Skip to main content

Congenital and Acquired Anomalies of Coronary Arteries

  • Chapter
  • First Online:
Sport-related sudden cardiac death

Abstract

Congenital and acquired diseases of coronary arteries are frequent causes of sudden cardiac death (SCD) in recreational and competitive sportsmen. Coronary atherosclerosis is responsible for the vast majority of SCD in middle-aged and older athletes, while the anomalous origin of a coronary artery from the “wrong” sinus of Valsalva is one of the most frequent causes in the younger ones. Regardless of the type of disease and mechanisms involved, SCD is usually the result of exercise-induced myocardial ischemia.

Congenital coronary artery anomalies are a rare, heterogeneous, group of malformations. Among them, the definition “anomalous origins of coronary arteries” include all the conditions in which one or more coronary branches originate differently from “normal”. The most common is the anomalous origin of the right coronary artery from the left sinus of Valsalva, while the one that seems associated with a greater risk of SCD is the origin of the left coronary artery from the right sinus of Valsalva. Exercise-induced ischemia depends mostly on the anatomy of the malformation and on different mechanisms that can coexist in the same subject.

Other congenital anomalies which can bring a risk of SCD, although often difficult to define, are myocardial “bridges” and coronary fistulae.

Among the acquired coronary anomalies, the most important is coronary atherosclerosis (CA). In athletes with CA, SCD can be the result of complications of a severe obstructive disease or rupture/erosion of unstable, non-obstructive plaques.

Other, less frequent causes of SCD can be the acquired coronary anomalies secondary to Kawasaki’s disease or to cocaine consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maron BJ, Haas TS, Ahluwalia A, Murphy CJ, Garberich RF. Demographics and epidemiology of sudden deaths in young competitive athletes: from the United States National Registry. Am J Med. 2016;129(11):1170–7.

    Article  PubMed  Google Scholar 

  2. Corrado D, Basso C, Rizzoli G, Schiavon M, Thiene G. Does sports activity enhance the risk of sudden death in adolescents and young adults? J Am Coll Cardiol. 2003;42(11):1959–63.

    Article  PubMed  Google Scholar 

  3. Nocon M, Hiemann T, Muller-Riemenschneider F, Thalau F, Roll S, Willich SN. Association of physical activity with all-cause and cardiovascular mortality: a systematic review and meta-analysis. Eur J Cardiovasc Prev Rehabil. 2008;15:239–46.

    Article  PubMed  Google Scholar 

  4. Thompson PD, Franklin BA, Balady GJ, Blair SN, Corrado D, Estes NA 3rd, et al.; American Heart Association Council on Nutrition, Physical Activity, and Metabolism; American Heart Association Council on Clinical Cardiology; American College of Sports Medicine. Exercise and acute cardiovascular events placing the risks into perspective: a scientific statement from the American Heart Association Council on Nutrition, Physical Activity, and Metabolism and the Council on Clinical Cardiology. Circulation. 2007;115(17):2358–68.

    Google Scholar 

  5. Mathews SC, Narotsky DL, Bernholt DL, Vogt M, Hsieh YH, Pronovost PJ, et al. Mortality among marathon runners in the United States, 2000-2009. Am J Sports Med. 2012;40(7):1495–500.

    Article  PubMed  Google Scholar 

  6. Marijon E, Uy-Evanado A, Reinier K, Teodorescu C, Narayanan K, Jouven X, et al. Sudden cardiac arrest during sports activity in middle age. Circulation. 2015;131(16):1384–91.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kim JH, Malhotra R, Chiampas G, et al. Cardiac arrest during long-distance running races. N Engl J Med. 2012;366:130–40.

    Article  CAS  PubMed  Google Scholar 

  8. Lanza GA, Coli S, Cianflone D, Maseri A. Coronary blood flow and myocardial ischemia. In: Fuster V, Wayne AR, O’Rourke RA eds. Hurst’s the heart 11th ed. McGraw-Hill, 2004;1153.

    Google Scholar 

  9. Yamanaka O, Hobbs RE. Coronary artery anomalies in 126.595 patients undergoing coronary arteriography. Catheter Cardiovasc Diagn. 1990;21:28.

    Article  CAS  Google Scholar 

  10. Yuksel S, Meric M, Soylu K, Gulel O, Zengin H, Demircan S, et al. The primary anomalies of coronary artery origin and course: a coronary angiographic analysis of 16,573 patients. Exp Clin Cardiol. 2013;18(2):121–3.

    PubMed  PubMed Central  Google Scholar 

  11. Angelini P, Velasco JA, Flamm S. Coronary anomalies. Incidence, pathophysiology, and clinical relevance. Circulation. 2002;105:2449.

    Article  PubMed  Google Scholar 

  12. Frescura C, Basso C, Thiene G, Corrado D, Pennelli T, Angelini A, et al. Anomalous origin of coronary arteries and risk of sudden death: a study based on an autopsy population of congenital heart disease. Hum Pathol. 1998;29(7):689–95.

    Article  CAS  PubMed  Google Scholar 

  13. Basso C, Maron BJ, Corrado D, Thiene G. Clinical profile of congenital coronary artery anomalies with the origin from the wrong aortic sinus leading to sudden death in young competitive athletes. J Am Coll Cardiol. 2000;35:1493.

    Article  CAS  PubMed  Google Scholar 

  14. Palmieri V, Gervasi S, Bianco M, Cogliani R, Poscolieri B, Cuccaro F, et al. Anomalous origin of coronary arteries from the “wrong” sinus in athletes: diagnosis and management strategies. Int J Cardiol. 2018;252:13–20.

    Article  PubMed  Google Scholar 

  15. Zeppilli P, Dello Russo A, Santini C, Palmieri V, Natale L, Giordano A, et al. In vivo detection of coronary artery anomalies in asymptomatic athletes by echocardiographic screening. Chest. 1998;114(1):89–93.

    Article  CAS  PubMed  Google Scholar 

  16. Labombarda F, Coutance G, Pellissier A, Mery-Alexandre C, Roule V, Maragnes P, et al. Major congenital coronary artery anomalies in a paediatric and adult population: a prospective echocardiographic study. Eur Heart J Cardiovasc Imaging. 2014;15(7):761–8.

    Article  PubMed  Google Scholar 

  17. Brothers JA, Whitehead KK, Keller MS, Fogel MA, Paridon SM, Weinberg PM, et al. Cardiac MRI and CT: differentiation of normal ostium and intraseptal course from slit-like ostium and interarterial course in anomalous left coronary artery in children. AJR Am J Roentgenol. 2015;204(1):W104–9.

    Article  PubMed  Google Scholar 

  18. Kim SY, Seo JB, Do KH, Heo JN, Lee JS, Song JW, et al. Coronary artery anomalies: classification and ECG-gated multi-detector row CT findings with angiographic correlation. Radiographics. 2006;26(2):317–33.

    Article  PubMed  Google Scholar 

  19. Miller JA, Anavekar NS, El Yaman MM, Burkhart HM, Miller AJ, Julsrud PR. Computed tomographic angiography identification of intramural segments in anomalous coronary arteries with interarterial course. Int J Cardiovasc Imaging. 2012;28(6):1525–32.

    Article  PubMed  Google Scholar 

  20. Yin X, Wang J, Zheng W, Ma J, Hao P, Chen Y. Diagnostic performance of coronary computed tomography angiography versus exercise electrocardiography for coronary artery disease: a systematic review and meta-analysis. J Thorac Dis. 2016;8(7):1688–96.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Marano R, De Cobelli F, Floriani I, Becker C, Herzog C, Centonze M, et al.; NIMISCAD Study Group. Italian multicenter, prospective study to evaluate the negative predictive value of 16- and 64-slice MDCT imaging in patients scheduled for coronary angiography (NIMISCAD-non invasive multicenter Italian study for coronary artery disease). Eur Radiol. 2009;19(5):1114–23.

    Google Scholar 

  22. Carpeggiani C, Picano E, Brambilla M, Michelassi C, Knuuti J, Kauffman P, et al.; EVINCI Study Investigators. Variability of radiation doses of cardiac diagnostic imaging tests: the RADIO-EVINCI study (RADIationdOse subproject of the EVINCI study). BMC Cardiovasc Disord. 2017;17(1):63.

    Google Scholar 

  23. De Giorgio F, Grassi VM, Vetrugno G, Arena V. Sudden death in a young female with an under-recognised coronary anomaly. Diagn Pathol. 2013;8:41.

    Article  Google Scholar 

  24. Varghese A, Keegan J, Pennel DJ. Cardiovascular magnetic resonance of anomalous coronary arteries. Coron Artery Dis. 2005;16:355.

    Article  PubMed  Google Scholar 

  25. Andreas F. Angio-CT: heart and coronary arteries. Eur J Radiol. 2003;45:S32.

    Article  Google Scholar 

  26. Tuo G, Marasini M, Brunelli C, Zannini L, Balbi M. Incidence and clinical relevance of primary congenital anomalies of the coronary arteries in children and adults. Cardiol Young. 2013;23(3):381–6.

    Article  PubMed  Google Scholar 

  27. Angelini P. Novel imaging of coronary artery anomalies to assess their prevalence, the causes of clinical symptoms, and the risk of sudden cardiac death. Circ Cardiovasc Imaging. 2014;7(4):747–54.

    Article  PubMed  Google Scholar 

  28. Davis JA, Cecchin F, Jones TK, Portman MA. Major coronary artery anomalies in a pediatric population: incidence and clinical importance. J Am Coll Cardiol. 2001;37(2):593–7.

    Article  CAS  PubMed  Google Scholar 

  29. Muñoz-Guijosa C, Permanyer E, Leta R. Anomalous origin of right coronary artery from the left coronary sinus: sudden death and successful surgical reimplantation. Eur Heart J. 2012;33(11):1308.

    Article  PubMed  Google Scholar 

  30. Angelini P. Coronary artery anomalies: an entity in search of an identity. Circulation. 2007;115(10):1296–305.

    Article  PubMed  Google Scholar 

  31. Ashrafpoor G, Danchin N, Houyel L, Ramadan R, Belli E, Paul JF. Anatomical criteria of malignancy by computed tomography angiography in patients with anomalous coronary arteries with an interarterial course. Eur Radiol. 2015;25(3):760–6.

    Article  PubMed  Google Scholar 

  32. West NE, McKenna CJ, Ormerod O, Forfar JC, Banning AP, Channon KM. Percutaneous coronary intervention with stent deployment in anomalously-arising left circumflex coronary arteries. Catheter Cardiovasc Interv. 2006;68(6):882–90.

    Article  PubMed  Google Scholar 

  33. Mohsen GA, Mohsin KG, Forsberg M, Miller E, Taniuchi M, Klein AJ. Anomalous left circumflex artery from the right coronary cusp: a benign variant? J Invasive Cardiol. 2013;25(6):284–7.

    PubMed  Google Scholar 

  34. Grasso AE, Pennell DJ. Myocardial infarction related to aberrant left circumflex artery. Int J Cardiol. 2010;138(3):e51.

    Article  CAS  PubMed  Google Scholar 

  35. Carboni GP, Sedati P. A rare life threatening effort angina and anomalous origin of the left circumflex coronary artery. CT and SPECT findings. BMJ Case Rep. 2013;2013:bcr2013009005.

    PubMed  PubMed Central  Google Scholar 

  36. Gräni C, Benz DC, Schmied C, Vontobel J, Mikulicic F, Possner M, et al. Hybrid CCTA/SPECT myocardial perfusion imaging findings in patients with anomalous origin of coronary arteries from the opposite sinus and suspected concomitant coronary artery disease. J Nucl Cardiol. 2017;24(1):226–34.

    Article  PubMed  Google Scholar 

  37. Ko BS, Cameron JD, Munnur RK, Wong DTL, Fujisawa Y, Sakaguchi T, et al. Noninvasive CT-derived FFR based on structural and fluid analysis: a comparison with invasive FFR for detection of functionally significant stenosis. JACC Cardiovasc Imaging. 2017;10(6):663–73.

    Article  PubMed  Google Scholar 

  38. Ball C, Pontone G, Rabbat M. Fractional flow reserve derived from coronary computed tomography angiography datasets: the next frontier in noninvasive assessment of coronary artery disease. Biomed Res Int. 2018;2018:2680430.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lee MS, Chen CH. Myocardial bridging: an up-to-date review. J Invasive Cardiol. 2015;27(11):521–8.

    PubMed  PubMed Central  Google Scholar 

  40. Hostiuc S, Rusu MC, Hostiuc M, Negoi RI, Negoi I. Cardiovascular consequences of myocardial bridging: a meta-analysis and meta-regression. Sci Rep. 2017;7(1):14644.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Morales A, Romanelli R, Boucek R. The mural left anterior descending coronary artery, strenuous exercise and sudden death. Circulation. 1980;62:230.

    Article  CAS  PubMed  Google Scholar 

  42. Cheitlin MD. The intramural coronary artery: another cause for sudden death with exercise? Circulation. 1980;62:238. (editorial).

    Article  CAS  PubMed  Google Scholar 

  43. Hayashi T, Ishikawa K. Myocardial bridge: harmless or harmful. Int Med. 2004;12:1097. (Editorial).

    Article  Google Scholar 

  44. Bourassa MG, Butnaru A, Lespérance J, Tardif JC. Symptomatic myocardial bridges: overview of ischemic mechanisms and current diagnostic and treatment strategies. J Am Coll Cardiol. 2003;41(3):351–9.

    Article  PubMed  Google Scholar 

  45. Sharzehee M, Chang Y, Song JP, Han HC. Hemodynamic effects of myocardial bridging in patients with hypertrophic cardiomyopathy. Am J Physiol Heart Circ Physiol. 2019;317(6):H1282–91.

    Article  CAS  PubMed  Google Scholar 

  46. Onan B, Onan IS, Bakir I. Left anterior descending coronary artery muscular bridge. Images Cardiovasc Med. 2012;39(4):598.

    Google Scholar 

  47. Kim PJ, Hur G, Kim SY, Namgung J, Hong SW, Kim YH, et al. Frequency of myocardial bridges and dynamic compression of epicardial coronary arteries: a comparison between computed tomography and invasive coronary angiography. Circulation. 2009;119(10):1408–16.

    Article  PubMed  Google Scholar 

  48. Jodocy D, Aglan I, Friedrich G, Mallouhi A, Pachinger O, Jaschke W, et al. Left anterior descending coronary artery myocardial bridging by multislice computed tomography: correlation with clinical findings. Eur J Radiol. 2010;73(1):89–95.

    Article  PubMed  Google Scholar 

  49. Kim SS, Ko SM, Song MG, Hwang HG. Systolic luminal narrowing and morphologic characteristics of myocardial bridging of the mid-left anterior descending coronary artery by dual-source computed tomography. Int J Cardiovasc Imaging. 2011;27(Suppl 1):73–83.

    Article  CAS  PubMed  Google Scholar 

  50. Niu YG, Zhang XL, Cao AD, Bing L. Clinical value of the correlation of mural coronary artery compression extent with myocardial bridge length and thickness evaluated by 128-slice CT. Exp Ther Med. 2013;5:848.

    Article  PubMed  Google Scholar 

  51. Bruschke AVG, Veltman CE, De Graaf MA, Vliegen HW. Myocardial bridging: what have we learned in the past and will new diagnostic modalities provide new insights? Neth Heart J. 2013;21:6.

    Article  CAS  PubMed  Google Scholar 

  52. Ge J, Jeremias A, Rupp A, Abels M, Baumgart D, Liu F, et al. New signs characteristic of myocardial bridging demonstrated by intracoronary ultrasound and Doppler. Eur Heart J. 1999;20(23):1707–16.

    Article  CAS  PubMed  Google Scholar 

  53. Yu M, Zhang Y, Li Y, Li M, Li W, Zhang J. Assessment of myocardial bridge by cardiac CT: intracoronary transluminal attenuation gradient derived from diastolic phase predicts systolic compression. Korean J Radiol. 2017;18(4):655–63.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sapin P, Frantz E, Jain A, Nichols TC, Dehmer GJ. Coronary artery fistula: an abnormality affecting all age groups. Medicine. 1990;69:101.

    Article  CAS  PubMed  Google Scholar 

  55. Uysal F, Bostan OM, Semizel E, Signak IS, Asut E, Cil E. Congenital anomalies of coronary arteries in children: the evaluation of 22 patients. Pediatr Cardiol. 2014;35(5):778–84.

    Article  PubMed  Google Scholar 

  56. Sharma UM, Aslam AF, Tak T. Diagnosis of coronary artery fistulas: clinical aspects and brief review of the literature. Int J Angiol. 2013;22(3):189.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kastellanos S, Aznaouridis K, Vlachopoulos C, Tsiamis E, Oikonomou E, Tousoulis D. Overview of coronary artery variants, aberrations and anomalies. World J Cardiol. 2018;10(10):127–40.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zenooz NA, Habibi R, Mammen L, Finn JP, Gilkeson RC. Coronary artery fistulas: CT findings. Radiographics. 2009;29(3):781–9.

    Article  PubMed  Google Scholar 

  59. Seon HJ, Kim YH, Choi S, Kim KH. Complex coronary artery fistulas in adults: evaluation with multidetector computed tomography. Int J Cardionvasc Imaging. 2010;26(Suppl 2):261.

    Article  Google Scholar 

  60. Armsby LR, Keane JF, Sherwood MC, Forbess JM, Perry SB, Lock JE. Management of coronary artery fistulae. Patient selection and results of transcatheter closure. J Am Coll Cardiol. 2002;39:1026.

    Article  PubMed  Google Scholar 

  61. Wang SS, Zhang ZW, Qian MY, Zhuang J, Zeng GH. Transcatheter closure of coronary arterial fistula in children and adolescents. Pediatr Int. 2014;56(2):173–9.

    Article  PubMed  Google Scholar 

  62. Hou B, Ma WG, Zhang J, Du M, Sun HS, Xu JP, et al. Surgical management of left circumflex coronary artery fistula: a 25-year single-center experience in 29 patients. Ann Thorac Surg. 2014;97(2):530–6.

    Article  PubMed  Google Scholar 

  63. Knechtle B, Nikolaidis PT. Physiology and pathophysiology in ultra-Marathon running. Front Physiol. 2018;9:634.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Malakar AK, Choudhury D, Halder B, Paul P, Uddin A, Chakraborty S. A review on coronary artery disease, its risk factors, and therapeutics. J Cell Physiol. 2019;234(10):16812–23.

    Article  CAS  PubMed  Google Scholar 

  65. Corrado D, Basso C, Poletti A, Angelini A, Valente M, Thiene G. Sudden death in the young. Is acute coronary thrombosis the major precipitating factor? Circulation. 1994;90(5):2315–23.

    Article  CAS  PubMed  Google Scholar 

  66. GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;385(9963):117–71.

    Article  Google Scholar 

  67. Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med. 1999;340(2):115–26.

    Article  CAS  PubMed  Google Scholar 

  68. Álvarez-Álvarez MM, Zanetti D, Carreras-Torres R, Moral P, Athanasiadis G. A survey of sub-Saharan gene flow into the Mediterranean at risk loci for coronary artery disease. Eur J Hum Genet. 2017;25(4):472–6.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Currens JH, White PD. Half a century of running—clinical, physiologic and autopsy findings in the case of Clarence DeMar (Mr. Marathon). N Engl J Med. 1961;265:988–93.

    Article  CAS  PubMed  Google Scholar 

  70. Bassler TJ. Marathon running and atherosclerosis. Br Med J. 1977;1(6055):229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bassler TJ. More on immunity to atherosclerosis in marathon runners. N Engl J Med. 1978;299(4):201.

    CAS  PubMed  Google Scholar 

  72. Haskell WL, Sims C, Myll J, Bortz WM, St Goar FG, Alderman EL. Coronary artery size and dilating capacity in ultradistance runners. Circulation. 1993;87(4):1076–82.

    Article  CAS  PubMed  Google Scholar 

  73. Libonati JR, Gaughan JP, Hefner CA, Gow A, Paolone AM, Houser SR. Reduced ischemia and reperfusion injury following exercise training. Med Sci Sports Exerc. 1997;29(4):509–16.

    Article  CAS  PubMed  Google Scholar 

  74. Hambrecht R, Wolf A, Gielen S, Linke A, Hofer J, Erbs S, et al. Effect of exercise on coronary endothelial function in patients with coronary artery disease. N Engl J Med. 2000;342(7):454–60.

    Article  CAS  PubMed  Google Scholar 

  75. Noakes TD, Opie LH, Rose AR, Kleynhans PHT, Schepers NJ, Dowdeswell R. Autopsy-proved coronary atherosclerosis in marathon runners. N Engl J Med. 1979;301:86–9.

    Article  CAS  PubMed  Google Scholar 

  76. Waller BF, Csere RS, Baker WP, Roberts WC. Running to death. Chest. 1981;79:346–9.

    Article  CAS  PubMed  Google Scholar 

  77. Möhlenkamp S, Lehmann N, Breuckmann F, Bröcker-Preuss M, Nassenstein K, Halle M, et al. Running: the risk of coronary events: prevalence and prognostic relevance of coronary atherosclerosis in marathon runners. Eur Heart J. 2008;29(15):1903–10.

    Article  PubMed  Google Scholar 

  78. Schwartz RS, Kraus SM, Schwartz JG, Wickstrom KK, Peichel G, Garberich RF, et al. Increased coronary artery plaque volume among male Marathon runners. Mo Med. 2014;111(2):89–94.

    PubMed  PubMed Central  Google Scholar 

  79. Tsiflikas I, Thomas C, Fallmann C, Schabel C, Mangold S, Ketelsen D, et al. Prevalence of subclinical coronary artery disease in middle-aged, male Marathon runners detected by cardiac CT. Rofo. 2015;187(7):561–8.

    Article  CAS  PubMed  Google Scholar 

  80. Perk J, De Backer G, Gohlke H, Graham I, Reiner Z, Verschuren M, et al; European Association for Cardiovascular Prevention & Rehabilitation (EACPR); ESC Committee for Practice Guidelines (CPG). European Guidelines on cardiovascular disease prevention in clinical practice (version 2012). The fifth joint task force of the European Society of Cardiology and Other Societies on cardiovascular disease prevention in clinical practice (constituted by representatives of nine societies and by invited experts). Eur Heart J. 2012;33(13):1635-701.

    Google Scholar 

  81. Maron BJ, Araújo CG, Thompson PD, Fletcher GF, de Luna AB, Fleg JL, et al; World Heart Federation; International Federation of Sports Medicine; American Heart Association Committee on Exercise, Cardiac Rehabilitation, and Prevention. Recommendations for preparticipation screening and the assessment of cardiovascular disease in masters athletes: an advisory for healthcare professionals from the working groups of the World Heart Federation, the International Federation of Sports Medicine, and the American Heart Association Committee on Exercise, Cardiac Rehabilitation, and Prevention. Circulation. 2001;103(2):327–34.

    Google Scholar 

  82. Maron BJ. The paradox of exercise. N Engl J Med. 2000;343:1409.

    Article  CAS  PubMed  Google Scholar 

  83. Mittleman MA, Maclure M, Tofler GH, Sherwood JB, Goldberg RJ, Muller JE. Triggering of acute myocardial infarction by heavy physical exertion. Protection against triggering by regular exertion. Determinants of Myocardial Infarction Onset Study Investigators. N Engl J Med. 1993;329(23):1677–83.

    Article  CAS  PubMed  Google Scholar 

  84. Willich SN, Lewis M, Löwel H, Arntz HR, Schubert F, Schröder R. Physical exertion as a trigger of acute myocardial infarction. Triggers and mechanisms of Myocardial Infarction Study Group. N Engl J Med. 1993;329(23):1684–90.

    Article  CAS  PubMed  Google Scholar 

  85. Siscovick DS, Weiss NS, Fletcher RH, Lasky T. The incidence of primary cardiac arrest during vigorous exercise. N Engl J Med. 1984;311:874.

    Article  CAS  PubMed  Google Scholar 

  86. Giri S, Thompson PD, Kiernan FJ, Clive J, Fram DB, Mitchel JF, et al. Clinical and angiographic characteristics of exertion-related acute myocardial infarction. JAMA. 1999;282(18):1731–6.

    Article  CAS  PubMed  Google Scholar 

  87. Hallqvist J, Möller J, Ahlbom A, Diderichsen F, Reuterwall C, de Faire U. Does heavy physical exertion trigger myocardial infarction? A case-crossover analysis nested in a population-based case-referent study. Am J Epidemiol. 2000;151(5):459–67.

    Article  CAS  PubMed  Google Scholar 

  88. Albert CM, Mittleman MA, Chae CU, Lee IM, Hennekens CH, Manson JE. Triggering of sudden death from cardiac causes by vigorous exertion. N Engl J Med. 2000;343(19):1355–61.

    Article  CAS  PubMed  Google Scholar 

  89. Von Klot S, Mittleman MA, Dockery DW, Heier M, Meisinger C, Hörmann A, et al. Intensity of physical exertion and triggering of myocardial infarction: a case-crossover study. Eur Heart J. 2008;29(15):1881–8.

    Article  Google Scholar 

  90. Maron BJ, Poliac LC, Roberts WO. Risk for sudden death associated with marathon running. J Am Coll Cardiol. 1996;28:428.

    Article  CAS  PubMed  Google Scholar 

  91. Andreotti F, Lanza GA, Sciahbasi A, Fischetti D, Sestito A, De Cristofaro R, et al. Low-grade exercise enhances platelet aggregability in patients with obstructive coronary disease independently of myocardial ischemia. Am J Cardiol. 2001;87(1):16–20.

    Article  CAS  PubMed  Google Scholar 

  92. Wang JS, Jen CJ, Kung HC, Lin LJ, Hsiue TR, Chen HI. Different effects of strenuous exercise and moderate exercise on platelet function in men. Circulation. 1994;90(6):2877–85.

    Article  CAS  PubMed  Google Scholar 

  93. Billman GE. Cardiac autonomic neural remodeling and susceptibility to sudden cardiac death: effect of endurance exercise training. Am J Physiol Heart Circ Physiol. 2009;297:H1171.

    Article  CAS  PubMed  Google Scholar 

  94. Smith JK, Dykes R, Douglas JE, Krishnaswamy G, Berk S. Long-term exercise and atherogenic activity of blood mononuclear cells in persons at risk of developing ischemic heart disease. JAMA. 1999;281(18):1722–7.

    Article  CAS  PubMed  Google Scholar 

  95. Motoyama S, Sarai M, Harigaya H, Anno H, Inoue K, Hara T, et al. Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol. 2009;54(1):49–57.

    Article  PubMed  Google Scholar 

  96. Lin J, DeLuca JR, Lu MT, Ruehm SG, Dudum R, Choi B, et al. Extreme endurance exercise and progressive coronary artery disease. J Am Coll Cardiol. 2017;70(2):293–5.

    Article  PubMed  Google Scholar 

  97. Piepoli MF, Hoes AW, Agewall S, Albus C, Brotons C, Catapano AL, et al; ESC Scientific Document Group. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: the Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts) Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur Heart J. 2016;37(29):2315–2381.

    Google Scholar 

  98. Belardinelli R, Lacalaprice F, Tiano L, Muçai A, Perna GP. Cardiopulmonary exercise testing is more accurate than ECG-stress testing in diagnosing myocardial ischemia in subjects with chest pain. Int J Cardiol. 2014;174(2):337–42.

    Article  PubMed  Google Scholar 

  99. Chaudhry S, Arena RA, Hansen JE, Lewis GD, Myers JN, Sperling LS, et al. The utility of cardiopulmonary exercise testing to detect and track early-stage ischemic heart disease. Mayo Clin Proc. 2010;85(10):928–32.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Chaudhry S, Arena R, Wasserman K, Hansen JE, Lewis GD, Myers J, et al. Exercise-induced myocardial ischemia detected by cardiopulmonary exercise testing. Am J Cardiol. 2009;103(5):615–9.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Belardinelli R, Lacalaprice F, Carle F, Minnucci A, Cianci G, Perna G, et al. Exercise-induced myocardial ischaemia detected by cardiopulmonary exercise testing. Eur Heart J. 2003;24(14):1304–13.

    Article  PubMed  Google Scholar 

  102. Gervasi SF, Palumbo L, Cammarano M, Orvieto S, Di Rocco A, Vestri A, et al. Coronary atherosclerosis in apparently healthy master athletes discovered during pre-partecipation screening. Role of coronary CT angiography (CCTA). Int J Cardiol. 2019;282:99–107.

    Article  PubMed  Google Scholar 

  103. Montalescot G, Sechtem U, Achenbach S, Andreotti F, Arden C, Budaj A, et al. 2013 ESC guidelines on the management of stable coronary artery disease: the task force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J. 2013;34(38):2949–3003.

    Article  PubMed  Google Scholar 

  104. Hedrich CM, Schnabel A, Hospach T. Kawasaki disease. Front Pediatr. 2018;6:198.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Holve TJ, Patel A, Chau Q, Marks AR, Meadows A, Zaroff JG. Long-term cardiovascular outcomes in survivors of Kawasaki disease. Pediatrics. 2014;133(2):e305–11.

    Article  PubMed  Google Scholar 

  106. Kato H, Sugimura T, Akagi T, Sato N, Hashino K, Maeno Y, Kazue T, Eto G, Yamakawa R. Long-term consequences of Kawasaki disease. A 10- to 21-year follow-up study of 594 patients. Circulation. 1996;94(6):1379–85.

    Article  CAS  PubMed  Google Scholar 

  107. Tsuda E, Kamira T, Kimura K, Ono Y, Echigo S. Coronary artery dilatation exceeding 4.0 mm during acute Kawasaki disease predicts a high probability of subsequent late intima-medial thickening. Pediatr Cardiol. 2002;23:9.

    Article  CAS  PubMed  Google Scholar 

  108. Tsuda E, Kamiya T, Ono Y, Kimura K, Kurosaki K, Echigo S. Incidence of stenotic lesions predicted by acute phase changes in coronary arterial diameter during Kawasaki disease. Pediatr Cardiol. 2005;26(1):73–9.

    Article  CAS  PubMed  Google Scholar 

  109. Tsuda E, Kamiya T, Ono Y, Kimura K, Echigo S. Dilated coronary arterial lesions in the late period after Kawasaki disease. Heart. 2005;91(2):177–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lange RA, Hillis LD. Cardiovascular complications of cocaine use. N Engl J Med. 2001;345:351.

    Article  CAS  PubMed  Google Scholar 

  111. Rajab R, Stearns E, Baithun S. Autopsy pathology of cocaine users from the eastern district of London: a retrospective cohort study. J Clin Pathol. 2008;61:848.

    Article  CAS  PubMed  Google Scholar 

  112. Treadwell SD, Robinson TG. Cocaine use and stroke. Postgrad Med J. 2007;83:389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Glauser J, Queen JR. An overview of non-cardiac cocaine toxicity. J Emerg Med. 2007;32(2):181.

    Article  PubMed  Google Scholar 

  114. Kim ST, Park T. Acute and chronic effects of cocaine on cardiovascular health. Int J Mol Sci. 2019;20(3):584.

    Article  CAS  PubMed Central  Google Scholar 

  115. Restrepo CS, Carrillo JA, Martínez S, Ojeda P, Rivera AL, Hatta A. Pulmonary complications from cocaine and cocaine-based substances: imaging manifestations. Radiographics. 2007;27(4):941–56.

    Article  PubMed  Google Scholar 

  116. Jones LF, Tackett RL. Central mechanism of action in cocaine-induced tachycardia. Life Sci. 1990;46:723.

    Article  CAS  PubMed  Google Scholar 

  117. Hale SL, Alker KJ, Rezkalla S, Figures G, Kloner RA. Adverse effects of cocaine on cardiovascular dynamics, myocardial blood flow, and coronary artery diameter in an experimental model. Am Heart J. 1989;118(5 Pt 1):927–33.

    Article  CAS  PubMed  Google Scholar 

  118. Lange RA, Cigarroa RG, Yancy CW Jr, Willard JE, Popma JJ, Sills MN, et al. Cocaine-induced coronary-artery vasoconstriction. N Engl J Med. 1989;321(23):1557–62.

    Article  CAS  PubMed  Google Scholar 

  119. Isner JM, Chokshi SK. Cocaine and vasospam. N Engl J Med. 1989;321:1604.

    Article  CAS  PubMed  Google Scholar 

  120. Flores ED, Lange RA, Cigarroa RG, Hillis LD. Effect of cocaine on coronary artery dimensions in atherosclerotic coronary artery disease: enhanced vasoconstriction at sites of significant stenoses. J Am Coll Cardiol. 1990;16(1):74–9.

    Article  CAS  PubMed  Google Scholar 

  121. Turhan H, Aksoy Y, Ozgun Tekin G, Yetkin E. Cocaine-induced acute myocardial infarction in young individuals with otherwise normal coronary risk profile: is coronary microvascular dysfunction one of the underlying mechanisms? Int J Cardiol. 2007;114(1):106–7.

    Article  PubMed  Google Scholar 

  122. Talarico GP, Crosta ML, Giannico MB, Summaria F, Calò L, Patrizi R. Cocaine and coronary artery diseases: a systematic review of the literature. J Cardiovasc Med (Hagerstown). 2017;18(5):291–4.

    Article  CAS  Google Scholar 

  123. Kolodgie FD, Virmani R, Cornhill JF, Herderick EE, Smialek J. Increase in atherosclerosis and adventitial mast cells in cocaine abusers: an alternative mechanism of cocaine-associated coronary vasospasm and thrombosis. J Am Coll Cardiol. 1991;17(7):1553–60.

    Article  CAS  PubMed  Google Scholar 

  124. Satran A, Bart BA, Henry CR, Murad MB, Talukdar S, Satran D, et al. Increased prevalence of coronary artery aneurysms among cocaine users. Circulation. 2005;111(19):2424–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Zeppilli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zeppilli, P., Gervasi, S.F., Palmieri, V. (2022). Congenital and Acquired Anomalies of Coronary Arteries. In: Delise, P., Zeppilli, P. (eds) Sport-related sudden cardiac death. Springer, Cham. https://doi.org/10.1007/978-3-030-80447-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80447-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80446-6

  • Online ISBN: 978-3-030-80447-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics