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Executive Summary

JASON charged itself to assess risks and best practices for restarting univer-
sity research programs. Three elements comprise the charge:

1. Understand the primary sources of risk and how they interact with the
university environment;

2. Suggest modifications to existing continuity-of-operations plans;

3. Identify the relevant information for collection from the personnel in-
volved.

JASON members began meeting weekly on April 10. Three subgroups
(Testing, Modeling, and Operations and Safety) met separately to develop
results for weekly meetings. We have consulted the literature, much of it
developed in just the last weeks, and relied on our expertise as university
faculty to guide choices. Many members were involved in planning research
restarts at their own universities.

The report is organized around eight questions that an administrator
for a research institution may have:

1. What are the relevant characteristics of COVID-19?
2. What is the risk of airborne transmission?

3. What is the role of diagnostic testing?

4. How can health screening reduce spread?

5. How does one prevent a super-spreader event?

Is the campus an island from the community?

What operational policies are recommended?

S B

How can institutions make risk-informed decisions going forward?

Each section of the report seeks to answers these question through a narrative
and concludes with findings and recommendations.
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Key findings and recommendations

After months of allowing only essential personnel on campus, universities
have begun to ramp up research and allow typically a fraction of their re-
searchers back on campus. The operations must evolve to keep the basic
reproduction number, R, less than one in order to allow future increases in
personnel density. This report outlines several different means of lowering
the basic reproduction number, which are summarized in this section.

A low basic reproduction number relies on individuals recognizing the
danger of COVID-19 and taking the recommended actions: washing hands,
wearing face masks, keeping a minimum six foot separation from others, min-
imizing multiple occupancy in rooms, and tracking their own health. Univer-
sities must encourage these actions through signage, training, and modeling
of good behavior by leaders. Face masks are particularly important.

Key Finding: Mask use can be highly effective as one component of risk re-
duction strategies for COVID-19 infection and transmission. However, mask
effectiveness is variable, depending on the materials, designs and user disci-
pline in wearing the masks.

Key Recommendation: Universities should provide masks that meet demon-
strated technical performance at the levels needed, even if the level of perfor-
mance exceeds that required by the city or state. Training should be provided
on how to properly wear masks.

Key Finding: The use of a campus-wide “infographic” or “dashboard”
showing the on-campus population, virus testing statistics, and informa-
tion on the compliance with COVID-19 rules will create a shared situational
awareness.

In this pandemic, universities are not islands and the reproduction num-
ber on-campus will not be very different than that of the surrounding com-
munity. If the R of the surrounding community changes, the university may
need to changes its on-campus density.

Key Finding: Universities will influence and be subject to disease dynamics
of the larger communities within which they are embedded.

Key Recommendation: Universities should engage with state and local
officials to understand the exposure of their personnel both on and off cam-
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pus.

Universities can make use of daily symptom attestation to detect emerg-
ing cases and track the health of the population. Daily symptom attestation
can reduce disease spread beyond what can be accomplished with individual
mitigation behaviors such as wearing masks.

Key Recommendations: Develop a procedure for daily symptom attesta-
tion. A cellphone app for attestation offers the valuable opportunity to au-
tomatically determine if a probability-of-illness threshold has been reached.
If symptoms exceed an established risk threshold, the individual should not
come to work until they are confirmed to be clear of disease (e.g., negative
test, quarantine period). Assume a high false-negative rate for symptom
attestation during planning. Develop a procedure for rapid contact tracing
when a researcher tests positive for COVID-19.

Unless a substantial fraction of the population can be tested on a daily
basis and with fast turnaround times, virus testing will not help much in
preventing transmission on campus. Testing can also serve other purposes,
such as surveillance, but each purpose has particular requirements that must
be addressed in advance.

Key Recommendation: When planning a virus testing program, make
sure to understand the implications of false positives and false negatives to
ensure the testing program yields meaningful results.

Super-spreaders, individuals with viral loads up to 10,000 times higher
than average, cause infection outbreaks by rapidly infecting a large number
of people.

Key Finding: A tracking system should respond quickly enough that once a
symptomatic individual is detected, all contacts with that individual for the
past 3-5 days are identified, notified and isolated in less than a day. Without
this response speed, it may be difficult to stay ahead of the spread based on
symptoms alone.

Key Recommendation: Limit the number of persons that an individual
can come into contact with (e.g., through room and floor occupancy limits)

to cap the size of super-spreading events.

Key Recommendation: When inexpensive, rapid virus tests become com-
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mercially available, use them to test daily at the start of the work day to
detect pre-symptomatic individuals, especially those with high viral titers.

Aerosols are an important means of transmission in laboratories and
other enclosed spaces. In addition to wearing masks, minimizing double
occupancy, and maintaining distance, buildings’ HVAC systems can play a
role in mitigating transmission.

Key Recommendation: Laboratory directors should consult their univer-
sity’s facilities and health and safety group on airflow in their labs to ensure
at least 4 air changes per hour (ACH) are taking place and to increase the
flow rate if the lab has more than single occupancy.
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1 Introduction

Universities and national laboratories are ramping-up research operations
following several months of curtailed activity during the early stages of the
COVID-19 pandemic. In addition Occupational Safety and Health Admin-
istration (OSHA), National Institute for Occupational Safety and Health
(NIOSH), and university environmental, health, and safety (EHS) rules pro-
cedures, labs will now have to implement new protections to minimize the
transmission of COVID-19. These protections can be expected to disrupt
many of the processes in place before the COVID-19 pandemic, presenting a
significant challenge to administrators who must manage a balance between
preventing an outbreak and supporting productive research. This study aims
to provide useful guidance for administrators, and the scientific background
on which that guidance is based, helping to create a shared understanding
among all involved in the research enterprise. This report does not contain a
single comprehensive plan for ramping up research, but suggests widely appli-
cable operational procedures, many of which are already being implemented
in research environments.

Parts of this report uses the basic production number R as a concep-
tual object for thinking about mitigation measures. Conceptually, R can be
thought of as a number measuring the dynamics of disease transmission for
a particular community, and is defined as the average number of new infec-
tions spawned from an average infected person under the condition where
nobody else in the community has immunity to the disease. It is important
to point out that we do not know the baseline R, typically called Ry, for the
university or for the outside world. These values are functions of population
demographics, the weather, the characteristics of the rooms and places where
people congregate, and the nature of their interpersonal interactions. As an
illustration of how difficult Ry is to estimate for the community at large,
retrospective epidemiological studies of the SARS-CoV-2 outbreak in China
generally place the community-wide Ry in the range of 2-6 [5]. When fully
populated, college campuses are high-density, high-interaction environments,
so one might expect the Ry for a university to be larger than the community
Ry—though demographic elements such as age can have countervailing ef-
fects. Without prior knowledge of the university’s Ry, administrators are left
to make assumptions about how much they must do to prevent an outbreak,
enforcing as many mitigation measures as they deem sensible. They can
then increase or relax safety measures if they observe evidence of growing or
tempered transmission. The effective R with mitigation measures in place is
called R,y,; for the university campus, and Reomm for the community in which
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the campus is embedded. Using this concept, and taking the view that uni-
versities hold the responsibility for the safety and health of their population,
we developed three principles to guide our thinking:

1. The operation of the university should not exacerbate the spread of
the disease relative to the local community conditions. In terms of
the widely used basic reproduction number, this can be expressed as
Runi < Reomm- Ideally, the university should aim to achieve a condition
where R, < 1.

2. There is no one-size-fits-all solution. Each university, each unit, each
lab group has different populations, activities, and infrastructures to
which a general plan will need to be tailored.

3. Given how rapidly the scientific understanding of SARS-CoV-2 is evolv-
ing, it is necessary to undertake the research restart endeavor with a
mindset of nimbly responding to changing circumstances. This requires
collecting local data, keeping abreast of changing scientific assessments,
analyzing the evolving situation, and adjusting operations in response
to eventualities.

JASON has structured this report around eight questions a vice presi-
dent for research (or equivalent) might ask.

1. What are the relevant characteristics of COVID-197?
2. What is the risk of airborne transmission?

3. What is the role of diagnostic testing?

4. How can health screening reduce spread?

5. How does one prevent a super-spreader event?

6. Is the campus an island from the community?

7. What operational policies are recommended?

8. How can institutions make risk-informed decisions going forward?

Each section of the report seeks to answers these question through a narrative
and concludes with findings and recommendations.

10
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JASON concludes that a safe return to research can take place. The
history of the 1918 flu pandemic (see Appendix |A)) offers a valuable lesson
about mindset: quick and decisive action is needed at the outset, and perse-
verance so as not to relax restrictions too early. A ramp up will take months
and requires careful adherence to rules and processes. Researchers will need
to exercise patience and follow procedures that may hinder their productiv-
ity, but are ultimately necessary for public health. And all involved need to
appreciate that a research restart may entail a rapid shutdown, as would be
necessary if there is evidence that the incidence of infection is increasing.

11
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COVID-197?

2 What are the relevant characteristics of

COVID-19 Case Timeline
Median mild
Onset of Median case symptom
symptomsE time to resolution®
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Figure 1: Timeline in days for the evolution of COVID-19 disease (blue),
including the infectious period (red), PCR-positive period (green), antigen-
positive (orange), and antibody-positive (purple). Symptoms onset occurs at
day 0. Time points represent typical cases drawn from aggregated reports; ac-
tual event timing will reflect probability distributions centered approximately
around these time points. ‘?’ indicates limited data or higher uncertainty.
Mean serial interval is the average time until a secondary infection caused
by the first becomes symptomatic. ARDS = acute respiratory distress syn-
drome; ICU = intensive care unit. Data are based on published reports as of
10 June 2020. References to figure labels are as follows: A[39], B[62], C[23],
D[66], E[40], F[28], GJ41], H[18], 1[63], J[43], K[56], L[70], M[22].

Figure [1| presents a timeline of the current understanding of COVID-
19 disease progression with an emphasis on the progress of cases that are
sufficiently symptomatic to be diagnosed, and particularly those with respi-
ratory symptoms. Several disease characteristics, particularly the onset of
symptoms, the time period over which someone is infectious, and the time
period over which various tests may register a positive result, are pertinent
to designing a safe return to research. All the times in Figure (1] are for the
median case; the population will exhibit some variation around these val-
ues and this variation needs to be considered in the design of policies. It

12



Managing the Risk from COVID-19 August 25, 2020

is important to note that individuals who are asymptomatic or only weakly
symptomatic may also contribute to the spread of the disease.

Symptoms usually show about five days after infection, and 98% of
cases show symptoms within 12 days of infection [40]. However, median
infectiousness often precedes symptoms by about 2 days [23]. This presents
a significant challenge for research restart. Screening for a fever or other
gross symptoms leaves open the possibility that pre-symptomatic individuals
are unknowingly spreading the disease on campus for several days. One
study estimated that about half of all new infections originate from pre-
symptomatic individuals [29].

Reverse transcription polymerase chain reaction (RT-PCR) testing is
able to detect some infections during the pre-symptomatic period, with the
probability of detection increasing towards symptoms onset [39]. It should
also be noted that individuals can remain positive on a RT-PCR test for
a significant period after they are no longer likely infectious because the
body continues to shed non-infectious viral RNA for some time, with 68%
becoming negative by day 28 and 95% being negative by day 33 [23]. For
more on testing, see Section [

The time to symptoms onset is important for determining how long to
quarantine individuals who have been exposed to a COVID-19 positive per-
son and are thus potentially infectious. The standard quarantine period of
14 days was chosen by public-health officials before much information was
available. More recent data suggests 98% of all infections will show symp-
toms within 12 days, permitting a shorter quarantine [40]. Even a quarantine
of one week should catch about 80% of secondary infections, meeting the ob-
jective of Reampus < 1, assuming nearly all exposed persons can be identified.
For more on estimating impacts on R, see Appendix [B.2]

This timeline and associated brief summary reflect the state of science
in early June 2020. The scientific community’s understanding of COVID-19
is rapidly evolving, and much data remains to be gathered and examined.

Findings

Finding: The disease characteristic most relevant to research restart is the
high fraction of transmissions from pre-symptomatic individuals. Current
data suggests the median time to the onset of infectiousness comes about

13
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two days prior to the onset of symptoms.

Finding: A quarantine period of 7-14 days is appropriate for individuals
who may have been exposed to SARS-CoV-2, with the lower end being suf-
ficient to prevent a major outbreak on campus provided almost all exposed
persons can be identified.

14
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3 What is the risk of airborne transmission?

There is extensive evidence of airborne transmission of respiratory viral ill-
ness. Airborne transmission occurs when an infectious person breathes,
speaks, eats, coughs, or sneezes, emitting small liquid particles that float
in the air, and these particles subsequently come into contact with a suscep-
tible person’s mucus membranes. It is extremely challenging to produce an
estimate of the absolute risk of transmission for SARS-CoV-2 from airborne
exposure, and we have not attempted one here. However, as a potentially
illustrative example, Figure [2| shows an interpretation by Bueno de Mesquita
et al. [7] of data from the largest human influenza challenge-transmission trial
conducted to date, with 127 persons sharing poorly ventilated hotel rooms.
The figure shows the estimated probability of influenza transmission as a
function of cohabitation time. Note the exceptionally large variance between
the 10" percentile estimate (dotted lines) and the 90*® percentile estimate

(dashed lines).
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Figure 2: Probability of influenza infection of a theoretical roommate in ultra-
low-ventilation room (0.3 ACH, red) and low-ventilation room (1.0 ACH,
blue). Solid line is the mean estimate, dashed line is the 90" percentile
estimate, and dotted line is the 10'" percentile estimate. Variation arises in
large part because of the highly variable level of virus shed across different
infectious persons (see Section @ Inset graph is a zoom of the lower curves.
ACH is the ventilation rate in air changes per hour. Figure adapted from [7].
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3.1 Risk reduction

Strategies for reducing exposure to airborne particles include

1. physical distancing (e.g., the 6-foot rule);
2. wearing masks and eye protection;
3. reducing the number of people in a room;

4. modifications to ventilation systems.

In complement, strategies to reduce the release of airborne particles include:

5. wearing masks to reduce the emission of airborne droplets;

6. reducing particulate-generating activities such as speaking, singing, and
eating in shared indoor spaces.

Each of these strategies is reviewed here.

3.1.1 Physical distancing

Physical distancing, such as the six-foot rule, emerges from the observation
that a cough produces a jet of droplets and aerosols that travels about six
feet into ambient air. Speech also produces a similar jet, only less powerful.
The gas in these jets turns upwards because it is warm and humid and thus
buoyant compared to ambient air. Small aerosols can be entrained in this
upward plume [52]. Larger droplets, by contrast, separate from the plume
under the influence of gravity and fall towards the ground. Most of this occurs
within three to six feet [67], which is the origin of the six-foot rule. However,
a small fraction of particles in the transition region will float at elevations
where they can be easily inhaled, and may persist there for distances greater
than six feet. These particles will tend to travel on the air currents in the
room.

Quiet breathing entails conditions that relax somewhat the need for
six feet of distance. Breathing produces essentially no large droplets and

16
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instead is limited to fine aerosols with less (albeit nonzero) viral load. For
comparison, the volume of fine aerosol emitted by speaking is twenty times
that of breathing, and the volume emitted over all particle size is hundreds of
times that of breathing [49]. Thus, if two people must work closely for a short
time, they should continue to wear a mask, not speak when in close proximity,
and avoid being directly over another person to the extent possible.

Physical distancing can only partially mitigate the risk posed by the
accumulation of aerosols and dispersion of aerosols in a room, which is also
subject to room occupancy, airflow details, and activity intensity (discussed
below). Thus, while physical distance helps avoid the great majority of the
emitted viral load, especially outdoors, other measures are indicated to ad-
dress the risk posed by aerosols that build up in confined spaces.

3.1.2 Masks and eye protection

For large particles, masks and eye protection provide simple barriers to
droplet projectiles from speech and cough jets. As particles become smaller,
masks also filter inhaled air, becoming somewhat permeable to particles with
diameters below about 10 pym. For more on the utility of masks, see Sec-

tion [B.4].

