ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Proteomics as a Complementary Tool for Identifying Unintended Side Effects Occurring in Transgenic Maize Seeds As a Result of Genetic Modifications

View Author Information
Department of Environmental Sciences, University of Tuscia, Viterbo, Italy, and Department of Chemistry, Materials and Engineering Chemistry “Giulio Natta”, Polytechnic of Milan, Milan, Italy
* Corresponding author: Prof. Dr. Lello Zolla, University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy. Phone: 0039 0761 357100 . Fax: 0039 0761 357179. E-mail: [email protected]
‡University of Tuscia.
§Polytechnic of Milan.
Cite this: J. Proteome Res. 2008, 7, 5, 1850–1861
Publication Date (Web):April 5, 2008
https://doi.org/10.1021/pr0705082
Copyright © 2008 American Chemical Society

    Article Views

    1475

    Altmetric

    -

    Citations

    113
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    To improve the probability of detecting unintended side effects during maize gene manipulations by bombardment, proteomics was used as an analytical tool complementary to the existing safety assessment techniques. Since seed proteome is highly dynamic, depending on the species variability and environmental influence, we analyzed the proteomic profiles of one transgenic maize variety (event MON 810) in two subsequent generations (T05 and T06) with their respective isogenic controls (WT05 and WT06). Thus, by comparing the proteomic profiles of WT05 with WT06 we could determine the environmental effects, while the comparison between WT06 and T06 seeds from plants grown under controlled conditions enabled us to investigate the effects of DNA manipulation. Finally, by comparison of T05 with T06 seed proteomes, it was possible to get some indications about similarities and differences between the adaptations of transgenic and isogenic plants to the same strictly controlled growth environment. Approximately 100 total proteins resulted differentially modulated in the expression level as a consequence of the environmental influence (WT06 vs WT05), whereas 43 proteins resulted up- or down-regulated in transgenic seeds with respect to their controls (T06 vs WT06), which could be specifically related to the insertion of a single gene into a maize genome by particle bombardment. Transgenic seeds responded differentially to the same environment as compared to their respective isogenic controls, as a result of the genome rearrangement derived from gene insertion. To conclude, an exhaustive differential proteomic analysis allows to determine similarities and differences between traditional food and new products (substantial equivalence), and a case-by-case assessment of the new food should be carried out in order to have a wide knowledge of its features.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Table of peptide sequences obtained by MS/MS experiments from T06 versus WT06 comparison. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 113 publications.

    1. Weijuan Tang, Jan Hazebroek, Cathy Zhong, Teresa Harp, Chris Vlahakis, Brian Baumhover, and Vincent Asiago . Effect of Genetics, Environment, and Phenotype on the Metabolome of Maize Hybrids Using GC/MS and LC/MS. Journal of Agricultural and Food Chemistry 2017, 65 (25) , 5215-5225. https://doi.org/10.1021/acs.jafc.7b00456
    2. Subhra Chakraborty, Ghasem Hosseini Salekdeh, Pingfang Yang, Sun Hee Woo, Chiew Foan Chin, Chris Gehring, Paul A. Haynes, Mehdi Mirzaei, and Setsuko Komatsu . Proteomics of Important Food Crops in the Asia Oceania Region: Current Status and Future Perspectives. Journal of Proteome Research 2015, 14 (7) , 2723-2744. https://doi.org/10.1021/acs.jproteome.5b00211
