

 CORRELATION;  

POINT = MEDIAN; 
MEAN; 
MODE; 

MEDIAN 

CHAINS =  number of MCMC chains; 2 
BSEED =  seed for MCMC random number generation; 0 
STVALUES = UNPERTURBED; 

PERTURBED; 
ML; 

UNPERTURBED 
 
 

PREDICTOR = 
 

LATENT; 

OBSERVED; 

LATENT 

ALGORITHM = GIBBS; 
GIBBS (PX1); 
GIBBS (PX2); 
GIBBS (PX3); 
GIBBS (RW); 
MH; 

GIBBS (PX1) 

BCONVERGENCE = MCMC convergence criterion using Gelman-
Rubin PSR; 

.05 

BITERATIONS = maximum and minimum number of iterations 
for each MCMC chain when Gelman-Rubin 
PSR is used; 

50000 0 

FBITERATIONS = fixed number of iterations for each MCMC 
chain when Gelman-Rubin PSR is not used; 

 

THIN = k where every k-th MCMC iteration is saved; 1 
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MDITERATIONS = maximum number of iterations used to 

compute the Bayes multivariate mode; 
10000 

KOLMOGOROV = number of draws from the MCMC chains; 100 
PRIOR = number of draws from the prior distribution; 1000 
INTERACTIVE = file name;  
PROCESSORS = # of processors  # of threads; 1 1 

 

The ANALYSIS command is not a required command.  Default settings 

are shown in the last column.  If the default settings are appropriate for 

the analysis, it is not necessary to specify the ANALYSIS command. 

 

Note that commands and options can be shortened to four or more 

letters.  Option settings can be referred to by either the complete word or 

the part of the word shown above in bold type.  

 

TYPE 
 

The TYPE option is used to describe the type of analysis.  There are six 

major analysis types in Mplus: GENERAL, MIXTURE, TWOLEVEL, 

THREELEVEL, CROSSCLASSIFIED, and EFA.  GENERAL is the 

default.   

 

The default is to estimate the model under missing data theory using all 

available data; to include means, thresholds, and intercepts in the model; 

to compute standard errors; and to compute chi-square when available.  

These defaults can be overridden.  The LISTWISE option of the DATA 

command can be used to delete all observations from the analysis that 

have one or more missing values on the set of analysis variables.  For 

TYPE=GENERAL, means, thresholds, and intercepts can be excluded 

from the analysis model by specifying 

MODEL=NOMEANSTRUCTURE in the ANALYSIS command.   The 

NOSERROR option of the OUTPUT command can be used to suppress 

the computation of standard errors.  The NOCHISQUARE option of the 

OUTPUT command can be used to suppress the computation of chi-

square.  In some models, suppressing the computation of standard errors 

and chi-square can greatly reduce computational time.  Following is a 

description of each of the four major analysis types. 
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GENERAL   
 

Analyses using TYPE=GENERAL include models with relationships 

among observed variables, among continuous latent variables, and 

among observed variables and continuous latent variables.  In these 

models, the continuous latent variables represent factors and random 

effects.  Observed outcome variables can be continuous, censored, 

binary, ordered categorical (ordinal), counts, or combinations of these 

variable types.  In addition, for regression analysis and path analysis for 

non-mediating outcomes, observed outcome variables can be unordered 

categorical (nominal).  Following are models that can be estimated using 

TYPE=GENERAL:     

 

 Regression analysis 

 Path analysis 

 Confirmatory factor analysis 

 Structural equation modeling 

 Growth modeling 

 Discrete-time survival analysis 

 Continuous-time survival analysis 

 N=1 time series analysis 

 

Special features available with the above models for all observed 

outcome variable types are: 

 

 Multiple group analysis 

 Missing data 

 Complex survey data 

 Latent variable interactions and non-linear factor analysis using 

maximum likelihood 

 Random slopes 

 Individually-varying times of observations 

 Linear and non-linear parameter constraints 

 Indirect effects including specific paths 

 Maximum likelihood estimation for all outcome types 

 Bootstrap standard errors and confidence intervals 

 Wald chi-square test of parameter equalities 
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Following is a list of the other TYPE settings that can be used in 

conjunction with TYPE=GENERAL along with a brief description of 

their functions: 

 

 BASIC computes sample statistics and other descriptive information. 

 RANDOM allows models with both random intercepts and random 

slopes. 

 COMPLEX computes standard errors and a chi-square test of model 

fit taking into account stratification, non-independence of 

observations, and/or unequal probability of selection. 

 

Following is an example of how to specify the TYPE option for a 

regression analysis with a random slope: 

 

TYPE  =  GENERAL RANDOM; 

 

or simply, 

 

TYPE  =  RANDOM; 

 

because GENERAL is the default.  

 

MIXTURE 
 

Analyses using TYPE=MIXTURE include models with categorical 

latent variables which are also referred to as latent class or finite mixture 

models. 

 

For models with only categorical latent variables, observed outcome 

variables can be continuous, censored, binary, ordered categorical 

(ordinal), unordered categorical (nominal), counts, or combinations of 

these variable types.  Following are the models that can be estimated 

using TYPE=MIXTURE with only categorical latent variables:     

 

 Regression mixture modeling 

 Path analysis mixture modeling 

 Latent class analysis 

 Latent class analysis with covariates and direct effects 

 Confirmatory latent class analysis 

 Latent class analysis with multiple categorical latent variables 

 Loglinear modeling 
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 Non-parametric modeling of latent variable distributions 

 Finite mixture modeling 

 Complier Average Causal Effect (CACE) modeling 

 Latent transition analysis and hidden Markov modeling including 

mixtures and covariates 

 Latent class growth analysis  

 Discrete-time survival mixture analysis 

 Continuous-time survival mixture analysis 

 

For models that include both continuous and categorical latent variables, 

observed outcome variables can be continuous, censored, binary, ordered 

categorical (ordinal), counts, or combinations of these variable types. In 

addition, for regression analysis and path analysis for non-mediating 

outcomes, observed outcome variables can also be unordered categorical 

(nominal).  Following are models that can be estimated using 

TYPE=MIXTURE with both continuous and categorical latent variables: 

 

 Latent class analysis with random effects 

 Factor mixture modeling 

 SEM mixture modeling 

 Growth mixture modeling with latent trajectory classes 

 Discrete-time survival mixture analysis 

 Continuous-time survival mixture analysis 

 

Special features available with the above models for all observed 

outcome variable types are: 

 

 Multiple group analysis 

 Missing data 

 Complex survey data 

 Latent variable interactions and non-linear factor analysis using 

maximum likelihood 

 Random slopes 

 Individually-varying times of observations 

 Linear and non-linear parameter constraints 

 Indirect effects including specific paths 

 Maximum likelihood estimation for all outcome types 

 Bootstrap standard errors and confidence intervals 

 Wald chi-square test of parameter equalities 

 Analysis with between-level categorical latent variables 
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 Test of equality of means across latent classes using posterior 

probability-based multiple imputations 

 

Following is a list of the other TYPE settings that can be used in 

conjunction with TYPE=MIXTURE along with a brief description of 

their functions:  

 

 BASIC computes sample statistics and other descriptive information. 

 RANDOM allows models with both random intercepts and random 

slopes. 

 COMPLEX computes standard errors and a chi-square test of model 

fit taking into account stratification, non-independence of 

observations, and/or unequal probability of selection. 

 

TWOLEVEL 
 

Analyses using TYPE=TWOLEVEL include models with random 

intercepts and random slopes that vary across clusters in hierarchical 

data.  These random effects can be specified for any of the relationships 

of the multilevel modeling framework.  Observed outcome variables can 

be continuous, censored, binary, ordered categorical (ordinal), unordered 

categorical (nominal), counts, or combinations of these variable types. 

 

Special features available for two-level models for all observed outcome 

variable types are: 

 

 Multiple group analysis 

 Missing data 

 Complex survey data 

 Latent variable interactions and non-linear factor analysis using 

maximum likelihood 

 Random slopes 

 Individually-varying times of observations 

 Linear and non-linear parameter constraints 

 Indirect effects including specific paths 

 Maximum likelihood estimation for all outcome types 

 Wald chi-square test of parameter equalities 
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Following is a list of the other TYPE settings that can be used in 

conjunction with TYPE=TWOLEVEL along with a brief description of 

their functions:  

 

 BASIC computes sample statistics and other descriptive information. 

 RANDOM allows models with random intercepts, random slopes, 

random factor loadings, and random variances. 

 MIXTURE allows models that have both categorical and continuous 

latent variables. 

 COMPLEX computes standard errors and a chi-square test of model 

fit taking into account stratification, non-independence of 

observations, and/or unequal probability of selection. 

 

THREELEVEL 
 

Analyses using TYPE=THREELEVEL include models with random 

intercepts and random slopes that vary across clusters in hierarchical 

data.  These random effects can be specified for any of the relationships 

of the multilevel modeling framework.  Observed outcome variables can 

be continuous, binary, or combinations of these variable types. 

 

Special features available for three-level models for all observed 

outcome variable types are: 

 

 Multiple group analysis 

 Missing data 

 Complex survey data 

 Random slopes 

 Linear and non-linear parameter constraints 

 Maximum likelihood estimation for continuous outcomes 

 Wald chi-square test of parameter equalities 

 

Following is a list of the other TYPE settings that can be used in 

conjunction with TYPE=THREELEVEL along with a brief description 

of their functions:  

 

 BASIC computes sample statistics and other descriptive information. 

 RANDOM allows models with random intercepts, random slopes, 

random factor loadings, and random variances. 
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 COMPLEX computes standard errors and a chi-square test of model 

fit taking into account stratification, non-independence of 

observations, and/or unequal probability of selection.  This is 

available for continuous variables. 

 

CROSSCLASSIFIED 
 

Analyses using TYPE=CROSSCLASSIFIED include models with 

random intercepts, random slopes, and random variances that vary across 

clusters in hierarchical data.  These random effects can be specified for 

any of the relationships of the multilevel modeling framework.  

Observed outcome variables can be continuous, binary, ordered 

categorical (ordinal), or combinations of these variable types. 

 

Special features available for cross-classified models for all observed 

outcome variable types are: 

 

 Missing data 

 Random slopes 

 Random variances 

 

Following is a list of the other TYPE settings that can be used in 

conjunction with TYPE=CROSSCLASSIFIED along with a brief 

description of their functions:  

 

 RANDOM allows models with random intercepts, random slopes, 

and random variances. 

 

EFA 
 

Analyses using TYPE=EFA include exploratory factor analysis of 

continuous, censored, binary, ordered categorical (ordinal), counts, or 

combinations of these variable types.  See the ROTATION option of the 

ANALYSIS command for a description of the rotations available for 

TYPE=EFA.  Modification indices are available for the residual 

correlations using the MODINDICES option of the OUTPUT command. 

 

Special features available for EFA for all observed outcome variable 

types are: 

 

 Missing data 
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 Complex survey data 

 

Following are the other TYPE settings that can be used in conjunction 

with TYPE=EFA along with a brief description of their functions:  

 

 BASIC computes sample statistics and other descriptive information. 

 MIXTURE allows models that have both categorical and continuous 

latent variables. 

 COMPLEX computes standard errors and a chi-square test of model 

fit taking into account stratification, non-independence of 

observations, and/or unequal probability of selection. 

 TWOLEVEL models non-independence of observations due to 

clustering taking into account stratification and/or unequal 

probability of selection. 

 

Following is an example of how to specify the TYPE option for a single-

level exploratory factor analysis: 

 

TYPE = EFA 1 3; 

 

where the two numbers following EFA are the lower and upper limits of 

the number of factors to be extracted.  In the example above factor 

solutions are given for one, two, and three factors.   

 

Following is an example of how to specify the full TYPE option for a 

multilevel exploratory factor analysis (Asparouhov & Muthén, 2007): 

 

TYPE = TWOLEVEL EFA 3 4 UW* 1 2 UB*; 

 

where the first two numbers, 3 and 4, are the lower and upper limits of 

the number of factors to be extracted on the within level, UW* specifies 

that an unrestricted within-level model is estimated, the second two 

numbers, 1 and 2, are the lower and upper limits of the number of factors 

to be extracted on the between level, and UB* specifies that an 

unrestricted between-level model is estimated.  The within- and 

between-level specifications are crossed.  In the example shown above, 

the three- and four-factor models and the unrestricted model on the 

within level are estimated in combination with the one- and two-factor 

models and the unrestricted model on between resulting in nine 

solutions.   
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If UW and UB are used instead of UW* and UB*, the unrestricted 

models are not estimated but instead the model parameters are fixed at 

the sample statistic values.  This can speed up the analysis.   

 

For multilevel exploratory factor analysis, the TYPE option can be 

specified using only numbers or the UW* and UB* specifications for 

each level.  For example, 

 

TYPE = TWOLEVEL EFA 3 4 UB*; 

 

specifies that three- and four-factors models on the within level are 

estimated in combination with an unrestricted model on the between 

level. 

 

TYPE = TWOLEVEL EFA UW* 12; 

 

specifies that an unrestricted model on the within level is estimated in 

combination with one- and two-factor model on the between level.  

 

ESTIMATOR 
 

The ESTIMATOR option is used to specify the estimator to be used in 

the analysis.  The default estimator differs depending on the type of 

analysis and the measurement scale of the dependent variable(s).  Not all 

estimators are available for all models.  Following is a table that shows 

which estimators are available for specific models and variable types.  

The information is broken down by models with all continuous 

dependent variables, those with at least one binary or ordered categorical 

dependent variable, and those with at least one censored, unordered 

categorical, or count dependent variable.  All of the estimators require 

individual-level data except ML for TYPE=GENERAL and EFA, GLS, 

and ULS which can use summary data.  The default settings are 

indicated by bold type. 

 

The first column of the table shows the combinations of TYPE settings 

that are allowed.  The second column shows the set of estimators 

available for the analysis types in the first column for a model with all 

continuous dependent variables.  The third column shows the set of 

estimators available for the analysis types in the first column for a model 

with at least one binary or ordered categorical dependent variable. The 

fourth column shows the set of estimators available for the analysis 
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types in the first column for a model with at least one censored, 

unordered categorical, or count dependent variable. 

 
 
Type of Analysis 
 
TYPE= 

All continuous 
dependent 
variables  

 

At least one 
binary or 
ordered 
categorical 
dependent 
variable 

At least one 
censored, 
unordered 
categorical, 
or count 
dependent 
variable 

GENERAL 

 
ML** 
MLM***** 
MLMV***** 
MLR** 
MLF** 
GLS***** 
WLS***** 
BAYES 

WLS 
WLSM 

WLSMV 
ULSMV 
ML* 
MLR* 
MLF* 
BAYES 

WLS**** 
WLSM**** 

WLSMV**** 
ML* 

MLR* 
MLF* 

GENERAL      RANDOM 

 
ML** 

MLR** 
MLF** 

ML* 

MLR* 
MLF* 

ML* 

MLR* 
MLF* 

GENERAL      RANDOM        COMPLEX     

 
MLR** MLR* MLR* 

GENERAL      COMPLEX 

 
ML****** 

MLR** 

 

WLS 
WLSM 

WLSMV 
ULSMV 
MLR* 

WLS**** 
WLSM**** 

WLSMV**** 
ULSMV**** 

MLR* 

MIXTURE 

 
ML** 

MLR** 
MLF** 
BAYES 

ML** 

MLR** 
MLF** 
BAYES 

ML** 

MLR** 
MLF** 

MIXTURE       RANDOM 
 

ML** 

MLR** 
MLF** 

ML** 

MLR** 
MLF** 

ML** 

MLR** 
MLF** 

MIXTURE       COMPLEX 
MIXTURE       COMPLEX      RANDOM 

MLR** MLR** MLR* 

TWOLEVEL MUML***          
ML** 

MLR** 
MLF** 
WLS 
WLSM 
WLSMV 
ULSMV 
BAYES 

ML* 

MLR* 
MLF* 
WLS 
WLSM 
WLSMV 
ULSMV 
BAYES 

 

ML* 

MLR* 
MLF* 

TWOLEVEL    RANDOM 

 
ML** 

MLR** 
MLF** 
BAYES 

ML* 

MLR* 
MLF* 
BAYES 

ML* 

MLR* 
MLF* 

TWOLEVEL    MIXTURE 
TWOLEVEL    RANDOM       MIXTURE 

 

ML* 

MLR* 
MLF* 

ML * 

MLR* 
MLF* 

ML* 

MLR* 
MLF* 

COMPLEX TWOLEVEL 
COMPLEX TWOLEVEL    RANDOM 

MLR** 

 
MLR* MLR* 
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COMPLEX TWOLEVEL    MIXTURE 
COMPLEX TWOLEVEL    RANDOM   MIXTURE 

MLR* 

 
MLR* 

 
MLR* 

 
THREELEVEL 
THREELEVEL RANDOM 

ML 

MLR 
MLF 
BAYES 

BAYES NA 

COMPLEX THREELEVEL 
COMPLEX THREELEVEL RANDOM 

MLR NA NA 

CROSSCLASSIFIED 
CROSSCLASSIFIED RANDOM 

BAYES BAYES NA 

EFA ML 
MLR** 
MLF** 
ULS***** 
BAYES 

WLS 
WLSM 

WLSMV 
ULS 
ULSMV 
ML* 
MLR* 
MLF* 
BAYES 

ML* 

MLR* 
MLF* 

EFA MIXTURE ML** 

MLR** 
MLF** 

ML* 

MLR* 
MLF* 

ML* 

MLR* 
MLF* 

EFA COMPLEX MLR** 
 
 
 

 

WLS 
WLSM 

WLSMV 
ULSMV 
MLR* 

MLR* 

 

EFA TWOLEVEL M** 
MLR** 
MLF** 
WLS 
WLSM 
WLSMV 
ULSMV 

WLS 
WLSM 

WLSMV 
ULSMV 

 

NA 

 

* Numerical integration required 

** Numerical integration an option 

*** Maximum likelihood with balanced data, limited-information for 

unbalanced data, not available with missing data 

**** Only available for censored outcomes without inflation 

***** Not available with missing data 

****** Default with replicate weights 

NA       Not available 

 

Following is a description of what the above estimator settings represent: 

 

 ML – maximum likelihood parameter estimates with conventional 

standard errors and chi-square test statistic 

 MLM – maximum likelihood parameter estimates with standard 

errors and a mean-adjusted chi-square test statistic that are robust to 
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non-normality.  The MLM chi-square test statistic is also referred to 

as the Satorra-Bentler chi-square.  

 MLMV – maximum likelihood parameter estimates with standard 

errors and a mean- and variance-adjusted chi-square test statistic that 

are robust to non-normality 

 MLR – maximum likelihood parameter estimates with standard 

errors and a chi-square test statistic (when applicable) that are robust 

to non-normality and non-independence of observations when used 

with TYPE=COMPLEX.  The MLR standard errors are computed 

using a sandwich estimator.  The MLR chi-square test statistic is 

asymptotically equivalent to the Yuan-Bentler T2* test statistic.   

 MLF – maximum likelihood parameter estimates with standard 

errors approximated by first-order derivatives and a conventional 

chi-square test statistic 

 MUML – Muthén’s limited information parameter estimates, 

standard errors, and chi-square test statistic 

 WLS – weighted least square parameter estimates with conventional 

standard errors and chi-square test statistic that use a full weight 

matrix.  The WLS chi-square test statistic is also referred to as ADF 

when all outcome variables are continuous. 

 WLSM – weighted least square parameter estimates using a diagonal 

weight matrix with standard errors and mean-adjusted chi-square test 

statistic that use a full weight matrix 

 WLSMV – weighted least square parameter estimates using a 

diagonal weight matrix with standard errors and mean- and variance-

adjusted chi-square test statistic that use a full weight matrix 

 ULS – unweighted least squares parameter estimates 

 ULSMV – unweighted least squares parameter estimates with 

standard errors and a mean- and variance-adjusted chi-square test 

statistic that use a full weight matrix 

 GLS – generalized least square parameter estimates with 

conventional standard errors and chi-square test statistic that use a 

normal-theory based weight matrix 

 Bayes – Bayesian posterior parameter estimates with credibility 

intervals and posterior predictive checking 

 

BAYESIAN ESTIMATION 
 

Bayesian estimation differs from frequentist estimation in that 

parameters are not considered to be constants but to be variables 
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(Gelman et al., 2004).  The parameters can be given priors 

corresponding to theory or previous studies.  Together with the 

likelihood of the data, this gives rise to posterior distributions for the 

parameters.  Bayesian estimation uses Markov chain Monte Carlo 

(MCMC) algorithms to create approximations to the posterior 

distributions by iteratively making random draws in the MCMC chain.  

The initial draws in the MCMC chain are referred to as the burnin phase.  

In Mplus, the first half of each chain is discarded as being part of the 

burnin phase.  Convergence is assessed using the Gelman-Rubin 

convergence criterion based on the potential scale reduction factor for 

each parameter (Gelman & Rubin, 1992; Gelman et al., 2004, pp. 296-

297).  With multiple chains, this is a comparison of within- and between-

chain variation.  With a single chain, the last half of the iterations is split 

into two quarters and the potential scale reduction factor is computed for 

these two quarters.  Convergence can also be monitored by the trace 

plots of the posterior draws in the chains.  Auto-correlation plots 

describe the degree of non-independence of consecutive draws.  These 

plots aid in determining the quality of the mixing in the chain.  For each 

parameter, credibility intervals are obtained from the percentiles of its 

posterior distribution.  Model comparisons are aided by the Deviance 

Information Criterion (DIC). Overall test of model fit is judged by 

Posterior Predictive Checks (PPC) where the observed data is compared 

to the posterior predictive distribution.  In Mplus, PPC p-values are 

computed using the likelihood-ratio chi-square statistic for continuous 

outcomes and for the continuous latent response variables of categorical 

outcomes.  Gelman et al. (2004, Chapter 6) and Lee (2007, Chapter 5) 

give overviews of model comparison and model checking.  For a 

technical description of the Bayesian implementation, see Asparouhov 

and Muthén (2010b).  See also Chapter 9 of Muthén, Muthén, and 

Asparouhov (2016).   

 

Bayesian estimation is available for continuous, binary, ordered 

categorical (ordinal) or combinations of these variable types with 

TYPE=GENERAL, MIXTURE with only one categorical latent 

variable, TWOLEVEL, THREELEVEL, THREELEVEL RANDOM, 

CROSSCLASSIFIED, CROSSCLASSIFIED RANDOM, and EFA.  To 

obtain Bayesian estimation, specify: 

 

ESTIMATOR=BAYES;  
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MODEL 
 

The MODEL option has two uses.  The first use is to automatically set 

up multiple group models for the purpose of testing for measurement 

invariance.  The second use is to make changes to the defaults of the 

MODEL command. 

 

TESTING FOR MEASUREMENT INVARIANCE 
 

The MODEL option is used to automatically set up multiple group 

models for the purpose of testing for measurement invariance using the 

GROUPING option or the KNOWNCLASS option.  It is available for 

CFA and ESEM models for continuous variables with the maximum 

likelihood and Bayes estimators; for censored variables with the 

weighted least squares and maximum likelihood estimators; for binary 

and ordered categorical (ordinal) variables using the weighted least 

squares, maximum likelihood, and Bayes estimators; and for count 

variables using the maximum likelihood estimator.  It is not available for 

censored-inflated, count-inflated, nominal, continuous-time survival, 

negative binomial variables, or combinations of variable types.  The 

MODEL command can contain only BY statements for first-order 

factors.  The metric for the factors can be set by fixing a factor loading 

to one in each group or by fixing the factor variance to one in one group.  

No partial measurement invariance is allowed.  The configural, metric, 

and scalar models used are described in Chapter 14. 

 

The MODEL option has three settings for testing for measurement 

invariance:  CONFIGURAL, METRIC, and SCALAR.  These settings 

can be used alone to set up a particular model or together to test the 

models for measurement invariance.  Chi-square difference testing is 

carried out automatically using scaling correction factors for MLM, 

MLR, and WLSM and using the DIFFTEST option for WLSMV and 

MLMV.  The settings cannot be used together for 

ESTIMATOR=BAYES and for Monte Carlo analyses.  Full analysis 

results are printed along with a summary of the difference testing.  The 

CONFIGURAL setting produces a model with the same number of 

factors and the same set of zero factor loadings in all groups.  The 

METRIC setting produces a model where factor loadings are held equal 

across groups.  The SCALAR setting produces a model where factor 

loadings and intercepts/thresholds are held equal across groups.  When 

the factor variance is fixed to one in one group, it is the first group when 
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the GROUPING option is used and the last class when the 

KNOWNCLASS option is used. 

 

The MODEL option for testing measurement invariance is specified as 

follows:    

 

MODEL = CONFIGURAL METRIC SCALAR; 

 

which specifies that configural, metric, and scalar models will be 

estimated and difference testing of the models will be done. 

 

CHANGE DEFAULTS OF MODEL COMMAND 
 

The MODEL option has three settings that change the defaults of the 

MODEL command:  NOMEANSTRUCTURE, NOCOVARIANCES, 

and ALLFREE.  The NOMEANSTRUCTURE setting is used with 

TYPE=GENERAL to specify that means, intercepts, and thresholds are 

not included in the analysis model.  The NOCOVARIANCES setting 

specifies that the covariances and residual covariances among all latent 

and observed variables in the analysis model are fixed at zero.  The 

WITH option of the MODEL command can be used to free selected 

covariances and residual covariances.  Following is an example of how 

to specify that the covariances and residual covariances among all latent 

and observed variables in the model are fixed at zero: 

 

MODEL = NOCOVARIANCES; 

 

The ALLFREE setting is used with TYPE=MIXTURE, the 

KNOWNCLASS option, ESTIMATOR=BAYES, and a special 

automatic labeling function to assign zero-mean and small-variance 

priors to differences in intercepts, thresholds, and factor loadings across 

groups.  By specifying MODEL=ALLFREE, factor means, variances, 

and covariances are free across groups except for factor means in the last 

group which are fixed at zero.  In addition, intercepts, thresholds, factor 

loadings, and residual variances of the factor indicators are free across 

the groups.   

 

Following is an example of how to use the ALLFREE setting and 

automatic labeling to assign zero-mean and small-variance priors to 

differences in intercepts, thresholds, and factor loadings across the ten 

groups.   
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MODEL:  %OVERALL% 

  f1 BY y1-y3* (lam#_1-lam#_3);  

  f2 BY y4-y6* (lam#_4-lam#_6);  

  [y1-y6] (nu#_1-nu#_6); 

  

MODEL PRIORS: 

  DO(1,6) DIFF(lam1_#-lam10_#)~N(0,0.01); 

  DO(1,6) DIFF(nu1_#-nu10_#)~N(0,0.01); 

 

In the overall part of the model, labels are assigned to the factor loadings 

and the intercepts using automatic labeling for groups.  The labels must 

include the number sign (#) followed by the underscore (_) symbol 

followed by a number.  The number sign (#) refers to a group and the 

number refers to a parameter.  The label lam#_1 is assigned to the factor 

loading for y1; the label lam#_2 is assigned to the factor loading for y2; 

and the label lam#_3 is assigned to the factor loading for y3.  These 

labels are expanded to include group information.  For example, the 

label for parameter 1 is expanded across the ten groups to give labels 

lam1_1, lam2_1 through lam10_1.  In MODEL PRIORS, these expanded 

labels are used to assign zero-mean and small-variance priors to the 

differences across groups of the factor loadings and intercepts using the 

DO and DIFF options.  They can be used together to simplify the 

assignment of priors to a large set of difference parameters for models 

with multiple groups and multiple time points.  For the DO option, the 

numbers in parentheses give the range of values for the do loop.  The 

number sign (#) is replaced by these values during the execution of the 

do loop.  The numbers refer to the six factor indicators.   

 

ALIGNMENT 
 

The ALIGNMENT option is used with multiple group models to assess 

measurement invariance and compare factor means and variances across 

groups (Asparouhov & Muthén, 2014c).  It is most useful when there are 

many groups as seen in country comparisons of achievement like the 

Programme for International Student Assessment (PISA), the Trends in 

International Mathematics and Science Study (TIMSS), and the Progress 

in International Reading Literacy Study (PIRLS) as well as in cross-

cultural studies like the International Social Survey Program (ISSP) and 

the European Social Survey (ESS).  It is available when all variables are 

continuous or binary with the ML, MLR, MLF, and BAYES estimators 

and when all variables are ordered categorical (ordinal) with the ML, 
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MLR, and MLF estimators.  It is available for regular and Monte Carlo 

analyses using TYPE=MIXTURE and TYPE=COMPLEX MIXTURE in 

conjunction with the KNOWNCLASS option for real data and the 

NGROUPS option for Monte Carlo analyses.  The MODEL command 

can contain only BY statements for first-order factors where factor 

indicators do not load on more than one factor. 

 

The alignment optimization method consists of three steps: 

 

1. Analysis of a configural model with the same number of factors 

and same pattern of zero factor loadings in all groups. 

2. Alignment optimization of the measurement parameters, factor 

loadings and intercepts/thresholds according to a simplicity 

criterion that favors few non-invariant measurement parameters. 

3. Adjustment of the factor means and variances in line with the 

optimal alignment. 

 

The ALIGNMENT option has two settings:  FIXED and FREE. There is 

no default.  In the FIXED setting, a factor mean is fixed at zero in the 

reference group.  In the FREE setting, all factor means are estimated.  

FREE is the most general approach.  FIXED is recommended when there 

is little factor loading non-invariance which may occur when there is a 

small number of groups.  The ALIGNMENT option has two subsettings 

for specifying the reference group and the type of configural model used 

in the first step of the alignment optimization.  The default for the 

reference group is the last known class.  The default for the type of 

configural model is CONFIGURAL.  The alternative setting is BSEM 

where approximate invariance of measurement parameters is specified 

using Bayes priors (Muthén & Asparouhov, 2013).  The subsettings are 

specified in parentheses following the FIXED or FREE settings.  

Following is an example of how to specify the ALIGNMENT option: 

 

ALIGNMENT = FREE; 

 

where the default reference group is the last known class.  The default 

configural model is CONFIGURAL.  Following are three equivalent 

ways to specify this: 

 

ALIGNMENT = FREE (1 CONFIGURAL); 

 

ALIGNMENT = FREE (1); 
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ALIGNMENT = FREE (CONFIGURAL); 

 

DISTRIBUTION 
 

The DISTRIBUTION option is used in conjunction with 

TYPE=GENERAL and TYPE=MIXTURE to specify non-normal 

distributions for continuous observed variables and continuous factors 

(Asparouhov & Muthén, 2015a; Muthén & Asparouhouv, 2015a).  These 

new methods are experimental in that they have not been extensively 

used in practice.    

 

The DISTRIBUTION option has four settings:  NORMAL, 

SKEWNORMAL, TDISTRIBUTION, and SKEWT.  The default is 

NORMAL.  The DISTRIBUTION option can be used with only 

continuous observed and latent variables although the analysis model 

can contain other types of variables.  The DISTRIBUTION option 

cannot be used with models that require numerical integration.   

 

The SKEWNORMAL and SKEWT settings have a special skew 

parameter for each observed and latent variable that is related to the 

skewness of the variable.  It is specified by mentioning the name of the 

variable in curly brackets.  For example, the skew parameter for a 

variable y is specified as {y}.  Skew parameters are free and unequal 

across groups or classes with starting values of one.  They can be 

constrained to be equal or fixed at a particular value.  The 

TDISTRIBUTION and SKEWT settings have a special degree of 

freedom parameter for each group or class that is related to the degrees 

of freedom in the t-distribution.  The degree of freedom parameter is 

specified by putting df in curly brackets, for example, {df}.  The degree 

of freedom parameter is free and unequal across groups or classes with a 

starting value of one.  It can be constrained to be equal or fixed at a 

particular value.  The SKEWNORMAL setting can capture skewness 

less than the absolute value of one, whereas the SKEWT setting has no 

such limitations.  

 

PARAMETERIZATION 
 

The PARAMETERIZATION option is used for three purposes.  The 

first purpose is to change from the default Delta parameterization to the 

alternative Theta parameterization when TYPE=GENERAL is used, at 
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least one observed dependent variable is categorical, and weighted least 

squares estimation is used in the analysis.   The second purpose is to 

change from the default logit regression parameterization to either the 

loglinear or probability parameterization when TYPE=MIXTURE and 

more than one categorical latent variable is used in the analysis.  The 

third purpose is to allow the WITH option of the MODEL command to 

be used to specify residual covariances for binary and ordered 

categorical (ordinal) outcomes using maximum likelihood estimation. 

 

DELTA VERSUS THETA PARAMETERIZATION 
 

There are two model parameterizations available when 

TYPE=GENERAL is used, one or more dependent variables are 

categorical, and weighted least squares estimation is used in the analysis.  

The first parameterization is referred to as DELTA.  This is the default 

parameterization.  In the DELTA parameterization, scale factors for 

continuous latent response variables of observed categorical outcome 

variables are allowed to be parameters in the model, but residual 

variances for continuous latent response variables are not.  The second 

parameterization is referred to as THETA.  In the THETA 

parameterization, residual variances for continuous latent response 

variables of observed categorical outcome variables are allowed to be 

parameters in the model, but scale factors for continuous latent response 

variables are not.   

 

The DELTA parameterization is the default because it has been found to 

perform better in many situations (Muthén & Asparouhov, 2002).  The 

THETA parameterization is preferred when hypotheses involving 

residual variances are of interest.  Such hypotheses may arise with 

multiple group analysis and analysis of longitudinal data.  In addition, 

there are certain models that can be estimated using only the THETA 

parameterization because they have been found to impose improper 

parameter constraints with the DELTA parameterization.  These are 

models where a categorical dependent variable is both influenced by and 

influences either another observed dependent variable or a latent 

variable.     

 

To select the THETA parameterization, specify the following: 

 

PARAMETERIZATION = THETA; 
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LOGIT, LOGLINEAR, AND PROBABILITY 

PARAMETERIZATIONS 
 

There are three model parameterizations available when 

TYPE=MIXTURE is used and more than one categorical latent variable 

is used in the analysis.   The first parameterization is referred to as 

LOGIT.  This is the default parameterization.  In the LOGIT 

parameterization, logistic regressions are estimated for categorical latent 

variables.  In the LOGIT parameterization, the ON and WITH options of 

the MODEL command can be used to specify the relationships between 

the categorical latent variables.  The second parameterization is referred 

to as LOGLINEAR.  In the LOGLINEAR parameterization, loglinear 

models are estimated for categorical latent variables allowing two- and 

three-way interactions.  In the LOGLINEAR parameterization, only the 

WITH option of the MODEL command can be used to specify the 

relationships between the categorical latent variables.  The third 

parameterization is referred to as PROBABILITY.  In the 

PROBABILITY parameterization, categorical latent variable regression 

coefficients can be expressed as probabilities rather than logits. 

 

RESCOVARIANCES 
 

The RESCOVARIANCES option is used with Latent Class Analysis and 

Latent Transition Analysis to specify residual covariances for binary and 

ordered categorical (ordinal) variables using maximum likelihood 

estimation (Asparouhov & Muthén, 2015b).  These residual covariances 

are specified using the WITH option of the MODEL command. They 

can be free across classes, constrained to be equal across classes, or 

appear in only certain classes.  Following is a partial input for a latent 

class analysis where the residual covariances are held equal across 

classes: 

 

VARIABLE: 

CATEGORICAL = u1-u4; 

CLASSES = c(2); 

ANALYSIS: 

TYPE=MIXTURE; 

PARAMETERIZATION=RESCOVARIANCES; 

MODEL: 

%OVERALL% 

u1 WITH u3; 
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Following is a partial input for a latent class analysis where the residual 

covariances are not held equal across classes: 

 

VARIABLE: 

CATEGORICAL = u1-u4; 

CLASSES = c(2); 

ANALYSIS: 

TYPE=MIXTURE; 

PARAMETERIZATION=RESCOV; 

MODEL: 

%OVERALL% 

u1 WITH u3; 

%c#1% 

u1 WITH u3; 

 

Following is a partial input for a latent transition analysis where the 

residual covariances are allowed in only specific classes: 

  

VARIABLE: 

CATEGORICAL = u1-u8; 

CLASSES = c1 (3) c2 (3); 

ANALYSIS: 

TYPE=MIXTURE; 

PARAMETERIZATION=RESCOV; 

MODEL: 

%OVERALL% 

c2 ON c1; 

%c1#2.c2#2% 

u1 WITH u5; 

u2 WITH u6; 

u3 WITH u7; 

u4 WITH u8; 

 

LINK 
 

The LINK option is used with maximum likelihood estimation to select a 

logit or probit link for models with categorical outcomes.  The default is 

a logit link.  Following is an example of how to request a probit link: 

 

LINK = PROBIT:  
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ROTATION 
 

The ROTATION option is used with TYPE=EFA to specify the type of 

rotation of the factor loading matrix to be used in exploratory factor 

analysis.  The default is the GEOMIN oblique rotation (Yates, 1987; 

Browne, 2001).  The algorithms used in the rotations are described in 

Jennrich and Sampson (1966), Browne (2001), Bernaards and Jennrich 

(2005), and Jennrich (2007).  For consistency, the names of the rotations 

used in the CEFA program (Browne, Cudeck, Tateneni, & Mels, 2004) 

are used for rotations that are included in both the CEFA and Mplus 

programs.  Target rotations (Browne, 2001) and bi-factor rotations 

(Jennrich & Bentler, 2011, 2012) are also available. 

 

Standard errors are available as the default for all rotations except 

PROMAX and VARIMAX.  THE NOSERROR options of the OUTPUT 

command can be used to request that standard errors not be computed.  

The following rotations are available: 

 

GEOMIN 

QUARTIMIN 

CF-VARIMAX 

CF-QUARTIMAX 

CF-EQUAMAX 

CF-PARSIMAX 

CF-FACPARSIM 

CRAWFER  

OBLIMIN 

PROMAX 

VARIMAX 

TARGET 

BI-GEOMIN 

BI-CF-QUARTIMAX 

 

All rotations are available as both oblique and orthogonal except 

PROMAX and QUARTIMIN which are oblique and VARIMAX which 

is orthogonal.  The default for rotations that can be both oblique and 

orthogonal is oblique. 

 

The GEOMIN rotation is recommended when factor indicators have 

substantial loadings on more than one factor resulting in a variable 

complexity greater than one.  Geomin performs well on Thurstone’s 26 
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variable Box Data (Browne, 2001, Table 3, p. 135).  The GEOMIN 

epsilon (Browne, 2001) default setting varies as a function of the number 

of factors.  With two factors, it is .0001.  With three factors, it is .001.  

With four or more factors, it is .01.  The default can be overridden using 

the GEOMIN option.  The epsilon value must be a positive number.    

The Geomin rotation algorithm often finds several local minima of the 

rotation function (Browne, 2001).  To find a global minimum, 30 

random rotation starts are used as the default.  The RSTARTS option of 

the ANALYSIS command can be used to change the default. 

 

Following is an example of how to change the GEOMIN epsilon value 

for an oblique rotation:  

 

ROTATION = GEOMIN (OBLIQUE .5); 

 

or 

 

ROTATION = GEOMIN (.5);  

 

where .5 is the value of epsilon.   

 

Following is an example of how to specify an orthogonal rotation for the 

GEOMIN rotation and to specify an epsilon value different from the 

default: 

 

ROTATION = GEOMIN (ORTHOGONAL .5); 

 

The QUARTIMIN rotation uses the direct quartimin rotation of Jennrich 

and Sampson (1966).  The following rotations are identical to direct 

quartimin: 

 

CF-QUARTIMAX (OBLIQUE) 

CRAWFER (OBLIQUE 0) 

OBLIMIN (OBLIQUE 0) 

 

The rotations that begin with CF are part of the Crawford-Ferguson 

family of rotations (Browne, 2001).  They are related to the CRAWFER 

rotation by the value of the CRAWFER parameter kappa.  Following are 

the values of kappa for the Crawford-Ferguson family of rotations 

(Browne, 2001, Table 1): 
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CF-VARIMAX  1/p 

CF-QUARTIMAX 0 

CF-EQUAMAX m/2p 

CF-PARSIMAX  (m-1)/(p+m-2) 

CF-FACPARSIM 1 

 

where p is the number of variables and m is the number of factors. 

 

The default for these rotations is oblique.  Following is an example of 

how to specify an orthogonal rotation for the Crawford-Ferguson family 

of rotations: 

 

ROTATION = CF-VARIMAX (ORTHOGONAL); 

 

The CRAWFER rotation is a general form of the Crawford-Ferguson 

family of rotations where kappa can be specified as a value from 0 

through 1.  The default value of kappa is 1/p where p is the number of 

variables.  Following is an example of how to specify an orthogonal 

rotation for the CRAWFER rotation and to specify a kappa value 

different from 1/p: 

 

ROTATION = CRAWFER (ORTHOGONAL .5); 

 

where .5 is the value of kappa.  The kappa value can also be changed for 

an oblique rotation as follows: 

 

ROTATION = CRAWFER (OBLIQUE .5); 

 

or  

 

ROTATION = CRAWFER (.5); 

 

The default for the OBLIMIN rotation is oblique with a gamma value of 

0.  Gamma can take on any value.  Following is an example of how to 

specify an orthogonal rotation for the OBLIMIN rotation and to specify 

a gamma value different than 0: 

 

ROTATION = OBLIMIN (ORTHOGONAL 1); 

 

where 1 is the value of gamma.  The gamma value can also be changed 

for an oblique rotation as follows: 
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ROTATION = OBLIMIN (OBLIQUE 1); 

 

or 

 

ROTATION = OBLIMIN (1);  

 

The VARIMAX and PROMAX rotations are the same rotations as those 

available in earlier versions of Mplus.  The VARIMAX rotation is the 

same as the CF-VARIMAX orthogonal rotation except that VARIMAX 

row standardizes the factor loading matrix before rotation. 

 

The TARGET setting of the ROTATION option (Browne, 2001) is used 

with models that have a set of EFA factors in the MODEL command.  

This setting allows the specification of target factor loading values to 

guide the rotation of the factor loading matrix.  Typically these values 

are zero.  The default for the TARGET rotation is oblique.  Following is 

an example of how to specify an orthogonal TARGET rotation: 

 

ROTATION = TARGET (ORTHOGONAL); 

 

For TARGET rotation, a minimum number of target values must be 

given for purposes of model identification.  For the oblique TARGET 

rotation, the minimum is m(m-1) where the m is the number of factors.   

For the orthogonal TARGET rotation, the minimum is m(m-1)/2.  The 

target values are given in the MODEL command using the tilde (~) 

symbol, for example, 

 

f1 BY y1-y10 y1~0 (*t); 

f2 BY y1-y10 y5~0 (*t);  

 

where the target values of y1 and y5 are zero. 

 

For the bi-factor rotations, BI-GEOMIN and BI-CF-QUARTIMAX, a 

general factor is allowed in combination with specific factors.  In the 

oblique rotation, the specific factors are correlated with the general 

factor and are correlated with each other.  In the orthogonal rotation, the 

specific factors are uncorrelated with the general factor and are 

uncorrelated with each other.    The default for the BI-GEOMIN and BI-

CF-QUARTIMAX rotations is oblique.  Following is an example of how 

to specify an orthogonal BI-GEOMIN rotation: 
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ROTATION = BI-GEOMIN (ORTHOGONAL); 

 

ROWSTANDARDIZATION 
 

The ROWSTANDARDIZATION option is used with exploratory factor 

analysis (EFA) and when a set of EFA factors is part of the MODEL 

command to request row standardization of the factor loading matrix 

before rotation.  The ROWSTANDARDIZATION option has three 

settings:  CORRELATION, KAISER, and COVARIANCE.   The 

CORRELATION setting rotates a factor loading matrix derived from a 

correlation matrix with no row standardization.  The KAISER setting 

rotates a factor loading matrix derived from a correlation matrix with 

standardization of the factor loadings in each row using the square root 

of the sum of the squares of the factor loadings in each row (Browne, 

2001).  The COVARIANCE setting rotates a factor loading matrix 

derived from a covariance matrix with no row standardization.  The 

default is CORRELATION.  The COVARIANCE setting is not allowed 

for TYPE=EFA.  If factor loading equalities are specified in a model for 

EFA factors, the CORRELATION and KAISER settings are not 

allowed. 

 

Following is an example of how to specify row standardization using the 

Kaiser method: 

 

ROWSTANDARDIZATION = KAISER; 

 

PARALLEL 
 

The PARALLEL option is used with TYPE=EFA to determine the 

optimum number of factors in an exploratory factor analysis.  It is 

available for continuous outcomes using maximum likelihood 

estimation.  Parallel analysis (see, for example, Fabrigar, Wegener, 

MacCallum, & Strahan, 1999; Hayton, Allen, & Scarpello, 2004) is a 

method that uses random data with the same number of observations and 

variables as the original data.  The correlation matrix of the random data 

is used to compute eigenvalues.  These eigenvalues are compared to the 

eigenvalues of the original data.  The optimum number of factors is the 

number of the original data eigenvalues that are larger than the random 

data eigenvalues.  TYPE=PLOT2 of the PLOT command gives a plot of 

the sample eigenvalues, the parallel analysis eigenvalues, and the 
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parallel analysis eigenvalues for the 95
th
 percentile.  The PARALLEL 

option is specified as follows: 

 

PARALLEL = 50; 

 

where 50 is the number of random data sets that is drawn.  

 

REPSE 
 

The REPSE option is used to specify the resampling method that was 

used to create existing replicate weights or will be used to generate 

replicate weights (Fay, 1989; Korn & Graubard, 1999; Lohr, 1999; 

Asparouhov, 2009).  Replicate weights are used in the estimation of 

standard errors of parameter estimates.  The REPSE option has six 

settings:  BOOTSTRAP, JACKKNIFE, JACKKNIFE1, JACKKNIFE2, 

BRR and FAY.  There is no default.  The REPSE option must be 

specified when replicate weights are used or generated.   

 

With the BOOTSTRAP setting, the BOOTSTRAP option of the 

ANALYSIS command is used to specify the number of bootstrap draws 

used in the generation of the replicate weights.  With the JACKKNIFE 

setting, the number of Jackknife draws is equal to the number of PSU’s 

in the sample.  A multiplier file is required for JACKKNIFE when 

replicate weights are used.  The size of this file is one column with rows 

equal to the number of PSU’s.  For each PSU in a stratum, the value in 

the file is equal to the number of PSU’s in the stratum minus one divided 

by the number of PSU’s in the stratum.  All PSU’s in a stratum have the 

same value.  If replicate weights are generated using JACKKNIFE, a 

multiplier file can be saved.   JACKKNIFE1 cannot be used when data 

are stratified.  JACKKNIFE2, balanced repeated replication (BRR), and 

FAY are available only when there are two PSU’s in each stratum.  The 

BRR and FAY resampling methods use Hadamard matrices.  With BRR 

and FAY, the number of replicate weights is equal to the size of the 

Hadamard matrix.  The REPSE option is specified as follows: 

 

REPSE = BRR; 

 

where BRR specifies that the balanced repeated replication resampling 

method is used to generate replicate weights. 
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For the FAY resampling method, a constant can be given that is used to 

modify the sample weights.  The constant must range between zero and 

one.  The default is .3.  The REPSE option for the FAY setting is 

specified as follows: 

 

REPSE = FAY (.5); 

 

where .5 is the constant used to modify the sample weights. 

 

BASEHAZARD 
 

The BASEHAZARD option is used in continuous-time survival analysis 

to specify whether the baseline hazard parameters are treated as model 

parameters or as auxiliary parameters.  When the BASEHAZARD 

option is OFF, the parameters are treated as auxiliary parameters.  When 

the BASEHAZARD option is ON, the parameters are treated as model 

parameters.  In most cases, the default is OFF.  For models where the 

time-to-event variable is regressed on a continuous latent variable, for 

multilevel models, and for models that require Monte Carlo numerical 

integration, the default is ON.  Following is an example of how to 

request that baseline hazard parameters are treated as model parameters 

when this is not the default: 

 

BASEHAZARD = ON;  

 

With TYPE=MIXTURE, the ON and OFF settings have two 

alternatives, EQUAL and UNEQUAL.  EQUAL is the default.  With 

EQUAL, the baseline hazard parameters are held equal across classes.  

With BASEHAZARD=OFF, the baseline hazard parameters are held 

equal across classes as the default in line with Larsen (2004).  To relax 

this equality, specify: 

 

BASEHAZARD = ON (UNEQUAL); 

 

or 

 

BASEHAZARD = OFF (UNEQUAL); 

 

In continuous-time survival modeling, there are as many baseline hazard 

parameters as there are time intervals plus one.  When the 

BASEHAZARD option of the ANALYSIS command is ON, these 
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parameters can be referred to in the MODEL command by adding to the 

name of the time-to-event variable the number sign (#) followed by a 

number.  For example, for a time-to-event variable t with 5 time 

intervals, the six baseline hazard parameters are referred to as t#1, t#2, 

t#3, t#4, t#5, and t#6.  In addition to the baseline hazard parameters, the 

time-to-event variable has a mean or an intercept depending on whether 

the model is unconditional or conditional.  The mean or intercept is 

referred to by using a bracket statement, for example, 

 

[t]; 

 

where t is the time-to-event variable. 

 

CHOLESKY 
 

The CHOLESKY option is used in conjunction with 

ALGORITHM=INTEGRATION to decompose the continuous latent 

variable covariance matrix and the observed variable residual covariance 

matrix into orthogonal components in order to improve the optimization.  

The optimization algorithm starts out with Fisher Scoring used in 

combination with EM.  The CHOLESKY option has two settings:  ON 

and OFF.  The default when all dependent variables are censored, 

categorical, and counts is ON except for categorical dependent variables 

when LINK=PROBIT.  Then and in all other cases, it is OFF.  To turn 

the CHOLESKY option ON, specify: 

 

CHOLESKY = ON;   

 

ALGORITHM 
 

The ALGORITHM option is used in conjunction with 

TYPE=MIXTURE, TYPE=RANDOM, and TYPE=TWOLEVEL with 

maximum likelihood estimation to indicate the optimization method to 

use to obtain maximum likelihood estimates and to specify whether the 

computations require numerical integration.  The ALGORITHM option 

is used with TYPE=TWOLEVEL and weighted least squares estimation 

to indicate the optimization method to use to obtain sample statistics for 

model estimation.  There are four settings related to the optimization 

method: EM, EMA, FS, and ODLL.  The default depends on the analysis 

type. 
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EM optimizes the complete-data loglikelihood using the expectation 

maximization (EM) algorithm (Dempster et al., 1977).  EMA is an 

accelerated EM procedure that uses Quasi-Newton and Fisher Scoring 

optimization steps when needed.  FS is Fisher Scoring.  ODLL optimizes 

the observed-data loglikelihood directly.  

 

To select the EM algorithm, specify the following: 

 

ALGORITHM = EM; 

 

The INTEGRATION setting of the ALGORITHM option is used in 

conjunction with numerical integration and the INTEGRATION option 

of the ANALYSIS command.  

 

To select INTEGRATION, specify the following: 

 

ALGORITHM = INTEGRATION; 

 

The ALGORITHM option can specify an optimization setting in 

addition to the INTEGRATION setting, for example, 

 

ALGORITHM = INTEGRATION EM; 

 

OPTIONS RELATED TO NUMERICAL  

INTEGRATION 
 

INTEGRATION 
 

The INTEGRATION option is used to specify the type of numerical 

integration and the number of integration points to be used in the 

computation when ALGORITHM=INTEGRATION is used.  The 

INTEGRATION option has three settings:  STANDARD, 

GAUSSHERMITE, and MONTECARLO.  The default is STANDARD.  

STANDARD uses rectangular (trapezoid) numerical integration.  The 

default for TYPE=EFA and TYPE=TWOLEVEL with weighted least 

squares estimation is 7 integration points per dimension.  For all other 

analyses, the default is 15 integration points per dimension.  

GAUSSHERMITE uses Gauss-Hermite integration with a default of 15 

integration point per dimension.  MONTECARLO uses randomly 
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generated integration points.  The default number of integration points 

varies depending on the analysis type.  In most cases, it is 500. 

 

Following is an example of how the INTEGRATION option is used to 

change the number of integration points for the default setting of 

STANDARD.  

  

INTEGRATION = 10; 

 

where 10 is the number of integration points per dimension to be used in 

the computation.  An alternative specification is: 

 

INTEGRATION = STANDARD (10); 

 

To select the MONTECARLO setting, specify: 

 

INTEGRATION = MONTECARLO; 

 

The default number of integration points varies depending on the 

analysis type.  In most cases, 5000 integration points are used.  

Following is an example of how to specify a specific number of Monte 

Carlo integration points: 

 

INTEGRATION = MONTECARLO (1000); 

 

MCSEED 
 

The MCSEED option is used to specify a random seed when the 

MONTECARLO setting of the INTEGRATION option is used.  It is 

specified as follows: 

 

MCSEED = 23456; 

 

ADAPTIVE 
 

The ADAPTIVE option is used to customize the numerical integration 

points for each observation during the computation.  The ADAPTIVE 

option is available for each of the three settings of the INTEGRATION 

option.  The ADAPTIVE option has two settings:  ON and OFF.  The 

default is ON.  To turn the ADAPTIVE option off, specify: 

 



CHAPTER 16 

 

688 

ADAPTIVE = OFF;  

   

INFORMATION 
 

The INFORMATION option is used to select the estimator of the 

information matrix to be used in computing standard errors when the ML 

or MLR estimators are used for analysis.  The INFORMATION option 

has three settings: OBSERVED, EXPECTED, and COMBINATION.  

OBSERVED estimates the information matrix using observed second-

order derivatives; EXPECTED estimates the information matrix using 

expected second-order derivatives; and COMBINATION estimates the 

information matrix using a combination of observed and expected 

second-order derivatives. For MLR, OBSERVED, EXPECTED, and 

COMBINATION refer to the outside matrices of the sandwich estimator 

used to compute standard errors.  The INFORMATION option is 

specified as follows: 

 

INFORMATION = COMBINATION; 

  

The default is to estimate models under missing data theory using all 

available data.  In this case, the observed information matrix is used 

Kenward & Molenberghs, 1998).  For models with all continuous 

outcomes that are estimated without numerical integration, the expected 

information matrix is also available.  For other outcome types and 

models that are estimated with numerical integration, the combination 

information matrix is also available.   

 

BOOTSTRAP 
 

The BOOTSTRAP option is used to request bootstrapping and to specify 

the type of bootstrapping and the number of bootstrap draws to be used 

in the computation.  Two types of bootstrapping are available, standard 

non-parametric and residual parametric (Bollen & Stine, 1992; Efron & 

Tibshirani, 1993; Enders, 2002).  Residual parametric bootstrap is the 

Bollen-Stine bootstrap.  The BOOTSTRAP option requires individual 

data.  

 

Standard non-parametric bootstrapping is available for the ML, WLS, 

WLSM, WLSMV, ULS, and GLS estimators.  The reason that it is not 

available for MLR, MLF, MLM, and MLMV is that parameter estimates 

for these estimators do not differ from those of ML.  Standard non-
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parametric bootstrapping is not available for TYPE=EFA, COMPLEX, 

TWOLEVEL, THREELEVEL, CROSSCLASSIFIED, and RANDOM 

without ALGORITHM=INTEGRATION.  

 

Residual parametric bootstrapping is available for only continuous 

outcomes using maximum likelihood estimation.  In addition to the 

restrictions for standard non-parametric bootstrapping listed above, 

residual parametric bootstrapping is not available for TYPE=MIXTURE.   

 

When the BOOTSTRAP option is used alone, bootstrap standard errors 

of the model parameter estimates are obtained for standard bootstrapping 

and bootstrap standard errors of the model parameter estimates and the 

chi-square p-value are obtained for residual bootstrapping.  When the 

BOOTSTRAP option is used in conjunction with the CINTERVAL 

option of the OUTPUT command, bootstrap standard errors of the model 

parameter estimates and either symmetric, bootstrap, or bias-corrected 

bootstrap confidence intervals for the model parameter estimates can be 

obtained.  The BOOTSTRAP option can be used in conjunction with the 

MODEL INDIRECT command to obtain bootstrap standard errors for 

indirect effects.  When both MODEL INDIRECT and CINTERVAL are 

used, bootstrap standard errors and either symmetric, bootstrap, or bias-

corrected bootstrap confidence intervals are obtained for the indirect 

effects.   

 

The BOOTSTRAP option for standard bootstrapping is specified as 

follows: 

 

BOOTSTRAP = 500; 

 

where 500 is the number of bootstrap draws to be used in the 

computation.  An alternative specification is: 

 

BOOTSTRAP = 500 (STANDARD); 

      

The BOOTSTRAP option for residual bootstrapping is specified as 

follows:   

 

BOOTSTRAP = 500 (RESIDUAL); 

 

where 500 is the number of bootstrap draws to be used in the 

computation.  
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LRTBOOTSTRAP  
  

The LRTBOOTSTRAP option is used in conjunction with the TECH14 

option of the OUTPUT command to specify the number of bootstrap 

draws to be used in estimating the p-value of the parametric 

bootstrapped likelihood ratio test (McLachlan & Peel, 2000).  The 

default number of bootstrap draws is determined by the program using a 

sequential method in which the number of draws varies from 2 to 100.  

The LRTBOOTSTRAP option is used to override this default. 

 

The LRTBOOTSTRAP option is specified as follows: 

 

LRTBOOTSTRAP = 100; 

 

where 100 is the number of bootstrap draws to be used in estimating the 

p-value of the parametric bootstrapped likelihood ratio test.   

 

OPTIONS RELATED TO RANDOM STARTS 
 

For TYPE=MIXTURE, TYPE=TWOLEVEL with categorical outcomes 

and weighted least squares estimation, and TYPE=EFA, random sets of 

starting values can be generated.  Random starts can be turned off or 

done more thoroughly using the following set of options. 

 

When TYPE=MIXTURE is used, random sets of starting values are 

generated as the default for all parameters in the model except variances 

and covariances.  These random sets of starting values are random 

perturbations of either user-specified starting values or default starting 

values produced by the program.  Maximum likelihood optimization is 

done in two stages.  In the initial stage, random sets of starting values are 

generated.  An optimization is carried out for ten iterations using each of 

the random sets of starting values.  The ending values from the 

optimizations with the two highest loglikelihoods are used as the starting 

values in the final stage optimizations which are carried out using the 

default optimization settings for TYPE=MIXTURE.   

 

When TYPE=TWOLEVEL with categorical outcomes and weighted 

least squares estimation or TYPE=EFA is used random sets of starting 

values are generated for the factor loading parameters in the model.  For 

TYPE=TWOLEVEL with categorical outcomes and weighted least 

squares estimation, these random sets of starting values are random 



 ANALYSIS Command 

                                                                                                              691 

perturbations of either user-specified starting values or default starting 

values produced by the program.  For TYPE=EFA, these random sets of 

starting values are random perturbations of default starting values 

produced by the program.   

 

STARTS 
 

The STARTS option is used to specify the number of random sets of 

starting values to generate in the initial stage and the number of 

optimizations to use in the final stage.  For TYPE=MIXTURE, the 

default is 20 random sets of starting values in the initial stage and 4 

optimizations in the final stage.  To turn off random starts, the STARTS 

option is specified as follows: 

 

STARTS = 0; 

 

Following is an example of how to use the STARTS option for 

TYPE=MIXTURE: 

 

STARTS = 100 20; 

 

specifies that 100 random sets of starting values are generated in the 

initial stage and 20 optimizations are carried out in the final stage using 

the default optimization settings for TYPE=MIXTURE.   

 

Following are recommendations for a more thorough investigation of 

multiple solutions:   

 

STARTS = 400 100;  

 

or 

 

STARTS = 1000 250; 

 

For TYPE=EFA; TYPE=GENERAL; and TYPE=TWOLEVEL using 

the WLS, WLSM, WLSMV, and ULSVM estimators, the STARTS 

option is specified as follows: 

 

STARTS = 10; 
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which specifies that 10 random sets of starting values are generated and 

ten optimizations are carried out. 

 

STITERATIONS 
 

The STITERATIONS option is used to specify the maximum number of 

iterations allowed in the initial stage.  The default number of iterations is 

10.  For a more thorough investigation, 20 iterations can be requested as 

follows: 

 

STITERATIONS = 20; 

 

STCONVERGENCE 
 

The STCONVERGENCE option is used to specify the value of the 

derivative convergence criterion to be used in the initial stage 

optimization.  The default is one.  

 

STSCALE 
 

The STSCALE option is used to specify the scale of the random 

perturbation.  The default is five which represents a medium level scale 

of perturbation.  

 

STSEED 
  

The STSEED option is used to specify the random seed for generating 

the random starts.  The default value is zero.  

 

OPTSEED 
 

The OPTSEED option is used to specify the random seed that has been 

found to result in the highest loglikelihood in a previous analysis.  The 

OPTSEED option results in no random starts being used. 

 

K-1STARTS 
    

The K-1STARTS option is used in conjunction with the TECH11 and 

TECH14 options of the OUTPUT command to specify the number of 

random sets of starting values to use in the initial stage and the number 
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of optimizations to use in the final stage for the k-1 class analysis model.  

When the OPTSEED option is used, the default is 20 random sets of 

starting values in the initial stage and 4 optimizations in the final stage.  

When the OPTSEED option is not used, the default is the same as what 

is used for the STARTS option.  Following is an example of how to 

specify the    K-1STARTS option: 

 

K-1STARTS = 80 16; 

 

which specifies that 80 random sets of starting values are generated in 

the initial stage and 16 optimizations are carried out in the final stage 

using the default optimization settings for TYPE=MIXTURE.  

  

LRTSTARTS 
 
The LRTSTARTS option is used in conjunction with the TECH14 

option of the OUTPUT command to specify the number of starting 

values to use in the initial stage and the number of optimizations to use 

in the final stage for the k-1 and k class models when the data generated 

by bootstrap draws are analyzed.  The default for the k-1 class model is 0 

random sets of starting values in the initial stage and 0 optimizations in 

the final stage.  One optimization is carried out for the unperturbed set of 

starting values.  The default for the k class model is 40 random sets of 

starting values in the initial stage and 8 optimizations in the final stage.   

 

Following is an example of how to use the LRTSTARTS option: 

 

LRTSTARTS = 2 1 80 16; 

 

which specifies that for the k-1 class model 2 random sets of starting 

values are used in the initial stage and 1 optimization is carried out in the 

final stage and for the k class model 80 random sets of starting values 

are used in the initial stage and 16 optimizations are carried out in the 

final stage. 

 

RSTARTS 
 

The RSTARTS option is used to specify the number of random sets of 

starting values to use for the GPA rotation algorithm and the number of 

rotated factor solutions with the best unique rotation function values to 

print for exploratory factor analysis.  The default is 30 random sets of 
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starting values and printing of the best solution.  Following is an 

example of how to use the RSTARTS option. 

 

RSTARTS = 10 2; 

 

which specifies that 10 random sets of starting values are used for the 

rotations and that the rotated factor solutions with the two best rotation 

function values will be printed.    

 

ASTARTS 
 

The ASTARTS option is used to specify the number of random sets of 

starting values to use for the alignment optimization.  The default is 30.   

 

H1STARTS 
 

For TYPE=GENERAL and the DISTRIBUTION option, the 

H1STARTS option is used to specify the number of random sets of 

starting values to generate in the initial stage and the number of 

optimizations to use in the final stage for the H1 model.  The H1 model 

typically requires several random starts.  The default is zero random sets 

of starting values in the initial stage and zero optimizations in the final 

stage. 

 

Following is an example of how to specify the H1STARTS option: 

 

H1STARTS = 100 20; 

 

which specifies that 100 random sets of starting values are generated  in 

the initial stage and 20 optimizations are carried out  in the final stage. 

 

DIFFTEST 
 

The DIFFTEST option is used to obtain a correct chi-square difference 

test when the MLMV and the WLSMV estimators are used because the 

difference in chi-square values for two nested models using the MLMV 

or WLSMV chi-square values is not distributed as chi-square.  The chi-

square difference test compares the H0 analysis model to a less 

restrictive H1 alternative model in which the H0 model is nested.  To 

obtain a correct chi-square difference test for MLMV or WLSMV, a 
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two-step procedure is needed.  In the first step, the H1 model is 

estimated.  In the H1 analysis, the DIFFTEST option of the 

SAVEDATA command is used to save the derivatives needed for the 

chi-square difference test.  In the second step, the H0 model is estimated 

and the chi-square difference test is computed using the derivatives from 

the H0 and H1 analyses.  The DIFFTEST option of the ANALYSIS 

command is used as follows to specify the name of the data set that 

contains the derivatives from the H1 analysis: 

 

DIFFTEST = deriv.dat; 

 

where deriv.dat is the name of the data set that contains the derivatives 

from the H1 analysis that were saved using the DIFFTEST option of the 

SAVEDATA command when the H1 model was estimated. 

 

MULTIPLIER 
 

The MULTIPLIER option is used with the JACKKNIFE setting of the 

RESPE option when replicate weights are used in the analysis to provide 

multiplier values needed for the computation of standard errors.  The 

MULTIPLIER option is specified as follows: 

 

MULTIPLIER = multiplier.dat; 

 

where multiplier.dat is the name of the data set that contains the 

multiplier values needed for the computation of standard errors. 

 

COVERAGE 
 

The COVERAGE option is used with missing data to specify the 

minimum acceptable covariance coverage value for the unrestricted H1 

model.  The default value is .10 which means that if all variables and 

pairs of variables have data for at least ten percent of the sample, the 

model will be estimated.  Following is an example of how to use the 

COVERAGE option: 

 

COVERAGE = .05; 

 

where .05 is the minimum acceptable covariance coverage value. 
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ADDFREQUENCY 
 

The ADDFREQUENCY option is used to specify a value that is divided 

by the sample size and added to each cell with zero frequency in the two-

way tables that are used in categorical data analysis.  As the default, 0.5 

divided by the sample size is added to each cell with zero frequency.  

The ADDFREQUENCY option is specified as follows: 

 

ADDFREQUENCY = 0; 

 

where the value 0 specifies that nothing is added to each cell with zero 

frequency.  Any non-negative value can be used with this option.  

 

OPTIONS RELATED TO ITERATIONS 

 
ITERATIONS 
 

The ITERATIONS option is used to specify the maximum number of 

iterations for the Quasi-Newton algorithm for continuous outcomes.  The 

default number of iterations is 1,000. 

 

SDITERATIONS  
 

The SDITERATIONS option is used to specify the maximum number of 

steepest descent iterations for the Quasi-Newton algorithm for 

continuous outcomes.  The default number of iterations is 20.  

 

H1ITERATIONS 
 

The H1ITERATIONS option is used to specify the maximum number of 

iterations for the EM algorithm for the estimation of the unrestricted H1 

model.  The default number of iterations is 2000. 

 

MITERATIONS 
 

The MITERATIONS option is used to specify the number of iterations 

allowed for the EM algorithm.  The default number of iterations is 500. 
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MCITERATIONS 
 

The MCITERATIONS option is used to specify the number of iterations 

for the M step of the EM algorithm for categorical latent variables.  The 

default number of iterations is 1. 

 

MUITERATIONS 
 

The MUITERATIONS option is used to specify the number of iterations 

for the M step of the EM algorithm for censored, categorical, and count 

outcomes.  The default number of iterations is 1. 

 

RITERATIONS 
 

The RITERATIONS option is used to specify the maximum number of 

iterations in the GPA rotation algorithm for exploratory factor analysis.  

The default number of iterations is 10000. 

 

AITERATIONS 
 

The AITERATIONS option is used to specify the maximum number of 

iterations in the alignment optimization.  The default is 5000.   

 

OPTIONS RELATED TO CONVERGENCE 

 
CONVERGENCE  
 

The CONVERGENCE option is used to specify the value of the 

derivative convergence criterion to be used for the Quasi-Newton 

algorithm for continuous outcomes.  The default convergence criterion 

for TYPE=TWOLEVEL, TYPE=MIXTURE, TYPE=RANDOM, and 

ALGORITHM=INTEGRATION is .000001.  The default convergence 

criterion for all other models is .00005.  

 

H1CONVERGENCE 
 

The H1CONVERGENCE option is used to specify the value of the 

convergence criterion to be used for the EM algorithm for the estimation 

of the unrestricted H1 model.  The default convergence criterion for 
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TYPE=THREELEVEL and TYPE=CROSSCLASSIFIED is .001.  The 

default convergence criterion for all other models is .0001. 

 

LOGCRITERION  
 

The LOGCRITERION option is used to specify the absolute observed-

data loglikelihood change convergence criterion for the EM algorithm.  

The default convergence criterion for TYPE=TWOLEVEL, 

TYPE=RANDOM, and ALGORITHM=INTEGRATION is .001.  The 

default convergence criterion for TYPE=MIXTURE with 

PARAMETERIZATION=PROBABILITY is .0001.  The default 

convergence criterion for all other models is .0000001.   

 

RLOGCRITERION  
 

The RLOGCRITERION option is used to specify the relative observed-

data loglikelihood change convergence criterion for the EM algorithm.  

The default convergence criterion for TYPE=TWOLEVEL, 

TYPE=RANDOM, and ALGORITHM=INTEGRATION is .000001.  

The default convergence criterion for all other models is .0000001.   

 

MCONVERGENCE 

 
The MCONVERGENCE option is used to specify the observed-data log 

likelihood derivative convergence criterion for the EM algorithm.  The 

default convergence criterion for TYPE=TWOLEVEL, 

TYPE=RANDOM, and ALGORITHM=INTEGRATION is .001.  The 

default for TYPE=MIXTURE with 

PARAMETERIZATION=PROBABILITY is .0001.  The default 

convergence criterion for all other models is .000001. 

 

MCCONVERGENCE 
 

The MCCONVERGENCE option is used to specify the complete-data 

log likelihood derivative convergence criterion for the M step of the EM 

algorithm for categorical latent variables.  The default convergence 

criterion is .000001. 
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MUCONVERGENCE 

 
The MUCONVERGENCE option is used to specify the complete-data 

log likelihood derivative convergence criterion for the M step of the EM 

algorithm for censored, categorical, and count outcomes.  The default 

convergence criterion is .000001. 

 

RCONVERGENCE 
 

The RCONVERGENCE option is used to specify the convergence 

criterion for the GPA rotation algorithm for exploratory factor analysis.  

The default convergence criterion is .00001. 

 

ACONVERGENCE 
 

The ACONVERGENCE option is used to specify the convergence 

criterion for the derivatives of the alignment optimization.  The default is 

0.001. 

 

MIXC 

 
The MIXC option is used to specify whether to use the number of 

iterations or the convergence criterion to terminate the M step iterations 

of the EM algorithm for categorical latent variables.  Following is an 

example of how to select the convergence criterion being fulfilled: 

 

MIXC = CONVERGENCE; 

 

MIXU 
 

The MIXU option is used to specify whether to use the number of 

iterations or the convergence criterion to terminate the M step iterations 

of the EM algorithm for censored, categorical, and count outcomes.  

Following is an example of how to select the convergence criterion 

being fulfilled: 

 

MIXU = CONVERGENCE; 
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LOGHIGH 
 

The LOGHIGH option is used to specify the maximum value allowed for 

the logit thresholds of the latent class indicators.  The default is +15.  

 

LOGLOW 
 

The LOGLOW option is used to specify the minimum value allowed for 

the logit thresholds of the latent class indicators.  The default is -15.  

 

UCELLSIZE 
 

The UCELLSIZE option is used to specify the minimum expected cell 

size allowed for computing chi-square from the frequency table of the 

latent class indicators when the corresponding observed cell size is not 

zero.  The default value is .01. 

 

VARIANCE 
 

The VARIANCE option is used in conjunction with TYPE=RANDOM 

and TYPE=TWOLEVEL when ESTIMATOR=ML, MLR, or MLF to 

specify the minimum value that is allowed in the estimation of the 

variance of the random effect variables and the variances of the between-

level outcome variables.  The default value is .0001.  

 

SIMPLICITY 
 

The SIMPLICITY option is used to select the simplicity criterion of the 

alignment optimization.  The simplicity function is optimized at a 

solution with a few large non-invariant parameters and many invariant 

parameters rather than many medium-sized non-invariant parameters.  

The SIMPLICITY option has two settings:  SQRT and FOURTHRT.   

SQRT is the default.  The SQRT setting takes the square root of the 

weighted component loss function.  The FOURTHRT setting takes the 

double square root of the weighted component loss function.  It may in 

some cases further reduce small significant differences. 
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TOLERANCE 
 

The TOLERANCE option is used to specify the simplicity tolerance 

value of the alignment optimization which must be positive.  The default 

is 0.01. 

 

METRIC 
 

The METRIC option is used to specify the factor variance metric of the 

alignment optimization. The METRIC option has two settings:  

REFGROUP and PRODUCT.  REFGROUP is the default where the 

factor variance is fixed at one in the reference group.  The PRODUCT 

setting sets the product of the factor variances in all of the groups to one.  

The PRODUCT setting is not allowed with ALIGNMENT=FIXED. 

 

MATRIX 
 

The MATRIX option identifies the matrix to be analyzed.  The default 

for continuous outcomes is to analyze the covariance matrix.  The 

following statement requests that a correlation matrix be analyzed: 

 

MATRIX = CORRELATION; 

 

The analysis of the correlation matrix is allowed only when all 

dependent variables are continuous and there is a single group analysis 

with no mean structure. Only the WLS estimator is allowed for this type 

of analysis. 

 

For models with all categorical dependent variables, the correlation 

matrix is always analyzed.  For models with combinations of categorical 

and continuous dependent variables, the variances for the continuous 

dependent variables are always included. 

 

OPTIONS RELATED TO BAYES ESTIMATION 

AND MULTIPLE IMPUTATION 
 

POINT 
 

The POINT option is used to specify the type of Bayes point estimate to 

compute.  The POINT option has three settings:  MEDIAN, MEAN, and 
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MODE.  The default is MEDIAN.  With the MODE setting, the mode 

reported refers to the multivariate mode of the posterior distribution.  

This mode is different from the univariate mode reported in the plot of 

the Bayesian posterior parameter distribution.  To request that the mean 

be computed, specify: 

 

POINT = MEAN; 

 

CHAINS 
 

The CHAINS option is used to specify how many independent Markov 

chain Monte Carlo (MCMC) chains to use.  The default is two.  To 

request that four chains be used, specify:   

 

CHAINS = 4; 

 

With multiple chains, parallel computing uses one chain per processor.  

To benefit from this speed advantage, it is important to specify the 

number of processors using the PROCESSORS option.   

 

BSEED 
 

The BSEED option is used to specify the seed to use for random number 

generation in the Markov chain Monte Carlo (MCMC) chains.  The 

default is zero.  If one chain is used, the seed is used for this chain.  If 

more than one chain is used, the seed is used for the first chain and is the 

basis for generating seeds for the other chains.  The randomly generated 

seeds for the other chains can be found in TECH8.  If the same seed is 

used in a subsequent analysis, the other chains will have the same seeds 

as in the previous analysis.  To request a seed other than zero be used, 

specify: 

 

BSEED = 5437; 

 

STVALUES 
 

The STVALUES option is used to specify starting value information 

(Asparouhov & Muthén, 2010b).  The STVALUES option has three 

settings:  UNPERTURBED, PERTURBED, and ML.  The default is 

UNPERTURBED.  If the UNPERTURBED setting is specified, the 

default or user-specified starting values are used.  If the PERTURBED 
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setting is used, a BSEED value must be specified.  The default or user-

specified starting values are randomly perturbed using the BSEED value.  

If the ML setting is used, the model is first estimated using maximum 

likelihood estimation and the maximum likelihood parameter estimates 

are used as starting values in the Bayesian analysis.  To request that 

maximum likelihood parameters be used as starting values, specify: 

 

STVALUES = ML; 

 

PREDICTOR 
 

The PREDICTOR option is used with ESTIMATOR=BAYES to specify 

how a categorical mediator variable is treated when it is an independent 

variable in a regression and how an observed exogenous binary variable 

is treated when it is brought into the model and put on the 

CATEGORICAL list.  The PREDICTOR option has two settings:  

LATENT and OBSERVED. The default is LATENT where the predictor 

variable is treated as a continuous latent response variable underlying 

the categorical variable. When the OBSERVED setting is specified, the 

predictor variable is treated as a continuous observed variable.  Muthén, 

Muthén, and Asparouhov (2016, section 9.8.2) recommend using the 

OBSERVED setting for an observed exogenous binary variable on the 

CATEGORICAL list.  To request that the predictor variable be treated 

as a continuous observed variable, specify: 

 

PREDICTOR = OBSERVED; 

 

ALGORITHM 
 

The ALGORITHM option is used to specify the Markov chain Monte 

Carlo (MCMC) algorithm to use for generating the posterior distribution 

of the parameters (Gelman et al., 2004).  The ALGORITHM option has 

two settings:  GIBBS and MH.  The default is GIBBS.  The GIBBS 

setting uses the Gibbs sampler algorithm which divides the parameters 

and the latent variables into groups that are conditionally and 

sequentially generated.  The GIBBS setting has four choices:  PX1, PX2, 

PX3, and RW.  The default is PX1.  PX1, PX2, and PX3 use parameter 

extension techniques to generate correlation and covariance matrices.  

PX1 is described in Asparouhov and Muthén (2010b).  PX2 is described 

in Boscardin et al. (2008).  PX3 is described in Liu and Daniels (2006).  

RW uses a random walk, Metropolis-Hastings algorithm to generate 
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correlation and covariance matrices (Chib & Greenberg, 1998).  This 

algorithm can generate a covariance matrix with an arbitrary structure.  

Following is an example of how to select an alternative choice for the 

GIBBS setting: 

 

ALGORITHM = GIBBS (PX3);   

 

The MH setting uses the Metropolis-Hastings algorithm to generate all 

of the parameters simultaneously using the observed-data loglikelihood.  

The MH setting uses maximum likelihood starting values.  The MH 

proposal distribution uses the estimated covariance matrix of the 

maximum likelihood parameter estimates.    The MH algorithm is not 

available for TYPE=MIXTURE or TYPE=TWOLEVEL.  To request 

that the Metropolis-Hastings algorithm be used, specify: 

 

ALGORITHM = MH; 

 

BCONVERGENCE 
 

The BCONVERGENCE option is used to specify the value of the 

convergence criterion to use for determining convergence of the 

Bayesian estimation using the Gelman-Rubin convergence criterion 

(Gelman & Rubin, 1992).  The Gelman-Rubin convergence criterion 

determines convergence by considering within and between chain 

variability of the parameter estimates in terms of the potential scale 

reduction (PSR) to determine convergence (Gelman et al., 2004, pp. 296-

298).  The default is 0.05.  The BCONVERGENCE value is used in the 

following formula (Asparouhov & Muthén, 2010b): 

 

a = 1 + BCONVERGENCE* factor, 

 

such that convergence is obtained when PSR < a for each parameter.  

The factor value ranges between one and two depending on the number 

of parameters.  With one parameter, the value of factor is one and the 

value of a is 1.05 using the default value of BCONVERGENCE.  With a 

large number of parameters, the value of factor is 2 and the value of a is 

1.1 using the default value of BCONVERGENCE. 

 

With a single chain, PSR is defined using the third and the fourth 

quarters of the chain.  The first half of the chain is discarded as a burnin 

phase.  To request a stricter convergence criterion, specify: 
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BCONVERGENCE = .01; 

 

BITERATIONS 
 

The BITERATIONS option is used to specify the maximum and 

minimum numbers of iterations for each Markov chain Monte Carlo 

(MCMC) chain when the potential scale reduction (PSR) convergence 

criterion (Gelman & Rubin, 1992) is used.  The default for the maximum 

number of iterations is 50,000.  The default for the minimum number of 

iterations is zero.  To request more Bayes iterations for each chain, 

specify:  

 

BITERATIONS = 60000 (2000); 

 

where 60,000 is the maximum number of iterations and 2,000 is the 

minimum number of iterations when the PSR convergence criterion 

(Gelman & Rubin, 1992) is used. 

 

Another specification is: 

 

BITERATIONS = (2000); 

 

where the default of 50,000 is the maximum number of iterations and 

2,000 is the minimum number of iterations when the PSR convergence 

criterion is used. 

 

FBITERATIONS 
 

The FBITERATIONS option is used to specify a fixed number of 

iterations for each Markov Chain Monte Carlo (MCMC) chain when the 

potential scale reduction (PSR) convergence criterion (Gelman & Rubin, 

1992) is not used.  There is no default.  When using this option, it is 

important to use other means to determine convergence such as posterior 

parameter trace plots.  To request a fixed number of iterations for each 

Markov Chain Monte Carlo (MCMC) chain, specify: 

 

FBITERATIONS = 30000; 
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THIN 
 

The THIN option is used to specify which iterations from the posterior 

distribution to use in the parameter estimation.  When a chain is mixing 

poorly with high auto-correlations, the estimation can be based on every 

k-th iteration rather than every iteration.  This is referred to as thinning.  

The default is 1 in which case every iteration is used.  To request that 

every 20
th
 iteration be used, specify: 

 

THIN = 20; 

 

which means that the first iteration used is 20, the second is 40, the third 

is 60 etc.  

 

MDITERATIONS 
 

The MDITERATIONS option is used with the MODE setting of the 

POINT option to specify the maximum number of iterations to use to 

compute the multivariate mode in Bayes estimation.  The default is 

10,000.  If the number of iterations used in the estimation exceeds the 

number of iterations specified using the MDITERATIONS option, the 

number of iterations specified using the MDITERATIONS option is 

used.  This number of iterations is selected from the total iterations using 

equally-spaced intervals.  To request that more iterations be used to 

compute the multivariate mode, specify: 

 

MDITERATIONS = 15000; 

 

KOLMOGOROV 
 

The KOLMOGOROV option is used to request a Kolmogorov-Smirnov 

test of equality of the posterior parameter distributions across the 

different chains using draws from the chains.  The default is 100.  To 

request more draws, specify: 

 

KOLMOGOROV = 1000; 

 

PRIOR 
 

The PRIOR option is used to request a plot of the prior distribution for 

each parameter that has a proper prior.  The plot of the prior 
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distributions can be viewed by choosing Bayesian prior distributions 

from the Plot menu of the Mplus Editor.  The default is 1,000 draws 

from the prior distribution.  To request more draws, specify: 

 

PRIOR = 5000;    

 

INTERACTIVE 
 

The INTERACTIVE option is used to allow changes in technical 

specifications during the iterations of an analysis when TECH8 is used.   

This is useful in analyses that are computationally demanding.  If a 

starting value set has computational difficulties, it can be skipped.  If too 

many random starts have been chosen, the STARTS option can be 

changed.  If a too strict convergence criterion has been chosen, the 

MCONVERGENCE option can be changed.  Following is an example of 

how to use the INTERACTIVE option: 

 

INTERACTIVE = control.dat; 

 

where control.dat is the name of the file that contains the technical 

specifications that can be changed during an analysis.  This file is 

created automatically and resides in the same directory as the input file.  

The following options of the ANALYSIS command are contained in this 

file:  STARTS, MITERATIONS, MCONVERGENCE, 

LOGCRITERION, and RLOGCRITERION.  No other options can be 

used in this file except the INTERRUPT statement which is used to skip 

the current starting value set and go to the next starting value set.  It has 

settings of 0 and 1.  A setting of 0 specifies that a starting value set is not 

skipped.  A setting of 1 specifies that the starting value set is skipped.  

As the default, the INTERRUPT statement is set to 0 and the other 

options are set to either the program default values or the values 

specified in the input file.  

 

The following file is automatically created and given the name specified 

using the INTERACTIVE option. 

 

INTERRUPT = 0 

STARTS = 200 50 

MITERATIONS = 500 

MCONVERGENCE = 1.0E-06 

LOGCRITERION = 1.0E-003 
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RLOGCRITERION = 1.0E-006 

 

When the file is modified and saved, the new settings go into effect 

immediately and are applied at each iteration.  Following is an example 

of a modified control.dat file where INTERRUPT and STARTS are 

changed: 

 

INTERRUPT = 1 

STARTS = 150 50 

MITERATIONS = 500 

MCONVERGENCE = 1.0E-06 

LOGCRITERION = 1.0E-003 

RLOGCRITERION = 1.0E-006 

 

PROCESSORS 
 

The PROCESSORS option is used to specify the number of processors 

to be used for parallel computing to increase computational speed.  

When random starts are used, the PROCESSORS option is used in 

conjunction with the STARTS option to determine the number of threads 

to be used for parallel computing.  The default is one processor and one 

thread.  Parallel computing is not available for all analyses.  For some 

analyses, multiple processors are used alone.  In other analyses, multiple 

processors are used together with threads. 

 

MULTIPLE PROCESSORS 
 

The use of multiple processors without threads is available for 

TYPE=MIXTURE; Bayesian analysis with more than one chain unless 

STVALUES=ML; models that require numerical integration; models 

with all continuous variables, missing data, and maximum likelihood 

estimation; and TYPE=TWOLEVEL with categorical outcomes and 

ESTIMATOR= WLSMV.  In these cases, the PROCESSORS option is 

specified using one number as shown below: 

 

PROCESSORS = 8; 

 

where 8 is the number of processors to be used for parallel computing. 

  

For Bayesian analysis, the PROCESSORS option is specified using one 

number as shown below: 
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PROCESSORS = 2; 

 

where 2 is the number of processors used for parallel computing.  The 

number of processors used cannot exceed the number of chains.  If there 

are more processors than chains, only the number of processors equal to 

the number of chains is used.  If there are more chains than processors, 

each processor carries out one chain until it is completed and then the 

remaining chains are carried out. 

 

PROCESSORS AND THREADS     
 

When processor and threads are used together, the threads are distributed 

across the processors and the memory used is a multiple of the number 

of threads.  For large models that require a lot of memory, it is important 

to have fewer threads than processors because computations are slower 

or impossible when the memory used by all processors exceeds the 

memory limit.   

 

The use of multiple processors and multiple threads with random starts 

as the default is available for TYPE=MIXTURE; Bayesian analysis with 

more than one chain if STVALUES=ML; and models that require 

numerical integration.  They are also available for TYPE=RANDOM 

and TYPE=TWOLEVEL and THREELEVEL with continuous outcomes 

using ESTIMATOR=ML, MLR, and MLF without numerical integration 

if the STARTS option is used.  Without random starts only one 

processor is used in these cases.   

 

When the PROCESSORS option is used with random starts, it is used 

with two numbers, the number of processors and the number of threads.  

The number of threads is the smaller of the number of threads specified 

using the PROCESSORS option or the number of final perturbations 

specified using the STARTS option.  Following is an example: 

 

PROCESSORS = 8 4; 

STARTS = 400 40; 

 

where 4 is the number of threads and 40 is the number of final stage 

optimizations.  Because four is smaller than 40, the number of threads 

for this example is four.  Two processors are distributed across each of 

the four threads.  Each of the four threads carries out 100 initial stage 
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and ten final stage optimizations.  When a thread completes, its 

processors are distributed across the remaining threads.   

 

If the number of threads is not specified, it is the same as the number of 

processors.  In this case, the PROCESSORS option is specified as 

follows: 

 

PROCESSORS = 4; 

 

where 4 is the number of processors to be used in the analysis for 

parallel computing.  The number of threads is also 4. 
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CHAPTER 17 

MODEL COMMAND 
 

 

In this chapter, the MODEL command is discussed.  The MODEL 

command is used to describe the model to be estimated.  The first part of 

this chapter describes the general modeling framework used by Mplus 

and introduces a set of terms that are used to describe the model to be 

estimated.  The second part of this chapter explains how a model is 

translated into the Mplus language using the options of the MODEL 

command.  The last part of the chapter describes variations of the 

MODEL command.  The MODEL command has variations for use with 

models with indirect effects, models with linear and non-linear 

constraints, models with parameter constraints for the Wald test, 

multiple group models, mixture models, multilevel models, and models 

for generating data for Monte Carlo simulation studies.   

 

THE Mplus FRAMEWORK 
 

VARIABLES 
 

There are three important distinctions that need to be made about the 

variables in an analysis in order to be able to specify a model.  The 

distinctions are whether variables are observed or latent, whether 

variables are dependent or independent, and the scale of the observed 

dependent variables. 

 

OBSERVED OR LATENT VARIABLES 
 

Two types of variables can be modeled: observed variables and latent 

variables.  Observed variables are variables that are directly measured 

such as test scores and diagnostic criteria.  They are sometimes referred 

to as manifest variables, outcomes, or indicators.  Latent variables are 

variables that are not directly measured such as ability, depression, and 

health status.  They are measured indirectly by a set of observed 

variables.  There are two types of latent variables: continuous and 

categorical.  Continuous latent variables are sometimes referred to as 

factors, dimension, constructs, or random effects.  Categorical latent 

variables are sometimes referred to as latent class variables or mixtures. 
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DEPENDENT OR INDEPENDENT VARIABLES 
    

Observed and latent variables can play the role of a dependent variable 

or an independent variable in the model.  The distinction between 

dependent and independent variables is that of a regression analysis for y 

regressed on x where y is a dependent variable and x is an independent 

variable.  An independent variable is one that is not influenced by any 

other variable.  Dependent variables are those that are influenced by 

other variables.  Other terms used for dependent variables are outcome 

variable, response variable, indicator variable, y variable, and 

endogenous variable.  Other terms used for independent variables are 

covariate, background variable, explanatory variable, predictor, x 

variable, and exogenous variable.  

 

SCALE OF OBSERVED DEPENDENT VARIABLES   
 

The scale of observed dependent variables can be continuous, censored, 

binary, ordered categorical (ordinal), unordered categorical (nominal), 

counts, or combinations of these variable types.   

 

UNDERLYING GENERAL MODEL 
 

The purpose of modeling data is to describe the structure of a data set in 

a simple way so that it is more understandable and interpretable.  

Essentially, modeling data amounts to specifying a set of relationships 

between variables. 

 

The underlying model of Mplus consists of three parts: the measurement 

model for the indicators of the continuous latent variables, the 

measurement model for the indicators of the categorical latent variables, 

and the structural model involving the continuous and categorical latent 

variables and the observed variables that are not indicators of the 

continuous or categorical latent variables.  A model may consist of only 

a measurement model as in confirmatory factor analysis or latent class 

analysis, only a structural model as in a path analysis, or both a 

measurement model and a structural model as in latent variable 

structural equation modeling, longitudinal growth modeling, regression 

mixture modeling, or growth mixture modeling.  
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THE MODEL COMMAND 
 

The MODEL command is used to describe the model to be estimated.  It 

has options for defining latent variables, describing relationships among 

variables in the model, and specifying details of the model.  The 

MODEL command has variations for use with models with indirect 

effects, models with non-linear constraints, models with parameter 

constraints for the Wald test, multiple group models, mixture models, 

multilevel models, and models for generating data for Monte Carlo 

simulation studies.   

 

Following are the options for the MODEL command: 

 
MODEL:  
BY short for measured by -- defines latent variables 

example:  f1 BY y1-y5; 
ON short for regressed on -- defines regression relationships 

example:  f1 ON x1-x9; 
PON short for regressed on -- defines paired regression relationships 

example:  f2  f3 PON f1 f2; 
WITH short for correlated with -- defines correlational relationships 

example:  f1 WITH f2; 
PWITH short for correlated with -- defines paired correlational 

relationships 
example:  f1 f2 f3 PWITH f4 f5 f6; 

list of variables; refers to variances and residual variances 
example:  f1 y1-y9; 

[list of variables]; refers to means, intercepts, thresholds 
example:  [f1, y1-y9]; 

* frees a parameter at a default value or a specific starting value 
example:  y1* y2*.5; 

@ fixes a parameter at a default value or a specific value 
example:  y1@ y2@0; 

(number) constrains parameters to be equal 
example:  f1 ON x1 (1); 
                 f2 ON x2 (1); 

variable$number label for the threshold of a variable 
variable#number label for nominal observed or categorical latent variable 
variable#1 label for censored or count inflation variable 
variable#number  label for baseline hazard parameters 
variable#number label for a latent class 
(name) label for a parameter 
{list of variables}; refers to scale factors 

example:  {y1-y9}; 
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| 
      
     growth model 
     AT 
     ON 
     BY 
     variable name 
     XWITH 

used for growth models, random effects, and latent variable 
interactions 
example:  i s |  y1@0 y2@1 y3@2; 
example:  i s | y1 y2 y3 AT t1 t2 t3; 
example:  s | y1 ON x1; 
example:  s1 s2 s3 | f BY y1 y2 y3; f@1; 
example:  logv | y; 
example:  int | f1 XWITH f2; 

MODEL INDIRECT: 
 
     IND 
      
     VIA 
 
     MOD 

describes indirect and total effects   
describes a specific indirect effect or a set of indirect effects 
when there is no moderation; 
describes  a set of indirect effects that includes specific 
mediators; 
describes a specific indirect effect when there is moderation; 

MODEL CONSTRAINT: 
     NEW 
     DO 
     PLOT 
     LOOP 

describes linear and non-linear constraints on parameters 
assigns labels to parameters not in the analysis model; 
describes a do loop or double do loop; 
describes y-axis variables; 
describes x-axis variables; 

MODEL TEST: 
      
     DO 

describes testing restrictions on the analysis model using the 
Wald test 
describes a do loop or double do loop; 

MODEL PRIORS: 

     COVARIANCE 
     DO 

     DIFFERENCE 

specifies the prior distribution for the parameters 
assigns a prior to the covariance between two parameters; 
describes a do loop or double do loop; 
assigns priors to differences between parameters; 

 

Following are variations of the MODEL command: 

 
MODEL: describes the analysis model 
MODEL label: describes the group-specific model in multiple group analysis 

and the model for each categorical latent variable and 
combinations of categorical latent variables in mixture modeling 

MODEL: 
     %OVERALL% 
     %class label% 

 
describes the overall part of a mixture model 
describes the class-specific part of a mixture model 

MODEL:      
     %WITHIN% 
     %BETWEEN% 
    %BETWEEN label% 

 
describes the individual-level model 
describes the cluster-level model for a two-level model 
describes the cluster-level model for a three-level or cross-
classified model  

MODEL POPULATION: describes the data generation model 
MODEL POPULATION-
label: 

describes the group-specific data generation model in multiple 
group analysis and the data generation model for each 
categorical latent variable in mixture modeling 
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MODEL POPULATION: 
     %OVERALL% 
      
     %class label% 

 
describes the overall data generation model for a  mixture 
model 
describes the class-specific data generation model for a mixture 
model 

MODEL POPULATION: 
     %WITHIN% 
      
     %BETWEEN% 
 
     %BETWEEN label% 

 
describes the individual-level data generation model for a 
multilevel model 
describes the cluster-level data generation model for a two-level 
model 
describes the cluster-level data generation model for a three-
level or cross-classified model 

MODEL COVERAGE: describes the population parameter values for a Monte Carlo 
study 

MODEL COVERAGE-label: describes the group-specific population parameter values in 
multiple group analysis and the population parameter values for 
each categorical latent variable and combinations of categorical 
latent variables in mixture modeling for a Monte Carlo study 

MODEL COVERAGE: 
     %OVERALL% 
 
     %class label% 

 
describes the overall population parameter values of a mixture 
model for a Monte Carlo study 
describes the class-specific population parameter values of a 
mixture model 

MODEL COVERAGE: 
     %WITHIN% 
        
     %BETWEEN% 
 
     %BETWEEN label% 

 
describes the individual-level population parameter values for 
coverage 
describes the cluster-level population parameter values for a 
two-level model for coverage 
describes the cluster-level population parameter values for a 
three-level or cross-classified model for coverage 

MODEL MISSING: describes the missing data generation model for a Monte Carlo 
study 

MODEL MISSING-label: describes the group-specific missing data generation model for 
a Monte Carlo study 

MODEL MISSING: 
     %OVERALL% 
     %class label% 

 
describes the overall data generation model of a mixture model 
describes the class-specific data generation model of a mixture 
model 

 

The MODEL command is required for all analyses except exploratory 

factor analysis (EFA), exploratory latent class analysis (LCA), a baseline 

model, and TYPE=BASIC. 
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MODEL COMMAND OPTIONS 
 
There are three major options in the MODEL command that are used to 

describe the relationships among observed variables and latent variables 

in the model.  They are:    

 

 BY 

 ON 

 WITH  

      

BY is used to describe the regression relationships in the measurement 

model for the indicators of the continuous latent variables.  These 

relationships define the continuous latent variables in the model.  BY is 

short for measured by.  ON is used to describe the regression 

relationships among the observed and latent variables in the model.  It is 

short for regressed on.  WITH is used to describe correlational 

(covariance) relationships in the measurement and structural models.  It 

is short for correlated with.  

 

The model in the following figure is used to illustrate the use of the BY, 

ON, and WITH options.  The squares represent observed variables and 

the circles represent latent variables.  Regression relationships are 

represented by arrows from independent variables to dependent 

variables.  The variables f1 and f2 are continuous latent variables.  The 

observed dependent variables are y1, y2, y3, y4, y5, y6, y7, y8, and y9.  

The measurement part of the model consists of the two continuous latent 

variables and their indicators.  The continuous latent variable f1 is 

measured by y1, y2, y3, y4, and y5.  The continuous latent variable f2 is 

measured by y6, y7, y8, and y9.  The structural part of the model 

consists of the regression of the two continuous latent variables on nine 

observed independent variables.  The observed independent variables are 

x1, x2, x3, x4, x5, x6, x7, x8, and x9.  Following is the MODEL 

command for the figure below: 

 

MODEL: f1 BY y1-y5; 

  f2 BY y6-y9;   

  f1 f2 ON x1-x9;    
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BY  
 
The BY option is used to name and define the continuous latent 

variables in the model.  BY is short for measured by.  The parameters 

that are estimated are sometimes referred to as factor loadings or 

lambdas.  These are the coefficients for the regressions of the observed 

dependent variables on the continuous latent variables.  These observed 

dependent variables are sometimes referred to as factor indicators.  Each 

BY statement can be thought of as a set of ON statements that describes 

the regressions of a set of observed variables on a continuous latent 

variable or factor.  However, continuous latent variables in the 

measurement model cannot be specified using a set of ON statements 
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because BY statements are used to name the continuous latent variables.  

BY statements also provide a set of convenient defaults. 

 

Observed factor indicators for continuous latent variables can be 

continuous, censored, binary, ordered categorical (ordinal), or counts.  

Factor indicators can also be continuous latent variables or the inflation 

part of censored and count variables.  Combinations of all factor 

indicator types are allowed.  With TYPE=TWOLEVEL and 

TYPE=TWOLEVEL MIXTURE, factor indicators for continuous latent 

variables can be between-level random effects.  These factor indicators 

can appear only on the BETWEEN level.  

 

CONFIRMATORY FACTOR ANALYSIS MODELING 
 

In this section the use of the BY option for confirmatory factor analysis 

(CFA) models is described.  Following are the two BY statements that 

describe how the continuous latent variables in the figure above are 

measured: 

 

f1 BY y1- y5; 

f2 BY y6- y9; 

 

The factor loading of any observed variable mentioned on the right-hand 

side of the BY statement is free to be estimated with the exception of the 

factor loading of the first variable after the BY option.  This factor 

loading is fixed at one as the default.  Fixing a factor loading of an 

indicator of a continuous latent variable sets the metric of the continuous 

latent variable.  Setting the metric can also be accomplished by fixing 

the variance of the continuous latent variable to one and freeing the 

factor loading of the factor indicator that is fixed at one as the default.  

In the example above, the factor loadings of y1 and y6 are fixed at one.  

The other factor loadings are estimated using default starting values of 

one.    

 

Following is an example of how to set the metric of the continuous latent 

variable by fixing the variance of the continuous latent variable to one 

and allowing all factor loadings to be free: 

 

f1 BY y1* y2- y5; 

f2 BY y6* y7- y9; 

f1@1 f2@1; 
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where the asterisk (*) after y1 and y6 frees the factor loadings of y1 and 

y6, and the @1 after f1 and f2 fixes the variances of f1 and f2 to one.  

The use of the asterisk (*); @ symbol; and the specification of means, 

thresholds, variances, and covariances are discussed later in the chapter. 

 

Residual variances are estimated as the default when factor indicators 

are continuous or censored.  Residual covariances among the factor 

indicators are fixed at zero as the default.  All default settings can be 

overridden.  How to do so is discussed later in this chapter.   

 

The BY option can also be used to define continuous latent variables 

underlying other continuous latent variables that have observed factor 

indicators.  This is referred to as second-order factor analysis.  However, 

a continuous latent variable cannot be used on the right-hand side of a 

BY statement before it has been defined on the left-hand side of another 

BY statement.  For example, the following statements are acceptable: 

 

f1 BY y1 y2 y3 y4 y5; 

f2 BY y6 y7 y8 y9; 

f3 BY f1 f2; 

 

whereas, the following statements are not acceptable: 

 

f3 BY f1 f2; 

f1 BY y1 y2 y3 y4 y5; 

f2 BY y6 y7 y8 y9; 

  

because f1 and f2 are used on the right-hand side of a BY statement 

before they are defined on the left-hand side of a BY statement. 

 

EXPLORATORY STRUCTURAL EQUATION MODELING 
 

In this section the use of the BY option for exploratory structural 

equation (ESEM) modeling (Asparouhov & Muthén, 2009a) is 

described.  One of the differences between CFA and EFA factors is that 

CFA factors are not rotated.  For a set of EFA factors, the factor loading 

matrix is rotated as in conventional EFA using the rotations available 

through the ROTATION option of the ANALYSIS command.  A set of 

EFA factors must have the same factor indicators.  A set of EFA factors 

can be regressed on the same set of covariates.  An observed or latent 

variable can be regressed on a set of EFA factors.  EFA factors are 
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allowed with TYPE=GENERAL and TYPE=COMPLEX with observed 

dependent variables that are continuous, censored, binary, ordered 

categorical (ordinal), and combinations of these variable types.  EFA 

factors are not allowed when summary data are analyzed or when the 

MLM, MLMV, or GLS estimators are used.    

 

The BY option has three special features that are used with sets of EFA 

factors in the MODEL command.  One feature is used to define sets of 

EFA factors.  The second feature is a special way of specifying factor 

loading matrix equality for sets of EFA factors.  The third feature is used 

in conjunction with the TARGET setting of the ROTATION option of 

the ANALYSIS command to provide target factor loading values to 

guide the rotation of the factor loading matrix for sets of EFA factors.   

 
DEFINING EFA FACTORS 

 

Following is an example of how to define a set of EFA factors using the 

BY option: 

 

f1-f2 BY y1-y5 (*1); 

 

where the asterisk (*) followed by a label specifies that factors f1 and f2 

are a set of EFA factors with factor indicators y1 through y5.   

 

Following is an alternative specification: 

 

f1 BY y1-y5 (*1); 

f2 BY y1-y5 (*1); 

 

where the label 1 specifies that factors f1 and f2 are part of the same set 

of EFA factors.  Rotation is carried out on the five by two factor loading 

matrix.  Labels for EFA factors must follow an asterisk (*).  EFA factors 

with the same label must have the same factor indicators.   

 

More than one set of EFA factors may appear in the MODEL command.  

For example,  

 

f1-f2 BY y1-y5 (*1); 

f3-f4 BY y6-y10 (*2); 
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specifies that factors f1 and f2 are one set of EFA factors with the label 

1 and factors f3 and f4 are another set of EFA factors with the label 2.  

The two sets of EFA factors are rotated separately. 

 

Factors in a set of EFA factors can be regressed on covariates but the set 

of covariates must be the same, for example,  

 

f1-f2 ON x1-x3; 

 

or  

 

f1 ON x1-x3; 

f2 ON x1-x3; 

 

A set of EFA factors can also be used as covariates in a regression, for 

example, 

 

y ON f1-f2; 

 

EQUALITIES WITH EFA FACTORS 

 

The BY option has a special convention for specifying equalities of the 

factor loading matrices for more than one set of EFA factors.  The 

equality label is placed after the label that defines the set of EFA factors 

and applies to the entire factor loading matrix not to a single parameter.  

Following is an example of how to specify that the factor loading 

matrices for the set of EFA factors f1 and f2 and the set of EFA factors 

f3 and f4 are held equal: 

 

f1-f2 BY y1-y5 (*1 1); 

f3-f4 BY y6-y10 (*2 1); 

 

The number 1 following the labels 1 and 2 that define the EFA factors 

specifies that the factor loadings matrices for the two sets of EFA factors 

are held equal. 

 

TARGET ROTATION WITH EFA FACTORS 

 

The BY option has a special feature that is used with the TARGET 

setting of the ROTATION option of the ANALYSIS command to 

specify target factor loading values for a set of EFA factors  (Browne, 
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2001).  The target factor loading values are used to guide the rotation of 

the factor loading matrix.  Typically these values are zero.  For the 

TARGET rotation, a minimum number of target values must be given for 

purposes of model identification.  For the default oblique TARGET 

rotation, the minimum is m(m-1) where the m is the number of factors.   

For the orthogonal TARGET rotation, the minimum is m(m-1)/2.  The 

target values are given in the MODEL command using the tilde (~) 

symbol.  The target values are specified in a BY statement using the tilde 

(~) symbol as follows: 

 

f1 BY y1-y5 y1~0 (*1); 

f2 BY y1-y5 y5~0 (*1); 

 

where the target factor loading values for the factor indicator y1 for 

factor f1 and y5 for factor f2 are zero. 

 

ON 
 

The ON option is used to describe the regression relationships in the 

model and is short for regressed on.  The general form of the ON 

statement is: 

 

y ON x; 

 

where y is a dependent variable and x is an independent variable.  

Dependent and independent variables can be observed or latent 

variables. 

 

In the previous figure, the structural relationships are the regressions of 

the continuous latent variables f1 and f2 on the nine independent 

variables x1 through x9.  The ON statements shown below are used to 

specify these regressions: 

 

f1 ON x1-x9; 

f2 ON x1-x9; 

 

These statements specify that regression coefficients are free to be 

estimated for f1 and f2 regressed on the independent variables x1 

through x9 with default starting values of zero.   
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For continuous latent variables, the residual variances are estimated as 

the default.  The residuals of the latent variables are correlated as the 

default because residuals are correlated for latent variables that do not 

influence any other variable in the model except their own indicators.  

These defaults can be overridden.  Means, variances, and covariances of 

the independent variables in the model should not be mentioned in the 

MODEL command because the model is estimated conditioned on the 

covariates. 

 

An ON statement can be used to describe the regression relationship 

between an observed dependent variable and an observed independent 

variable.  Following is an example of how to specify the regression of an 

observed dependent variable y9 on the observed independent variable 

x9: 

 

y9 ON x9; 

 

The general form of the ON statement is used to describe regression 

relationships for continuous latent variables and observed variables that 

are continuous, censored, binary, ordered categorical (ordinal), counts, 

censored inflated, and count inflated.  The ON option has special 

features for categorical latent variables and unordered categorical 

(nominal) observed variables which are described below.  

 

CATEGORICAL LATENT VARIABLES AND 

UNORDERED CATEGORICAL (NOMINAL) OBSERVED 

VARIABLES 
 

For categorical latent variables and unordered categorical (nominal) 

observed variables, the ON option is used to describe the multinomial 

logistic regression of the categorical latent variable or the unordered 

categorical (nominal) observed variable on one or more independent 

variables.   

 

For a categorical latent variable, an ON statement is specified for each 

latent class except the last class which is the reference class.   A class 

label is used to refer to each class.  Class labels use the convention of 

adding to a variable name the number symbol (#) followed by a number. 

For a categorical latent variable c with three classes, 

 

c#1 c#2 ON x1-x3; 
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specifies that regression coefficients are free to be estimated for classes 

1 and 2 of the categorical latent variable c regressed on the independent 

variables x1, x2, and x3.  The intercepts in the regression of the 

categorical latent variable on the independent variables are free to be 

estimated as the default. 

 

The statement above can be simplified to the following: 

 

c ON x1-x3; 

 

The multinomial logistic regression of one categorical latent variable on 

another categorical latent variable where c2 has four classes and c1 has 

three classes is specified as follows: 

 

c2 ON c1; 

 

or  

 

c2#1 c2#2 c2#3 ON c1#1 c1#2; 

 

For an unordered categorical (nominal) observed variable, an ON 

statement is specified for each category except the last category which is 

the reference category.   A category label is used to refer to each 

category. Category labels use the convention of adding to a variable 

name the number symbol (#) followed by a number.  For a three-

category variable u, 

 

u#1 u#2 ON x1-x3; 

   

specifies that regression coefficients are free to be estimated for 

categories 1 and 2 of the unordered categorical (nominal) observed 

variable u regressed on the independent variables x1, x2, and x3.  The 

thresholds in the regression of the unordered categorical (nominal) 

observed variable on the independent variables are free to be estimated 

as the default. 

 

The statement above can be simplified to the following: 

 

u ON x1-x3; 
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Following is a table that describes how the relationships between 

dependent variables and observed mediating variables or latent variables 

are specified.  Relationships with the designation of NA are not allowed.  

Relationships not specified using the ON option are specified by listing 

for each class the intercepts or thresholds in square brackets and the 

residual variances with no brackets.  Not shown in the table is that all 

dependent variables can be regressed on independent variables that are 

not mediating variables using the ON option.   

 

Scale of 

Dependent 

Variable 

Scale of Observed 

Mediating Variable 

Scale of Latent Variable 

Continuous Censored, 

Categorical, 

and Count 

Nominal Continuous Categorical Inflation 

Part of 

Censored 

and Count 

Continuous ON ON NA ON Mean and 

variance vary 

across  classes 

NA 

Censored, 

Categorical,  

and Count 

ON ON NA ON Mean/ 

threshold 

and variance 

vary across  

classes 

NA 

Nominal ON ON NA ON Means vary 

across classes 

NA 

Continuous 

Latent 

ON ON NA ON Mean and 

variance vary 

across classes 

NA 

Categorical 

Latent 

ON ON NA ON ON NA 

Inflation 

Part of 

Censored 

and Count 

ON ON NA ON Mean varies 

across classes 

NA 

 

PON 
 

A second form of the ON option is PON.  PON is used to describe the 

paired regression relationships in the model and is short for regressed 

on.  PON pairs the variables on the left-hand side of the PON statement 

with the variables on the right-hand side of the PON statement.  For 
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PON, the number of variables on the left-hand side of the PON statement 

must equal the number of variables on the right-hand side of the PON 

statement.  For example,  

 

y2 y3 y4 PON y1 y2 y3; 

 

implies 

 

y2 ON y1; 

y3 ON y2; 

y4 ON y3; 

 

The PON option cannot be used with the simplified language for 

categorical latent variables or unordered categorical (nominal) observed 

variables. 

 

WITH 
 

The WITH option is used to describe correlational relationships in a 

model and is short for correlated with.  Correlational relationships 

include covariances among continuous observed variables and 

continuous latent variables and among categorical latent variables.  With 

the weighted least squares estimator, correlational relationships are also 

allowed for binary, ordered categorical, and censored observed 

variables.  For all other variable types, the WITH option cannot be used 

to specify correlational relationships.  Special modeling needs to be used 

in these situations, for example, using a latent variable that influences 

both variables.    

 

The NOCOVARIANCES setting of the MODEL option of the 

ANALYSIS command specifies that the covariances and residual 

covariances among all latent and observed variables in the analysis 

model are fixed at zero.  The WITH option is used to free selected 

covariances and residual covariances.   

 

Following is an example of how to specify the WITH option: 

 

f1 WITH f2; 

 

This statement frees the covariance parameter for the continuous latent 

variables f1 and f2. 
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Several variables can be included on both sides of the WITH statement.  

In this situation, the variables on the left-hand side of the WITH 

statement are crossed with the variables on the right-hand side of the 

WITH statement resulting in all possible combinations of left- and right-

hand side variables. 

 

The association between two categorical latent variables c1 and c2 

where c1 has three classes and c2 has four classes is specified as 

follows: 

 

c1#1 c1#2 WITH c2#1 c2#2 c2#3; 

 

The statement above can be simplified to: 

 

c1 WITH c2; 

 

The association coefficient for the last class of each categorical latent 

variable is fixed at zero as the default as in loglinear modeling. 

 

PWITH 
 

A second form of the WITH option is PWITH.  PWITH pairs the 

variables on the left-hand side of the PWITH statement with those on the 

right-hand side of the PWITH statement.  For PWITH, the number of 

variables on the left-hand side of the PWITH statement must equal the 

number of variables on the right-hand side of the PWITH statement.  For 

example,  

 

y1 y2 y3 PWITH y4 y5 y6; 

 

implies 

 

y1 WITH y4; 

y2 WITH y5; 

y3 WITH y6; 

 

whereas, 

 

y1 y2 y3 WITH y4 y5 y6;  

 

implies 
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y1 WITH y4; 

y1 WITH y5; 

y1 WITH y6; 

y2 WITH y4; 

y2 WITH y5; 

y2 WITH y6; 

y3 WITH y4; 

y3 WITH y5; 

y3 WITH y6; 

 

The PWITH option cannot be used with the simplified language for 

categorical latent variables.   

 

VARIANCES/RESIDUAL VARIANCES 
 

For convenience, no distinction is made in how variances and residual 

variances are referred to in the MODEL command.  The model defines 

whether the parameter to be estimated is a variance or a residual 

variance.  Variances are estimated for independent variables and residual 

variances are estimated for dependent variables.  Variances of 

continuous and censored observed variables and continuous latent 

variables are free to be estimated as the default.  Variances of categorical 

observed variables are not estimated. When the Theta parameterization 

is used in either a growth model or a multiple group model, variances for 

continuous latent response variables for the categorical observed 

variables are estimated.  Unordered categorical (nominal) observed 

variables, observed count variables, and categorical latent variables have 

no variance parameters.   

 

A list of observed or latent variables refers to the variances or residual 

variances of those variables.  For example, 

 

y1 y2 y3; 

 

refers to the variances of y1, y2, and y3 if they are independent variables 

and refers to the residual variances of y1, y2, and y3 if they are 

dependent variables.  The statement means that the variances or residual 

variances are free parameters to be estimated using default starting 

values.   
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MEANS/INTERCEPTS/THRESHOLDS 
 

Means, intercepts, and thresholds are included in the analysis model as 

the default.  The NOMEANSTRUCTURE setting of the MODEL option 

of the ANALYSIS command is used with TYPE=GENERAL to specify 

that means, intercepts, and thresholds are not included in the analysis 

model. 

 

For convenience, no distinction is made in how means and intercepts are 

referred to in the MODEL command. The model defines whether the 

parameter to be estimated is a mean or an intercept.  Means are 

estimated for independent observed variables and observed variables that 

are neither independent nor dependent variables in the model.  Means for 

nominal variables are logit coefficients corresponding to probabilities 

for each category except the last category.  Means for count variables are 

log rates.  Means for time-to-event variables in continuous-time survival 

analysis are log rates.  Means are also estimated for independent 

continuous latent variables and independent categorical latent variables.  

For an independent categorical latent variable, the means are logit 

coefficients corresponding to probabilities for each class except the last 

class.   

 

Intercepts are estimated for continuous observed dependent variables, 

censored observed dependent variables, unordered categorical (nominal) 

observed dependent variable, count observed dependent variables,  

baseline hazard parameters for continuous-time survival analysis, 

continuous latent dependent variables, and categorical latent dependent 

variables.   

 

Thresholds are estimated for binary and ordered categorical observed 

variables.  The sign of a threshold is the opposite of the sign of a mean 

or intercept for the same variable.  For example, with a binary dependent 

variable, a threshold of -0.5 is the same as an intercept of .5.   

 

A list of observed or latent variables enclosed in brackets refers to 

means, intercepts, or thresholds. 

 

For example,   

 

[y1 y2 y3];  
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refers to the means of variables y1, y2, and y3 if they are independent 

variables and refers to the intercepts if they are continuous dependent 

variables.  This statement indicates that the means or intercepts are free 

parameters to be estimated using the default starting values.     

 

If the variables are categorical, the thresholds are referred to as follows, 

 

[y1$1 y1$2 y1$3 y2$1 y2$2]; 

 

where y1 is a four category variable with three thresholds and y2 is a 

three category variable with two thresholds.  y1$1 refers to the first and 

lowest threshold of variable y1; y1$2 refers to the next threshold; and 

y1$3 refers to the highest threshold.  This statement means that the 

thresholds are free parameters to be estimated using the default starting 

values.   

 

For models with a mean structure, all means, intercepts, and thresholds 

of observed variables are free to be estimated at the default starting 

values.  The means and intercepts of continuous latent variables are 

fixed at zero in a single group analysis.  In a multiple group analysis, the 

means and intercepts of the continuous latent variables are fixed at zero 

in the first group and are free to be estimated in the other groups.  In a 

mixture model, the means and intercepts of the continuous latent 

variables are fixed at zero in the last class and are free to be estimated in 

the other classes. The means and intercepts of categorical latent 

variables are fixed at zero in the last class and are free to be estimated in 

the other classes.    

 

CONVENIENCE FEATURES FOR THE MODEL 

COMMAND 
 

There are several features that make it easier for users to specify the 

model to be estimated.  One feature is the list function.  A user can use a 

hyphen to specify a list of variables, a list of equality constraints, and a 

list of parameter labels. 

 

When using the list function, it is important to know the order of 

observed and latent variables that the program expects.  The order of 

observed variables is determined by the order of variables in the 

NAMES or USEVARIABLES options of the VARIABLE command.  If 
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all of the variables in NAMES statement are used in the analysis, then 

the order is taken from there.  If the variables for the analysis are a 

subset of the variables in the NAMES statement, the order is taken from 

the USEVARIABLES statement.   

 

The order of continuous latent variables is determined by the order of 

the BY and | statements in the MODEL command.  Factors defined using 

the BY option come first in the order that they occur in the MODEL 

command followed by the random effects defined using the | symbol in 

the order that they occur in the MODEL command.   

 

The list function can be used on the left- and right-hand sides of ON and 

WITH statements and on the right-hand side of BY statements.  A list on 

the left-hand side implies multiple statements.  A list on the right-hand 

side implies a list of variables.  

 

Following is an example of the use of the list function on the right-hand 

side of a BY statement.  It assumes the variables are in the order:  y1, y2, 

y3, y4, y5, y6, y7, y8, y9, y10, y11, and y12. 

 

f1 BY y1-y4; 

f2 BY y5-y9; 

f3 BY y10-y12; 

 

The program would interpret these BY statements as: 

 

f1 BY y1 y2 y3 y4; 

f2 BY y5 y6 y7 y8 y9; 

f3 BY y10 y11 y12; 

 

To use the list function with latent variables the order of latent variables 

would be f1, f2, f3 because of the order of the BY statements in the 

MODEL command. 

 

Following is an example of using the list function on both the left- and 

the right-hand sides of the ON statement: 

 

f1-f3 ON x1-x3; 

 

This implies the multiple statements: 
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f1 ON x1 x2 x3; 

f2 ON x1 x2 x3; 

f3 ON x1 x2 x3; 

 

The list function can also be used with the WITH option, 

 

y1-y3 WITH y4-y6;  

 

This implies 

 

y1 WITH y4; 

y1 WITH y5; 

y1 WITH y6; 

y2 WITH y4; 

y2 WITH y5; 

y2 WITH y6; 

y3 WITH y4; 

y3 WITH y5; 

y3 WITH y6; 

 

FREEING PARAMETERS AND ASSIGNING 

STARTING VALUES 
 

The asterisk (*) is used to free a parameter and/or assign a starting value 

for the estimation of that parameter.  It is placed after a parameter with a 

number following it.  For example: 

 

y1*.5; 

 

is interpreted as freeing the variance/residual variance of y1 to be 

estimated with a starting value of 0.5.  

 

Consider the BY statements from the previous section: 

 

f1 BY y1 y2 y3 y4 y5; 

f2 BY y6 y7 y8 y9; 

 

As mentioned previously, the above statements result in the factor 

loadings for y1 and y6 being fixed at one in order to set the metric of the 

latent variables f1 and f2.  All of the other parameters mentioned are free 
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to be estimated with starting values of one.  Consider the following BY 

statements: 

 

f1 BY y1* y2*0.5 y3 y4 y5; 

f2 BY y6 y7-y9*0.9; 

 

By putting an asterisk (*) after y1, the y1 parameter is freed at the 

default starting value of one instead of being fixed at one by default.  By 

placing an asterisk (*) followed by 0.5 behind y2, the parameter starting 

value is changed from the default starting value of 1 to 0.5.  The 

variables y3, y4, and y5 are free to be estimated at the default starting 

value of one.  In the BY statement for f2 the variables y7, y8, and y9 are 

specified using the list function, y7-y9, followed by an asterisk (*) and 

the value 0.9.  This changes the starting values for y7, y8, and y9 from 

the default starting value of 1 to 0.9.  

 

These same features can be used with the ON and WITH options and for 

assigning starting values to variances, means, thresholds, and scales.   

 

Following are examples of assigning starting values to a variety of 

parameters: 

 

f1 ON x1-x3*1.5; 

f1 WITH f2*.8; 

y1-y12*.75; 

[f1-f3*.5]; 

{y1-y12*5.0};   

 

FIXING PARAMETER VALUES  
 

In some cases, it is necessary to fix a parameter at a specific value.  The 

@ symbol is used to fix the values of parameters.  Consider the 

following example based on the measurement model in the earlier figure.  

Following are the specifications needed to free the value of the first 

indicator of each latent variable at starting values of one and to fix the 

value of the second indicator of each latent variable to one in order to set 

the metric of each latent variable:  

 

f1 BY y1* y2@1 y3 y4 y5; 

f2 BY y6* y7@1 y8 y9; 



CHAPTER 17 

 

 

 734 

By placing an asterisk (*) after y1, the factor loading for y1 is estimated 

using the starting value of one.  By placing @1 after y2, the factor 

loading for y2 is fixed at one.  Likewise, by placing an asterisk (*) after 

y6, the factor loading for y6 is estimated using the starting value of one.  

By placing @1 after y7, the factor loading for y7 is fixed at one.   

 

The @ symbol can be used to fix any parameter in a model.  The 

following example fixes the covariance between f1 and f2 at zero: 

 

f1 WITH f2@0; 

 

CONSTRAINING PARAMETER VALUES TO BE 

EQUAL 
 

Parameters can be constrained to be equal by placing the same number in 

parentheses following the parameters that are to be held equal.  This 

convention can be used for all parameters.  Following is an example in 

which regression coefficients, residual variances, and residual 

covariances are held equal: 

 

y1 ON x1           (1) ; 

y2 ON x2           (1) ; 

y3 ON x3           (1) ; 

y1 y2 y3             (2);  

y1 WITH y2-y3  (3);  

 

In the above example, the regression coefficients for the three 

regressions are constrained to be equal, the three residual variances are 

constrained to be equal, and the two residual covariances are constrained 

to be equal.   

 

There can be only one number in parentheses on each line.  If a 

statement continues on more than one line, the number in parentheses 

must be stated at the end of each line. 

 

For example, 

 

f1 BY y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12  (1) 

           y13 y14 y15                                              (1); 
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specifies that the factor loadings of y2 through y15 are constrained to be 

equal.  The factor loading of y1 is fixed at one as the default. 

 

The following statement, 

 

f1 BY y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12  

           y13 y14 y15                                              (1); 

 

specifies that the factor loadings of y13, y14, and y15 are constrained to 

be equal because (1) refers to only the information on the line on which 

it is located. 

 

The following statement, 

 

f1 BY y1 y2 y3 y4 y5             (1)  

           y6 y7 y8 y9 y10           (2) 

           y11 y12 y13 y14 y15   (3); 

 

specifies that the factor loading of y1 is fixed at one and that the factor 

loadings of y2, y3, y4, and y5 are held equal, that the factor loadings of 

y6, y7, y8, y9, and y10 are held equal, and that the factor loadings of 

y11, y12, y13, y14, and y15 are held equal.  

 

Following are examples of how to constrain the parameters of means, 

intercepts and/or thresholds to be equal. 

 

[y1 y2 y3] (1); 

 

indicates that the means/intercepts of variables y1, y2, and y3 are 

constrained to be equal.  The statements 

 

[u1$1 u2$1 u3$1] (2);  

[u1$2 u2$2 u3$2] (3); 

[u1$3 u2$3 u3$3] (4); 

 

indicate that the first threshold for variables u1, u2, and u3 are 

constrained to be equal; that the second threshold for variables u1, u2, 

and u3 are constrained to be equal; and that the third threshold for 

variables u1, u2, and u3 are constrained to be equal.  Out of nine 

possible thresholds, three parameters are estimated.  Only one set of 

parentheses can be included on each line of the input file.   
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USING THE LIST FUNCTION FOR ASSIGNING 

STARTING VALUES, FIXING VALUES, 

CONSTRAINING VALUES TO BE EQUAL, AND 

ASSIGNING LABELS TO PARAMETERS 
 

The list function is convenient for assigning starting values to 

parameters, fixing parameters values, constraining parameter values to 

be equal, and assigning labels to parameters.   

 

ASSIGNING STARTING VALUES TO PARAMETERS 
 

Following is an example of how to use the list function to assign starting 

values to parameters:    

 

f1 BY y1 y2-y4*0; 

f2 BY y5 y6-y9*.5; 

f3 BY y10 y11-y12*.75; 

 

The program interprets these BY statements as: 

 

f1 BY y1 y2*0 y3*0 y4*0; 

f2 BY y5 y6*.5 y7*.5 y8*.5 y9*.5; 

f3 BY y10  y11*.75 y12*.75; 

 

where the starting value of 0 is assigned to the factor loadings for y2, y3, 

and y4; the starting value of .5 is assigned to the factor loadings for y6, 

y7, y8, and y9; and the starting value of .75 is assigned to the factor 

loadings for y11 and y12.  The factor loading for the first factor 

indicator of each factor is fixed at one as the default to set the metric of 

the factor. 

 

FIXING PARAMETER VALUES 
 

Following is an example of using the list function to fix parameter 

values:   

 

f1-f3@1; 

 

The statement above fixes the variances/residual variances of f1, f2, and 

f3 at one. 
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CONSTRAINING PARAMETER VALUES TO BE EQUAL  
 

Following is an example of using the list function to constrain parameter 

values to be equal: 

 

f1  BY y1-y5    (1) 

           y6-y10   (2); 

 

The statement above specifies that the factor loadings of y2, y3, y4, and 

y5 are held equal and that the factor loadings of y6, y7, y8, y9, and y10 

are held equal.  The factor loading of y1 is fixed at one as the default to 

set the metric of the factor. 

 

The list function can be used to assign equalities to a list of parameters 

using a list of equality constraints.  A list of equality constraints cannot 

be used with a set of individual parameters.  Following is an example of 

how to use the list function with a list of parameters on the right-hand 

side of the BY option: 

 

f1  BY y1 

           y2-y5    (2-5); 

 f2 BY y6 

           y7-y10  (2-5); 

 

The statements above specify that the factor loadings for y2 and y7 are 

held equal, the factor loadings for y3 and y8 are held equal, the factor 

loadings for y4 and y9 are held equal, and the factor loadings for y5 and 

y10 are held equal.  This can also be specified as shown below for 

convenience.  

 

f1  BY y1-y5    (1-5); 

f2  BY y6-y10  (1-5); 

 

No equality constraint is assigned to y1 and y6 even though they are part 

of the list of variables because they are fixed at one to set the metric of 

the factors.  The number of equalities in the list must equal the number 

of variables on the right-hand side of the BY option. 

 

A list of equality constraints cannot be used with a list of parameters on 

the left-hand side of an option.  Following is an example of how equality 
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constraints are specified for a list of parameters on the left-hand side of 

the ON option: 

 

y1-y3 ON x (1 2 3); 

y4-y6 ON x (1 2 3); 

 

where the regression coefficients in the regression of y1 on x and y4 on 

x are constrained to be equal; the regression coefficients in the 

regression of y2 on x and y5 on x are constrained to be equal; and the 

regression coefficients in the regression of y3 on x and y6 on x are 

constrained to be equal.   

 

Following is an example of how equalities are specified when a list of 

parameters appears on both the left- and right-hand sides of an option: 

 

y1-y3 ON x1-x2 (1-2 3-4 5-6); 

y4-y6 ON x1-x2 (1-2 3-4 5-6); 

 

Each variable on the left-hand side of the ON option must have a list of 

equalities for use with the variables on the right-hand side of the ON 

option.  Because there are three variables on the left-hand side of the ON 

statement and two variables on the right-hand side of the ON statement, 

three lists of two equalities are needed.  A single list cannot be used. 

 

Following is what this specifies: 

 

y1 ON x1 (1); 

y1 ON x2 (2); 

y2 ON x1 (3); 

y2 ON x2 (4); 

y3 ON x1 (5); 

y3 ON x2 (6); 

y4 ON x1 (1); 

y4 ON x2 (2); 

y5 ON x1 (3); 

y5 ON x2 (4); 

y6 ON x1 (5); 

y6 ON x2 (6); 

 

The list function can be used with the simplified language for categorical 

latent variables and unordered categorical (nominal) observed variables.  
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The multinomial logistic regression of one categorical latent variable on 

another categorical latent variable where c2 has four classes and c1 has 

three classes is specified as follows: 

 

c2 ON c1; 

 

Following is an example of how equalities are specified when a list of 

parameters appears on both the left- and right-hand sides of the ON 

option using the simplified language: 

 

c2 ON c1 (1-2 1-2 1-2); 

 

or 

 

c2 ON c1 (1-2); 

 

Following is what this specifies: 

 

c2#1 ON c1#1 (1); 

c2#2 ON c1#2 (2); 

c2#3 ON c1#1 (1); 

c2#1 ON c1#2 (2); 

c2#2 ON c1#1 (1); 

c2#3 ON c1#3 (2); 

 

ASSIGNING LABELS TO PARAMETERS 
 

The list function can be used to assign labels to parameters in the 

MODEL command.  Following is an example of how to use the list 

function in this way: 

 

[y1-y5] (p1-p5); 

 

The statement above assigns the parameter label p1 to y1, p2 to y2, p3 to 

y3, p4 to y4, and p5 to y5. 

 

The list function can be used to assign labels to a list of parameters using 

a list of labels.  A list of labels cannot be used with a set of individual 

parameters.  Following is an example of how to use the list function with 

a list of parameters on the right-hand side of the BY option: 
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f1  BY y1 

            y2-y5    (p2-p5); 

 

The statement above assigns the label p2 to the factor loading for y2, p3 

to the factor loading for y3, p4 to the factor loading for y4, and p5 to the 

factor loading for y5. 

 

A list of labels cannot be used with a list of parameters on the left-hand 

side of an option.  Following is an example of how labels are specified 

for a list of parameters on the left-hand side of the ON option: 

 

y1-y3 ON x (p1 p2 p3); 

 

where the regression coefficient in the regression of y1 on x is assigned 

the label p1; the regression coefficient in the regression of y2 on x is 

assigned the label p; and the regression coefficient in the regression of 

y3 on x is assigned the label p3. 

 

Following is an example of how labels are specified when a list of 

parameters appears on both the left- and right-hand sides of an option: 

 

y1-y3 ON x1-x2 (p1-p2 p3-p4 p5-p6); 

 

Each variable on the left-hand side of the ON option must have a list of 

labels for use with the variables on the right-hand side of the ON option.  

Because there are three variables on the left-hand side of the ON 

statement and two variables on the right-hand side of the ON statement, 

three lists of two equalities are needed.  A single list cannot be used. 

 

Because there are three variables on the left-hand side of the ON 

statement and two variables on the right-hand side of the ON statement, 

three lists of two equalities are needed.   

 

Following is what this specifies: 

 

y1 ON x1 (p1); 

y1 ON x2 (p2); 

y2 ON x1 (p3); 

y2 ON x2 (p4); 

y3 ON x1 (p5); 

y3 ON x2 (p6); 
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The list function can be used with the simplified language for categorical 

latent variables and unordered categorical (nominal) observed variables. 

 

The multinomial logistic regression of one categorical latent variable on 

another categorical latent variable where c2 has four classes and c1 has 

three classes is specified as follows: 

 

c2 ON c1; 

 

Following is an example of how labels are assigned when a list of 

parameters appears on both the left- and right-hand sides of the ON 

option using the simplified language: 

 

c2 ON c1 (p1-p2 p3-p4 p5-p6); 

 

Following is what this specifies: 

 

c2#1 ON c1#1 (p1); 

c2#2 ON c1#2 (p2); 

c2#3 ON c1#1 (p3); 

c2#1 ON c1#2 (p4); 

c2#2 ON c1#1 (p5); 

c2#3 ON c1#3 (p6); 

 

SPECIAL LIST FUNCTION FEATURE 
 

The list function has a special feature that can make model specification 

easier.  This feature allows a parameter to be mentioned in the MODEL 

command more than once.  The last specification is used in the analysis.  

For example, 

 

f1 BY y1-y6*0 y5*.5; 

 

is interpreted by the program as 

 

f1 BY y1*0 y2*0 y3*0 y4*0 y5*.5 y6*0;  

 

Although y5 is assigned a starting value of 0.0 in the beginning of the 

BY statement using the list function, y5 is assigned a starting value of 

0.5 later in the statement.  The program uses the last specification.  
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If a variable is mentioned more than once on the right-hand side of a BY, 

ON, or WITH statement or in a list of variances, means, or scale factors, 

the program uses the last value it reads.  This makes it convenient when 

a user wants all of the starting values in a list to be the same except for a 

few.  The same feature can be used when fixing values.  For example, 

 

f1-f4@1 f3@2; 

 

fixes the variances/residual variances of f1, f2, and f4 at one and fixes 

the variance/residual variance of f3 at 2. 

 

This feature can also be used with equalities, however, the variable from 

the list that is not to be constrained to be equal must appear on a separate 

line in the input file.  In a line with an equality constraint, anything after 

the equality constraint is ignored.  For example,  

 

f1  BY y1-y5    (1) 

            y4 

            y6-y10  (2); 

 

indicates that the factor loadings for y2, y3, and y5 are held equal, the 

factor loading for y4 is free and not equal to any other factor loading, 

and the factor loadings for y6, y7, y8, y9, and y10 are held equal.  The 

factor loading for y1 is fixed at one as the default. 

 

LABELING THRESHOLDS 
 

For binary and ordered categorical dependent variables, thresholds are 

referred to by using the convention of adding to a variable name a dollar 

sign ($) followed by a number.  The number of thresholds is equal to the 

number of categories minus one.  For example, if u1 is an ordered 

categorical variable with four categories it has three thresholds.  These 

thresholds are referred to as u1$1, u1$2, and u1$3.  

 

LABELING CATEGORICAL LATENT 

VARIABLES AND UNORDERED CATEGORIAL 

(NOMINAL) OBSERVED VARIABLES 
 

The classes of categorical latent variables and the categories of 

unordered categorical (nominal) observed variables are referred to by 
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using the convention of adding to a variable name a number sign (#) 

followed by the category/class number.  For example, if c is a 

categorical latent variable with three classes, the first two classes are 

referred to as c#1 and c#2.  The third class has all parameters fixed at 

zero as a reference category.  If u1 is a nominal variable with three 

categories, the first two categories are referred to as u1#1 and u1#2.  The 

third category has all parameters fixed at zero as a reference category.  

With the ON option categorical latent variables and unordered 

categorical (nominal) observed variables can be referred to by their 

variable name.  With the WITH option, categorical latent variables can 

be referred to by their variable name. 

 

LABELING INFLATION VARIABLES 
 

Censored and count inflation variables are referred to by using the 

convention of adding to a variable name a number sign (#) followed by 

the number one.  For example, if y1 is a censored variable, the inflation 

part of y1 is referred to as y1#1.  If u1 is a count variable, the inflation 

part of u1 is referred to as u1#1. 

 

LABELING BASELINE HAZARD PARAMETERS 
 

In continuous-time survival modeling, there are as many baseline hazard 

parameters are there are time intervals plus one.  When the 

BASEHAZARD option of the ANALYSIS command is ON, these 

parameters can be referred to by using the convention of adding to the 

name of the time-to-event variable the number sign (#) followed by a 

number.  For example, for a time-to-event variable t with 5 time 

intervals, the six baseline hazard parameters are referred to as t#1, t#2, 

t#3, t#4, t#5, and t#6. 

 

LABELING CLASSES OF A CATEGORICAL 

LATENT VARIABLE 
 

In the MODEL command, categorical latent variable classes are referred 

to using labels.  These labels are constructed by using the convention of 

adding to the name of the categorical latent variable a number sign (#) 

followed by a number.  For example, if c is a categorical latent variable 

with four classes, the labels for the four classes are c#1, c#2, and c#3.  

The last class is the reference class. 
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LABELING PARAMETERS 
 

Labels can be assigned to parameters by placing a name in parentheses 

following the parameter in the MODEL command.  These labels are 

used in three ways.  First, they are used in conjunction with the MODEL 

CONSTRAINT command to define linear and non-linear constraints on 

the parameters in the model.  Second, they are used with the MODEL 

TEST command to test linear restrictions on the model defined in the 

MODEL and MODEL CONSTRAINT commands.  Third, they are used 

with ESTIMATOR=BAYES and the MODEL PRIORS command to 

specify the prior distribution for parameters in the MODEL command. 

 

The parameter labels follow the same rules as variable names.  They can 

be up to 8 characters in length; must begin with a letter; can contain only 

letters, numbers, and the underscore symbol; and are not case sensitive.  

Only one label can appear on a line.  Following is an example of how to 

label parameters: 

 

MODEL: y ON x1 (p1) 

            x2 (p2) 

            x3 (p3); 

 

where p1 is the label assigned to the regression slope for y on x1, p2 is 

the label assigned to the regression slope for y on the x2, and p3 is the 

label assigned to the regression slope for y on x3. 

 

The list function can be used to assign labels.  Following is an example 

of how to use the list function to label parameters: 

 

MODEL: [y1-y10] (q1-q10); 

  y1-y10 (p1-p10); 

  f BY y1-y10 (z2-z10); 

 

where the labels q1 through q10 are assigned to the intercepts of y1 

through y10,  the labels p1 through p10 are assigned to the residual 

variances of y1 through y10, and the labels z2 through z10 are assigned 

to the factors loadings for y2 through y10.  The factor loading of y1 is 

fixed at one as the default to set the metric of the factor.   

 

If a list of labels is used, for example, in MODEL PRIORS, the order of 

the labels is alphabetical not the order of the labels in the MODEL 
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command.  For example, the list p4-q2 includes p4, p5, p6, p7, p8, p9, 

p10, q1, and q2.  

 

The list function can be used with the ON and WITH options when there 

are lists of variable names on both the right- and left-hand sides of these 

options.  Following is an example of how to use the list function to 

assign labels when there are lists of  variables on both the right- and left-

hand sides of ON: 

 

y1-y3 ON x1-x2 (p1-p6); 

 

The first variable on the left-hand side of ON is paired with all variables 

on the right-hand side.  Then the second variable on the left-hand side of 

ON is paired with all variables on the right-hand side etc.  The label p1 

is assigned to the regression slope for y1 on x1.  The label p2 is assigned 

to the regression slope for y1 on x2.  The label p3 is assigned to the 

regression slope for y2 on y1.  The label p6 is assigned to the regression 

slope for y3 on x2. 

 

Following is an example of how to use the list function to assign labels 

when there are lists of variables on both the right- and left-hand sides of 

WITH: 

 

y1-y3 WITH y1-y3 ( p1-p3); 

 

The labels are assigned to the upper triangle of a symmetric matrix read 

row-wise.  The label p1 is assigned to the covariance between y1 and y2.  

The label p2 is assigned to the covariance between y1 and y3.  The label 

p3 is assigned to the covariance between y2 and y3. 

 

SCALE FACTORS 
 

In models that use TYPE=GENERAL, it may be useful to multiply each 

observed variable or latent response variable by a scale factor that can be 

estimated.  For example, with categorical observed variables, a scale 

factor refers to the underlying latent response variables and facilitates 

growth modeling and multiple group analysis because the latent response 

variables are not restricted to have across-time or across-group equalities 

of variances. With continuous observed variables, using scale factors 

containing standard deviations makes it possible to analyze a sample 

covariance matrix by a correlation structure model.  
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A list of observed variables in curly brackets refers to scale factors.  For 

example,  

 

{u1 u2 u3}; 

 

refers to scale factors for variables u1, u2, and u3.  This statement means 

that the scale factors are free parameters to be estimated using the 

default starting values of one.   

 

The | SYMBOL 
 

The | symbol is used to specify growth models, to name and define 

random effect variables in the model, and to name and define latent 

variable interactions. 

 

GROWTH MODELS 
 

Following is a description of the language specific to growth models.  

The | symbol can be used with all analysis types to specify growth 

models.  The names on the left-hand side of the | symbol name the 

random effect variables, also referred to as growth factors.  The 

statement on the right-hand side of the | symbol names the outcome and 

specifies the time scores for the growth model. 

 

Following is an example of the MODEL command for a quadratic 

growth model for a continuous outcome specified without using the | 

symbol: 

 

MODEL: i BY y1-y4@1; 

  s BY y1@0 y2@1 y3@2 y4@3; 

  q BY y1@0 y2@1 y3@4 y4@9; 

  [y1-y4@0 i s q]; 

 

If the | symbol is used to specify the same growth model for a continuous 

outcome, the MODEL command is: 

 

MODEL: i s q | y1@0 y2@1 y3@2 y4@3; 

 

All of the other specifications shown above are done as the default.  The 

defaults can be overridden by mentioning the parameters in the MODEL 

command after the | statement.  For example,   
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MODEL: i s q | y1@0 y2@1 y3@2 y4@3; 

  [y1-y4] (1); 

  [i@0 s q]; 

 

changes the parameterization of the growth model from one with the 

intercepts of the outcome variable fixed at zero and the growth factor 

means free to be estimated to a parameterization with the intercepts of 

the outcome variable held equal, the intercept growth factor mean fixed 

at zero, and the slope growth factor means free to be estimated. 

 

Many other types of growth models can be specified using the | symbol.  

Following is a table that shows how to specify some of these growth 

models using the | symbol and also how to specify the same growth 

models using the BY option and other options.  All examples are for 

continuous outcomes unless specified otherwise. 

 

 Growth Language Alternative 

Intercept only MODEL: 

i | y1-y4@1; 

MODEL: 

i BY y1-y4@1; 

[y1-y4@0 i]; 

Linear   MODEL:  

i s | y1@0 y2@1 y3@2 y4@3; 

 

MODEL:  

i BY y1-y4@1; 

s BY y1@0 y2@1 y3@2 y4@3; 

 [y1-y4@0 i s]; 

Linear with free 

time scores 

MODEL:  

i s | y1@0 y2@1 y3 y4; 

MODEL:  

i BY y1-y4@1; 

s BY y1@0 y2@1 y3 y4; 

[y1-y4@0 i s]; 

Quadratic  MODEL:  

i s q | y1@0 y2@1 y3@2 y4@3; 

 

MODEL:  

i BY y1-y4@1; 

s BY y1@0 y2@1 y3@2 y4@3; 

q BY y1@0 y2@1 y3@4 y4@9; 

[y1-y4@0 i s q]; 

Piecewise MODEL: 

i s1 | y1@0 y2@1 y3@2 y4@2 y5@2; 

i s2 | y1@0 y2@0 y3@0 y4@1 y5@2; 

MODEL: 

i BY y1-y4@1; 

s1 BY y1@0 y2@1 y3@2 y4@2 y5@2; 

s2 BY y1@0 y2@0 y3@0 y4@1 y5@2; 

[y1-y4@0 i s1 s2]; 
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Linear for a 

censored 

outcome 

MODEL:  

i s | y1@0 y2@1 y3@2 y4@3; 

 

 

MODEL:  

i BY y1-y4@1; 

s BY y1@0 y2@1 y3@2 y4@3; 

 [y1-y4@0 i s]; 

Linear for a 

censored 

outcome and the 

inflation part of 

a censored 

outcome  

MODEL:  

i s | y1@0 y2@1 y3@2 y4@3; 

ii si |y1#1@0 y2#1@1 y3#1@2 

y4#1@3; 

 

MODEL:  

i BY y1-y4@1; 

s BY y1@0 y2@1 y3@2 y4@3; 

ii BY y1#1-y4#1@1; 

si BY y1#1@0 y2#1@1 y3#1@2 

y4#1@3; 

 [y1-y4@0 i s]; 

[y1#1-y4#1] (1); 

[ii@0 si]; 

Linear for a 

binary outcome 

with the Delta 

parameterization 

MODEL:  

i s | u1@0 u2@1 u3@2 u4@3; 

 

 

MODEL:  

i BY u1-u4@1; 

s BY u1@0 u2@1 u3@2 u4@3; 

[u1$1-u4$1] (1); 

[i@0 s]; 

{u1@1 u2-u4}; 

Linear for a 

binary outcome 

with the Theta 

parameterization 

MODEL:  

i s | u1@0 u2@1 u3@2 u4@3; 

 

MODEL:  

i BY u1-u4@1; 

s BY u1@0 u2@1 u3@2 u4@3; 

[u1$1-u4$1] (1); 

[i@0 s]; 

u1@1 u2-u4; 

Linear for a 

binary outcome 

with the logistic 

model 

MODEL:  

i s | u1@0 u2@1 u3@2 u4@3; 

 

MODEL:  

i BY u1-u4@1; 

s BY u1@0 u2@1 u3@2 u4@3; 

[u1$1-u4$1] (1); 

[i@0 s]; 

Linear for a 

count outcome 

MODEL:  

i s | u1@0 u2@1 u3@2 u4@3; 

 

MODEL:  

i BY u1-u4@1; 

s BY u1@0 u2@1 u3@2 u4@3; 

[u1-u4@0 i s]; 
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Linear for a 

count outcome 

and the inflation 

part of a count 

outcome 

MODEL:  

i s | u1@0 u2@1 u3@2 u4@3; 

ii si | u1#1@0 u2#1@1 u3#1@2 

u4#1@3; 

 

MODEL:  

i BY u1-u4@1; 

s BY u1@0 u2@1 u3@2 u4@3; 

ii BY u1#1-u4#1@1; 

si BY u1#1@0 u2#1@1 u3#1@2 

u4#1@3; 

[u1-u4@0 i s]; 

[u1#1-u4#1] (1); 

[ii@0 si]; 

Multiple group MODEL:  

i s | y1@0 y2@1 y3@2 y4@3; 

MODEL:  

i BY y1-y4@1; 

s BY y1@0 y2@1 y3@2 y4@3; 

 [y1-y4@0 i s]; 

MODEL g1: 

[i s]; 

Multiple group 

for a binary 

outcome with 

the Delta 

parameterization 

 

 

 

MODEL: 

i s | u1@0 u2@1 u3@2 u4@3; 

MODEL:  

i BY u1-u4@1; 

s BY u1@0 u2@1 u3@2 u4@3; 

[u1$1-u4$1] (1); 

{u1@1}; 

MODEL g1: 

[s]; 

{u2-u4}; 

Multiple group 

for a three-

category 

outcome with 

the Delta 

parameterization 

 

 

MODEL: 

i s | u1@0 u2@1 u3@2 u4@3; 

MODEL:  

i BY u1-u4@1; 

s BY u1@0 u2@1 u3@2 u4@3; 

[u1$1-u4$1] (1); 

[u1$2-u4$2] (2); 

MODEL g1: 

[s]; 

{u2-u4}; 

Multiple group 

for a binary 

outcome with 

the Theta 

parameterization 

MODEL: 

i s | u1@0 u2@1 u3@2 u4@3; 

MODEL:  

i BY u1-u4@1; 

s BY u1@0 u2@1 u3@2 u4@3; 

[u1$1-u4$1] (1); 

u1@1; 

MODEL g1: 

[s]; 

u2-u4; 
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Multiple group 

for a three-

category 

outcome with 

the Theta 

parameterization 

 

 

MODEL: 

i s | u1@0 u2@1 u3@2 u4@3; 

MODEL:  

i BY u1-u4@1; 

s BY u1@0 u2@1 u3@2 u4@3; 

[u1$1-u4$1] (1); 

[u1$2-u4$2] (2); 

MODEL g1: 

[s]; 

u2-u4; 

Mixture MODEL: 

%OVERALL% 

i s | y1@0 y2@1 y3@2 y4@3; 

 

MODEL: 

%OVERALL% 

i BY y1-y4@1; 

s BY y1@0 y2@1 y3@2 y4@3; 

[y1-y4@0 i s]; 

%c#1% 

[i s]; 

Mixture for a 

binary outcome 

MODEL: 

%OVERALL% 

i s | u1@0 u2@1 u3@2 u4@3; 

 

MODEL: 

%OVERALL% 

i BY u1-u4@1; 

s BY u1@0 u2@1 u3@2 u4@3; 

[u1$1-u4$1] (1); 

[ i s]; 

%c#1% 

[i s]; 

%c#2%    

[i@0 ]; 

Multilevel MODEL: 

%WITHIN% 

iw sw | y1@0 y2@1 y3@2 y4@3; 

%BETWEEN% 

ib sb | y1@0 y2@1 y3@2 y4@3; 

MODEL: 

%WITHIN% 

iw BY y1-y4@1; 

sw BY y1@0 y2@1 y3@2 y4@3; 

%BETWEEN% 

ib BY y1-y4@1; 

sb BY y1@0 y2@1 y3@2 y4@3; 

[y1-y4@0 ib sb]; 
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Multiple 

indicator 

MODEL: 

f1 BY y11  

           y21 (1); 

f2 BY y12  

           y22 (1); 

f3 BY y13  

           y23 (1); 

f4 BY y14  

           y24 (1); 

[y11 y12 y13 y14] (2); 

[y21 y22 y23 y24] (3); 

i s | f1@0 f2@1 f3@2 f4@3; 

MODEL: 

f1 BY y11  

           y21 (1); 

f2 BY y12  

           y22 (1); 

f3 BY y13  

           y23 (1); 

f4 BY y14  

           y24 (1); 

[y11 y12 y13 y14] (2); 

[y21 y22 y23 y24] (3); 

i BY f1-f4@1; 

s BY f1@0 f2@1 f3@2 f4@3; 

[f1-f4@0 i@0 s]; 

Multiple 

indicator for a 

binary outcome 

with the Delta 

parameterization 

MODEL: 

f1 BY u11  

           u21 (1); 

f2 BY u12  

           u22 (1); 

f3 BY u13  

           u23 (1); 

f4 BY u14  

           u24 (1); 

[u11$1 u12$1 u13$1 u14$1] (2); 

[u21$1 u22$1 u23$1 u24$1] (3); 

{u11-u21@1 u12-u24}; 

i s | f1@0 f2@1 f3@2 f4@3; 

 

MODEL: 

f1 BY u11  

           u21 (1); 

f2 BY u12  

           u22 (1); 

f3 BY u13  

           u23 (1); 

f4 BY u14  

           u24 (1); 

[u11$1 u12$1 u13$1 u14$1] (2); 

[u21$1 u22$1 u23$1 u24$1] (3); 

{u11-u21@1 u12-u24}; 

i BY f1-f4@1; 

s BY f1@0 f2@1 f3@2 f4@3; 

[f1-f4@0 i@0 s]; 
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Multiple 

indicator for a 

binary outcome 

with the Theta 

parameterization 

MODEL: 

f1 BY u11  

           u21 (1); 

f2 BY u12  

           u22 (1); 

f3 BY u13  

           u23 (1); 

f4 BY u14  

           u24 (1); 

[u11$1 u12$1 u13$1 u14$1] (2); 

[u21$1 u22$1 u23$1 u24$1] (3); 

u11-u21@1 u12-u24; 

i s | f1@0 f2@1 f3@2 f4@3; 

 

MODEL: 

f1 BY u11  

           u21 (1); 

f2 BY u12  

           u22 (1); 

f3 BY u13  

           u23 (1); 

f4 BY u14  

           u24 (1); 

[u11$1 u12$1 u13$1 u14$1] (2); 

[u21$1 u22$1 u23$1 u24$1] (3); 

u11-u21@1 u12-u24; 

i BY f1-f4@1; 

s BY f1@0 f2@1 f3@2 f4@3; 

[f1-f4@0 i@0 s]; 

 

The defaults for the means/intercepts of the growth factors vary 

depending on the scale of the outcome variable as described below.  The 

variances/residual variances and covariances/residual covariances of 

growth factors are free to be estimated for all outcomes as the default. 

 

For continuous, censored, and count outcomes, the means/intercepts of 

the growth factors are free to be estimated.  For a binary outcome, an 

ordered categorical (ordinal) outcome, the inflation part of a censored 

outcome, the inflation part of a count outcome, and a multiple indicator 

growth model, the mean/intercept of the intercept growth factor is fixed 

at zero.  The means/intercepts of the slopes growth factors are free to be 

estimated.   

 

In multiple group analysis for continuous, censored, and count outcomes, 

the means/intercepts of the growth factors are free to be estimated in all 

groups.  In multiple group analysis for a binary outcome, an ordered 

categorical (ordinal) outcome, the inflation part of a censored outcome, 

the inflation part of a count outcome, and a multiple indicator growth 

model, the mean/intercept of the intercept growth factor is fixed at zero 

in the first group and is free to be estimated in the other groups.  The 

means/intercepts of the slopes growth factors are free to be estimated in 

all groups.   
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In mixture models for continuous, censored, and count outcomes, the 

means/intercepts of the growth factors are free to be estimated in all 

classes.  In mixture models for a binary outcome, an ordered categorical 

(ordinal) outcome, the inflation part of a censored outcome, the inflation 

part of a count outcome, and a multiple indicator growth model, the 

mean/intercept of the intercept growth factor is fixed at zero in the last 

class and is free to be estimated in the other classes.  The 

means/intercepts of the slopes growth factors are free to be estimated in 

all classes.   

 

The residual variances of continuous and censored outcome variables are 

free as the default.  The inflated part of censored outcomes, binary 

outcomes, ordered categorical (ordinal) outcomes, count outcomes, and 

the inflated part of count outcomes have no variance parameters.  An 

exception is the Theta parameterization used for binary and ordered 

categorical (ordinal) outcomes.  In the Theta parameterization, residual 

variances are fixed at one at the first time point and are free at the other 

time points.     

 

AT 
 

The AT option is used with TYPE=RANDOM to define a growth model 

with individually-varying times of observation for the outcome variable.  

AT is short for measured at.  It is used in conjunction with the | symbol 

to name and define the random effect variables in a growth model which 

are referred to as growth factors.   

 

Four types of growth models can be defined using AT and the | symbol: 

an intercept only model, a model with two growth factors, a model with 

three growth factors, and a model with four growth factors.  The names 

of the random effect variables are specified on the left-hand side of the | 

symbol.  The number of names determines which of the four models 

model will be estimated.  One name is needed for an intercept only 

model and it refers to the intercept growth factor.  Two names are 

needed for a model with two growth factors: the first one is for the 

intercept growth factor and the second one is for the slope growth factor 

that uses the time scores to the power of one.  Three names are needed 

for a model with three growth factors: the first one is for the intercept 

growth factor; the second one is for the slope growth factor that uses the 

time scores to the power of one; and the third one is for the slope growth 

factor that uses the time scores to the power of two.  Four names are 
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needed for a model with four growth factors: the first one is for the 

intercept growth factor; the second one is for the slope growth factor that 

uses the time scores to the power of one; the third one is for the slope 

growth factor that uses the time scores to the power of two; and the 

fourth one is for the slope growth factor that uses the time scores to the 

power of three.  Following are examples of how to specify these growth 

models: 

 

intercpt | y1 y2 y3 y4 AT t1 t2 t3 t4; 

intercpt slope1 | y1 y2 y3 y4 AT t1 t2 t3 t4; 

intercpt slope1 slope2 | y1 y2 y3 y4 AT t1 t2 t3 t4; 

intercpt slope1 slope2 slope3 | y1 y2 y3 y4 AT t1 t2 t3 t4; 

 

where intercpt, slope1, slope2, and slope3 are the names of the intercept 

and slope growth factors; y1, y2, y3, and y4 are the outcome variables in 

the growth model; and t1, t2, t3, and t4 are observed variables in the data 

set that contain information on times of measurement.  The TSCORES 

option of the VARIABLE command is used to identify the variables that 

contain information about individually-varying times of observation for 

the outcome in a growth model.  The variables on the left-hand side of 

AT are paired with the variables on the right-hand side of AT.   

 

The intercepts of the outcome variables are fixed at zero as the default.  

The residual variances of the outcome variables are free to be estimated 

as the default.  The residual covariances of the outcome variables are 

fixed at zero as the default.  The means, variances, and covariances of 

the intercept and slope growth factors are free as the default.   

 

RANDOM SLOPES 
 

The | symbol is used in conjunction with TYPE=RANDOM to name and 

define the random slope variables in the model.  The name on the left-

hand side of the | symbol names the random slope variable.  The 

statement on the right-hand side of the | symbol defines the random slope 

variable.  Random slopes are defined using the ON or PON options. ON 

or PON statements used on the right-hand side of the | symbol may not 

use the asterisk (*) or @ symbols.  Otherwise, the regular rules regarding 

ON and PON apply. The means and the variances of the random slope 

variables are free as the default.  Covariances among random slope 

variables are fixed at zero as the default.  Covariances between random 
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slope variables and growth factors, latent variables defined using BY 

statements, and observed variables are fixed at zero as the default.    

 

With TYPE=TWOLEVEL RANDOM and TYPE=CROSSCLASSIFIED 

RANDOM, the random slope variables are named and defined in the 

within part of the MODEL command and used in the between part of the 

MODEL command.  For TYPE=THREELEVEL RANDOM, the random 

slope variables are named and defined in the within and between level 2 

parts of the MODEL command.  Random slope variables defined in 

within part of the MODEL command can be used in both the between 

level 2 and between level 3 parts of the MODEL command.  Random 

slope variables defined in the between level 2 part of the MODEL 

command can be used only in the between level 3 part of the MODEL 

command.  

 

For TYPE=THREELEVEL and TYPE=CROSSCLASSIFIED, random 

slope variables are between-level variables.   For TYPE=TWOLEVEL, 

random slope variables are between-level variables unless specifically 

designated as having variation on both levels.  This is done by placing an 

asterisk (*) after the name on the left-hand side of the | symbol  as 

follows:     

 

s* | y ON x; 

 

where the asterisk (*) indicates that the random slope variable s has 

variation on both the within and between levels. 

 

Following is an example of how to specify a random slope using the | 

symbol: 

 

s | y ON x; 

 

where s is a random slope in the regression of y on x where y is a 

continuous dependent variable and x is an independent variable.  Both 

dependent and independent variables can be latent or observed variables. 

 

Lists can be used on both the left-hand side of the | symbol and the left- 

and right-hand sides of ON and PON.  Following is an example of how 

to specify a set of random slopes using the | symbol and PON: 

 

s1-s3 | y1-y3 PON x1-x3; 
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where s1, s2, and s3 are random slopes in the regressions of y1 on x1, y2  

on x2, and y3 on x3.   

 

A random slope variable can refer to more than one slope by being used 

on the left-hand side of more than one | statement.  In this case, the 

random slope variables are the same.  For example, 

 

s1 | y1 ON x1; 

s1 | y2 ON x2; 

 

defines the random slope, s1, to be the same in the regressions of y1 on 

x1 and y2 on x2.   

 

Another example is, 

 

s2 | y1 ON x1 x2; 

 

which defines the random slope, s2, to be the same in the regressions of 

y1 on x1 and y1 on x2. 

 

RANDOM FACTOR LOADINGS 
 

For TYPE=TWOLEVEL and TYPE=CROSSCLASSIFIED, the | symbol 

is used in conjunction with TYPE=RANDOM to name and define the 

random factor loading variables in the model.  The names on the left-

hand side of the | symbol name the random factor loading variables.  The 

statements on the right-hand side of the | symbol define the random 

factor loading variables.  Random factor loadings are defined using the 

BY option.  BY statements used on the right-hand side of the | symbol 

may not use the asterisk (*) or @ symbol.  Otherwise, the regular rules 

regarding BY apply.  The means and the variances of the random factor 

loading variables are free as the default.  Covariances between random 

factor loading variables and growth factors, latent variables defined 

using BY statements, and observed variables are fixed at zero as the 

default. 

 

For TYPE=TWOLEVEL, the random factor loading variables are named 

and defined in the within part of the MODEL command and used in the 

between part of the MODEL command.  For 

TYPE=CROSSCLASSIFIED, random factor loading variables that are 

named and defined in the level 2a part of the MODEL command can be 
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used in the level 2b part of the MODEL command.  Level 2a is the 

second cluster variable on the CLUSTER statement.  Level 2b is the first 

cluster variable on the CLUSTER statement.  Random factor loading 

variables are between-level variables.  Following is an example of how 

to specify random factor loadings using the | symbol: 

 

s1-s10 | f BY y1-y10; 

f@1; 

 

where s1 through s10 are random factor loadings for the factor f.  All 

factor loadings are free.  The metric of the factor is set by fixing the 

factor variance to one.  

 

RANDOM VARIANCES 
 

The | symbol is used in conjunction with TYPE=RANDOM to name and 

define random variance variables in the model.  Random variances are 

available only for TYPE=TWOLEVEL with ESTIMATOR=BAYES.  

The name on the left-hand side of the | symbol names the random 

variance variable.  The variable on the right-hand side of the | symbol 

specifies the variable that will have a random variance.  The log of the 

random residual variance is used in the model.  The asterisk (*) or @ 

symbols may not be used on the right-hand side of the | symbol.  The 

means and the variances of the random variance variables are free as the 

default.  Covariances among random variance variables are fixed at zero 

as the default.  Covariances among random variance variables and 

growth factors, latent variables defined using BY statements, and 

observed variables are fixed at zero as the default. Following is an 

example of how to specify and random variance using the | symbol.  

 

logv | y;  

 

where logv is the random variance for the variable y. 

 

XWITH  
 

The XWITH option is used with TYPE=RANDOM to define 

interactions between continuous latent variables or between a continuous 

latent variable and an observed variable.  XWITH is short for multiplied 

with.  It is used in conjunction with the | symbol to name and define 

interaction variables in a model.  It is not available for 
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TYPE=THREELEVEL or TYPE=CROSSCLASSIFIED.  Following is 

an example of how to use XWITH and the | symbol to name and define 

an interaction: 

 

int | f1 XWITH f2; 

 

where int is the name of the interaction between f1 and f2.  Interaction 

variables can be used only on the right-hand side of ON statements. 

 

The XWITH option can be used to create an interaction variable that is 

the square of a latent variable.  Following is an example of how this is 

specified: 

 

fsquare | f  XWITH f;  

 

Latent variable interactions are estimated using maximum likelihood for 

all regular models as well as mixture models and multilevel models.  

Interactions are allowed between continuous latent variables and 

between a continuous latent variable and an observed variable.  Factor 

indicators for the continuous latent variables can be continuous, 

censored, binary, ordered categorical (ordinal), counts, or combinations 

of these variable types.  Observed variables in the interaction can be 

independent or mediating variables and the mediating variables can be 

censored, binary, ordered categorical (ordinal), counts, or combinations 

of these variable types.  Dependent observed variables in the interaction 

can have missing data.  In many cases, numerical integration is required 

in the maximum likelihood estimation of latent variable interactions.  

Numerical integration becomes increasingly more computationally 

demanding as the number of factors and the sample size increase. 

 

Interactions between observed variables are handled using the DEFINE 

command where an interaction variable is created via multiplication.  If 

an observed dependent variable has missing data, a latent variable can be 

created for this observed variable and the procedure described above can 

be used. 

 

Interactions between categorical latent variables and between a 

categorical latent variable and an observed or continuous latent variable 

are handled using mixture modeling. 
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Following is a table that summarizes ways of obtaining interactions for 

different variable types. 

 

Types of Variables Interaction Options 

observed continuous with 

observed continuous 

DEFINE 

observed categorical with 

observed continuous 

DEFINE 

Multiple Group 

observed continuous with 

continuous latent 

XWITH 

observed categorical with 

continuous latent 

XWITH 

Multiple Group 

observed continuous with 

categorical latent  

MIXTURE 

observed categorical with 

categorical latent 

MIXTURE 

KNOWNCLASS 

continuous latent with 

continuous latent 

XWITH 

continuous latent with 

categorical latent 

MIXTURE 

categorical latent with 

categorical latent 

MIXTURE 

 

THE MODEL INDIRECT COMMAND 

 
The MODEL INDIRECT command is used to request indirect and direct 

effects and their standard errors.  Both the conventional indirect and 

direct effects used in the traditional mediation literature (see, e.g., 

MacKinnon, 2008; Hayes, 2013) and counterfactually-defined causal 

effects (see, e.g., Muthén, 2011; VanderWeele, 2015; Muthén & 

Asparouhov, 2015b; Muthén, Muthén, & Asparouhov, 2016) are 

available.  The MODEL INDIRECT command is not available for 

TYPE=RANDOM, the CONSTRAINT option of the VARIABLE 

command, and TYPE=EFA.   

 

Delta method standard errors for the indirect effects are computed as the 

default.  Bootstrap standard errors for the indirect effects can be 

obtained by using the MODEL INDIRECT command in conjunction 

with the BOOTSTRAP option of the ANALYSIS command. 
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For conventional indirect and direct effects, the MODEL INDIRECT 

command can be used in conjunction with the STANDARDIZED option 

of the OUTPUT command to obtain standardized indirect effects and 

their standard errors.  Bootstapped standard errors are available for the 

standardized indirect and direct effects when the BOOTSTRAP option is 

used.  

 

MODEL INDIRECT can also be used in conjunction with the 

CINTERVAL option of the OUTPUT command to obtain confidence 

intervals and Bayes credibility intervals for the indirect and direct effects 

and the standardized indirect and direct effects.  Three types of 95% and 

99% confidence intervals can be obtained:  symmetric, bootstrap, and 

bias-corrected bootstrap confidence intervals (MacKinnon, Lockwood, 

& Williams, 2004; MacKinnon, 2008).  The bootstrapped distribution of 

each parameter estimate is used to determine the bootstrap and bias-

corrected bootstrap confidence intervals.  These intervals take non-

normality of the parameter estimate distribution into account.  As a 

result, they are not necessarily symmetric around the parameter estimate.  

 

CONVENTIONAL INDIRECT AND DIRECT 

EFFECTS 
 

Conventional indirect effects defined as products of regression 

coefficients are available for the case of a continuous, censored, binary, 

or ordered categorical (ordinal) mediator and a continuous, censored, 

binary, or ordered categorical (ordinal) outcome.  Continuous mediators 

and outcomes can be observed continuous variables or continuous latent 

variables.  For censored, binary, and ordered categorical (ordinal) 

mediators or outcomes, the latent response variables underlying these 

variables are used in the indirect and direct effects.  These effects are 

available for multiple mediators and multiple outcomes.  Total, total 

indirect, specific indirect, and direct effects used in traditional mediation 

modeling are obtained using the IND and VIA options.  The IND option 

is used to request a specific indirect effect or a set of indirect effects.  

The VIA option is used to request a set of indirect effects that includes 

specific mediators. 
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IND 
 

The variable on the left-hand side of IND is the dependent variable in the 

indirect effect.  The last variable on the right-hand side of IND is the 

independent variable in the indirect effect.  Other variables on the right-

hand side of IND are mediating variables.  If there are no mediating 

variables included in the IND option, all indirect effects between the 

independent variable and dependent variable are computed. The total 

indirect effect is the sum of all indirect effects.  The total effect is the 

sum of all indirect effects and the direct effect.   

 

VIA 
 

The variable on the left-hand side of VIA is the dependent variable in 

the indirect effect.  The last variable on the right-hand side of VIA is the 

independent variable in the indirect effect.  Other variables on the right-

hand side of VIA are mediating variables.  All indirect effects that go 

from the independent variable to the dependent variable and include the 

mediating variables are computed.  The total indirect effect is the sum of 

all indirect effects.   

 

 
 

Following is an example of the model shown in the picture above for 

which IND and VIA options will be specified. 

 

MODEL:   

y3 ON y1 y2; 

y2 ON y1 x1 x2; 

y1 ON x1 x2; 

 

Following is an example of how MODEL INDIRECT can be used to 

request indirect effects using the IND option: 
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MODEL INDIRECT: 

y3 IND y1 x1; 

y3 IND y2 x1; 

y3 IND x2; 

     

The first IND statement requests the specific indirect effect from x1 to 

y1 to y3.  The second IND statement requests the specific indirect effect 

from x1 to y2 to y3.  The third IND statement requests all indirect effects 

from x2 to y3.  These include x2 to y1 to y3, x2 to y2 to y3, and x2 to y1 

to y2 to y3.   

   

Following is an example of how MODEL INDIRECT can be used to 

request indirect effects using the VIA option: 

 

MODEL INDIRECT: 

y3 VIA y1 x1 ; 

 

The VIA statement requests all indirect effects from x1 to y3 that are 

mediated by y1.  These include x1 to y1 to y3 and x1 to y1 to y2 to y3.  

 

Following is an example of how MODEL INDIRECT can be used to 

request total, total indirect, specific indirect, and direct effects: 

 

MODEL INDIRECT: 

y3 IND x1; 

 

The IND statement requests all indirect effects from x1 to y3.  These 

include x1 to y1 to y3, x1 to y2 to y3, and x1 to y1 to y2 to y3, the total 

effect, and the total indirect effect. 

 

COUNTERFACTUALLY-DEFINED CAUSAL 

EFFECTS 
 

Counterfactually-defined total natural indirect effects (TNIE), pure 

natural direct effects (PNDE), and total effects are available for 

continuous, binary, and ordered categorical (ordinal) mediators and 

continuous, binary, ordered categorical (ordinal) and count outcomes.  

Continuous mediators and outcomes can be observed continuous 

variables or continuous latent variables.  The exposure variable can be 

binary or continuous.  Counterfactually-defined total natural indirect 
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effects, pure natural direct effects, and total effects are available for a 

single mediator.  These effects are obtained using the IND and MOD 

options.  The IND option is used to specify a specific indirect effect 

when there is no moderation.  The MOD option is used to specify a 

specific indirect effect when there is moderation.   

 

IND 
 

The IND option is used to specify a specific indirect effect when there is 

no moderation.  Following is an example of how to specify the IND 

option with a binary exposure variable: 

 

MODEL INDIRECT: 

y IND m x; 

 

where y is the outcome, m is the mediator, and x is a binary exposure 

variable.  The outcome and mediator can be continuous latent variables. 

 

When the exposure variable is continuous, two values must be given in 

parentheses following the exposure variable.  The causal effects are 

computed comparing these two values.  The default is one for the first 

value and zero for the second value corresponding to a binary exposure 

variable such as comparing a treatment group to a control group.  

Following is an example of how to specify the IND option with a 

continuous exposure variable: 

 

MODEL INDIRECT: 

y IND m x (1 -1); 

 

where y is the outcome, m is the mediator, and x is the continuous 

exposure variable.  The two values in parentheses following x are the 

values used to compute the causal effects, in this case, comparing 1 to -

1, which represents an increase in x from -1 to 1.  The outcome, 

mediator, and the exposure variable can be continuous latent variables. 

 

MOD 
 

The MOD option is used to specify a specific indirect effect when there 

is moderation.  The MOD option can have three, four, or five arguments 

on the right-hand side of MOD.  If the model contains continuous 

control variables, they should be centered for more meaningful results.  
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If they are centered, indirect and direct effects are evaluated using their 

means.  If they are not centered, indirect and direct effects are evaluated 

at the value zero.   

 

The MOD option has three arguments when there is an interaction 

between the exposure variable and the mediator.  Following is an 

example of how to specify the MOD option with three arguments:  

 

MODEL INDIRECT: 

y MOD m mx x; 

 

where y is the outcome, m is the mediator, mx is the interaction between 

m and x, and x is a binary exposure variable.  The variables must be 

given in this order.  The outcome can be a continuous latent variable. 

 

When a model contains a moderator variable in addition to an exposure 

and a mediator variable, a moderator plot is available showing the 

effects and their confidence intervals as a function of different values of 

the moderator variable.    The MOD option with a moderator can have 

four or five arguments.  The moderation plots are obtained by specifying 

TYPE=PLOT2 or TYPE=PLOT3 in the PLOT command. 

 

The MOD option followed by four arguments has two specifications.  

The moderator can interact with either the mediator or the exposure 

variable.  Following is an example of how to specify the MOD option 

with four arguments when the moderator interacts with the mediator:  

 

MODEL INDIRECT: 

y MOD m z (-1 1 0.1) mz  x; 

 

where y is the outcome, m is the mediator, z is the moderator, mz is the 

interaction between m and z, and x is a binary exposure variable.  The 

variables must be given in this order.  The numbers in parentheses 

following z are the lower limit, upper limit, and the increment to be used 

in evaluating and plotting the direct and indirect effects.  The outcome 

can be a continuous latent variable. 

 

Following is an example of how to specify the MOD option with four 

arguments when the moderator interacts with the mediator and the 

exposure variable is continuous:  
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MODEL INDIRECT: 

y MOD m z (-1 1 0.1) mz  x (1 -1); 

 

where y is the outcome, m is the mediator, z is the moderator, mz is the 

interaction between m and z, and x is a continuous exposure variable.  

The variables must be given in this order.  The numbers in parentheses 

following z are the lower limit, upper limit, and the increment to be used 

in evaluating and plotting the direct and indirect effects.  The two values 

in parentheses following x are the values used to compute the causal 

effects, in this case, comparing 1 to -1, which represents an increase in x 

from -1 to 1.  The outcome and the exposure variable can be continuous 

latent variables. 

 

Following is an example of how to specify the MOD option with four 

arguments when the moderator interacts with the binary exposure 

variable:  

 

MODEL INDIRECT: 

y MOD m z (-1 1 0.1) xz  x; 

 

where y is the outcome, m is the mediator, z is the moderator, xz is the 

interaction between x and z, and x is a binary  exposure variable.  The 

variables must be given in this order.  The numbers in parentheses 

following z are the lower limit, upper limit, and the increment to be used 

in evaluating and plotting the direct and indirect effects.  The mediator 

and outcome can be continuous latent variables. 

 

The MOD option has five arguments when a moderator interacts with 

both the mediator and the exposure variable.  Following is an example of 

how to specify the MOD option with five arguments: 

 

MODEL INDIRECT: 

y MOD m z (-1 1 0.1) mz xz  x; 

 

where y is the outcome, m is the mediator, z is the moderator, mz is the 

interaction between m and z, xz is the interaction between x and z, and x 

is a binary exposure variable.  The variables must be given in this order.  

The numbers in parentheses following z are the lower limit, upper limit, 

and the increment to be used in evaluating and plotting the direct and 

indirect effects.  The outcome can be a continuous latent variable. 
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If the special direct effect referred to as the controlled direct effect is 

wanted, a value of the mediator must be given in parentheses following 

the mediator variable.  Following is an example of how to specify the 

IND option with a binary exposure variable: 

 

MODEL INDIRECT: 

y IND m (2) x; 

 

where y is the outcome, m is the mediator, and x is the binary exposure 

variable.  The value in parentheses following m is used to compute the 

controlled direct effect. 

 

THE MODEL CONSTRAINT COMMAND 
 

The MODEL CONSTRAINT command is used to define linear and non-

linear constraints on the parameters in the model and to create new 

parameters using the parameters in the model.  These constraints can be 

implicit or explicit.  The default setting for the INFORMATION option 

of the ANALYSIS command for MODEL CONSTRAINT is 

OBSERVED.  The MODEL CONSTRAINT command is not available 

for TYPE=EFA.  

 

LABELING THE PARAMETERS AND 

SELECTING VARIABLES 
 

The MODEL CONSTRAINT command specifies parameter constraints 

using labels defined for parameters in the MODEL command, labels 

defined for parameters not in the MODEL command using the NEW 

option of the MODEL CONSTRAINT command, and names of observed 

variables that are identified using the CONSTRAINT option of the 

VARIABLE command.  See Labeling Parameters to see how parameters 

are labeled using the MODEL command. 

 

NEW 
 

The NEW option is used to assign labels and starting values to 

parameters not in the analysis model.  These parameters are used to 

constrain the parameters in the analysis model.  The default starting 

value for these parameters is 0.5.  Following is an example of how the 

NEW option is specified:   
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MODEL: 

[y1-y3] (p1-p3); 

 

MODEL CONSTRAINT: 

NEW (c*.6);  

p2 = p1 + c; 

p3 = p1 + 2*c; 

 

where c is a parameter that constrains the means to change linearly 

across the three variables.  The value .6 following the asterisk (*) 

specifies that the value .6 will be used as a starting value for model 

estimation.  If the analysis is a Monte Carlo simulation study, the value 

will also be used as a coverage value. 

 

CONSTRAINT 
 

The CONSTRAINT option of the VARIABLE command is used to 

identify the variables that can be used in the MODEL CONSTRAINT 

command.  These can be not only variables used in the MODEL 

command but also other variables.  All variables on the CONSTRAINT 

list are treated as continuous variables in the analysis.  Only variables 

used by the following options cannot be included:  GROUPING, 

PATTERN, COHORT, COPATTERN, CLUSTER, STRATIFICATION, 

and AUXILIARY.  Variables that are part of these options can be used 

in DEFINE to create new variables that can be used in the 

CONSTRAINT statement.  The CONSTRAINT option is not available 

for TYPE=RANDOM, TYPE=TWOLEVEL, TYPE=THREELEVEL, 

TYPE=CROSSCLASSIFIED, TYPE=COMPLEX, and for estimators 

other than ML, MLR, and MLF.  The CONSTRAINT option is specified 

as follows: 

 

CONSTRAINT = y1 u1; 

 

where y1 and u1 are variables that can be used in the MODEL 

CONSTRAINT command. 

 

DEFINING LINEAR AND NON-LINEAR 

CONSTRAINTS 
 

Linear and non-linear constraints can be defined using the equal sign (=), 

the greater than sign (>), the less than sign (<), and all arithmetic 
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operators and functions that are available in the DEFINE command with 

the exception of the absolute value function.   

 

In the MODEL CONSTRAINT command, labels from the MODEL 

command and the NEW option of the MODEL CONSTRAINT 

command can be used on both the left-hand and right-hand sides of one 

or more parameter constraint statements.  Variables listed on the 

CONSTRAINT option of the VARIABLE command can appear on the 

right-hand side of one or more parameter constraint statements.    

Following is an example of how to define an explicit constraint: 

 

MODEL: 

[y1-y3] (p1-p3);  

 

MODEL CONSTRAINT: 

 p1 = p2**2 + p3**2; 

 

where the parameter p1 is constrained to be equal to the sum of the 

squares of the p2 and p3 parameters. 

 

Following is an example of how to define an implicit constraint where a 

function of parameters is constrained to be zero: 

 

MODEL: 

[y1-y5] (m1-m5); 

 

MODEL CONSTRAINT: 

0 = - m4 + m1*m3 - m2; 

0 = exp(m3) - 1 - m2; 

0 = m4 - m5; 

 

Following is an example of how to define an implicit constraint where a 

parameter appears in a set of parameter constraints: 

 

MODEL: 

[y1-y4] (p1-p4); 

 

MODEL CONSTRAINT: 

p1 = p2**2 + p3**2; 

p2 = p4; 
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DO 
 

The DO option provides a do loop and a double do loop to facilitate 

specifying a set of new parameters that are a function of the parameters 

of the model.  Following is an example of how to specify a do loop: 

 

MODEL: 

y1 ON x1 (p1); 

y1 ON x2 (p2); 

y1 ON x3 (p3); 

y2 ON x1 (q1); 

y2 ON x2 (q2); 

y2 ON x3 (q3); 

 

MODEL CONSTRAINT: 

NEW (ratio1-ratio3); 

DO (1, 3) ratio# = p#/q#; 

 

where the numbers in parentheses give the range of values for the do 

loop.  The number sign (#) is replaced by these values during the 

execution of the do loop.  Following are the new parameters that are 

created based on the DO option specified above: 

 

ratio1 = p1/q1; 

ratio2 = p2/q2; 

ratio3 = p2/q3; 

 

The DO option can also be used to place constraints on a set of 

parameters.   Following is an example of how to use a do loop to 

constrain the residual variances of y1 through y4 to be greater than zero: 

 

MODEL: 

f BY y1-y4; 

y1-y4 (p1-p4); 

 

MODEL CONSTRAINT: 

DO (1, 4) p# > 0; 

 

where the numbers in parentheses give the range of values for the do 

loop.  The number sign (#) is replaced by these values during the 
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execution of the do loop.  Following are the constraints that are placed 

on the model parameters based on the DO option specified above: 

 

p1 > 0; 

p2 > 0; 

p3 > 0; 

p4 > 0; 

 

Following is an example of how to specify a double do loop: 

 

MODEL: 

y1 ON x1 (p1); 

y2 ON x2 (p2); 

y3 ON x3 (q3); 

y4 ON x4 (q4); 

 

MODEL CONSTRAINT: 

DO ($,1,2) DO (%,3,4) p$ = q%; 

 

where the numbers in parentheses give the range of values the double do 

loop will use.  The numbers replace the symbol preceding them.  

Following are the constraints that are placed on the model parameters 

based on the DO option specified above: 

  

p1 = q3; 

p1 = q4; 

p2 = q3; 

p2 = q4; 

   

PLOT 
 

The PLOT option is used to name the variables that will be plotted on 

the y-axis in the plots created using the LOOP option.  Following is an 

example of how to specify the PLOT option: 

 

PLOT (ind1 ind2); 

 

where ind1 and ind2 are the variables that will be plotted on the y-axis in 

the plots created using the LOOP option.  
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LOOP 
 

The LOOP option is used in conjunction with the PLOT option to create 

plots of variables.  For example, it is useful for plotting indirect effects 

with moderation and mediation (Preacher, Rucker, & Hayes, 2007), 

cross-level interactions in multilevel regression (Bauer & Curran, 2005), 

and sensitivity graphs for causal effect mediation modeling (Imai, Keele, 

& Tingley, 2010a; Muthén, 2011; Muthén, Muthén, & Asparouhov, 

2016).  Following is an example of how to specify the LOOP option: 

 

LOOP (mod, -1, 1, 0.01); 

 

where mod  is a variable that will be used on the x-axis, the numbers -1 

and 1 are the lower and upper values of mod, and 0.01 is the incremental 

value of mod to use in the computations.  When mod appears in a 

MODEL CONSTRAINT statement involving a new parameter, that 

statement is evaluated for each value of mod specified by the LOOP 

option.  For example, the first value of mod is -1; the second value of 

mod is -1 plus 0.01 or -0.99; the third value of mod is -0.99 plus 0.01 or -

0.98; the last value of mod is 1.  Plots are created with mod on the x-axis 

and the names in the PLOT option on the y-axis. 

 

Following is an example of how to use the PLOT and LOOP options 

with the MODEL and MODEL CONSTRAINT commands: 

 

MODEL: 

y ON x (p1); 

 

MODEL CONSTRAINT: 

PLOT (ypred); 

LOOP (age, 10, 50, 1); 

ypred = p1*age; 

 

Using TYPE=PLOT2 in the PLOT command, the plot of ypred and age 

can be viewed by choosing Loop plots from the Plot menu of the Mplus 

Editor.  The plot presents the computed values along with a 95% 

confidence interval.  For frequentist estimation, the default confidence 

interval uses plus and minus 1.96 times the standard error.  The 

CINTERVAL option of the OUTPUT command can be used in 

conjunction with the BOOTSTRAP option of the ANALYSIS command 

to obtain bootstapped or bias-corrected bootstrap confidence intervals.  
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For Bayesian estimation, the default is credibility intervals of the 

posterior distribution with equal tail percentages.  The CINTERVAL 

option of the OUTPUT command can be used to obtain credibility 

intervals of the posterior distribution that give the highest posterior 

density.     

 

THE MODEL TEST COMMAND 
 

The MODEL TEST command is used to test restrictions on the 

parameters in the MODEL and MODEL CONSTRAINT commands 

using the Wald chi-square test.  These restrictions are defined using 

labels from the MODEL command and new parameters from the NEW 

option of the MODEL CONSTRAINT command.  See Labeling 

Parameters to see how parameters are labeled using the MODEL 

command.  See the NEW option to see how new parameters are named 

using this option.  Variables listed on the CONSTRAINT statement of 

the VARIABLE command cannot be used in MODEL TEST.  Model 

restrictions can be defined using the equal sign (=) and all arithmetic 

operators and functions that are available in the DEFINE command with 

the exception of the absolute value function. 

 

Following is an example of how to test restrictions on the parameters in 

the MODEL command using MODEL TEST: 

 

MODEL: 

y ON x1 (p1) 

         x2 (p2) 

         x3 (p3); 

 

MODEL TEST: 

0 = p2 – p1; 

0 = p3 – p1; 

 

where in the MODEL command p1, p2, and p3 represent the regression 

coefficients for x1, x2, and x3, respectively.  In the MODEL TEST 

command, a joint test of the equality of the three regression coefficients 

is carried out using the Wald test with two degrees of freedom.  Note 

that having 0 = p3 - p2 in MODEL TEST is redundant and incorrect.    
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Following is an example of how to test a restriction on the parameters in 

the MODEL CONSTRAINT command using MODEL TEST: 

 

MODEL: 

y ON m1 (b1); 

y ON m2 (b2); 

m1 ON x1 (a1); 

m2 ON x2 (a2); 

 

MODEL CONSTRAINT: 

NEW (ind1 ind2); 

ind1 = a1*b1; 

ind2 = a2*b2; 

 

MODEL TEST: 

0 = ind1 – ind2; 

 

where in the MODEL command b1 and b2 represent the regression 

coefficients for m1 and m2 and a1 and a2 represent the regression 

coefficients for x1 and x2.  In the MODEL CONSTRAINT command, 

two new parameters are defined.  Ind1 is the indirect effect from x1 to y 

via m1.  Ind2 is the indirect effect from x2 to y via m2.    In the MODEL 

TEST command, a test of the equality of the two indirect effects is 

carried out using the Wald test with one degree of freedom.   

 

DO 
 

The DO option provides a do loop and a double do loop to facilitate 

specifying a set of tests involving model parameters that will be jointly 

tested using the Wald test.  Following is an example of how to specify a 

do loop: 

 

MODEL: 

y1 ON x1 (p1); 

y1 ON x2 (p2); 

y1 ON x3 (p3); 

y2 ON x1 (q1); 

y2 ON x2 (q2); 

y2 ON x3 (q3); 

MODEL TEST: 

DO (1, 3) 0 = p# - q#; 
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where the numbers in parentheses give the range of values for the do 

loop.  The number sign (#) is replaced by these values during the 

execution of the do loop.  Following is the set of tests involving model 

parameters that will be jointly tested using the Wald test based on the 

DO option specified above: 

 

0 = p1 – q1; 

0 = p2 – q2; 

0 = p3 – q3; 

 

Following is an example of how to specify a double do loop: 

 

MODEL: 

y1 ON x1 (p1); 

y1 ON x2 (p2); 

y1 ON x3 (p3); 

y2 ON x1 (q1); 

y2 ON x2 (q2); 

y2 ON x3 (q3); 

 

MODEL TEST: 

DO (#,1,3) DO ($,1,3) 0 = p# - q$; 

 

where the numbers in parentheses give the range of values the double do 

loop will use.  The numbers replace the symbol preceding them.  

Following is the set of tests involving model parameters that will be 

jointly tested using the Wald test based on the DO option specified 

above: 

 

0 = p1 – q1; 

0 = p1 – q2; 

0 = p1 – q3; 

0 = p2 – q1; 

0 = p2 – q2; 

0 = p2 – q3; 

0 = p3 – q1; 

0 = p3 – q2; 

0 = p3 – q3; 
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THE MODEL PRIORS COMMAND 
 

The MODEL PRIORS command is used with ESTIMATOR=BAYES to 

specify the prior distribution for each parameter.  The default is to use 

diffuse (non-informative) priors. Following is a table that shows the 

distributions available and the default priors for different types of 

parameters: 

  
Type of Parameter Distributions Available Default Priors 

Observed continuous 
dependent variable 
means/intercepts (nu)  

normal  normal (0, infinity) 

Observed continuous 
dependent variable 
variances/residual  
variances (theta) 

inverse Gamma inverse Gamma (-1, 0) 

Observed categorical 
dependent variable 
thresholds (tau) 

normal 
uniform 

normal (0, infinity) 

Factor loadings (lambda) normal normal (0, infinity)* 
normal (0, 5)** 

Regression coefficients (beta) normal normal (0, infinity)* 
normal (0, 5)** 

Continuous latent variable 
means/intercepts (alpha) 

normal normal (0, infinity) 

Continuous latent variable 
variances/residual variances 
(psi) 

One latent variable 
inverse Gamma 
Gamma 
uniform 
lognormal 
normal 
 
More than one latent variable 
inverse Wishart  

inverse Gamma (-1, 0) 
 
 
 
 
 
 
inverse Wishart (0, -p-1)*** 

Categorical latent variable 
parameters (varies) 

Dirichlet Dirichlet (10, 10) 

 

*     Continuous variables 

**   Categorical variables 

*** Not available for GIBBS(RW) 

 

For the normal distribution default, infinity is ten to the power of ten.  

For the inverse Gamma default, the settings imply a uniform prior 

ranging from minus infinity to plus infinity.  For the inverse Wishart 

default, p is the dimension of the multivariate block of latent variables.  
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For the Dirichlet default, the first number gives the number of 

observations to add to the class referred to and the second number gives 

the number of observations to add to the last class.  For a discussion of 

priors, see Gelman et al. (2004), Browne and Draper (2006), and Gelman 

(2006).  

 

ASSIGNING PRIORS TO PARAMETERS 
 

Priors are assigned to the parameters using the tilde (~) symbol, which 

means distributed as, using the following distribution settings: 

 

Normal – N 

Lognormal – LN 

Uniform – U 

Inverse Gamma – IG 

Gamma – G 

Inverse Wishart – IW 

Dirichlet – D 

 

Each setting has two numbers in parentheses following the setting.  For 

the normal and lognormal distributions, the first number is the mean and 

the second number is the variance.  For the uniform distribution, the first 

number is the lower limit and the second number is upper limit.  For the 

inverse Gamma distribution, the first number is the shape parameter and 

the second number is the scale parameter.  For the Gamma distribution, 

the first number is the shape parameter and the second number is the 

inverse scale parameter.  For the inverse Wishart distribution, the first 

number is used to form a covariance matrix and the second number is the 

degrees of freedom.  For the Dirichlet distribution, the first number gives 

the number of observations to add to the class referred to and the second 

number gives the number of observations to add to the last class.  For a 

technical description of the implementation of priors, see Asparouhov 

and Muthén (2010b).  

 

In the MODEL PRIORS command, labels from the MODEL command 

are used to represent parameters for which prior distributions are 

specified.  See Labeling Parameters to see how parameters are labeled 

using the MODEL command.  Following is an example of how to assign 

priors to the factor loading parameters:  
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MODEL: 

f BY y1-y10* (p1-p10); 

f@1; 

 

MODEL PRIORS: 

p1-p10 ~ N (1, 0.5); 

 

where parameters p1 through p10 have normal priors with mean one and 

variance 0.5.  

 

COVARIANCE 
 

The COVARIANCE option is used to assign a prior to the covariance 

between two parameters.  Only normal priors are available.  Covariance 

priors can be assigned to only factor loadings, regression coefficients, 

intercepts, and thresholds for binary variables.  Following is an example 

of how to specify the COVARIANCE option:  

 

MODEL: 

y ON x1 (p1) 

          x2 (p2); 

 

MODEL PRIORS: 

p1 ~ N (10, 4); 

p2 ~ N (6, 1); 

COVARIANCE (p1, p2) = 0.5; 

 

where the bivariate prior distribution of p1 and p2 has a covariance of 

0.5 which corresponds to a correlation of 0.25 computed as 0.5 / (sqrt (4) 

* sqrt (1)). 

 

DO 
 

The DO option provides a do loop and a double do loop to facilitate 

specifying the same prior for a set of parameters.  With MODEL 

PRIORS it can be used with the DIFFERENCE option to assign priors to 

differences among a set of parameters.  Following is an example of how 

to specify a do loop: 

 

 

 



CHAPTER 17 

 

 

 778 

MODEL: 

f1 BY y1-y20; 

f2 BY y1-y10 

          y11-y20 (s1-s10); 

 

MODEL PRIORS: 

DO (1,10) s# ~ N (0,0.1);  

 

where the numbers in parentheses give the range of values for the do 

loop.  The number sign (#) is replaced by these values during the 

execution of the do loop.  Following are the statements that are 

generated based on the DO option specified above:  

 

s1 ~ N (0,0.1); 

s2 ~ N (0,0.1); 

s3 ~ N (0,0.1); 

s4 ~ N (0,0.1); 

s5 ~ N (0,0.1); 

s6 ~ N (0,0.1); 

s7 ~ N (0,0.1); 

s8 ~ N (0,0.1); 

s9 ~ N (0,0.1); 

s10 ~ N (0,0.1); 

 

Following is an example of how to specify a double do loop for a 

multiple group model: 

 

MODEL: 

f1 BY y1-y20; 

f2 BY y1-y15 

          y16-y20 (s#_1-s#_5); 

 

MODEL PRIORS: 

DO (#,1,2) DO ($,1,5) s#_$ ~ N (0,0.1); 

 

where the numbers in parentheses give the range of values the double do 

loop will use.  The numbers replace the symbol preceding them.  In this 

example, the first do loop refers to the two groups.  Following are the 

statements that are generated based on the DO option specified above: 
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s1_1 ~ N (0,0.01); 

s1_2 ~ N (0,0.01); 

s1_3 ~ N (0,0.01); 

s1_4 ~ N (0,0.01); 

s1_5 ~ N (0,0.01); 

s2_1 ~ N (0,0.01); 

s2_2 ~ N (0,0.01); 

s2_3 ~ N (0,0.01); 

s2_4 ~ N (0,0.01); 

s2_5 ~ N (0,0.01); 

 

DIFFERENCE 
 

The DIFFERENCE option is used to assign priors to the difference 

between two parameters.  Only normal priors are available.  Difference 

priors can be assigned to only factor loadings, regression coefficients, 

intercepts, and thresholds for binary variables.  Following is an example 

of how to specify the DIFFERENCE option:  

 

MODEL: 

y ON x1 (p1) 

          x2 (p2); 

 

MODEL PRIORS: 

DIFFERENCE (p1, p2) ~ N (0, 0.01); 

 

where the difference between p1 and p2 has a normal prior with mean 

zero and variance 0.01.  

 

The DO option provides a do loop to facilitate specifying the same 

expression for a set of parameters.  The DO and DIFFERENCE options 

can be used together to simplify the assignment of priors to a large set of 

difference parameters for models with multiple groups and multiple time 

points.  In Bayesian estimation, multiple group analysis is obtained using 

TYPE=MIXTURE and the KNOWNCLASS option.  Following is an 

example of how to use the DO and DIFFERENCE options to assign 

priors to differences across groups among a set of parameters: 
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MODEL: 

%OVERALL% 

f BY y1-y5; 

%c#1% 

f BY y2-y5 (p12-p15); 

%c#2% 

f BY y2-y5 (p22-p25); 

%c#3% 

f BY y2-y5 (p32-p35);  

 

MODEL PRIORS: 

DO (2, 5) DIFFERENCE (p1#-p3#) ~ N (0, 0.01); 

 

where the numbers in parentheses give the range of values for the do 

loop.  The number sign (#) is replaced by these values during the 

execution of the do loop.  Following are the differences that were 

assigned normal priors with mean zero and variance 0.01: 

 

p12 - p22 

p12 - p32 

p22 - p32 

p13 - p23 

p13 - p33 

p23 - p33 

p14 - p24 

p14 - p34 

p24 - p34 

p15 - p25 

p15 - p35 

p25 - p35 

 

MODEL COMMAND VARIATIONS 
 

The MODEL command is used to describe the analysis model using the 

options described in the previous sections.  This section discusses 

variations of the MODEL command for use with multiple group models, 

mixture models, multilevel models, and models for generating data for 

Monte Carlo simulations studies. 
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MODEL: 
 

The MODEL command is used to describe the analysis model for a 

single group analysis and the overall analysis model for multiple group 

analysis. 

 

MODEL label: 
 

MODEL followed by a label is used to describe the group-specific 

analysis models in multiple group analysis and the analysis model for 

each categorical latent variable in mixture modeling when there are more 

than one categorical latent variable in the analysis.    

 

In multiple group analysis, MODEL followed by a label is used to 

describe differences between the overall analysis model described in the 

MODEL command and the analysis model for each group.  Labels are 

defined using the GROUPING option of the VARIABLE command for 

raw data in a single file, by the FILE option of the DATA command for 

raw data in separate files, and by the program for summary data.  

MODEL followed by a label is used in conjunction with the 

%WITHIN% and %BETWEEN% specifications in multiple group 

multilevel analysis. 

 

In mixture modeling, MODEL followed by a label is used to describe the 

analysis model for each categorical latent variable when there are more 

than one categorical latent variable in the analysis and for combinations 

of categorical latent variables when there are more than two categorical 

latent variables in the analysis.  Labels are defined by using the names of 

the categorical latent variables.   

 

When there are more than one categorical latent variable in the model, 

the class-specific parts of the model for each categorical latent variable 

must be specified within a MODEL command for that categorical latent 

variable.  The %OVERALL% specification is not included in the 

MODEL commands for each categorical latent variable.  Following is an 

example of how to specify the MODEL command when there are more 

than one categorical latent variable in the model: 
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MODEL c1: 

%c1#1% 

%c1#2% 

 

where the class-specific parts of the model for c1 is specified after 

MODEL c1.  

 

When there are more than two categorical latent variables in the model, 

MODEL commands for pairs of categorical latent variables are allowed.  

These are used to specify parameters that are specific to the 

combinations of classes for those two categorical latent variables.  

Categorical latent variables can be combined in sets involving all but one 

categorical latent variable.  For example, with three categorical latent 

variables c1, c2, and c3, combinations of up to two categorical latent 

variables are allowed.  Following is an example of how this is specified: 

 

MODEL c1.c2: 

%c1#1.c2#1% 

 

where %c1#1.c2#1% refers to a combination of class 1 for c1 and class 1 

for c2.   

  

MODEL: 

  %OVERALL% 

  %class label% 
 

The MODEL command used in conjunction with %OVERALL% and 

%class label% is used to describe the overall and class-specific models 

for mixture models.  Statements following %OVERALL% refer to the 

model common to all latent classes.  Statements following %class 

label% refer to class-specific model statements.    

 

Class labels are created by adding to the name of the categorical latent 

variable a number sign (#) followed by the class number.  For example, 

if c is a categorical latent variable with two latent classes, the class 

labels are c#1 and c#2.  
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MODEL: 

  %WITHIN% 

  %BETWEEN% 

  %BETWEEN label% 
 

The MODEL command used in conjunction with %WITHIN%,  

%BETWEEN%, and %BETWEEN label% is used to describe the 

individual-level and cluster-level models for multilevel modeling.  For 

TYPE=TWOLEVEL, the statements following %WITHIN% describe 

the individual-level model and the statements following %BETWEEN% 

describe the cluster-level model.  With multilevel mixture models, the 

%OVERALL% and %class label% specifications are used with the 

%WITHIN% and %BETWEEN% specifications to describe the mixture 

part of the model. 

 

For TYPE=THREELEVEL and TYPE=CROSSCLASSIFIED, the 

statements following %WITHIN% describe the individual-level model 

and the statements following %BETWEEN label% describe the cluster-

level model.  The label is a cluster variable from the CLUSTER option.   

   

THE MODEL POPULATION COMMAND 
 

The MODEL POPULATION command is used to provide the 

population parameter values to be used in data generation using the 

options of the MODEL command described earlier.  The MODEL 

POPULATION command has variations for use with multiple group 

models, mixture models, and multilevel models.  These are described 

below. 

 

In the MODEL POPULATION command, each parameter in the model 

must be specified followed by the @ symbol or the asterisk (*) and the 

population parameter value.  Any model parameter not specified will 

have the value of zero as the population parameter value. 

 

Parameter estimates can be saved from a real data analysis using the 

ESTIMATES option of the SAVEDATA command and used in a 

subsequent Monte Carlo analysis as population parameter values.  This 

is done by using the POPULATION option of the MONTECARLO 

command.  
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MODEL POPULATION: 
 

The MODEL POPULATION command is used to provide the 

population parameter values to be used in data generation for single 

group analysis and the overall analysis model for multiple group 

analysis. 

 

MODEL POPULATION-label: 
 

MODEL POPULATION followed by a dash and a label is used to 

provide parameter values to be used in the generation of data for the 

group-specific analysis models in multiple group analysis and the 

analysis model for each categorical latent variable in mixture modeling 

when there are more than one categorical latent variable in the analysis.    

 

In multiple group analysis, the label following the dash refers to the 

group.  The first group is referred to by g1, the second group by g2, and 

so on.  In mixture modeling, the label following the dash is the name of 

each categorical latent variable when there are more than one categorical 

latent variables in the generation of the data.   

 

In addition, the NGROUPS option of the MONTECARLO command is 

used for the generation of data for multiple group Monte Carlo 

simulation studies. 

 

MODEL POPULATION: 

  %OVERALL% 

  %class label% 
 

MODEL POPULATION used in conjunction with %OVERALL% and 

%class label% is used to provide the population parameter values to be 

used in the generation of data for mixture models.  Statements following 

%OVERALL% refer to the model common to all latent classes.  

Statements following %class label% refer to class-specific model 

statements.  In addition, the GENCLASSES option of the 

MONTECARLO command is used for the generation of data for mixture 

models. 

 

The statements in the overall part of the model include information 

about the means, variances, and covariances of the background variables 
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and the specification of the overall model including information about 

parameters that do not vary across the classes.  The class-specific parts 

of the model describe the parameters that vary across classes.  

 

MODEL POPULATION: 

  %WITHIN% 

  %BETWEEN% 

  %BETWEEN label% 
 

MODEL POPULATION used in conjunction with %WITHIN%,  

%BETWEEN%, and %BETWEEN label% is used to provide the 

population parameter values to be used in the generation of clustered 

data.  For TYPE=TWOLEVEL, %WITHIN% is used to provide 

population parameter values for the individual-level model parameters.  

%BETWEEN% is used to provide population parameter values for the 

cluster-level model parameters.  With multilevel mixture models, the 

%OVERALL% and %class label% specifications are used with the 

%WITHIN% and %BETWEEN% specifications to provide the 

population parameter values to be used in the generation of data for 

mixture models.   

 

For TYPE=THREELEVEL and TYPE=CROSSCLASSIFIED, 

%WITHIN% is used to provide population parameter values for the 

individual-level model parameters.  %BETWEEN label% is used to 

provide population parameter values for the cluster-level model 

parameters.  For TYPE=THREELEVEL, the labels level2 and level3 are 

used to provide the level 2 and level 3 population parameter values.  For 

TYPE=CROSSCLASSIFIED, the labels level2a and level2b are used to 

describe the level 2a and level 2b population parameter values.    

 

In addition, the NCSIZES, CSIZES, BETWEEN, and WITHIN options 

of the MONTECARLO command are used for the generation of 

clustered data. 

 

THE MODEL COVERAGE COMMAND 
 

In Monte Carlo simulation studies, the MODEL command describes not 

only the analysis model but also provides values for each parameter that 

are used both as the population parameter values for computing coverage 

and as starting values in the estimation of the model.  If the MODEL 
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COVERAGE command is used, coverage is computed using the 

population parameter values specified in the MODEL COVERAGE 

command, and the values specified in the MODEL command are used 

only as starting values.  The MODEL COVERAGE command has 

special options for multiple group models, mixture models, and 

multilevel models.   

 

In MODEL COVERAGE, each parameter in the model must be 

specified followed by the @ symbol or the asterisk (*) and the 

population parameter value.  Any model parameter not specified will 

have the value of zero as the population parameter value. 

 

Parameter estimates can be saved from a real data analysis using the 

ESTIMATES option of the SAVEDATA command and used in a 

subsequent Monte Carlo analysis as population parameter values.  This 

is done by using the COVERAGE option of the MONTECARLO 

command. 

 

MODEL COVERAGE: 
 

The MODEL COVERAGE command is used to provide the population 

parameter values to be used for computing coverage for single group 

analysis and the overall analysis model for multiple group analysis. 

 

MODEL COVERAGE-label: 
 

MODEL COVERAGE followed by a dash and a label is used in multiple 

group analysis to provide group-specific parameter values to be used in 

computing coverage.  The label following the dash refers to the group.  

The first group is referred to by g1, the second group by g2, and so on.  

In mixture modeling, the label following the dash is the name of each 

categorical latent variable when there are more than one categorical 

latent variable. 

 

MODEL COVERAGE: 

  %OVERALL% 

  %class label% 
 

MODEL COVERAGE used in conjunction with %OVERALL% and 

%class label% is used to provide the population parameter values to be 
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used in computing coverage.  Statements following %OVERALL% refer 

to the model common to all latent classes.  Statements following %class 

label% refer to class-specific model statements.  

 

Class labels are created by adding to the name of the categorical latent 

variable a number sign (#) followed by the class number.  For example, 

if c1 is a categorical latent variable with two latent classes, the class 

labels are c1#1 and c1#2.  

 

The statements in the overall part of the model include information 

about the means, variances, and covariances of the background variables 

and the specification of the overall model including information about 

latent class parameters that do not vary across the classes.  The class-

specific parts of the model describe the latent class parameters that do 

vary across classes.  

 

MODEL COVERAGE: 

  %WITHIN% 

  %BETWEEN% 

  %BETWEEN label% 
 

MODEL COVERAGE used in conjunction with %WITHIN% and 

%BETWEEN% is used to provide the population parameter values to be 

used in computing coverage.  For TYPE=TWOLEVEL, %WITHIN% is 

used to provide the population parameter values for the individual-level 

model parameters.  %BETWEEN% is used to provide the population 

parameter values for the cluster-level model parameters.  

 

For TYPE=THREELEVEL and TYPE=CROSSCLASSIFIED, 

%WITHIN% is used to provide population parameter values for the 

individual-level model parameters.  %BETWEEN label% is used to 

provide population parameter values for the cluster-level model 

parameters.  For TYPE=THREELEVEL, the labels level2 and level3 are 

used to provide the level 2 and level 3 population parameter values.  For 

TYPE=CROSSCLASSIFIED, the labels level2a and level2b are used to 

describe the level 2a and level 2b population parameter values.    
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THE MODEL MISSING COMMAND 
 

The MODEL MISSING command is used to provide information about 

the population parameter values for the missing data model to be used in 

the generation of data.  The MODEL MISSING command has special 

options for multiple group models and for mixture models.  The 

MISSING option of the MONTECARLO command is required for 

MODEL MISSING. 

 

Each parameter in the model must be specified followed by the @ 

symbol or the asterisk (*) and the population parameter value.  Any 

model parameter not specified will have the value of zero as the 

population parameter value. 

 

Information about each variable listed in the MISSING statement of the 

MONTECARLO command must be included as part of the MODEL 

MISSING command.  These variables must be dependent variables in 

the MODEL command.  The probability of having missing data or not on 

these dependent variables is described by logistic regressions in the 

MODEL MISSING command.  In the MODEL MISSING command, the 

missing data indicators use the same names as the dependent variables in 

the MODEL command.  For each dependent variable, the intercept and 

slopes for all covariates must be specified for the logistic regression.  

The covariates in these logistic regressions can be both independent and 

dependent variables in the MODEL command.  When a dependent 

variable in the MODEL command is used as a dependent variable in the 

logistic regression, it is a missing value indicator.  When it is used as a 

covariate in the logistic regression, it is the original variable in the 

MODEL command.  In the following example, in the first ON statement 

y1 is a missing value indicator variable.  In the second ON statement, y1 

is treated as the original variable. 

 

MODEL MISSING: 

y1 ON x;   

y2 ON y1 x; 

 

A dependent variable that is censored, categorical, or count is treated as 

a continuous covariate in the logistic regressions. 
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MODEL MISSING: 
 

The MODEL MISSING command is used to provide information about 

the population parameter values for the missing data model to be used in 

the generation of data for single group analysis and the overall analysis 

model for multiple group analysis. 

 

MODEL MISSING-label: 
 
MODEL MISSING followed by a dash and a label is used in multiple 

group analysis to provide group-specific population parameter values for 

the missing data model to be used in the generation of data.  The label 

following the dash refers to the group.  The first group is referred to by 

g1, the second group by g2, and so on.  

 

MODEL MISSING: 

  %OVERALL% 

  %class label% 
 

MODEL MISSING used in conjunction with %OVERALL% and %class 

label% is used to provide the population parameter values for the 

missing data model to be used in the generation of data for mixture 

models.  Statements following %OVERALL% refer to the model 

common to all latent classes.  Statements following %class label% refer 

to class-specific model statements.  

 

Class labels are created by adding to the name of the categorical latent 

variable a number sign (#) followed by the class number.  For example, 

if c1 is a categorical latent variable with two latent classes, the class 

labels are c1#1 and c1#2.  
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CHAPTER 18 

OUTPUT, SAVEDATA, AND PLOT 

COMMANDS 
 

 

In this chapter, the OUTPUT, SAVEDATA, and PLOT commands are 

discussed.  The OUTPUT command is used to request additional output 

beyond that included as the default. The SAVEDATA command is used 

to save the analysis data and/or a variety of model results in an ASCII 

file for future use.  The PLOT command is used to request graphical 

displays of observed data and analysis results.      

 

THE OUTPUT COMMAND 
 

The OUTPUT command is used to request additional output not 

included as the default. 

 

Following are the option settings for the OUTPUT command: 

 
OUTPUT:   
   
 SAMPSTAT;  

 CROSSTABS; ALL 

 CROSSTABS (ALL);  

 CROSSTABS (COUNT);  

 CROSSTABS (%ROW);  

 CROSSTABS (%COLUMN);  

 CROSSTABS (%TOTAL);  

 STANDARDIZED;  

 STDYX;  
 STDY;  

 STD;  

 STANDARDIZED (CLUSTER);  

 STDYX (CLUSTER); 

STDY (CLUSTER); 

STD (CLUSTER); 

RESIDUAL;         

RESIDUAL (CLUSTER); 

 

 MODINDICES (minimum chi-square); 10 
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MODINDICES (ALL); 

MODINDICES (ALL minimum chi-square); 

 
10 

 CINTERVAL; 

CINTERVAL (SYMMETRIC); 

CINTERVAL (BOOTSTRAP); 

CINTERVAL (BCBOOTSTRAP); 

CINTERVAL (EQTAIL); 

CINTERVAL (HPD); 

SYMMETRIC 
 
 
 
EQTAIL 

 SVALUES;  

 NOCHISQUARE;  

 NOSERROR;  

 H1SE;  

 H1TECH3; 

H1MODEL; 

H1MODEL (COVARIANCE); 

H1MODEL (SEQUENTIAL); 

 
COVARIANCE 

 PATTERNS;  

 FSCOEFFICIENT;  

 FSDETERMINACY; 

FSCOMPARISON; 

 

 BASEHAZARD;  

 LOGRANK; 

ALIGNMENT; 

 

 ENTROPY;  

 TECH1;  
 TECH2;  
 TECH3;  
 TECH4; 

TECH4 (CLUSTER); 

 

 TECH5;  
 TECH6;  
 TECH7;  
 TECH8;  
 TECH9;  
 TECH10;  
 TECH11;  
 TECH12;  
 TECH13; 

TECH14; 

TECH15; 

TECH16; 

 

 

The OUTPUT command is not a required command.  Note that 

commands can be shortened to four or more letters.  Option settings can 
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be referred to by either the complete word or the part of the word shown 

above in bold type. 

 

The default output for all analyses includes a listing of the input setup, a 

summary of the analysis specifications, and a summary of the analysis 

results.  Analysis results include a set of fit statistics, parameter 

estimates, standard errors of the parameter estimates, the ratio of each 

parameter estimate to its standard error, and a two-tailed p-value for the 

ratio.  Analysis results for TYPE=EFA include eigenvalues for the 

sample correlation matrix, a set of fit statistics, estimated rotated factor 

loadings and correlations and their standard errors, estimated residual 

variances and their standard errors, the factor structure matrix, and factor 

determinacies.  Output for TYPE=BASIC includes sample statistics for 

the analysis data set and other descriptive information appropriate for 

the particular analysis.   

 

Mplus OUTPUT 
 

Following is a description of the information that is provided in the 

output as the default.  Information about optional output is described in 

the next section.  The output can be shown in a plain text or HTML 

format.  The default is plain text.   

 

INPUT SETUP 
 

The first information printed in the Mplus output is a restatement of the 

input file. The restatement of the input instructions is useful as a record 

of which input produced the results provided in the output.  Following is 

the input file that produced the output that will be used in this chapter to 

illustrate most of the output features: 
 

TITLE:    example for the output chapter 

DATA:     FILE = output.dat; 

VARIABLE: NAMES = y1-y4 x; 

MODEL:    f BY y1-y4; 

          f ON x; 

OUTPUT:   SAMPSTAT MODINDICES (0) STANDARDIZED 

          RESIDUAL TECH1 TECH2 TECH3 TECH4 

          TECH5 FSCOEF FSDET CINTERVAL PATTERNS; 

SAVEDATA: FILE IS output.sav; 

     SAVE IS FSCORES; 
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SUMMARY OF ANALYSIS SPECIFICATIONS 

 

A summary of the analysis specifications is printed in the output after 

the restatement of the input instructions.  This is useful because it shows 

how the program has interpreted the input instructions and read the data.  

It is important to check that the number of observations is as expected.  

It is also important to read any warnings and error messages that have 

been generated by the program.  These contain useful information for 

understanding and modifying the analysis.  

     

Following is the summary of the analysis for the example output: 
 

SUMMARY OF ANALYSIS 

 

Number of groups                                     1 

Number of observations                             500 

 

Number of dependent variables                        4 

Number of independent variables                      1 

Number of continuous latent variables                1 

 

Observed dependent variables 

 

  Continuous 

   Y1          Y2          Y3          Y4 

 

Observed independent variables 

   X 

 

Continuous latent variables 

   F 

 

Estimator                                           ML 

Information matrix                            EXPECTED 

Maximum number of iterations                      1000 

Convergence criterion                        0.500D-04 

Maximum number of steepest descent iterations       20 

 

Input data file(s) 

  output.dat 

 

Input data format  FREE 
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SUMMARY OF ANALYSIS RESULTS 
 

The third part of the output consists of a summary of the analysis results.  

Fit statistics, parameter estimates, and standard errors can be saved in an 

external data set by using the RESULTS option of the SAVEDATA 

command.  Following is a description of what is included in the output.     

 

Tests of model fit are printed first.  For most analyses, these consist of 

the chi-square test statistic, degrees of freedom, and p-value for the 

analysis model; the chi-square test statistic, degrees of freedom, and p-

value for the baseline model of uncorrelated dependent variables; CFI 

and TLI; the loglikelihood for the analysis model; the loglikelihood for 

the unrestricted model; the number of free parameters in the estimated 

model; AIC, BIC, and sample-size adjusted BIC; RMSEA; and SRMR. 

   
MODEL FIT INFORMATION 

 

Number of Free Parameters                       13 

 

Loglikelihood 

 

          H0 Value                       -3329.929 

          H1 Value                       -3326.522 

 

Information Criteria 

 

          Akaike (AIC)                    6685.858 

          Bayesian (BIC)                  6740.648 

          Sample-Size Adjusted BIC        6699.385 

            (n* = (n + 2) / 24) 

 

Chi-Square Test of Model Fit 

 

          Value                              6.815 

          Degrees of Freedom                     5 

          P-Value                           0.2348 

 

RMSEA (Root Mean Square Error Of Approximation) 

 

          Estimate                           0.027 

          90 Percent C.I.             0.000  0.072 

          Probability RMSEA <= .05           0.755 

 

CFI/TLI 

 

          CFI                                0.999 
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          TLI                                0.997 

 

Chi-Square Test of Model Fit for the Baseline Model 

 

          Value                           1236.962 

          Degrees of Freedom                    10 

          P-Value                           0.0000 

 

SRMR (Standardized Root Mean Square Residual) 

 

          Value                              0.012 

 

The results of the model estimation are printed after the tests of model 

fit.  The first column of the output labeled Estimates contains the model 

estimated value for each parameter.  The parameters are identified using 

the conventions of the MODEL command.  For example, factor loadings 

are found in the BY statements.  Other regression coefficients are found 

in the ON statements.  Covariances and residual covariances are found in 

the WITH statements.  Variances, residual variances, means, intercepts, 

and thresholds are found under these headings.  The scale factors used in 

the estimation of models with categorical outcomes are found under the 

heading Scales. 

 

The type of regression coefficient produced during model estimation is 

determined by the scale of the dependent variable and the estimator 

being used in the analysis.  For continuous observed dependent variables 

and for continuous latent dependent variables, the regression coefficients 

produced for BY and ON statements for all estimators are linear 

regression coefficients.  For censored observed dependent variables, the 

regression coefficients produced for BY and ON statements for all 

estimators are censored-normal regression coefficients.  For the inflation 

part of censored observed dependent variables, the regression 

coefficients produced for BY and ON statements are logistic regression 

coefficients.  For binary and ordered categorical observed dependent 

variables, the regression coefficients produced for BY and ON 

statements using a weighted least squares estimator such as WLSMV are 

probit regression coefficients. For binary and ordered categorical 

observed dependent variables, the regression coefficients produced for 

BY and ON statements using a maximum likelihood estimator are 

logistic regression coefficients using the default LINK=LOGIT and 

probit regression coefficients using LINK=PROBIT.  Logistic regression 

for ordered categorical outcomes uses the proportional odds 
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specification.  For categorical latent dependent variables and unordered 

categorical observed dependent variables, the regression coefficients 

produced for ON statements are multinomial logistic regression 

coefficients.  For count observed dependent variables and time-to-event 

variables in continuous-time survival analysis, the regression 

coefficients produced for BY and ON statements are loglinear regression 

coefficients.  For the inflation part of count observed dependent 

variables, the regression coefficients produced for BY and ON 

statements are logistic regression coefficients.   

 
MODEL RESULTS 

                                                    Two-Tailed 

                    Estimate       S.E.  Est./S.E.    P-Value 

 F        BY 

    Y1                 1.000      0.000    999.000    999.000 

    Y2                 0.907      0.046     19.908      0.000 

    Y3                 0.921      0.045     20.509      0.000 

    Y4                 0.949      0.046     20.480      0.000 

 

  

F        ON 

    X                  0.606      0.049     12.445      0.000 

 

 Intercepts 

    Y1                 0.132      0.051      2.608      0.009 

    Y2                 0.118      0.049      2.393      0.017 

    Y3                 0.061      0.048      1.268      0.205 

    Y4                 0.076      0.050      1.529      0.126 

 

 Residual Variances 

    Y1                 0.479      0.043     11.061      0.000 

    Y2                 0.558      0.045     12.538      0.000 

    Y3                 0.492      0.041     11.923      0.000 

    Y4                 0.534      0.044     12.034      0.000 

    F                  0.794      0.073     10.837      0.000 

 

The second column of the output labeled S.E. contains the standard 

errors of the parameter estimates.  The type of standard errors produced 

during model estimation is determined by the estimator that is used.  The 

estimator being used is printed in the summary of the analysis.  Each 

analysis type has a default estimator.  For several analysis types, the 

default estimator can be changed using the ESTIMATOR option of the 

ANALYSIS command.  A table of estimators that are available for each 

analysis type can be found in Chapter 16. 
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The third column of the output labeled Est./S.E. contains the value of the 

parameter estimate divided by the standard error (column 1 divided by 

column 2).  This statistical test is an approximately normally distributed 

quantity (z-score) in large samples.  The critical value for a two-tailed 

test at the .05 level is an absolute value greater than 1.96.  The fourth 

column of the output labeled Two-Tailed P-Value gives the p-value for 

the z-score in the third column. 
 

The value of 999 is printed when a value cannot be computed.  This 

happens most often when there are negative variances or residual 

variances.  A series of asterisks (*) is printed when the value to be 

printed is too large to fit in the space provided.  This happens when 

variables are measured on a large scale.  To reduce the risk of 

computational difficulties, it is recommended to keep variables on a 

scale such that their variances do not deviate too far from the range of 

one to ten.  Variables can be rescaled using the DEFINE command.   

 

OUTPUT OPTIONS 
 

SAMPSTAT 
 

The SAMPSTAT option is used to request sample statistics for the data 

being analyzed.  For continuous variables, these include sample means, 

sample variances, sample covariances, and sample correlations.  In 

addition to these, the following univariate descriptive statistics are 

available: sample size, mean, variance, skewness, kurtosis, minimum, 

maximum, percent with minimum, percent with maximum, percentiles, 

and the median.  For binary and ordered categorical (ordinal) variables 

using weighted least squares estimation, the sample statistics include 

sample thresholds; sample tetrachoric, polychoric and polyserial 

correlations for models without covariates; and sample probit regression 

coefficients and sample probit residual correlations for models with 

covariates.  In addition to these, univariate proportions and counts are 

available.  The SAMPSTAT option is not available for censored 

variables using maximum likelihood estimation, unordered categorical 

(nominal) variables, count variables, binary and ordered categorical 

(ordinal) variables using maximum likelihood estimation, and time-to-

event variables.  The sample correlation and covariance matrices can be 

saved in an ASCII file using the SAMPLE option of the SAVEDATA 

command.  
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CROSSTABS 
 

The CROSSTABS option is used to request bivariate frequency tables 

for pairs of binary, ordered categorical (ordinal), and/or unordered 

categorical (nominal) variables.  Row, column, and total counts are 

given along with row, column, and total percentages for each category of 

the variable and the total counts.  The CROSSTAB option has the 

following settings:  ALL, COUNT, %ROW, %COLUMN, and 

%TOTAL.  The default is ALL.  These settings can be used to request 

specific information in the bivariate frequency table.  For example, 

 

CROSSTABS (COUNT  %ROW); 

 

provides a bivariate frequency table with count and row percentages.  

 

STANDARDIZED 
 

The STANDARDIZED option is used to request standardized parameter 

estimates and their standard errors and R-square.  Standard errors are 

computed using the Delta method.  Both symmetric and non-symmetric 

confidence intervals for standardized parameter estimates are available 

using the CINTERVAL option of the OUTPUT command. 

 

Three types of standardizations are provided as the default.  The first 

type of standardization is shown under the heading StdYX in the output.  

StdYX uses the variances of the continuous latent variables as well as 

the variances of the background and outcome variables for 

standardization.  The StdYX standardization is the one used in the linear 

regression of y on x, 

 

bStdYX = b*SD(x)/SD(y), 

 

where b is the unstandardized linear regression coefficient, SD(x) is the 

sample standard deviation of x, and SD(y) is the model estimated 

standard deviation of y.  The standardized coefficient bStdYX is 

interpreted as the change in y in y standard deviation units for a standard 

deviation change in x. 

 

The second type of standardization is shown under the heading StdY in 

the output.  StdY uses the variances of the continuous latent variables as 
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well as the variances of the outcome variables for standardization.  The 

StdY standardization for the linear regression of y on x is 

 

bStdY = b/SD(y). 

 

StdY should be used for binary covariates because a standard deviation 

change of a binary variable is not meaningful.  The standardized 

coefficient bStdY is interpreted as the change in y in y standard deviation 

units when x changes from zero to one. 

 

In mediation modeling where y is regressed on the mediator m and m is 

regressed on x, the StdY coefficient for y on m is standardized by both 

the standard deviation of y and the standard deviation of m because m is 

a dependent variable in the regression of m on x.  StdY is therefore 

equivalent to StdYX in this case. 

 

The third type of standardization is shown under the heading Std in the 

output.  Std uses the variances of the continuous latent variables for 

standardization.  

 

Covariances are standardized using variances.  Residual covariances are 

standardized using residual variances.   This is the case for both latent 

and observed variables. 

 

Options are available to request one or two of the standardizations.  

They are STDYX, STDY, and STD.  To request only the standardization 

that uses the variances of the continuous latent variables as well as the 

variances of the background and outcome variables, specify: 

 

STDYX; 

 

To request both the standardization that uses the variances of the 

continuous latent variables as well as the variances of the background 

and outcome variables and the standardization that uses the variances of 

the continuous latent variables and the variances of the outcome 

variables, specify: 

 

STDYX STDY; 
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For models with random effects defined using the | symbol in 

conjunction with ON and BY and for random variances, the 

STANDARDIZED option is available for TYPE=TWOLEVEL and 

ESTIMATOR=BAYES.  When a model has random effects, each 

parameter is standardized for each cluster.  The standardized values 

reported are the average of the standardized values across clusters for 

each parameter (Schuurman et al., 2016; Asparouhov, Hamaker, & 

Muthén, 2017).  The CLUSTER setting of the STANDARDIZED option 

is used when a model has random effects to request that the standardized 

values for each cluster be printed in the output.  Following is an example 

of how to specify the STANDARDIZED option using the CLUSTER 

setting: 

 

STANDARDIZED (CLUSTER);  

 

The STANDARDIZED option is not available for TYPE=RANDOM 

with maximum likelihood estimation or the CONSTRAINT option of the 

VARIABLE command.  For the MUML estimator, STDY and standard 

errors for standardized estimates are not available.  

 

Following is the output obtained when requesting STDYX: 

 
STDYX Standardization 

                                                    Two-Tailed 

                   Estimates       S.E.  Est./S.E.    P-Value 

 

 F        BY 

    Y1                 0.838      0.018     47.679      0.000 

    Y2                 0.790      0.020     38.807      0.000 

    Y3                 0.813      0.019     42.691      0.000 

    Y4                 0.810      0.019     42.142      0.000 

 

 F        ON 

    X                  0.545      0.034     15.873      0.000 

 

 Intercepts 

    Y1                 0.104      0.040      2.605      0.009 

    Y2                 0.097      0.040      2.391      0.017 

    Y3                 0.051      0.040      1.269      0.205 

    Y4                 0.061      0.040      1.529      0.126 

 

 Residual Variances 

    Y1                 0.298      0.029     10.106      0.000 

    Y2                 0.375      0.032     11.657      0.000 
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    Y3                 0.339      0.031     10.964      0.000 

    Y4                 0.345      0.031     11.078      0.000 

    F                  0.703      0.037     18.822      0.000 

 

where the first column of the output labeled Estimates contains the 

parameter estimate that has been standardized using the variances of the 

continuous latent variables as well as the variances of the background 

and outcome variables for standardization, the second column of the 

output labeled S.E. contains the standard error of the standardized 

parameter estimate, the third column of the output labeled Est./S.E. 

contains the value of the parameter estimate divided by the standard 

error (column 1 divided by column 2), and the fourth column of the 

output labeled Two-Tailed P-Value gives the p-value for the z-score in 

the third column.  When standardized parameter estimates and standard 

errors are requested, an R-square value and its standard error are given 

for each observed and latent dependent variable in the model. 

 

RESIDUAL 
 

The RESIDUAL option is used to request residuals for the observed 

variables in the analysis.  Residuals are computed for the model 

estimated means/intercepts/thresholds and the model estimated 

covariances/correlations/residual correlations.  Residuals are computed 

as the difference between the value of the observed sample statistic and 

its model-estimated value.  With missing data, the observed sample 

statistics are replaced by the estimated unrestricted model for the 

means/intercepts/thresholds and the covariances/correlations/residual 

correlations.  Standardized and normalized residuals are available for 

continuous outcomes with TYPE=GENERAL and maximum likelihood 

estimation.    Standardized residuals are computed as the difference 

between the value of the observed sample statistic and its model 

estimated value divided by the standard deviation of the difference 

between the value of the observed sample statistic and its model 

estimated value.  Standardized residuals are approximate z-scores.  

Normalized residuals are computed as the difference between the value 

of the observed sample statistic and its model estimated value divided by 

the standard deviation of the value of the observed sample statistic.  The 

RESIDUAL option is not available for TYPE=RANDOM with 

maximum likelihood estimation or the CONSTRAINT option of the 

VARIABLE command.   
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or models with random effects defined using the | symbol in conjunction 

with ON and BY and for random variances, the RESIDUAL option is 

available for TYPE=TWOLEVEL and ESTIMATOR=BAYES.  The 

CLUSTER setting of the RESIDUAL option is used when a model has 

random effects to request that residuals for each cluster be printed in the 

output.  Following is an example of how to specify RESIDUAL option 

using the CLUSTER setting: 

 

RESIDUAL (CLUSTER); 

 

Following is an example of the residual output for a covariance matrix: 
 

RESIDUAL OUTPUT 

 

     ESTIMATED MODEL AND RESIDUALS (OBSERVED - ESTIMATED) 

 

      Model Estimated Covariances/Correlations/Residual Correlations 

         Y1            Y2            Y3            Y4            X 

         ________      ________      ________      ________     ________ 

 Y1        1.608 

 Y2        1.024         1.487 

 Y3        1.041         0.944         1.451 

 Y4        1.072         0.972         0.987         1.551 

 X         0.553         0.501         0.509         0.524         0.912 

 

      Residuals for Covariances/Correlations/Residual Correlations 

         Y1            Y2            Y3            Y4            X 

         ________      ________      ________      ________     ________ 

 Y1        0.000 

 Y2        0.004         0.000 

 Y3       -0.014         0.013         0.000 

 Y4       -0.006         0.002         0.005         0.000 

 X         0.040        -0.048        -0.003         0.000         0.000 

 

      Standardized Residuals (z-scores) for Covariances/Correlations/        

      Residual Correlations 

         Y1            Y2            Y3            Y4            X 

         ________      ________      ________      ________     ________   

 Y1        0.000 

 Y2        0.252         0.000 

 Y3       -1.241         0.819         0.000 

 Y4       -0.505         0.143         0.336         0.000 

 X         1.906        -2.284        -0.132        -0.003         0.000 

 

      Normalized Residuals for Covariances/Correlations/Residual  

      Correlations 

         Y1            Y2            Y3            Y4            X 
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         ________      ________      ________      ________     ________ 

 Y1        0.000 

 Y2        0.043         0.000 

 Y3       -0.165         0.171         0.000 

 Y4       -0.073         0.029         0.061         0.00 

 X         0.664        -0.864        -0.049        -0.001         0.000 

 

MODINDICES 
 

The MODINDICES option is used to request the following indices: 

modification indices, expected parameter change indices, and two types 

of standardized expected parameter change indices for all parameters in 

the model that are fixed or constrained to be equal to other parameters.  

Model modification indices are available for most models when 

observed dependent variables are continuous, binary, and ordered 

categorical (ordinal).  The MODINDICES option is used with EFA to 

request modification indices and expected parameter change indices for 

the residual correlations.  The MODINDICES option is not available for 

the MODEL CONSTRAINT command, 

ALGORITHM=INTEGRATION, TYPE=TWOLEVEL using the 

MUML estimator, the BOOTSTRAP option of the ANALYSIS 

command, and for models with more than one categorical latent variable.  

 

When model modification indices are requested, they are provided as the 

default when the modification index for a parameter is greater than or 

equal to 10.  The following statement requests modification indices 

greater than zero: 

 

MODINDICES (0); 

 

Model modification indices are provided for the matrices that are opened 

as part of the analysis.  To request modification indices for all matrices, 

specify: 

 

MODINDICES (ALL); 

 

or 

 

MODINDICES (ALL 0); 
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The first column of the output labeled M.I. contains the modification 

index for each parameter that is fixed or constrained to be equal to 

another parameter.   A modification index gives the expected drop in 

chi-square if the parameter in question is freely estimated.  The 

parameters are labeled using the conventions of the MODEL command.  

For example, factor loadings are found in the BY statements.  Other 

regression coefficients are found in the ON statements.  Covariances and 

residual covariances are found in the WITH statements.  Variances, 

residual variances, means, intercepts, and thresholds are found under 

these headings.  The scale factors used in the estimation of models with 

categorical outcomes are found under the heading Scales.   

 
MODEL MODIFICATION INDICES 

 

Minimum M.I. value for printing the modification index     0.000 

 

                            M.I.     E.P.C.  Std E.P.C.  StdYX E.P.C. 

 

WITH Statements 

 

Y2       WITH Y1            0.066     0.010      0.010        0.019 

Y3       WITH Y1            1.209    -0.042     -0.042       -0.086 

Y3       WITH Y2            0.754     0.031      0.031        0.059 

Y4       WITH Y1            0.226    -0.019     -0.019       -0.037 

Y4       WITH Y2            0.021     0.005      0.005        0.010 

Y4       WITH Y3            0.116     0.013      0.013        0.024 

 

The second column of the output labeled E.P.C. contains the expected 

parameter change index for each parameter that is fixed or constrained to 

be equal to another parameter.  An E.P.C. index provides the expected 

value of the parameter in question if it is freely estimated.  The third and 

fourth columns of the output labeled Std E.P.C. and StdYX E.P.C. 

contain the two standardized expected parameter change indices.  These 

indices are useful because the standardized values provide relative 

comparisons.  The Std E.P.C. indices are standardized using the 

variances of the continuous latent variables.  The StdYX E.P.C. indices 

are standardized using the variances of the continuous latent variables as 

well as the variances of the background and/or outcome variables. 
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CINTERVAL 
 

The CINTERVAL option is used to request confidence intervals for 

frequentist model parameter estimates and credibility intervals for 

Bayesian model parameter estimates.  Confidence intervals are also 

available for indirect effects and standardized indirect effects.  The 

CINTERVAL option has three settings for frequentist estimation and 

two settings for Bayesian estimation.   

 

The frequentist settings are SYMMETRIC, BOOTSTRAP, and 

BCBOOTSTRAP.  SYMMETRIC is the default for frequentist 

estimation.  SYMMETRIC produces 90%, 95% and 99% symmetric 

confidence intervals.  BOOTSTRAP produces 90%, 95%, and 99% 

bootstrap confidence intervals.  BCBOOTSTRAP produces 90%, 95%, 

and 99% bias-corrected bootstrap confidence intervals.  The 

bootstrapped distribution of each parameter estimate is used to 

determine the bootstrap and bias-corrected bootstrap confidence 

intervals.  These intervals take non-normality of the parameter estimate 

distribution into account. As a result, they are not necessarily symmetric 

around the parameter estimate.   

 

The Bayesian settings are EQTAIL and HPD.  EQTAIL is the default for 

Bayesian estimation.  EQTAIL produces 90%, 95%, and 99% credibility 

intervals of the posterior distribution with equal tail percentages.  HPD 

produces 90%, 95%, and 99% credibility intervals of the posterior 

distribution that give the highest posterior density (Gelman et al., 2004).    

 

With frequentist estimation, only SYMMETRIC confidence intervals are 

available for standardized parameter estimates.  With Bayesian 

estimation, both EQTAIL and HPD confidence intervals are available 

for standardized parameter estimates.    

 

The following statement shows how to request bootstrap confidence 

intervals: 

 

CINTERVAL (BOOTSTRAP); 

 

In the output, the parameters are labeled using the conventions of the 

MODEL command.  For example, factor loadings are found in the BY 

statements.  Other regression coefficients are found in the ON 
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statements.  Covariances and residual covariances are found in the 

WITH statements.  Variances, residual variances, means, intercepts, and 

thresholds will be found under these headings.  The scale factors used in 

the estimation of models with categorical outcomes are found under the 

heading Scales.  The CINTERVAL option is not available for 

TYPE=EFA.   

 

The outputs for frequentist confidence intervals and Bayesian credibility 

intervals have the same format.  Following is output showing symmetric 

frequentist confidence intervals:   

 
CONFIDENCE INTERVALS OF MODEL RESULTS 

 

             Lower .5%  Lower 2.5%    Lower 5%    Estimate    Upper 5%  Upper 2.5%   Upper .5% 

 

F        BY 

Y1               1.000       1.000       1.000       1.000       1.000       1.000       1.000 

Y2               0.790       0.818       0.832       0.907       0.982       0.996       1.024 

Y3               0.806       0.833       0.847       0.921       0.995       1.009       1.037 

Y4               0.829       0.858       0.872       0.949       1.025       1.039       1.068 

 

F        ON 

X                0.481       0.511       0.526       0.606       0.686       0.702       0.732 

 

Intercepts 

Y1               0.002       0.033       0.049       0.132       0.215       0.231       0.262 

Y2              -0.009       0.021       0.037       0.118       0.199       0.214       0.245 

Y3              -0.063      -0.033      -0.018       0.061       0.141       0.156       0.186 

Y4              -0.052      -0.022      -0.006       0.077       0.159       0.175       0.205 

 

Residual Variances 

Y1               0.367       0.394       0.408       0.479       0.550       0.564       0.590 

Y2               0.443       0.471       0.485       0.558       0.631       0.645       0.673 

Y3               0.386       0.411       0.424       0.492       0.560       0.573       0.599 

Y4               0.420       0.447       0.461       0.534       0.607       0.621       0.649 

F                0.606       0.651       0.674       0.794       0.915       0.938       0.983 

 

The fourth column of the output labeled Estimate contains the parameter 

estimates.  The third and fifth columns of the output labeled Lower 5% 

and Upper 5%, respectively, contain the lower and upper bounds of the 

90% confidence interval.  The second and sixth columns of the output 

labeled Lower 2.5% and Upper 2.5%, respectively, contain the lower 

and upper bounds of the 95% confidence interval.  The first and seventh 

columns of the output labeled Lower .5% and Upper .5%, respectively, 

contain the lower and upper bounds of the 99% confidence interval.  
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SVALUES 
 

The SVALUES option is used to create input statements that contain 

parameter estimates from the analysis.  These values are used as starting 

values in the input statements.  The input statements can be used in a 

subsequent analysis in the MODEL or MODEL POPULATION 

commands.  Not all input statements are reported, for example, input 

statements with the | symbol followed by ON, AT, or XWITH.  For 

MODEL CONSTRAINT, input statements are created for only the 

parameters of the NEW option.  Input statements are created as the 

default when a model does not converge.  To request that these input 

statements be created, specify the following: 

 

SVALUES; 

 

NOCHISQUARE 
 

The NOCHISQUARE option is used to request that the chi-square fit 

statistic not be computed.  This reduces computational time when the 

model contains many observed variables.  The chi-square fit statistic is 

computed as the default when available.  To request that the chi-square 

fit statistic not be computed, specify the following:  

 

NOCHISQUARE; 

 

This option is not available for the MONTECARLO command unless 

missing data are generated. 

 

NOSERROR 
 

The NOSERROR option is used to request that standard errors not be 

computed.  This reduces computational time when the model contains 

many observed variables.  To request that standard errors not be 

computed, specify the following:  

 

NOSERROR; 

 

This option is not available for the MONTECARLO command. 
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H1SE 
 

The H1SE option is used with the ML, MLR, and MLF estimators to 

request standard errors for the unrestricted H1 model.  It must be used in 

conjunction with TYPE=BASIC or the SAMPSTAT option of the 

OUTPUT command.  It is not available for any other analysis type and it 

cannot be used in conjunction with the BOOTSTRAP option of the 

ANALYSIS command.   

 

H1TECH3 
 

The H1TECH3 option is used to request estimated covariance and 

correlation matrices for the parameter estimates of the unrestricted H1 

model.  It is not available for any other analysis types, and it cannot be 

used in conjunction with the BOOTSTRAP option of the ANALYSIS 

command.   

 

H1MODEL 
 

For TYPE=GENERAL and the DISTRIBUTION option of the 

ANALYSIS command, a chi-square test of model fit is available for 

testing the H0 model against an unrestricted model of means, variances, 

covariances, skew, and degrees of freedom using the H1MODEL option 

(Asparouhov & Muthén, 2015a).  This test is not provided by default 

because it can be computationally demanding.  The H1MODEL has two 

settings:  COVARIANCE and SEQUENTIAL.  The default is 

COVARIANCE.  Following is an example of how to specify the 

SEQUENTIAL setting: 

 

H1MODEL (SEQUENTIAL);    

 

PATTERNS 
 

The PATTERNS option is used to request a summary of missing data 

patterns.  The first part of the output shows the missing data patterns that 

occur in the data.  In the example below, there are 13 patterns of 

missingness.  In pattern 1, individuals are observed on y1, y2, y3, and 

y4.  In pattern 7, individuals are observed on y1 and y4. 

 

 

http://www.statmodel.com/download/Skew.pdf


CHAPTER 18 

 

 

 

810 

SUMMARY OF MISSING DATA PATTERNS 

 

     MISSING DATA PATTERNS (x = not missing) 

 

           1  2  3  4  5  6  7  8  9 10 11 12 13 

 Y1        x  x  x  x  x  x  x  x 

 Y2        x  x  x  x              x  x  x 

 Y3        x  x        x  x        x  x     x 

 Y4        x     x     x     x     x           x 

 

     MISSING DATA PATTERN FREQUENCIES 

 

Pattern  Frequency    Pattern  Frequency    Pattern  Frequency 

      1        984          6         12         11          1 

      2        127          7         14         12          1 

      3         56          8         87         13          1 

      4        139          9          9 

      5         48         10          3 

 

The second part of the output shows the frequency with which each 

pattern is observed in the data.  For example, 984 individuals have 

pattern 1 whereas 14 have pattern 7.  

 

FSCOEFFICIENT  
 

The FSCOEFFICIENT option is used to request factor score coefficients 

and a factor score posterior covariance matrix.  It is available only for 

TYPE=GENERAL and TYPE=COMPLEX with all continuous 

dependent variables.  The factor score posterior covariance matrix is the 

variance/covariance matrix of the factor scores.  Following is the 

information produced by the FSCOEFFICIENT option: 

 
FACTOR SCORE INFORMATION (COMPLETE DATA) 

 

     FACTOR SCORE COEFFICIENTS 

        Y1            Y2            Y3            Y4            X 

        ________      ________      ________      ________      ________ 

 F        0.254         0.197         0.227         0.216         0.093 

 

     FACTOR SCORE POSTERIOR COVARIANCE MATRIX 

        F 

        ________ 

 F        0.122 
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FSDETERMINACY 
 

The FSDETERMINACY option is used to request a factor score 

determinacy value for each factor in the model.  It is available only for 

TYPE=EFA, TYPE=GENERAL, and TYPE=COMPLEX with all 

continuous dependent variables.  The factor score determinacy is the 

correlation between the estimated and true factor scores.  It ranges from 

zero to one and describes how well the factor is measured with one being 

the best value.  Following is the information produced by the 

FSDETERMINACY option: 

 
FACTOR DETERMINACIES 

 

           F          0.945 

 

FSCOMPARISON 
 

The FSCOMPARISON option is used with ESTIMATOR=BAYES in 

conjunction with TYPE=TWOLEVEL to request a comparison of 

between-level estimated factor scores.     

 

BASEHAZARD 
 

The BASEHAZARD option is used to request baseline hazard values for 

each time interval used in a continuous-time survival analysis.  This 

option is available only with the SURVIVAL option.  The baseline 

hazard values can be saved using the BASEHAZARD option of the 

SAVEDATA command.   

 

LOGRANK 
 

With TYPE=MIXTURE, the LOGRANK option is used to request the 

logrank test also known as the Mantel-Cox test (Mantel, 1966).  This test 

compares the survival distributions between pairs of classes for both 

continuous-time and discrete-time survival models.  It is a nonparametric 

test for right-censored data.  For discrete-time survival models, the 

DSURVIVAL option of the VARIABLE command must be used to 

identify the discrete-time survival variables. 
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ALIGNMENT 
 

The ALIGNMENT option is used with the ALIGNMENT option of the 

ANALYSIS command to obtain detailed measurement invariance test 

results for all items and factor mean comparisons for all pairs of groups. 

 

ENTROPY 
 

The ENTROPY option is used in conjunction with TYPE=MIXTURE to 

request the entropy contribution for each latent class indicator.  This 

information is useful for understanding each indicator’s importance in 

distinguishing among the latent classes.  This variable-specific entropy is 

described in Asparouhov and Muthén (2014d). 

 

TECH1 
 

The TECH1 option is used to request the arrays containing parameter 

specifications and starting values for all free parameters in the model.  

The number assigned to the parameter in the parameter specification 

matrices is the number used to refer to the parameter in error messages 

regarding non-identification and other issues.  When saving analysis 

results, the parameters are saved in the order used in the parameter 

specification matrices.  The starting values are shown in the starting 

value matrices.  The TECH1 option is not available for TYPE=EFA. 
 

TECHNICAL 1 OUTPUT 

 

     PARAMETER SPECIFICATION 

 

     NU 

        Y1            Y2            Y3            Y4            X 

        ________      ________      ________      ________      ________ 

            1             2             3             4             0 

     

    LAMBDA 

        F             X 

        ________      ________ 

 Y1         0             0 

 Y2         5             0 

 Y3         6             0 

 Y4         7             0 

 X          0             0 
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    THETA 

        Y1            Y2            Y3            Y4            X 

        ________      ________      ________      ________      ________ 

 Y1         8 

 Y2         0             9 

 Y3         0             0            10 

 Y4         0             0             0            11 

 X          0             0             0             0             0 

 

     ALPHA 

        F             X 

        ________      ________ 

            0             0 

 

     BETA 

        F             X 

        ________      ________ 

 F          0            12 

 X          0             0 

     PSI 

        F             X 

        ________      ________ 

 F         13 

 X          0             0 

 

     STARTING VALUES 

 

     NU 

        Y1            Y2            Y3            Y4            X 

        ________      ________      ________      ________      ________ 

          0.104         0.092         0.035         0.050         0.000 

 

     LAMBDA 

        F             X 

        ________      ________ 

 Y1       1.000         0.000 

 Y2       1.000         0.000 

 Y3       1.000         0.000 

 Y4       1.000         0.000 

 X        0.000         1.000 

 

     THETA 

        Y1            Y2            Y3            Y4            X 

        ________      ________      ________      ________      ________ 

 Y1       0.806 

 Y2       0.000         0.745 

 Y3       0.000         0.000         0.727 

 Y4       0.000         0.000         0.000         0.777 

 X        0.000         0.000         0.000         0.000         0.000 
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     ALPHA 

        F             X 

        ________      ________ 

          0.000        -0.046 

 

     BETA 

        F             X 

        ________      ________ 

 F        0.000         0.000 

 X        0.000         0.000 

 

     PSI 

        F             X 

        ________      ________ 

 F        0.050 

 X        0.000         0.912 

 

TECH2 
 

The TECH2 option is used to request parameter derivatives.  The 

TECH2 option is not available for TYPE=EFA and the CONSTRAINT 

option of the VARIABLE command unless TYPE=MIXTURE is used. 

 

 
TECHNICAL 2 OUTPUT 

 

   DERIVATIVES 

 

     Derivatives With Respect to NU 

        Y1            Y2            Y3            Y4            X 

        ________      ________      ________      ________      ________ 

          0.000         0.000         0.000         0.000         0.000 

 

     Derivatives With Respect to LAMBDA 

        F             X 

        ________      ________ 

 Y1       0.000        -0.084 

 Y2       0.000         0.086 

 Y3       0.000         0.006 

 Y4       0.000         0.000 

 X        0.000        -0.014 

 

     Derivatives With Respect to THETA 

        Y1            Y2            Y3            Y4            X 

        ________      ________      ________      ________      ________    

 Y1       0.000 

 Y2      -0.014         0.000 
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 Y3       0.058        -0.049         0.000 

 Y4       0.024        -0.008        -0.019         0.000 

 X        0.000         0.000         0.000         0.000         0.000 

 

     Derivatives With Respect to ALPHA 

        F             X 

        ________      ________ 

          0.000         0.000 

 

     Derivatives With Respect to BETA 

        F             X 

        ________      ________ 

 F        0.000         0.000 

 X        0.000         0.000 

 

     Derivatives With Respect to PSI 

        F             X 

        ________      ________ 

 F        0.000 

 X        0.000         0.000 

 

TECH3 
 

The TECH3 option is used to request estimated covariance and 

correlation matrices for the parameter estimates.  The parameters are 

referred to using the numbers assigned to them in TECH1.  The TECH3 

covariance matrix can be saved using the TECH3 option of the 

SAVEDATA command.  The TECH3 option is not available for 

ESTIMATOR=ULS, the BOOTSTRAP option of the ANALYSIS 

command, and TYPE=EFA. 

 

TECH4 
 

The TECH4 option is used to request estimated means, covariances, and 

correlations for the latent variables in the model.  In addition to the 

means, covariances, and correlations, standard errors and p-values are 

given.  The TECH4 means and covariance matrix can be saved using the 

TECH4 option of the SAVEDATA command.  The TECH4 option is not 

available for TYPE=RANDOM with maximum likelihood estimation, 

the CONSTRAINT option of the VARIABLE command, or 

TYPE=EFA. 
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For models with random effects defined using the | symbol in 

conjunction with ON and BY and for random variances, the TECH4 

option is available for TYPE=TWOLEVEL and ESTIMATOR=BAYES.  

The CLUSTER setting of the TECH4 option is used when a model has 

random effects to request that estimated means, covariances, and 

correlations for each cluster be printed in the output.  Following is an 

example of how to specify the TECH4 option using the CLUSTER 

setting: 

 

TECH4 (CLUSTER); 

 

TECH5 
 

The TECH5 option is used to request the optimization history in 

estimating the model.  The TECH5 option is not available for 

TYPE=EFA. 

 

TECH6 
 

The TECH6 option is used to request the optimization history in 

estimating sample statistics for categorical observed dependent 

variables.  TECH6 is produced when at least one outcome variable is 

categorical but not when all outcomes are binary unless there is an 

independent variable in the model. 

 

TECH7 
 

The TECH7 option is used in conjunction with TYPE=MIXTURE to 

request sample statistics for each class using raw data weighted by the 

estimated posterior probabilities for each class. 

 

TECH8 
 

The TECH8 option is used to request that the optimization history in 

estimating the model be printed in the output.  TECH8 is printed to the 

screen during the computations as the default.  TECH8 screen printing is 

useful for determining how long the analysis takes.  TECH8 is available 

for TYPE=RANDOM, MIXTURE, TWOLEVEL and analyses where 

numerical integration is used. 
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TECH9 
 

The TECH9 option is used in conjunction with the MONTECARLO 

command, the MONTECARLO and IMPUTATION options of the 

DATA command, and the BOOTSTRAP option of the ANALYSIS 

command to request error messages related to convergence for each 

replication or bootstrap draw.  These messages are suppressed if TECH9 

is not specified.  

 

TECH10 
 

The TECH10 option is used to request univariate, bivariate, and 

response pattern model fit information for the categorical dependent 

variables in the model.  This includes observed and estimated (expected) 

frequencies and standardized residuals.  TECH10 is available for 

TYPE=MIXTURE and categorical and count variables with maximum 

likelihood estimation. 

 

TECH11 
 

The TECH11 option is used in conjunction with TYPE=MIXTURE to 

request the Lo-Mendell-Rubin likelihood ratio test of model fit (Lo, 

Mendell, & Rubin, 2001) that compares the estimated model with a 

model with one less class than the estimated model.  The Lo-Mendell-

Rubin approach has been criticized (Jeffries, 2003) although it is unclear 

to which extent the critique affects its use in practice.  The p-value 

obtained represents the probability that the data have been generated by 

the model with one less class.  A low p-value indicates that the model 

with one less class is rejected in favor of the estimated model.  An 

adjustment to the test according to Lo-Mendell-Rubin is also given.  The 

model with one less class is obtained by deleting the first class in the 

estimated model.  Because of this, it is recommended when using 

starting values that they be chosen so that the last class is the largest 

class.  In addition, it is recommended that model identifying restrictions 

not be included in the first class.  TECH11 is available only for 

ESTIMATOR=MLR.  The TECH11 option is not available for the 

MODEL CONSTRAINT command, the BOOTSTRAP option of the 

ANALYSIS command, training data, and for models with more than one 

categorical latent variable.  
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TECH12 
 

The TECH12 option is used in conjunction with TYPE=MIXTURE to 

request residuals for observed versus model estimated means, variances, 

covariances, univariate skewness, and univariate kurtosis.  The observed 

values come from the total sample.  The estimated values are computed 

as a mixture across the latent classes.  The TECH12 option is not 

available for TYPE=RANDOM, the MONTECARLO command, the 

CONSTRAINT option of the VARIABLE command, and when there are 

no continuous dependent variables. 

 

TECH13 
 

The TECH13 option is used in conjunction with TYPE=MIXTURE to 

request two-sided tests of model fit for univariate, bivariate, and 

multivariate skew and kurtosis (Mardia’s measure of multivariate 

kurtosis).  Observed sample values are compared to model estimated 

values generated over 200 replications.  Each p-value obtained 

represents the probability that the estimated model has generated the 

data.  A high p-value indicates that the estimated model fits the data.  

TECH13 is available only when the LISTWISE option of the DATA 

command is set to ON.  TECH13 is not available for 

TYPE=TWOLEVEL MIXTURE, ALGORITHM=INTEGRATION, the 

BOOTSTRAP option of the ANALYSIS command, the CONSTRAINT 

option of the VARIABLE command, and when there are no continuous 

dependent variables.  

  

TECH14 
 

The TECH14 option is used in conjunction with TYPE=MIXTURE to 

request a parametric bootstrapped likelihood ratio test (McLachlan and 

Peel, 2000) that compares the estimated model to a model with one less 

class than the estimated model.  The p-value obtained represents an 

approximation to the probability that the data have been generated by the 

model with one less class.  A low p-value indicates that the model with 

one less class is rejected in favor of the estimated model.  The model 

with one less class is obtained by deleting the first class in the estimated 

model.  Because of this, it is recommended that model identifying 

restrictions not be included in the first class.  In addition, it is 

recommended when using starting values that they be chosen so that the 
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last class is the largest class.  TECH14 is not available for 

TYPE=RANDOM unless ALGORITHM=INTEGRATION is used, the 

BOOTSTRAP option of the ANALYSIS command, training data, the 

CONSTRAINT option of the VARIABLE command, with sampling 

weights, and for models with more than one categorical latent variable. 

 

Following is a description of the bootstrap method that is used in 

TECH14.  Models are estimated for both the number of classes in the 

analysis model (k) and the number of classes in the analysis model 

minus one (k–1).  The loglikelihood values from the k and k-1 class 

analyses are used to compute a likelihood ratio test statistic (-2 times the 

loglikelihood difference).  Several data sets, referred to as bootstrap 

draws, are then generated using the parameter estimates from the k-1 

class model.  These data are analyzed for both the k and k-1 class models 

to obtain loglikelihood values which are used to compute a likelihood 

ratio test statistic for each bootstrap draw.  The likelihood ratio test 

statistic from the initial analysis is compared to the distribution of 

likelihood ratio test statistics obtained from the bootstrap draws to 

compute a p-value which is used to decide if the k-1 class model fits the 

data as well as the k class model. 

 

The parametric bootstrapped likelihood ratio test can be obtained in two 

ways.  The default method is a sequential method that saves 

computational time by using a minimum number of bootstrap draws to 

decide whether the p-value is less than or greater than 0.05.  The number 

of draws varies from 2 to 100.  This method gives an approximation to 

the p-value.  A more precise estimate of the p-value is obtained by using 

a full set of bootstrap draws using the LRTBOOTSTRAP option of the 

ANALYSIS command.  A common value suggested in the literature is 

100 bootstrap draws (McLachlan & Peel, 2000).  For more information 

about TECH14 see Nylund et al. (2007) and Asparouhov and Muthén 

(2012c). 

 

In the TECH14 output, the H0 loglikelihood value given is for the k-1 

class model.  It is important to check that the H0 loglikelihood value in 

the TECH14 output is the same as the loglikelihood value for the H0 

model obtained in a previous k-1 class analysis.  If it is not the same, the 

K-1STARTS option of the ANALYSIS command can be used to 

increase the number of random starts for the estimation of the k-1 class 

model for TECH14. 
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TECH14 computations are time consuming because for each bootstrap 

draw random starts are needed for the k class model.  The default for the 

k class model is to generate 20 random sets of starting values in the 

initial stage followed by 5 optimizations in the final stage. The default 

values can be changed using the LRTSTARTS option of the ANALYSIS 

command.  The following steps are recommended to save computational 

time when using TECH14 (Asparouhov & Muthén, 2012c): 

 

1. Run without TECH14 using the STARTS option of the ANALYSIS 

command to find a stable solution if the default starts are not 

sufficient. 

2. Run with TECH14 using the OPTSEED option of the ANALYSIS 

command to specify the seed of the stable solution from Step 1. 

3. Run with LRTSTARTS = 0 0 100 20; to check if the results are 

sensitive to the number of random starts for the k class model. 

 

TECH15 
 

The TECH15 option is used in conjunction with TYPE=MIXTURE, 

PARAMETERIZATION=LOGIT or PROBABILITY, and more than 

one categorical latent variable to request marginal and conditional 

probabilities, including latent transition probabilities, for the categorical 

latent variables in a model.  If the model includes binary covariates, the 

KNOWNCLASS option is used to represent the categories of the binary 

covariates.  For example, if the binary covariates of gender and treatment 

are used, the two covariates should be combined into one observed 

variable with four categories using the DEFINE command.  This variable 

should be used with the KNOWNCLASS option to create four known 

classes.  If a continuous covariate is used, the probabilities are evaluated 

at the sample mean of the covariate.       

 

TECH16 
  

The TECH16 option is used in conjunction with ESTIMATOR=BAYES 

to request test statistics for the Bayes factor approach which is used in 

conjunction with MODEL PRIORS to test if variances are greater than 

zero (Gelman et al., 2004; Asparouhov & Muthén, 2012a; Verhagen & 

Fox, 2012).   
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Mplus PARAMETER ARRAYS 
 

Following is a description of some parameter arrays that are commonly 

used in model estimation.   The first nine arrays are for the structural 

equation part of the model.  The remaining eight arrays are for the 

mixture part of the model.   

 

ARRAYS FOR THE STRUCTURAL EQUATION PART OF 

THE MODEL 
 

TAU  
 

The tau vector contains information regarding thresholds of categorical 

observed variables.  The elements are in the order of thresholds within 

variables.    

 

NU  
 

The nu vector contains information regarding means or intercepts of 

continuous observed variables. 

 

LAMBDA   
 

The lambda matrix contains information regarding factor loadings.  The 

rows of lambda represent the observed dependent variables in the model.  

The columns of lambda represent the continuous latent variables in the 

model. 

 

THETA 
 

The theta matrix contains the residual variances and covariances of the 

observed dependent variables or the latent response variables.  The rows 

and columns both represent the observed dependent variables. 

 

ALPHA   
 

The alpha vector contains the means and/or intercepts of the continuous 

latent variables. 
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BETA 
 

The beta matrix contains the regression coefficients for the regressions 

of continuous latent variables on continuous latent variables.  Both the 

rows and columns represent continuous latent variables.  

 

GAMMA 
 

The gamma matrix contains the regression coefficients for the 

regressions of continuous latent variables on observed independent 

variables.  The rows represent the continuous latent variables in the 

model.  The columns represent the observed independent variables in the 

model. 

 

PSI 
 

The psi matrix contains the variances and covariances of the continuous 

latent variables.  Both the rows and columns represent the continuous 

latent variables in the model. 

 

DELTA  
 

Delta is a vector that contains scaling information for the observed 

dependent variables. 

 

ARRAYS FOR THE MIXTURE PART OF THE MODEL 

 

ALPHA (C) 
 

The alpha (c) vector contains the mean or intercept of the categorical 

latent variables. 

 

LAMBDA (U) 
 

The lambda (u) matrix contains the intercepts of the binary observed 

variables that are influenced by the categorical latent variables.  The 

rows of lambda (u) represent the binary observed variables in the model.  

The columns of lambda (u) represent the classes of the categorical latent 

variables in the model. 
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TAU (U)  
 

The tau (u) vector contains the thresholds of the categorical observed 

variables that are influenced by the categorical latent variables.  The 

elements are in the order of thresholds within variables.  

   

 GAMMA (C) 
 

The gamma (c) matrix contains the regression coefficients for the 

regressions of the categorical latent variables on observed independent 

variables.  The rows represent the latent classes.  The columns represent 

the observed independent variables in the model.   

 

KAPPA (U) 
 

The kappa (u) matrix contains the regression coefficients for the 

regressions of the binary observed variables on the observed independent 

variables.  The rows represent the binary observed variables.  The 

columns represent the observed independent variables in the model. 

 

ALPHA (F) 
 

The alpha (f) vector contains the means and/or intercepts of the growth 

factors for the categorical observed variables that are influenced by the 

categorical latent variables. 

 

LAMBDA (F) 
 

The lambda (f) matrix contains the fixed loadings that describe the 

growth of the categorical observed variables that are influenced by the 

categorical latent variables.  The rows represent the categorical observed 

variables.  The columns represent the growth factors. 

 

GAMMA (F) 
 

The gamma (f) matrix contains the regression coefficients for the 

regressions of the growth factors on the observed independent variables 

and the regression coefficients for the regressions of the categorical 

observed variables on the observed independent variables. 
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THE SAVEDATA COMMAND 
 

The SAVEDATA command is used to save the analysis data, auxiliary 

variables, and a variety of analysis results.  Following is a list of the 

types of information that can be saved:  

     

 Analysis data 

 Sample correlation or covariance matrix 

 Model estimated covariance matrix 

 Estimated sigma between matrix from TYPE=TWOLEVEL 

 Within- and between-level sample statistics and their asymptotic 

covariance matrix for weighted least squares estimation 

 Analysis results 

 Parameter estimates for use in the MONTECARLO command 

 Derivatives from an H1 model 

 Covariance matrix of parameter estimates 

 Model estimated means and covariance matrix for latent variables 

 Kaplan-Meier survival curve values for continuous-time survival 

 Baseline hazard values for continuous-time survival 

 Estimated baseline survival rates for continuous-time survival 

 Factor scores, posterior probabilities, and most likely class 

membership for each response pattern 

 Bayesian posterior parameter values 

 Ranking of groups based on the group factor means 

 Factor scores 

 Latent response variables 

 Propensity scores 

 Posterior probabilities for each latent class and most likely class 

membership 

 Replicate weights 

 Outliers 

 3-step mixture weights for BCH 
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Following are the options for the SAVEDATA command: 

 
SAVEDATA:   
   
FILE IS file name;   
FORMAT IS  format statement; F10.3 
 FREE;  
MISSFLAG = missing value flag; * 
RECORDLENGTH IS characters per record; 1000 
   
SAMPLE IS file name;  
COVARIANCE IS file name;  
SIGBETWEEN IS file name;  
SWMATRIX IS file name;  
RESULTS ARE 
STDRESULTS ARE 
STDDISTRIBUTION IS 

file name; 
file name; 
file name; 

 

ESTIMATES ARE file name;  
DIFFTEST IS file name;  
TECH3 IS file name;  
TECH4 IS file name;  
KAPLANMEIER IS file name;  
BASEHAZARD IS file name;  
ESTBASELINE IS file name;  
RESPONSE IS file name;  
MULTIPLIER IS file name;  
BPARAMETERS IS file name;  
RANKING IS file name;  
TYPE IS COVARIANCE; varies 

 CORRELATION;  

SAVE = FSCORES; 

FSCORES (# #); 

LRESPONSES (#); 

PROPENSITY; 

CPROBABILITIES; 

REPWEIGHTS; 

MAHALANOBIS; 

LOGLIKELIHOOD; 

INFLUENCE; 
COOKS; 

BCHWEIGHTS; 

 

FACTORS = names of factors;  
LRESPONSES = names of latent response variables;  
   
MFILE = file name;  
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MNAMES = names of variables in the data set;  
MFORMAT =  format statement; 

FREE; 
FREE 
 

MMISSING =  Variable (#); 
*; 
.; 

 

MSELECT = names of variables; all variables in 
MNAMES 

 

Although SAVEDATA is not a required command, one or more of the 

following options is required when the SAVEDATA command is used:  

FILE, SAMPLE, COVARIANCE, SIGBETWEEN, SWMATRIX, 

RESULTS, ESTIMATES, DIFFTEST, TECH3, TECH4, 

KAPLANMEIER, BASEHAZARD, ESTBASELINE, RESPONSE, 

MULTIPLIER, BPARAMETERS, and RANKING. 

 

Note that commands and options can be shortened to four or more 

letters.  Option settings can be referred to by either the complete word or 

the part of the word shown above in bold type.  

 

FILE 
 

The FILE option is used to specify the name of the ASCII file in which 

the individual-level data used in the analysis will be saved.  Following is 

an example of how to specify the FILE option: 

 

FILE IS newdata.dat; 

 

where newdata.dat is the name of the file in which the individual-level 

data used in the analysis will be saved.  If the working directory contains 

a file of the same name, it will be overwritten.  The data are saved in a 

fixed format unless the FORMAT option is used.  Any original and/or 

transformed variables used in the analysis will be saved.  Missing values 

are saved as an asterisk (*).  If categorical variables have been recoded 

by the program, the recoded values are saved.  If the weight variable has 

been rescaled by the program, the rescaled values are saved.  The order 

in which the variables are saved is given at the end of the output under 

SAVEDATA INFORMATION.  
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The AUXILIARY option of the VARIABLE command can be used in 

conjunction with the SAVEDATA command to save variables that are 

not used in the analysis along with the analysis variables. 

 

FORMAT 
 

The FORMAT option is used to specify the format in which the analysis 

data will be saved.  This option cannot be used for saving other types of 

data.  All dependent and independent variables used in the analysis are 

saved.  In addition, all other variables that are used in conjunction with 

the analysis are saved as well as any variables specified using the 

AUXILIARY option of the VARIABLE command.  The name of the 

data set along with the names of the variables saved and the format are 

printed in the output. The default is to save the analysis variables using a 

fixed format. 

 

Following is an example of how to specify the FORMAT option to save 

individual data in a free format: 

 

FORMAT IS FREE; 

 

Individual data can also be saved in a fixed format specified by the user.  

The user has the choice of which F or E format the analysis variables are 

saved in with the format of other saved variables determined by the 

program.  This option is specified as: 

 

FORMAT IS F2.0; 

 

which indicates that all analysis variables will be saved with an F2.0 

format. 

 

MISSFLAG 
 

The MISSFLAG option is used to specify the missing value flag to use 

in the data set named in the FILE option of the SAVEDATA command.  

The default is the asterisk (*).  The period (.) and any number can be 

used instead.  All variables must have the same missing value flag. 
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RECORDLENGTH 
 

The RECORDLENGTH option is used to specify the number of 

characters per record in the file to which the analysis data are saved.  It 

cannot be used for saving other types of data.  The default and maximum 

record length is 5000.  Following is an example of how the 

RECORDLENGTH option is specified: 

 

RECORDLENGTH = 220; 

 

SAMPLE 
 

The SAMPLE option is used to specify the name of the ASCII file in 

which the sample statistics such as the correlation or covariance matrix 

will be saved.  Following is an example of how to specify the SAMPLE 

option: 

 

SAMPLE IS sample.dat; 

 

where sample.dat is the name of the file in which the sample statistics 

will be saved.  If the working directory contains a file of the same name, 

it will be overwritten.  The data are saved using free format delimited by 

a space. 

 

For continuous outcomes, the default is the covariance matrix. For 

categorical outcomes, the default is the correlation matrix.  For 

combinations of continuous and categorical outcomes, the default is the 

correlation matrix.  The TYPE option can be used in conjunction with 

the SAMPLE option to obtain a matrix other than the default matrix. 

 

For TYPE=TWOLEVEL and maximum likelihood estimation, the 

sample correlation and covariance matrices are the maximum likelihood 

estimated sigma within covariance and correlation matrices.  For 

TYPE=TWOLEVEL and weighted least squares estimation, the sample 

correlation and covariance matrices are the pairwise maximum 

likelihood estimated sigma within covariance and correlation matrices. 

For ESTIMATOR=MUML, the sample correlation and covariance 

matrices are the sample pooled-within correlation and covariance 

matrices.   
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COVARIANCE 
 

The COVARIANCE option is used to specify the name of the ASCII file 

in which the model estimated covariance matrix for continuous variables 

is saved.  Following is an example of how this option is specified: 

 

COVARIANCE = cov.dat; 

 

where cov.dat is the name of the file in which the covariance matrix for 

continuous analysis variables will be saved.  If the working directory 

contains a file of the same name, it will be overwritten. The data are 

saved using free format delimited by a space.  

 

SIGBETWEEN 
 

The SIGBETWEEN option is used to specify the name of the ASCII file 

in which the estimated sigma between covariance matrix or the estimated 

sigma between correlation matrix will be saved.  For maximum 

likelihood estimation, it is the consistent maximum likelihood estimate 

of sigma between.  For weighted least squares estimation, it is the 

pairwise maximum likelihood estimated sigma between covariance and 

correlation matrices.  For ESTIMATOR=MUML, it is the unbiased 

estimate of sigma between.  Following is an example of how to specify 

the SIGB option: 

 

SIGBETWEEN IS sigma.dat; 

 

where sigma.dat is the name of the file in which the estimated sigma 

between matrix will be saved.  If the working directory contains a file of 

the same name, it will be overwritten.  The data are saved using free 

format delimited by a space.  

 

The default is to save the estimated sigma between covariance matrix.  

The TYPE option can be used in conjunction with the SIGB option to 

obtain the estimated sigma between correlation matrix. 
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SWMATRIX 
 

The SWMATRIX option is used with TYPE=TWOLEVEL and 

weighted least squares estimation to specify the name of the ASCII file 

in which the within- and between-level sample statistics and their 

corresponding estimated asymptotic covariance matrix will be saved.  

The univariate and bivariate sample statistics are estimated using one- 

and two-dimensional numerical integration with a default of 7 

integration points.  The INTEGRATION option of the ANALYSIS 

command can be used to change the default.  It is recommended to save 

this information and use it in subsequent analyses along with the raw 

data to reduce computational time during model estimation.  Analyses 

using this information must have the same set of observed dependent and 

independent variables, the same DEFINE command, the same 

USEOBSERVATIONS statement, and the same USEVARIABLES 

statement as the analysis which was used to save the information.   

 

Following is an example of how to specify the SWMATRIX option: 

 

SWMATRIX IS swmatrix.dat; 

 

where swmatrix.dat is the name of the file in which the analysis results 

will be saved.  If the working directory contains a file of the same name, 

it will be overwritten.   

 

For the DATA IMPUTATION command and the IMPUTATION option 

of the DATA command, the SWMATRIX option is specified as follows: 

 

SWMATRIX IS sw*.dat; 

 

where the asterisk (*) is replaced by the number of  the imputed data set.  

A file is also produced that contains the names of all of the imputed data 

sets.  To name this file, the asterisk (*) is replaced by the word list.  The 

file, in this case swlist.dat, contains the names of the imputed data sets.  

This file is used with the SWMATRIX of the DATA command in 

subsequent analyses. 
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RESULTS 
 

The RESULTS option is used to specify the name of the ASCII file in 

which the results of an analysis will be saved.  The results saved include 

parameter estimates, standard errors of the parameter estimates, and fit 

statistics.  If the STANDARDIZED option of the OUTPUT command is 

used, standardized parameters estimates and their standard errors will 

also be saved.  Following is an example of how to specify the RESULTS 

option: 

 

RESULTS ARE results.dat; 

 

where results.dat is the name of the file in which the analysis results will 

be saved.  If the working directory contains a file of the same name, it 

will be overwritten.  The data are saved using free format delimited by a 

space.   

 

STDRESULTS 
 

The STDRESULTS option is used in conjunction with the 

STANDARDIZED option of the OUTPUT command to specify the 

name of the ASCII file in which the cluster-specific standardized results 

of the analysis will be saved.  These are saved for models with random 

effects defined using the | symbol in conjunction with ON and BY and 

for random variances using TYPE=TWOLEVEL and 

ESTIMATOR=BAYES.  The results saved include for each cluster, the 

within-level parameter estimates, the posterior standard deviations of the 

parameters estimates, the one-tailed p-values, and the upper and lower 

2.5% credibility limits.   

 

Following is an example of how to specify the STDRESULTS option: 

 

STDRESULTS ARE stdresults.dat; 

 

where stdresults.dat is the name of the file in which the cluster-specific 

standardized results of the analysis will be saved.  If the working 

directory contains a file of the same name, it will be overwritten.  The 

data are saved using free format delimited by a space.   
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STDDISTRIBUTION 
 

The STDDISTRIBUTION option is used in conjunction with the 

STANDARDIZED option of the OUTPUT command to specify the 

name of the ASCII file in which the distributions of the standardized 

results based on the last 1,000 iterations of the analysis will be saved.  

These are saved for models with random effects defined using the | 

symbol in conjunction with ON and BY and for random variances using 

TYPE=TWOLEVEL and ESTIMATOR=BAYES.  The results saved 

include the cluster, chain, iteration, and parameter values. 

  

Following is an example of how to specify the STDDISTRIBUTION 

option: 

 

STDDISTRIBUTION IS stddistribution.dat; 

 

where stddistribution.dat is the name of the file in which distributions of 

the standardized results based on the last 1,000 iterations of the analysis 

will be saved.  If the working directory contains a file of the same name, 

it will be overwritten.  The data are saved using free format delimited by 

a space. 

 

ESTIMATES 
  

The ESTIMATES option is used to specify the name of the ASCII file in 

which the parameter estimates of an analysis will be saved.  The saved 

parameter estimates can be used in a subsequent Monte Carlo simulation 

study as population values for data generation and/or coverage values 

using the POPULATION and/or COVERAGE options of the 

MONTECARLO command.  The SVALUES option is an alternative to 

the ESTIMATES option.  The SVALUES option creates input 

statements that contain parameter estimates from the analysis as starting 

values. 

 

Following is an example of how to specify the ESTIMATES option: 

 

ESTIMATES ARE estimate.dat; 

 



OUTPUT, SAVEDATA, And PLOT Commands 

 

 

 

                                                                                                               833 

where estimate.dat is the name of the file in which the parameter 

estimates will be saved.  If the working directory contains a file of the 

same name, it will be overwritten.  The data are saved using free format 

delimited by a space.   

 

DIFFTEST 
 

The DIFFTEST option is used in conjunction with the MLMV and 

WLSMV estimators to specify the name of the ASCII file in which the 

derivatives from an H1 model will be saved.  These derivatives are used 

in the subsequent estimation of an H0 model to compute a chi-square 

difference test using the DIFFTEST option of the ANALYSIS 

command.  The H1 model is the less restrictive model.  The H0 model is 

the more restrictive model nested within H1.  Following is an example of 

how to specify the DIFFTEST option: 

 

DIFFTEST IS deriv.dat; 

 

where deriv.dat is the name of the file in which the derivatives from the 

H1 model will be saved.  If the working directory contains a file of the 

same name, it will be overwritten.  The data are saved using free format 

delimited by a space. 

 

TECH3 
   

The TECH3 option is used to specify the name of the ASCII file in 

which the covariance matrix of parameter estimates will be saved.  

Following is an example of how to specify the TECH3 option: 

 

TECH3 IS tech3.dat; 

 

where tech3.dat is the name of the file in which the covariance matrix of 

parameter estimates will be saved.  If the working directory contains a 

file of the same name, it will be overwritten.  The data are saved using 

free format delimited by a space.   
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TECH4 
 

The TECH4 option is used to specify the name of the ASCII file in 

which the estimated means and covariance matrix for the latent variables 

in the analysis will be saved.  Following is an example of how to specify 

the TECH4 option: 

 

TECH4 IS tech4.dat; 

 

where tech4.dat is the name of the file in which the estimated means and 

covariance matrix for the latent variables will be saved.  If the working 

directory contains a file of the same name, it will be overwritten. The 

data are saved using free format delimited by a space.  

 

KAPLANMEIER  
 

The KAPLANMEIER option is used to specify the name of the ASCII 

file in which the y- and x-axis values for the Kaplan-Meier survival 

curve for continuous-time survival analysis will be saved.  This option is 

available only with the SURVIVAL option.  Following is an example of 

how this option is specified: 

 

KAPLANMEIER IS kapmeier.dat; 

 

where kapmeier.dat is the name of the file in which the survival curve 

values will be saved.  If the working directory contains a file of the same 

name, it will be overwritten. The data are saved using free format 

delimited by a space. 

 

BASEHAZARD 
 

The BASEHAZARD option is used to specify the name of the ASCII file 

in which the estimated baseline hazard values for continuous-time 

survival analysis will be saved.  This option is available only with the 

SURVIVAL option.  Following is an example of how this option is 

specified: 

 

BASEHAZARD IS base.dat; 
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where base.dat is the name of the file in which the estimated baseline 

hazard values will be saved.  If the working directory contains a file of 

the same name, it will be overwritten. The data are saved using free 

format delimited by a space. 

 

ESTBASELINE  
 

The ESTBASELINE option is used to specify the name of the ASCII file 

in which the y- and x-axis values for the estimated baseline survival rate 

of the continuous-time survival analysis will be saved.  This option is 

available only with the SURVIVAL option.  Following is an example of 

how this option is specified: 

 

ESTBASELINE IS estbase.dat; 

 

where estbase.dat is the name of the file in which the y- and x-axis 

values for the estimated baseline survival rate of the continuous-time 

survival analysis will be saved.  If the working directory contains a file 

of the same name, it will be overwritten. The data are saved using free 

format delimited by a space.  

 

RESPONSE 
 

The RESPONSE option is used with single-level models and the ML, 

MLR, and MLF estimators when all dependent variables are categorical 

to specify the name of the ASCII file in which information about each 

response pattern is saved.  It is not available for models with covariates.  

It is available for TYPE=EFA and TYPE=MIXTURE EFA when the 

lower and upper limits of the number of factors to be extracted is the 

same.  If the model has continuous latent variables, factor scores and the 

standard errors of the factor scores are saved.  For TYPE=MIXTURE, 

the factor scores based on most likely class membership are saved in 

addition to posterior probabilities for each class and most likely class 

membership for each response pattern.  The RESPONSE option is not 

available for the KNOWNCLASS and TRAINING options of the 

VARIABLE command.  Following is an example of how to specify the 

RESPONSE option: 

 

RESPONSE IS response.dat; 
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where response.dat is the name of the file in which information about 

each response pattern is saved.  If the working directory contains a file 

of the same name, it will be overwritten.  The data are saved using free 

format delimited by a space.  Response pattern frequencies, factor 

scores, standard errors of the factor scores, and posterior probabilities 

are saved as F10.3.  Pattern values and most likely class membership are 

saved as integers. 

 

MULTIPLIER 
 

The MULTIPLIER option is used with the JACKKNIFE setting of the 

REPSE option to specify the name of the ASCII file in which the 

multiplier values are saved.  Following is an example of how to specify 

the MULTIPLIER option: 

 

MULTIPLIER IS multiplier.dat; 

 

where multiplier.dat is the name of the file in which the multiplier values 

are saved.  If the working directory contains a file of the same name, it 

will be overwritten.  The values are saved as E15.8. 

 

BPARAMETERS 
 

The BPARAMETERS option is used in Bayesian analysis to specify the 

name of the ASCII file in which the Bayesian posterior parameter values 

for all iterations are saved.  Following is an example of how this option 

is specified: 

 

BPARAMETERS = bayes.dat; 

 

where bayes.dat is the name of the file in which the Bayesian posterior 

parameter values for all iterations will be saved.  If the working directory 

contains a file of the same name, it will be overwritten.  The data are 

saved using free format delimited by a space.  

 

RANKING 
 

The RANKING option is used in conjunction with the ALIGNMENT 

option to specify the name of the ASCII file in which the rankings of 
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groups based on group factor means and the significance of the factor 

mean differences are saved.  Following is an example of how this option 

is specified: 

 

RANKING = ranking.dat; 

 

where ranking.dat is the name of the file in which the rankings of groups 

based on group factor means and the significance of the factor mean 

differences will be saved.  If the working directory contains a file of the 

same name, it will be overwritten.  The data are saved using free format 

delimited by a comma.    

 

TYPE 
 

The TYPE option is used to specify the type of matrix to be saved.  It 

can be used in conjunction with the SAMPLE and SIGB options to 

override the default.   The default matrix for the SAMPLE option is the 

covariance matrix for continuous outcomes, the correlation matrix for 

categorical outcomes, and the correlation matrix for combinations of 

continuous and categorical outcomes.  The default matrix for the SIGB 

option is the covariance matrix.  If the default matrix is the covariance 

matrix, a correlation matrix can be requested by the following statement: 

 

TYPE = CORRELATION; 

 

SAVE 
 

The SAVE option is used to save factor scores, latent response variable 

scores, propensity scores, posterior probabilities for each latent class and 

most likely class membership, replicate weights, outliers, and 3-step 

mixture weights for the BCH method along with the analysis and/or 

auxiliary variables. 

 

FSCORES  
 

When SAVE=FSCORES is used with frequentist estimation, factor 

scores are saved along with the other analysis variables.  Following is an 

example of how this option is specified: 
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SAVE = FSCORES; 

 

Factor scores are available when observed dependent variables are 

continuous, censored, binary, ordered categorical (ordinal), count or a 

combination of these variable types.  Factor scores are not available for 

TYPE=BASIC, TYPE=EFA, or TYPE=TWOLEVEL with weighted 

least squares estimation.  For censored and count dependent variables, 

factor scores are available only for maximum likelihood estimators using 

numerical integration. 

 

When SAVE=FSCORES is used with ESTIMATOR=BAYES, a 

distribution of factor scores, called plausible values, is obtained for each 

observation.  The following summaries are saved along with the other 

analysis variables:  mean, median, standard deviation, lower 2.5% limit, 

and upper 97.5% limit.  Following is an example of how this option is 

specified: 

 

SAVE = FSCORES (50 10); 

 

where 50 is the number of imputations or draws that are used from the 

Bayesian posterior distribution to compute the plausible value 

distribution for each observation and 10 is the number to use for 

thinning.  This means that from a total of 500 iterations, every tenth 

iteration from the posterior distribution is used to compute the plausible 

value distribution for each observation.  The number of imputations or 

draws must be specified.  There is no default.  The default for thinning is 

one.   

 

The FACTORS option is used to specify the names of the factors for 

which the plausible value distributions will be saved.  Following is an 

example of how this option is specified: 

 

FACTORS = f1 f2 f3; 

 

where f1, f2, and f3 are the factors for which the plausible value 

distributions will be saved.  If the PLOT command is used, these 

plausible values will be saved for plotting.  

 

For two-level models with random effects defined using the | symbol in 

conjunction with ON and BY and for random variances, the 
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BPARAMETER option can be used to save the distributions of the fixed 

parameters used in the computation of the factor scores.   

 

LRESPONSES 
 

When SAVE=LRESPONSES is used with ESTIMATOR=BAYES, a 

distribution of latent response variable scores is obtained for each 

observation.  The following summaries are saved along with the other 

analysis variables:  mean, median, standard deviation, lower 2.5% limit, 

and upper 97.5% limit.  Following is an example of how this option is 

specified: 

 

SAVE = LRESPONSES (50); 

 

where 50 is the number of imputations or draws that are used from the 

Bayesian posterior distribution to compute the latent response variable 

distribution for each observation.  The number of imputations or draws 

must be specified.  There is no default. 

 

The LRESPONSES option is used to specify the names of the latent 

response variables underlying categorical outcomes for which the latent 

response variable distributions will be saved.  Following is an example 

of how this option is specified: 

 

LRESPONSES = u1 u2 u3; 

 

where u1, u2, and u3 are the latent response variables underlying 

categorical outcomes for which the latent response variable distributions 

will be saved.    

 

PROPENSITY 
 

When SAVE=PROPENSITY is used in conjunction with 

TYPE=GENERAL, TYPE=COMPLEX, or TYPE=MIXTURE using the 

ML, MLF, MLR, WLS, WLSM, WLSMV, and ULSMV estimators, 

propensity scores, that is, estimated probabilities are saved for the 

second category of binary outcomes.  For ML, MLF, and MLR, both a 

logit and probit link are available.  For the other estimators, only a probit 

link is available.  Following is an example of how this option is 

specified: 
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SAVE = PROPENSITY; 

 

Propensity scores can be a function of observed and latent predictors. 

 

CPROBABILITIES 

 
When SAVE=CPROBABILITIES is used in conjunction with 

TYPE=MIXTURE in the ANALYSIS command, individual posterior 

probabilities for each latent class are saved along with the other analysis 

variables.  In addition, a variable is saved that contains the most likely 

class membership, that is, the class with the highest posterior probability  

for each individual.  Following is an example of how this option is 

specified: 

 

SAVE = CPROBABILITIES;   

 

REPWEIGHTS 
 

When SAVE=REPWEIGHTS is used in conjunction with the REPSE 

option of the ANALYSIS command, the replicate weights generated are 

saved along with the other analysis variables.  Following is an example 

of how this option is specified: 

 

SAVE = REPWEIGHTS; 

 

MAHALANOBIS 
 

When SAVE=MAHALANOBIS is used, the Mahalanobis distance and 

its p-value (Rousseeuw & Van Zomeren, 1990) are saved for each 

observation along with the other analysis variables.  The 

MAHALANOBIS option is available only for continuous outcomes.  It 

is not available for TYPE=MIXTURE, TWOLEVEL, RANDOM, EFA, 

and BASIC; for ESTIMATOR=WLS, WLSM, WLSMV, and ULS; for 

the MONTECARLO command; and for the BOOTSTRAP option of the 

ANALYSIS command.  Following is an example of how this option is 

specified: 

 

SAVE = MAHALANOBIS; 
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LOGLIKELIHOOD 
 

When SAVE=LOGLIKELIHOOD is used, the loglikelihood 

contribution from each observation is saved along with the other analysis 

variables.  The LOGLIKELIHOOD option is available only for the 

maximum likelihood estimators.  It is not available for TYPE=EFA and 

BASIC, the MONTECARLO command, and the BOOTSTRAP option 

of the ANALYSIS command.  Following is an example of how this 

option is specified: 

 

SAVE = LOGLIKELIHOOD; 

 

INFLUENCE 
 

When SAVE=INFLUENCE is used, the loglikelihood distance influence 

measure (Cook & Weisberg, 1982) is saved for each observation along 

with the other analysis variables.  This measure is an overall influence 

statistic that computes the influence of an observation on the function 

being optimized.  This measure is also referred to as likelihood 

displacement for maximum likelihood estimators.  An analogous fit 

function displacement is available for the weighted least squares 

estimators. The INFLUENCE option is not available for TYPE=EFA 

and BASIC, the MONTECARLO command, and the BOOTSTRAP 

option of the ANALYSIS command.  The INFLUENCE option can be 

computationally demanding because the model is re-estimated as many 

times as there are observations.  Following is an example of how this 

option is specified: 

 

SAVE = INFLUENCE; 

 

COOKS 
 

When SAVE=COOKS is used, Cook’s D (Cook, 1977) is saved for each 

observation along with the other analysis variables.  This measure is a 

statistic that computes the influence of an observation on the parameter 

estimates.  The COOKS option is not available for TYPE=EFA and 

BASIC, the MONTECARLO command, and the BOOTSTRAP option 

of the ANALYSIS command.  The COOKS option can be 

computationally demanding because the model is re-estimated as many 
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times as there are observations.  Following is an example of how this 

option is specified: 

 

SAVE = COOKS; 

 

BCHWEIGHTS 
 

When SAVE=BCHWEIGHTS is used in conjunction with the 

TYPE=MIXTURE manual 3-step approach (Asparouhov & Muthén, 

2014a) and the BCH setting of the AUXILIARY option of the 

VARIABLE command, weights are saved for each subject and latent 

class along with the latent class indicators, distal outcomes, and 

covariates of interest.  Following is an example of how this option is 

specified: 

 

SAVE = BCHWEIGHTS; 

 

FACTORS 
 

The FACTORS option is used in conjunction with 

ESTIMATOR=BAYES to specify the names of the factors for which the 

distribution of factor scores, called plausible values, will be saved. 

Following is an example of how to specify the FACTORS option: 

 

FACTORS = f1 f2 f3; 

 

where f1, f2, and f3 are the factors for which the plausible value 

distributions will be saved.  

 

LRESPONSES 
 

The LRESPONSES option is used in conjunction with ESTIMATOR = 

BAYES to specify the names of the latent response variables underlying 

the categorical outcomes for which the plausible value distributions will 

be saved.  Following is an example of how to specify the LRESPONSES 

option: 

 

LRESPONSES = u1 u2 u3; 

 

http://www.statmodel.com/download/webnotes/webnote15.pdf
http://www.statmodel.com/download/webnotes/webnote15.pdf
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where u1, u2, and u3 are the latent responses variables underlying the 

categorical outcomes for which the latent response variable distributions 

will be saved.  

 

MERGING DATA SETS 
 
The following options are used in conjunction with the FILE option of 

the DATA command and the FILE option of the SAVEDATA command 

to merge the analysis data set with the data set named using the MFILE 

option described below.  Only individual data sets can be merged.  Both 

data sets must contain an ID variable which is used for merging.  

 

MFILE 
 

The MFILE option is used to specify the name and location of the ASCII 

file that is merged with the file named in the FILE option of the DATA 

command.  It is specified as  

 

MFILE IS c:\merge\merge.dat; 

 

where merge.dat is the name of the ASCII file containing the data to be 

merged with the data set named using the FILE option of the DATA 

command.  In this example, the file merge.dat is located in the directory 

c:\merge.  If the full path name of the data set contains any blanks, the 

full path name must have quotes around it. 

 

If the name of the data set is specified with a path, the directory 

specified by the path is checked.  If the name of the data set is specified 

without a path, the local directory is checked.  If the data set is not found 

in the local directory, the directory where the input file is located is 

checked. 

 

MNAMES 
 

The MNAMES option is used to assign names to the variables in the 

data set named using the MFILE option of the SAVEDATA command.  

The variable names can be separated by blanks or commas and can be up 

to 8 characters in length.  Variable names must begin with a letter.  They 

can contain only letters, numbers, and the underscore symbol.  The 
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program makes no distinction between upper and lower case letters.  

Following is an example of how the MNAMES option is specified: 

 

MNAMES ARE id gender ethnic income educatn drink_st agedrink;  

 

The ID variable from the IDVARIABLE option of the VARIABLE 

command must be one of the variables listed in the MNAMES statement, 

 

Variable names are generated if a list of variables is specified using the 

MNAMES option.  For example, 

MNAMES ARE y1-y5 x1-x3; 

 

generates the variable names y1 y2 y3 y4 y5 x1 x2 x3. 

 

MNAMES ARE itema-itemd; 

 

generates the variable names itema itemb itemc itemd. 

 

MFORMAT 
 

The MFORMAT option is used to describe the format of the data set to 

be merged with the analysis data set.  Individual data can be in fixed or 

free format.  Free format is the default.  Fixed format is recommended 

for large data sets because it is faster to read data using a fixed format. 

 

For data in free format, each entry on a record must be delimited by a 

comma, space, or tab.  When data are in free format, the use of blanks is 

not allowed.  The number of variables in the data set is determined from 

information provided in the MNAMES option of the SAVEDATA 

command.  Data are read until the number of pieces of information equal 

to the number of variables is found.  The program then goes to the next 

record to begin reading information for the next observation.  

 

For data in fixed format, each observation must have the same number of 

records.  Information for a given variable must occupy the same position 

on the same record for each observation.  A FORTRAN-like format 

statement describing the position of the variables in the data set is 

required.  See the FORMAT option of the DATA command for a 

description of how to specify a format statement.  
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MMISSING 
 

The MMISSING option is used to identify the values or symbol in the 

data set to be merged with the analysis data set that are treated as 

missing or invalid.  Any numeric value and the non-numeric symbols of 

the period, asterisk (*), or blank can be used as missing value flags.  

There is no default missing value flag.  Numeric and non-numeric 

missing value flags cannot be combined. The blank cannot be used as a 

missing value flag for data in free format.  When a list of missing value 

flags contains a negative number, the entries must be separated by 

commas.  See the MISSING option of the VARIABLE command for 

further information about missing value flags. 

 

MSELECT 
 

The MSELECT option is used to select the variables from the data set to 

be merged with the analysis data set.    Variables included on the 

MSELECT list must come from the MNAMES statement.  The 

MSELECT option is specified as follows: 

 

MSELECT ARE gender income agefirst; 

 

THE PLOT COMMAND 
 

The PLOT command is used to request graphical displays of observed 

data and analysis results.  These graphical displays can be viewed after 

the analysis is completed using a post-processing graphics module.   

Following are the options for the PLOT command:  

 
PLOT:   
   
TYPE IS PLOT1;  
 PLOT2;  
 PLOT3; 

SENSITIVITY; 

 

SERIES IS list of variables in a series plus x-axis 
values;  

 

FACTORS ARE 
LRESPONSES ARE 

names of factors (#); 
names of latent response variables (#); 
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OUTLIERS ARE 
 

MAHALANOBIS; 

LOGLIKELIHOOD; 

INFLUENCE; 
COOKS; 

 

MONITOR IS ON; 

OFF; 

OFF 

 

The PLOT command is not a required command.  Note that commands 

can be shortened to four or more letters.  Option settings can be referred 

to by either the complete word or the part of the word shown above in 

bold type. 

 

The AUXILIARY option of the VARIABLE command can be used in 

conjunction with the PLOT command to save variables that are not used 

in the analysis for subsequent use in graphical displays. 

 

TYPE 
 

The TYPE option is used to specify the type of plots that are requested.  

The TYPE option has four settings: PLOT1, PLOT2, PLOT3, and 

SENSITIVITY.  Plots can be generated for the total sample, by group, 

by class, and adjusted for covariates.  

 

PLOT1 
 

Following is a list of the plots obtained with TYPE=PLOT1: 

 

 Histograms of sample values 

 Scatterplots of sample values 

 Between-level histograms (sample values, sample means/variances) 

 Between-level scatterplots (sample values, sample means/variances) 

 Observed individual values 

 Time series plots (sample values, ACF, PACF) 

 

PLOT2 
 

Following is a list of the plots obtained with TYPE=PLOT2: 
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 Estimated means, medians, modes, and percentiles 

 Sample proportions, estimated and conditional estimated 

probabilities 

 Plot estimated probabilities only 

 Plot sample proportions only 

 Plot estimated probabilities and sample proportions 

 Plot estimated probabilities conditional on a set of covariates 

 Plot conditional estimated probabilities as a function of one 

covariate 

 Sample and estimated means 

 Loop plots 

 Moderation plots 

 Sensitivity plots 

 Bootstrap distributions 

 Dropout means 

 Eigenvalues for EFA 

 IRT plots 

 Item characteristic curves 

 Information curves 

 Estimated overall and class-specific distributions 

 Continuous –time survival curves 

 Kaplan-Meier curve 

 Sample log cumulative hazard curve 

 Estimated baseline hazard curve 

 Estimated baseline survival curve 

 Estimated log cumulative baseline curve 

 Kaplan-Meier curve with estimated baseline survival curve 

 Sample log cumulative hazard curve with estimated log 

cumulative baseline curve 

 Estimated survival curve 

 Estimated log cumulative curve 

 Discrete-time survival curves 

 Kaplan-Meier curve 

 Estimated baseline survival curve 

 Kaplan-Meier curve with estimated baseline survival curve 

 Estimated survival curve 

 Estimated distributions 

 Conditional expectation plots 
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 Measurement parameter plots 

 Bayesian plots 

 Posterior parameter distributions 

 Posterior parameter trace plots 

 Autocorrelation plots 

 Prior parameter distributions 

 Posterior predictive checking scatterplots 

 Posterior predictive checking distribution plots 

 

PLOT3 
 

Following is a list of the plots obtained with TYPE=PLOT3 in addition 

to the plots listed above for PLOT1 and PLOT2: 

 

 Histograms of estimated factors scores, outliers, estimated values, 

and residuals 

 Between-level histograms (sample values, sample/estimated 

means/variances) 

 Between-level histograms (sample values, sample means/variances, 

estimated factor scores) 

 Between-level histograms (sample values, sample/estimated 

means/variances, estimated factor scores) 

 Scatterplots of estimated factor scores, outliers, estimated values, 

and residuals 

 Between-level scatterplots (sample values, sample/estimated 

 means/variances) 

 Between-level scatterplots (sample values, sample  means/variances, 

estimated factor scores) 

 Between-level scatterplots (sample values, sample/estimated 

 means/variances, estimated factor scores) 

 Estimated individual values 

 Estimated individual probability values 

 Estimated means and observed individual values 

 Estimated means and estimated individual values 

 Adjusted estimated means and estimated individual values 

 Estimated probabilities for a categorical latent variable as a function 

of its covariates 

 Time series plots (sample values, ACF, PACF, estimated factor 

scores) 
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 Latent variable distribution plots 

 

SENSITIVITY 
 

The SENSITIVITY setting is used in conjunction with MODEL 

INDIRECT and the PLOT2 or PLOT3 settings to obtain plots to use in a 

sensitivity analysis of mediator-outcome confounding for 

counterfactually-defined causal effects as proposed by Imai et al. (2010a, 

b) and described in Muthén et al. (2016).  The SENSITIVITY setting is 

specified as follows: 

 

TYPE = SENSITIVITY PLOT3;    

 

SERIES 
 

The SERIES option is used to list the names of the set of variables to be 

used in plots where the values are connected by a line.  The x-axis values 

for each variable must also be given.  For growth models, the set of 

variables is the repeated measures of the outcome over time, and the x-

axis values are the time scores in the growth model.  For other models, 

the set of variables reflects an ordering of the observed variables in the 

plot.  Non-series plots such as histograms and scatterplots are available 

for all analyses. 

 

Values for the x axis can be given in three ways:  by putting the x-axis 

values in parentheses following each variable in the series; by using an 

asterisk (*) in parentheses to request integer values starting with 0 and 

increasing by 1; and for growth models, by putting the name of the slope 

growth factor in parentheses following each outcome or a list of the 

outcomes to request time score values.   

 

Following is an example of putting the x-axis values in parentheses 

following each outcome: 

 

SERIES = y1 (0) y2 (1) y3 (2) y4 (3);  

 

where the  x-axis value for y1 is 0, for y2 is 1, for y3 is 2, and for y4 is 3. 

 

Following is an example of putting an asterisk (*) in parentheses to 

request integer values starting with 0 and increasing by 1: 
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SERIES = y1 y2 y3 y4 (*);  

 

or 

 

SERIES = y1-y4 (*); 

 

This results in 0 as the first x-axis value and 1, 2, and 3 as subsequent 

values.  

 

Following is an example of putting the name of the slope growth factor 

in parentheses following each outcome in a growth model:   

 

SERIES = y1 (slope) y2 (slope) y3 (slope) y4 (slope); 

 

where slope is the name of the slope growth factor.  The list function can 

also be used with the SERIES option.  It is specified as follows: 

 

SERIES = y1-y4 (slope); 

 

This results in the time scores for the slope growth factor being used as 

the x-axis values. 

 

The SERIES option can be used to give variables and x-axis values for 

more than one series.  The list of variables for each series is separated by 

the | symbol.  Following is an example for two growth processes:    

 

SERIES = y1 (0) y2 (1) y3 (2) y4 (3) | y5 (0) y6 (1) y7 (4) y8 (5); 

 

where for the first growth process, the time score for y1 is 0, the time 

score for y2 is 1, the time score for y3 is 2, and the time score for y4 is 3; 

and for the second growth process, the time score for y5 is 0, the time 

score for y6 is 1, the time score for y7 is 4, and the time score for y8 is 5. 

 

Using the list function and the name of the slope growth factor, the 

SERIES option is specified as: 

 

SERIES = y1-y4 (s1) | y5-y8 (s2); 

 

where s1 is the name of the slope growth factor for the first growth 

process and s2 is the name of the slope growth factor for the second 
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growth process.  The names of the slope growth factors are defined in 

the MODEL command. 

 

FACTORS 
 

The FACTORS option is used in conjunction with 

ESTIMATOR=BAYES to specify the names of the factors for which the 

distributions of factor scores, called plausible values, will be saved for 

plotting.  Following is an example of how to specify the FACTORS 

option: 

 

FACTORS = f1 f2 f3 (100); 

 

where 100 is the number of imputations or draws that are used from the 

Bayesian posterior distribution to compute the plausible value 

distribution for each observation.  F1, f2, and f3 are the factors for which 

the plausible value distributions will be saved for plotting.  The default 

number of imputations or draws is 50.  

 

LRESPONSES 
 

The LRESPONSES option is used in conjunction with 

ESTIMATOR=BAYES to specify the names of the latent response 

variables underlying the categorical outcomes for which the plausible 

value distributions will be saved for plotting.  Following is an example 

of how to specify the LRESPONSES option: 

 

LRESPONSES = u1 u2 u3 (50); 

 

where 50 is the number of imputations or draws that are used from the 

Bayesian posterior distribution to compute the latent response variable 

distributions for each observation.  U1, u2, and u3 are the latent response 

variables underlying the categorical outcomes for which the latent 

response variable distributions will be saved for plotting.  
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OUTLIERS 
 

The OUTLIERS option is used to select the outliers that will be saved 

for use in graphical displays.  The OUTLIERS option has the following 

settings: 

 

MAHALANOBIS Mahalanobis distance and its p-value 

LOGLIKELIHOOD Loglikelihood contribution  

INFLUENCE  Loglikelihood distance influence measure 

COOKS  Cook’s D parameter estimate influence measure 

 

Following is an example of how to specify the OUTLIERS option: 

 

OUTLIERS = MAHALANOBIS COOKS; 

 

With this specification, the Mahalanobis distance and its p-value and 

Cook’s D will be saved for use in graphical displays. 

 

The loglikelihood distance influence measure and Cooks D can be 

computationally demanding because the model is re-estimated as many 

times as there are observations.  For further information about the 

outliers, see the SAVEDATA command.  

 

For TYPE=TWOLEVEL, INFLUENCE and COOKS are available at the 

individual and cluster levels and LOGLIKELIHOOD is available at the 

cluster level. 

 

MONITOR 
 

The MONITOR option is used to request that certain plots be shown on 

the monitor during model estimation.  The default is OFF.  To request 

that the plots be shown specify: 

 

MONITOR = ON: 

 

For Bayesian analysis, trace plots are shown when one chain is used.  

For all models except TYPE=GENERAL and TYPE=EFA, 

loglikelihoods are shown.  
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VIEWING GRAPHICAL OUTPUTS 
 

Mplus includes a dialog-based, post-processing graphics module that can 

be accessed using the Plot menu of the Mplus Editor or by clicking on 

the V button on the toolbar.  Following is a description of some of the 

features of the graphics module. 

 

Plots can be viewed by selecting the View plots item under the Plot 

menu or by clicking on the V button on the toolbar.  A list of plots 

available appears in the window as shown below. 

 

 

 

After a plot is selected, a window appears showing ways that the plot 

can be customized.  For example, if observed individual curves are 

selected, the following window appears:   
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Individual curves can be viewed in consecutive or random order.  The 

window above shows that sets of 10 individual curves will be viewed in 

consecutive order.  Random order can be selected and the number of 

curves can be changed.  The next set of curves are displayed by either 

selecting the Get next sample item under the Individual data submenu of 

the Plot menu or by using the arrow button on the toolbar bar.   

 

When viewing a plot, if the mouse is held on a point, information about 

the variable values for the individual represented by that point are given 

as shown in the window below. 



OUTPUT, SAVEDATA, And PLOT Commands 

 

 

 

                                                                                                               855 

 

 

Following is the window that is used to adjust plots of estimated means 

for different covariate values.  A set of covariates is named by typing a 

name in the edit box next to the Name covariate set button and clicking 

on the Name covariate set button.  The set of covariates for the analysis 

then appears in the section under Covariate values.  The mean or 

particular values of the covariates can be given for the plot. 
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Descriptive statistics can be viewed by using the View descriptive 

statistics item of the Plot menu which provides the following 

information for each variable. 
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The plots can be exported as a DIB, EMF, or JPEG file using the Export 

plot to item of the Plot menu.  In addition, the data for each plot can be 

saved in an external file using the Save plot data item of the Plot menu 

for subsequent use by another program.  
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CHAPTER 19 

MONTECARLO COMMAND 
 

 

In this chapter, the MONTECARLO command is discussed.  The 

MONTECARLO command is used to set up and carry out a Monte Carlo 

simulation study.      

 

THE MONTECARLO COMMAND 
 

Following are the options for the MONTECARLO command: 

 
MONTECARLO:   
   
NAMES = names of variables;   
NOBSERVATIONS = number of observations;  
NGROUPS = number of groups; 1 
NREPS = number of  replications; 1 
SEED = random seed for data generation; 0 
GENERATE = scale of dependent variables for data 

generation;  
 

CUTPOINTS = thresholds to be used for categorization of 
covariates; 

 

GENCLASSES = names of categorical latent variables (number 
of latent classes used for data generation); 

 

NCSIZES = number of unique cluster sizes for each group 
separated by the | symbol; 

 

CSIZES = number (cluster size) for each group 
separated by the | symbol; 

 

HAZARDC = specifies the hazard for the censoring 
process; 

 

PATMISS = missing data patterns and proportion missing 
for each dependent variable; 

 

PATPROBS = proportion for each missing data pattern;  
MISSING = names of dependent variables that have 

missing data; 
 

CENSORED ARE names, censoring type, and inflation status for  
censored dependent variables; 

 

CATEGORICAL ARE names of binary and ordered categorical 
(ordinal) dependent variables (model); 

 

NOMINAL ARE names of unordered categorical (nominal) 
dependent variables;  

 

COUNT ARE names of count variables (model);  
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CLASSES = names of categorical latent variables (number 
of latent classes used for model estimation); 

 

AUXILIARY = names of auxiliary variables (R3STEP); 
names of auxiliary variables (R); 
names of auxiliary variables (BCH); 

names of auxiliary variables (DU3STEP); 
names of auxiliary variables 

(DCATEGORICAL); 

names of auxiliary variables (DE3STEP); 
names of auxiliary variables 

(DCONTINUOUS); 
names of auxiliary variables (E); 

 

SURVIVAL = names and time intervals for time-to-event 
variables; 

 

TSCORES = names, means, and standard deviations of 
observed variables with information on 
individually-varying times of observation; 

 

WITHIN = names of individual-level observed variables;  
BETWEEN = names of cluster-level observed variables;  
POPULATION = name of file containing population parameter 

values for data generation; 
 

COVERAGE = name of file containing population parameter 
values for computing parameter coverage; 

 

STARTING = name of file containing parameter values for 
use as starting values for the analysis; 

 

REPSAVE = numbers of the replications to save data from 
or ALL; 

 

SAVE = name of file in which generated data are 
stored; 

 

RESULTS = name of file in which analysis results are 
stored; 

 

BPARAMETERS = 
 
LAGGED ARE  

name of file in which Bayesian posterior 
parameter values are stored; 
names of lagged variables (lag); 

 

 

The MONTECARLO command is not a required command.  When the 

MONTECARLO command is used, however, the NAMES and 

NOBSERVATIONS options are required.  Default settings are shown in 

the last column.  If the default settings are appropriate for the analysis, 

nothing besides the required options needs to be specified.  Following is 

a description of the MONTECARLO command.  
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GENERAL SPECIFICATIONS 
 

The NAMES, NOBSERVATIONS, NGROUPS, NREPS, and SEED 

options are used to give the basic specifications for a Monte Carlo 

simulation study.  These options are described below. 

 

NAMES 
 

The NAMES option is used to assign names to the variables in the 

generated data sets.  These names are used in the MODEL 

POPULATION and MODEL commands to specify the data generation 

and analysis models.  As in regular analysis, the list feature can be used 

to generate variable names.  Consider the following specification of the 

NAMES option: 

 

NAMES = y1-y10 x1-x5; 

 

which is the same as specifying: 

 

NAMES =  y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 x1 x2 x3 x4 x5;  

 

NOBSERVATIONS 
 

The NOBSERVATIONS option is used to specify the sample size to be 

used for data generation and in the analysis.  The NOBSERVATIONS 

option is specified as follows: 

 

NOBSERVATIONS = 500; 

   

where 500 is the sample size to be used for data generation and in the 

analysis. 

 

If the data being generated are for a multiple group analysis, a sample 

size must be specified for each group.  In multiple group analysis, the 

NOBSERVATIONS option is specified as follows: 

 

NOBSERVATIONS = 500 1000; 

 

where a sample size of 500 is used for data generation and in the 

analysis in the first group and a sample size of 1000 is used for data 

generation and in the analysis for the second group. 
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The NOBSERVATION option can be specified as follows when there 

are many groups: 

 

NOBSERVATIONS = 2(1000) 38(500); 

 

which specifies 2 groups of size 1000 and 38 groups of size 500. 

   

NGROUPS 
 

The NGROUPS option is used to specify the number of groups to be 

used for data generation and in the analysis.  The NGROUPS option is 

specified as follows: 

 

NGROUPS = 3; 

 

where 3 is the number of groups to be used for data generation and in the 

analysis.  The default for the NGROUPS option is 1.  The NGROUPS 

option is not available for TYPE=MIXTURE.   

   

For Monte Carlo studies, the program automatically assigns the label g1 

to the first group, g2 to the second group, etc.  These labels are used with 

the MODEL POPULATION and MODEL commands to describe the 

data generation and analysis models for each group. 

 

The NGROUPS option can be used with TYPE=MIXTURE to specify 

the number of known classes to be used for data generation and in the 

analysis.  The label %g#1% is assigned to the first known class, %g#2% 

to the second known class, etc..  These labels are used in the MODEL 

POPULATION and MODEL commands. 

 

NREPS 
  

The NREPS option is used to specify the number of replications for a 

Monte Carlo study, that is, the number of samples that are drawn from 

the specified population and the number of analyses that are carried out.  

The NREPS option is specified as follows: 

 

NREPS = 100; 

 

where 100 is the number of samples that are drawn and the number of 

analyses that are carried out.  The default for the NREPS option is 1. 
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SEED 
 

The SEED option is used to specify the seed to be used for the random 

draws.  The SEED option is specified as follows: 

 

SEED = 23458256; 

 

where 23458256 is the random seed to be used for the random draws.  

The default for the SEED option is zero. 

 

DATA GENERATION 
 

The GENERATE, CUTPOINTS, GENCLASSES, NCSIZES, CSIZES, 

and HAZARDC options are used in conjunction with the MODEL 

POPULATION command to specify how data are to be generated for a 

Monte Carlo simulation study.  These options are described below. 

 

GENERATE 
 

The GENERATE option is used to specify the scales of the dependent 

variables for data generation.  Variables not mentioned using the 

GENERATE option are generated as continuous variables.  In addition 

to generating continuous variables which is the default, dependent 

variables can be generated as censored, binary, ordered categorical 

(ordinal), unordered categorical (nominal), count variables, and time-to-

event variables.   

 

Censored variables can be generated with censoring from above or from 

below and can be generated with or without inflation.  The letters ca 

followed by a censoring limit in parentheses following a variable name 

indicate that the variable is censored from above.  The letters cb 

followed by a censoring limit in parentheses following a variable name 

indicate that the variable is censored from below.  The letters cai 

followed by a censoring limit in parentheses following a variable name 

indicate that the variable is censored from above with inflation.  The 

letters cbi followed by a censoring limit in parentheses following a 

variable name indicate that the variable is censored from below with 

inflation.   

 

For binary and ordered categorical (ordinal) variables using maximum 

likelihood estimation, the number of thresholds followed by the letter l 
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for a logistic model or the letter p for a probit model is put in 

parentheses following the variable name.  If no letter is specified, a 

logistic model is used.  The number of thresholds is equal to the number 

of categories minus one.  For binary variables, the logistic model is the 

same as a two-parameter logistic model.  To generate data for a three-

parameter logistic model, the number 1 and the letters 3pl are put in 

parentheses following the variable name.  To generate data for a four-

parameter logistic model, the number 1 and the letters 4pl are put in 

parentheses following the variable name.  For ordered categorical 

(ordinal) variables and a logistic model, the data are generated according 

to a proportional odds model which is the same as a graded response 

model.  To generate data for a generalized partial credit model, the 

number of thresholds and the letters gpcm are put in parentheses 

following the variable name.  For binary variables and a probit model, 

the data are generated according to a two-parameter normal ogive model.  

For ordered categorical (ordinal) variables and a probit model, the data 

are generated according to a graded response model.    

 

For binary and ordered categorical (ordinal) variables using weighted 

least squares estimation, only a probit model is allowed.  If p is not 

specified, a probit model is used.  The number of thresholds is equal to 

the number of categories minus one.  For binary variables and a probit 

model, the data are generated according to a two-parameter normal ogive 

model.  For ordered categorical (ordinal) variables and a probit model, 

the data are generated according to a graded response model.    

 

For unordered categorical (nominal) variables, the letter n followed by 

the number of intercepts is put in parentheses following the variable 

name.  The number of intercepts is equal to the number of categories 

minus one because the intercepts are fixed to zero in the last category 

which is the reference category.   

 

Count variables can be generated for the following six models:  Poisson, 

zero-inflated Poisson, negative binomial, zero-inflated negative 

binomial, zero-truncated negative binomial, and negative binomial 

hurdle (Long, 1997; Hilbe, 2011).  The letter c or p in parentheses 

following the variable name indicates that the variable is generated using 

a Poisson model.  The letters ci or pi in parentheses following the 

variable name indicate that the variable is generated using a zero-inflated 

Poisson model.  The letters nb in parentheses following the variable 

name indicate that the variable is generated using a negative binomial 
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model.  The letters nbi in parentheses following the variable name 

indicate that the variable is generated using a zero-inflated negative 

binomial model.  The letters nbt in parentheses following the variable 

name indicate that the variable is generated using a zero-truncated 

negative binomial model.  The letters nbh in parentheses following the 

variable name indicate that the variable is generated using a negative 

binomial hurdle model. 

 

For time-to-event variables in continuous-time survival analysis, the 

letter s and the number and length of time intervals of the baseline 

hazard function is put in parentheses following the variable name.  When 

only s is in parentheses, the number of intervals is equal to the number 

of observations.   

 

The GENERATE option is specified as follows: 

 

GENERATE = u1-u2 (1) u3 (1 p) u4 (1 l) u5 u6 (2 p) y1 (ca 1) y2 (cbi 0) 

u7 (n 2) u8 (ci) t1 (s 5*1); 

 

where the information in parentheses following the variable name or list 

of variable names defines the scale of the dependent variables for data 

generation.  In this example, the variables u1, u2, u3, and u4 are binary 

variables with one threshold.  Variables u1, u2, and u4 are generated 

using the logistic model.  This is specified by placing nothing or the 

letter l after the number of thresholds.  Variable u3 is generated using 

the probit model.  This is specified by placing the letter p after the 

number of thresholds.  Variables u5 and u6 are three-category ordered 

categorical (ordinal) variables with two thresholds.  The p in parentheses 

specifies that they are generated using the probit model.  Note that if a 

variable has nothing in parentheses after it, the specification in the next 

set of parentheses is applied.  This means that both u5 and u6 are 

ordered categorical (ordinal) variables with two thresholds.  Variable y1 

is a censored variable that is censored from above with a censoring limit 

of one.  Variable y2 is a censored variable with an inflation part that is 

censored from below with a censoring limit of zero.  Variable u7 is a 

three-category unordered categorical (nominal) variable with two 

intercepts.  Variable u8 is a count variable with an inflation part.    

Variable t1 is a time-to-event variable.  The numbers in parentheses 

specify that five time intervals of length one will be used for data 

generation.  
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In MODEL POPULATION, the inflation part of a censored or count 

variable is referred to by adding to the name of the censored or count 

variable the number sign (#) followed by the number 1.  The baseline 

hazard parameters in continuous-time survival analysis are referred to by 

adding to the name of the time-to-event variable the number sign (#) 

followed by a number.  There are as many baseline hazard parameters as 

there are time intervals plus one. 

 

CUTPOINTS 
 

The CUTPOINTS option is used to create binary independent variables 

from the multivariate normal independent variables generated by the 

program.  The CUTPOINTS option specifies the value of the cutpoint to 

be used in categorizing an independent variable.  Following is an 

example of how the CUTPOINTS option is specified:   

 

CUTPOINTS =  x1 (0) x2 ( 1); 

 

where x1 has a cutpoint of 0 and x2 has a cutpoint of 1.  For x1, 

observations having a value less than or equal to 0 are assigned the value 

of zero and observations having values greater than 0 are assigned the 

value of one.  Any independent variable not mentioned using the 

CUTPOINTS option is assumed to be continuous. 

 

In multiple group analysis, the CUTPOINT option is specified as follows 

where the cutpoints for the groups are separated using the | symbol: 

 

CUTPOINTS =  x1 (0) x2 ( 1) | x1 (1) x2 (0); 

 

where the cutpoints before the | symbol are the cutpoints for group 1 and 

the cutpoints after the | symbol are the cutpoints for group 2. 

 

GENCLASSES 
 

The GENCLASSES option is used to assign names to the categorical 

latent variables in the data generation model and to specify the number 

of latent classes to be used for data generation.  This option is used in 

conjunction with TYPE=MIXTURE.  The GENCLASSES option is 

specified as follows: 

 

GENCLASSES = c1 (3) c2 (2) c3 (3); 
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where c1, c2, and c3 are the names of the three categorical latent 

variables in the data generation model.  The numbers in parentheses are 

the number of classes that will be used for each categorical latent 

variable for data generation.  Three classes will be used for data 

generation for c1, two classes for c2, and three classes for c3.  

 

The letter b following the number of classes specifies that the categorical 

latent variable is a between-level variable.  Following is an example of 

how to specify that a categorical latent variable being generated is a 

between-level variable: 

 

GENCLASSES = cb (2 b); 

 

Categorical latent variables that are to be treated as between-level 

variables in the analysis must be specified as between-level variables 

using the BETWEEN option.   

 

NCSIZES 
 

The NCSIZES option is used with TYPE=TWOLEVEL, 

TYPE=THREELEVEL, and TYPE=CROSSCLASSIFIED to specify the 

number of unique cluster sizes to be used for data generation.  If the data 

being generated are for a multiple group analysis, the number of unique 

cluster sizes must be specified for each group.   

 

For TYPE=TWOLEVEL, the NCSIZES option is specified as follows: 

 

NCSIZES = 3; 

 

where 3 is the number of unique cluster sizes to be used for data 

generation.   

 

In multiple group analysis, the NCSIZES option is specified as follows 

where the number of unique cluster sizes for the groups are separated 

using the | symbol: 

 

NCSIZES = 3 | 2; 

 

where 3 is the number of unique cluster sizes to be used for data 

generation for group 1 and 2 is the number of unique cluster sizes for 

group 2. 
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For TYPE=THREELEVEL, consider a model where students are nested 

in classrooms and classrooms are nested in schools. Level 1 is student; 

level 2 is classroom; and level 3 is school. For TYPE=THREELEVEL, 

the NCSIZES option is specified as follows: 

 

NCSIZES = 3 [2]; 

 

where the numbers 3 and 2 are the unique cluster sizes to be used for 

data generation.  In this example, 3 is the number of unique cluster sizes 

for level 3, school, and 2 is the number of unique cluster sizes for level 

2, classroom. 

 

In multiple group analysis, the NCSIZES option is specified as follows 

where the number of unique cluster sizes for the groups are separated 

using the | symbol: 

 

NCSIZES = 3 [2] | 4 [3]; 

 

where the numbers 3 and 2 are the unique cluster sizes to be used for 

data generation in group 1 and the numbers 4 and 3 are the unique 

cluster sizes to be used for data generation in group 2.  In this example, 3 

is the number of unique cluster sizes for level 3, school, and 2 is the 

number of unique cluster sizes for level 2, classroom, for group 1 and 4 

is the number of unique cluster sizes for level 3, school, and 3 is the 

number of unique clusters sizes for level 2, classroom, for group 2. 

 

For TYPE=CROSSCLASSIFIED, consider a model where students are 

nested in schools crossed with neighborhoods.   Level 1 is student; level 

2a is school; and level 2b is neighborhood.  For 

TYPE=CROSSCLASSIFIED, the NCSIZES option is specified as 

follows: 

 

 NCSIZES = 3 [2]; 

 

where the numbers 3 and 2 are the unique cluster sizes to be used for 

data generation.  In this example, 3 is the number of unique cluster sizes 

for level 2a, school, and 2 is the number of unique cluster sizes for level 

2b, neighborhood. 
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CSIZES 
 

The CSIZES option is used with TYPE=TWOLEVEL, 

TYPE=THREELEVEL, and TYPE=CROSSCLASSIFIED to specify the 

number of clusters and the sizes of the clusters to be used for data 

generation.  

 

For TYPE=TWOLEVEL, the CSIZES option is specified as follows: 

 

CSIZES =  100 (10) 30 (5) 15 (1); 

 

where 100 clusters of size 10, 30 clusters of size 5, and 15 clusters of 

size 1 will be used for data generation. 

 

In multiple group analysis, the CSIZES option is specified as follows 

where the number of clusters and the sizes of the clusters to be used for 

the groups are separated by the | symbol: 

 

CSIZES = 100 (10) 30 (5) 15 (1) | 80 (10) 20 (5); 

 

where 100 clusters of size 10, 30 clusters of size 5, and 15 clusters of 

size 1 will be used for data generation for group 1 and 80 clusters of size 

10 and 20 clusters of size 5 will be used for data generation for group 2.  

 

For TYPE=THREELEVEL, consider a model where students are nested 

in classrooms and classrooms are nested in schools. Level 1 is student; 

level 2 is classroom; and level 3 is school. For TYPE=THREELEVEL, 

the CSIZES option is specified as follows: 

 

CSIZES = 40 [15(2) 10(5)] 30 [6(8)] 7 [20(2)]; 

 

where the numbers 40, 30, and 7 are the number of level 3, school, 

clusters.  There are a total of 77 level 3, school, clusters.  The 40 level 3, 

school, clusters are made up of 15 level 2, class, clusters of size two and 

10 level 2, class, clusters of size 5 for a total of 3200 observations.  The 

30 level 3, school, clusters are made up of 6 level 2, class, clusters of 

size 8 for a total of 1440 observations.  The 7 level 3, school, clusters are 

made up of 20 level 2, class, clusters of size 2 for a total of 280 

observations.  The total sample size for data generation is 4920.   
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In multiple group analysis, the CSIZES option is specified as follows 

where the number of clusters and the sizes of the clusters to be used for 

the groups are separated by the | symbol: 

 

CSIZES = 30 [6(8)] 7 [20(2)] | 40 [5(6)]  20 [4(2)] ; 

 

where the numbers 30 and 7 are the number of level 3, school, clusters 

for group 1 and the numbers 40 and 20 are the number of level 3, school, 

clusters for group 2.  There are a total of 37 level 3, school, clusters for 

group 1 and 60 level 3, school, clusters for group 2.  For group 1, the 30 

level 3, school, clusters are made up of 6 level 2, class, clusters of size 8 

for a total of 1440 observations.  The 7 level 3, school, clusters are made 

up of 20 level 2, class, clusters of size 2 for a total of 280 observations.  

For group 1, the total sample size for data generation is 1720.  For group 

2, the 40 level 3, school, clusters are made up of 5 level 2, class, clusters 

of size 6 for a total of 1200 observations.  The 20 level 3, school, 

clusters are made up of 4 level 2, class, clusters of size 2 for a total of 

160 observations.  For group 2, the total sample size for data generation 

is 1360.    

 

For TYPE=CROSSCLASSIFIED, consider a model where students are 

nested in schools crossed with neighborhoods.   Level 1 is student; level 

2a is school; and level 2b is neighborhood.  For 

TYPE=CROSSCLASSIFIED, the CSIZES option is specified as follows: 

 

CSIZES = 40 [15(2) 10(5)] 30 [6(8)] 7 [20(2)]; 

 

where the numbers 40, 30, and 7 are the number of level 2b, 

neighborhood, clusters.  There are a total of 77 level 2b, neighborhood, 

clusters.  The numbers 15, 10, 6, and 20 are the number of level 2a, 

school, clusters.  There are a total of 51 level 2a, school, clusters.  The 

40 level 2b, neighborhood, clusters are crossed with the 15 level 2a, 

school, clusters and the 10 level 2a, school, clusters.  Each cell of the 40 

by 15 cross-classification contains 2 students for a total of 1200 

observations.  Each cell of the 40 by 10 cross-classification contains 5 

students for a total of 2000 observations.  The 30 level 2b, 

neighborhood, clusters are crossed with 6 level 2a, school, clusters.  

Each cell of the 30 by 6 cross-classification contains 8 students for a 

total of 1440 observations.  The 7 level 2b, neighborhood, clusters are 

crossed with the 20 level 2a, school, clusters.  Each cell of the 7 by 20 
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cross-classification contains 2 students for a total of 280 observations.  

The total sample size for data generation is 4920.   

 

HAZARDC 
 

The HAZARDC option is used to specify the hazard for the censoring 

process in continuous-time survival analysis when time-to-event 

variables are generated.  This information is used to create a censoring 

indicator variable where zero is not censored and one is right censored.  

The HAZARDC option is specified as follows: 

 

HAZARDC = t1 (.5); 

 

where t1 is the name of the time-to-event variable that is generated and 

.5 is the hazard for censoring.  

 

MISSING DATA GENERATION 
 

The PATMISS, PATPROBS, and MISSING options and the MODEL 

MISSING command are used to specify how missing data will be 

generated for a Monte Carlo simulation study.  These options are 

described below.  Missing data can be generated using two approaches.  

In the first approach, the PATMISS and PATPROBS options are used 

together to generate missing data.  In the second approach, the MISSING 

option is used in conjunction with the MODEL MISSING command to 

generate missing data.  The approaches cannot be used in combination.  

When generated data are saved, the missing value flag is 999.  The 

PATMISS and PATPROBS options are not available for multiple group 

analysis.  For multiple group analysis, missing data are generated using 

the MISSING option in conjunction with the MODEL MISSING 

command.  These options are described below. 

 

PATMISS 
 

The PATMISS option is used to specify the missing data patterns and 

the proportion of data that are missing to be used in missing data 

generation for each dependent variable in the model.  Any variable in the 

NAMES statement that is not listed in a missing data pattern is assumed 

to have no missing data for all individuals in that pattern.  The 

PATMISS option is used in conjunction with the PATPROBS option.  

The PATMISS option is specified as follows: 
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PATMISS = y1 (.2) y2 (.3) y3 (.1) |  

   y2 (.2) y3 (.1) y4 (.3) |  

  y3 (.1) y4 (.3); 

 

The statement above specifies that there are three missing data patterns 

which are separated by the | symbol. The number in parentheses 

following each variable is the probability of missingness to be used for 

that variable in data generation.  In the first pattern, y1, y2, y3 are 

observed with missingness probabilities of .2, .3, and .1, respectively.  In 

the second pattern, y2, y3, y4 are observed with missingness 

probabilities of .2, .1, and .3, respectively.  In the third pattern, y3 and y4 

are observed with missingness probabilities of .1 and .3, respectively.  

Assuming that the NAMES statement includes variables y1, y2, y3, and 

y4, individuals in the first pattern have no missing data on variable y4; 

individuals in the second pattern have no missing data on variable y1; 

and individuals in the third pattern have no missing data on variables y1 

and y2. 

 

PATPROBS 
 

The PATPROBS option is used to specify the proportion of individuals 

for each missing data pattern to be used in the missing data generation.  

The PATPROBS option is used in conjunction with the PATMISS 

option. The proportions are listed in the order of the missing data 

patterns in the PATMISS option and are separated by the | symbol.  The 

PATPROBS option is specified as follows: 

 

PATPROBS =  .4 | .3 | .3; 

 

where missing data pattern one has probability .40 of being observed in 

the data being generated, missing data pattern two has probability .30 of 

being observed in the data being generated, and missing data pattern 

three has probability .30 of being observed in the data being generated.  

The missing data pattern probabilities must sum to one.  

 

MISSING 
 

The MISSING option is used to identify the dependent variables for 

which missing data are be generated.  This option is used in conjunction 

with the MODEL MISSING command.  Missing data are not allowed on 
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the observed independent variables.  The MISSING option is specified 

as follows: 

 

MISSING = y1 y2 u1; 

 

which indicates that missing data will be generated for variables y1, y2, 

and u1.  The probabilities of missingness are described using the 

MODEL MISSING command which is described in Chapter 17. 

 

SCALE OF DEPENDENT VARIABLES FOR 

ANALYSIS 
 

The CENSORED, CATEGORICAL, NOMINAL, and COUNT options 

are used to specify the scale of the dependent variables for analysis.  

These options are described below. 

 

All observed dependent variables are assumed to be measured on a 

continuous scale for the analysis unless the CENSORED, 

CATEGORICAL, NOMINAL, and/or COUNT options are specified.  

The specification of the scale of the dependent variables determines how 

the variables are treated in the model and its estimation.  Independent 

variables can be binary or continuous.   The scales of the independent 

variables have no impact on the model or its estimation.  The distinction 

between dependent and independent variables is described in the 

discussion of the MODEL command.     

 

CENSORED 
 

The CENSORED option is used to specify which dependent variables 

are treated as censored variables in the model and its estimation, whether 

they are censored from above or below, and whether a censored or 

censored-inflated model will be estimated.   

 

The CENSORED option is specified as follows for a censored model: 

   

CENSORED ARE y1 (a) y2 (b) y3 (a) y4 (b); 

 

where y1, y2, y3, y4 are censored dependent variables in the analysis.  

The letter a in parentheses following the variable name indicates that the 

variable is censored from above.  The letter b in parentheses following 

the variable name indicates that the variable is censored from below.  
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The lower and upper censoring limits are determined from the data 

generation. 

 

The CENSORED option is specified as follows for a censored-inflated 

model: 

   

CENSORED ARE y1 (ai) y2 (bi) y3 (ai) y4 (bi); 

 

where y1, y2, y3, y4 are censored dependent variables in the analysis.  

The letters ai in parentheses following the variable name indicates that 

the variable is censored from above and that a censored-inflated model 

will be estimated.  The letter bi in parentheses following the variable 

name indicates that the variable is censored from below and that a 

censored-inflated model will be estimated.  The lower and upper 

censoring limits are determined from the data generation.   

 

With a censored-inflated model, two variables are considered, a 

censored variable and an inflation variable.  The censored variable takes 

on values for individuals who are able to assume values of the censoring 

point and beyond.  The inflation variable is a binary latent variable for 

which the value one denotes that an individual is unable to assume any 

value except the censoring point.  The inflation variable is referred to by 

adding to the name of the censored variable the number sign (#) 

followed by the number 1.  In the example above, the censored variables 

available for use in the MODEL command are y1, y2, y3, and y4, and 

the inflation variables available for use in the MODEL command are 

y1#1, y2#1, y3#1, and y4#1. 

 

CATEGORICAL 
 

The CATEGORICAL option is used to specify which dependent 

variables are treated as binary or ordered categorical (ordinal) variables 

in the model and its estimation and the type of model to be estimated.  

Both probit and logistic regression models can be estimated for 

categorical variables.  For binary variables, the following IRT models 

can be estimated:  two-parameter normal ogive, two-parameter logistic, 

three-parameter logistic, and four-parameter logistic.  For ordered 

categorical (ordinal) variables, the following IRT models can be 

estimated:  generalized partial credit with logistic and graded-response 

with probit (normal ogive) and logistic.  For a nominal IRT model, use 

the NOMINAL option.   
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For categorical dependent variables, there are as many thresholds as 

there are categories minus one.  The thresholds are referred to in the 

MODEL command by adding to the variable name the dollar sign ($) 

followed by a number.  The threshold for a binary variable u1 is referred 

to as u1$1.  The two thresholds for a three-category variable u2 are 

referred to as u2$1 and u2$2.  Ordered categorical dependent variables 

cannot have more than 10 categories.  The number of categories is 

determined from the data generation.   

 

The CATEGORICAL option is specified as follows: 

   

CATEGORICAL ARE u2 u3 u7-u13; 

 

where u2, u3, u7, u8, u9, u10, u11, u12, and u13 are binary or ordered 

categorical dependent variables in the analysis.  With weighted least 

squares and Bayes estimation, a probit model is estimated.  For binary 

variables, this is a two-parameter normal ogive model.  For ordered 

categorical (ordinal) variables, this is a graded response model.  With 

maximum likelihood estimation, a logistic model is estimated as the 

default.  For binary variables, this is a two-parameter logistic model. For 

ordered categorical (ordinal) variables, this is a proportional odds model 

which is the same as a graded response model.   Probit models can also 

be estimated with maximum likelihood estimation using the LINK 

option of the ANALYSIS command.   

 

The CATEGORICAL option for a generalized partial credit model is 

specified as follows:   

 

CATEGORICAL = u1 –u3 (gpcm) u10 (gpcm); 

 

where the variables u1, u2, u3, and u10 are ordered categorical (ordinal) 

variables for which a generalized partial credit model will be estimated.  

The partial credit model has c-1 step parameters for an item with c 

categories and one slope parameter (Asparouhov & Muthén, 2016).  The 

step parameters are referred to in the same way as thresholds.  The first 

step parameter for a three-category ordered categorical (ordinal) variable 

u1 is referred to as u1$1.  The second step parameter is referred to as 

u1$2. 

 

The CATEGORICAL option for a three-parameter logistic model is 

specified as follows: 
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CATEGORICAL = u1 –u3 (3pl) u10 (3pl); 

 

where the variables u1, u2, u3, and u10 are binary variables for which a 

three-parameter logistic model will be estimated.  The guessing 

parameter cannot be referred to directly.  Instead a parameter related to 

the guessing parameter is referred to (Asparouhov & Muthén, 2016).  

This parameter is referred to as the second threshold.  The first threshold 

for a binary variable u1 is referred to as u1$1.  The second threshold is 

referred to as u1$2. 

 

The CATEGORICAL option for a four-parameter logistic model is 

specified as follows: 

 

CATEGORICAL = u1 –u3 (4pl) u10 (4pl); 

 

where the variables u1, u2, u3, and u10 are binary variables for which a 

four-parameter logistic model will be estimated.  The lower asymptote 

(guessing) and upper asymptote parameters cannot be referred to 

directly.  Instead a parameter which is related to the lower asymptote 

(guessing) and a parameter which is related to the upper asymptote 

parameter are referred to (Asparouhov & Muthén, 2016).  The parameter 

related to the lower asymptote (guessing) parameter is referred to as the 

second threshold.  The parameter related to the upper asymptote 

parameter is referred to as the third threshold.  The first threshold for a 

binary variable u1 is referred to as u1$1.  The second threshold is 

referred to as u1$2.  The third threshold is referred to as u1$3. 

 

NOMINAL 
 

The NOMINAL option is used to specify which dependent variables are 

treated as unordered categorical (nominal) variables in the model and its 

estimation.  Unordered categorical dependent variables cannot have 

more than 10 categories.  The number of categories is determined from 

the data generation.  The NOMINAL option is specified as follows: 

   

NOMINAL ARE u1 u2 u3 u4; 

 

where u1, u2, u3, u4 are unordered categorical dependent variables in 

the analysis.  
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For nominal dependent variables, all categories but the last category can 

be referred to.  The last category is the reference category.  The 

categories are referred to in the MODEL command by adding to the 

variable name the number sign (#) followed by a number.  The three 

categories of a four-category nominal variable are referred to as u1#1, 

u1#2, and u1#3.  

 

COUNT 
 

The COUNT option is used to specify which dependent variables are 

treated as count variables in the model and its estimation and the type of 

model to be estimated.  The following models can be estimated for count 

variables:  Poisson, zero-inflated Poisson, negative binomial, zero-

inflated negative binomial, zero-truncated negative binomial, and 

negative binomial hurdle (Long, 1997; Hilbe, 2011).  The negative 

binomial models use the NB-2 variance representation (Hilbe, 2011, p. 

63).  Count variables may not have negative or non-integer values.   

 

The COUNT option can be specified in two ways for a Poisson model: 

 

COUNT = u1 u2 u3 u4; 

 

or 

 

COUNT = u1 (p) u2 (p) u3 (p) u4 (p); 

 

or using the list function: 

 

COUNT = u1-u4 (p); 

 

The COUNT option can be specified in two ways for a zero-inflated 

Poisson model: 

 

COUNT = u1-u4 (i); 

 

or 

 

COUNT = u1-u4 (pi); 
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where u1, u2, u3, and u4 are count dependent variables in the analysis.  

The letter i or pi in parentheses following the variable name indicates 

that a zero-inflated Poisson model will be estimated. 

 

With a zero-inflated Poisson model, two variables are considered, a 

count variable and an inflation variable.  The count variable takes on 

values for individuals who are able to assume values of zero and above 

following the Poisson model.  The inflation variable is a binary latent 

variable with one denoting that an individual is unable to assume any 

value except zero.  The inflation variable is referred to by adding to the 

name of the count variable the number sign (#) followed by the number 

1.  If the inflation parameter value is estimated at a large negative value 

corresponding to a probability of zero, the inflation part of the model is 

not needed. 

 

Following is the specification of the COUNT option for a negative 

binomial model: 

 

COUNT = u1 (nb) u2 (nb) u3 (nb) u4 (nb); 

 

or using the list function: 

 

COUNT = u1-u4 (nb); 

 

With a negative binomial model, a dispersion parameter is estimated.  

The dispersion parameter is referred to by using the name of the count 

variable.  If the dispersion parameter is estimated at zero, the model is a 

Poisson model. 

 

Following is the specification of the COUNT option for a zero-inflated 

negative binomial model: 

 

COUNT = u1- u4 (nbi); 

 

With a zero-inflated negative binomial model, two variables are 

considered, a count variable and an inflation variable.  The count 

variable takes on values for individuals who are able to assume values of 

zero and above following the negative binomial model.  The inflation 

variable is a binary latent variable with one denoting that an individual is 

unable to assume any value except zero.  The inflation variable is 

referred to by adding to the name of the count variable the number sign 
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(#) followed by the number 1.  If the inflation parameter value is 

estimated at a large negative value corresponding to a probability of 

zero, the inflation part of the model is not needed. 

 

Following is the specification of the COUNT option for a zero-truncated 

negative binomial model: 

 

COUNT = u1-u4 (nbt); 

 

Count variables for the zero-truncated negative binomial model must 

have values greater than zero. 

 

Following is the specification of the COUNT option for a negative 

binomial hurdle model: 

 

COUNT = u1-u4 (nbh); 

 

With a negative binomial hurdle model, two variables are considered, a 

count variable and a hurdle variable.  The count variable takes on values 

for individuals who are able to assume values of one and above 

following the truncated negative binomial model.  The hurdle variable is 

a binary latent variable with one denoting that an individual is unable to 

assume any value except zero.  The hurdle variable is referred to by 

adding to the name of the count variable the number sign (#) followed by 

the number 1.  

 

OPTIONS FOR DATA ANALYSIS 
 

The CLASSES, AUXILIARY, and SURVIVAL options are used only in 

the analysis.  These options are described below. 

 

CLASSES 
 

The CLASSES option is used to assign names to the categorical latent 

variables in the model and to specify the number of latent classes in the 

model for each categorical latent variable.  This option is required for 

TYPE=MIXTURE.  Between-level categorical latent variables must be 

identified as between-level variables using the BETWEEN option.  The 

CLASSES option is specified as follows: 

 

CLASSES = c1 (2) c2 (2) c3 (3); 
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where c1, c2, and c3 are the names of the three categorical latent 

variables in the analysis model.  The numbers in parentheses specify the 

number of classes that will be used for each categorical latent variable in 

the analysis.  The categorical latent variable c1 has two classes, c2 has 

two classes, and c3 has three classes.   

 

AUXILIARY 
 

Auxiliary variables are variables that are not part of the analysis model.  

With TYPE=MIXTURE, the AUXILIARY option is used to 

automatically carry out the 3-step approach.  There are eight settings of 

the AUXILIARY option that automatically carry out the 3-step 

approach.  Two of these settings are used to identify a set of variables 

not used in the first step of the analysis that are possible covariates in a 

multinomial logistic regression for a categorical latent variable.  The 

multimonial logistic regression uses all covariates at the same time.  Six 

of the settings are used to identify a set of variables not used in the first 

step of the analysis for which the equality of means across latent classes 

will be tested.  The equality of means is tested one variable at a time.  

Only one of these eight settings can be used in an analysis at a time.  

Only one categorical latent variable is allowed with the 3-step approach.  

The manual 3-step approach in described in Asparouhov and Muthén 

(2014a, b). 

 

The two settings that are used to identify a set of variables not used in 

the first step of the analysis that are possible covariates in a multinomial 

logistic regression for a categorical latent variable are R3STEP 

(Vermunt, 2010; Asparouhov & Muthén, 2012b) and R (Wang et al., 

2005).  R3STEP is preferred.  R is superseded by R3STEP and should be 

used only for methods research. 

 

The six settings that are used to identify a set of variables not used in the 

first step of the analysis for which the equality of means across latent 

classes will be tested are BCH (Bakk & Vermunt, 2014), DU3STEP 

(Asparouhov & Muthén, 2012b), DCAT (Lanza et al., 2013), DE3STEP 

(Asparouhov & Muthén, 2012b), DCON (Lanza et al., 2013), and E 

(Asparouhov, 2007).  BCH is preferred for continuous distal outcomes.  

DU3STEP should be used only when there are no class changes between 

the first and last steps.  DCAT is for categorical distal outcomes.  The 

following settings for continuous distal outcomes, DE3STEP, DCON, 

and E, should be used only for methods research. 
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All of the settings are specified in the same way.  The setting in 

parentheses is placed behind the variables on the AUXILIARY 

statement that will be used as covariates in the multinomial logistic 

regression or for which the equality of means will be tested.  Following 

is an example of how to specify the R3STEP setting: 

 

AUXILIARY = race (R3STEP) ses (R3STEP) x1-x5 (R3STEP);  

 

where race, ses, x1, x2, x3, x4, and x5 will be used as covariates in a 

multinomial logistic regression in a mixture model.   

 

An alternative specification for the eight settings that is convenient when 

there are several variables that cannot be specified using the list function 

is: 

 

AUXILIARY = (R3STEP) x1 x3 x5 x7 x9; 

 

where all variables after R3STEP) will be used as covariates in a 

multinomial logistic regression in a mixture model. 

 

Following is an example of how to specify more than one setting in the 

same AUXILIARY statement: 

 

AUXILIARY = gender age (BCH) educ ses (BCH) x1-x5 (BCH); 

 

where all of the variables on the AUXILIARY statement will be saved if 

the SAVEDATA command is used, will be available for plots if the 

PLOT command is used, and tests of equality of means across  latent 

classes will be carried out for the variables age, ses, x1, x2, x3, x4, and 

x5.  

 

SURVIVAL 
 

The SURVIVAL option is used to identify the variables that contain 

information about time to event and to provide information about the 

number and lengths of the time intervals in the baseline hazard function 

to be used in the analysis.  The SURVIVAL option must be used in 

conjunction with the TIMECENSORED option.  The SURVIVAL 

option can be specified in five ways:  the default baseline hazard 

function, a non-parametric baseline hazard function, a semi-parametric 
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baseline hazard function, a parametric baseline hazard function, and a 

constant baseline hazard function.   

 

The SURVIVAL option is specified as follows when using the default 

baseline hazard function: 

  

SURVIVAL = t; 

 

where t is the variable that contains time-to-event information.  The 

default is either a semi-parametric baseline hazard function with ten time 

intervals or a non-parametric baseline hazard function.  The default is a 

semi-parametric baseline hazard function with ten time intervals for 

models where t is regressed on a continuous latent variable, for 

multilevel models, and for models that require Monte Carlo numerical 

integration.  In this case, the lengths of the time intervals are selected 

internally in a non-parametric fashion.  For all other models, the default 

is a non-parametric baseline hazard function as in Cox regression where 

the number and lengths of the time intervals are taken from the data and 

the baseline hazard function is saturated. 

 

The SURVIVAL option is specified as follows when using a non-

parametric baseline hazard function as in Cox regression: 

 

SURVIVAL = t (ALL); 

 

where t is the variable that contains time-to-event information and ALL 

is a keyword that specifies that the number and lengths of the time 

intervals are taken from the data and the baseline hazard is saturated.  It 

is not recommended to use the keyword ALL when the BASEHAZARD 

option of the ANALYSIS command is ON because it results in a large 

number of baseline hazard parameters.  

 

The SURVIVAL option is specified as follows when using a semi-

parametric baseline hazard: 

 

SURVIVAL = t (10); 

 

where t is the variable that contains time-to-event information.  The 

number in parentheses specifies that 10 intervals are used in the analysis 

where the lengths of the time intervals are selected internally in a non-

parametric fashion. 
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The SURVIVAL option is specified as follows when using a parametric 

baseline hazard function: 

 

SURVIVAL = t (4*5 1*10); 

 

where t is the variable that contains time-to-event information.  The 

numbers in parentheses specify that four time intervals of length five and 

one time interval of length ten are used in the analysis. 

 

The SURVIVAL option is specified as follows when using a constant 

baseline hazard function: 

 

SURVIVAL = t (CONSTANT);   

 

where t is the variable that contains time-to-event information and 

CONSTANT is the keyword that specifies a constant baseline hazard 

function. 

 

VARIABLES WITH SPECIAL FUNCTIONS FOR 

DATA GENERATION AND ANALYSIS 
 

The TSCORES, WITHIN, and BETWEEN options are used for both 

data generation and in the analysis.  These options are described below. 

 

TSCORES   
 

The TSCORES option is used in conjunction with TYPE=RANDOM to 

name and define the variables to be generated that contain information 

about individually-varying times of observation for the outcome in a 

longitudinal study.  Variables listed in the TSCORES statement can be 

used only in AT statements in the MODEL and MODEL POPULATION 

commands to define a growth model.  They cannot be used with other 

statements in the MODEL command.  The TSCORES option is specified 

as follows: 

 

TSCORES ARE a1 (0  0) a2 (1  .1) a3 (2  .2) a4 (3  .3); 

 

where a1, a2, a3, and a4 are variables to be generated that contain the 

individually-varying times of observation for an outcome at four time 

points.  The first number in parentheses is the mean of the variable.  The 

second number in parentheses is the standard deviation of the variable.  
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Each variable is generated using a univariate normal distribution using 

the mean and standard deviation specified in the TSCORES statement.      

 

WITHIN 
 

The WITHIN option is used with TYPE=TWOLEVEL, 

TYPE=THREELEVEL, and TYPE=CROSSCLASSIFIED to identify the 

variables in the data set that are measured on the individual level and to 

specify the levels on which they are modeled.  All variables on the 

WITHIN list must be measured on the individual level.  An individual-

level variable can be modeled on all or some levels.   

 

For TYPE=TWOLEVEL, an individual-level variable can be modeled 

on only the within level or on both the within and between levels.  If a 

variable measured on the individual level is mentioned on the WITHIN 

list, it is modeled on only the within level.  It has no variance in the 

between part of the model. If it is not mentioned on the WITHIN list, it 

is modeled on both the within and between levels.  The WITHIN option 

is specified as follows: 

 

WITHIN = y1 y2 x1; 

 

where y1, y2, and x1 are variables measured on the individual level and 

modeled on only the within level. 

 

For TYPE=THREELEVEL, an individual-level variable can be modeled 

on only level 1, on levels 1 and 2, levels 1 and 3, or on all levels.  

Consider a model where students are nested in classrooms and 

classrooms are nested in schools. Level 1 is student; level 2 is 

classroom; and level 3 is school.  If a variable measured on the 

individual level is mentioned on the WITHIN list without a label, it is 

modeled on only level 1.  It has no variance on levels 2 and 3.  If it is 

mentioned on the WITHIN list with a level 2 cluster label, it is modeled 

on levels 1 and 2.  It has no variance on level 3.  If it is mentioned on the 

WITHIN list with a level 3 cluster label, it is modeled on levels 1 and 3.  

It has no variance on level 2.  If it is not mentioned on the WITHIN list, 

it is modeled on all levels. 

 

Following is an example of how to specify the WITHIN option for 

TYPE=THREELEVEL: 
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WITHIN = y1-y3 (level2) y4-y6 (level3) y7-y9; 

 

In the example, y1, y2, and y3 are variables measured on the individual 

level and modeled on only level 1.  Variables modeled on only level 1 

must precede variables modeled on the other levels.  Y4, y5, and y6 are 

variables measured on the individual level and modeled on levels 1 and 

2.  Y7, y8, and y9 are variables measured on the individual level and 

modeled on levels 1 and 3.   

 

An alternative specification of the WITHIN option above reverses the 

order of the level 2 and level 3 variables: 

 

WITHIN = y1-y3 (level3) y7-y9 (level2) y4-y6; 

 

Variables modeled on only level 1 must precede variables modeled on 

the other levels.  Another alternative specification is: 

 

WITHIN =  y1-y3; 

WITHIN =  (level2) y4-y6; 

WITHIN =  (level3) y7-y9; 

 

In this specification, the WITHIN statement for variables modeled on 

only level 1 must precede the other WITHIN statements.  The order of 

the other WITHIN statements does not matter. 

 

For TYPE=CROSSCLASSIFIED, an individual-level variable can be 

modeled on only level 1, on levels 1 and 2a, levels 1 and 2b, or on all 

levels.  Consider a model where students are nested in schools crossed 

with neighborhoods.   Level 1 is student; level 2a is school; and level 2b 

is neighborhood.  If a variable measured on the individual level is 

mentioned on the WITHIN list without a label, it is modeled on only 

level 1.  It has no variance on levels 2a and 2b.  If it is mentioned on the 

WITHIN list with a level 2a cluster label, it is modeled on levels 1 and 

2a.  It has no variance on level 2b.  If it is mentioned on the WITHIN list 

with a level 2b cluster label, it is modeled on levels 1 and 2b.  It has no 

variance on level 2a.  If it is not mentioned on the WITHIN list, it is 

modeled on all levels. 

 

Following is an example of how to specify the WITHIN option for 

TYPE=CROSSCLASSIFIED: 
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WITHIN = y1-y3 (level2a) y4-y6 (level2b) y7-y9; 

 

In the example, y1, y2, and y3 are variables measured on the individual 

level and modeled on only level 1.  Variables modeled on only level 1 

must precede variables modeled on the other levels.  Y4, y5, and y6 are 

variables measured on the individual level and modeled on levels 1 and 

2a. Y7, y8, and y9 are variables measured on the individual level and 

modeled on levels 1 and 2b. 

 

BETWEEN 
 

The BETWEEN option is used with TYPE=TWOLEVEL, 

TYPE=THREELEVEL, and TYPE=CROSSCLASSIFIED to identify the 

variables in the data set that are measured on the cluster level(s) and to 

specify the level(s) on which they are modeled.  All variables on the 

BETWEEN list must be measured on a cluster level.  A cluster-level 

variable can be modeled on all or some cluster levels. 

 

For TYPE=TWOLEVEL, a cluster-level variable can be modeled on 

only the between level.  The BETWEEN option is specified as follows: 

 

BETWEEN = z1 z2 x1; 

 

where z1, z2, and x1 are variables measured on the cluster level and 

modeled on the between level.  The BETWEEN option is also used to 

identify between-level categorical latent variables with 

TYPE=TWOLEVEL MIXTURE. 

 

For TYPE=THREELEVEL, a variable measured on level 2 can be 

modeled on only level 2 or on levels 2 and 3.  A variable measured on 

level 3 can be modeled on only level 3.  Consider a model where 

students are nested in classrooms and classrooms are nested in schools. 

Level 1 is student; level 2 is classroom; and level 3 is school.  If a 

variable measured on level 2 is mentioned on the BETWEEN list 

without a label, it is modeled on levels 2 and 3.  If a variable measured 

on level 2 is mentioned on the BETWEEN list with a level 2 cluster 

label, it is modeled on only level 2.  It has no variance on level 3.  A 

variable measured on level 3 must be mentioned on the BETWEEN list 

with a level 3 cluster label.  Following is an example of how to specify 

the BETWEEN option for TYPE=THREELEVEL: 
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BETWEEN = y1-y3 (level2) y4-y6 (level3) y7-y9; 

 

In this example, y1, y2, and y3 are cluster-level variables measured on 

level 2 and modeled on both levels 2 and 3.  Variables modeled on both 

levels 2 and 3 must precede variables modeled on only level 2 or level 3.  

Y4, y5, and y6 are cluster-level variables measured on level 2 and 

modeled on level 2.  Y7, y8, and y9 are cluster-level variables measured 

on level 3 and modeled on level 3. 

 

An alternative specification of the BETWEEN option above reverses the 

order of the level 2 and level 3 variables: 

 

BETWEEN = y1-y3 (level3) y7-y9 (level2) y4-y6; 

 

Variables modeled on both levels 2 and 3 must precede variables 

modeled on only level 2 or level 3.  Another alternative specification is: 

 

BETWEEN =  y1-y3; 

BETWEEN =  (level2) y4-y6; 

BETWEEN =  (level3) y7-y9; 

 

In this specification, the BETWEEN statement for variables modeled on 

both levels 2 and 3 must precede the other BETWEEN statements.  The 

order of the other BETWEEN statements does not matter. 

 

For TYPE=CROSSCLASSIFIED, a variable measured on level 2a must 

be mentioned on the BETWEEN list with a level 2a cluster label.  It can 

be modeled on only level 2a.  A variable measured on level 2b must be 

mentioned on the BETWEEN list with a level 2b cluster label.  It can be 

modeled on only level 2b.  Consider a model where students are nested 

in schools crossed with neighborhoods.   Level 1 is student; level 2a is 

school; and level 2b is neighborhood.  Following is an example of how 

to specify the BETWEEN option for TYPE=CROSSCLASSIFIED: 

 

BETWEEN = (school) y1-y3 (neighbor) y4-y6; 

 

In this example, y1, y2, and y3 are cluster-level variables measured on 

level 2a, school, and modeled on only level 2a.  Y4, y5, and y6 are 

cluster-level variables measured on level 2b, neighborhood, and modeled 

on only level 2b. 
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POPULATION, COVERAGE, AND STARTING 

VALUES 
 

The POPULATION, COVERAGE, and STARTING options are used as 

population parameter values for data generation; population parameter 

values for computing parameter coverage that are printed in the first 

column of the output labeled Population; and as starting values for the 

analysis.  These values are the parameter estimates obtained from a 

previous analysis where the parameter estimates are saved using the 

ESTIMATES option of the SAVEDATA command.  These options are 

described below.  

 

POPULATION   
 

The POPULATION option is used to name the data set that contains the 

population parameter values to be used in data generation.  Following is 

an example of how the POPULATION option is specified: 

 

POPULATION = estimates.dat; 

 

where estimates.dat is a file that contains the parameter estimates from a 

previous analysis of the model that is specified in the MODEL 

POPULATION command. 

  

COVERAGE 
 

The COVERAGE option is used to name the data set that contains the 

population parameter values to be used for computing parameter 

coverage in the Monte Carlo summary.  They are printed in the first 

column of the output labeled Population.  Following is an example of 

how the COVERAGE option is specified: 

 

COVERAGE = estimates.dat; 

 

where estimates.dat is a file that contains the parameter estimates from a 

previous analysis of the model that is specified in the MODEL 

command. 
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STARTING 
 

The STARTING option is used to name the data set that contains the 

values to be used as starting values for the analysis.  Following is an 

example of how the STARTING option is specified: 

 

STARTING = estimates.dat; 

 

where estimates.dat is a file that contains the parameter estimates from a 

previous analysis of the model that is specified in the MODEL 

command. 

 

SAVING DATA AND RESULTS 
 

The REPSAVE, SAVE, RESULTS, and BPARAMETERS options are 

used to save data and results.  These options are described below. 

 

REPSAVE 
 

The REPSAVE option is used in conjunction with the SAVE option to 

save some or all of the data sets generated in a Monte Carlo study.  The 

REPSAVE option specifies the numbers of the replications for which the 

data are saved.  The keyword ALL can be used to save the data from all 

of the replications.  The list function is also available with REPSAVE. 

To save the data from specific replications, REPSAVE is specified as 

follows: 

 

REPSAVE = 1 10-15 100; 

 

which results in the data from replications 1, 10, 11, 12, 13, 14, 15, and 

100 being saved.  To save the data from all replications, REPSAVE is 

specified as follows: 

 

REPSAVE = ALL; 

 

SAVE 
 

The SAVE option is used to save data from the first replication for 

future analysis.  It is specified as follows: 

 

SAVE = rep1.dat; 
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where rep1.dat is the name of the file in which data from the first 

replication is saved.  The data are saved using a free format. 

 

The SAVE option can be used in conjunction with the REPSAVE option 

to save data from any or all replications.  When the SAVE option is used 

with the REPSAVE option, it is specified as follows: 

 

SAVE = rep*.dat; 

 

where the asterisk (*) is replaced by the replication number.  For 

example, if replications 10 and 30 are saved, the data are stored in the 

files rep10.dat and rep30.dat.  A file is also produced that contains the 

names of all of the data sets.  To name this file, the asterisk (*) is 

replaced by the word list.  The file, in this case replist.dat, contains the 

names of the generated data sets.  The variables are not always saved in 

the order that they appear in the NAMES statement. 

 

RESULTS 
 

The RESULTS option is used to save the analysis results for each 

replication of the Monte Carlo study in an ASCII file.  The results saved 

include the replication number, parameter estimates, standard errors, and 

a set of fit statistics.  The parameter estimates and standard errors are 

saved in the order shown in the TECH1 output in free format delimited 

by a space.  The values are saved as E15.8.  The RESULTS option is 

specified as follows: 

 

RESULTS = results.sav; 

 

where results.sav is the name of the file in which the analysis results for 

each replication will be saved.    

 

BPARAMETERS 
 

The BPARAMETERS option is used in Bayesian analysis to specify the 

name of the ASCII file in which the Bayesian posterior parameter values 

for all iterations are saved.  Following is an example of how this option 

is specified: 

 

BPARAMETERS = bayes.dat; 
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where bayes.dat is the name of the file in which the Bayesian posterior 

parameter values for all iterations will be saved. 

 

LAGGED 
 

The LAGGED option is used in time series analysis to specify the 

maximum lag to use for an observed variable during model estimation.  

Following is an example of how to specify the LAGGED option: 

 

LAGGED = y (1); 

 

where y is the variable in a time series analysis and the number 1 in 

parentheses is the maximum lag that will be used in model estimation.  

The lagged variable is referred to in the MODEL command by adding to 

the name of the variable an ampersand (&) and the number of the lag.  

The variable y at lag one is referred to as y&1.   

 

Following is an example of how to specify a maximum lag of 2 for a set 

of variables: 

 

LAGGED = y1-y3 (2); 

 

where y1, y2, and y3 are variables in a time series analysis and the 

number 2 in parentheses is the maximum lag that will be used in model 

estimation.  The lagged variables are referred to in the MODEL 

command by adding to the name of the variable an ampersand (&) and 

the number of the lag.  The variable y1 at lag one is referred to as y1&1.  

The variable y1 at lag two is referred to as y1&2. 
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CHAPTER 20 

A SUMMARY OF THE Mplus 

LANGUAGE 
 

 

This chapter contains a summary of the commands, options, and settings 

of the Mplus language.  For each command, default settings are found in 

the last column.  Commands and options can be shortened to four or 

more letters.  Option settings can be referred to by either the complete 

word or the part of the word shown in bold type. 
 

THE TITLE COMMAND 
 
 

TITLE: title for the analysis  

 

THE DATA COMMAND 
 
 

DATA:   
FILE IS  file name;  
FORMAT IS format statement; FREE 
 FREE;  
TYPE IS  INDIVIDUAL; INDIVIDUAL 
 COVARIANCE;  
 CORRELATION;  
 FULLCOV;  
 FULLCORR;  
 MEANS;  
 STDEVIATIONS;  
 MONTECARLO;  
 IMPUTATION;  
NOBSERVATIONS ARE number of observations;  
NGROUPS = number of groups; 1 
LISTWISE = ON; 

OFF; 
OFF 

SWMATRIX = file name;  
VARIANCES = CHECK; 

NOCHECK; 
CHECK 
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DATA IMPUTATION: 
     IMPUTE = 
     
     NDATASETS = 
     SAVE = 
 
     FORMAT = 
     MODEL = 
      
 
     VALUES =  
     ROUNDING = 
      
     THIN =  

 
names of variables for which missing values 
will be imputed; 
number of imputed data sets; 
names of files in which imputed data sets 
are stored; 
format statement; 
COVARIANCE; 
SEQUENTIAL; 
REGRESSION; 
values imputed data can take; 
number of decimals for imputed continuous  
variables; 
k where every k-th imputation is saved; 

 
 
 
5 
 
 
F10.3 
depends on 
analysis type 
 
no restrictions 
3 
 
100 

DATA WIDETOLONG: 
     WIDE = 
     LONG = 
     IDVARIABLE = 
     REPETITION =  

 
names of old wide format variables; 
names of new long format variables; 
name of variable with ID information; 
name of variable with repetition information; 

 
 
 

DATA LONGTOWIDE: 
     LONG =  
     WIDE =  
     IDVARIABLE =  
     REPETITION =  

 
names of old long format variables; 
names of new wide format variables; 
name of variable with ID information; 
name of variable with repetition information 
(values); 

 
 
 
 
 
0, 1, 2, etc. 

DATA TWOPART: 
     NAMES = 
      
     CUTPOINT = 
      
     BINARY = 
     CONTINUOUS = 
     TRANSFORM = 

 
names of variables used to create a set of 
binary and continuous variables; 
value used to divide the original variables 
into a set of  binary and continuous 
variables; 
names of new binary variables; 
names of new continuous variables; 
function to use to transform new continuous 
variables; 

 
 
 
0 
 
 
 
LOG 

DATA MISSING: 
     NAMES = 
       
     BINARY = 

 
names of variables used to create a set of 
binary variables; 
names of new binary variables; 

 
 

     TYPE =  MISSING; 
SDROPOUT; 
DDROPOUT; 

 

     DESCRIPTIVE =  sets of variables for additional descriptive 
statistics separated by the | symbol; 

 



  A Summary Of The Mplus Language 
 
 
 
 

                                                                                                                                                      895 

 

DATA SURVIVAL: 
     NAMES = 
      
     CUTPOINT = 
       
 
     BINARY = 

 
names of variables used to create a set of 
binary event-history variables; 
value used to create a set of binary event-
history variables from a set of original 
variables;  
names of new binary variables; 

 

DATA COHORT: 
     COHORT IS 
     COPATTERN IS 
     COHRECODE = 
     TIMEMEASURES = 
      
     TNAMES = 

 
name of cohort variable (values); 
name of cohort/pattern variable (patterns); 
(old value = new value); 
list of sets of variables separated by the | 
symbol; 
list of root names for the sets of variables in 
TIMEMEASURES separated by the | 
symbol; 

 

 

THE VARIABLE COMMAND 
   
 

VARIABLE:   
   
NAMES ARE names of variables in the data set;  
USEOBSERVATIONS ARE conditional statement to select observations; all observations 

in data set 
USEVARIABLES ARE names of analysis variables; all variables in 

NAMES 
MISSING ARE variable (#);  
 . ;  
  * ;  
 BLANK;  
CENSORED ARE names, censoring type, and inflation status for 

censored  dependent variables; 
 

CATEGORICAL ARE names of binary and ordered categorical 
(ordinal) dependent variables; 

 

NOMINAL ARE names of unordered categorical (nominal) 
dependent variables;  

 

COUNT ARE names of count variables (model);  
DSURVIVAL ARE names of discrete-time survival variables;  
GROUPING IS name of grouping variable (labels);  
IDVARIABLE IS name of ID variable; 

_RECNUM; 
 

FREQWEIGHT IS name of frequency (case) weight variable;  
 names of observed variables with information  
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TSCORES ARE on individually-varying times of observation; 
AUXILIARY = names of auxiliary variables;  

names of auxiliary variables (M); 
names of auxiliary variables (R3STEP); 
names of auxiliary variables (R); 
names of auxiliary variables (BCH); 
names of auxiliary variables (DU3STEP); 
names of auxiliary variables 
(DCATEGORICAL); 
names of auxiliary variables (DE3STEP); 
names of auxiliary variables 
(DCONTINUOUS); 
names of auxiliary variables (E); 

 

CONSTRAINT = names of observed variables that can be used 
in the MODEL CONSTRAINT command; 

 

PATTERN IS name of pattern variable (patterns);  
STRATIFICATION IS name of stratification variable;   
CLUSTER IS name of cluster variables;  
WEIGHT IS name of sampling weight variable;  
WTSCALE IS UNSCALED; CLUSTER 
 CLUSTER;  
 ECLUSTER;  
BWEIGHT name of between-level sampling weight 

variable; 
 

B2WEIGHT IS name of the level 2 sampling weight variable;  
B3WEIGHT IS name of the level 3 sampling weight variable;  
BWTSCALE IS UNSCALED; 

SAMPLE; 
SAMPLE 

REPWEIGHTS ARE names of replicate weight variables;  
SUBPOPULATION IS conditional statement to select subpopulation;  all observations 

in data set 
FINITE = name of  variable; 

name of variable (FPC); 
name of variable (SFRACTION); 
name of variable (POPULATION); 

FPC 

CLASSES = names of categorical latent variables (number 
of latent classes); 

 

KNOWNCLASS = name of categorical latent variable with known 
class membership (labels);  

 

TRAINING = names of training variables; 
names of variables (MEMBERSHIP); 
names of variables (PROBABILITIES); 
names of variables (PRIORS); 

MEMBERSHIP 

WITHIN ARE 
WITHIN ARE (label) 

names of individual-level observed variables; 
names of individual-level observed variables; 
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BETWEEN ARE 
BETWEEN ARE (label) 

names of cluster-level observed variables; 
names of cluster-level observed variables; 

 

SURVIVAL ARE names and time intervals for time-to-event 
variables; 

 

TIMECENSORED ARE 
 
LAGGED ARE 
TINTERVAL IS 

names and values of variables that contain 
right censoring information; 
names of lagged variables (lag); 
name of time variable (interval); 

(0 = NOT 
1 = RIGHT) 
 

 

THE DEFINE COMMAND 
 
 

DEFINE:   
   
 variable = mathematical expression; 

 
 

 IF (conditional statement) THEN transformation 
statements; 
 

 

 _MISSING  
 variable = MEAN (list of variables);  
 variable = SUM (list of variables);  
 CUT variable or list of variables (cutpoints);  
 variable = CLUSTER_MEAN (variable);  
 CENTER variable or list of variables (GRANDMEAN); 

CENTER variable or list of variables (GROUPMEAN); 
CENTER variable or list of variables (GROUPMEAN 
label); 

 

 STANDARDIZE variable or list of variables;  
 DO (number, number) expression; 

DO ($, number, number) DO (#, number, number) 
expression; 
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THE ANALYSIS COMMAND 
 
 

ANALYSIS:   
   
TYPE = GENERAL; GENERAL 
       BASIC;  
       RANDOM;  
       COMPLEX;  
 MIXTURE; 

      BASIC; 
      RANDOM; 
      COMPLEX; 

 

 TWOLEVEL; 
      BASIC; 
      RANDOM; 
      MIXTURE; 
      COMPLEX; 

  

 THREELEVEL; 
      BASIC; 
      RANDOM; 
      COMPLEX;     

 

 CROSSCLASSIFIED; 
       RANDOM; 

 

 EFA  #   #; 
      BASIC; 
      MIXTURE; 
      COMPLEX; 
      TWOLEVEL; 
            EFA #  #  UW* #  #  UB*; 
            EFA #  #  UW #  #  UB; 

 

ESTIMATOR =  ML;  depends on 
 MLM; analysis type 
 MLMV;  
 MLR;  
 MLF;  
 MUML;  
 WLS;  
 WLSM;  
 WLSMV;  
 ULS;  
 ULSMV;  
 GLS;  
 BAYES;  
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MODEL = CONFIGURAL;  
 METRIC;  
 SCALAR;  
 NOMEANSTRUCTURE; means 
 NOCOVARIANCES; covariances 
 ALLFREE; equal 
ALIGNMENT = FIXED; last class 
  CONFIGURAL 
 FIXED (reference class CONFIGURAL);  
 FIXED (reference class BSEM);  
 FREE; last class 
  CONFIGURAL 
 FREE (reference class CONFIGURAL);  
 FREE (reference class BSEM);  
DISTRIBUTION = NORMAL; NORMAL 
 SKEWNORMAL;  
 TDISTRIBUTION;  
 SKEWT;  
PARAMETERIZATION = DELTA; DELTA 
 THETA;  
 LOGIT; LOGIT 
 LOGLINEAR;  
 PROBABILITY; 

RESCOVARIANCES; 
 
RESCOV 

LINK = LOGIT; LOGIT 
 PROBIT;  
ROTATION = GEOMIN; GEOMIN 

(OBLIQUE value) 
 GEOMIN (OBLIQUE value);  
 GEOMIN (ORTHOGONAL value);  
 QUARTIMIN; OBLIQUE 
 CF-VARIMAX; OBLIQUE 
 CF-VARIMAX (OBLIQUE);  
 CF-VARIMAX (ORTHOGONAL);  
 CF-QUARTIMAX; OBLIQUE 
 CF- QUARTIMAX (OBLIQUE);  
 CF- QUARTIMAX (ORTHOGONAL);  
 CF-EQUAMAX; OBLIQUE 
 CF- EQUAMAX (OBLIQUE);  
 CF- EQUAMAX (ORTHOGONAL);  
 CF-PARSIMAX; OBLIQUE 
 CF- PARSIMAX (OBLIQUE);  
 CF- PARSIMAX (ORTHOGONAL);  
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 CF-FACPARSIM; OBLIQUE 
 CF- FACPARSIM (OBLIQUE);  
 CF- FACPARSIM (ORTHOGONAL);  
 CRAWFER; OBLIQUE 1/p 
 CRAWFER (OBLIQUE value);  
 CRAWFER (ORTHOGONAL value);  
 OBLIMIN; OBLIQUE 0 
 OBLIMIN (OBLIQUE value);  
 OBLIMIN (ORTHOGONAL value);  
 VARIMAX;  
 PROMAX;  
 TARGET;  
 BI-GEOMIN; OBLIQUE 
 BI-GEOMIN (OBLIQUE);  
 BI-GEOMIN (ORTHOGONAL);  
 BI-CF-QUARTIMAX; OBLIQUE 
 BI-CF-QUARTIMAX (OBLIQUE);  
 BI-CF-QUARTIMAX (ORTHOGONAL);  
ROWSTANDARDIZATION = CORRELATION; CORRELATION 
 KAISER;  
 COVARIANCE;  
PARALLEL = number; 0 
REPSE = BOOTSTRAP; 

JACKKNIFE; 
JACKKNIFE1; 
JACKKNIFE2; 
BRR; 
FAY (#); 

 
 
 
 
 
.3 

BASEHAZARD = ON; 
OFF; 
ON (EQUAL); 
ON (UNEQUAL); 
OFF (EQUAL); 
OFF (UNEQUAL); 

depends on 
analysis type 
EQUAL 
 
EQUAL 

CHOLESKY = ON; 
OFF; 

depends on 
analysis type  

ALGORITHM = EM; depends on 
 EMA; analysis type 
 FS; 

ODLL; 
INTEGRATION;  
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INTEGRATION = number of integration points; 
STANDARD (number of integration points) ; 
 
GAUSSHERMITE (number of integration 
points) ; 
MONTECARLO (number of integration points); 

STANDARD 
depends on 
analysis type 
15 
 
depends on 
analysis type 

MCSEED =  random seed for Monte Carlo integration; 0 
ADAPTIVE = ON; 

OFF; 
ON 

INFORMATION = OBSERVED; depends on  
 EXPECTED; analysis type 
 COMBINATION;  
BOOTSTRAP = number of bootstrap draws; 

number of bootstrap draws (STANDARD); 
number of bootstrap draws (RESIDUAL): 

STANDARD 

LRTBOOTSTRAP = number of bootstrap draws for TECH14; depends on 
analysis type 

STARTS = number of initial stage starts and number of 
final stage optimizations; 

depends on 
analysis type 

STITERATIONS = number of initial stage iterations; 10 
STCONVERGENCE = initial stage convergence criterion; 1 
STSCALE = random start scale; 5 
STSEED = random seed for generating random starts;  0 
OPTSEED = random seed for analysis;  
K-1STARTS = number of initial stage starts and number of 

final stage optimizations for the k-1 class 
model for TECH14; 

20 4 

LRTSTARTS = number of initial stage starts and number of 
final stage optimizations for TECH14; 

0 0 40 8 

RSTARTS = number of random starts for the rotation 
algorithm and number of factor solutions 
printed for exploratory factor analysis;  

depends on 
analysis type 

ASTARTS = number of random starts for the alignment 
optimization; 

30 

H1STARTS =  Number of initial stage starts and number of 
final stage optimizations for the H1 model; 

0 0 

DIFFTEST = file name;  
MULTIPLIER = file name;  
COVERAGE =  minimum covariance coverage with missing 

data; 
.10 

ADDFREQUENCY = value divided by sample size to add to cells 
with zero frequency; 

.5 
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ITERATIONS = maximum number of iterations for the Quasi-
Newton algorithm for continuous outcomes; 

1000 

SDITERATIONS = maximum number of steepest descent 
iterations for the Quasi-Newton algorithm for 
continuous outcomes; 

20 

H1ITERATIONS = maximum number of iterations for unrestricted 
model with missing data; 

2000 

MITERATIONS = number of iterations for the EM algorithm; 500 
MCITERATIONS = number of iterations for the M step of the EM 

algorithm for categorical latent variables; 
1 

MUITERATIONS = number of iterations for the M step of the EM 
algorithm for censored, categorical, and count 
outcomes; 

1 

RITERATIONS = maximum number of iterations in the rotation 
algorithm for exploratory factor analysis; 

10000 

AITERATIONS = maximum number of iterations in the 5000 
 alignment optimization;  
CONVERGENCE =  convergence criterion for the Quasi-Newton 

algorithm for continuous outcomes;  
depends on  
analysis type 

H1CONVERGENCE =  convergence criterion for unrestricted model 
with missing data; 

.0001 

LOGCRITERION = likelihood convergence criterion for the EM 
algorithm; 

depends on 
analysis type 

RLOGCRITERION = relative likelihood convergence criterion for the 
EM algorithm; 

depends on 
analysis type 

MCONVERGENCE = convergence criterion for the EM algorithm; depends on  
analysis type 

MCCONVERGENCE = convergence criterion for the M step of the EM 
algorithm for categorical latent variables; 

.000001 

MUCONVERGENCE = convergence criterion for the M step of the EM 
algorithm for censored, categorical, and count 
outcomes; 

.000001 

RCONVERGENCE = convergence criterion for the rotation algorithm 
for exploratory factor analysis; 

.00001 

ACONVERGENCE = convergence criterion for the derivatives of 
the alignment optimization;. 

.001 

MIXC = ITERATIONS; ITERATIONS 
 CONVERGENCE;  
 M step iteration termination based on number 

of iterations or convergence for categorical 
latent variables; 
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MIXU = ITERATIONS; ITERATIONS 
 CONVERGENCE;  
 M step iteration termination based on number 

of iterations or convergence for censored, 
categorical, and count outcomes; 

 

LOGHIGH = max value for logit thresholds; +15 
LOGLOW = min value for logit thresholds; - 15 
UCELLSIZE = minimum expected cell size; .01 
VARIANCE  = minimum variance value; .0001 
SIMPLICITY = SQRT; SQRT 
 FOURTHRT;  
TOLERANCE = simplicity tolerance value; .0001 
METRIC= REFGROUP; REFGROUP 
 PRODUCT;  
MATRIX =  COVARIANCE; COVARIANCE 
 CORRELATION;  
POINT = MEDIAN; 

MEAN; 
MODE; 

MEDIAN 

CHAINS =  number of MCMC chains; 2 
BSEED =  seed for MCMC random number generation; 0 
STVALUES = UNPERTURBED; 

PERTURBED; 
ML; 

UNPERTURBED 

PREDICTOR =  LATENT; 
OBSERVED; 

depends on  
analysis type 

ALGORITHM = GIBBS; 
GIBBS (PX1); 
GIBBS (PX2); 
GIBBS (PX3); 
GIBBS (RW); 
MH; 

GIBBS (PX1) 

BCONVERGENCE = MCMC convergence criterion using Gelman-
Rubin PSR; 

.05 

BITERATIONS = maximum and minimum number of iterations 
for each MCMC chain when Gelman-Rubin 
PSR is used; 

50000 0 

FBITERATIONS = fixed number of iterations for each MCMC 
chain when Gelman-Rubin PSR is not used; 

 

THIN = k where every k-th MCMC iteration is saved; 1 
MDITERATIONS = maximum number of iterations used to 

compute the Bayes multivariate mode; 
10000 

KOLMOGOROV = number of draws from the MCMC chains; 100 
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PRIOR = number of draws from the prior distribution; 1000 
INTERACTIVE = file name;  
PROCESSORS = # of processors  # of threads; 1 1 

 

THE MODEL COMMAND 
 
 

MODEL:  
BY short for measured by -- defines latent variables 

example:  f1 BY y1-y5; 
ON short for regressed on -- defines regression relationships 

example:  f1 ON x1-x9; 
PON short for regressed on -- defines paired regression relationships 

example:  f2  f3 PON f1 f2; 
WITH short for correlated with -- defines correlational relationships 

example:  f1 WITH f2; 
PWITH short for correlated with -- defines paired correlational 

relationships 
example:  f1 f2 f3 PWITH f4 f5 f6; 

list of variables; refers to variances and residual variances 
example:  f1 y1-y9; 

[list of variables]; refers to means, intercepts, thresholds 
example:  [f1, y1-y9]; 

* frees a parameter at a default value or a specific starting value 
example:  y1* y2*.5; 

@ fixes a parameter at a default value or a specific value 
example:  y1@ y2@0; 

(number) constrains parameters to be equal 
example:  f1 ON x1 (1); 
                 f2 ON x2 (1); 

variable$number label for the threshold of a variable 
variable#number label for nominal observed or categorical latent variable 
variable#1 label for censored or count inflation variable 
variable#number  label for baseline hazard parameters 
variable#number label for a latent class 
(name) label for a parameter 
{list of variables}; refers to scale factors 

example:  {y1-y9}; 
| names and defines random effect variables 

example: s | y1 ON x1; 
AT short for measured at -- defines random effect variables 

example: s | y1-y4 AT t1-t4; 
XWITH defines interactions between variables; 
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MODEL INDIRECT: 
 
     IND 
      
     VIA 
 
     MOD 

describes the relationships for which indirect and total effects 
are requested  
describes a specific indirect effect or a set of indirect effects 
when there is no moderation; 
describes  a set of indirect effects that includes specific 
mediators; 
describes a specific indirect effect when there is moderation; 

MODEL CONSTRAINT: 
     NEW 
     DO 
     PLOT 
     LOOP 

describes linear and non-linear constraints on parameters 
assigns labels to parameters not in the analysis model; 
describes a do loop or double do loop; 
describes y-axis variables; 
describes x-axis variables; 

MODEL TEST: 
     DO 

describes restrictions on the analysis model for the Wald test 
describes a do loop or double do loop; 

MODEL PRIORS: 
     COVARIANCE 
     DO 
     DIFFERENCE 

specifies the prior distribution for the parameters 
assigns a prior to the covariance between two parameters; 
describes a do loop or double do loop; 
assigns priors to differences between parameters; 

MODEL: describes the analysis model 
MODEL label: describes the group-specific model in multiple group analysis 

and the model for each categorical latent variable and 
combinations of categorical latent variables in mixture modeling 

MODEL: 
     %OVERALL% 
     %class label% 

 
describes the overall part of a mixture model 
describes the class-specific part of a mixture model 

MODEL:      
     %WITHIN% 
     %BETWEEN% 
    %BETWEEN label% 

 
describes the individual-level model 
describes the cluster-level model for a two-level model 
describes the cluster-level model for a three-level or cross-
classified model  

MODEL POPULATION: describes the data generation model 
MODEL POPULATION-label: describes the group-specific data generation model in multiple 

group analysis and the data generation model for each 
categorical latent variable and combinations of categorical 
latent variables in mixture modeling 

MODEL POPULATION: 
     %OVERALL% 
      
     %class label% 

 
describes the overall data generation model for a  mixture 
model 
describes the class-specific data generation model for a 
mixture model 
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MODEL POPULATION: 
     %WITHIN% 
      
     %BETWEEN% 
 
     %BETWEEN label% 

 
describes the individual-level data generation model for a 
multilevel model 
describes the cluster-level data generation model for a two-
level model 
describes the cluster-level data generation model for a three-
level or cross-classified model 

MODEL COVERAGE: describes the population parameter values for a Monte Carlo 
study 

MODEL COVERAGE-label: describes the group-specific population parameter values in 
multiple group analysis and the population parameter values for 
each categorical latent variable and combinations of categorical 
latent variables in mixture modeling for a Monte Carlo study 

MODEL COVERAGE: 
     %OVERALL% 
 
     %class label% 

 
describes the overall population parameter values of a mixture 
model for a Monte Carlo study 
describes the class-specific population parameter values of a 
mixture model 

MODEL COVERAGE: 
     %WITHIN% 
        
     %BETWEEN% 
 
     %BETWEEN label% 

 
describes the individual-level population parameter values for 
coverage 
describes the cluster-level population parameter values for a 
two-level model for coverage 
describes the cluster-level population parameter values for a 
three-level or cross-classified model for coverage 

MODEL MISSING: describes the missing data generation model for a Monte Carlo 
study 

MODEL MISSING-label: describes the group-specific missing data generation model for 
a Monte Carlo study 

MODEL MISSING: 
     %OVERALL% 
     %class label% 

 
describes the overall data generation model of a mixture model 
describes the class-specific data generation model of a mixture 
model 

 

THE OUTPUT COMMAND 
 
 

OUTPUT:   
   
 SAMPSTAT;  
 CROSSTABS; ALL 
 CROSSTABS (ALL);  
 CROSSTABS (COUNT);  
 CROSSTABS (%ROW);  
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 CROSSTABS (%COLUMN);  
 CROSSTABS (%TOTAL);  
 STANDARDIZED;  
 STDYX;  
 STDY;  
 STDY;  
 STANDARDIZED (CLUSTER); 

STDYX (CLUSTER); 
STDY (CLUSTER); 
STD (CLUSTER); 

 

 RESIDUAL; 
RESIDUAL (CLUSTER); 

 

 MODINDICES (minimum chi-square); 
MODINDICES (ALL); 
MODINDICES (ALL minimum chi-square); 

10 
 
10 

 CINTERVAL; 
CINTERVAL (SYMMETRIC); 
CINTERVAL (BOOTSTRAP); 
CINTERVAL (BCBOOTSTRAP); 
CINTERVAL (EQTAIL); 
CINTERVAL (HPD); 

SYMMETRIC 
 
 
 
EQTAIL 

 SVALUES;  
 NOCHISQUARE;  
 NOSERROR;  
 H1SE;  
 H1TECH3; 

H1MODEL; 
H1MODEL (COVARIANCE); 
H1MODEL (SEQUENTIAL); 

 
COVARIANCE 

 PATTERNS;  
 FSCOEFFICIENT;  
 FSDETERMINACY; 

FSCOMPARISON; 
 

 BASEHAZARD;  
 LOGRANK; 

ALIGNMENT; 
 

 ENTROPY;  
 TECH1;  
 TECH2;  
 TECH3;  
 TECH4; 

TECH4 (CLUSTER); 
 

 TECH5;  
 TECH6;  
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 TECH7;  
 TECH8;  
 TECH9;  
 TECH10;  
 TECH11;  
 TECH12;  
 TECH13; 

TECH14; 
TECH15; 
TECH16; 

 

 

THE SAVEDATA COMMAND 
 
 

SAVEDATA:   
   
FILE IS file name;   
FORMAT IS  format statement; F10.3 
 FREE;  
MISSFLAG = missing value flag; * 
RECORDLENGTH IS characters per record; 1000 
   
SAMPLE IS file name;  
COVARIANCE IS file name;  
SIGBETWEEN IS file name;  
SWMATRIX IS file name;  
RESULTS ARE 
STDRESULTS ARE 
STDDISTRIBUTION IS 

file name; 
file name; 
file name; 

 

ESTIMATES ARE file name;  
DIFFTEST IS file name;  
TECH3 IS file name;  
TECH4 IS file name;  
KAPLANMEIER IS file name;  
BASEHAZARD IS file name;  
ESTBASELINE IS file name;  
RESPONSE IS file name;  
MULTIPLIER IS file name;  
BPARAMETERS IS file name;  
RANKING IS file name;  
TYPE IS COVARIANCE; varies 
 CORRELATION;  
SAVE = FSCORES; 

FSCORES (# #); 
LRESPONSES (#); 
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PROPENSITY; 
CPROBABILITIES; 
REPWEIGHTS; 
MAHALANOBIS; 
LOGLIKELIHOOD; 
INFLUENCE; 
COOKS; 
BCHWEIGHTS; 

FACTORS = names of factors;  
LRESPONSES = names of latent response variables;  
MFILE = file name;  
MNAMES = names of variables in the data set;  
MFORMAT =  format statement; 

FREE; 
FREE 
 

MMISSING =  Variable (#); 
*; 
.; 

 

MSELECT = names of variables; all variables in 
MNAMES 

 

THE PLOT COMMAND 
 
 

PLOT:   
   
TYPE IS PLOT1;  
 PLOT2;  
 PLOT3; 

SENSITIVITY; 
 

SERIES IS list of variables in a series plus x-axis 
values;  

 

FACTORS ARE names of factors (#);  
LRESPONSES ARE names of latent response variables (#);  
OUTLIERS ARE MAHALANOBIS; 

LOGLIKELIHOOD; 
INFLUENCE; 
COOKS; 

 

MONITOR IS ON; 
OFF; 

OFF 
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THE MONTECARLO COMMAND 
 
 

MONTECARLO:   
   
NAMES = names of variables;   
NOBSERVATIONS = number of observations;  
NGROUPS = number of groups; 1 
NREPS = number of  replications; 1 
SEED = random seed for data generation; 0 
GENERATE = scale of dependent variables for data 

generation;  
 

CUTPOINTS = thresholds to be used for categorization of 
covariates; 

 

GENCLASSES = names of categorical latent variables (number 
of latent classes used for data generation); 

 

NCSIZES = number of unique cluster sizes for each group 
separated by the | symbol; 

 

CSIZES = number (cluster size) for each group 
separated by the | symbol; 

 

HAZARDC = specifies the hazard for the censoring 
process; 

 

PATMISS = missing data patterns and proportion missing 
for each dependent variable; 

 

PATPROBS = proportion for each missing data pattern;  
MISSING = names of dependent variables that have 

missing data; 
 

CENSORED ARE names and limits of censored-normal  
dependent variables; 

 

CATEGORICAL ARE names of ordered categorical dependent 
variables; 

 

NOMINAL ARE names of unordered categorical dependent 
variables;  

 

COUNT ARE names of count variables;  
CLASSES = names of categorical latent variables (number 

of latent classes used for model estimation); 
 

AUXILIARY = names of auxiliary variables (R3STEP); 
names of auxiliary variables (R); 
names of auxiliary variables (BCH); 
names of auxiliary variables (DU3STEP); 
names of auxiliary variables 
(DCATEGORICAL); 
names of auxiliary variables (DE3STEP); 
names of auxiliary variables 
(DCONTINUOUS); 
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names of auxiliary variables (E); 
SURVIVAL = names and time intervals for time-to-event 

variables; 
 

TSCORES = names, means, and standard deviations of 
observed variables with information on 
individually-varying times of observation; 

 

WITHIN = names of individual-level observed variables;  
BETWEEN = names of cluster-level observed variables;  
POPULATION = name of file containing population parameter 

values for data generation; 
 

COVERAGE = name of file containing population parameter 
values for computing parameter coverage; 

 

STARTING = name of file containing parameter values for 
use as starting values for the analysis; 

 

REPSAVE = numbers of the replications to save data from 
or ALL; 

 

SAVE = name of file in which generated data are 
stored; 

 

RESULTS = name of file in which analysis results are 
stored; 

 

BPARAMETERS =  
 
LAGGED ARE 

name of file in which Bayesian posterior 
parameter values are stored; 
names of lagged variables (lag); 
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two-level growth mixture model (GMM), 

427–30 
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two-level latent class analysis (LCA), 417–19 
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two-level mixture regression, 398–403, 404–

7, 408–10 

multilevel modeling 
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outcome (three-level analysis), 303–6 
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two-level path analysis with a continuous and 

a categorical dependent variable, 279–81 
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two-level regression for a continuous 

dependent variable with a random slope, 

275–79 

two-level structural equation modeling 

(SEM), 297–300 

multinomial logistic regression, 553–57 

multiple categorical latent variables, 188–90 

multiple cohort, 145–49 

multiple group analysis 
known class, 200–201, 240–42 

MIMIC with categorical factor indicators, 82–
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random intercepts and a factor varying 

across both subjects and time, 389–93 

cross-classified time series analysis with a 

univariate first-order autoregressive AR(1) 

model for a continuous dependent variable 

with a covariate, linear trend, and random 

slope, 385–88 

cross-classified time series analysis with a 

univariate first-order autoregressive AR(1) 

model for a continuous dependent variable 

with a covariate, random intercept, and 

random slope, 381–85 

N=1 time series analysis with a bivariate 

cross-lagged model for continuous 

dependent variables, 158–59 

N=1 time series analysis with a first-order 

autoregressive AR(1) confirmatory factor 

analysis (CFA) model with continuous 

factor indicators, 159–61 

N=1 time series analysis with a first-order 

autoregressive AR(1) IRT model with 

binary factor indicators, 161–62 
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N=1 time series analysis with a first-order 

autoregressive AR(1) structural equation 

model (SEM) with continuous factor 

indicators, 162–64 

N=1 time series analysis with a univariate 

first-order autoregressive AR(1) model for 

a continuous dependent variable, 154–56 

N=1 time series analysis with a univariate 

first-order autoregressive AR(1) model for 

a continuous dependent variable with a 

covariate, 157–58 

two-level time series analysis with a bivariate 

cross-lagged model for continuous 

dependent variables with random slopes, 

random residual variances, and a random 

covariance, 363–66 

two-level time series analysis with a bivariate 

cross-lagged model for two factors and 

continuous factor indicators with random 

intercepts and random slopes, 375–77 

two-level time series analysis with a first-

order autoregressive AR(1) confirmatory 

factor analysis (CFA) model for continuous 

factor indicators with random intercepts, a 

random AR(1) slope, and a random residual 

variance, 370–72 

two-level time series analysis with a first-

order autoregressive AR(1) factor analysis 

model for a single continuous indicator and 

measurement error, 366–69 

two-level time series analysis with a first-

order autoregressive AR(1) IRT model for 

binary factor indicators with random 

thresholds, a random AR(1) slope, and a 

random residual variance, 373–74 

two-level time series analysis with a 

univariate first-order autoregressive AR(1) 

model for a continuous dependent variable 

with a covariate, linear trend, random 

slopes, and a random residual variance, 

378–80 

two-level time series analysis with a 

univariate first-order autoregressive AR(1) 

model for a continuous dependent variable 

with a covariate, random intercept, random 

AR(1) slope, random slope, and random 

residual variance, 360–62 

two-level time series analysis with a 

univariate first-order autoregressive AR(1) 

model for a continuous dependent variable 

with a random intercept, random AR(1) 

slope, and random residual variance, 355–

59 

TIMECENSORED, 637–38 

time-invariant covariates, 130–31 

TIMEMEASURES, 593–94 

time-to-event variable, 150–51, 259–60, 

320–21, 493–94 

time-varying covariates, 130–31 

TINTERVAL, 638–39 

TITLE command, 563 

TNAMES, 594–95 

TNIE, 762–66 

TOLERANCE, 701 

total effect, 759–66 

total natural indirect effects, 762–66 

TRAINING, 629–31 

training data, 203–5 

TRANSFORM, 586–87 

transformation 
data, 580–95 

variables, 639–50 

TSCORES 
Monte Carlo, 883–84 

real data, 614 

twin analysis, 85–86, 87–88, 91–92, 92–93, 

195–97, 212–14, 215–17 

TWOLEVEL, 661–62 

two-parameter logistic, 65–68 

two-part (semicontinuous), 140–43, 491–93, 

584–87 

TYPE 
ANALYSIS, 657–65 

DATA, 570–73 

DATA MISSING, 588–89 

PLOT, 846–49 

SAVEDATA, 837 

UB, 664–65 

UB*, 664–65 
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UCELLSIZE, 700 

ULS, 668 

ULSMV, 668 

UNEQUAL, 684–85 

UNPERTURBED, 702–3 

UNSCALED 
BWTSCALE, 624 

WTSCALE, 622–23 

USEOBSERVATIONS, 599 

USEVARIABLES, 599–600 

UW, 664–65 

UW*, 664–65 

VALUES, 579 

VARIABLE command, 595–639 

variables 
dependent, 712 

independent, 712 

latent, 711 

observed, 711 

scale of measurement, 712 

VARIANCE, 700 

variances, 728 

VARIANCES, 574–75 

VARIMAX, 678–82 

VIA, 761 

Wald test, 772–74 

WEIGHT, 622 

white noise factor score model, 159–61 

WIDE 
DATA LONGTOWIDE, 583 

DATA WIDETOLONG, 581 

WITH, 726–27 

WITHIN 
Monte Carlo, 884–86 

real data, 631–33 

WLS, 668 

WLSM, 668 

WLSMV, 668 

WNFS, 159–61 

WTSCALE, 622–23 

XWITH, 757–59 

zero cells, 696 

zero-inflated Poisson, 28–29, 126–27, 207–

8, 232–35, 244–45, 609–12 

zero-mean and small-variance priors, 107–8, 

109–10, 110–12 
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MUTHÉN & MUTHÉN 

Mplus SINGLE-USER LICENSE AGREEMENT 

 

Carefully read the following terms and conditions before opening the sealed CD sleeve or downloading the 

software.  Opening the CD sleeve or downloading the software indicates your acceptance of the terms and 

conditions listed below.  The Mplus CD and download contains several versions of Mplus.  The Mplus 

Single-User License allows for the use of only one of these programs.  Using more than one is a violation 

of the Mplus Single-User License Agreement.   
 

Muthén & Muthén grants you the non-exclusive right to use the copyrighted computer program Mplus and the 

accompanying written materials.  You assume responsibility for the selection of Mplus to achieve your intended 

results, and for the installation, use, and results obtained from Mplus.          

1.  Copy and Use Restrictions.  Mplus and the accompanying written materials are copyrighted.  Unauthorized 

copying of Mplus and the accompanying written materials is expressly forbidden.  One copy of Mplus may be 

made for backup purposes, and it may be copied as part of a normal system backup.  Mplus may be transferred 

from one computer to another but may only be used on one computer at a time. 

2.  Transfer Restrictions.  The Mplus license may be transferred from one individual to another as long as all 

copies of the program and documentation are transferred, registered, and the recipient agrees to the terms and 

conditions of this agreement. 

3.  Termination.  The license is effective until terminated.  You may terminate it at any time by destroying the 

written materials and all copies of Mplus, including modified copies, if any.  The license will terminate 

automatically without notice from Muthén & Muthén if you fail to comply with any provision of this agreement.  

Upon termination, you shall destroy the written materials and all copies of Mplus, including modified copies, if 

any, and shall notify Muthén & Muthén of same.  

4.  Limited Warranty. Muthén & Muthén warrants that for ninety (90) days after purchase, Mplus shall 

reasonably perform in accordance with the accompanying documentation. Muthén & Muthén specifically does 

not warrant that Mplus will operate uninterrupted and error free.  If Mplus does not perform in accordance with 

the accompanying documentation, you may notify Muthén & Muthén in writing of the non-performance within 

ninety (90) days of purchase.  

5.  Customer Remedies. Muthén & Muthén and its supplier’s entire liability and your exclusive remedy shall be, 

at Muthén & Muthén’s option, either return of the price paid, or repair or replacement of the defective copy of 

Mplus and/or written materials after they have been returned to Muthén & Muthén with a copy of your receipt.  

6.  Disclaimer of Other Warranties. Muthén & Muthén and its suppliers disclaim all other warranties, either 

express or implied, including, but not limited to, any implied warranties of fitness for a particular purpose or 

merchantability. Muthén & Muthén disclaims all other warranties including, but not limited to, those made by 

distributors and retailers of Mplus.  This license agreement gives you specific legal rights. You may have other 

rights that vary from state to state.      

7.  Disclaimer.  In no event shall Muthén & Muthén or its suppliers be liable for any damages, including any lost 

profits, lost savings or other incidental or consequential damages arising out of the use or inability to use Mplus 

even if Muthén & Muthén or its suppliers have been advised of the possibility of such damages.  Some states do 

not allow the limitation or exclusion of liability for incidental or consequential damages so the above limitation 

or exclusion may not apply to you. 

8.  Return Policy:   All sales are final.  Software purchased on-line through our website is considered opened at 

the time of purchase. This also applies to hard copy purchases because downloads are made available at the time 

of purchase.  In rare instances, and only within 30 days of purchase, if due to technical difficulties or platform 

incompatibilities, the software will not function, we may, at our discretion, issue a refund. In such instances, an 

LOD (Letter Of Destruction) on company letterhead will be required to process the refund. 

 

This agreement is governed by the laws of the State of California. 
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