3.1.3 Reducing the occupancy of the room

Under steady occupancy, the viral load in aerosols increases and levels off
to a fixed value. In a room with well-mixed air, the exposure risk to any
one individual is directly proportional to the number of infectious persons
occupying the room. Existing research is insufficient to estimate the absolute
risk of ongoing exposure to aerosol, although some authors have attempted
conservative approximations [19] 3.

By contrast, the relative risk of adding more people to the room can be
estimated. One way to characterize the relative risk is the relative probability
of at least one infection occurring from having n persons in the room relative
to the probability of one infection from having 2 persons in the room. This
relative risk factor is given by

Pa(l,n) = %n(n —1). (3-1)

17
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The derivation for this factor and additional considerations for estimating
the relative and marginal risks are discussed in Appendix [G]

3.1.4 DModifications to HVAC systems

Heating, ventilation, and air-conditioning (HVAC) system modifications are
one of several ways to address the persistent risk of accumulated aerosols. A
decision to modify the HVAC systems is not straightforward, however.

In the limit of a well-mixed room, increasing the provision of clean
(outdoor or HEPA-filtered) air will help dilute the viral loads. However,
increased airflow can also help move plumes of aerosols and droplets from
speech, coughing, or eating across the room, increasing the risk of infection
to downstream individuals [42]. On balance, if speech is minimized, distanc-
ing measures are in force, and face masks are worn, then increasing the air
supply in a room is probably beneficial—but a precise conclusion ultimately
requires knowledge of the mask leakage rate, position of individuals, and air-
flow patterns within the room. By contrast, in places where people eat, or if
masks are not required, increased airflow may be counterproductive.

HVAC systems are usually designed either for displacement ventilation
(where air inlets and outlets are at different elevations or on different sides of
the room) or mixing ventilation (where air inlets are typically centered on the
ceiling). Displacement ventilation provides superior air quality by displacing
contaminated air in a bulk fashion. In the limit of perfect displacement ven-
tilation, the rate of virus removal is roughly proportional to the air changes
per hour (ACH), within the limits of normal ventilation rates where highly
turbulent conditions are avoided.

In the United States, mixing ventilation is more common. With mixing
ventilation, fine aerosols becomes diluted and distributed into the room. Un-
der conditions of strong mixing (such as cool air entering from the ceiling)
this can happen on a timescale of several minutes [9], but quiescent zones and
streams remain possible. If aerosols from quiet breathing are homogeneously
mixed into the room, the concentration in the room C(¢) can be described
by

dC(t) N C(t) In(2)

= - —-C(t)- ACH 3-2
dt ‘/room T1/2 ( ) ’ ( )

where A is the constant emission rate of virus, Vigom is the volume of the

18
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room, 715 is the infectious half-life of SARS-CoV-2 at 1.1 hr]| [60]. In the
limit as time ¢ — oo, the equilibrium concentration becomes

N
v (ACH +=2)

T1/2

C(00) = (3-3)

The effect of equation is illustrated in Figure [8] More than half the
benefit from mixing ventilation is achieved at 1 ACH, which is on the low
end of residential spaces; and 90% of the benefit is achieved at 6 ACH, which
typical of most commercial spaces. These ACH must be changes with fresh
or HEPA-filtered air, not recirculated indoor air.

An alternative or complement to HVAC modifications would be to use
trud] HEPA-equipped air purifiers to remove aerosol loading. Such a filter
has the potential to provide around 100 cubic feet per minute (CFM) for
approximately 10 watts of power consumption. If the clean air from the unit
is directed towards a worker’s face, it has the potential to provide localized
areas of highly reduced aerosol loading while also helping to clean the rest of
the air in the room. A 100 CFM unit in a 25 x 25 x 10 foot room provides
about 1 ACH of additional “fresh” air for the room as a whole under the
assumption of a well-mixed room.

Some buildings’ HVAC systems may circulate air between rooms in ways
that are not apparent, allowing the spread of SARS-CoV-2 between rooms,
and potentially causing certain rooms to carry disproportionately high viral
loads [19]. The campus facilities group must be consulted to ensure the air-
flow is well understood and that the intended occupancy meets the capacity
of the HVAC system.

3.1.5 Wearing masks as source control

The published literature finds that if an infected person wore a mask, it
reduced the risk to others [55], 48]. For example, Milton et al. [48] found
surgical-style masks reduced influenza virus emissions by about 3 fold (95%

'Measured at 65% relative humidity and 22 4+ 1°C.

2HEPA filters are high efficiency particulate air filters that meet consensus standards
of the American Society for Testing and Materials (ASTM) or the American Society of
Mechanical Engineers (ASME). These standards amount to filtering 99.97% of aerosol
particles of 0.3 pm in diameter. Some inexpensive filters labeled ‘HEPA’ may not meet
these standards.
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Figure 3: Diminishing benefit from increasing ventilation in the reduction of
SARS-CoV-2 aerosol loads (exclusive of droplets).

CI 1.8-6.3), and reduced virus-bearing particles larger than 5 microns by
25 fold (95% CI 3.5-180). This suggests significant attenuation of larger
droplets from speech is possible. However, the imperfect seal of masks may
still allow significant leakage [57, 311, [13]. JASON was not able to ascertain to
what extent face-mask wearing would counteract the additional risk of large
droplets produced by speech relative to quiet breathing.

3.1.6 Reducing droplet-generating activities

Because the viral load is proportional to the volume of respiratory fluid, and
because the volume of a particle scales as its diameter to the third power,
the viral load shed by a person is mostly carried in the largest particles
emitted. This is why quiet breathing is much safer than speaking. Essentially
all particles produced when people are quietly breathing fall well into the
category of small aerosols [49, [34]. By contrast, speaking, coughing, and
sneezing not only produce more of these fine aerosols, these activities also
produce larger droplets that contain substantially more virus than the fine
aerosols. Speaking will increase the dose to others by at least 20 times simply
by the increase in fine aerosols, and this increase in relative risk holds even
when wearing a mask [49]. If larger droplets escape from masks, which seems
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possible because of imperfect seals, the the relative risk increases further,
potentially to hundreds of times that of breathing, on a per-unit-time basis
[10], ©68].

While speaking is an important part of academic work, minimizing un-
necessary speech, and speech in close proximity to a person, can provide
substantial benefits. Written text could provide a functional alternative for
infrequent communication, especially for laboratory workers in tight spaces.
Additionally, studies have found that that speaking “loudly” produced more
than four times as many aerosols than speaking softly[2] | Whispering, which
does not involve movements of the vocal cords, produced about half the num-
ber of particles as “normal” speech, including a detectable reduction in larger
particles around 2 pm [49]. The implications are important for face mask
usage. For example, if a face-mask attenuates 50% of outgoing particles (e.g.,
as might occur with a low-quality mask or respirator with a vent), then it
would be better to speak softly and not wear a mask than to speak loudly
with a mask. If a mask attenuates more than about 80% of outgoing droplets
as implied for surgical masks by Milton et al. [48], then it is better to keep
the mask on and speak at the lowest audible volume.

Findings and recommendations

Finding: Physical distancing does not fully address the risk posed by
aerosols, which accumulate and become dispersed in the room’s air.

Finding: Masks reduce the risk for the wearer as well as the risk posed
by the wearer to others. However, masks that force people to speak loudly
to overcome intelligibility problems may be counterproductive unless their
outgoing filtration efficiency is high.

Finding: The relative risk of adding more persons to a room goes roughly
as the square of the number of persons. Thus, doubling occupancy increases
the risk by a factor of four.

3The peak size also increased from 0.8 ym for soft speech to about 1 um. It is unclear
if this shift in size reflects changes in aerosol production, is an evaporation effect caused
by reduced mixing time with ambient air, or is an effect of the geometry of the sampling
instrument. If the effect relates to production, the increase in droplet diameter corresponds
to another factor of two in emitted volume, suggesting that the total increase in emitted
virus could be as much as eight times higher when speaking loudly.
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Finding: The impact of increasing airflow on disease transmission depends
on the activities occurring in and the layout of the room. When combined
with masks, distancing, and minimization of loud speaking, increasing airflow
is probably beneficial.

Finding: For mixing ventilation, there are diminishing returns to higher
airflow. More than 50% of possible gains are had at 1 air changes per hour
(ACH), 90% of gains at 6 ACH.

Finding: Speech sheds at least 20 times more virus than breathing on a
minute-by-minute basis, even if wearing a mask. Viral shedding may be up
to several-hundred fold depending on conditions.

Recommendation: Reduce unnecessary speech communication by using
text through text messaging, scratch pads, white boards, or a dedicated
computer and flat-panel display. If you must speak, speak softly.

Finding: Require all occupants of indoor rooms to wear masks. Respirators
with easy-exhale valves provide limited source control, but can be covered
by an additional surgical mask.

Recommendation: Ensure room ventilation meets minimum standards.
If your institution chooses not to require masks for all occupants, consider
a study of how airflow patterns may transport plumes and larger droplets
before increasing airflow.

Recommendation: Distribute personnel across multiple rooms to minimize
the number of persons per room; and equally within rooms to reduce the
transmission of larger droplets.
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4 What is the role of diagnostic testing?

There has been extensive discussion of “testing” as a potential requirement
for restarting universities. Much of this discussion is ambiguous about the
kind of testing or its value. There are many different kinds of diagnostic tests
for SARS-CoV-2 that can be employed to serve substantially different ends,
each with a different cost, logistics burden, error rate (false positives and
negatives), turn-around time, and level of patient discomfort. This section
discusses how these tests might be used as part of a research restart.

4.1 The kinds of tests

Testing for the presence (or past presence) of SARS-CoV-2 can be broken
into three categories based on the target of detection:

1. Viral RNA testing;
2. Viral antigen testing;
3. Antibody testing.

4.1.1 Viral RNA testing

Viral RNA testing seeks to detect the genetic material of SARS-CoV-2 and
can be used to identify residues of genetic code from the virus in tissues,
fluids, surfaces, air, etc. Essentially all of these tests operate by using en-
zymes that “amplify” or replicate the genetic material present in the sample.
Quantitative versions can detect not only the presence of viral RNA but
also estimate the amount of RNA present in the original sample—offering a
proxy for viral titer and infectiousness. Importantly, however, none of these
tests determine whether the RNA detected came from viable virus particles
capable of infecting cells, or merely the debris of dead virus. Thus, these
tests can indicate the presence of RNA long after the virus has ceased to be
infectious. There are several different methods of RNA amplification, each
offering different features as they relate to a diagnostic setting.

PCR—PCR, or more precisely, reverse-transcriptase polymerase chain re-
action (RT-PCR) is an enzyme-based reaction that amplifies genetic code
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segments in a series of thermal cycles. The test is extremely sensitive, but
it requires well-controlled conditions and either trained personnel or robots
to carry out. PCR is currently the diagnostic standard in the United States,
with many small variations in the kits supplied by different commercial ven-
dors.

Initially, PCR tests were only validated for highly invasive nasopha-
ryngeal swabs that require a trained person to collect and were very un-
comfortable for patients. Because nasopharyngeal swabbing tends to induce
sneezing, medical staff also need to wear full personal protective equipment.
At the time of this writing, some labs have begun to offer PCR processing
of less invasive swabs taken from the anterior nares (nostrils), and there are
now efforts to standardize a saliva-based test that can use samples collected
by the patient.

Despite PCR’s exquisite sensitivity, the overall efficiency of the sample-
collection procedure and the variable expression of virus in human tissues at
different stages of the disease can result in false negatives. A recent analysis
by Kucirka et al. [39] found that over the 4 days between infection and the
typical time of symptoms onset (day 5), the probability of a false-negative in
nasopharyngeal samples went from 100% (95% CI, 100% to 100%) on day 1,
to 67% (CI, 27% to 94%) on day 4. In other words, on days prior to a person
showing symptoms, the test is more likely to give a false result than a correct
one. On the day of symptoms onset, the median false-negative rate was down
to 38% (CI, 18% to 65%). Despite this low probability of detecting an infec-
tion before symptoms, the test may be better at detecting infectiousness to
others. This is because infectiousness is a function of the person’s expressed
viral titer, with higher titers producing lower false negatives. However, to our
knowledge there are no studies attempting to quantify the predictive value
of a PCR test on infectiousness. In contrast to false negatives, the test tends
to have a very low false-positive rate [61], [33].

With the exception of a few hospital-grade robotic systems, most PCR-
based tests require sample storage and transport to a certified laboratory
capable of performing the needed RNA extraction, concentration, and PCR-
based amplification. As such, these tests typically have long (12 hour to
2 day) turnaround times and are fairly expensive ($50-$100/test when pro-
cessed at scale). This means PCR tests are suitable as a diagnostic of persons
with suspected infection or exposure to the virus, but PCR tests cannot cur-
rently be performed quickly and cheaply “at the front door.”

LAMP—Reverse-transcriptase loop-mediated isothermal amplification (RT-
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LAMP) is another amplification system that differentiates itself by using a
simplified single heating cycle to process the sample. This circumvents much
of the complication associated with PCR-based testing. In combination with
chemical indicators or dyes, this test can be designed to yield a yes/no an-
swer by simply observing a color change in a small plastic test tube. The
time to process a sample is a few minutes, followed by about 30-60 minutes
of waiting. The complication and cost of running the test is thus substan-
tially reduced. With the amplification steps simplified, sample preparation
steps become the primary burden. Some test designers are discarding sample
preparation steps to improve ease of use at the cost of reducing the sensitivity
to 1/10 its nominal value. If the test can be validated using saliva or self-
sampled anterior nares swabs, then virtually all the steps requiring trained
staff can be eliminated. With all steps simplified, commercially provided test
kits could in principle be easy enough to perform virtually anywhere with
minimal training and no more equipment than an electric heat block. How-
ever, FDA approved versions are unlikely to be available except to certified
diagnostic laboratories unless the FDA deems the test robust enough to make
a special exception for SARS-CoV-2.

The trade-off for the simplicity of LAMP tests is a reduction in sensitiv-
ity, resulting in higher false-negative rates. In addition, the genetic segments
identified by LAMP test are shorter than in PCR tests, which means that
they tend to be less specific, resulting in higher false positives than PCR. A
non-clinical laboratory environment is also more likely to introduce variables
such as poor temperature control, further increasing both false positive and
false negative results. Based on informal pre-clinical data from test manu-
facturers, it appears that the error rates for LAMP tests are still likely to be
low enough to serve as a useful detector of infectious persons.

4.1.2 Viral antigen testing

Viral antigen tests directly detect the proteins of the virus rather than its
RNA. Samples are diluted and specially made antibodies bind with the viral
proteins, usually carrying with them some dye or fluorescent indicator up
a lateral-flow strip. These tests tend to be highly specific, but are not as
specific as RNA-based tests, meaning their false positive rates are higher but
still acceptable.

The FDA has approved one laboratory-grade antigen test at the time
of writing. That test uses a dedicated machine to read the test outcome
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and is designed to be used only in laboratory settings. The approved test
has about 80% of the sensitivity of PCR tests and the specificity is such
that it will give a positive result for SARS-CoV-1 and SARS-CoV-2 [53]. By
convention, antigen tests are usually read in 15 minutes to maximize their
sensitivity, but the most highly infectious persons will show positive results
in about one minute. They are also relatively inexpensive. The cost of an
antigen-test cassette can be less than $10. Some manufacturers are taking
advantage of this fact by working to win FDA approval for viral antigen tests
that do not require a machine and which have as their purpose a near-instant
detection of the most infectious persons. While these tests will have lower
sensitivities, the extreme speed and simplicity means they may have a role to
play in identifying the most infectious persons and super-spreaders “at the
front door.”

4.1.3 Antibody testing

Also called serological tests, antibody tests aim to determine if a person
has been previously exposed to SARS-CoV-2 virus by detection of antibod-
ies produced by the human immune system. Unlike viral RNA and antigen
tests, antibody tests do not detect the presence of virus. It is likely that
these antibodies will confer some protection against reinfection, and it is
possible that the protection conferred from a strong immune response may
last for a period of over a year [4, [65]. However, it is not yet known what
level of antibody titer is needed to prevent re-infection, or how long a per-
son who has had a mild infection might be immune to reinfection. Many
antibody tests are not sensitive to antibody titer, giving only a qualitative
measure of the presence of antibodies. Thus, it is not yet clear how antibody
test results should be interpreted, or how those results are actionable from
a public-health perspective. Under particular situations, knowledge of plau-
sible antibody presence might help optimize how people are deployed in the
battle against COVID-19 (e.g., tasking plausibly immune doctors and nurses
to treat COVID-infected patients over those who are immune naive). But
given the large uncertainties, it is not evident that antibody tests should be
pursued by groups not needing to manage particular exposure risk.

A large number of antibody tests were approved by the FDA under
Emergency Use Authorization; some have now lost that authorization. Many
of the approved tests appear to have high false-positive and false-negative
rates—making an already difficult interpretation problem even more chal-
lenging. In general, it seems wise to avoid creating a situation where anti-
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body tests create a privileged class of persons who are deemed immune and
thus not subject to the same restrictions or protections as others. Not only
might unequal application of protection rules complicate compliance, it may
have the perverse effect of moral hazard, creating an incentive to purpose-
fully increase one’s risk of exposure in the hope of moving to the privileged
class.

4.2 The functions of testing

We discuss here three potential functions of testing, the qualities tests should
have, and the role these functions might practically play in research restart.
The three functions are: diagnosis, screening, and monitoring.

4.2.1 Diagnosis

Tests are essential to the clinical diagnosis of potentially exposed or symp-
tomatic persons. A positive test justifies follow-up patient referrals as well
as recommendations for isolation as a precaution to protect the community.
It is essential for administrators to ensure access to medical services with
adequate diagnostic-testing capability. Ideally, these tests must have high
sensitivity and low error rates. Of the technologies described in Section [4.1]
PCR tests are the most suitable. Factors like cost and convenience may be
deemed less important here. The same is true of test turn-around time, if
additional transmission precautions are taken in response to symptoms prior
to one (or two) negative tests. Low false-negative rates are particularly im-
portant to ensuring infectious persons are not incorrectly given a clear pass.
It is possible to substantially reduce the impact of modest false-negative rates
by testing persons with a small (e.g., 1 day) wait in between—provided the
test does not also have a high false-positive rate.

4.2.2 Screening

Screening implies testing the entire population, or some defined subset, on
a regular basis. This places greater emphasis on cost, comfort, and conve-
nience. A saliva-based test would be ideal because it is non-invasive. For
screening, it is also crucial the test results be had and become actionable
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within a short period of time. If a test returns a result after one day, for
example, an infectious person will have been spreading the disease during
that time. If the results take longer than two days, an infectious person is
likely to develop symptoms on roughly the same timescale as the test result,
rendering most of the tests moot (see Section [2] for a discussion of these time-
lines). Finally, as the goal is to reduce the spread of the disease on campus,
it is more important to identify those who are highly infectious than those
who are infected but only mildly infectious. An especially valuable aspect of
a test-based screening would be its ability to detect super spreaders (see Sec-
tion @ All things considered, this suggests there are incentives for trading
away some test sensitivity for speed, convenience, and lower cost.

Both RNA and antigen tests can be used for screening. PCR tends
to be slow and expensive, LAMP considerably less so. Antigen tests have
the potential to be particularly fast and cheap because they usually do not
need wet chemistry to process a sample, and the most infectious individuals
will show a positive result in about one minute. Thus, antigen tests have
the potential to enable testing “at the front door.” In Appendix [D] we show
that such a real-time test performed daily before the start of the working day
reduces the expected exposure time for coworkers by approximately a factor
of 5 relative to a laboratory-based diagnostic in which samples are taken
before going home and the results are processed in a lab overnight with the
result returned before work the next morning. Although the sensitivity of
rapid screening technologies is lower, the reduced exposure time for coworkers
enabled by the rapid read-out provides substantial compensation, especially
when considering that rapid tests are likely to be sensitive enough to catch
the most infectious persons, such as super spreaders. On June 16, 2020, the
FDA announced that it would now consider approving test implementations
for screening purposes absent a prescription from a physician. Test makers
can now submit requests for emergency-use authorization of tests specifically
designed for screening. However, at the time of writing, no laboratory-free
rapid screen has been approved by the FDA or by state-government officials.

In Appendix [B|we derive equations that model the impact a generalized,
continuous screening program might have on controlling the transmission of
disease using highly simplified compartment models. Section give addi-
tional considerations for when the screen is a virus test. These findings result
in equation [4-4] below, which can be used to help a university administra-
tor estimate the benefit of a testing program relative to other risk-reduction
measures. In this equation, the campus’ initial transmission environment is
characterized by the basic reproduction number Ry, which is equal to the av-
erage number of secondary infections caused by an average infectious person
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if the entire campus population had no immunityﬁ The effect of testing can
then be expressed as a multiplier on that parameter, yielding a new basic
reproduction number

1
8 L+r(1— fo)/y

where 0 < f; < 1 is the test’s false-negative rate, r; is the continuous test-
ing rate in tests per unit time, and v is the rate at which ill persons are
removed from the susceptible population absent testing, and is equal to the
inverse of their average infectious period. Realistically, v will fall between two
extremes: if ill persons circulate in the population throughout their illness
with no regard for others, v ~ 1/(6 days); but if perfectly effective health
screening removes people as soon as they show symptoms, the serial interval
(see Section [2) suggests v ~ 1/(1 days). We judge that health screening is
valuable but will be far from perfectly effective (see Section .

R =R, (4-4)

Equation makes clear the benefit of testing frequently (causing r; to
be large). Such a proposition is expensive and logistically burdensome. One
approach to minimizing the burden would be to consider targeted testing of
only those persons judged more likely to be infected. Such persons could
be those who were recently in contact with an infected person as identified
by contact tracing, or individuals engaging in riskier activities like commut-
ing by public transport, traveling on airplanes, or living in a fraternity. In
Appendix [B.1], we give an example where combining less frequent but tar-
geted testing with regular symptoms attestation leads to the greatest benefit,
reducing Ry by over 50%.

Another approach to minimizing the burden of testing is to consider
pooled testing, in which multiple samples are combined and the test is pro-
cessed to see if there is evidence of virus among the whole group. If a group of
samples comes back positive, each member of the group must be individually
re-tested (at least once, given false-negative rates) to eventually identify the
infected person—and until that happens, all members of the group should
quarantine. This strategy makes the most sense for expensive laboratory
tests, like PCR. For realistic scenarios, pooled testing may reduce the costs
of the laboratory step by about a factor of five; but sample collection costs
are unchanged, and sample and handling cost may go up slightly because of

4The basic production number is a conceptual object that includes effects from the
disease itself, the characteristics of the susceptible and infected populations, the weather,
the characteristics of places where people congregate, and the nature of their interactions.
There is no true value of Ry for a disease class of persons. Estimates for the population-
weighted reproduction number in Wuhan, China have ranged from 2 to 9.

29



Managing the Risk from COVID-19 August 25, 2020

the need to combine samples. The consequence of pooling samples, however,
is a reduction in test sensitivity, causing a higher false-negative rate (f; in
equation . The change in sensitivity is not proportional to the number of
tests being processed, however. This number would need to be determined
for the particular test under consideration before one could evaluate the im-
pact of reduced sensitivity on the false-negative rate. The benefit of pooled
testing is also severely curtailed by false positives, which can rapidly lead to
excess re-testing, washing out all cost savings. The study of pooled testing
is a mature subject; Appendix |[E] gives a more in-depth but still incomplete
discussion by way of a simple example.

4.2.3 Monitoring

In principle, testing can identify current levels of active infection or the preva-
lence of previous exposure—but this requires designing a testing program that
has sufficient statistical sampling. When the prevalence is low, false positive
rates become particularly problematic as small changes in the prevalence
may be washed out by false-positive noise. For example, consider a situation
where the fraction of infected-but-asymptomatic people in the community is
2 per thousand (p = 0.002). A medium-sized university restarting at 25%
of normal density may have 2,500 researchers on campus, ~ 5 of whom will
be infected and asymptomatic. If the university has the capacity to test n
people per day, the probability of selecting k infected persons in each day’s
test is

P(k) = (Z) 0.002%(1 — 0.002)"*. (4-5)

If the university can test n = 500 per day (thus testing everybody once
per week), the probability of getting no infected persons (k = 0) is 37%,
and the probability of getting 1 infected person (k = 1) is also 37%. If the
false positive rate is 1% then, on average, each day of testing will produce
5 false-positive tests, swamping the true positive detections. Retesting can
help mitigate this, but if the false-negative rate is also high, then retesting
has limited value. For example, if the false-negative rate of presymptomatic
infections is 80%, in line with estimates for nasopharyngeal PCR reported by
Kucirka et al. [39], then the probability of detecting each true positive person
in the day’s draw drops to 4% per person. Thus, virtually all (96%) of truly
infected persons will not be detected, and virtually all positive results will
be erroneous. A further illustration of the impact of false positives is give
in Appendix [Hl Guidelines for determining the minimum number of people
that must be tested to achieve a finding with a given confidence is given in
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Humphry et al. [32].

A more cost effective alternative to monitoring the incidence on campus
would be to monitor the rate at which people are diagnosed based on self-
reported symptoms, and to ensure clinical diagnosis occurs through a health
screening program that directs symptomatic individuals to get tested. Such
a program is discussed in Section

Findings and recommendations

Finding: Antibody testing has, at best, a limited role to play in a research
restart program.

Finding: The more rapidly a test result can be had and the results acted
upon to quarantine of an infected person, the more useful testing will be.

Finding: Antigen testing may be attractive for “testing at the front door,”
and detecting super spreaders, but such tests are not yet FDA approved.

Finding: Testing against asymptomatic populations requires a test with a
false-positive rate well below the disease prevalence to produce useful insights.

Finding: Re-testing to reduce false positives also increases false negatives,
and vice-versa. The interaction can have a devastating effect on the overall
efficacy of using testing for screening asymptomatic populations.

Finding: False positives and false negatives make monitoring the state of the
campus through testing difficult. Monitoring may be best done by tracking
the rate of clinically diagnosed cases arising from symptomatic populations,
and comparing the result to the larger community rate. A health screening
program can help ensure good coverage.

Finding: Testing only the populations with the highest risk of infection sub-
stantially improves performance for any given investment in testing. Contact
tracing is one method of identifying at risk individuals. Other factors include
living situation, commuting habits, and immune status.

Finding: While pooled testing can be used to reduce the cost of testing,
one must consider the effect of false positives and false negatives. Ultimately
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the gains from pooling may be small compared to a less-expensive and less-
sensitive test.

Recommendation: Before deciding to test, perform a statistical analysis
to understand how the false-positive and false-negative rates of the tests
available to you impact your ability to meet your objectives.

Recommendation: Monitor developments of testing technologies, espe-
cially those that may produce results rapidly without needing a diagnostic
laboratory.
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5 How can health screening reduce spread?

Screening is the general strategy of identifying infectious persons to remove
them from circulation and attenuate the spread of the disease. The value of
different screens depends on how early in the course of the disease they can
be effectuated, and the false-negative rate of the screen.

Testing for virus, described in Section [} is the most direct method
for identifying infectious individuals, but many currently approved tests are
expensive, logistically burdensome, and subject to high error rates. This sec-
tion will focus on health screening, either through a survey tool (attestation)
that asks people to report on symptoms they may experience, or by direct
physiological sensing.

Health screens detect effects of the immune response to disease. They
are, therefore, second-order measures of a person’s infectiousness. A criti-
cal concern with relying solely on health screening is that pre-symptomatic
individuals are believed to be the source of a large fraction of secondary
infections, with one study placing the number at roughly half of all new in-
fections [12]. Nonetheless, health screening can be made relatively simple
and low cost. A daily attestation of symptoms via smart-phone app would
be one example. Taking every person’s temperature at the front door is
another. It is the frequency and ease of implementation that allow these rel-
atively insensitive screens to contribute significantly to limiting the spread
of disease. Voluntary reporting of symptoms or the reporting of no symp-
toms constitutes the collection of health data that must collected and stored
securely. Campus general counsel and health services will have to give guid-
ance to ensure health information is correctly handled and viewed only by
the appropriate people.

The symptoms associated with COVID-19, with incidence frequency
and standard errors, include:

1. Fever (0.6440.030) [41] 44, 60]

2. Sinus pain (0.50+0.18) [66]

3. Cough (0.46+0.032) [A1] 44, 66]

4. Reduced or altered sense of smell or taste (0.4440.17) [66]

5. Expectoration (0.3240.036) [44]
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D

. Stuffy nose (0.25+0.15) [66]

7. Chills (0.180.044) [4T]

8. Fatigue (0.18+0.025) [41], 44]

9. Sore throat (0.1340.039) [41]

10. Headache (0.13+0.037) [41] [66]

11. Difficulty breathing (0.11+0.034) [41], 66]
12. Joint or muscle pain (0.099+0.023) [44], 66]
13. Diarrhea (0.056=£0.015) [41, 44, 6]

14. Vomiting (0.026-£0.018) [41]

To illustrate the limited sensitivity of these screens, consider that only
64% of positive cases report fever at any time during the course of the disease,
and fever may also not be the first symptom of the disease [44]. Thus screen-
ing individuals for fever alone should be expected to miss at minimum 1/3 of
symptomatic cases. Algorithms that combine multiple reported symptoms
have been shown capable of retrospectively identifying 65% of positive cases
[47]. Published algorithms are a starting point for using health-screening
data, but more sophisticated approaches tailored to the campus environment
are possible.

For the purpose of screening on campus, the fact that symptoms are am-
biguous as to origin creates false positives; these false positives will increase
during the flu, allergy, and cold seasons. Tracking population-averaged trends
in the campus community allows for the sensitivity attributed to each symp-
tom to be adjusted on a continuous basis, reducing both false positives and
false negatives. Stress or chronic conditions among certain individuals will
tend to render algorithms tuned for the general population less predictive
for those individuals. Algorithms can be made adaptive to each individual’s
baseline state, compensating for person-to-person variation and increasing
sensitivity. By contrast, the fact that symptoms may be mild or not present
simultaneously, and that individuals may engage in deceptions because of a
desire to work, will increase the false-negative rate. In sum, it is not yet clear
to what extent screening for multiple symptoms will increase a university’s
ability to identify infected individuals and a high false-negative rate should
be assumed at the outset so as to not overestimate the impact of health
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screens. An epidemiological compartment model for estimating the impact

is given in Appendix [B.1]

Even assuming a high false-negative rate, the fact that symptom attesta-
tion is low cost and can be used frequently makes it a very useful component
of a university’s toolkit. As shown in Appendix [B.1] when an 80% false-
negative rate is assumed for symptom attestation, and the attestation occurs
only every other day, Ry can still be reduced by 38%. To compare, if the
rate of testing is once every 14 days for each person, and the tests have an
optimistic 25% false-negative rate, Ry is reduced by only 25%. The fact that
symptom attestation can occur frequently substantially compensates for its
low sensitivity.

In addition to yes/no reporting of symptoms, university researchers may
wish to offer an opt-in version of the survey that allows willing participants
to provide more detailed information. Useful data may include daily reports
of one’s body temperature (taken with the identical thermometer), overnight
respiratory rate (from a wearable device), or blood-oxygen saturation. Re-
search on habits could also be useful, such as reporting instances of high-
contact events such as grocery shopping or public transport. It is important,
however, that most of these more burdensome questions of uncertain value
be voluntary, so as not to reduce compliance with the primary survey.

Finally, in addition to symptom reporting, the medical team should
consider adding, on occasion, other questions to the daily attestation. For
example, a semiweekly numerical evaluation by each researcher about of how
safe they feel in their lab; and biweekly questions about whether individuals
feel increasing stress. Such data could reveal problems with conditions on
campus, or unsafe laboratories, both of which could undermine efforts to
prevent COVID-19 infections.

Findings and recommendations

Finding: Modification of the standard SIR model to account for screening
illustrates that a health attestation can substantially slow disease transmis-
sion. The high frequency of the screen and ability to act quickly compensates
for the expected high number of false negatives.

Finding: The more rapidly screening results in the quarantine of infected
persons, the more effective screening is.

35



Managing the Risk from COVID-19 August 25, 2020

Finding: There will be significant variation in the baseline symptom rate
across the population because of chronic conditions. Additionally, changes
in COVID-19 infection rates and non-COVID illness rates both change the

predictive value of symptoms in opposing ways.

Recommendation: Develop a procedure for daily health screens, such as
an attestation of symptoms before arriving at work. A smartphone app for
attestation offers the valuable opportunity to automatically determine if this
threshold is reached and thus act instantly on the information.

Recommendation: The university should mandate that a member of the
university community displaying symptoms typically associated with com-
mon disease (like a cold) should not report to work. If in addition the in-
dividual complains of symptoms associated with COVID-19 or influenza-like
illness, a diagnostic test for SARS-CoV-2 should be performed.

Recommendation: Develop a capacity to continually adjust the thresholds
at which stay-home and testing-referral decisions are made. Adjustments will
be needed based on the prevalence of COVID-19 in the community, changes
in the understanding of the disease, and seasonal illness like influenza. Ide-
ally, algorithms should automatically adjust to account for person-to-person
variation.

Recommendation: Assume a high false-negative rate for symptom attes-
tation when planning a restart.
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6 How does one prevent a super-spreader event?

The concept of super-spreading is well known in epidemiology: it is the
propensity of a single infected individual to infect a larger-than-average num-
ber of people. The effect arises from a combination of biological, behavioral,
and environmental variables, all of which influence transmission [§].

This phenomenon is often associated with the 20/80 rule: 20% of the
host population contributes at least 80% of the net transmission potential
(as measured by the basic reproduction number, R.) The rule implies that
control programs targeted at the core 20% group are potentially highly effec-
tive. Conversely, programs that fail to reach most of this group will be less
effective in reducing levels of infection in the population as a whole [64]. In
the case of SARS-CoV-2, this ratio may be closer to 5/95, as shown below
in Figure o] and the associated discussion below.

Are there distinguishing aspects of infection and transmission that might
identify super-spreaders or circumstances leading to super-spreading events?
One element of such identification, as discussed below, is that within the
population of infected persons, some may carry a viral load 103 to 10° times
higher than the modal case. Importantly, given the data available, this ap-
pears linked to the stage of the infection. In addition, some infected persons
may have a higher potential to spread SARS-CoV-2 through the ways in
which they speak, cough, or exhibit other personal characteristics. Comor-
bidities may increase their ability to transmit the virus, as noted below. Their
interaction with their environment can contribute to increased transmission
if the infected engage in high risk behavior such as attending large gatherings,
riding on public transport, not wearing a mask or donning it improperly. The
environment may contribute through poorly-designed ventilation.

There are large differences in the number of aerosol particles produced
during breathing among different people (coefficient of variation around 1.2;
see Section 3| for a discussion of aerosols and droplets). This variation
amounts to roughly a factor of 100 between the 95" percentile emitter and
the 5" percentile emitter and is believed to arise because of variations in mu-
cus surface tension in the lung [15]. Variation in droplets produced during
speech, which carry much more virus but are also substantially attenuated by
both interpersonal distance and mask wearing, was recently found to vary by
a factor of about 4 between the 95" percentile emitter and the 5" percentile
emitter [2].
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While variations in aerosol and droplet production are significant, they
are small compared to the much larger variation in viral titers observed across
COVID-19-infected individuals. In particular, differences of up to 8 logig
(10®) in viral load between individuals have been observed—a million times
larger than the variation in aerosol production [I]. Importantly, this variation
is not variation in the peak titer, but variation in titers estimated from virus
tests at whatever time they were performed. The variation in peak titer will
be smaller.

Person-to-person variation in immune-system strength appears to con-
tribute partially to the variation in observed titers. One study found that
peak viral titer in patients with certain comorbidities was, on average, greater
by a factor of 100 [59]. Viral titer also appears to increase with patient age,
which is correlated with slower immune response [59, 36, 28]. In particular,
To et al. [59] estimates titers increase by a multiple of 7.5 per each decade of
age. Independently, aerosol emissions appear to double between age 20 and
40 [35, 2]. Combining the two effects, it appears plausible that the typical 50
year-old professor could shed 1000 times more virus in the form of aerosols
than the typical 20 year-old student at the peak of infectivity.

The data from Jones et al. [36] can help illustrate why individuals with
high viral titers may dominate the spread of the COVID-19. The study
reports the results of 3,712 patients who tested positive for SARS-CoV-2.
Figure (4| reproduces the data showing how many samples fell into each of a
set of bins of estimated viral load on the swab. The bins range from 10* (limit
of detection) to 10'? copies/swab. Some of that variation can be attributed
to infection age (changes in titer over the course of the disease), and some
variation to variables associated with the collection of patient samples.

Multiplying the abscissa and ordinate at each point in Figure [4] yields
the total virus in the bin, and normalizing over the sum of virus in all bins,
yields the relative contribution of each bin to the total sampled virus, as
shown in Figure [5] Assuming the data represents a snapshot of the infected
population, Figure [5| shows that at any point in time the majority of the
virus being shed is being shed by a small group of people. Those in the last
seven bins comprise only about 5% of the population but contribute about
90% of the total virus being shed [’

5To be clear, this particular analysis is uncorrelated with other identifying factors and
thus does not by itself say whether those in the most infectious bins are identifiable in
some way, or whether the “average” person will pass through one of these bins briefly
during the course of the disease.
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Figure 4: “Histogram of viral loads: The plot shows the frequency distribu-
tion of 3,712 values of patient SARS-CoV-2 (logarithm base 10) viral load,
estimated from real-time RT-PCR Ct values... The sharp drop on the left
side of the distribution is due to RT-PCR sensitivity and the limit on the
cycles.” Caption and data extracted from a figure in [36]
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Figure 5: Total amount of virus present in each bin of Figure [dl This plot
helps visualize how much virus is contributed by patients in each bin to the
total amount of virus present in the sampled population.
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As a final consideration, it is notable that viral titers appear to be high-
est around the time, and possibly just before, symptoms onset. While not
yet robustly demonstrated, the inference that viral loads are at least as high
just before symptom onset as they are when first measured is apparent from
Figure [6] The analysis of Kim et al. [38] supports this assessment: “In sen-
sitivity analysis, using the same estimating procedure but holding constant
the start of infectiousness from 1 to 7 days before symptom onset, infectious-
ness was shown to peak at 2 days before symptom onset.” This suggests
that super-spreaders are likely to be present among the pre-symptomatic
population, making the identification of super-spreaders a special challenge.

20 20 '
— Mild (n=76)
— Severe (n=18)

25 25
30

Ct value

Ct value

35
>40

0 7 14 21 28 35 28

Days since symptom onset Days since symptom onset

Figure 6: Figure and caption reproduced from [2§]. “Viral load (threshold
cycle (Ct) values) detected by RT-PCR in throat swabs from patients infected
with SARS-CoV-2 (N=94), overall and stratified by disease severity... The
detection limit was Ct=40, which was used to indicate negative samples. The
thick lines show the trend in viral load, using smoothing splines. We added
some noise to the data points to avoid overlaps.”

Findings and recommendations

Finding: Super spreaders will contribute disproportionately to the number
of secondary infections; they cannot be neglected in the design of protective
measures.

Finding: In general, data suggest older persons are both more infectious to
others and more at risk of infection.

Finding: Super-spreaders are likely to be pre-symptomatic individuals with
high viral titers.

Finding: If super-spreaders are pre-symptomatic individuals, health screens
that depend on symptoms will prove less effective than expected based on
model results obtained using the average infectious case.
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Finding: Virus testing (both antigen and RNA tests) has the potential to
identify super-spreaders with exceptionally high viral titers.

Finding: A symptomatic person with an exceptionally high viral titer at
diagnosis has a good chance of having been a super-spreader. Immediate
quarantine followed by contact tracing for these individuals will be especially
helpful in attenuating the rapid spread of the disease.

Recommendation: If the technology becomes accessible, consider a pro-
gram to screen by viral testing all asymptomatic people on a regular basis,
ideally before work and perhaps twice per day. Such tests do not need to
be sensitive to low viral titers, but should be affordable, give results rapidly,
and be comfortable enough for repeated use.

Recommendation: Establish a rapidly responding contact-tracing and
quarantine program. Even a small program could have significant impact
if it has enough capacity to address those suspected of being super-spreaders
(e.g., the top 5% of cases).
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7 Is the campus an island from the
community?

SARS-CoV-2 can spread in any human-to-human interaction across a given
day. University personnel generally interact with community members at
home, at the store, on public transportation, etc. Thus, infection rates for on-
campus personnel are not exclusively a function of on-campus activities. This
section explores how infection rates on a university campus are influenced by
infections off campus.

7.1 Island model

We consider whether reducing the basic reproduction number R, within a
small sub-population is effective in altering the course of the disease when
that sub-population is embedded within a host population where the infection
is less-well controlled. In an SIR epidemiological model (Appendix , if we
label the smaller university population as group 1 and the larger population
as group 2, this interaction can be represented for group 1 with an effective
transmissivity (8) given by

I Iy
= [id— 1—d)—. 7-6
B =5 N, + Ba( ) N, (7-6)
The terms, I /N, represent the fractions of groups 1 and 2 that are infected,
d is the fraction of time group 1 is a distinct entity not interacting with other
populations, and 1 — d is the fraction of time that group 1 participates as
part of group 2. All fractions range from zero to one.

Simulations in Appendix illustrate how the influence of a growing
infection in group 2 on infections in group 1 can be minimized by decreasing
interaction with group 2 and achieving a smaller value of R in group 1.
Given at least some interactions with group 2, however, infections in group 1
will inevitably infect those in group 2 whether or not group 1 keeps R <
1. Nevertheless, equation makes clear that reducing the interactions
with the broader community is helpful. Certain universities may find it
valuable to develop programs that help their populations reduce community
interactions, especially for high-risk groups (e.g., immune-compromised or
mission-critical staff) and those living in tight quarters with other community
members (e.g., dorms and group houses) where an infection poses a higher
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risk to others. Such programs might include shuttle-bus services, childcare,
provisions for groceries, lunchtime food, or access to off-campus business and
services through programs that reduce risky interactions.

Disease dynamics in any population are, of course, the aggregate of
the dynamics within the sub-populations. Efforts to control spread within
a university will have benefits for the larger population so long as policies
do not adversely affect the larger community. It follows, for example, that
an infected individual that is detected by a screening activity at the univer-
sity should quarantine, as opposed to continuing to interact with the larger
population.

7.2 Archipelago model

The concept of isolating, at least partially, a sub-population in order to
better control spread of the disease can be extended to individual groups
within a university. Karin et al. [37] advocate a strategy involving dividing
a university population into two halves, where one half works for 4 days in a
given week followed by 10 days of quarantine. The other half works for 4 days
in the alternate week, also followed by 10 days of quarantine. The advantage
of this approach is that it lowers population density on campus and, even
if the campus environment does not achieve R < 1, can help maintain an
effective R < 1 through the quarantine phase.

The dynamics of the “4-10" strategy are analogous to those given by
equationif group 2 is re-interpreted as quarantined. In this case, d = 4/10
and f is small. If, however, the “quarantine phase” becomes tantamount
to normal interactions with the larger population, then the 4-10 strategy is
helpful for reducing on-campus population density, and thereby reducing (,
but increases interactions with the larger population, making the university
more beholden to the dynamics of the larger community. A more complete
discussion of the dynamics of the 4-10 strategy is given in Appendix [C.5]

The foregoing scenarios are simplistic representations of populations dy-
namics that involve complex spatio-temporal patterns and stochastic inter-
actions. Populations and sub-populations are not thoroughly mixed, for ex-
ample, and geometric aspects such as the relative location of a university
and its host community will vary widely. Nevertheless, modeling illustrates
scenarios of interest and helps show connections in the dynamics common to
various policies. No university is an island, but efforts to control the spread
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of the disease within such a sub-population have direct benefits.

Findings and recommendations

Finding: A standard epidemiological compartment model modified to rep-
resent a sub-population hosted within a larger population indicates that
the fraction of infected in the sub-population is lower insomuch as the sub-
population both reduces contact with the larger population and maintains a
lower R than the larger population.

Finding: Because disease dynamics in models have exponential growth
rates, making a decision to move to a lockdown phase earlier, even by one
or two days, can have significant positive impacts, reducing the duration of
lockdown required.

Finding: The recently discussed “4-10” scenario for return-to-work is effec-
tive in lowering on-campus population density but its overall efficacy depends
on persons in the 10-day quarantine period significantly minimizing interac-
tions with non-university communities having a higher R.

Finding: Universities will influence and be subject to the disease dynamics
of the larger communities in which they are embedded.

Recommendation: Universities should seek to understand the exposure of
their personnel and the infection rates both on and off campus. Frequent
coordination with local health officials will keep university decision-makers
informed.

Recommendation: Universities may wish to develop programs to help
people reduce their dependence on community engagements, especially those
activities that pose a higher risk of infection, and for those individuals that
are in vulnerable populations.
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8 What operational policies are recommended?

Universities are developing operational policies allowing research to restart
while attempting to manage risk to their researchers and surrounding com-
munity. The operational polices will require unfamiliar behavior on the part
of researchers and the university administration will have the challenge of
enforcing these new rules.

8.1 Communication

Informative communication is a key component of success. Researchers sub-
ject to new rules and procedures must understand them if they are to buy
into their legitimacy. Training videos, written explanations, clear signage,
and conversations with laboratory leaders should all be employed to educate
the research community and enlist their cooperation.

Recommendation: Administrators, facilities, and health professionals should
work to create materials to educate the research community on the new rules
and procedures and they were devised.

8.2 Basic source of risk

Infection occurs when virus comes into contact with mucus membranes such
as the eyes, nose, mouth or respiratory tract. The virus can be carried on
objects (fomites), or in liquid droplets and aerosols suspended in the air.
These virus-bearing substances impinge on a person as a series of individual
events, each one bringing some probability of infection. The exposure rate
n(t) is the number of virions (virus particles) impinging on a person per unit
time. The total dose is then

T
Ntot = / n (t) dt.
0

The goal of risk mitigation measures is to reduce n(t) and 7" to levels where
the disease is unlikely to spread on campus, defined as R < 1 (see Section .

Finding: Dose = exposure rate X exposure time. Minimizing dose means
minimizing the exposure rate and exposure time in all work environments,
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including transit areas such as corridors, stairwells, and elevators.

8.3 Organizational methods to reduce dose

The findings above suggest simple and effective methods for reducing ex-
posure in case an infected researcher makes their way into a research lab.
Minimizing the time in the lab and working in shifts both provide means of
reducing exposure. Creating research cohorts or “pods” may be possible for
larger labs. Members of one pod should not mix with members of other pods,
confining any potential infection (see Section [7] and associated appendices).

Each lab will need to find its own means of operating during a restart.
While distancing, masks, and disinfection measures help reduce the risk,
options that minimize the time two or more researchers are in a lab together
will likely provide the most effective protection. Core or shared facilities,
and remote labs such as telescopes or seismic stations, can all be made safer
using the same principles applied appropriately at each location.

Recommendation: Adopt organizational changes to create shifts and co-
horts that minimize the number of researcher interactions. Tailor these pro-
tocols to the needs of each laboratory, shared facility, and remote station.

Recommendation: Track which coworkers work together to facilitate con-
tact tracing.

Recommendation: Develop systems and protocols that can minimize time
spent in lab.

8.4 Respiratory masks

The primary viral transmission vector for COVID-19 is believed to be air-
borne transmission from droplets and aerosols (Section [3|and reference [14]).
Large droplets (diameter greater than approximately 10 um) are actively gen-
erated by speaking, sneezing, and coughing. Droplets larger than 30-40 pym
(at creation) are large enough to fall under the force of gravity and the prob-
ability of transmission is therefore a decreasing function of distance from
the infected person [67]. Aerosols are smaller airborne particles produced by
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breathing, and in much greater numbers by speaking. Once generated they
can remain airborne for several hours, potentially causing transmission over
larger distances and, speculatively, through unfiltered air-handling systems.

In the United States, public-health advisories about the use of masks
covering the mouth and nose to mitigate COVID-19 transmission evolved
from the initial statements that masks were not useful, to an acknowledge-
ment that masks could reduce the risk of transmission, especially from the
wearer to others. Unfortunately, the benefits of masks in reducing infection
risk for the wearer have not been communicated nearly as well. The sci-
entific literature on mask use related to viral transmission [58], as well as
recent work specifically related to COVID-19, clearly indicate that masks
also significantly reduce the risk of transmission in both directions, including
for a mask wearer in the vicinity of an infected person [16] [69]. The level
of protection varies with the material, design, and fit of the mask. Thus,
university restart plans should include an evaluation of what types of masks
are acceptable and best suited for the scenarios under consideration.

There are well-established standards for medical masks, which address
the reduced transmission to the wearer from both aerosols and droplets, as
indicated in table [I} Surgical masks are relatively comfortable and provide
a useful benchmark for what may be achieved in masks to be made available
to workers in most research environments.

If there are shortages, certified medical masks must be prioritized for
healthcare workers. Other types of masks, both commercial and do-it-yourself
(DIY), can be nearly as effective as surgical-masks in actual use, as described
below.

8.4.1 Mask technical standards

The two key variables in masks are the materials used in the mask and the
structural design of the mask itself. Public-health advisories for COVID-
19 have recommended the use of cotton, which was the standard mate-
rial used medically before the advent of disposable masks. Today surgical
masks (rectangular-with-pleats) are made from special paper-based cloth,
and most respirator style (fitted) masks are made from layers of electrostat-
ically charged non-woven polypropylene fabric.

Some early literature on materials for DIY face masks did not provide
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Mask Type Standards Filtration Effectiveness

Simgle-Usa Faca Mask

3.0 Micrors: =%5%

China: Y/ TO94
1 ; 0.1 Microns: X
3.0 Microns: 293%
Surgical Mask China: Y¥ 0d6F
HAE i 0.1 Micrors: 230%
Leswead 1 Lewel 2 Leval 3
] LISA: ASTM F2100
!‘_-!ﬁ “ 30 Microns: 295% | 3.0 Microns: 298% 30 Microns: =98%
;,_—- 'd-h Q1 Mierans =95% | 01 Meons 58% 0.1 Micrans: =99%
- "" Type | Type |l Tyoe Il
- Europe: EN 14683 - -
g A0 Mierong z95% | 3.0 Msong x58% 30 Migrons: =78%
0.1 Micrans: X 0.1 Microns: X 01 Microns: X
Respirator Mask USA: NIOSH (42 N95 / KNS NY9 F EN?? W00/ KN100
a CFR 84)
China: GB2&24 0.3 Microns: 295% | 0.3 Miceons 299% | 0.3 Microns 2¥9.97%
| o
== FFP1 FFP2 FFP3
Europse:
EN 149:2001 O3 Microns: zB0% | 0.3 Microns: 2%4% 0.3 Microns: 99%
|

3.0 Microns: Bacteria Filiration Efficiency standard (BFE).

0.1 Micrans: Particle Filration Efficiency standard (PFE).

0.3 Microns: Used to reprasant the most-penetrating particke size [MPPS], which is the most difficult size
particle 1o capture.

X: Mo requiremants.

Table 1: Compilation of technical standards for various types of medical
masks. Source [54].
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adequate statistics or material specifications to form generalized results. Sev-
eral recent studies provide guidance on which materials are suitable [45] 51]
provides some insight on the performance on material and designs. This
study specifically addressed masks as-worn, which includes leakage around
the edges of loose-fitting masks. The study used a 3M model 1826 surgi-
cal mask as a baseline for comparison. It demonstrated that for particles
with a nominal size of 0.04 micron, the surgical mask removed more than
70% of particles, while rectangular single-use medical masks (Table (1)) and
rectangular cotton do-it-yourself (DIY) mask with a non-woven polyethylene
insert removed almost 60%, and fitted cotton DIY masks removed 65-70%.
Other DIY masks (rectangular cotton masks) tested more poorly, removing
as little as 30% of small particles. This indicates the importance of specifying
standards for masks.

Another recent study has illustrated the importance of how a mask is
worn to its performance [69]. In this study, neither N95 masks nor surgical
masks performed as indicated by their standards unless they were fit very
tightly. The authors found that only by duct-taping the masks to the silicon
dummy could the expected filtration efficiencies be achieved. Addition of
a nose-clip to the surgical mask provided a significant increase in filtration
efficiency. Masks must be worn properly throughout the working day if they
are to provide the expected benefits.

If masks can be made available in bulk and certified for performance with
proper fitting procedures, single-use medical masks could present a level of
protection approaching that of surgical masks. However, these are disposable
that may raise concerns for sustainability as well as continuing costs. If these
items are not reliably available in the quantities needed, or if sustainability is
highly valued, there are mask design and materials combinations that provide
equivalent protection in washable (and thus reusable) masks. Providing a
source of such masks would require some effort to establish specifications
and identify a supply chain with sufficient capacity.

Finding: Mask efficacy is highly variable, and depends on the materials,
designs, and user discipline in wearing the mask.

Recommendation: Universities should provide masks that meet demon-
strated technical performance at the levels needed for the reseearch environ-
ment. Training should be provided on how to properly wear masks.
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8.5 Eye protection

To the degree that masks are advocated because they protect the wearer
from infection (as well as protecting others from potentially being infected
by the wearer), one can consider eye protection in addition to the mouth
and nose protection offered by a mask. Safety glasses are needed for many
laboratory applications, and can also help to protect the wearer’s eyes from
virus-bearing droplets in the air. Eyeglasses offer less protection than more
encompassing safety glasses.

Face masks for respiratory protection can cause eye protection to fog
up or become stifling. Since the evidence suggests respiratory protection
is far more important, administrators might wish to consider the potential
compliance problems generated by requiring eye protection in addition to
respiratory protection.

8.6 Physical distancing and its limits

Some universities have created per-person area allocations in labs to enforce
6-foot physical distancing. While area allocations help reduce transmission
via droplets, they are significantly less effective for aerosols that float in the
air, presenting a risk to everyone in the room.

Section |3 contains a discussion of virus transmission by aerosols, and
transmission mitigation by the HVAC systems and physical distancing. In
the simplest terms, the room is a slowly leaking box. Limiting the time
during which two or more people are in the room is the best way to prevent
aerosol-borne transmission. In Section B.4] we recommend that researchers
always wear at least surgical masks, reducing the viral density in the room
air, as well as the number of virus bearing particles inhaled. These measures
make physical separation less critical, though still sensible whenever possible.

Finding: Standardized area allocations, minimum occupancy, and the use of
masks work together to reduce dose by reducing exposure rate and exposure
time.

Recommendation: Laboratory directors should work to minimize the oc-
cupancy of their labs to time when both people are essential to the task at
hand.
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Recommendation: Laboratory directors should consult their university’s
facilities and Health and Safety group on airflow in their labs to ensure there
is at least adequate airflow and, and consider increasing the flow rate in the
lab in case of higher occupancy.

Finding: Minimizing dose within the lab is insufficient; similar standards
need to be met throughout the rest of the building, with particular attention
to confined spaces that may receive little airflow but have frequent visitors
(corridors, stairwells, and elevators).

8.7 Compliance

Universities will develop special rules for restarting research such as those
recommended in this report. The restart rules add to the burden of usual
rules from OSHA, NIOSH, the state, the city, and the university that govern
laboratory operations. Laboratory directors must make it clear to their re-
searchers that the restart rules are in addition to the usual laboratory rules,
and that the restart rules may preclude activities normally allowed by the
university. Laboratory directors may not have prior experience enforcing
laboratory rules. Lab-level enforcement may become more important, for
example, in ensuring continued face mask compliance. University adminis-
trations should provide training and support to help laboratory directors en-
force rules by providing training materials to inform subordinate researchers,
as recommended above.

Administrators must work with faculty and laboratory directors to de-
velop meaningful consequences for those that do not follow rules and pro-
cedures. The consequences for misbehavior should be like any other safety
violation and lead to expulsion from the laboratory building after warnings.
As with the rationale for the creation of COVID-19 rules and procedures,
the consequences and the reasons for these consequences must also be com-
municated through a variety of channels.

Leaving the enforcement of new rules and procedures to principal inves-
tigators (who may not even be on campus) or relying on reporting by other
researchers can be expected to result in wide-spread flouting of the rules and
procedures. Administrators must work with faculty, lab directors, the uni-
versity’s general counsel, and human resources to create a tiered response
to rule flouting. Ultimately, the university should seek to create the sense
that flouting is a transgression against the community, and sanctions must
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be seen as coming from the university and not just from one’s immediate
SUpervisor.

Recommendation: Create and communicate a clear set of consequences for
failure to follow COVID-19 rules and procedures and create a tiered response
for transgressions.
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9 How can institutions make risk-informed
decisions?

Once a restart effort begins, institutional administrators will have to make
regular decisions about expanding or contracting operations based on data
gathered during the restart. This section considers how principal investiga-
tors and administrators may use this data for daily or weekly decision making
about the conduct of operations.

Universities will operate in the low prevalence, low-testing regimes dur-
ing the early stage. As such, insights into how campus operations are directly
influencing the transmission of the disease will be hard to come by, as ex-
plained in Section [£.2.3] Instead, other data collected during a restart, such
as information on how many people are in rooms, and how long researchers
are in their labs, may be more actionable. Daily symptom attestation (see
Section [5) can also be aggregated and studied for hints of off-campus infec-
tion.

Compliance data should also be collected to determine whether re-
searchers are following new health-and-safety rules. Levels of adherence to
assigned work hours and work areas, the proper wearing of masks, and con-
sistency of symptom attestation can be thought of as leading indicators of
the infection rate. In other words, not following the most basic rules should
be expected to lead to increased levels of infection [25].

Since viral testing may be prohibitively expensive or of limited value
because of false positives, the aggregate of other data, suitably processed
and presented in summary form as a “dashboard” may help decision makers
reduce the rate of infections on campus and know when to ramp up (or down)
the number of people on campus.

There are multiple benefits of this proposed dashboard:

e Analysis of daily reports of health attestations, and whether or not
those reporting symptoms subsequently test positive, may help refine
algorithms and the associated weights given to symptoms.

e With time, improved virus tests with greater specificity and faster turn-
around times will become available and results from such tests should
be added to the dashboard and correlated with other data.

53



Managing the Risk from COVID-19 August 25, 2020

e Knowing who is on campus and where they are during the day can also
inform contact tracing efforts

e Knowing which rooms were used, by how many, and when they are
empty, can support cleaning and maintenance staff, allowing them to
work safely.

e Further aggregation of information into a well-crafted community dash-
board, accessible to all members of the institution’s community, is an
opportunity to develop shared situational awareness of “how we are
doing.”

Should there be evidence of increasing infection risk, recent studies il-
lustrate the importance of rapidly locking down activities to prevent further
disease spread [20] 30]. This value is also apparent from the history of the
1918 flu epidemic (Appendix [A). It is critical that administrators and des-
ignated health officers have rapid access to the necessary data and monitor
that data regularly, to identify a local outbreak so that they can make the
needed decisions.

Findings and recommendations

Finding: Restart information related to symptom reporting, testing, cam-
pus access, and compliance with new rules must be rapidly reported and
aggregated into a format that can support immediate decision making.

Recommendation: Create a public dashboard of testing, research com-
pliance, facility access, symptom reporting, and local population prevalence
information to inform decisions and create a shared sense of the situation.
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A Lessons from the 1918 pandemic

It is not too much to ask what help we can get today from the experiences of
our parents or grandparents in the HIN1 influenza pandemic of 1918-19. This
pandemic, which killed tens of millions of people globally and an estimated
675,000 across the United States E], stimulated a variety of nonpharmaceutical
responses across our country. Here we summarize some lessons and warnings
regarding these measures employed a hundred years ago in a variety of US
cities.

Response to the 1918-19 pandemic in the US has received significant
study, revealing some useful lessons and warnings that are relevant today.
Although Covid-19 is not influenza, it is similar enough in transmission to be
instructive regarding nonpharmaceutical intervention (NPI) — mainly social
distancing measures. Similarly US cities reflect many geographic, social,
economic and climate differences. Yet responses across many (but not all)
cities were similar in the face of no effective anti-viral drug or vaccine — sound
familiar?

A very useful statistical study of nonpharmaceutical intervention (NPI)
methods, their effectiveness and application in mitigating excess death rates
(EDR) was done using data culled from many sources of the time (1918-19)
[46]. Their major findings from 43 cities demonstrate that early application;
multiple techniques and sustained application are associated with mitiga-
tion of the EDR. Typical interventions were school closures, public gathering
bans and isolation and quarantine. A number of studies indicate that these
measures impacted time to peak death rate, peak death rate and total num-
ber of excess deaths [27]. In particular cities that implemented NPT earlier,
used multiple interventions and sustained them longer reaped the benefits of
delaying the peak EDR, reducing the peak EDR and reducing aggregate ex-
cess deaths. The conclusions of [46] are based on Spearman rank correlation
studies: cities that implemented NPI earlier had greater delays to peak EDR
(Spearman r = -0.74, Pj0.001), lower peak EDR (Spearman r = 0.31, P =
0.2) and lower total mortality (Spearman r = 0.37, P = 0.02). Further, there
was a significant association between increased duration of NPI and reduced
total mortality (Spearman r = -0.39, P=0.003). In addition to the effective-
ness of NPI the work of Markel et al. illustrates the dangers of relaxing NPI
measures too soon and suffering a second wave of deaths.

Shttps://www.cdc.gov/flu/pandemic-resources/1918-pandemic-hini.htm
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Fig. [7|illustrates a “tale of four cities” and how they fared with respect
to start up date, types, duration and relaxation of nonpharmaceutical inter-
ventions. Probably the most interesting part of this tale is St. Louis, panel A
in Figure[7]. In early October, city health commissioner Dr. Max C. Starkloff
ordered closure of schools, movie theaters, saloons, sporting events and other
public gathering spots as well as suspension of Sunday church services [6]. In
many respects St. Louis fared relatively well with the 8th lowest aggregate
excess deaths per capita of 43 cities studied. However, this city also points
out that relaxation of NPI measures too soon can lead to a resurgent, second
wave. For St. Louis premature relaxation resulted in a second peak with
death rate higher than the first peak. Denver in panel C illustrates a sim-
ilar course of events with an early relaxation and subsequent larger second
wave. In both cases reimposition of NPI measures was used and resulted in
a steep decline in the death rate. New York City (panel B) fared relatively
well with an early and sustained application of isolation and quarantine and
an aggregate death total ranked 15th lowest of the 43 cities studied by [46].
Pittsburgh (panel D) had the highest aggregate death rate of all the 43 cities
studied. The use of multiple NPI measures was limited and not sustained.
Neither New York nor Pittsburg suffered a pronounced second wave. In sum-
mary although there are many confounding factors of geography, climate, air
pollution, etc., the association of NPI measures, now called social distancing,
with reduced rates of respiratory virus disease transmission has been convinc-
ingly demonstrated in studies of the 1918-19 influenza pandemic. Ref. [40]
argue that in future pandemics NPI “might play a salubrious role in delaying
the temporal effect of a pandemic, reducing the overall and peak attack rate;
and reducing the number of cumulative deaths.” This view is supported by
a variety of other sources (e.g., [21] and [27].)

However, the lessons of how to apply nonpharmaceutical techniques and
the pitfalls of ceasing these measures too early appear not to have been as
widely recognized as historical lessons demonstrate in our “tale of four cities,”
above. Further, we note that opponents of NPI techniques can have serious
impact and disastrous effects. San Francisco in 1918-19 is an example where
NPI was successfully introduced under a WW1 patriotic banner, but tended
to wane as residence tired of restrictions and masks. Eventually after much
controversy NPI measures were relaxed and a strong second wave occurred,
bringing reports that San Francisco’s cumulative death toll was the highest
of any major US city, estimated at 673 per 100,000]]

7“San Francisco, California and the 1918-1919 Influenza Epidemic.” University of
Michigan Center for the History of Medicine: Influenza Encyclopedia, https://www.
influenzaarchive.org/cities/city-sanfrancisco.html
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Figure 7: A tale of four cities—response to 191819 pandemic. Weekly excess
death rates from Sept.8, 1918 through Feb. 22, 1919. For these four cities
the profile of weekly death rates are shown with types of NPI techniques
employed and dates in use. Note the positive effect of early implementation
of multiple techniques and sustained use and the negative effects of premature
relaxation of NPI use and the resurgence in a second wave. After [46].
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B Strategies to reduce R

An SIR model represents the population as residing within three compart-
ments: susceptible (S), infected (I) and recovered (R). The sum of the frac-
tional populations across these compartments is S + I + R = 1. The rate at
which susceptible individuals become infected depends on the transmissivity,
B, as well as the number already infected, and the rate at which infected
recover, vy, giving:

S = —pBSI, (B-7)
I = BSI—~I, (B-8)
R = ~vI. (B-9)

In the approximation of a disease-free limit, S = 1, the solution to Eq
is, I(t) = I,exp[(8 — 7)t], where I, is an initial fraction infected. For
I to grow, 8 must be greater than v. Equivalently, the basic reproductive
number, defined as R, = [3/7, must be greater than one. R, indicates the
number of people an infected person subsequently infects under the idealized
circumstances that the entire population is susceptible. Note that setting
Eq. to zero permits for solving for S at peak infectivity, which equals
1/R,.

Within the context of the SIR model there are only two general ap-
proaches for reducing R,: increasing the rate of removal and decreasing
transmissivity. First, we consider increased rates of ‘removing’ infected via
quarantine in the context of SIR. Second, we consider whether a subgroup
that decreases (3, or increases 7, can control the dynamics of the disease when
embedded within a larger population, again using SIR. These simulations
quantitatively illustrate how quarantine and reductions in transmissivity can
be effective for controlling the spread of COVID-19.

B.1 Increasing the rate of removal

We wish to update Eq. to include the effects of identifying infected indi-
viduals through symptom screening or testing and subsequently quarantining
those individuals such that they do not interact with the susceptible popu-
lation.
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B.1.1 Screening via symptom attestation

We assume a rate of symptom attestation of r, and that this approach to
screening has a false negative rate of f,. Assuming that people identified
with symptoms are quarantined, we have,

I =BSI—~I—ry1—f)I. (B-10)

The solution in the disease free limit is I(¢t) = I,exp[(8 — v — (1 — f5))t],
such that the analogue of R, becomes /(v + rs(1 — fs)).

A baseline SIR simulation is adopted for illustrative purposes having an
R, = 2, with 8 = 1/(3 days) and v = 1/(6 days) (Eq. [B-8). The baseline
simulation gives peak infection rates of 15% and 80% of all people ultimately
become infected. If Eq. is instead applied with a symptom attestation
- based screening rate ry = 1/(2 days) and f, = 80%, peak infections are 2%,
37% are ultimately infected, and R, = 1.25 (see Fig. [§).

A larger value of r, than ~ reflects the potential for screening a pop-
ulation regularly, and the large value of f, = 80% reflects imperfections of
symptom attestation as a screening approach. To take screening according
to fevers as an example, more than 80% of patients have been reported to
present with fevers at the onset of the disease [44, [I1] but there is a significant
risk that asymptomatic individuals can also transmit the disease [24]. Errors
in screening equipment or personnel performance as well as ignoring or evad-
ing screening measures could further contribute to false negatives. Gostic et
al. [20] estimate that even under best-case assumptions that screening will
miss more than half of infected people.

There are two other factors that inform our use of a high false negative
rate. First, the false negative rate will evolve over the age of an infection.
How early an individual can be detected is critical for stemming the spread of
the disease, such that individuals that are infectious but asymptomatic pose
a major challenge [24]. The simple SIR model used here, however, treats the
probability of identifying anyone that is infected as being equal. Second, and
related to the first point, our representation assumes that each screening is
independent, with an increased rate of screening proportionately increasing
rates of removal. In fact, repeated screening of an infected individual will
only allow for quarantine once symptoms appear. A more complete screening
model would account for emergence of symptoms together with the rates of
screening when determining rate of removal. Adjusting the model to rates
faster than 1/(2 days) would further strain the assumption that tests are inde-
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pendent. A final consideration is that screening will typically be undertaken
using a more complete set of symptoms than just fever, such as including
cough, shortness of breath, or fatigue. The false negative rate when using
multiple symptoms for screening is lower relative to using just one [47], but
the degree to which false negative rates are suppressed will depend upon the
degree to which symptoms are independent from one another and the specific
criteria used when calling for quarantine.

16
—no testing
14 + —— symptom screening
—random testing
12+ — selective testing
symptom and selective

10

% infected
[o60)

0 20 40 60 80 100 120 140 160 180 200
day

Figure 8: Infections from a baseline SIR model (black) and with introducing
symptom attestation (blue), random testing (red), focused testing (magenta),
and symptom attestation and focused testing combined (cyan). Baseline
values have § = 1/(3 days) and v = 1/(6 days) with all modification acting
to increase the rate of removal and, hence, the effective ~.

B.1.2 Testing

From the perspective of reducing R, testing is complimentary to symptom
attestation, and can be represented similarly,

I =BSI —~I—r(1—f)I. (B-11)
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Assuming that the population can be tested at a rate of r, = 1/(14 days)
and f; = 25% false negatives gives peak infections of 7%, 59% ultimately
infected, and R, = 1.5. For the selected parameters, screening the population
for symptoms every 2 days appears more effective than testing every 14 days
despite testing having a much lower false negative rate. The assumptions
of independence and equal probability associated with our simple screening
model is also made with respect to testing. Confidence in the conclusion
that screening would out-perform testing is tempered by these assumptions.
Specifically, independence of test results when applied at a rate of 1/(14 days)
seems relatively more plausible than independence of screening at a rate of
1/(2 days).

Eq. assumes randomized testing with the result that the number
of tests administered to infected individuals is linearly proportional to I. In
practice, a more common testing strategy than randomized testing is to ad-
minister tests to individuals that are more likely to be infected. For example,
tests could be preferentially administered to those whose work or travel re-
quirements make them more likely to be exposed or those who have been in
contact with symptomatic individuals. Antibody testing could also be used
to exclude those who recovered from infection.

To account for selective testing, we define the probability that someone
is infected conditional on being tested as,

P(T|I)P(I)

PUIT) = =5

7 (B-12)

where the right hand side uses Bayes Theorem. The probability of testing is,

P(T)= P(T|I)P(I)+ P(T|S)P(S)+ P(T|R)P(R). (B-13)
Assuming that the conditional probabilities are constant leads to,

I
PUIT) = +5gog (B-14)
Pi Di

Eq. represents the ability to concentrate testing on the infected popu-
lation.

Modifying Eq. to account for selective testing gives,

Tt(l—ft>l
I+piS+ piR

I=p3SI—~I - (B-15)
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Ratios 2= and 2t describes the degree to which tests are focused away from
susceptif)le and recovered populations onto the infected. Randomized testing
corresponds to ps, p., and p; being equal, where upon Eq. simplifies to
Eq. . Assuming that % = % = 0.5 doubles the efficacy of testing
and gives Ry = 1.22, slightly below that simulated for screening. A similar
equations could be applied to symptom attestation, but the fact that this
approach to screening is generally cheaper, faster, and less invasive than
testing suggests that such focusing is less important to consider.

Combining both screening and testing according to the foregoing pa-
rameter specifications gives an R, = 0.89, such that the initial small number
of infections in the population decays. This combined results illustrates that
a screening strategy that combines symptom attestation and testing will,
generally, be more effective than either in isolation. Here, it is assumed that
symptom attestation and testing act independently, but correlations in false
negatives would yield smaller improvements.

B.1.3 Pulsed testing

In seeking an optimal approach to testing the question arises as to whether
a time-variable testing regime would help further reduce the spread of the
disease. Fig. [9] shows a simulation having the same parameters as for the
selective testing simulations shown in Fig. [§ but also includes a scenario
whereby testing maintains its long-term average but alternates between two
weeks of intensive testing and two weeks of reduced testing. The growth of
the disease accordingly alternates from declining during intervals of intensive
testing to rapid growth during intervals of reduced testing, but no long-term
change in the course of the disease is apparent. Both scenarios produce 22%
of the population having recovered from infection after 1000 days.

Results are qualitatively unchanged in our simulations using other choices
of B and ~, other amplitudes of the square wave, different periods of the
intensive-relaxed testing procedure, or use of sinusoidal variations. Including
an incubation compartment in the model, i.e., an SEIR model, slows the tra-
jectory of disease spread but appears similarly insensitive to constant versus
pulsed testing.
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Figure 9: Simulation of the percent infected in a population using selective
testing using a constant rate of testing and pulsed testing (blue). (Bottom)
Constant and a pulsed testing scenarios; both have the same long-term av-
erage.

B.2 Sub-population

A variety of means exists by which to reduce transmission, which are consid-
ered in other sections, and to increase removal, some of which are illustrated
in foregoing subsections. The question arises as to whether reducing R,
within a sub-population is effective in altering the course of the disease when
it is embedded within a larger population with which the sub-population
interacts.

We consider a model having a small sub-population, group 1, that in-
teracts with a larger host population, group 2. Group 2 evolves independent
of group 1, whereas group 1 partially follows its own dynamics for a fraction
of the day, d, and otherwise that of the larger group, 1 — d. Transmission
becomes a weighted average between the ’s associated with each group,

ﬁ* - 51d[1/N1 + ﬁg(l - d)[z/NQ (B—16)

. The transmission characteristics of group 1 become more important as the
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Figure 10: Simulation of the percent infected in group 1, where members of
group 1 spend between all their time with group 1, d = 1, or all their time
with group 2, d = 0. Insomuch as d > 0, members of group 1 continue to
inherit infections from exposure to group 2.

fraction of time spent in group 1 increases and the prevalence of infection
in group 1 grows relative to that in group 2. The SIR model for group 1
becomes,

51 = _5*517 (B_17)
j1 = ["S1 — 1, (B-18)
Rl = ’}/[1 (B—lg)

Group 2 follow basic SIR dynamics irrespective of variations in Group 1.
Simulations are made using v = 1/(6 days), 81 = 1/(10 days) and f, =
1/(5 days). Infections would decline in group 1 except for ongoing exposure
to group 2, which is parameterized with d ranging from 0 to 1 (Fig. .

Although the models explored here are very simple, they point to the
importance of symptom screening and testing, followed by quarantine of
positive cases, for purposes of mitigating the spread of disease. Focusing
tests on those most likely to be infected is helpful, whereas time-variable
deployment of testing capability shows no discernible advantage. Measures
taken within a sub-population are effective insomuch as interaction with a
much larger population do not dominate transmission characteristics.
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C Shift work and community interactions

This appendix summarizes the predictions of standard epidemiological mod-
eling using the standard disease basic reproduction number R as a measure
of the spreading characteristics. R is a combination of the transmissibility of
a disease along with the number of potential contacts, which can be reduced
via social distancing measures. We include the basic population responses
indicated by the time course of infectious individuals during the development
of an epidemic followed by a lock-down with a much reduced R.

C.1 Spread of a virus

It is worthwhile to review a few facts about how a virus propagates in a
population as these features are critical to both the spread of the virus, as
well as a means to defeat the virus in the absence of a vaccine, e.g. [50].
Typically a virus reproduces in new hosts every 7 days, producing Ry new
infections, where Ry is referred to as the reproduction ratio or reproduction
factor. To emphasize the rapid (exponential) growth possible, if 7 = 3 days
and Ry = 3, which are approximately the case for SARS-CoV-2, then 10
infected individuals on day one produce 30 infections by day four, and 90
infections by day seven (a factor of 9 in one week). After one month we
can expect a multiplication of the virus by approximately 3!° ~ 59,000 or,
given the starting number of 10 infections, a total about 600,000 infected
individuals. If the mortality rate is say one percent (data for SARS-Cov-2
is likely higher), than that is 6000 deaths in just one month from this one
disease. The numbers also increase rapidly. It is clear that when such a virus
enters a community, it is necessary to take aggressive action to impede the
spread.

The reproduction ratio Ry can be thought of as the product of the
number of contacts a healthy, or susceptible, person has with an infected
person times the probability of acquiring the virus; the latter almost certainly
increases with the time of contact between individuals; for Ry > 1 the virus
spreads through the population, with an exponential growth in the number
of infected individuals as the previous example indicates. Social distancing
measures, with the extreme being a lockdown on a community, correspond to
a time period during which the effective reproduction number has decreased
significantly and reached values < 1 so that the number of new cases per
day in the community is decreasing. Upon return to work we can expect the
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effective R to increase above its value from the time period of lockdown and
if its value exceeds unity a second wave of the virus is expected. If the latter
occurs, the sooner actions are taken to reduce Ry, the better the chance of
preventing the rapid growth of infections that happened in the first wave.

One important feature to recognize is that Ry is, in part, a social num-
ber. It combines features of the virus, e.g. its infectivity, with how people in
a community interact. Although during the spread of the virus, the estimates
of the reproduction ratio are Ry =~ 2.4 —3, it is possible that social distancing
strategies, e.g. masks, keeping some distance away from people during con-
versations, washing hands regularly, etc. can significantly reduce Ry, though
it is not easy to estimate this reduction of the individual steps or the aggre-
gate of steps. It is clear that mitigation strategies will be more challenging
in high population density regions than in low density communities.

We first illustrate the state of a lockdown to see how the effectiveness
of a lockdown impedes the spread of a virus.

C.2 Basic Model: SEIR for a Single Group

We assume that the population has a fixed number of individuals and for
convenience work with equations representing fractions of the population.
We use a common epidemiological model, which is a system of first-order
ordinary differential equations for the parameters S, E, I, and R, where S
indicates the fraction of the population that is susceptible to the disease,
is the fraction of the population exposed but as yet not infectious, and I is
the fraction of the population who are infectious but not yet symptomatic.
R denotes the fraction of the population who are either symptomatic but
not circulating to infect others (i.e., they are confined to their homes), have
recovered, or have succumbed to the illness. The equations describing the
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system are:

: 1
S=——RySI (C-20a)
TI

o1 1

E=—RySI-—E (C-20b)
I TE

i-te-Ly (C-20c)
TE I

p-lr (C-20d)
Tr

Here Ry describes how strongly S and [ interact in transmitting the disease,
T is the characteristic amount of time a person remains exposed before
becoming infectious, and 7; is the typical time a person remains infectious
before showing symptoms. Following Karin et al.[37], in the simulations re-
ported here, 7z = 3 days and 7; = 4 days, as suggested by data reporting
COVID-19 transmission. It is assumed that after a person show symptoms
and transfers from [ to R, they become sufficiently well isolated that it is
acceptable to approximate them as no longer interacting with the broader
population. The population fractions S(t), E(t), I(t), and R(t) are normal-
ized so that S(t) + E(t) + I(t) + R(t) = 1. For example, I(t) always denotes
the fraction of the population at any time ¢ that is infectious. Similarly, at
any time t the fraction of the population what will soon be, is, or has been
infected is E(t) + I(t) + R(t) = 1 — S(t).

day1 | day2 | day3 | day4 | day5 | day 6 | day 7 day 13 |(day 14 |day 15

work work work "1 9 lockdown lockdown lockdown lockdown lockdown 7T

infected | latent Jatent | PECOMING | e tious |infectious | infectious

infectious infectious | infectious

L infection on first day

Figure 11: Evolution of an infection in SARS-CoV-2. Reference: [37]

C.2.1 Time Course for Development of Symptoms of COVID-19

We utilize a SEIR model (susceptible-exposed-infected-removed), where the
fraction of the population in the different groups is represented by S(t), E(t), I(t)
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and R(t). Two time constants represent the features of a virus that infects a
person. An individual remains asymptomatic for a few days, yet can spread
the virus, and then only somewhat later shows symptoms of the virus. The
typical time variation of infection characteristics of COVID-19 means an in-
fected individual is asymptomatic but infectious 3 days after exposure and
has a peak infectiousness occurring about four days after exposure (Figure
11). In the mathematical model the presence of symptoms is assumed to
remove the worker from the work environment. The assumption are approx-
imately consistent with the current understanding of the virus, e.g. Lauer et
al. estimate a mean incubation period of 5 days, i.e., the time an infected
person has from exposure to showing symptoms (with < 3% showing systems
within 2 days and > 97% showing symptoms within 11 days [17]).

Infectious Population

0.00025

0.00020 —— Lockdown: R0=0.6
0.7
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Figure 12: The infectious population () in the evolution of a virus, with
a time of epidemic growth followed by a lockdown to slow the growth. In
the simulation the epidemic evolved for 10 days with Ry = 2.4, which was
then followed by a lockdown with Ry = 0.6,0.7,0.8,0.9 and 0.95, as shown
by the different curves. The simulation utilized an SEIR model with times
scales Tp = 3 days and 77 = 4 days and an initial value S(0) = 0.9999 and
E(0) = 0.0001.

C.3 Growth of an Epidemic and Lockdown

To appreciate the typical dynamics leading to a return-to-work scenario, we
use the well-known SEIR model to simulate spread of a virus with Ry = 2.4.
In some major cities a partial or complete lockdown was imposed one or two
weeks after infections were recognized in the community, though the virus
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was likely spreading in the community for a longer time. For example, in
New Jersey, on 16 March there were approximately 80 recognized infections
of SARS-CoV-2, and the Governor issued a stay-at-home order effective 21
March.

In the example simulations shown in this section, after 10 days of spread-
ing of the virus, lockdown of the community is imposed and, for simplicity,
though it does not affect qualitative features, Ry was set to a constant value
less than unity. We chose Ry = 0.6 —0.95 and report the fraction of the pop-
ulation that is infectious I(¢) as a function of time in Figure[I2] We observe
that I(t) first grows rapidly (exponentially), peaks a few days after lockdown
begins and then progressively decays. Note that for this example, the peak
in the fraction of the population that is infected is 0.0002. In a community
of 10M, this corresponds to 2000 individuals who are infected circulating in
the community on an given day.

Not surprisingly, following lockdown the rate of decay is tied to the
effectiveness of the lockdown (Ry < 1). It can be shown analytically in the
simple SIR model that in the case the S(¢) &~ 1 (only a small fraction of
the population gets the virus), then for times after lockdown, ¢ > ¢, p, the
infectious fraction changes according to I(t)/I (t;p) = e(Fo=D{t=ten)/m)  {Jge
of published data from virus testing is then one way to estimate Ry during a
period of lockdown, at least if the number of positive cases can be reasonably
associated with the fraction of the population that is infectious.

In addition, we report the total fraction of the population that will
soon be, is or has been infected, 1 — S(t) = E(t) + I(t) + T(t), as shown
in Figure [13] Some fraction of this group will have been hospitalized or will
need hospitalization, of which a smaller fraction will end up in the ICU; a
small fraction of the infected will die. We can see that an exponential, early
time growth period transitions, upon lockdown, to a stage of nearly linear
growth in the total number of infected individuals. For Ry < 1 in lockdown
we expect the virus to to be defeated, at least temporarily, and the rate of
diminution is larger for smaller Ry. Note also that for a successful lockdown,
such as Ry = 0.7 illustrated in Figure the fraction of the population that
has been infected at 80 days reaches about 0.0015, which in a community of
10 million corresponds to 15,000 people.
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Figure 13: Total fraction of the population that will soon be, is, or has been
infected at any time, 1—.5(t), obtained from the same simulations that led to
Figure[11] In the simulation the epidemic evolved for 10 days with Ry = 2.4,
which was then followed by a lockdown with Ry = 0.6,0.7,0.8,0.9 and 0.95,
as shown by the different curves. The simulation utilized an SEIR model with
times scales 7 = 3 days and 7; = 4 days and an initial value S(0) = 0.9999
and F(0) = 0.0001.

C.3.1 An earlier lockdown

In the face of a spreading virus rapid action is key. This will be important if
a second wave were to start but the idea is illustrated with the dynamics at
the start of the epidemic. We use the parameters of the previous example,
Ry = 0.7, but implement a lockdown after 5 days or 8 days, which can
be compared with the lockdown after 10 days. The results for the total
fraction infected (again, in the SEIR description, we calculate this as 1—.S5(t))
as a function of time are shown in Figure [14. The transition away from
the exponential growth following lockdown is apparent. As in the previous
example, if the parameters chosen for the simulation applied to a population
of 10M, then they predict 15,000 total infected individuals if the lockdown
is effected after 10 days, but only about 6500 infected individuals if action
were taken after 5 days.

C.4 Dynamics following a return to work

During successful lockdown the number of infectious individuals decreases.
Any simple return-to-work strategy should be expected to increase the effec-
tive value of Ry. When Ry > 1 the virus will spread again since there remain
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Figure 14: Fraction of the population infected versus time for lockdowns
after 5, 8 or 10 days with Rg = 2.4 initially, which was then followed by a
lockdown with Ry = 0.7. The simulation utilized an SEIR model with times
scales Ty = 3 days and 7; = 4 days and an initial value S(0) = 0.9999 and
E(0) = 0.0001.

infected individuals in the population to trigger a second wave. The rate of
increase is faster the larger the value of Ry is above unity.

To illustrate these points and to highlight how the magnitude of Ry in
the return-to-work phase can have significant influences on the rate of change
of infections in the community we ran SEIR simulations with Ry = 2.4 for
10 days, which was followed by a 40 day lockdown period with Ry = 0.6
(see Figures and where the same initial conditions were used). We
report how different values of Ry in the return-to-work phase affect the time
course of the fraction of the population that is infectious as a function of

time (Figure [15)).

For the values chosen for this simulation, at the peak of the initial phase,
0.02% of individuals were infectious (and present in the community) at about
days 11-12, but by the end of the 40-day lockdown this number had decreased
by a factor of 10. Nevertheless, even if Ry = 1.2, which is estimated to be half
of the current typical value for SARS-CoV-2 at the start of the pandemic,
the number of infectious individuals has almost doubled 30 days later (day
80). By day 100, the increasing rate of infections is evident and the number
of infectious individuals has already reached one third of the value at the
peak near the beginning of the epidemic.

Only slightly larger values of Ry lead to much larger growth rates, be-
cause these responses are exponential, with a rate approximately proportional
to Rg—1. Thus, we can observe in Figure[15]that, when Ry = 1.4 and 50 days
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Figure 15: Fraction of the population that is infectious at any time following
an epidemic, lockdown and a return-to-work phase. In the simulation the
epidemic evolved for 10 days with Ry = 2.4, which was then followed by a
40-day lockdown with Ry = 0.6, after which a return-to-work period began.
The simulation utilized an SEIR model with times scales 7z = 3 days and
71 = 4 days and an initial value S(0) = 0.9999 and E(0) = 0.0001.

into the return-to-work phase, already by day 100, the number of infectious
individuals has exceeded the peak earlier in the epidemic.

Although these simulations are based on a simplistic model they do
highlight that, in the absence of a vaccine, there is not a lot of room for
error in encouraging, implementing, and/or enforcing all manners of social
distancing strategies to try to maintain Ry below unity in a return-to-work
environment. Next, we discuss a strategy that was suggested recently to
return to work using a time periodic work cycle tied to the evolution of the
infection in an exposed individual.

C.5 Model of Karin et al.: A “4:10” Strategy,
C.5.1 The idea of the “4-10” work cycle

Because symptoms will typically show up within about 5 days (Figure ,
Karin et al. offered a strategy for people to work according to a cycle of k
days in the office and 14 — k days in lockdown at home [37]. Before we show
their full model we illustrate how this approach of returning to the office 4
of 10 workdays during a two week period (denoted “4:10”), with higher Ry
during those workdays, is compatible with keeping the virus at bay, and not
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Figure 16: Infectious fraction for different variations of a “4:10” strategy
in a back-to-work phase (individuals working 4 consecutive days every two
weeks). In the simulation the epidemic evolved for 10 days with Ry = 2.4,
which was then followed by a 40-day lockdown after which a return-to-work
period began. The values for Ry during lockdown and workdays are indicated.
The return-to-work phase includes time periods with Ry > 1, yet the 4:10
strategy maintains an effective Ry < 1 so that the infections continue to

decline. The simulation utilized an SEIR model with times scales 75 = 3
days and 7; = 4 days and an initial value S(0) = 0.9999 and E(0) = 0.0001.

triggering exponential growth if the maximum R, though greater than unity,
is not too large. In the model the restricted number of work days has the
feature that it maintains an effective value of Ry < 1.

We ran the SEIR model as illustrated above (10 days of epidemic, then
40 days of lockdown, followed by a return to work), but this time implement-
ing a return-to-work phase with with the “4:10” strategy. We chose various
combinations of Ry during lockdown and during workdays, respectively, as
{ Ripckdown Ruerkl — {0.9,1.4},{0.8,1.3},{0.7,1.2}. The state at the end of
lockdown is shown in Figure [11}]

The typical results for these values of RP*°"® are shown in Figure [16]
In each case the workdays have Ry, > 1, yet for the two simulations with
the smaller Ry at lockdown, the fraction of infectious individuals, though
now oscillatory, continues to decrease during the back-to-work phase. In the
case of {Ry<do™ Ryokl = {0.9,1.4} we see that the effective value of Ry
during the two-week cycle is sufficiently large that the fraction of infectious
individuals increases.

This “4-10” strategy suggests that outside of lockdown social distancing
should limit the incremental increase in the reproduction ratio to approxi-
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mately ARO = % (1 _ R%)ockdown)‘ For R%)ockdown — 0.8 this allows Rsvork — 157
for which the simulation is shown in Figure [I6] In fact, the return-to-work
curve is slowly decreasing in this case.

C.5.2 Two halves of the community in “4-10” cycles

One strategy towards a restart is to bring part of the work force back part of
the time so as to maintain a work environment with a relatively low density,
thus contributing towards reduced contacts. For example, the work force
can be divided into two or three non-mixing groups and each group can
work a set number of days followed by a period of workdays at home or
a furlough. Karin et al. [37] used SEIR-type models to predict how the
number of infected people (the workers) in a population varies in time if a
work schedule is implemented with k days at work and 14 — k days of social
isolation (“lockdown”), i.e., at the end of each day the workers return home
during which they are assumed to have a lower level of contacts than in the
workplace (e.g. family, shopping, etc.).

When applied to an entire population with half in each group, Karin
et al. [37] find, with some assumptions about the values of Ry for each group,
that with little mixing between the two groups, a 4-day work schedule, fol-
lowed by a 10-day lockdown leads to a nearly steady decrease (small oscil-
lations are present similar to Figure in the number of infections in the
population. Thus, people are working 4 days every other week. The model
result is a consequence of the fact that anyone infected at work subsequently
is isolated at home for most if not all of their infectious period, and of course
would not return to work until recovered. The 4:10 cycle has an effective
Ry < 1 though it should be kept in mind that the model had little mixing
between the two groups.
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D Daily testing at the start of the workday

In this section, we illustrate a five-fold reduction in exposure for daily tests
administered at the start of the workday as opposed to at the end of the
workday.

The crucial times are when the last negative test was taken, and when
the first positive test is taken, and when it is reported. Take 0 to be the
time when the last negative was taken, tg (S for sick) when the first negative
test result becomes known, and ¢y for when the first negative test is taken.
We assume the person becomes sick at some random time t; in the interval

0, ty].

Let f,(t) be 1 when the person is at work, and 0 when the person is
not at work. Let f;(t — to) be infectivity of the person at time ¢t. f;(t) =0
for t < ty, and it increases monotonically to 1. (Eventually it goes back to 0,
but we will only care about the time up to tg when presumably the person
is still infectious.)

Then the expected amount of time at work when the person is infectious
is

/ "t / T — to) fu ()bt (D-21)

The inner integral is the exposure time if the person becomes infectious
at tg, and the outer integral averages that over the time from 0 to ¢y, by
which time the person has become sick.

The first case has tests that are done in real time (ty = tg = 1) just
before work and every day, measuring time in days. Further assume f, is
1 for the first 8 hours (1/3 of a day), and 0 thereafter. Then the expected
exposure time is

1/3 p1/3 1/3  p1/3—to
/ / Filt — to)dtdty = / / fi()dwdto. (D-22)
0 to 0 0

If fi(z) =1 when z > 0, this integral is 1/18 of a day, which is 4/3 hours.

In the other scenario the tests are taken at the end of the work day, so
ty = 1, and reported at the beginning of the next work day, so ts = 5/3,
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once again assuming an 8 hour work day. Now f, is 0 until the work day
starts, which is overnight, when ¢ = 2/3, and then it is 1 until the work day
ends at t = 1, and then 0 again overnight. So the expected exposure time is

1 1 1 1
/ / fz(t - tO)fw(t)dtdto = / / f1<t — to)dtdto. (D—23)
0 Jto 0 Jmax(to,2/3)

This breaks into two pieces,

2/3 pl 1,1
/ fi(t — to)dtdty + / filt — to)dtdtg
0 2/3 2/3 Jto

If once again we assume f;(x) = 1 when z > 0, the first integral is 2/9, the
second integral is 1/18, and the total expected exposure time is 5/18, which
is 5 times as much as the first case.

If f; doesn’t jump to 1 instantaneously, the contrast is even worse. The
first case uses the values of f;(x) for small z, up to 1/3. The first integral in
the second case uses the values of f;(z) for x bigger than 2/3.
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E Pooled testing

Suppose there is a probability I that a person is infected and so a probability
H =1-1=1 that a given person is healthy.

Suppose we need to test N>>1 people to determine who is infected.
Further suppose the test is perfect and that a given person’s health status is
independent of that of the others.

Adopt the protocol that samples will be pooled into G groups of M
members each so that GM = N. Further, if a given group tests positive,
follow up tests will be done on each of the M member of the group.

The probability that a given group is positive (i.e., contains at least one
infected individual) is (1 - H¥), so that the total number of tests that need
to be performed on average is

G[l + M(1— H™)] (E-24)

where the first term are the pooled tests and the second are the M
individual followup tests that need to be done if a group tests positive. Since
G = N/M, the total number of tests that need to be done is

N[M™ + (1 - HM)]. (E-25)

Comparing this to the N individual tests that would need to be done if
there were no pooling, we find the pooling efficiency € to be given by

el =M1+ (1-HM) (E-26)

Determining the group size M* that maximizes e involves a transcen-
dental equation. But for IM << 1, (i.e., it’s rare to find a group with an
infected member), there is a simplification: the factor in parentheses is

LHY =1-(1-DM~IM (E-27)
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In that case,

el=(M"+1IM). (E-28)

The maximal efficiency €* is maximized at M*= I3 , so that IM* = I2
1
and €* :% |

In the case that I = 0.01, the optimal group size is M* = 10, the proba-
bility that a group tests positive is IM* = 0.1, and the total number of tests
required is reduced by a €* = 5.

Some comments:

1. When I is larger than 0.01, pooled testing (at least for the protocol
chosen) doesn’t make much sense. If I = 0.1, then the optimal M* =
3, and the efficiency is € = 1.5. At this level, the logistical challenges
created by pooling do not justify the efficiency gain.

2. When I is very small, there appears to be a potential for a large benefit.
If I = 0.0001, then M* = 100 and €¢* = 50. But, in fact, the groups
can’t get too large since a single positive would get too diluted to be
detected reliably. Current PCR tests can handle up to M = 10, which
is the optimum for I = 0.01.

3. Group testing is a mature subject https://en.wikipedia.org/wiki/
Group_testing and no doubt there are protocols that are even more
efficient than chosen here, but none simpler. They can be tailored
to where the bottlenecks are (sample collection, insufficient reagent,
preparation time, etc.).

4. It will make sense to choose groups that are in close contact (e.g.,
families living together or co-workers). If there’s one infected, likely
more are, so the signal would be amplified. And if the pooled sample
tests positive, the whole group should be assumed to be exposed and
so quarantined while individual testing is performed.
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E.1 Incorporating test imperfections

A test will be characterized by Pp, the probability of detection (also called
the sensitivity) and Pg4, the probability of a false alarm (a false positive).
An imperfect test has Pp <1 and finite, but hopefully small, Pg4.

For such an imperfect test, the average number of tests required for the
protocol outlined above is

G[1+ M(1 — H™)Pp + MHM Pp 4] (E-29)

Here, the first term is the initial test of the group, the second corresponds
to having to test the whole group when there is a true positive, and the third
is having to test the whole healthy group when there’s a false alarm in the
group test. Then the efficiency will be

et =M1+ (1 - H"YPp + HY Ppy] (E-30)

For MI< <1, this can be approximated by

¢t =[M"" + MI(Pp — Ppa) + Ppal (E-31)

A crucial question is how Pp and Pgy depend upon dilution (i.e., the
group size M). P4 is the probability of a false alarm in the test of an entirely
healthy group — it seems plausible that this will be independent of M. It also
can’t be too large, lest the test be essentially useless. On the other hand,
Pp is the probability of detecting at least one infected individual in a sample
diluted M-fold. Given the non-linear amplification of PCR, it’s plausible to
take Pp as independent of M up to some cutoff M, and then zero for larger
values of M. Under these assumptions, the efficiency can be maximized as
before to find

M* = min{Me¢, [I(Pp — Pra)] 2} (E-32)

and
6*:[M*il—i-M*I(PD—PFA)—l—PFA]il (E—33)
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It’s reasonable to suppose that any test will be operated conservatively

to put Pp close to 1 while tolerating some level of false alarms. As an
example, Figures [17 and [I§ below show how M* and €* vary with I and Pry4
when M = 10 and Pp = 1.

Optimal group size M* for various P,

PFA = — ) c—(.05 e ()1 0.15 —()) —(25 ——3

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Infection rate /

Figure 17: Optimal group size M* for various Pr4; Mg = 10 and Pp = 1.

Group Test Efficiency €* for various Pg,

Ppp= =0 ===005 =01 0.15 emm()) em().25 em—(.3

: k

0.005 0.01 0015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Infection rate /

Figure 18: Optimal group size ¢* for various Prs; M¢ = 10 and Pp = 1.

The optimal group size depends only weakly on the false alarm rate,
while the group test efficiency degrades considerably as PFA increases. In
sum, at least with the testing protocol as defined and for plausible false alarm
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rates, group testing would be useful only for infection rates less that about

1%.
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F Marginal risk from COVID-19

This brief note estimates the added risk of death due to COVID-19 as a
function of age. The result depends on factors that are as yet not well
established.

The Social Security administration publishes a tabulation of annual mor-
tality risk vs. age for the U.S. populationff|] The fraction of the population
in each 1 year age bin that die per year, as a function of age, is plotted in
Figure [19]

The Infection Fatality Ratio (IFR) is the fatality rate for all those in-
fected with COVID-19. The Case Fatality Ratio (CFR) refers to the fatality
rate for diagnosed COVID-19 cases, regardless of symptoms. Figure[20|shows
the CFR estimates from CDC, along with a quadratic fit. The IFR is always
greater than the CFR and in the following the CFR is used as a lower bound
on the IFR.

The rate at which the US population is contracting COVID-19 was
drawn from data at Oxford Universityf’| They estimate that 1.6 million cases
were contracted in the 60 day interval between April 1 and May 30, with a
very linear trend. At this rate we should expect 9.7 million additional cases
each year, which is a fraction of 9.7E6/320E6 = 3% of the population infected
per year.

Under the assumption that the rate of infection is age-independent, we
can compare the mortality risk from COVID-19 (the infection rate times the
CFRAfit in each age bracket) to that of all other causes.

As an example, a 60 year old man, the death probability over one year
is 0.0115/y and the COVID-19 CFR is 0.018. With a 3%/y age independent
infection rate per year, the probability a 60 year old man dying of a COVID-
19 infection is 0.00054/y and increases the probability of his dying that year
to 0.01180/y, a 4.5% marginal risk, the increase in his probability of dying
that year. The probability of a 60 year old man succumbing given that he
has been infected by COVID-19 that year is 0.0303/y, a 60% increase over
the pre-COVID-19 probability of 0.0118/y. If half of COVID-19 cases go
undiagnosed, the IFR for a 60 year old man is 0.009 and the marginal risk is

8https://www.ssa.gov/oact/STATS/table4c6_2016.html#fnl
9nttps://ourworldindata.org/mortality-risk-covid

82


https://www.ssa.gov/oact/STATS/table4c6_2016.html#fn1
https://ourworldindata.org/mortality-risk-covid

Managing the Risk from COVID-19

August 25, 2020

Percent Mortality, per year

10 T T T

Figure 19: Mortality (fraction of cohort that dies, per year)

age. From Social Security Administration.
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Figure 20: Case Fatality Ratio (CFR) estimates from CDC, for symptomatic
cases, along with a quadratic fit.
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Figure 21: Marginal risk from COVID-19 as a function of age assuming a 3%
infection rate and the CFR from Fig.

2.25%.

Conclusions:

1. The marginal annual mortality risk increase at the current infection
rate is a few percent, Fig [21]

2. Despite the well-publicized age-dependence of COVID-19 outcomes,
this marginal risk is surprisingly age-independent.
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G Expected utility for decision-making

Aerosol transmission may be an important part of the way the SARs-CoV-2
virus spreads. Evans [19] and Section |3| provide a means of assessing relative
risk to aerosol transmission for those working or learning in labs with fresh
air changes or filtering. This note provides a method for computing the
relative risk for different numbers of people in a room and an example using
the method of Evans [19] in order to assess risk as a function of parameter
variations. A research group has N people and the PI must decide how many,
u, will work at the same time in a laboratory. f is the poorly known infection
rate among the N researchers in the group and ¢, is the time between infection
and the appearance of symptoms. Reducing the number of transmissions of
the SARS-CoV-2 virus between group members while working in the lab is
the PI's goal. The time rate of transmission in the lab, ¢ may be calculated
using the Evans [19] method and depends on air-changes in the room, the
virus lifetime as an aerosol, and so on. A workday in the lab is 7.

If w =0 or u =1, transmission cannot take place. If the PI chooses
to have two people in the room, then the probability none are infected is
(1-— fto)z, that one is infection 2 (1 — ft,) ft,, and that both are infected
( ftO)Z. Transmission occurs if one researcher is infected and the other is
not and the probability is g7. The combined probability for transmission to
occur if the PI chooses to have two people in the lab is 2 (1 — ft,) ftogT for
one day of work.

In general,
P (uchosen|minfected) = P (ulm) = (u>ft£” (1— fto) ™.
m

With m infected and u — m uninfected, there are m (u — m) ways transmis-
sion can occur and g7 (1 — g7)" " m (u —m) gives the probability for one
transmission. If ugr << 1, then two transmissions are unlikely compared to
one transmission and the probability is grm (u — m):

P (> 1transmission u chosen|m infected) = P (1,u|m)

— ( )ftgn (1= fto) ™ grm (u—m)

u
m
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No. in P (1l,u) P(1,u)

room, u 550 seat lecture 400 sq. ft. lab
2 1 2.6 x 107 0.00013

3 3 7.7 %1076 0.00038

4 6 0.00015 0.00076

) 10 0.000025 0.00113

10 45 0.00011 0.0057

30 435 0.0011 0.055

100 4,950 0.012 > 1 transmission

Table 2: Relative and absolute infection rates per hour. For the absolute
probabilities, the number gives the probability of one transmission per hour,
> 1 transmission means more than one transmission per hour is likely.

and summing over m gives for one or more transmissions between u people,

P(lyu) =

u—1
Uu u—m
( )ftg” (1—fto)" " grm(u—m) (G-34)
m
m=1
Though important parameters, f, t,, and g remain uncertain, Eq.
still gives an important result for the probability of transmission relative to
the probability of transmission with just two people in the room,
P(liu) 1

P (l,u) = m = U (u—1) (G-35)

Table [2 gives the increased relative risk as people are added to the room.

The absolute probability P (1,2) depends on the infection rate between
two people g, the infection rate of the research group f, and t,, the time
between infection and symptoms. In the state of Massachusetts, on May
12, there were 1,000 new cases per day for a population of 6.7 million. The
daily new cases result from testing, giving a lower limit of f > 0.00015/day,
as many infections go untested and unreported. t, = 5.1 + 0.7 days [17].
Evans [19] Egs. 1 and 8 gives g for a specific room. Table |3 gives the model
parameters for a typical lab and 500 seat lecture room.

Table [2 gives the absolute probabilities per hour of exposure for a lab
and lecture hall in the right columns. If researchers in a lab do not have
much contact outside of the group for ~ 2 weeks or 80 hours, confidence
builds that they are not and unlikely to become infected. For five people
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Parameter Lab Room Lecture Room

400 sq. ft. 551 seats, 5,728 sq. ft.
Tsre 1 nL/min 1 nL/min
Troom 445 m?/h 21,000 m?3/h
t 1h 1h
g 0.078/h 0.0025/h
P(1,2) 0.00013 2.6 x 1076

Table 3: Model parameters for a typical lab room and large lecture room
for Evans [19] Eq. 8.

working together for 80 hours have a group probability of 9% of becoming
infected. For a large lecture hall, a term of lectures is 42 hours of lecture (14
weeks, 3 hours per week), so a group of 100 people have a probability of 40%
of transmitting one infection between two members.

Knowing the probability of transmitting a single COVID-19 infection,
to create one additional case, does not help decision makers very much. They
need to balance the damage from an additional case against the gain from
operating in an environment that allows a case to be transmitted. This memo
lays out one method of balancing the gain and loss.

Ernst Weber (1795-1878) and his student Gustav Fechner (1801-1887)
were pioneers of psychophysics — the study of human perception of physical
stimulus. Their body of work has been applied to the wider realm of human
endeavor including perception, finance, and numerical cognition. The Weber-
Fechner law relates perception p with stimulus .S,

S
p nSO

where S, is a reference stimulus value. For S = S,+0 and 6 < S,, p ~ kd/S,.
k is a constant.

Daniel Bernoulli (1700-1782) employed similar ideas to the St. Peters-
burg Paradox,

“The determination of the value of an item must not be based on
the price, but rather on the utility it yields. There is no doubt
that a gain of one thousand ducats is more significant to the
pauper than to a rich man though both gain the same amount.”
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to lay the groundwork for expected utility theory. Expected utility theory
takes into account the human perception of gain or loss as proportional rather
than absolute. This work uses the same notion.

The following is a calculation of expected utility of adding another lab
of the type described in above. A number u of researchers share the lab for
80 hours, two work weeks, after which time we could conclude that none
are infected and will not become infected if they follow proper safety proce-
dures. If one of the researchers turns out to be infected, the probability of
one COVID-19 transmission between two researchers during their 80 hours
together is,

1
Ptrans = éu (u - ]-)p (17 2)

and p (1,2) = 0.00013 for a set reference parameters in [19]. For u researchers,
the expected gain of being able to work together in the lab is Ag=80u hours.
Over the same two weeks, the total research capacity of a medium sized
research university (10,000 faculty, staff, and student researchers) operating
at 25% capacity is g =196,400 hours. If, as a result of the u researchers
working together, an infection occurs, there are two losses: Al; = 80 hours
of lost research, out of [y = 196,400 hours and the personal time lost to the
researcher. If the researcher is 30 years old, they have a life expectancy of
ly =47 years and will lose Aly, = 336 hours of their life, assuming a two week
course of COVID-19. The expected utility is then,

g+ Ag (l1+All l2—|—Al2)
—pln + :
g [ Iy

Fig. 22| shows E (u) as a function of u for different fractions of p(1,2) =
0.00013: p(1,2) has to be reduced by a factor of 3 for two people working in

the lab to yield a positive return and a reduction of 30 yields would have 10
people working in the lab as a maximum expected utility.

E(u) = (1 =p)(u)n

The analysis above also considers a 550 seat lecture room with a p (1,2) =
2.6 x 107%. The gain in this case comes from the exposure of u students to
a term of lectures (14 weeks, 3h per week), Ag = 42u. A medium sized
university with 4,350 students each taking one large lecture course will have
g = 190, 260 student lecture hours.

Three loss terms occur in the case of an infection: the loss of a term of
instruction in the case of an infection, Al; = 42, I; = 761,040, the loss of
Aly = 336 hours of health by a 20 year old student with a life expectancy of
la = 490, 560 hours=56 years and, with probability of 1/u, the 60% marginal
probability of the loss of the life of a 60 year lecturer, whose non-COVID-19
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Figure 22: Expected utility as a function of the number of people in the lab
for an 80 hours. The dots indicate integral numbers of people.

annual probability of death is I3 = 0.0119] Fig. 23| and Fig. 24] shows that
at nominal values, the expected utility is largest with 8 people in the lecture
room, and if p(1,2) can be reduced by a factor of 10, about 66 people can
be in the lecture room. Fig. shows the threat to the life of the lecturer
does not dominate the expected utility owing to the 1/u probability that the
lecturer is the one on the receiving end of the infection transmission.

These two examples considered the incremental increase in the expected
utility from adding a lab or lecture and the increment is small because Ag <
g. A lab or campus wide optimization over all venues F; each populated by
u; people and maximizing,

E(uy, ..., up) :ZEi(ul,...,un)
i=1

to find the optimal set of venue populations u;. F; embodies the physical
characteristics of the i*” lab or lecture room and depends uq, ..., u, through
the total gain or loss. The process could be tiered by defining set of top
priority rooms and optimizing for them first, then optimizing for a second
tier and so on.

10 Appendix [F| gives a non-COVID-19 mortality rate of 0.011 and a case fatality rate of
0.018 for a 60 year old, so given that a 60 year contracts COVID-19, their mortality rate
increases by 60%.
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Figure 23: FExpected utility as a function of the number of people in a 551
seat lecture hall for different values of p (1, 2).
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Figure 24: FExpected utility as a function of the number of people in a 551

seat lecture hall, breaking out losses from the lecturer only (orange), everyone
aside from the lecturer (green) and total (blue).
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The loss and gain may be separately weighted,

L+AL b+ Al
+ .
l ly

g+ Ag

B =a-p) 20 gy (
to reflect that the gain in productivity may be valued less than the loss from a
transmission of the disease, o < 3. Determining the weights before carrying
out the calculation reduces the bias in the relative valuation of the gain and
loss.
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H Simple analysis of the impact of false-positive
tests

This section considers the using of testing at low disease prevalence (<10%)
when the test has a high false-positive rate.

N is the population size, f is the fraction of the population who have
been infected but not yet showing symptoms, g is the fraction of the popu-
lation that can be tested at any one time, and h is the fraction of tests that
return positive for an uninfected patient. In this model, an infected patient
always tests positive. The false positive tests follows a Poisson distribution.

The number of infected people is N f and N fg is the number of true
positives. The number of false positive tests is N (1 — f)gh. Then s =
Nfg/\/N (1= f)gh=+/Nf2g/(1— f)his the significance of the false pos-
itive tests — the number of standard deviations above the mean background
of N (1 — f)gh false positives tests that N fg tests lie. For a specified sig-
nificance, h = N f2g/(1 — f)s? gives the false positive rate that may be
tolerated while still yielding a specified significance s. Figure provides
and example for N = 10, 000.

Figure 25| illustrates how false positives affect the value of a test. First
we consider the case with a university with 10,000 researchers and 1% of
its population infected but pre-symptomatic. If the university is able to
test 10% of its population (green square), the contour indicates that a test
false-positive rate of no more than 10% can be tolerated before the true-
positive rate becomes less than one standard deviation above the expected
false positive rate, Fig. [25] green square.

A second scenario considers the university is able to test 30% of its
population by using a different test having a false-positive rate of 20%. The
infection rate is still 1% (red star on figure), and the figure shows the testing
program will yield a significant infection signal as a 30% false positive rate
can be tolerated.

Finally, things take a turn for the worst and the university has 2.5%
infection rate (blue circle on figure), and the university achieves a 30% testing
rate. In this case the true positives swamp the false positive results and the
presence of false positive tests cannot be discerned over the much higher rate
of true positive test results.
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Figure 25: Contour plot for N = 10,000 tests. The contours are lines of
constant false positive fraction h. The star is an example showing that for
a f=1% infection rate and a test fraction of g of 3%, a false positive rate of
h =30% or less is required for a true positive test signal to lie one standard
deviation above background (s = 1). Other symbols for scenarios explained
in the main text.
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Version History

e July 2, 2020 - Initial public release

e July 10, 2020 - Second public release. Clarification added to Appendix

F text and caption of Fig. 21. Error corrected in Appendix H and Fig.
25. Several typos corrected.

e August 15, 2020 - Third public release. An error in the vertical scale

of Figure 3] and figure-derived findings on ACH, were corrected. Cor-
rection in wording made in Appendix H.
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