    3. Hamid Baniasadi, Chris Vlahakis, Jan Hazebroek, Cathy Zhong, and Vincent Asiago . Effect of Environment and Genotype on Commercial Maize Hybrids Using LC/MS-Based Metabolomics. Journal of Agricultural and Food Chemistry 2014, 62 (6) , 1412-1422. https://doi.org/10.1021/jf404702g
    4. Lalit Agrawal, Kanika Narula, Swaraj Basu, Shubhendu Shekhar, Sudip Ghosh, Asis Datta, Niranjan Chakraborty, and Subhra Chakraborty . Comparative Proteomics Reveals a Role for Seed Storage Protein AmA1 in Cellular Growth, Development, and Nutrient Accumulation. Journal of Proteome Research 2013, 12 (11) , 4904-4930. https://doi.org/10.1021/pr4007987
    5. Chun Yan Gong, Qi Li, Hua Tao Yu, Zizhang Wang, and Tai Wang . Proteomics Insight into the Biological Safety of Transgenic Modification of Rice As Compared with Conventional Genetic Breeding and Spontaneous Genotypic Variation. Journal of Proteome Research 2012, 11 (5) , 3019-3029. https://doi.org/10.1021/pr300148w
    6. Angelo D’Alessandro and Lello Zolla . We Are What We Eat: Food Safety and Proteomics. Journal of Proteome Research 2012, 11 (1) , 26-36. https://doi.org/10.1021/pr2008829
    7. Geisi M. Balsamo, Gabriela C. Cangahuala-Inocente, Jean B. Bertoldo, Hernán Terenzi, and Ana C. M. Arisi . Proteomic Analysis of Four Brazilian MON810 Maize Varieties and Their Four Non-Genetically-Modified Isogenic Varieties. Journal of Agricultural and Food Chemistry 2011, 59 (21) , 11553-11559. https://doi.org/10.1021/jf202635r
    8. Rong Liu, Hari B. Krishnan, Wentong Xue, and Chuyi Liu . Characterization of Allergens Isolated from the Freshwater Fish Blunt Snout Bream (Megalobrama amblycephala). Journal of Agricultural and Food Chemistry 2011, 59 (1) , 458-463. https://doi.org/10.1021/jf103942p
    9. Mikko J. Anttonen, Satu Lehesranta, Seppo Auriola, Richard M. Röhlig, Karl-Heinz Engel, and Sirpa O. Kärenlampi . Genetic and Environmental Influence on Maize Kernel Proteome. Journal of Proteome Research 2010, 9 (12) , 6160-6168. https://doi.org/10.1021/pr100251p
    10. Fabiana Piccioni, Donatella Capitani, Lello Zolla and Luisa Mannina . NMR Metabolic Profiling of Transgenic Maize with the Cry1A(b) Gene. Journal of Agricultural and Food Chemistry 2009, 57 (14) , 6041-6049. https://doi.org/10.1021/jf900811u
    11. Mariasole Di Carli, Maria Elena Villani, Giovanni Renzone, Luca Nardi, Alessandra Pasquo, Rosella Franconi, Andrea Scaloni, Eugenio Benvenuto and Angiola Desiderio . Leaf Proteome Analysis of Transgenic Plants Expressing Antiviral Antibodies. Journal of Proteome Research 2009, 8 (2) , 838-848. https://doi.org/10.1021/pr800359d
    12. Alberto Finamore, Marianna Roselli, Serena Britti, Giovanni Monastra, Roberto Ambra, Aida Turrini and Elena Mengheri. Intestinal and Peripheral Immune Response to MON810 Maize Ingestion in Weaning and Old Mice. Journal of Agricultural and Food Chemistry 2008, 56 (23) , 11533-11539. https://doi.org/10.1021/jf802059w
    13. Rafael Fonseca Benevenuto, Caroline Bedin Zanatta, Friedrich Waßmann, Michael F. Eckerstorfer, Sarah Zanon Agapito-Tenfen. Integration of omics analyses into GMO risk assessment in Europe: a case study from soybean field trials. Environmental Sciences Europe 2023, 35 (1) https://doi.org/10.1186/s12302-023-00715-6
    14. Michael N. Antoniou, Claire Robinson, Irina Castro, Angelika Hilbeck. Agricultural GMOs and their associated pesticides: misinformation, science, and evidence. Environmental Sciences Europe 2023, 35 (1) https://doi.org/10.1186/s12302-023-00787-4
    15. Sinan Meriç, Alp Ayan, Çimen Atak, Şule Arı. Profile-based proteomic investigation of unintended effects on transgenic and gamma radiation induced mutant soybean plants. Genetic Resources and Crop Evolution 2023, 70 (7) , 2077-2095. https://doi.org/10.1007/s10722-023-01560-5
    16. Rafael Fonseca Benevenuto, Hermoine Jean Venter, Caroline Bedin Zanatta, Rubens Onofre Nodari, Sarah Zanon Agapito-Tenfen. Alterations in genetically modified crops assessed by omics studies: Systematic review and meta-analysis. Trends in Food Science & Technology 2022, 120 , 325-337. https://doi.org/10.1016/j.tifs.2022.01.002
    17. Rubén Agregán, Noemí Echegaray, María López Pedrouso, Mirian Pateiro, Daniel Franco Ruiz, Jose M. Lorenzo. Proteomic advances in crop improvement. 2022, 79-112. https://doi.org/10.1016/B978-0-323-90889-4.00012-9
    18. Sami Saadi, Nazamid Saari, Hasanah Mohd Ghazali, Sabo Mohammed Abdulkarim, Azizah Abdul Hamid, Farooq Anwar. Gluten proteins: Enzymatic modification, functional and therapeutic properties. Journal of Proteomics 2022, 251 , 104395. https://doi.org/10.1016/j.jprot.2021.104395
    19. Rubén Agregán, Noemí Echegaray, María López-Pedrouso, Rana Muhammad Aadil, Christophe Hano, Daniel Franco, José M. Lorenzo. Proteomic Advances in Cereal and Vegetable Crops. Molecules 2021, 26 (16) , 4924. https://doi.org/10.3390/molecules26164924
    20. Sarah Zanon Agapito-Tenfen, Miguel Pedro Guerra, Rubens Onofre Nodari, Odd-Gunnar Wikmark. Untargeted Proteomics-Based Approach to Investigate Unintended Changes in Genetically Modified Maize for Environmental Risk Assessment Purpose. Frontiers in Toxicology 2021, 3 https://doi.org/10.3389/ftox.2021.655968
    21. Weixiao Liu, Hao Chen, Liang Li, Mei Dong, Zhe Zhang, Yusong Wan, Wujun Jin. Proteomic analysis of the seeds of transgenic rice lines and the corresponding nongenetically modified isogenic variety. Journal of the Science of Food and Agriculture 2021, 101 (5) , 1869-1878. https://doi.org/10.1002/jsfa.10802
    22. Sara Hejri, Azam Salimi, Mohammad Ali Malboobi, Foad Fatehi. Comparative proteome analyses of rhizomania resistant transgenic sugar beets based on RNA silencing mechanism. GM Crops & Food 2021, 12 (1) , 419-433. https://doi.org/10.1080/21645698.2021.1954467
    23. Allison K. Wilson. Will gene-edited and other GM crops fail sustainable food systems?. 2021, 247-284. https://doi.org/10.1016/B978-0-12-816410-5.00013-X
    24. Adam C Faller, Prasad Kesanakurti, Thirugnanasambandam Arunachalam. Fraud in grains and cereals. 2021, 281-308. https://doi.org/10.1016/B978-0-12-817242-1.00007-5
    25. Burcu Guldiken, Simge Karliga, Esra Capanoglu, Perihan Yolci-Omeroglu, Senem Kamiloglu. Food traceability. 2021, 249-268. https://doi.org/10.1016/B978-0-12-819493-5.00009-1
    26. Sina-Elisabeth Ben Ali, Agnes Draxler, Diana Poelzl, Sarah Agapito-Tenfen, Rupert Hochegger, Alexander G. Haslberger, Christian Brandes. Analysis of transcriptomic differences between NK603 maize and near-isogenic varieties using RNA sequencing and RT-qPCR. Environmental Sciences Europe 2020, 32 (1) https://doi.org/10.1186/s12302-020-00412-8
    27. Weixiao Liu, Liang Li, Zhe Zhang, Mei Dong, Wujun Jin. iTRAQ-based quantitative proteomic analysis of transgenic and non-transgenic maize seeds. Journal of Food Composition and Analysis 2020, 92 , 103564. https://doi.org/10.1016/j.jfca.2020.103564
    28. Nataliia Kutsokon, Maksym Danchenko, Ludovit Skultety, Juraj Kleman, Namik Rashydov. Transformation of hybrid black poplar with selective and reporter genes affects leaf proteome, yet without indication of a considerable environmental hazard. Acta Physiologiae Plantarum 2020, 42 (5) https://doi.org/10.1007/s11738-020-03072-6
    29. Yanhua Tan, Jiaming Zhang, Yong Sun, Zheng Tong, Cunzhi Peng, Lili Chang, Anping Guo, Xuchu Wang. Comparative Proteomics of Phytase-transgenic Maize Seeds Indicates Environmental Influence is More Important than that of Gene Insertion. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-44748-5
    30. Xujing Wang, Xin Zhang, Jiangtao Yang, Xiaojing Liu, Yaya Song, Zhixing Wang. Genetic variation assessment of stacked-trait transgenic maize via conventional breeding. BMC Plant Biology 2019, 19 (1) https://doi.org/10.1186/s12870-019-1956-y
