é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

Why TLS is better without STARTTLS:
A Security Analysis of STARTTLS in the Email Context

Damian Poddebniak and Fabian Ising, Miinster University of Applied Sciences;
Hanno Bdck, Independent Researcher; Sebastian Schinzel, Miinster University
of Applied Sciences

https://www.usenix.org/conference/usenixsecurity21/presentation/poddebniak

This paper is included in the Proceedings of the
30th USENIX Security Symposium.
August 11-13, 2021
978-1-939133-24-3

Open access to the Proceedings of the
30th USENIX Security Symposium
is sponsored by USENIX.

+ B — = -
n A : 4
- pl TENE »

Why TLS is better without STARTTLS:

ARTIFACT
EVALUATED

yusenix
ASSOCIATION

A Security Analysis of STARTTLS in the Email Context

Damian Poddebniak” Fabian Ising*

Miinster University Miinster University

of Applied Sciences of Applied Sciences
Abstract

TLS is one of today’s most widely used and best-analyzed
encryption technologies. However, for historical reasons, TLS
for email protocols is often not used directly but negotiated via
STARTTLS. This additional negotiation adds complexity and
was prone to security vulnerabilities such as naive STARTTLS
stripping or command injection attacks in the past.

We perform the first structured analysis of STARTTLS
in SMTP, POP3, and IMAP and introduce EAST, a semi-
automatic testing toolkit with more than 100 test cases cov-
ering a wide range of variants of STARTTLS stripping, com-
mand and response injections, tampering attacks, and Ul
spoofing attacks for email protocols. Our analysis focuses on
the confidentiality and integrity of email submission (email
client to SMTP server) and email retrieval (email client to
POP3 or IMAP server). While some of our findings are also
relevant for email transport (from one SMTP server to an-
other), the security implications in email submission and re-
trieval are more critical because these connections involve not
only individual email messages but also user credentials that
allow access to a user’s email archive.

We used EAST to analyze 28 email clients and 23 servers.
In total, we reported over 40 STARTTLS issues, some of
which allow mailbox spoofing, credential stealing, and even
the hosting of HTTPS with a cross-protocol attack on IMAP.
We conducted an Internet-wide scan for the particularly dan-
gerous command injection attack and found that 320.000
email servers (2% of all email servers) are affected. Surpris-
ingly, several clients were vulnerable to STARTTLS stripping
attacks. In total, only 3 out of 28 clients did not show any
STARTTLS-specific security issues. Even though the com-
mand injection attack received multiple CVEs in the past,
EAST detected eight new instances of this problem. In to-
tal, only 7 out of 23 tested servers were never affected by
this issue. We conclude that STARTTLS is error-prone to
implement, under-specified in the standards, and should be
avoided.

*The first and second authors contributed equally to this work.

Independent Researcher

W PN E W N KR

Sebastian Schinzel
Miinster University
of Applied Sciences

Hanno Bock

S: * OK [CAPABILITY IMAP4REV1 STARTTLS]

C: A STARTTLS

S: A OK

[/ === TLS Handshake -————-=-------—————-

C: B CAPABILITY
S: * CAPABILITY IMAP4REV1
. B OK

Listing 1: A typical STARTTLS message exchange in IMAP.
C: and S: denote the client and server. In IMAP, any
command starts with a (random) tag, which must be reflected
in a finishing server responses. We will use A, B, ... to denote
this tags. Comments are denoted by “//” and are not sent
over the network. When either party sends multiple lines in a
single TCP segment, “. .” continues the last line.

1 Introduction

Historically, email protocols such as SMTP, POP3, and IMAP
used plaintext protocols without confidentiality and authentic-
ity. Later on, the IETF picked separate ports for the respective
implicit TLS versions of SMTP, POP3, and IMAP. Because
there was a desire to upgrade configurations using the origi-
nal plaintext ports retrospectively, the STARTTLS technology
was introduced, and standardization bodies even discouraged
using implicit TLS ports in the past [14,29]. RFC 8314 with-
drew this in 2018 [25], but STARTTLS remains widely used
today and is supported by almost all clients and servers.

In STARTTLS, every connection starts in plaintext and is
later upgraded to TLS via a protocol-specific message ex-
change (see Listing 1). Because STARTTLS is designed to
be downward compatible with clients and servers that do
not speak STARTTLS, the server announces its ability to
speak STARTTLS (line 1), and the client initiates the tran-
sition to TLS with the STARTTLS command (line 2). After
the STARTTLS command was acknowledged with a positive
response (line 3), both parties finally start the TLS handshake.

STARTTLS is most useful in scenarios where encryption

USENIX Association

30th USENIX Security Symposium 4365

is hard to enforce, such as in email relaying (from SMTP
server to SMTP server) running in the background without
any user interaction. Many SMTP servers use weak TLS con-
figurations [6], including invalid, untrusted, or expired TLS
certificates, which would result in rejected emails if servers
required strong TLS validation. Because of this, email relay-
ing is often opportunistic because SMTP servers fall back to
plaintext if a TLS negotiation fails.

However, for email submission (mail client to SMTP
server) and email retrieval (POP3 / IMAP), this plaintext
fallback is not only unnecessary but also discouraged by mod-
ern standards [25]. The reason is that email clients can show
TLS exceptions to users, and it is up to the user to decide
whether to stop or to continue regardless. From this view-
point, STARTTLS only adds complexity and roundtrips to the
email protocol stack. Surprisingly, our analysis showed that
some popular email clients use it as default despite having
the option to use the implicit TLS ports without STARTTLS.
Thus, STARTTLS may be used without the need to use it or
without users even realizing it.

Several issues with STARTTLS were found in the past.
Most famously, STARTTLS’ compatibility introduced a
class of issues known as STARTTLS stripping attacks.
When a Meddler-in-the-Middle (MitM) attacker removes the
STARTTLS capability from the server response, they can
easily downgrade the connection to plaintext.

Wietse Venema, the author of the Postfix SMTP server,
found a command injection bug in Postfix [33]. ' When a client
appends an extra command after the STARTTLS command,
that command is buffered and evaluated after the transition
to TLS. In effect, this allows an attacker to inject a plaintext
prefix into an encrypted session.

Additionally, instances of protocols conflicting with
STARTTLS were found. In 2014, a discussion about the avail-
ability of the STARTTLS command for pre-authenticated
connections on the (now offline) IMAP protocol mailing list
led to the discovery of a security vulnerability in the email
client Trojitd [19]. When a server can pre-authenticate a client,
e.g., because a local IP address was used, it can respond with
a specific greeting, which transitions both the client and the
server into the AUTHENTICATED state. However, STARTTLS
is not allowed in this state, which caused Trojita to continue
in plaintext.

So far, no systematic analysis of STARTTLS in the email
context was conducted. Furthermore, none of the aforemen-
tioned issues were broadly discussed, neither by standardiza-
tion bodies nor in academic security literature. As we show,
the presence of 10-year-old security vulnerabilities, previ-
ously unknown variants, and novel issues in almost all email
clients seems to support this observation. Throughout this pa-
per, we present a systematization of these issues into distinct
attack classes: Negotiation, Buffering, Tampering, Session

!Please note that the term “command injection” has a different meaning
in web security.

Fixation, and UI Spoofing.

Attacker Model and Context We assume a MitM attack
scenario where the attacker can modify TCP connections from
a victim’s Mail User Agent (MUA) to a Mail Service Provider
(MSP). For example, on a WiFi network with no encryption,
attackers in the victim’s proximity can see the victim’s net-
work connection and change the packets the victim sends and
receives. While some of the presented vulnerabilities also af-
fect the relaying of messages, we focus on the “first hop”, i.e.,
the submission [11] of a new email into the email ecosystem
(via SMTP [20]) and the retrieval of messages from a mail
service provider (via POP3 [28] and IMAP [2]).

Coordinated Disclosure We reported all STARTTLS is-
sues to email client and server developers. Additionally, we
cooperated with the german BSI CERT to coordinate interna-
tional disclosure to affected mail service providers. A collec-
tion of all public reports is available from our GitHub reposi-
tory”. We also informed developers of TLS scanning software
and the editor of the IMAP4rev2 standard [24] about our find-
ings. Some of our tests will be included in TLS-Scanner [26]
and restssl.sh [4], and IMAP4rev2 will contain extended secu-
rity advice based on our research. We supported all notified
developers in fixing the issues and provided patches to two
open source projects.

Contributions We make the following contributions:

e We provide the results of the first structured security
analysis of STARTTLS in the email context.
We introduce EAST, a semi-automatic toolkit for analyz-
ing SMTP, POP3, and IMAP implementations, includ-
ing a server for client testing, server testing scripts, and
ZMap modules for Internet scanning. EAST contains
more than one hundred test cases.
Using EAST, we discovered more than 40 STARTTLS
vulnerabilities in widely-used email clients and servers.
e We present working exploits to steal login credentials
and execute cross-protocol attacks that mimic HTTPS,
allowing us to host phishing HTML pages on a domain
that is valid under the IMAP server’s certificate.

2 Background

2.1 Submission of email

Modern standards distinguish between message submis-
sion [11], which is the process of introducing a new email
to the email infrastructure, and message relaying [20], which
is the process of forwarding a message as long as it has not
arrived at its final destination. Submission happens when the

Zhttps://github.com/FEMS-ITS/EAST

4366 30th USENIX Security Symposium

USENIX Association

https://github.com/FHMS-ITS/EAST

user of a Mail User Agent (MUA), e.g., Thunderbird, clicks
on the SEND button. Relaying happens after submission, and
a MUA is not part of that process. Submission (and relaying)
utilize the Simple Mail Transport Protocol (SMTP).

SMTP SMTP is a line-based protocol and follows the
request-and-response model [10]. After the server greeting, a
client issues a series of commands to progress the SMTP ses-
sion such that a message can eventually be submitted. A client
must issues the EHLO command first to obtain a list of server
capabilities. If the server signaled support for STARTTLS
via the STARTTLS capability, the client starts the transition to
TLS via the STARTTLS command. The client then provides
its login credentials to the server (AUTH), tells the server who
the sender is (MAIL), adds one or more recipients (RCPT), and
finally initiates the transmission of the email’s content via the
DATA command. Any line after that command is interpreted
as email content until the transmission is ended by a line
containing a single dot, i.e., “.\r\n”.

Two characteristics of SMTP should be pointed out explic-
itly because they impact our test strategy: 1) Every command
is answered with exactly one response, and no messages are
reordered. Thus, the SMTP protocol lock-steps command and
response handling. The PIPELINING extension [7], which al-
lows to batch multiple commands (and responses), preserves
this principle because even though multiple messages could
be received with a single call to a read function, the messages
are parsed and processed sequentially. 2) Responses in SMTP
can not be parsed generically but require (slightly) different
parsers depending on the issued command. This means that
a client implementation must evaluate a received response
relative to the command leading to the response.

2.2 Retrieval of Email

Messages are retrieved via the Post Office Protocol (POP3) or
the Internet Message Access Protocol (IMAP). IMAP is more
versatile than POP3, but major email providers still support
the simpler POP3 protocol.

POP3 POP3 is a simple line-based request-and-response
protocol that allows users to download their mails [28]. In
contrast to IMAP, it was designed as a “download-and-delete
protocol” [12] and does not provide a way to upload mes-
sages to a server. Although POP received multiple major
updates and two version bumps since its first introduction in
1984 [31], it is still expected to “stay simple”. There are only
two significant additions to the protocol: the introduction of a
mechanism to signal extensions via the CAPA command [12]
and the addition of STARTTLS [29].

Similar to SMTP, the POP3 protocol lock-steps between
commands and responses, and messages can not be parsed
generically, but the client has to know which parser to apply
next. PIPELINING [12] preserves this principle, too.

® 9 s W N KR

S: * OK [CAPABILITY IMAP4REV1 STARTTLS]

C: A CAPABILITY

S: * CAPABILITY IMAP4REV1 STARTTLS

. A OK

C: B STARTTLS

S: B OK

/] —mmmmm e TLS Handshake ——-————————-mmm—m
//

Listing 2: Typical IMAP session with tagged and untagged
responses.

IMAP IMAP is a versatile message management and syn-
chronization protocol and was designed from the beginning to
be extensible. Capabilities like STARTTLS can already be ad-
vertised in IMAP’s greeting message with a code in brackets
(Listing 2, line 1). However, clients can also query the server
for its capabilities via the CAPABILITY command (line 2).

Message transmission in IMAP is more complex than that
of SMTP and POP3, mainly due to the distinction of ragged
and untagged responses. Every command in IMAP begins
with a tag, and the finishing response to a command must re-
flect that tag (Listing 2, lines 2 and 4, and lines 5 and 6). Thus,
tagged responses can (theoretically) be matched regardless
of the order they are received in. Untagged responses begin
with a “*” (line 3) and can also be sent while no command
is in progress [2]. Consequently, an IMAP client is required
to always listen for responses, which breaks the lock-step
approach. Furthermore, all responses can be parsed with a
single parser.

2.3 STARTTLS and Implicit TLS

The use of alternative ports is called implicit TLS by modern
standards [25] to distinguish them from STARTTLS. Submis-
sion over TLS is defined to use port 465, and the TLS-only
variants of POP3 and IMAP are defined to use port 995 and
port 993, respectively. From a security or performance view-
point, implicit TLS is better than STARTTLS. However, some
email clients still default to STARTTLS”, and it is the only vi-
able option if an email provider does not fully support implicit
TLS". Due to its use in email relaying, where encryption typi-
cally cannot be enforced without further steps, STARTTLS
is often described as an opportunistic encryption protocol.’
However, this is not the case when connecting from a MUA
to an MSP.

3 Construction of Test Cases

Our test aims to find (a sequence of) commands or responses
a MitM could use against an active SMTP, POP3, or IMAP

3Examples are Thunderbird and the Mail app of LineageOS.

4Examples are Outlook.com and iCloud Mail.

>The English Wikipedia even redirects “StartTLS” to “Opportunistic
TLS” as of January 2021.

USENIX Association

30th USENIX Security Symposium 4367

session to obtain sensitive data, i.e., “to bypass STARTTLS”,
or to introduce meaningful changes to a client, i.e., to tamper
with application state.

In order to uncover potential issues with STARTTLS, we
conducted semi-automatic network-only tests. Network-based
testing covers a wide range of software — notably, they allowed
us to test the very popular “cloud mail” applications for An-
droid and iOS — and do not require setting up a per-application
test harness. Some tests are semi-automatic because certain
classes of issues, i.e., Ul spoofing issues, are difficult to detect
automatically but are easily noticed by analysts.

Our test system is configured with test case configurations
that precisely define which response is sent to which com-
mand in a protocol session. The remainder of this section
covers test case creation and explains which assumptions we
made to reduce the number of test cases to a manageable
amount. In other words, it explains when we send which mes-
sages in a simulated MitM scenario to detect STARTTLS
issues.

3.1 Systematization of STARTTLS Issues

We define STARTTLS issues as those issues which would not
exist if implicit TLS had been used exclusively. Specifically,
we end a test when we can plausibly assume that a session
reached a state equivalent to the initial state it would have
reached via implicit TLS. Sessions that do not reach this state,
e.g., because TLS was never negotiated (Negotiation issues)
and sessions that negotiated TLS, but whose state is differ-
ent from a session made with implicit TLS (Buffering and
Tampering issues), are candidates for further security analy-
sis. This notion captures the few STARTTLS-specific issues
described in the standards and provides a basis to identify
novel ones. However, it has an oversight: a client that shows
“insecure” behavior, e.g., by displaying a spoofed dialogue
(UI Spoofing issues), may still reach the implicit TLS state
and conforms to the above definition. Thus, we also consider
these cases.

3.1.1 Well-known Issues

As a first step towards a systematic measurement of
STARTTLS security, we studied existing (academic) literature
and gray literature. Academic literature yielded STARTTLS
deployment and resilience studies [6, 15,23] in the context of
MTA-to-MTA communication. Gray literature, i.e., blog posts,
mailing lists, CVE databases, and the relevant STARTTLS
standards yielded results, which are more close to STARTTLS
security itself, namely: 1) a command injection attack on
SMTP [33], 2) STARTTLS stripping attacks in two vari-
ants [14,29], 3) an issue with missing discard of capabili-
ties [14,29], and 4) a conflict with IMAP’s PREAUTH greet-
ing [19].

3.1.2 Extension of well-known Issues

In its original description of the SMTP command injection
Wietse Venema noted that “injected commands could be used
to steal the victim’s email or SASL (...) username and pass-
word” [33], but no concrete attacks were described since the
description of that bug in 2011. We re-evaluate the impact
of the command injection, describe concrete exploits and
their limitations, and introduce a cross-protocol attack, which
allows hosting HTTPS websites under the certificate of an
affected email server. Similarly, Wietse Venema also noted
that “A similar plaintext injection flaw may exist in the way
SMTP clients handle SMTP-over-TLS server responses” [33]
but assumed that “its impact is less interesting” [33]. No (pub-
lic) analysis of this issue was ever conducted. We developed
a testing approach to find this bug in email clients and show
that it allows severe attacks such as mailbox tampering and
even credential stealing (under certain conditions).

Similarly, even though two forms of STARTTLS stripping
attacks were described, several more variants exist. We show
that STARTTLS stripping attacks may be easily overlooked
during testing, and its impact is not always as clear as implied
by the protocol standards.

After the discovery of the PREAUTH issue in the email
client Trojitd, Jan Kundrét, the author of Trojitd, made the
correct assessment and concluded that “(plaintext) creden-
tials will never be transmitted (...) even in presence of this
attack” [19]. However, our evaluation shows that this issue
is prevalent, and we demonstrate how to escalate its impact
to obtain user credentials, too. Interestingly, this is possible
using only standard-conforming IMAP features — which were
simply not supported by Trojita.

3.1.3 Novel Issues

All other issues discussed throughout this paper are novel.
Note, however, that the testing approach we introduce later
in this section also happens to include all well-known issues,
indicating good coverage of our test approach.

3.2 Buffering Issues

The command and response injection attacks are orthogonal
to all other STARTTLS issues discussed throughout this paper,
which is why we discuss them separately.

SMTP, POP3, and IMAP were defined as line-based pro-
tocols, and a perfect implementation would read lines from
the network socket and parse them according to the standard.
However, since, usually, an implementation will eventually
process all input data, chunks of data are read from the net-
work by most implementations instead — either directly into
an application buffer or an internal buffer of the network APL
Therefore, the application data might not only include a single
line after a read call but data from one or more additional lines.

4368 30th USENIX Security Symposium

USENIX Association

W YU A W N R

* OK [CAPABILITY IMAP4REV1 STARTTLS]
A STARTTLS
. B NOOP // injected command

A

/] mmmmmmmmmmee

OK // answer to command B

VW PN s W N KR

OK [CAPABILITY IMAP4REV1 STARTTLS]
\ STARTTLS

S: A OK
. B OK // injected response
TLS Handshake

CAPABILITY

Listing 3: Command Injection: A plaintext command is
answered with an encrypted response.

While, in general, this is not a problem and might even be de-
sirable for multi-line responses and PIPELINING, it becomes
a problem when dealing with context switches, where any
remaining data from the previous phase should not crossover
into the new phase.

Typically, a single session, e.g., an implicit TLS session,
has no additional security boundaries where a change from
unauthenticated to authenticated data occurs. Thus, it is not
required to think about the position of data in a lower layer,
i.e., in TCP segments. However, in STARTTLS, such a con-
text switch occurs, and trailing data might crossover from
the plaintext phase to the encrypted phase, making it indistin-
guishable from encrypted data.

3.2.1 Command Injection (Bc)

The command injection was previously described for SMTP
[33] but is straightforward to extend to POP3 and IMAP by
adapting the protocol messages. Consider the IMAP session
in Listing 3. The client sends two commands in a single TCP
segment (lines 2-3). The server appends the full request to a
buffer and eventually parses and splits off commands from
that buffer. After the server acknowledged the STARTTLS
command, it will immediately initiate the transition to TLS
and wrap all plain TCP sockets in TLS sockets. However, the
trailing data after the STARTTLS command (line 3) remains
in the buffer. If the server does not flush that buffer, the server
may assume that this command was indeed sent via TLS, even
though it is leftover data from the plaintext phase (line 7). In
this example, the server has not flushed the buffer, interprets
the NOOP command inside TLS, and responds with an en-
crypted answer (line 8). This attack’s effect is similar to the
“TLS session splicing attack” described by Ray and Dispensa
in 2009 [30].

3.2.2 Response Injection (Bgr)

We generalized the command injection to a client-side re-
sponse injection. An instance of this problem is shown in
Listing 4. The server injects extra data after its STARTTLS
response (lines 4-5). When the client issues NOOP (line 7), it
will typically wait for the server response. However, because
the server response is already in the client’s response buffer, it
is directly evaluated (line 8). When the client proceeds when

® St s W N R

10
11
12
13
14
15
16
17
18
19

Listing 4: Response Injection: An encrypted command is
answered with a plaintext response.

S: 220 <text>

[] AAR Annnnn

// A B

C: EHLO alice // C

S: 250-example.org

/]~

// D

.. 250-AUTH PLAIN // E
.. 250 STARTTLS // E

C: STARTTLS /' F

S: 220 <text>

[] Ann anannn

// G H

/] ———————— TLS Handshake (I) -—-————————————————

/13

C: EHLO alice // K

S: 250-example.org // K
. 250 AUTH PLAIN // K

Listing 5: Minimal STARTTLS session in SMTP. Annotations
highlight implementation requirements and decisions.

the response was injected — e.g., by sending another command
(line 9) — and stalls otherwise, we can conclude that the issue
is present.

3.3 Exploring the Protocol Messages Space

Even though STARTTLS adds a single message to the SMTP
protocol, multiple decisions must be made by a secure imple-
mentation. Listing 5 shows a minimal trace of a STARTTLS
negotiation in SMTP and exemplifies some of the decisions:

SMTP server responses, including the greeting, contain a
status code (A), which roughly denotes “good”, “bad”, or “in-
complete”, and a human-readable text (B). A network attacker
can change this information. In the case of an error, a client
must decide whether to display the human-readable text to the
user or not. To obtain a list of capabilities, a client must issue
the EHLO command (C). An attacker might pretend that the
server does not understand the EHLO command and replace
the status code with “bad” (D). This mimics an old SMTP
server without support for extensions (and without support
for STARTTLS). A client should not proceed in plaintext due
to this downgrade. The capabilities sent in plaintext (E) are
not authenticated, and the client should generally not process
them. However, the STARTTLS capability is an exception
as it signals STARTTLS support and should be honored by a

USENIX Association

30th USENIX Security Symposium 4369

client. An attacker may remove STARTTLS from the capabil-
ities and trick the client into using plaintext instead — this is
variant one of the well-known STARTTLS stripping attacks.

The STARTTLS command should be the first command
after the EHLO command (F). If a server allows STARTTLS
at a later time, this might lead to security vulnerabilities, es-
pecially when user authentication is not reset properly. The
server acknowledges the STARTTLS command, and the client
is expected to check the response code (G) and only start the
TLS handshake on a “good” response. The client should not
proceed without TLS — this is variant two of the well-known
STARTTLS stripping attacks. Furthermore, the client should
not display any unauthenticated error messages (H). After the
TLS handshake (I), the state is slightly different from the ini-
tial state upon connection because the server greeting is omit-
ted (J). However, it is crucial that all other application state
is reset to the initial state, including any protocol data, which
might have been buffered. Omitting this step might result in
prefix injection attacks — the well-known command injection
on SMTP describes a subset of these issues. Since any old
capabilities (E) must be discarded, they must be queried a
second time (K) — this is the well-known missing discard of
capabilities.

As should be clear from the motivation, a client implemen-
tation may contain multiple branches, potentially leading to
disclosing sensitive data or allowing an attacker to tamper
with an application. However, from the example trace, it is
not clear which other messages might be overlooked.

Limitation As we defined STARTTLS issues relative to
implicit TLS, we exclude many problem classes. Most notably,
we exclude parsing issues as they are equally likely to happen
in implicit TLS. As a consequence, we only send syntactically
valid protocol messages. Likewise, we did not test the TLS
implementation and used a benign TLS library.

This approach has the consequence that our test cases are
limited to the set of all valid protocol messages. Still, as there
are infinitely many valid protocol messages and a black-box
approach does not allow us to rule out certain messages, we
are required to make assumptions about the implementation.

The key question is: When do we send which messages?

3.3.1 When do we send messages?

Assuming that implementations are lock-stepping between
command- and response-handling and different parsers are
used depending on the issued command, it is plausible to only
send test messages which can be parsed correctly and have
the chance to enter business logic.

For example, a response to a POP3 command can be single-
or multi-line. However, the first line of a multi-line response
is identical to a single-line response. Thus, when a multi-line
response is sent in a place where a single-line response is
expected, it is likely that a client only processes the first line

o v A W N R

S: * OK [CAPABILITY IMAP4REV1 STARTTLS]

.. * 42 FETCH (BODY[] "From: Attacker\n\nHello, ...")
C: A STARTTLS

S: A OK

[/ === TLS Handshake -————=--------—————-
/..

Listing 6: Unexpected untagged responses in IMAP.

of the response, and the tail of the response is interpreted
throughout the rest of the session. We exclude these cases
because answering to responses step-by-step produces the
same results more comprehensible.

This is why our SMTP and POP3 tests only cover responses
to commands observed during the plaintext phase. Other re-
sponses, which a client does not expect, are more likely to
terminate the connection or be partially interpreted.

Required Extensions in IMAP The above observations
are, however, only true for SMTP and POP3. In IMAP, an
attacker can change the capabilities by using untagged re-
sponses or codes, which can be sent at any time. Although
some responses should only be interpreted in a specific state,
they are not formally bound to a state, and implementers must
actively discard unexpected ones. For example, a FETCH re-
sponse (Listing 6, line 2) containing an email carries no infor-
mation about the folder the email belongs to. This information
is only available from context, i.e., when a client explicitly
SELECTed a folder before. However, because these responses
will pass the parsing phase and enter business logic, we did
not find it too far-fetched that they lead to local state changes.
Consequently, we consulted the IMAP standard, extracted
all syntactically valid untagged responses, and evaluated if
they change the state of the MUA when sent before the TLS
handshake. Since almost all changes introduced by untagged
responses will be visible in the UL, e.g., a new folder or email,
these changes are easy to detect by an analyst.

In summary, we only send test payloads when it is plausible
that they are interpreted.

3.3.2 Which messages do we send?

We tested all positive and negative responses to any com-
mand a client issued to our server before the STARTTLS
command. This is possible to do exhaustively because a client
should only send a few commands: 1) those required by the
standard (SMTP’s EHLO), 2) commands to request the server
capabilities (POP3’s CAPA and IMAP’s CAPABILITY), and 3)
the STARTTLS command. All other commands are a sign of
misbehavior and should not be issued.

This approach includes the well-known STARTTLS strip-
ping variant two and the PREAUTH greeting in IMAP.

For all other messages, we consulted the formal grammar
of the relevant standards. However, not all protocol messages
are relevant to STARTTLS security. For example, when a

4370 30th USENIX Security Symposium

USENIX Association

message is explicitly documented not to change client or
server state, or a syntactically valid message does not carry a
notable payload, we did not include it in our analysis.

Thus, we also identified the threats which may result from
these messages by using expert knowledge from the stan-
dards and gray literature. For example, to identify Ul spoof-
ing attacks, it was required to first identify the IMAP codes
which trigger dialogues. Furthermore, if we had used, e.g.,
LOGINDISABLED during testing, STARTTLS stripping attacks
would be less likely to work.

The IANA provides a collection of registered SMTP Ser-
vice Extensions [18], POP3 Capabilities, and Response Codes
[16], and IMAP Capabilities [17]. For POP3, we reviewed
all of them. Due to the large number of extensions in SMTP
and IMAP, we excluded most extensions from our analysis.
However, two IMAP extensions, LOGIN-REFERRALS [8]
and MAILBOX-REFERRALS [9] stand out, because they
provide a way to redirect a client to another possibly attacker-
controlled server. These were included in our analysis.

3.4 Summary and Classification of Issues
3.4.1 Negotiation

STARTTLS Stripping (Ns) STARTTLS stripping issues
are the most prominent negotiation issues and have been doc-
umented for more than 20 years. Two variants of STARTTLS
stripping attacks are documented in the standards [2, 14,29]:
removing STARTTLS from the capability list and rejecting
the STARTTLS command.

PREAUTH Bypass (Np) When a server can pre-
authenticate a client, e.g., because it knows that the connection
is already tunneled via some secure connection, it can respond
with a PREAUTH greeting. In this case, both the client and the
server must skip authentication and proceed as if the client
already logged in. However, STARTTLS is not allowed after
a login, which prohibits a standard-conforming client from
issuing the STARTTLS command.

Redirects IMAP supports two mechanisms to redirect a
client to another server: login referrals [8] and mailbox re-
ferrals [9]. Login referrals can already be sent in the IMAP
server greeting and bypass STARTTLS security altogether.
Mailbox referrals are sent as an answer to the SELECT com-
mand to redirect a client to a “remote mailbox”. At first glance,
mailbox referrals are not useful for an attacker because a
client should not select a mailbox before STARTTLS. How-
ever, mailbox referrals can be combined with other issues to
escalate their overall impact (Ng).

S: * OK [CAPABILITY IMAP4REV1 STARTTLS]
. * [ALERT] Please download Microsoft’s https://...
C: A STARTTLS

IMAP SERVER ALERT

. NG E T
alicel@example.org < 4
Te 13:28

I:E:.IThIS message was sent with High importance.

Your IMAP server wants to alert you to the following:
Please download Microsoft's https://attacker.com/quickfix.exe.

Figure 1: Screenshot of an IMAP alert as shown by Microsoft
Outlook. An attacker can choose the text after the colon and
links are highlighted.

3.4.2 Buffering

Buffering issues (B¢, Bg) were introduced as a separate class
of STARTTLS issues in section 3.2.

3.4.3 Tampering

Tampering with the Mailbox (73;/) An attacker can tamper
with local mailbox data by sending IMAP’s data responses
before STARTTLS. This class of attacks is less likely in
POP3 because — as outlined in our discussion of when to send
messages — a client would be required to request that data
first. However, it would need to log in to do so, at which point
an attacker would have access to the credentials regardless.
SMTP does not define “data responses”, which leaves IMAP
for this attack vector.

Session Fixation (S) If any session data set in the plaintext
phase is retained after the transition to TLS, it may allow
tampering or information disclosure attacks. For example, in
SMTP, an attacker could include an additional recipient in
the plaintext phase. When that recipient is not discarded at
the beginning of a new client session, the email sent by the
client will leak to that injected recipient. This attack works by
dragging and redirecting the client’s TLS handshake through
the attacker’s socket already established with the server. In
POP3 and IMAP, an attacker can even replace the whole
victim’s mailbox with their own content when the session is
retained throughout the negotiation of TLS.

3.4.4 UI Spoofing

A descriptive example of an IMAP ALERT is shown in Fig-
ure 1. Outlook shows a prominent dialog and also places
IMAP alerts into the inbox. POP3 provides a similar mecha-
nism based on response codes.

Built-in error mechanisms, i.e., those which use the status
of a response and the human-readable text, were covered
by testing all positive and negative responses with a unique

USENIX Association

30th USENIX Security Symposium 4371

string as human-readable text (Ug). IMAP’s ALERT or POP3’s
SYS/PERM code were covered by extracting all standardized
codes from the relevant standards (Uy).

4 Execution of Test Cases

4.1 Client Testing

Client Selection We selected email clients from all major
platforms and used popularity rankings if available. On An-
droid, we queried the Google Play Store for Download counts
on March 25th, 2020, and selected the ten most downloaded
email clients. From this list, we excluded Yahoo Mail be-
cause it fetches emails only via HTTPS. We included the
Android OpenSource Project Mail App (via LineageOS), usu-
ally bundled with custom ROMs. For i0S, we selected apps
that support either IMAP, SMTP, or POP3 from the 200 most
popular free productivity apps from the iTunes store on July
10th, 2020. Cloud Mail apps were not explicitly selected but
are included due to their popularity. For Linux, we visited
media sites presenting top lists of Linux clients and excluded
clients not available via NixOS — a Linux distribution we used
for reproducible client installations. We also tried to include
popular command-line applications and a (perceived) popular
utility, i.e., OfflineIMAP. On Windows, we only included Mi-
crosoft Outlook 2019 due to its popularity. However, many
Linux Clients also work cross-platform on Windows, and we
assume that the results on both platforms are identical.® Note
that popularity rankings from Google Play and the Apple
Store use geolocation to target a specific region. Our selection
is thus likely biased towards western culture.

Client Test Execution We developed a custom mail server
included in the EAST toolkit for client tests, which supports
STARTTLS, SMTP, POP3, and IMAP and can be configured
to execute precise message flows. The server can also sim-
ulate a benign email server to unify the setup of clients and
sidestep the setup of a real email environment such as Post-
fix and Dovecot. During the evaluation, we restricted our
modifications to those an attacker can perform in reality. For
example, we did not modify data that is normally protected
by TLS. This setup turned out to be a very useful abstraction
to perform stable MitM attacks against email clients.

Configuration of Email Clients for Testing We config-
ured every email client to use the most secure STARTTLS
variant with strict certificate checking. All tests were con-
ducted after a client’s “setup wizard* or after manual configu-
ration and an additional restart. We did not change TCP port
numbers manually, except when the client needed manual

SEven though the TLS provider might differ, we did not find a plausible
explanation why the STARTTLS implementations should be different.

configuration. In this case, we used port 587 for submission,
110 for POP3, and 143 for IMAP.

Furthermore, we set up our test clients using virtual ma-
chines (based on QEMU) with automatic snapshot resets be-
tween tests and automatic triggers for mail retrieval/sending.
In this way, EAST supports semi-automatic testing of email
clients.’

4.2 Server Testing

Scanning We used ZGrab2 [27] to scan the Internet for
IPv4-based mail service providers to identify servers vulner-
able to the command injection. Because the session fixation
requires a valid user account per server, we could not scan
for this issue. We followed best practices for internet scan-
ning and included servers (and networks) in a blocklist when
their operators requested it. Furthermore, we also published
a reverse DNS entry and hosted a webpage with informa-
tion about the scans. Except for the command injection itself,
we did not violate the protocols. We executed a single scan
per protocol and appended a non-malicious command to the
STARTTLS command. To minimize false negatives, we sent
an additional command via TLS to complete possibly blocking
read calls. If we received a response to our injected command,
we considered the server to be vulnerable. Answering with an
encrypted response to a plaintext command is always a sign
of misbehavior. Thus, this test does not yield false positives.

We employed a basic keyphrase- and protocol-based clus-
tering approach to identify specific server software in our
scan results. For this, we identified specific keywords (e.g.,
the name of the software) and phrases (e.g., a specific help
message) and used them to classify results. Additionally, we
classified the remaining servers by comparing the protocol
flow exhibited (e.g., response codes in SMTP).

Server Selection We tested mail servers available freely or
on a trial basis for the command injection vulnerability and
the session fixation. Mainly, we selected these servers based
on a rough identification of popular servers found during our
scans (vulnerable and non-vulnerable).

Server Test Execution We developed a tool — part of the
EAST toolkit — to identify the command injection vulnera-
bility in SMTP, POP3, and IMAP for local server tests. We
set up all tested servers in local installations when possible
and performed tests against some live installations with the
owner’s explicit permission.

5 Client Attacks

All attacks described in this section were conducted end-to-
end. We also show how multiple issues can be combined to

7We could not automate testing for Cloud Mail and iOS.

4372 30th USENIX Security Symposium

USENIX Association

W YU A W N R

S: * OK
/o

[CAPABILITY IMAP4REVI—STARTTES]

C: X APPEND "Sent" (\
.. From: ...
. To: ...

SEEN) {676}

.. Hello, ...
S: X OK

W PN AW N KR

2]
*

PREAUTH
A SELECT INBOX

@]

C: X APPEND "Sent" (\SEEN) {676}
. From: ...
To: ...
. Hello, ...
S: X OK

Listing 7: Bypassing STARTTLS with a well-known
STARTTLS stripping attack.

escalate their impact.

5.1 Negotiation

STARTTLS Stripping (Ng) Typically, when a client is af-
fected by classic STARTTLS stripping, user credentials will
be sent via plaintext. However, there are more subtle forms
of STARTTLS stripping, where the client does not leak user
credentials but uploads drafted and sent emails in plaintext
(Listing 7).

PREAUTH STARTTLS Blocking (Np) In Listing 8, an
attacker bypassed STARTTLS by sending the PREAUTH com-
mand (line 1). This is easy to see because the client did not
terminate the connection but proceeded to SELECT the inbox
(line 2). At this point, an attacker already has full control
over the client and merely needs to mimic a benign IMAP
server to tamper with the client’s mailbox data. If the client
synchronizes draft emails and sent emails, sensitive data is
leaked (lines 4 to 8). However, because PREAUTH signals to
the MUA that it is already authenticated, it does not directly
lead to the exposure of user credentials.

Malicious Redirects (Ng) Mailbox referrals are useful
when combined with a PREAUTH greeting. When an attacker
could bypass STARTTLS security with the PREAUTH greet-
ing, they can further escalate the issue by answering with a
redirect to the client’s SELECT command (Listing 9, line 5).
This indicates to the client that the selected mailbox is only
available on another server. Because the attacker can also
choose the domain, they can use a server for which they have
a valid X.509 certificate. If the client follows this referral, it
immediately leaks user credentials to the attacker (line 13).

5.2 Tampering

Tampering with the Mailbox (Ty;) IMAP’s untagged data
responses lead to changes in the mailbox, which can be used
for tampering attacks, e.g., placing new messages or folders
into the user’s mailbox. These changes can even lead to a
permanently corrupted local state.

Listing 8: Blocking the STARTTLS transition with a PREAUTH
greeting.

// 1) The attacker hijacked the connection to example.org ...
S: * PREAUTH

C: A SELECT Inbox

// ... and redirects client to attacker.com.

S: A NO [REFERRAL IMAP://attacker.com]

//

// 2) The client connects to attacker.com ...

S: * OK

C: A STARTTLS

S: A OK

[/ —mmmmmmm e TLS Handshake -———-=--------————-

// ... and discloses the user’s password to the attacker.
C: B LOGIN "username" "password"

/o

Listing 9: Bypassing STARTTLS with a PREAUTH greeting
and escalation from mailbox tampering to stealing of
credentials.

5.3 UI Spoofing

IMAP Alerts (Uy) IMAP alerts, as previously described,
are a prime opportunity for Ul spoofing. Since they can be sent
at any point in an IMAP connection, any client that displays
them in the plaintext phase is vulnerable to UI spoofing.

Error Messages (Ug) Additionally, all protocols can show
error messages that can be sent in response to any command.
If these are displayed in the plaintext phase, UI spoofing is
also possible.

5.4 Buffering

Response Injection (Bg) The response injection’s impact
is limited in SMTP because the exchanged data is short-lived
and neither saved nor displayed to the user. However, POP3
and IMAP incorporate session data into local archives, and
the response injection can be used to tamper with local mail
archives. The attack is also easy to execute because the se-
quence of commands issued by a client is predictable.® Fur-
thermore, the response injection can again be combined with
referrals to obtain user credentials.

8Qutlook is the only client which uses unpredictable IMAP tags.

USENIX Association

30th USENIX Security Symposium 4373

S: * OK [CAPABILITY IMAP4REV1 STARTTLS]
C: A STARTTLS
// Attacker injects LOGIN and APPEND here ...

S: A OK
/] e TLS Handshake ———=—==------————---
A: LOGIN "attacker" "password" // LOGIN interpreted here

B

S: B OK
A: C APPEND INBOX {length} // APPEND interpreted here
S:
// Due to the active APPEND, the following command is
// misinterpreted as email data and appended to the

// attacker’s INBOX
C: B LOGIN "victim"

+

"password"

Listing 10: Credential-Stealing in IMAP:
credentials using the command injection in IMAP.

Obtaining

6 Server-Side Attacks

In our attacker model, the attacker can act as MitM between
client and server and open their own (STARTTLS) connec-
tions to the server. All server-side attacks described in this
section are based on the attacker communicating with the
client until it initiates the TLS handshake — possibly by doing
a STARTTLS negotiation first — and preparing the attack on
the server-side in the plaintext phase of a STARTTLS connec-
tion. When both sides are ready, the attacker relays all TLS
traffic unchanged between the client and the server.

6.1 Buffering

For brevity, we will not use arrows to explain where command
and response data was initially sent but layout the traces to
make the practical impact of the issues more clear.

Command Injection (Bc) The command injection attack
can not only be used to obtain user credentials in SMTP and
IMAP and works against clients using STARTTLS but also
against clients using implicit TLS. Furthermore, they can
be used for cross-protocol attacks. Any server vulnerable to
command injection is vulnerable to all attacks in this section.

Disclosing Credentials via Command Injection An at-
tacker can obtain user credentials using the APPEND command
after a LOGIN to their own mailbox (see Listing 10). The at-
tacker then prepares a new email to be appended to their inbox
using the command injection in lines 6 and 8. This results in
the server interpreting the user’s actual login command (line
13) as the body of an email, which is then APPENDed to the
attacker’s mailbox and can be fetched from the mailbox.

A similar attack is possible on SMTP (Listing 11). Using
the command injection, the attacker logs in to their own ac-
count (line 10) on the vulnerable server before preparing a
mail to themselves using the MAIL, RCPT, and DATA (lines 11-
13) commands. This way, any data sent by the victim will be
sent as the mail body opened by the injected DATA command,
thereby revealing the credentials (and email) to the attacker.

// 1) Attacker injects multiple commands (A, B, ...) to
// prepare the transmission of an email.

// The commands will generate multiple responses,

// which will conveniently make the client send

// more commands.

S: 220 OK

A: EHLO attacker // A

. AUTH PLAIN <attacker login> // B

. MAIL FROM:<attacker@example.com> // C

..):<attacker@example.com> // D

. DATA /] E
S: 220 OK
/] TLS Handshake ———————————-mmnm
// 2) A-E are interpreted here. The server is now in a
// state to accept an email body. All following lines
// from the client are misinterpreted as an email,
// which is then send to attacker@example.com.

C: EHLO alice
S: 250-mail.example.com // A
. 250 AUTH PLAIN LOGIN

C: AUTH PLAIN <alice login>

S: 235 OK // B

C: MAIL FROM:<alicel@example.com>
S: 250 OK // C

C: RCPT TO:<bob@example.com>

S: 250 OK //' D

C: DATA

S: 354 OK // E

C: <email to bob>

Listing 11: Credential-Stealing in SMTP: Redirecting mails
and user credentials on an SMTP server. Text marked in blue
will be interpreted as the DATA of the mail.

Breaking Implicit TLS via STARTTLS Servers often
share the same certificate between STARTTLS and implicit
TLS” or provide both variants on the same domain such that
both certificates must have the same SAN field. This enables
an attacker to use vulnerabilities in the server’s STARTTLS
implementation, i.e., the command injection, even if a client
is configured to use implicit TLS. This is exploitable with
vulnerable SMTP servers in many mail clients. Reconsider
Listing 11. Instead of the client connecting to the server in
plain and issuing STARTTLS in line 6, the attacker relays the
client’s TLS connection — intercepted on the implicit TLS port
— to the server. Usually, a client would assume that an implicit
TLS connection starts with the SMTP banner of the server,
but for STARTTLS connections, the server will not repeat the
banner after the handshake, which would cause the client to
stall. However, an attacker can inject an additional EHLO com-
mand after line 8, which causes the first server response after
the TLS handshake to be the EHLO response, which will be
interpreted as the server banner. Similar attacks are possible
using the IMAP command injection.

9For example, Dovecot does not even provide an option to separate
certificates for STARTTLS and implicit TLS.

4374 30th USENIX Security Symposium

USENIX Association

S: * OK [CAPABILITY IMAP4REV1 STARTTLS]
A: A STARTTLS

. HTTP/1.1200 NOOP
/] ARANANAAAAA
// These are valid IMAP tags.
// VVVVVVVVVVVVVV

. ignore-header: LOGIN "attacker" "password" // B

.. ignore-header: SELECT INBOX // C
// Attacker already saved email 1337 in their account.
.. // UID FETCH 1337 // D
/o
// This is also a valid IMAP tag.
S: A OK STARTTLS

T/ HTTP/1.1

S: HTTP/1.1200 OK // A

.. lgnore-header: OK // B

.. ignore-header: OK // C

// Email 1337 may contain any web content.

. // D
.. <script>alert ("XSS")</script> // D
. // OK //' D

Listing 12: Hosting HTTPS: Serving HTTPS content using
the command injection in an IMAP server.

Hosting HTTPS via STARTTLS IMAP servers af-
fected by the command injection vulnerability allow a MitM
attacker to host arbitrary HTTPS content on domains listed in
the IMAP server’s TLS certificates. This can be achieved by
using the reflection of IMAP tags in responses from the server
as HTTP keywords. The MitM attacker intercepts the victim’s
HTTPS connection and establishes a connection to the IMAP
server. For example, this creates a valid TLS session if the
HTTPS domain is www.mail.ex, and the IMAP server has a
wildcard certificate for the same domain *.mail.ex.

The attacker can use the reflection of IMAP tags and a pre-
pared email to serve HTTPS content to the victim, as shown
in Listing 12. The attacker uses the syntactically correct tag
HTTP/1.1200 (note the missing space between 1.1 and 200)
and the OK (A) response from the server to fake an HTTP
status line and colons (B, C) and comment markers (D) to
hide data in headers and comments. Although HTTP/1.1200
OK is not a syntactically valid HTTP status line, recent Google
Chrome and Mozilla Firefox will correctly render the fetched
email data as an HTTP website. The exploit, however, did not
work in Apple Safari.'

An attacker can use this vulnerability to serve phishing
websites to the victim or perform cross-site scripting attacks
against the real domain. According to our tests, this attack
was possible against multiple popular HTTPS websites.

While, in theory, this attack is also possible using the com-
mand injection in POP3, it is impeded by the missing reflec-
tion of tags as present in IMAP. Therefore, we were unable to
spoof HTTPS contents using the POP3 command injection
in modern browsers. In addition to serving HTTPS, serving

10This was tested in Chrome 90.0, Firefox 88.0.1, and Safari 14.1.

® 9 s W N KR

10
11
12
13
14
15

* OK [CAPABILITY IMAP4REV1 STARTTLS]
A login <attacker login>

A OK

B STARTTLS
B OK

P>

O~~~ O n > n

: X SELECT INBOX

: Y APPEND "Sent" (\SEEN) {676}
. From: ...

- O~
~

To: ...

.. Hello, ...
S: Y OK

Listing 13: IMAP session fixation attack.

(nearly) arbitrary content to a victim might be possible for
other protocols employing TLS and sharing the same certifi-
cate as a vulnerable server.

6.2 Session Fixation

Listing 13 shows a session fixation attack against an IMAP
server. In this case, the server allows unencrypted logins, and
the attacker can authenticate using their account and fixate
this session for the client (lines 2 and 3). The server retains
this session through the STARTTLS transition, and the client
remains logged into the attacker’s account. Therefore, the
attacker can now present any mailbox to the client by manip-
ulating their own account (line 8). Additionally, if the client
synchronizes any sent or drafted emails to the mailbox (lines
10 to 14), the attacker can retrieve these from their mailbox.

POP3 allows for a similar attack. However, since POP3
does not allow clients to upload mails, the attack is restricted
to presenting crafted mailboxes.

In SMTP, the session fixation is more nuanced because
SMTP servers do not provide any permanent data visible to
the authenticated user. However, an attacker could still add a
new recipient — e.g., using the RCPT command — redirecting
mails from a client to the attacker.

7 Evaluation

7.1 Client Issues

In total, 15 of 28 clients could be downgraded to plaintext and
leaked sensitive data such as sent and drafted emails (Table 1).
Straightforward STARTTLS stripping attacks (Ns) worked
on ten clients and the PREAUTH issue (Np) worked in five
clients not vulnerable to basic stripping attacks. Most notably,
three popular email apps for Android — Gmail, Gmail Go, and
Samsung Email — were affected by naive STARTTLS strip-
ping attacks. Because Gmail, Gmail (Go), and Samsung Email
showed the same unique behavior —a STARTTLS stripping
attack lead to the upload of mails, but not to the leakage of cre-
dentials — we assume that they use a similar codebase. 4 out of

USENIX Association

30th USENIX Security Symposium 4375

Negotiation Buffering Tampering UI Spoofing

=] [~ =] =]
= £ 2 = £ £ E & = £z
Client ©n A E ©n -4 E v A E 7 - E
Android (Google Play)
Gmail (8.5.6.199637500) o
Gmail Go (8.5.6.197464524) [I
Samsung Email (6.1.12.1) [JIA
K-9 Mail (5.710) Oug
LineageOS email (9)
Apple iOS (App Store)
iOS Mail (iOS 13.5.1) [J8 Op;, ©;, ©p;
Gmail (6.0.200614) 1%} O, @ O3, 1%}
Edison Mail (1.20.8) %] TLS O3, %] TLS TLS 1%/ TLS
Windows
Outlook (16.0.13001.20338) TLS TLS Osyg TLS Ovy TLS Ou,us
Apple macOS
Mail (3608.80.23.2.2) Op, ©p;, O©Os;
Linux (tested on NixOS)
Balsa (2.5.9-1) Oc! Oc Ov; Ou,
Evolution (3.34.4) Op; ©Os O, Ouy
Geary (3.34.2) (%] (%] 7] (%]
KMail (19.12.3) [J OB, ©Opg
Cross-platform (tested on NixOS)
Thunderbird (68.7.0) Ong! @Onp Os, O1y, Ou,
Trojita (0.7.20190618) %} (%} Os, 1] O1y Ouy
Claws (3.17.4) O3, ©p, Op Ouy
Sylpheed (3.7.0) o O3, O Ouy
Alpine (2.21) | JYAA O1y.c Ovg Ouy
Mutt (1.13.3) [I8 OB, ©p;, O©Os; Oug
NeoMutt (20200417) oy, O, ©p, O©p Oug
OfflineIMAP (7.3.2) 1] o oy’ 1] o g o o 1]
Cloud Mail (Android & iOS)
Outlook TLS TLS TLS
Yandex.Mail %} Op, 9 O3, %] TLS
GMX Mail Collector (%) [W8 o %)
Mail.ru [YA (%] TLS O3, %] TLS (%] TLS
myMail [W %} TLS O, O TLS 1%} TLS
Email App for Gmail [W2 %] TLS OB, %] TLS %] TLS
No vulnerability found. Ng STARTTLS stripping ! Infinite protocol loop

O Minor issues. Np PREAUTH 2 When no authentication configured

© Tampering with the mailbox or client state. Nr Malicious Redirect 3 Documented behavior

[} Sensitive data, e.g., emails or credentials, are exposed. =~ Bg ~ Response Injection

TLS Only implicit TLS configurable. Tuy Tampering

[Not available. Uy IMAP Alerts

Ug Error Messages
C Crash

Table 1: Results of our STARTTLS tests against 28 email clients. We treated the backend of Cloud Mail apps as a single client,
because the results were the same on every platform and we concluded that the backend is independent of the mobile app.

4376 30th USENIX Security Symposium USENIX Association

6 cloud mail apps were affected by STARTTLS stripping (Ns).
However, due to the very similar testing outcomes, we assume
that Mail.ru, myMail, and Email App for Gmail use the same
code base. KMail only allowed STARTTLS stripping when
no user authentication for SMTP is configured. We could not
determine if Sylpheed is meant to be opportunistic because
we did not receive an answer to our bug report. OfflineIMAP
states in its documentation that “No verification [of certifi-
cates] happens if connecting via STARTTLS” [1]. Thus, we
assume it was opportunistic by intent.

Evolution, Thunderbird, Trojitd, and Alpine accepted
IMAP’s untagged responses and incorporated them into the
local state even without STARTTLS. Furthermore, Alpine
crashed due to two specific untagged responses (LIST and
EXISTS). In Alpine, we could also combine PREAUTH and
mailbox referrals to steal user credentials too.

The response injection vulnerability (Bg) was present in 17
of 28 clients in at least one protocol. The implementation of
STARTTLS seems to differ between protocols in Evolution,
Sylpheed, Thunderbird, and Outlook, making them vulnera-
ble in only a single protocol. For the remaining vulnerable
clients, it was a generic issue. According to the website of the
LibEtPan [3] mail framework, it is used in almost all email
apps on i0S and Mac. Because our measurement showed that
all Apple clients are affected by that bug, we find it likely that
this is due to this library, and multiple more clients on these
platforms could be affected.

7.2 Server Issues

We tested mail servers available freely or on a trial basis for
the command injection vulnerability and the session fixation.

Command Injection Most tested servers were not affected
by the command injection vulnerability. This is likely because
most were already tested in the past. Nevertheless, we found
seven servers that were still vulnerable to the attack in their
latest version. The Courier vulnerability has been known since
2013 and was fixed in IMAP. In POP3, however, the fix seems
to be ineffective. Table 2 shows our evaluation results, paired
with the servers vulnerable to the command injection in the
past.

Session Fixation We found most servers to be vulnerable
to at least a mild form of session fixation. Six POP3 servers
were vulnerable to an attacker setting only the user in plaintext
before transitioning to TLS. While we categorize this as non-
exploitable, it is still worrying to see that the server state is not
correctly reset in these cases, showing that attacker-controlled
data can leak into encrypted sessions. The same applies to
the six SMTP servers allowing a full user account session
fixation. However, we found no reasonable exploit for this.
None of the tested SMTP servers allowed for the fixation of
the MAIL TO address.

Session
Fixation

Command
Injection

IMAP
IMAP

Product

® | SMTP
® | SMTP

Citadel (929)

Courier (1.0.14)
Exchange (2016)
Gordano GMS '%(20.06)
IceWarp (Deep Castle 2)
IPswitch IMail (12.5.8)
Kerio Connect (9.2.12)
MailEnable (10.30) ©
MailMarshal'*(10.0.1.203)

MDaemon (20.0.3) ©
SmarterMail (100.0.7503)
Zimbra (8.8.15)

Exim (4.94#2)

netqmail (1.06'%)

Postfix (3.5.4)

Qmail Toaster (1.4.1) []
Qmail Toaster (1.03-3.3.1)
Sendmail (8.16.1)
spamdyke (5.0.1)

s/qmail (4.0.7)

Cyrus IMAP (3.2.2)
Dovecot (2.3.10.1)
Mercury/32 (4.80.149)

® ® | POP3
© @ | POP3

[]
o
e®
[) |
[] |

]

Q8

e®sd®s e e ®

o0 e
2

e o 1%}

— Unknown / Untested
Historic vulnerability (fixed)
& Protocol not available

No vulnerability found
© No working exploit
@ New vulnerability

Table 2: Popular mail servers affected by the command in-
jection and session fixation vulnerabilities. We do not report
MTAs vulnerable to the Response Injection here.

We could achieve full session fixation in POP3 or IMAP
for two servers, allowing to potentially present the attacker’s
mailbox to the victim''.

7.3 Scanning Results

We found more than 300,000 hosts still vulnerable to the
command injection — including large mail providers with
proprietary mail servers, outdated installations, recent open-
source MTAs, and Anti-spam solutions 15 The detailed results
are shown in Table 3. Interestingly, the highest ratio of vul-
nerable servers is present in POP3 servers. We assume this
is due to the relatively low use of POP3 in the modern email

'This was not tested end-to-end in all clients.

12We could not identify if SMTP commands are correctly interpreted.
13MailMarshal is now called TrustWave Secure Email Gateway (SEG).
14With combined patch v2020.12.04 by Roberto Puzzanghera applied.
15Victor Duchovni made a similar observation in 2011 [33].

USENIX Association

30th USENIX Security Symposium 4377

Protocol (Port) Scanned Vulnerable Ratio
SMTP (25) 5,521,868 97,697 1.8%
SMTP (587) 4,200,995 58,793 1.4%
SMTP (per IPv4) 7.278,279 111,599 1.5%
POP3 (110) 4,285,730 110,882 2.6%
IMAP (143) 4,165,826 98.773 2.4%
Total 15,729,835 321,254 2.0%

Table 3: Results of our scan for the command injection vulner-
ability. We report the results for SMTP per port and grouped
by IP address to prevent counting the same server twice.

environment due to its age, increasing the share of old and
unmaintained servers. In general, the number of vulnerable
servers is surprisingly high, considering that the command
injection in SMTP was first published in 2011 [33]. To get
more insights into the results, we performed a keyword-based
clustering of the vulnerable servers (Table 4).

The largest fraction of vulnerable IMAP servers is Courier

servers. Since we found a bug report for this from 2013 [13],
we assume that these are mainly old versions. Sadly we could
not get a detailed overview of Courier versions newer than
2011 since the copyright notice seems to have been updated
inconsistently. However, we also identified many smaller clus-
ters of vulnerable servers and retested them locally (Table 2).
For SMTP, most vulnerable servers were derivatives of qmail.
While netqmail is easily distinguishable from standard qmail,
other derivatives are not.
Additionally, we identified a large cluster (more than 10,000
servers) of Postfix installations. Assuming that this bug was
fixed in 2011 in both netqmail and Postfix, we concluded that
this must be either a broad set of old setups or these servers
are behind vulnerable mail gateways, which we could not
identify. Another large cluster of vulnerable SMTP servers
(more than 30,000) were recvmail servers. We identified that
this is a custom SMTP server used by the Internet backbone
provider Hurricane electric. CoreMail servers showed up as
vulnerable in all protocols. This is notable because CoreMail
claims to have more than 1 billion users, providing cloud
services, an Anti-Spam solution, and mail servers.

To estimate these vulnerabilities’ real-world impact, we
cross-reference our results with the Tranco Top Million
list [21].'® We found that 3.3% of the MX servers of these
websites are vulnerable to the command injection in SMTP —
a percentage that is more than twice as high as on the Internet.
We also specifically looked at the most used MX servers of the
top websites. One mail provider — Yandex, which is used for
the MX of around 2 percent of the one million most popular
websites — was vulnerable to the command injection.

1nttps://tranco-list.eu/list/8KKV

8 Mitigation

Mail clients should make implicit TLS the default, and users
who can either use STARTTLS or implicit TLS should use
the latter. Mail service providers should always offer implicit
TLS and evaluate, as a long-term measure, strategies to disable
STARTTLS. While we believe that this is the best way for-
ward, we recognize that security mitigations are still required.
Most notably, STARTTLS is currently the only standardized
option for encryption in message relaying. Even though relay-
ing is still opportunistic, DANE [5] and MTA-STS [22] try
to rectify that, and flaws in STARTTLS must not undermine
this effort.

Isolating the Plaintext Phase Due to the many places
where plaintext data might potentially be processed or
buffered, it might be easier to introduce a separate STARTTLS
routine, with the single goal to transition a given socket to
the point where the TLS handshake would start. This rou-
tine would have a stack-allocated local protocol buffer and no
other application state (except the socket). All other routines
would work as if implicit TLS was used. Due to this strict
separation, implementors may wonder about the interaction
of pipelining and STARTTLS. However, the standards explic-
itly state that further commands before the transition are not
allowed. Additionally, since the client needs to wait for the
server’s acknowledgment of the STARTTLS command, the
CLIENT_HELLO should not be pipelined. The same is true for
the SERVER_HELLO due to the TLS protocol flow.

Fixing Buffering Issues Server and client implementations
must not interpret content sent in plain text as part of an en-
crypted connection. If the plaintext phase can not be isolated
such that a separate buffer is used, the read buffer should be
cleared when initiating the TLS handshake after a STARTTLS
command. Alternatively, the additional content can be inter-
preted as a part of the TLS handshake (which will lead to a
termination of the handshake). A third alternative is to pre-
cautionary clear the application buffer (and all other buffers)
after the TLS handshake.

Streamlining Negotiation Our analysis shows that if an
SMTP or POP3 client never issues a command asking for
information, an attacker is unlikely to change any client state
because the response will not even be parsed correctly. More
specifically, when a client never asks for a server’s capabilities,
an attacker is unlikely to execute STARTTLS stripping attacks.
Therefore, the negotiation process should be streamlined such
that a client issues the STARTTLS command as the first and
only command. This can be done in a standard-conforming
way for POP3 and IMAP. In SMTP, the EHLO command should
be the first issued command as some servers require it. Here,
EHLO could still be sent, but the answer should be discarded.

4378 30th USENIX Security Symposium

USENIX Association

https://tranco-list.eu/list/8KKV

IMAP POP3 SMTP (25) SMTP (587)
Server Ratio Server Ratio Server Ratio Server Ratio
Courier (< 2011) 84.00% Courier 82.79% netqmail 25.04% Recvmail 28.71%
Courier (> 2011) 3.53% SmarterMail 5.36% gmail 21.12% gmail 24.66%
Coremail (unknown) 2.12% Coremail 2.32% Recvmail 17.00% netqmail 23.81%
Mdaemon (< 13.0.3) 1.10% Zimbra 1.71% Postfix 11.67% Postfix 6.94%
Cyrus (<2.4.17) 1.08% IceWarp/Merak 1.12% Coremail 2.41% Kerio Connect ~ 2.48%
Kerio Connect (< 7.1.4) 1.00% Kerio Connect 2.20% Exim 2.41%
Exim 1.27%
IceWarp/Merak 1.24%
Unidentified 1.68% Unidentified 2.98% Unidentified 10.78% Unidentified 6.25%
Various 5.49% Various 3.72% Various 7.27% Various 4.74%

Table 4: Rough clustering of vulnerable servers during scans, by protocol. IMAP Server versions are a best-effort deduction from
greetings and information sent during scans. Servers grouped under various were present less than one percent each.

Six of the tested clients already behave this way, suggesting
that this behavior does not lead to incompatibilities in the
wild.

9 Related Work

Even though STARTTLS adds attack surface to the TLS
protocol usage, it is by no means protected against known
attacks against TLS. While significant academic research on
TLS exists, surprisingly little has been written on STARTTLS.

In 2015, Durumeric et al. [6] published a report on the
global adoption rate of SMTP security, including STARTTLS,
SPF, DKIM, and DMARC. The report is based on scans of the
SMTP server configuration of the Alex Top Million domains
and data on Gmail’s SMTP connections over a year. They
found that only a little over half of the scanned SMTP servers
could successfully perform a STARTTLS handshake and that
more than 426 Autonomous Systems performed STARTTLS
stripping on customers’ connections. This highlights inher-
ent problems with the use of STARTTLS in MTA-to-MTA
connections. However, Durumeric et al. do not focus on the
usage of STARTTLS in MUA-to-MSA connections.

Holz et al. [15] conducted active scans and passive monitor-
ing to learn which authentication mechanisms, X.509 certifi-
cates, and TLS cipher suites are advertised and used by clients
and servers for electronic communication. Specifically, they
reported that many clients and servers fall back to unencrypted
connections should STARTTLS not be available.

In 2016, Mayer et al. [23] published data on their IPv4-
wide scans of email ports, focusing on the security of the
negotiated TLS connection — i.e., supported cipher suites,
cryptographic primitives, key exchange parameters, and TLS
certificates — as well as the support for plaintext authenti-
cation — i.e., the availability of STARTTLS and the AUTH
PLAIN and LOGINDISABLED capabilities. They found that
a sizable number of email servers did not correctly enforce
non-plaintext authentication for MUAs.

10 Discussion

The analysis shows that IMAP is particularly affected by
STARTTLS vulnerabilities, and there are two main reasons for
that. IMAP’s communication model (untagged responses) and
unified parsing allow attackers to send unsolicited responses
at any time, and the client is likely to accept it. This is different
in SMTP and POP3 because the client only accepts a limited
set of responses according to the commands it sent.

Furthermore, the extensive functionality and large number
of IMAP extensions make it more likely that some of them
conflict with the requirements of STARTTLS. The PREAUTH
greeting and login referrals are good examples. Those clients
not affected by this issue closed the connection directly or,
in violation of the protocol, still issued the STARTTLS com-
mand. Surprisingly, this makes clients striving for protocol
correctness more likely to be affected by the PREAUTH issue.
Even though the login referrals extension predates the intro-
duction of STARTTLS, its potential to bypass the security
of STARTTLS is not documented. Fortunately, only a few
clients support login referrals, but for example, Thunderbird
has an open feature request for login referrals from 2004'".
Each of the several dozen IMAP extensions has the potential
to add a STARTTLS bypass. In order to combine STARTTLS
and IMAP, it would be necessary to analyze each extension. A
more comfortable and safer approach would be to discourage
STARTTLS support for IMAP.

We believe that the large number of servers and clients
affected by the buffering vulnerabilities arises from any naive
implementation of STARTTLS. Preventing the vulnerability
requires additional code to clear the receive buffer explicitly
after the transition to STARTTLS. While the command injec-
tion was first described in 2011, the response injection was
unknown. We assume that this vulnerability did not get the
deserved attention due to missing practical attack scenarios.
Our experiences in disclosure support this: although some

https://bugzilla.mozilla.org/show_bug.cgi?id=59704

USENIX Association

30th USENIX Security Symposium 4379

https://bugzilla.mozilla.org/show_bug.cgi?id=59704

developers knew of this vulnerability, they assumed it to be
relatively low impact or non-exploitable. When presented
with a functional exploit, most fixed the vulnerability swiftly.

We also like to point out that STARTTLS makes benign
issues more critical. Although accepting IMAP responses
in not well-defined states hints to implementation problems,
they are not critical for security during a benign session with
a server. Similarly, even though memory corruption issues
may crash a client, they are unlikely to be sent with malicious
intent by a benign server. STARTTLS makes both of these
issues critical for security, and implicit TLS mitigates them
in our attacker scenario.

Our investigation primarily focused on the security proper-
ties of STARTTLS. Howeyver, it is evident that STARTTLS
also has performance implications because transitioning from
STARTTLS to implicit TLS removes two round trips from
any new connection. There has been considerable effort to
reduce the round trips in TLS connections during the stan-
dardization of TLS 1.3. Therefore, we find it noteworthy to
consider the performance impact STARTTLS implies.

During disclosure, we experienced that some client ven-
dors were struggling to reproduce findings. For the more
complex cases, i.e., the response injection, we provided our
server code and received very positive responses. Given that
simple test cases could have uncovered many issues, we cer-
tainly think there is a demand for robust email security tooling.
Our approach to focus on easy-to-setup network-only tests
may further contribute to the execution of more such tests.

11 Conclusion

We performed the first systematic, thorough analysis of
STARTTLS implementation vulnerabilities. In 2011 it was
first shown that Postfix was vulnerable to a STARTTLS buffer-
ing bug that allowed command injection. Subsequently, the
same type of bug was found in various mail servers and other
server software. Our research shows that even though this bug
has been known for a decade, it is still widely prevalent in
email servers. It also shows that a novel adaption of this bug
type is present in many email client applications.

Our research also shows that inconsistencies in the stan-
dard and incompatibilities between certain IMAP features,
particularly PREAUTH, unsolicited responses, and referrals,
allow further attacks. The interaction of STARTTLS and any
new (and existing) features must be carefully evaluated to
ensure that STARTTLS bypasses will not appear.

The STARTTLS vulnerabilities can be used for critical at-
tacks such as credential stealing that allow attackers to take
control over the victim’s mailbox. We showed how server-side
command injection flaws can be used to steal credentials in
SMTP and IMAP connections using STARTTLS. A combi-
nation of the PREAUTH functionality and referrals in clients
can also be used for credential stealing.

We discovered several flaws in major email client and
server implementations. Both the PREAUTH and the client
response injection affected Mozilla Thunderbird and Apple
Mail. The STARTTLS stripping flaw was present in several
major clients, including the Gmail Android app. The com-
mand injection, know since 2011, was possible on large mail
servers by major mail providers like Yandex and GMX. Our
scans reveal that of all publicly available SMTP, POP3, and
IMAP servers, 320,000 are vulnerable to command injection
attacks. Out of 22 tested email servers, 15 are vulnerable to
the command injection or had this vulnerability in the past.

In summary, we conclude that STARTTLS has systemic
problems that lead to implementation flaws, that STARTTLS
is insufficiently specified, that STARTTLS has no security
advantage over implicit TLS connections, and is slower than
implicit TLS due to additional round trips. Therefore, we
recommend using implicit TLS and deactivate STARTTLS
for email submission and retrieval whenever feasible.

Acknowledgments The authors thank Marcus Brinkmann
for his tireless support, feedback, and editing towards the sub-
mission of this paper. Additionally, we thank the German
BSI CERT for assistance in international disclosure. We also
thank our shepherd Ben Stock for his exceptional support for
this paper. Fabian Ising was supported by a graduate schol-
arship of Miinster University of Applied Sciences and the
research project “MITSicherheit. NRW” funded by the Euro-
pean Regional Development Fund North Rhine-Westphalia
(EFRE.NRW).

References

[1] Multiple Contributors. Does offlineimap verify
ssl certificates? http://www.offlineimap.org/
doc/FAQ.html#does-offlineimap-verify-ssl-
certificates, June 2017.

[2] M. Crispin. Internet message access protocol - version
4revl, March 2003. RFC3501.

[3] Hoa V. Dinh. Libetpan. https://www.etpan.org/
libetpan.html. Accessed: 2020-10-10.

[4] Dirk Wetter. testssl.sh.
Accessed: 2021-02-04.

https://testssl.sh.

[5] V. Dukhovni and W. Hardaker. The dns-based authenti-
cation of named entities (dane) protocol: Updates and
operational guidance, October 2015. RFC7671.

[6] Zakir Durumeric, David Adrian, Ariana Mirian, James
Kasten, Elie Bursztein, Nicolas Lidzborski, Kurt
Thomas, Vijay Eranti, Michael Bailey, and J Alex Hal-
derman. Neither snow nor rain nor mitm... an empirical
analysis of email delivery security. In Proceedings of the

4380 30th USENIX Security Symposium

USENIX Association

http://www.offlineimap.org/doc/FAQ.html#does-offlineimap-verify-ssl-certificates
http://www.offlineimap.org/doc/FAQ.html#does-offlineimap-verify-ssl-certificates
http://www.offlineimap.org/doc/FAQ.html#does-offlineimap-verify-ssl-certificates
https://www.etpan.org/libetpan.html
https://www.etpan.org/libetpan.html
https://testssl.sh

2015 Internet Measurement Conference, pages 2739,
2015.

[7] N. Freed. Smtp service extension for command pipelin-
ing, September 2000. RFC2920.

[8] M. Gahrns.
RFC2221.

Imap4 login referrals, October 1997.

[9] M. Gahrns. Imap4 mailbox referrals, September 1997.
RFC2193.

[10] R. Gellens and J. Klensin. Message submission, Decem-
ber 1998. RFC2476.

[11] R. Gellens and J. Klensin. Message submission for mail,
November 2011. RFC64009.

[12] R. Gellens, C. Newman, and L. Lundblade. Pop3 exten-
sion mechanism, November 1998. RFC2449.

[13] Fernando Gozalo. Ubuntu bugs: pop3
and imap tls plaintext command injection.
https://sourceforge.net/p/courier/mailman/
courier-imap/thread/525D3389.4080507%40csi.
uned.es/#msg31522221, October 2013.

[14] P. Hoffman. Smtp service extension for secure smtp
over transport layer security, February 2002. RFC3207.

[15] Ralph Holz, Johanna Amann, Olivier Mehani, Mo-
hamed Ali Kaafar, and Matthias Wachs. TLS in the wild:
An internet-wide analysis of tls-based protocols for elec-
tronic communication. In 23rd Annual Network and
Distributed System Security Symposium, NDSS 2016,
San Diego, California, USA, February 21-24, 2016. The
Internet Society, 2016.

[16] Internet Assigned Numbers Authority (IANA). Post
Office Protocol version 3 (POP3) Extension Mechanism.
https://www.iana.org/assignments/pop3-
extension-mechanism/pop3-extension-
mechanism.xhtml, March 2013.

[17] Internet Assigned Numbers Authority (IANA). Internet
Message Access Protocol (IMAP) Capabilities Reg-
istry. https://www.iana.org/assignments/imap-
capabilities/imap-capabilities.xhtml, June
2020.

[18] Internet Assigned Numbers Authority (IANA). MAIL
Parameters. https://www.iana.org/assignments/
mail-parameters/mail-parameters.txt, February
2020.

[19] Jan Kundrat. Trojita 0.4.1, a security update for
CVE-2014-2567. http://jkt.flaska.net/blog/

2014_2567.html, March 2014.

[20] J. Klensin. Simple mail transfer protocol, October 2008.
RFC5321.

[21] Victor Le Pochat, Tom Van Goethem, Samaneh Tajal-
izadehkhoob, Maciej Korczynski, and Wouter Joosen.
Tranco: A research-oriented top sites ranking hardened
against manipulation. In Proceedings of the 26th Annual
Network and Distributed System Security Symposium,
NDSS 2019, February 2019.

[22] D. Margolis, M. Risher, B. Ramakrishnan, A. Brotman,
and J. Jones. Smtp mta strict transport security (mta-sts),
September 2018. RFC8461.

[23] W. Mayer, A. Zauner, M. Schmiedecker, and M. Huber.
No need for black chambers: Testing tls in the e-mail
ecosystem at large. In 2016 11th International Confer-
ence on Availability, Reliability and Security (ARES),
pages 10-20, 2016.

[24] A.Melnikov and B. Leiba. Internet Message Access Pro-
tocol (IMAP) - Version 4rev2. https://tools.ietf.
org/html/draft-ietf-extra-imapdrev2-25, Jan-
vary 2021. draft-ietf-extra-imap4rev2-25.

[25] K. Moore and C. Newman. Cleartext considered ob-
solete: Use of transport layer security (tls) for email
submission and access, January 2018. RFC8314.

[26] Multiple Contributors. TLS-Scanner.
//github.com/RUB-NDS/TLS-Scanner.
2020-06-01.

https:
Accessed:

[27] Multiple Contributors. ZGrab 2.0 — Fast Go Appli-
cation Scanner. https://github.com/zmap/zgrab2.
Accessed: 2020-05-10.

[28] J. Myers and M. Rose. Post office protocol - version 3,
May 1996. RFC19309.

[29] C. Newman. Using tls with imap, pop3 and acap, June
1999. RFC2595.

[30] Marsh Ray and Steve Dispensa. Renegotiating
tls. https://kryptera.se/Renegotiating%20TLS.
pdf, November 2009.

[31] J.K. Reynolds. Post office protocol, October 1984.
RFC0918.

[32] Y. Sheffer, R. Holz, and P. Saint-Andre. Summarizing
known attacks on transport layer security (tls) and data-
gram tls (dtls), February 2015. RFC7457.

[33] Wietse Venema. Plaintext command injection in
multiple implementations of STARTTLS (CVE-2011-
0411). http://www.postfix.org/CVE-2011-0411.
html, March 2011. Accessed: 2020-06-01.

USENIX Association

30th USENIX Security Symposium 4381

https://sourceforge.net/p/courier/mailman/courier-imap/thread/525D3389.4080507%40csi.uned.es/#msg31522221
https://sourceforge.net/p/courier/mailman/courier-imap/thread/525D3389.4080507%40csi.uned.es/#msg31522221
https://sourceforge.net/p/courier/mailman/courier-imap/thread/525D3389.4080507%40csi.uned.es/#msg31522221
https://www.iana.org/assignments/pop3-extension-mechanism/pop3-extension-mechanism.xhtml
https://www.iana.org/assignments/pop3-extension-mechanism/pop3-extension-mechanism.xhtml
https://www.iana.org/assignments/pop3-extension-mechanism/pop3-extension-mechanism.xhtml
https://www.iana.org/assignments/imap-capabilities/imap-capabilities.xhtml
https://www.iana.org/assignments/imap-capabilities/imap-capabilities.xhtml
https://www.iana.org/assignments/mail-parameters/mail-parameters.txt
https://www.iana.org/assignments/mail-parameters/mail-parameters.txt
http://jkt.flaska.net/blog/Trojita_0_4_1__a_security_update_for_CVE_2014_2567.html
http://jkt.flaska.net/blog/Trojita_0_4_1__a_security_update_for_CVE_2014_2567.html
http://jkt.flaska.net/blog/Trojita_0_4_1__a_security_update_for_CVE_2014_2567.html
https://tools.ietf.org/html/draft-ietf-extra-imap4rev2-25
https://tools.ietf.org/html/draft-ietf-extra-imap4rev2-25
https://github.com/RUB-NDS/TLS-Scanner
https://github.com/RUB-NDS/TLS-Scanner
https://github.com/zmap/zgrab2
https://kryptera.se/Renegotiating%20TLS.pdf
https://kryptera.se/Renegotiating%20TLS.pdf
http://www.postfix.org/CVE-2011-0411.html
http://www.postfix.org/CVE-2011-0411.html

s w N R

A Additional Findings

A.1 Tampering and Sanitization Issues

S: * OK

.. * LIST () "/" "Click me! <Payload>"
C: A STARTTLS

/..

v '8 thunderbird...
®| R & &0% 0

[] Drafts oA 0 Subject
Sent

3 Trash

&/ Click me! <Payload=

& sent

Figure 2: A LIST response in Thunderbird is evaluated and
incorporated into local state before the transition to TLS.

The injection of untagged responses leads to issues beyond
mailbox tampering. For example, an attacker may choose the
payload for the folder name such that it escapes sanitization,
as seen in Figure 2. In effect, the client can be tricked into
executing IMAP commands after login into the server. We
verified that this works but did not conduct a more detailed
analysis of the requirements. Thus we do not report on this
outcome but merely note that this possibility exists.

A.2 Certificate Validation

We also performed X.509 certificate tests because they may
hint at misconceptions about STARTTLS. Some email clients
offer opportunistic variants of STARTTLS with less rigorous
certificate checks, whose code might unintentionally affect
the strict variants or be used due to misconceptions about
STARTTLS. To evaluate this hypothesis, we created four
invalid certificates: a self-signed certificate (C), a certificate
with an unknown root (C5), a certificate with a mismatch
on the common name and SAN fields (C3), and an expired
certificate (C4) and presented these certificates individually in
implicit TLS and STARTTLS connections for a total of § test
cases per client. These tests should uncover the most common
certificate handling issues [32].

The results are displayed in Table 5. Notably, none of the
cloud mail apps verified certificates correctly.

Excluding cloud mail apps, only three clients — Trojita,
Geary, and OfflineIMAP — did not verify certificates correctly
(O). Trojita and Geary recognized this as a bug, and in Trojita,
it was fixed immediately. Geary did check certificates but
accidentally created a permanent security exception for all
certificates when a self-signed certificate was accepted in the
past. In OfflineIMAP, this is documented behavior. KMail re-
peatedly showed a certificate exception dialogue, which could
only be closed by clicking on “accept invalid certificate”.

Our measurements showed that in all clients, certificate
validation issues in STARTTLS were also present in implicit

TLS. Thus, our assumption that certificate checking is less
strict when STARTTLS is used does not hold.

Client SMTP POP3 IMAP

Android (Google Play)

Gmail (8.5.6.199637500)
Gmail Go (8.5.6.197464524)
Samsung Email (6.1.12.1)
K-9 Mail (5.710)
LineageOS email (9)

Apple iOS (App Store)

i0S Mail (i0S 13.5.1)
Gmail (6.0.200614) %]
Edison Mail (1.20.8) o] TLS

Windows

Outlook (16.0.13001.20338) TLS

Apple macOS

Mail (3608.80.23.2.2)

Linux (tested on NixOS)

Balsa (2.5.9-1)
Evolution (3.34.4)
Geary (3.34.2)
KMail (19.12.3)

®c_,! U oc, '

Oc;_42

Cross-platform (tested on NixOS)

Thunderbird (68.7.0)
Trojitd (0.7.20190618)
Claws (3.17.4)
Sylpheed (3.7.0)
Alpine (2.21)

Mutt (1.13.3)
NeoMutt (20200417)
OfflineIMAP (7.3.2) 1%} 1%

Cloud Mail (Android & iOS)

Outlook [To% TLS
Yandex.Mail o, o] B
GMX Mail Collector (%) O, Oc_,
Mail.ru oc, , %] TLS
myMail o, o] TLS
Email App for Gmail o, _, 1%} TLS

Oc,_,)

.Cﬁ
oc,_,

No vulnerability found.
@) Minor issues.
o Sensitive data, e.g., emails or credentials, are exposed.
TLS Only implicit TLS configurable.
%) Not available.

! Permanent security exception may be created
2 Infinite dialogue loop

3 Documented behavior

4 Accepts any Common Name

Table 5: Results of STARTTLS certificate tests against 28
email clients.

4382 30th USENIX Security Symposium

USENIX Association

	Introduction
	Background
	Submission of email
	Retrieval of Email
	STARTTLS and Implicit TLS

	Construction of Test Cases
	Systematization of STARTTLS Issues
	Well-known Issues
	Extension of well-known Issues
	Novel Issues

	Buffering Issues
	Command Injection
	Response Injection

	Exploring the Protocol Messages Space
	When do we send messages?
	Which messages do we send?

	Summary and Classification of Issues
	Negotiation
	Buffering
	Tampering
	UI Spoofing

	Execution of Test Cases
	Client Testing
	Server Testing

	Client Attacks
	Negotiation
	Tampering
	UI Spoofing
	Buffering

	Server-Side Attacks
	Buffering
	Session Fixation

	Evaluation
	Client Issues
	Server Issues
	Scanning Results

	Mitigation
	Related Work
	Discussion
	Conclusion
	Additional Findings
	Tampering and Sanitization Issues
	Certificate Validation

