Advertisement
No access
Review

Northern Hemisphere Ice-Sheet Influences on Global Climate Change

Science
5 Nov 1999
Vol 286, Issue 5442
pp. 1104-1111

Abstract

Large ice sheets actively interact with the rest of the climate system by amplifying, pacing, and potentially driving global climate change over several time scales. Direct and indirect influences of ice sheets on climate cause changes in ocean surface temperatures, ocean circulation, continental water balance, vegetation, and land-surface albedo, which in turn cause additional feedbacks in the climate system and help to synchronize global climate change. The effect of the underlying geological substrate on ice-sheet dynamics may be the missing link in understanding the ice sheet–climate interactions that are integral to the middle Pleistocene transition; the 100,000-year climate cycle; high-amplitude, millennial-scale climate variability; and low–aspect ratio ice sheets of the Last Glacial Maximum.

Get full access to this article

View all available purchase options and get full access to this article.

 REFERENCES AND NOTES

1
Shackleton N. J., Berger A., Peltier W. R., Trans. R. Soc. Edinburgh Earth Sci. 81, 251 (1990).
2
Mix A. C., et al., Proc. Ocean Drill. Prog. Sci. Results 138, 371 (1995).
3
Hays J. D., Imbrie J., Shackleton N. J., Science 194, 1121 (1976);
; J. Imbrie et al., in Milankovitch and Climate, Part 1, A. L. Berger et al., Eds. (Kluwer Academic, Boston, MA, 1984), pp. 121–164.
4
Imbrie J., et al., Paleoceanography 7, 701 (1992).
5
Imbrie J., et al., Paleoceanography 8, 699 (1993).
6
Bond G., et al., Nature 365, 739 (1993).
7
Walder J. S., Costa J. E., Earth Surf. Proc. Land. 21, 701 (1992).
8
Manabe S., Broccoli A. J., J. Geophys. Res. 90, 2167 (1985).
9
Pollard D., Thompson S. L., Quat. Sci. Rev. 16, 841 (1997).
10
Kutzbach J., et al., Quat. Sci. Rev. 17, 473 (1998).
11
Ganopolski A., Rahmstorf S., Petouknov V., Claussen M., Nature 391, 351 (1998).
12
Rind D., J. Geophys. Res. 92, 4241 (1987);
Shinn R. A., Barron E. J., J. Clim. 2, 1517 (1989);
; B. Felzer, R. J. Oglesby, T. Webb III, D. E. Hyman, J. Geophys. Res. 101, 19, 077 (1996).
13
E. Maier-Raimer and U. Mikolajewicz, in Oceanography 1988, A. Ayala-Castanares, W. Wooster, A. Yanez-Arancibia, Eds. (UNAM, Mexico, 1989), pp. 87–100.
14
Stocker T. F., Wright D. G., Broecker W. S., Paleoceanography 7, 529 (1992).
15
Rahmstorf S., Nature 378, 145 (1995).
16
Broecker W. S., Bond G., Klas M., Paleoceanography 5, 469 (1990);
; E. G. Birchfield, H. Wang, J. J. Rich, J. Geophys. Res. 99, 12, 459 (1994).
17
A. J. Weaver, in Mechanisms of Global Climate Change at Millennial Time Scales, P. U. Clark, R. S. Webb, L. D. Keigwin, Eds. [American Geophysical Union (AGU), Washington, DC, 1999], pp. 285–300.
18
W. F. Ruddiman, in North America and Adjacent Oceans During the Last Deglaciation, W. F. Ruddiman and H. E. Wright, Jr., Eds. (Geological Society of America, Boulder, CO, 1987), pp.137–154.
19
G. C. Bond et al., in Mechanisms of Global Climate Change at Millennial Time Scales, P. U. Clark, R. S. Webb, L. D. Keigwin, Eds. (AGU, Washington, DC, 1999), pp. 35–58.
20
Mix A. C., Fairbanks R. G., Earth Planet Sci. Lett. 73, 231 (1985);
Boyle E. A., Keigwin L. D., Nature 330, 35 (1987);
deMenocal P. B., Oppo D. W., Fairbanks R. G., Prell W. L., Paleoceanography 7, 229 (1992).
21
Raymo M. E., Ruddiman W. F., Shackleton N. J., Oppo D. W., Earth Planet. Sci. Lett. 97, 353 (1990).
22
L. D. Keigwin, G. A. Jones, S. J. Lehman, E. Boyle, J. Geophys. Res. 96, 16, 811 (1991).
23
Rind D., Peteet D., Broecker W. S., McIntyre A., Ruddiman W. F., Clim. Dyn. 1, 3 (1986);
Fawcett P. J., Agustsdottir A. M., Alley R. B., Shuman C. A., Paleoceanography 12, 23 (1997) ;
Mikolajewizc U., Crowley T. J., Schiller A., Voss R., Nature 387, 384 (1997).
24
Hostetler S. W., Clark P. U., Bartlein P. J., Mix A. C., Pisias N. G., J. Geophys. Res. 104, 3947 (1999).
25
Alley R. B., Clark P. U., Annu. Rev. Earth Planet. Sci. 27, 149 (1999).
26
S. W. Hostetler and P. J. Bartlein, in Mechanisms of Global Climate Change at Millennial Time Scales, P. U. Clark, R. S. Webb, L. D. Keigwin, Eds. (AGU, Washington, DC, 1999), pp. 313–328.
27
Weaver A. J., Eby M., Fanning A. J., Wiebe E. C., Nature 394, 847 (1998).
28
Mix A. C., Ruddiman W. F., McIntyre A., Paleoceanography 1, 43 (1986);
Manabe S., Stouffer R. J., J. Clim. 1, 841 (1988);
Crowley T. J., Paleoceanography 7, 489 (1992).
29
Schiller A., Mikolajewicz U., Voss R., Clim. Dyn. 13, 325 (1997).
30
Prell W. L., Kutzbach J. E., J. Geophys. Res. 82, 8411 (1987);
Overpeck J., Anderson D., Trumbore S., Prell W., Clim. Dyn. 12, 213 (1996).
31
deMenocal P. B., Rind D., J. Geophys. Res. 98, 7265 (1993).
32
Overpeck J. T., Peterson L. C., Kipp N., Imbrie J., Rind D., Nature 338, 553 (1989).
33
Bush A. B. G., Philander S. G. H., Science 279, 1341 (1998).
34
Ágústsdóttir A., Alley R. B., Pollard D., Peterson W. H., Geophys. Res. Lett. 26, 1333 (1999).
35
Broccoli A. J., Manabe S., Clim. Dyn. 1, 87 (1987).
36
N. J. Shackleton and N. G. Pisias, in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, E. T. Sundquist and W. S. Broecker, Eds. (AGU, Washington, DC, 1985), pp. 303–317.
37
Curry W. B., Crowley T. J., Paleoceanography 2, 480 (1987);
Spero H. J., Bijma J., Lea D. W., Bemis B. E., Nature 390, 497 (1997).
38
Sowers T., Bender M., Raynaud D., Korotkevich Y. S., Orchardo J., Paleoceanography 6, 679 (1991).
39
Petit J. R., et al., Nature 399, 429 (1999).
40
Broecker W. S., Henderson G. M., Paleoceanography 13, 352 (1998).
41
Raymo M. E., Horowitz M., Geophys. Res. Lett. 23, 367 (1996).
42
Berger W. H., Naturwissenschaften 69, 87 (1982);
; W. S. Broecker, The Glacial World According to Wally (Lamont-Doherty Earth Observatory, Palisades, NY, 1995); D. A. Hodell and C. D. Charles, Eos 80 (17), S198 (1999).
43
Changes in atmospheric CO2 concentrations are undoubtedly important in the climate changes of Earth history, but probably as a feedback rather than as a direct forcing in many or most cases; our understanding of CO2-climate relations is evolving rapidly [
Pagani M., Arthur M. A., Freeman K. H., Paleoceanography 14, 273 (1999);
Pearson P. N., Palmer M. R., Science 284, 1824 (1999);
] and is beyond the scope of this review.
44
Bentley C. R., Science 275, 1077 (1997);
Oppenheimer M., Nature 393, 325 (1998).
45
Boulton G. S., Jones A. S., J. Glaciol. 24, 29 (1979).
46
Alley R. B., Blankenship D. D., Bentley C. R., Rooney S. T., Nature 322, 57 (1986).
47
MacAyeal D. R., Nature 359, 29 (1992).
48
___, Paleoceanography 8, 775 (1993).
49
Clark P. U., Quat. Res. 41, 19 (1994).
50
Anandakrishnan S., Blankenship D. D., Alley R. B., Stoffa P. L., Nature 394, 62 (1998);
Bell R. E., et al., Nature 394, 58 (1998).
51
Clark P. U., Pollard D., Paleoceanography 13, 1 (1998).
52
W. S. B. Paterson, The Physics of Glaciers (Pergamon, Tarrytown, NY, ed. 3, 1994); R. LeB. Hooke, Principles of Glacier Mechanics (Prentice-Hall, Upper Saddle River, NJ, 1998).
53
Boulton G. S., Hindmarsh R. C. A., J. Geophys. Res. 92, 9059 (1987).
54
B. Kamb, J. Geophys. Res. 96, 16, 585 (1991).
55
Hindmarsh R. C. A., Quat. Sci. Rev. 16, 1039 (1997).
56
Iverson N. R., et al., J. Glaciol. 44, 634 (1998).
57
N. R. Iverson, B. Hanson, R. Le
Hooke B., Jansson P., Science 267, 80 (1995);
Iverson N. R., J. Glaciol. 45, 41 (1999).
58
S. J. Marshall, L. Tarasov, G. K. C. Clarke, W. R. Peltier, Can J. Earth Sci., in press.
59
Hughes T. J., Rev. Geophys. 13, 502 (1975).
60
Blankenship D. D., Bentley C. R., Rooney S. T., Alley R. B., Nature 322, 54 (1986);
; S. Anandakrishnan and R. B. Alley, J. Geophys. Res.102, 15, 183 (1997).
61
Engelhardt H., Humphrey N., Kamb B., Fahnestock M., Science 248, 57 (1990).
62
S. J. Marshall, G. K. C. Clarke, A. S. Dyke, D. A. Fisher, J. Geophys. Res. 101, 17, 827 (1996).
63
Pisias N. G., Moore T. C., Earth Planet. Sci. Lett. 52, 450 (1981).
64
deMenocal P. B., Science 270, 53 (1995).
65
Williams D. F., et al., Science 278, 1114 (1997).
66
Clemens S. C., Murray D. W., Prell W. L., Science 274, 943 (1996).
67
Ding Z., Yu Z., Rutter N. W., Liu T., Quat. Sci. Rev. 13, 39 (1994).
68
J. Oerlemans, in Milankovitch and Climate, Part 2, A. L. Berger et al., Eds. (D. Reidel, Norwell, MA, 1984), pp. 607–611;
Saltzman B., Maasch K. A., Clim. Dyn. 5, 201 (1991);
Berger A., Li X. S., Loutre M. F., Quat. Sci. Rev. 18, 1 (1999).
69
Paillard D., Nature 391, 378 (1998).
70
DeBlonde G., Peltier W. R., J. Clim. 4, 318 (1991);
Mudelsee M., Schulz M., Earth Planet. Sci. Lett. 151, 117 (1997).
71
Muller and MacDonald [
Muller R. A., MacDonald G. J., Science 277, 215 (1997);
] argued that the origin of the 100-ky cycle involves non-Milankovitch changes in the Earth's orbital inclination, which caused the Earth to periodically pass through a cloud of interplanetary dust. Sedimentary records and calculations of dust flux, however, do not show large changes in extraterrestrial dust accretion [
Marcantonio F., et al., Nature 383, 705 (1996);
Marcantonio F., et al., Earth Planet. Sci. Lett. 170, 157 (1999);
Kortenkamp S. J., Dermott S. F., Science 280, 874 (1998);
], whereas spectral analyses of the marine δ18O record of global ice volume suggest that this mechanism is unnecessary [
Rial J. A., Science 285, 564 (1999);
Ridgwell A. J., Watson A. J., Raymo M. E., Paleoceanography 14, 437 (1999)].
72
Broecker W. S., van Donk J., Rev. Geophys. Space Phys. 8, 169 (1970).
73
Hyde W. T., Peltier W. R., J. Atmos. Sci. 42, 2170 (1985).
74
Tarasov L., Peltier W. R., J. Geophys. Res. 104, 9517 (1999).
75
J. Mangerud, in Quaternary Landscapes, L. K.C. Shane and E. J. Cushing, Eds. (Univ. of Minnesota Press, Minneapolis, 1991), pp. 38–75;
Clark P. U., et al., Quat. Sci. Rev. 12, 79 (1993).
76
Peltier W. R., Rev. Geophys. 36, 603 (1998).
77
S. J. Marshall, thesis, University of British Columbia (1996).
78
Broecker W. S., Paleoceanography 13, 119 (1998).
79
R. B. Alley, P. U. Clark, L. D. Keigwin, R. S. Webb, in Mechanisms of Global Climate Change at Millennial Time Scales, P. U. Clark, R. S. Webb, L. D. Keigwin, Eds. (AGU, Washington, DC, 1999), pp. 385–394.
80
Broecker W. S., et al., Nature 341, 318 (1989);
Clark P. U., et al., Paleoceanography 11, 563 (1996);
Barber D. C., et al., Nature 400, 344 (1999);
; J. M. Licciardi, J. T. Teller, P. U. Clark, in Mechanisms of Global Climate Change at Millennial Time Scales, P. U. Clark, R. S. Webb, L. D. Keigwin, Eds. (AGU, Washington, DC, 1999), pp. 177–200; S. J. Marshall and G. K. C. Clarke, Quat. Res., in press.
81
M. A. Cane and A. C. Clement, in Mechanisms of Global Climate Change at Millennial Time Scales, P. U. Clark, R. S. Webb, L. D. Keigwin, Eds. (AGU, Washington, DC, 1999), pp. 373–384.
82
Keigwin L. D., Lehman S. J., Paleoceanography 9, 185 (1994);
; W. B. Curry, T. M. Marchitto, J. F. McManus, D. W. Oppo, K. L. Laarkamp, in Mechanisms of Global Climate Change at Millennial Time Scales, P. U. Clark, R. S. Webb, L. D. Keigwin, Eds. (AGU, Washington, DC, 1999), pp. 59–76.
83
Marshall S. J., Clarke G. K. C., J. Geophys. Res. 102, 17827 (1997).
84
Members COHMAP, Science 241, 1043 (1988);
; S. Pinot et al., Clim. Dyn., in press.
85
Bard E., Science 284, 1133 (1999).
86
Peltier W. R., Science 265, 195 (1994).
87
Lambeck K., Smither C., Johnston P., Geophys. J. Int. 134, 102 (1998).
88
CLIMAP Project Members, Geol. Soc. Am. Map Chart Ser. 36 (1981).
89
P. Huybrechts and S. T'Siobbel, Ann. Glaciol.25, 333 (1997).
90
Alley R. B., J. Glaciol. 38, 245 (1992).
91
Thomas R. H., J. Glaciol. 12, 55 (1973);
Jezek K. C., Alley R. B., Thomas R. H., Science 227, 1335 (1985).
92
Boulton G. S., Smith G. D., Jones A. S., Newsome J., J. Geol. Soc. London 142, 447 (1985).
93
Fisher D. A., Reeh N., Langley K., Geophys. Phys. Quat. 39, 229 (1985).
94
Clark P. U., Licciardi J. M., MacAyeal D. R., Jenson J. W., Geology 24, 679 (1996).
95
Licciardi J. M., Clark P. U., Jenson J. W., MacAyeal D. R., Quat. Sci. Rev. 17, 427 (1998).
96
Mitrovica J. X., Davis J. L., Earth Planet. Sci. Lett. 136, 343 (1995);
Davis J. L., Mitrovica J. X., Nature 379, 331 (1996).
97
Pisias N. G., Mix A. C., Paleoceanography 12, 381 (1997);
Harris S. E., Mix A. C., Quat. Res. 51, 14 (1999).
98
Genthon C., et al., Nature 329, 414 (1987);
Colman S. M., et al., Nature 378, 769 (1995);
Morley J. J., Heusser L. E., Paleoceanography 12, 483 (1997).
99
Grootes P. M., Stuiver M., White J. W. C., Johnsen S. J., Jouzel J., Nature 366, 552 (1993).
100
Cuffey K. M., et al., Science 270, 455 (1995);
Severinghaus J. P., Sowers T., Brook E. J., Alley R. B., Bender M. L., Nature 393, 141 (1998).
101
Berger A., Loutre M. F., Quat. Sci. Rev. 10, 297 (1991).
102
Schulz H., von Rad U., Erlenkeuser H., Nature 393, 54 (1998).
103
Little M. G., et al., Paleoceanography 12, 568 (1997).
104
Johnsen S. J., Dansgaard W., Clausen H. B., Langway C. C., Nature 235, 429 (1972).
105
E. J. Brook, personal communication.
106
Blunier T., et al., Nature 394, 739 (1998).
107
Brook E. J., Sowers T., Orchardo J., Science 273, 1087 (1996).
108
G. K. C. Clarke et al., in Mechanisms of Global Climate Change at Millennial Time Scales, P. U. Clark, R. S. Webb, L. D. Keigwin, Eds. (AGU, Washington, DC, 1999), pp. 243–262.
109
Sowers T., Bender M., Science 269, 210 (1995).
110
Fleming K., et al., Earth Planet. Sci. Lett. 163, 327 (1998).
111
Berger A., Quat. Res. 9, 139 (1978).
112
Evolutive spectral analyses were calculated by using fast Fourier transform, and spectra were smoothed with a Hanning filter with a half-filter with five spectral estimates. Time series were interpolated to a constant sampling interval and then normalized to a mean zero and a standard deviation of one. Sampling interval was 1 ky for (Fig. 7A) and (Fig. 7D), 2 ky for (Fig. 7E), and 4 ky for (Fig. 7B, C, and F). Every spectrum was calculated with a record length of 1 My with a 100-ky offset. Each 1-My long segment was linearly detrended. Spectra are plotted at the midpoint of each interval, with the first 100-ky interval beginning at 500 ka. Spectral estimates have 15 degrees of freedom. 113. B. K. Linsley, Nature 380, 234 (1996).
113
Chappell J., Shackleton N. J., Nature 324, 137 (1986);
Chappell J., et al., Earth Planet. Sci. Lett. 141, 227 (1996).
114
Bard E., Hamelin B., Fairbanks R. G., Nature 346, 456 (1990).
115
We thank T. Blunier, E. Brook, S. Clemens, P. deMenocal, K. Fleming, B. Linsley, A. Mix, J. Peck, H. Schulz, and D. Williams for providing data; P. Bartlein, J. Clark, S. Hostetler, J. Jenson, S. Marshall, D. MacAyeal, A. Mix, and N. Pisias for discussions; P. Bartlein, S. Hostetler, A. Mix, and two external reviewers for reviews; and P. Bartlein, S. Marshall, A. Mix, and N. Pisias for preparing figures. Supported by grants from the Earth System History program (R.B.A., P.U.C., D.P.) and the Office of Polar Programs (R.B.A.) of the NSF.

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 286 | Issue 5442
5 November 1999

Submission history

Published in print: 5 November 1999

Permissions

Request permissions for this article.

Authors

Affiliations

Peter U. Clark*
Department of Geosciences, Oregon State University, Corvallis, OR 97331, USA.
Richard B. Alley
Environment Institute and Department of Geosciences, Pennsylvania State University, University Park, PA 16802, USA.
David Pollard
Environment Institute and Department of Geosciences, Pennsylvania State University, University Park, PA 16802, USA.

Notes

*
To whom correspondence author be addressed. E-mail: [email protected]

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Changes in monsoon precipitation in East Asia under a 2°C interglacial warming, Science Advances, 10, 20, (2024)./doi/10.1126/sciadv.adm7694
    Abstract
  2. Plio-Pleistocene deep-sea ventilation in the eastern Pacific and potential linkages with Northern Hemisphere glaciation, Science Advances, 9, 8, (2023)./doi/10.1126/sciadv.add1467
    Abstract
  3. The Last Glacial Maximum, Science, 325, 5941, (710-714), (2021)./doi/10.1126/science.1172873
    Abstract
  4. Early Pleistocene Glacial Cycles and the Integrated Summer Insolation Forcing, Science, 313, 5786, (508-511), (2021)./doi/10.1126/science.1125249
    Abstract
  5. Seasonality and Increasing Frequency of Greenland Glacial Earthquakes, Science, 311, 5768, (1756-1758), (2021)./doi/10.1126/science.1122112
    Abstract
  6. Early Local Last Glacial Maximum in the Tropical Andes, Science, 308, 5722, (678-681), (2021)./doi/10.1126/science.1107075
    Abstract
  7. Glaciation as a migratory switch, Science Advances, 3, 9, (2017)./doi/10.1126/sciadv.1603133
    Abstract
  8. Superlakes, Megafloods, and Abrupt Climate Change, Science, 301, 5635, (922-923), (2003)./doi/10.1126/science.1085921
    Abstract
  9. Effects of Basal Debris on Glacier Flow, Science, 301, 5629, (81-84), (2003)./doi/10.1126/science.1083086
    Abstract
  10. Surface Melt-Induced Acceleration of Greenland Ice-Sheet Flow, Science, 297, 5579, (218-222), (2002)./doi/10.1126/science.1072708
    Abstract
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media