    31. Dhanashree Amane, Laxmi Ananthanarayan. Application of two-dimensional gel electrophoresis technique for protein profiling of Indian black gram varieties and detection of adulteration in black gram-based food products using comparative proteomics. Food Chemistry: X 2019, 3 , 100051. https://doi.org/10.1016/j.fochx.2019.100051
    32. Becky Talyn, Rachael Lemon, Maryam Badoella, Darwin Melchiorre, Maryori Villalobos, Raquel Elias, Kelly Muller, Maggie Santos, Erik Melchiorre. Roundup®, but Not Roundup-Ready® Corn, Increases Mortality of Drosophila melanogaster. Toxics 2019, 7 (3) , 38. https://doi.org/10.3390/toxics7030038
    33. Jing Jiang, Fei Xing, Chunyu Wang, Xiangxiang Zeng, Quan Zou. Investigation and development of maize fused network analysis with multi-omics. Plant Physiology and Biochemistry 2019, 141 , 380-387. https://doi.org/10.1016/j.plaphy.2019.06.016
    34. Vincenzo Cunsolo, Salvatore Foti, Joanna Ner‐Kluza, Anna Drabik, Jerzy Silberring, Vera Muccilli, Rosaria Saletti, Katarzyna Pawlak, Emma Harwood, Fang Yu, Pawel Ciborowski, Robert Anczkiewicz, Kathrin Altweg, Giuseppe Spoto, Aleksandra Pawlaczyk, Małgorzata Iwona Szynkowska, Marek Smoluch, Dorota Kwiatkowska. Mass Spectrometry Applications. 2019, 261-388. https://doi.org/10.1002/9781119377368.ch8
    35. Xavier Coumoul, Rémi Servien, Ludmila Juricek, Yael Kaddouch-Amar, Yannick Lippi, Laureline Berthelot, Claire Naylies, Marie-Line Morvan, Jean-Philippe Antignac, Christèle Desdoits-Lethimonier, Bernard Jegou, Marie Tremblay-Franco, Cécile Canlet, Laurent Debrauwer, Caroline Le Gall, Julie Laurent, Pierre-Antoine Gouraud, Jean-Pierre Cravedi, Elisabeth Jeunesse, Nicolas Savy, Kadidiatou Dandere-Abdoulkarim, Nathalie Arnich, Franck Fourès, Jérome Cotton, Simon Broudin, Bruno Corman, Annick Moing, Bérengère Laporte, Florence Richard-Forget, Robert Barouki, Peter Rogowsky, Bernard Salles. The GMO90+ Project: Absence of Evidence for Biologically Meaningful Effects of Genetically Modified Maize-based Diets on Wistar Rats After 6-Months Feeding Comparative Trial. Toxicological Sciences 2019, 168 (2) , 315-338. https://doi.org/10.1093/toxsci/kfy298
    36. Sarah Zanon Agapito-Tenfen, Vinicius Vilperte, Terje Ingemar Traavik, Rubens Onofre Nodari. Systematic miRNome profiling reveals differential microRNAs in transgenic maize metabolism. Environmental Sciences Europe 2018, 30 (1) https://doi.org/10.1186/s12302-018-0168-7
    37. Yanhua Tan, Zheng Tong, Qian Yang, Yong Sun, Xiang Jin, Cunzhi Peng, Anping Guo, Xuchu Wang. Proteomic analysis of phytase transgenic and non-transgenic maize seeds. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-09557-8
    38. Robin Mesnage, Matthew Arno, Gilles-Eric Séralini, Michael N. Antoniou. Transcriptome and metabolome analysis of liver and kidneys of rats chronically fed NK603 Roundup-tolerant genetically modified maize. Environmental Sciences Europe 2017, 29 (1) https://doi.org/10.1186/s12302-017-0105-1
    39. , Hui Zhao, Jeffrey D. Wolt. Risk associated with off-target plant genome editing and methods for its limitation. Emerging Topics in Life Sciences 2017, 1 (2) , 231-240. https://doi.org/10.1042/ETLS20170037
    40. Ramsey Affifi. Genetic Engineering and Human Mental Ecology: Interlocking Effects and Educational Considerations. Biosemiotics 2017, 10 (1) , 75-98. https://doi.org/10.1007/s12304-017-9286-7
    41. Rafael Fonseca Benevenuto, Sarah Zanon Agapito-Tenfen, Vinicius Vilperte, Odd-Gunnar Wikmark, Peet Jansen van Rensburg, Rubens Onofre Nodari, . Molecular responses of genetically modified maize to abiotic stresses as determined through proteomic and metabolomic analyses. PLOS ONE 2017, 12 (2) , e0173069. https://doi.org/10.1371/journal.pone.0173069
    42. Kunlun Huang. Nutrient Assessment of GMOs. 2017, 15-62. https://doi.org/10.1007/978-981-10-3488-6_2
    43. Olga Pechanova, Tibor Pechan. Proteomics as a Tool to Understand Maize Biology and to Improve Maize Crop. 2017, 35-56. https://doi.org/10.1016/B978-0-12-804007-2.00003-5
    44. Robin Mesnage, Sarah Z. Agapito-Tenfen, Vinicius Vilperte, George Renney, Malcolm Ward, Gilles-Eric Séralini, Rubens O. Nodari, Michael N. Antoniou. An integrated multi-omics analysis of the NK603 Roundup-tolerant GM maize reveals metabolism disturbances caused by the transformation process. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep37855
    45. Vijay Wardhan, Aarti Pandey, Subhra Chakraborty, Niranjan Chakraborty. Chickpea transcription factor CaTLP1 interacts with protein kinases, modulates ROS accumulation and promotes ABA-mediated stomatal closure. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep38121
    46. Ignacio Ortea, Gavin O'Connor, Alain Maquet. Review on proteomics for food authentication. Journal of Proteomics 2016, 147 , 212-225. https://doi.org/10.1016/j.jprot.2016.06.033
    47. Yanhua Tan, Xiaoping Yi, Limin Wang, Cunzhi Peng, Yong Sun, Dan Wang, Jiaming Zhang, Anping Guo, Xuchu Wang. Comparative Proteomics of Leaves from Phytase-Transgenic Maize and Its Non-transgenic Isogenic Variety. Frontiers in Plant Science 2016, 7 https://doi.org/10.3389/fpls.2016.01211
    48. Carla Souza de Mello, Jeroen P Van Dijk, Marleen Voorhuijzen, Esther J Kok, Ana Carolina Maisonnave Arisi. Tuber proteome comparison of five potato varieties by principal component analysis. Journal of the Science of Food and Agriculture 2016, 96 (11) , 3928-3936. https://doi.org/10.1002/jsfa.7635
    49. Shubhendu Shekhar, Lalit Agrawal, Divya Mishra, Alak Kumar Buragohain, Mullath Unnikrishnan, Chokkappan Mohan, Subhra Chakraborty, Niranjan Chakraborty. Ectopic expression of amaranth seed storage albumin modulates photoassimilate transport and nutrient acquisition in sweetpotato. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep25384
    50. Nicolas Defarge, Eszter Takács, Verónica Lozano, Robin Mesnage, Joël Spiroux de Vendômois, Gilles-Eric Séralini, András Székács. Co-Formulants in Glyphosate-Based Herbicides Disrupt Aromatase Activity in Human Cells below Toxic Levels. International Journal of Environmental Research and Public Health 2016, 13 (3) , 264. https://doi.org/10.3390/ijerph13030264
    51. Pedro A Valentim‐Neto, Gabriela B Rossi, Kelly B Anacleto, Carla S de Mello, Geisi M Balsamo, Ana Carolina M Arisi. Leaf proteome comparison of two GM common bean varieties and their non‐ GM counterparts by principal component analysis. Journal of the Science of Food and Agriculture 2016, 96 (3) , 927-932. https://doi.org/10.1002/jsfa.7166
    52. Cristina Barsan. Potato Proteomics. 2016, 651-684. https://doi.org/10.1016/B978-0-12-800002-1.00022-4
    53. Yongbo Liu, Ying-Xue Zhang, Song-Quan Song, Junsheng Li, C. Neal Stewart, Wei Wei, Yujie Zhao, Wei-Qing Wang. A proteomic analysis of seeds from Bt-transgenic Brassica napus and hybrids with wild B. juncea. Scientific Reports 2015, 5 (1) https://doi.org/10.1038/srep15480
    54. Limin Wang, Xuchu Wang, Xiang Jin, Ruizong Jia, Qixing Huang, Yanhua Tan, Anping Guo. Comparative proteomics of Bt-transgenic and non-transgenic cotton leaves. Proteome Science 2015, 13 (1) https://doi.org/10.1186/s12953-015-0071-8
    55. Daniel Ferreira Holderbaum, Marek Cuhra, Fern Wickson, Afonso Inácio Orth, Rubens Onofre Nodari, Thomas Bøhn. Chronic Responses of Daphnia magna Under Dietary Exposure to Leaves of a Transgenic (Event MON810) Bt–Maize Hybrid and its Conventional Near-Isoline. Journal of Toxicology and Environmental Health, Part A 2015, 78 (15) , 993-1007. https://doi.org/10.1080/15287394.2015.1037877
    56. Nádia Vidal, Herbert Barbosa, Silvana Jacob, Marco Arruda. Comparative study of transgenic and non-transgenic maize ( Zea mays ) flours commercialized in Brazil, focussing on proteomic analyses. Food Chemistry 2015, 180 , 288-294. https://doi.org/10.1016/j.foodchem.2015.02.051
    57. Rehana Hamid, Azra N. Kamili, Mahmooduzzafar, Salih Gücel, Münir Öztürk, Parvaiz Ahmad. Analysis of physiobiochemical attributes, some key antioxidants and esculin content through HPLC in in vitro grown Cichorium intybus L. treated with ethylmethane sulfonate. Plant Growth Regulation 2015, 76 (3) , 233-241. https://doi.org/10.1007/s10725-014-9992-y
    58. Thomas Bøhn, Marek Cuhra, Terje Traavik, Monica Sanden, John Fagan, Raul Primicerio. Reply to letter to the editor. Food Chemistry 2015, 172 , 924-927. https://doi.org/10.1016/j.foodchem.2014.08.042
    59. Jeffrey L. Gustin, A. Mark Settles. Seed Phenomics. 2015, 67-82. https://doi.org/10.1007/978-3-319-13677-6_5
    60. Gilles-Eric Séralini, Emilie Clair, Robin Mesnage, Steeve Gress, Nicolas Defarge, Manuela Malatesta, Didier Hennequin, Joël Spiroux de Vendômois. Republished study: long-term toxicity of a Roundup herbicide and a Roundup-tolerantgenetically modified maize. Environmental Sciences Europe 2014, 26 (1) https://doi.org/10.1186/s12302-014-0014-5
    61. Alberto Valdés, Alejandro Cifuentes, Virginia García-Cañas. Foodomics Strategies for the Analysis of Genetically Modified Crops. 2014, 15-44. https://doi.org/10.1201/b17573-3
    62. Vincenzo Cunsolo, Vera Muccilli, Rosaria Saletti, Salvatore Foti. Mass spectrometry in food proteomics: a tutorial. Journal of Mass Spectrometry 2014, 49 (9) , 768-784. https://doi.org/10.1002/jms.3374
    63. Ewa Pobozy, Aleksandra Sentkowska, Anna Piskor. Comparison of three modifications of fused‐silica capillaries and untreated capillaries for protein profiling of maize extracts by capillary electrophoresis. Journal of Separation Science 2014, 37 (17) , 2388-2394. https://doi.org/10.1002/jssc.201301236
    64. Robin Mesnage, Gilles‐Éric Séralini. The Need for a Closer Look at Pesticide Toxicity during GMO Assessment. 2014, 167-189. https://doi.org/10.1002/9781118474563.ch10
    65. Pier Giorgio Righetti, Elisa Fasoli, Alfonsina D’Amato, Egisto Boschetti. Making Progress in Plant Proteomics for Improved Food Safety. 2014, 131-155. https://doi.org/10.1016/B978-0-444-62650-9.00006-3
    66. Alberto Valdés, Carolina Simó, Clara Ibáñez, Virginia García-Cañas. Profiling of Genetically Modified Organisms Using Omics Technologies. 2014, 349-373. https://doi.org/10.1016/B978-0-444-62650-9.00013-0
    67. Frøydis T. Gillund, Lise Nordgaard, Thomas Bøhn, Odd Gunnar Wikmark, Heidi Sjursen Konestabo, Angelika Hilbeck. Selection of Nontarget Testing Organisms for ERA of GM Potato with Increased Resistance to Late Blight. Potato Research 2013, 56 (4) , 293-324. https://doi.org/10.1007/s11540-013-9245-x
    68. Alberto Valdés, Carolina Simó, Clara Ibáñez, Virginia García-Cañas. Foodomics strategies for the analysis of transgenic foods. TrAC Trends in Analytical Chemistry 2013, 52 , 2-15. https://doi.org/10.1016/j.trac.2013.05.023
    69. Ganesh Kumar Agrawal, Anna Maria Timperio, Lello Zolla, Vipul Bansal, Ravi Shukla, Randeep Rakwal. Biomarker discovery and applications for foods and beverages: Proteomics to nanoproteomics. Journal of Proteomics 2013, 93 , 74-92. https://doi.org/10.1016/j.jprot.2013.04.014
    70. Nomar Espinosa Waminal, Ki Hyun Ryu, Sun-Hee Choi, Hyun Hee Kim, . Randomly Detected Genetically Modified (GM) Maize (Zea mays L.) near a Transport Route Revealed a Fragile 45S rDNA Phenotype. PLoS ONE 2013, 8 (9) , e74060. https://doi.org/10.1371/journal.pone.0074060
    71. Ewa Poboży, Monika Filaber, Anna Koc, Juan F. Garcia‐Reyes. Application of capillary electrophoretic chips in protein profiling of plant extracts for identification of genetic modifications of maize. ELECTROPHORESIS 2013, 34 (18) , 2740-2753. https://doi.org/10.1002/elps.201300103
    72. Ganesh Kumar Agrawal, Abhijit Sarkar, Pier Giorgio Righetti, Romina Pedreschi, Sebastien Carpentier, Tai Wang, Bronwyn J. Barkla, Ajay Kohli, Bongani Kaiser Ndimba, Natalia V. Bykova, Christof Rampitsch, Lello Zolla, Mohamed Suhail Rafudeen, Rainer Cramer, Laurence Veronique Bindschedler, Nikolaos Tsakirpaloglou, Roya Janeen Ndimba, Jill M. Farrant, Jenny Renaut, Dominique Job, Shoshi Kikuchi, Randeep Rakwal. A decade of plant proteomics and mass spectrometry: Translation of technical advancements to food security and safety issues. Mass Spectrometry Reviews 2013, 32 (5) , 335-365. https://doi.org/10.1002/mas.21365
    73. Xianbin Gu, Zhihong Gao, Weibing Zhuang, Yushan Qiao, Xiuyun Wang, Lin Mi, Zhen Zhang, Zhilin Lin. Comparative proteomic analysis of rd29A:RdreB1BI transgenic and non-transgenic strawberries exposed to low temperature. Journal of Plant Physiology 2013, 170 (7) , 696-706. https://doi.org/10.1016/j.jplph.2012.12.012
    74. Alberto Valdés, Virginia García‐Cañas. MS‐Based Methodologies for Transgenic Foods Development and Characterization. 2013, 191-220. https://doi.org/10.1002/9781118537282.ch7
    75. C. X. Sun, F. Yuan, Y. L. Zhang, Z. B. Cui, Z. H. Chen, L. J. Chen, Z. J. Wu. Unintended effects of genetic transformation on photosynthetic gas exchange, leaf reflectance and plant growth properties in barley (Hordeum vulgare L.). Photosynthetica 2013, 51 (1) , 22-32. https://doi.org/10.1007/s11099-013-0002-9
    76. Olga Pechanova, Tomáš Takáč, Jozef Šamaj, Tibor Pechan. Maize proteomics: An insight into the biology of an important cereal crop. PROTEOMICS 2013, 13 (3-4) , 637-662. https://doi.org/10.1002/pmic.201200275
    77. Shweta Mehrotra, Vinod Goyal. Evaluation of designer crops for biosafety—A scientist's perspective. Gene 2013, 515 (2) , 241-248. https://doi.org/10.1016/j.gene.2012.12.029
    78. Agnès E. Ricroch, Marcel Kuntz. Evaluation of Genetically Engineered Crops Using Proteomics. 2013, 503-514. https://doi.org/10.1007/978-1-4614-5626-1_25
    79. Sarah Agapito-Tenfen, Miguel Guerra, Odd-Gunnar Wikmark, Rubens Nodari. Comparative proteomic analysis of genetically modified maize grown under different agroecosystems conditions in Brazil. Proteome Science 2013, 11 (1) , 46. https://doi.org/10.1186/1477-5956-11-46
    80. Peña Betancourt Silvia Denise, Posadas Manzano Eduardo, Valladares Carranza Benjamín. Recombinant protein detection and its content in total protein, lipids and toxic antinutritional substances in Mexican maize. Health 2013, 05 (10) , 9-13. https://doi.org/10.4236/health.2013.510A1002
    81. Anil K. Singh, Ritesh Kumar, Ashwani Pareek, Sudhir K. Sopory, Sneh L. Singla-Pareek. Overexpression of Rice CBS Domain Containing Protein Improves Salinity, Oxidative, and Heavy Metal Tolerance in Transgenic Tobacco. Molecular Biotechnology 2012, 52 (3) , 205-216. https://doi.org/10.1007/s12033-011-9487-2
    82. Gilles-Eric Séralini, Emilie Clair, Robin Mesnage, Steeve Gress, Nicolas Defarge, Manuela Malatesta, Didier Hennequin, Joël Spiroux de Vendômois. RETRACTED: Long term toxicity of a Roundup herbicide and a Roundup-tolerant genetically modified maize. Food and Chemical Toxicology 2012, 50 (11) , 4221-4231. https://doi.org/10.1016/j.fct.2012.08.005
    83. Kun Xue, Jing Yang, Biao Liu, Dayuan Xue. The integrated risk assessment of transgenic rice Oryza sativa: A comparative proteomics approach. Food Chemistry 2012, 135 (1) , 314-318. https://doi.org/10.1016/j.foodchem.2012.04.042
    84. You-zhi LI, Xian-wei FAN, Jiang-xiong LIAO. Foci of Future Studies on Abiotic Stress Tolerance of Maize in the Era of Post-Genomics. Journal of Integrative Agriculture 2012, 11 (8) , 1236-1244. https://doi.org/10.1016/S2095-3119(12)60120-8
    85. Vincenzo Cunsolo, Vera Muccilli, Rosaria Saletti, Salvatore Foti. Mass spectrometry in the proteome analysis of mature cereal kernels. Mass Spectrometry Reviews 2012, 31 (4) , 448-465. https://doi.org/10.1002/mas.20347
    86. Anna Koc, Ana Cañuelo, Juan F. Garcia‐Reyes, Antonio Molina‐Diaz, Marek Trojanowicz. Low‐molecular weight protein profiling of genetically modified maize using fast liquid chromatography electrospray ionization and time‐of‐flight mass spectrometry. Journal of Separation Science 2012, 35 (12) , 1447-1461. https://doi.org/10.1002/jssc.201200109
    87. Kwang-Man Choi, Mi-Young Lee. Effect of freezing stress on the proteome expression of Antarctic green microalga. Molecular & Cellular Toxicology 2012, 8 (2) , 163-169. https://doi.org/10.1007/s13273-012-0020-x
    88. Zhulong Chan, Patrick J. Bigelow, Wayne Loescher, Rebecca Grumet. Comparison of salt stress resistance genes in transgenic Arabidopsis thaliana indicates that extent of transcriptomic change may not predict secondary phenotypic or fitness effects. Plant Biotechnology Journal 2012, 10 (3) , 284-300. https://doi.org/10.1111/j.1467-7652.2011.00661.x
    89. Yan Wang, Wentao Xu, Weiwei Zhao, Junran Hao, Yunbo Luo, Xiaoge Tang, Yu Zhang, Kunlun Huang. Comparative analysis of the proteomic and nutritional composition of transgenic rice seeds with Cry1ab/ac genes and their non-transgenic counterparts. Journal of Cereal Science 2012, 55 (2) , 226-233. https://doi.org/10.1016/j.jcs.2011.12.004
    90. Miguel Herrero, Carolina Simó, Virginia García‐Cañas, Elena Ibáñez, Alejandro Cifuentes. Foodomics: MS‐based strategies in modern food science and nutrition. Mass Spectrometry Reviews 2012, 31 (1) , 49-69. https://doi.org/10.1002/mas.20335
    91. Howard Davies, Louise Shepherd. Integrating Omics in Food Quality and Safety Assessment. 2012, 555-567. https://doi.org/10.1007/978-94-007-4749-4_26
    92. Virginia García-Cañas, Alejandro Cifuentes. A Particular Case of Novel Food. 2012, 575-597. https://doi.org/10.1016/B978-0-12-384862-8.00018-2
    93. Shin-ichi Ishikawa. Proteomic Analysis of Hen Egg for Improvement of Food Quality and Functionality of Egg Products. Nippon Shokuhin Kagaku Kogaku Kaishi 2012, 59 (5) , 231-235. https://doi.org/10.3136/nskkk.59.231
    94. Jack A. Heinemann, Brigitta Kurenbach, David Quist. Molecular profiling — a tool for addressing emerging gaps in the comparative risk assessment of GMOs. Environment International 2011, 37 (7) , 1285-1293. https://doi.org/10.1016/j.envint.2011.05.006
    95. Rod A. Herman, Gregory S. Ladics. Endogenous allergen upregulation: Transgenic vs. traditionally bred crops. Food and Chemical Toxicology 2011, 49 (10) , 2667-2669. https://doi.org/10.1016/j.fct.2011.07.018
    96. B. V. Sorochinskii, O. M. Burlaka, V. D. Naumenko, A. S. Sekan. Unintended effects of genetic modifications and methods of their analysis in plants. Cytology and Genetics 2011, 45 (5) , 324-332. https://doi.org/10.3103/S0095452711050124
    97. Anna Coll, Anna Nadal, Michel Rossignol, Pere Puigdomènech, Maria Pla. Proteomic analysis of MON810 and comparable non-GM maize varieties grown in agricultural fields. Transgenic Research 2011, 20 (4) , 939-949. https://doi.org/10.1007/s11248-010-9453-y
    98. Nini H. Sissener, Gro-Ingunn Hemre, Santosh P. Lall, Anita Sagstad, Kjell Petersen, Jason Williams, Jens Rohloff, Monica Sanden. Are apparent negative effects of feeding GM MON810 maize to Atlantic salmon, Salmo salar , caused by confounding factors?. British Journal of Nutrition 2011, 106 (1) , 42-56. https://doi.org/10.1017/S0007114510005726
    99. Virginia García‐Cañas, Carolina Simó, Carlos León, Elena Ibáñez, Alejandro Cifuentes. MS‐based analytical methodologies to characterize genetically modified crops. Mass Spectrometry Reviews 2011, 30 (3) , 396-416. https://doi.org/10.1002/mas.20286
    100. Agnès E. Ricroch, Jean B. Bergé, Marcel Kuntz. Evaluation of Genetically Engineered Crops Using Transcriptomic, Proteomic, and Metabolomic Profiling Techniques. Plant Physiology 2011, 155 (4) , 1752-1761. https://doi.org/10.1104/pp.111.173609
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect