Articles
5 May 2009

A New Equation to Estimate Glomerular Filtration Rate

Publication: Annals of Internal Medicine
Volume 150, Number 9

Abstract

Background:

Equations to estimate glomerular filtration rate (GFR) are routinely used to assess kidney function. Current equations have limited precision and systematically underestimate measured GFR at higher values.

Objective:

To develop a new estimating equation for GFR: the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation.

Design:

Cross-sectional analysis with separate pooled data sets for equation development and validation and a representative sample of the U.S. population for prevalence estimates.

Setting:

Research studies and clinical populations (“studies”) with measured GFR and NHANES (National Health and Nutrition Examination Survey), 1999 to 2006.

Participants:

8254 participants in 10 studies (equation development data set) and 3896 participants in 16 studies (validation data set). Prevalence estimates were based on 16 032 participants in NHANES.

Measurements:

GFR, measured as the clearance of exogenous filtration markers (iothalamate in the development data set; iothalamate and other markers in the validation data set), and linear regression to estimate the logarithm of measured GFR from standardized creatinine levels, sex, race, and age.

Results:

In the validation data set, the CKD-EPI equation performed better than the Modification of Diet in Renal Disease Study equation, especially at higher GFR (P < 0.001 for all subsequent comparisons), with less bias (median difference between measured and estimated GFR, 2.5 vs. 5.5 mL/min per 1.73 m2), improved precision (interquartile range [IQR] of the differences, 16.6 vs. 18.3 mL/min per 1.73 m2), and greater accuracy (percentage of estimated GFR within 30% of measured GFR, 84.1% vs. 80.6%). In NHANES, the median estimated GFR was 94.5 mL/min per 1.73 m2 (IQR, 79.7 to 108.1) vs. 85.0 (IQR, 72.9 to 98.5) mL/min per 1.73 m2, and the prevalence of chronic kidney disease was 11.5% (95% CI, 10.6% to 12.4%) versus 13.1% (CI, 12.1% to 14.0%).

Limitation:

The sample contained a limited number of elderly people and racial and ethnic minorities with measured GFR.

Conclusion:

The CKD-EPI creatinine equation is more accurate than the Modification of Diet in Renal Disease Study equation and could replace it for routine clinical use.

Primary Funding Source:

National Institute of Diabetes and Digestive and Kidney Diseases.

Get full access to this article

View all available purchase options and get full access to this article.

Supplemental Material

Supplement. Appendix

Appendix Figure 1. Flow chart showing development of the CKD-EPI pooled creatinine database.

Appendix Table 1. Category 1: Studies and Participant Characteristics

Appendix Table 2. Category 2: Studies and Participant Characteristics

Appendix Table 3. Model Families

Appendix Table 4. Definition of Model Types

Appendix Table 5. Forms of Variables and Coefficients in the CKD-EPI and MDRD Study Equations

Appendix Table 6. Comparison of Performance of MDRD Study and CKD-EPI Equations

Appendix Figure 2. Comparison of distribution of estimated glomerular filtration rate (GFR) and chronic kidney disease (CKD) prevalence by age (NHANES 1999-2004).

Appendix Table 7. Comparison of Estimated GFR Stages using the CKD-EPI and MDRD Study Equations in NHANES 1998-2006

Appendix Table 8. Categories of Estimated GFR and Albuminuria in NHANES 1999-2006 using CKD-EPI and MDRD Study Equations

Appendix Table 9. Prevalence of CKD in NHANES 1999-2006 and 2000 U.S. Population Estimates using CKD-EPI and MDRD Study Equations to Estimate GFR

References

1.
National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002;39:S1-266. [PMID: 11904577]
2.
Stevens LACoresh JGreene TLevey AS. Assessing kidney function—measured and estimated glomerular filtration rate. N Engl J Med. 2006;354:2473-83. [PMID: 16760447]
3.
Levey ASBosch JPLewis JBGreene TRogers NRoth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med. 1999;130:461-70. [PMID: 10075613]
4.
Levey ASCoresh JGreene TStevens LAZhang YLHendriksen Set alChronic Kidney Disease Epidemiology Collaboration. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med. 2006;145:247-54. [PMID: 16908915]
5.
Miller WG. Reporting estimated GFR: a laboratory perspective [Editorial]. Am J Kidney Dis. 2008;52:645-8. [PMID: 18805345]
6.
Levey ASAndreoli SPDuBose TProvenzano RCollins AJ. CKD: common, harmful, and treatable—World Kidney Day 2007. Am J Kidney Dis. 2007;49:175-9. [PMID: 17261418]
7.
Coresh JSelvin EStevens LAManzi JKusek JWEggers Pet al. Prevalence of chronic kidney disease in the United States. JAMA. 2007;298:2038-47. [PMID: 17986697]
8.
Stevens LACoresh JFeldman HIGreene TLash JPNelson RGet al. Evaluation of the modification of diet in renal disease study equation in a large diverse population. J Am Soc Nephrol. 2007;18:2749-57. [PMID: 17855641]
9.
Lewis JAgodoa LCheek DGreene TMiddleton JO'Connor Det alAfrican-American Study of Hypertension and Kidney Disease. Comparison of cross-sectional renal function measurements in African Americans with hypertensive nephrosclerosis and of primary formulas to estimate glomerular filtration rate. Am J Kidney Dis. 2001;38:744-53. [PMID: 11576877]
10.
Ibrahim HMondress MTello AFan YKoopmeiners JThomas W. An alternative formula to the Cockcroft-Gault and the modification of diet in renal diseases formulas in predicting GFR in individuals with type 1 diabetes. J Am Soc Nephrol. 2005;16:1051-60. [PMID: 15716336]
11.
Nelson RGBennett PHBeck GJTan MKnowler WCMitch WEet al. Development and progression of renal disease in Pima Indians with non-insulin-dependent diabetes mellitus. Diabetic Renal Disease Study Group. N Engl J Med. 1996;335:1636-42. [PMID: 8929360]
12.
Lewis EJHunsicker LGBain RPRohde RD. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med. 1993;329:1456-62. [PMID: 8413456]
13.
Feldman HIAppel LJChertow GMCifelli DCizman BDaugirdas Jet alChronic Renal Insufficiency Cohort (CRIC) Study Investigators. The Chronic Renal Insufficiency Cohort (CRIC) Study: Design and Methods. J Am Soc Nephrol. 2003;14:S148-53. [PMID: 12819321]
14.
Poggio EDWang XGreene TVan Lente FHall PM. Performance of the modification of diet in renal disease and Cockcroft-Gault equations in the estimation of GFR in health and in chronic kidney disease. J Am Soc Nephrol. 2005;16:459-66. [PMID: 15615823]
15.
Rule ADLarson TSBergstralh EJSlezak JMJacobsen SJCosio FG. Using serum creatinine to estimate glomerular filtration rate: accuracy in good health and in chronic kidney disease. Ann Intern Med. 2004;141:929-37. [PMID: 15611490]
16.
Gonwa TAJennings LMai MLStark PCLevey ASKlintmalm GB. Estimation of glomerular filtration rates before and after orthotopic liver transplantation: evaluation of current equations. Liver Transpl. 2004;10:301-9. [PMID: 14762871]
17.
Chapman ABGuay-Woodford LMGrantham JJTorres VEBae KTBaumgarten DAet alConsortium for Radiologic Imaging Studies of Polycystic Kidney Disease cohort. Renal structure in early autosomal-dominant polycystic kidney disease (ADPKD): The Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP) cohort. Kidney Int. 2003;64:1035-45. [PMID: 12911554]
18.
Bosma RJDoorenbos CRStegeman CAvan der Heide JJNavis G. Predictive performance of renal function equations in renal transplant recipients: an analysis of patient factors in bias. Am J Transplant. 2005;5:2193-203. [PMID: 16095498]
19.
Rook MHofker HSvan Son WJHoman van der Heide JJPloeg RJNavis GJ. Predictive capacity of pre-donation GFR and renal reserve capacity for donor renal function after living kidney donation. Am J Transplant. 2006;6:1653-9. [PMID: 16827867]
20.
Grubb ANyman UBjörk JLindström VRippe BSterner Get al. Simple cystatin C-based prediction equations for glomerular filtration rate compared with the modification of diet in renal disease prediction equation for adults and the Schwartz and the Counahan-Barratt prediction equations for children. Clin Chem. 2005;51:1420-31. [PMID: 15961546]
21.
Mauer MDrummond K. The early natural history of nephropathy in type 1 diabetes: I. Study design and baseline characteristics of the study participants. Diabetes. 2002;51:1572-9. [PMID: 11978658]
22.
Froissart MRossert JJacquot CPaillard MHouillier P. Predictive performance of the modification of diet in renal disease and Cockcroft-Gault equations for estimating renal function. J Am Soc Nephrol. 2005;16:763-73. [PMID: 15659562]
23.
Mauer MZinman BGardiner RDrummond KNSuissa SDonnelly SMet al. ACE-I and ARBs in early diabetic nephropathy. J Renin Angiotensin Aldosterone Syst. 2002;3:262-9. [PMID: 12584670]
24.
Hansen HPTauber-Lassen EJensen BRParving HH. Effect of dietary protein restriction on prognosis in patients with diabetic nephropathy. Kidney Int. 2002;62:220-8. [PMID: 12081581]
25.
Jacobsen PAndersen SRossing KHansen BVParving HH. Dual blockade of the renin-angiotensin system in type 1 patients with diabetic nephropathy. Nephrol Dial Transplant. 2002;17:1019-24. [PMID: 12032191]
26.
Jacobsen PAndersen SRossing KJensen BRParving HH. Dual blockade of the renin-angiotensin system versus maximal recommended dose of ACE inhibition in diabetic nephropathy. Kidney Int. 2003;63:1874-80. [PMID: 12675866]
27.
Mathiesen ERHommel EGiese JParving HH. Efficacy of captopril in postponing nephropathy in normotensive insulin dependent diabetic patients with microalbuminuria. BMJ. 1991;303:81-7. [PMID: 1860008]
28.
Tarnow LRossing PJensen CHansen BVParving HH. Long-term renoprotective effect of nisoldipine and lisinopril in type 1 diabetic patients with diabetic nephropathy. Diabetes Care. 2000;23:1725-30. [PMID: 11128341]
29.
Levey ASCoresh JGreene TMarsh JStevens LAKusek JWet alChronic Kidney Disease Epidemiology Collaboration. Expressing the Modification of Diet in Renal Disease Study equation for estimating glomerular filtration rate with standardized serum creatinine values. Clin Chem. 2007;53:766-72. [PMID: 17332152]
30.
Stevens LAManzi JLevey ASChen JDeysher AEGreene Tet al. Impact of creatinine calibration on performance of GFR estimating equations in a pooled individual patient database. Am J Kidney Dis. 2007;50:21-35. [PMID: 17591522]
31.
Chambers JHastie Teds. Generalized additive models. In: Chambers J, Hastie T, eds. Statistical Models. London: Chapman and Hall; 1993:104-54.
32.
Efron BTibshirani RJ. An Introduction to the Bootstrap. New York: Chapman and Hall; 1993.
33.
Selvin EManzi JStevens LAVan Lente FLacher DALevey ASet al. Calibration of serum creatinine in the National Health and Nutrition Examination Surveys (NHANES) 1988-1994, 1999-2004. Am J Kidney Dis. 2007;50:918-26. [PMID: 18037092]
34.
Coresh JAstor BCGreene TEknoyan GLevey AS. Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third National Health and Nutrition Examination Survey. Am J Kidney Dis. 2003;41:1-12. [PMID: 12500213]
35.
Centers for Disease Control and Prevention. National Health and Nutrition Examination Survey (NHANES). 2007 Hyattsville, MD: National Center for Health Statistics; 2007.
36.
National Center for Health Statistics. National Health and Nutrition Examination Survey (NHANES)—Analytic Guidelines. 2007 Hyattsville, MD: National Center for Health Statistics; 2007.
37.
Analytic and Reporting Guidelines: The Third National Health and Nutrition Examination Survey, NHANES III (1988–94). 2007 Hyattsville, MD: National Center for Health Statistics; 2007.
38.
Poggio EDWang XGreene TVan Lente FHall PM. Performance of the modification of diet in renal disease and Cockcroft-Gault equations in the estimation of GFR in health and in chronic kidney disease. J Am Soc Nephrol. 2005;16:459-66. [PMID: 15615823]
39.
Perrone RDMadias NELevey AS. Serum creatinine as an index of renal function: new insights into old concepts. Clin Chem. 1992;38:1933-53. [PMID: 1394976]
40.
Glassock RJWinearls C. An epidemic of chronic kidney disease: fact or fiction? Nephrol Dial Transplant. 2008;23:1117-21. [PMID: 18359870]
41.
U.S. Renal Data System. USRDS 2008 Annual Data Report: Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States. Bethesda, MD: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases; 2008. Accessed at www.usrds.org/adr.htm on 11 December 2008.
42.
Coresh JStevens LALevey AS. Chronic kidney disease is common: what do we do next? Nephrol Dial Transplant. 2008;23:1122-5. [PMID: 18359871]
43.
Hallan SICoresh JAstor BCAsberg APowe NRRomundstad Set al. International comparison of the relationship of chronic kidney disease prevalence and ESRD risk. J Am Soc Nephrol. 2006;17:2275-84. [PMID: 16790511]
44.
Aronoff GRBerns JSBrier MEGolper TAMorrison GSinger Iet al. Drug Prescribing in Renal Failure. Dosing Guidelines for Adults. 4th ed. Philadelphia: American Coll of Physicians; 1999.
45.
Seliger SLZhan MHsu VDWalker LDFink JC. Chronic kidney disease adversely influences patient safety. J Am Soc Nephrol. 2008;19:2414-9. [PMID: 18776123]
46.
Benko AFraser-Hill MMagner PCapusten BBarrett BMyers Aet alCanadian Association of Radiologists. Canadian Association of Radiologists: consensus guidelines for the prevention of contrast-induced nephropathy. Can Assoc Radiol J. 2007;58:79-87. [PMID: 17521052]
47.
U.S. Food and Drug Administration. Information for Healthcare Professionals: Gadolinium-Based Contrast Agents for Magnetic Resonance Imaging (marketed as Magnevist, MultiHance, Omniscan, OptiMARK, ProHance). Silver Spring, MD: Center for Drug Evaluation and Research; 2008. Accessed at www.fda.gov/cder/drug/InfoSheets/HCP/gcca_200705.htm on 13 March 2009.
48.
Khurana AMcLean LAtkinson SFoulks CJ. The effect of oral sodium phosphate drug products on renal function in adults undergoing bowel endoscopy. Arch Intern Med. 2008;168:593-7. [PMID: 18362251]
49.
Hsu CYOrdoñez JDChertow GMFan DMcCulloch CEGo AS. The risk of acute renal failure in patients with chronic kidney disease. Kidney Int. 2008;74:101-7. [PMID: 18385668]
50.
Sarnak MJLevey ASSchoolwerth ACCoresh JCulleton BHamm LLet alAmerican Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Circulation. 2003;108:2154-69. [PMID: 14581387]
51.
Stevens LACoresh JSchmid CHFeldman HIFroissart MKusek Jet al. Estimating GFR using serum cystatin C alone and in combination with serum creatinine: a pooled analysis of 3,418 individuals with CKD. Am J Kidney Dis. 2008;51:395-406. [PMID: 18295055]

Information & Authors

Information

Published In

cover image Annals of Internal Medicine
Annals of Internal Medicine
Volume 150Number 95 May 2009
Pages: 604 - 612

History

Published online: 5 May 2009
Published in issue: 5 May 2009

Keywords

Authors

Affiliations

Andrew S. Levey, MD
From Tufts Medical Center, Boston, Massachusetts; Johns Hopkins University, Baltimore, Maryland; University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; National Institutes of Health, Bethesda, Maryland; Cleveland Clinic Foundation, Cleveland, Ohio; and University of Utah, Salt Lake City, Utah.
Lesley A. Stevens, MD, MS
From Tufts Medical Center, Boston, Massachusetts; Johns Hopkins University, Baltimore, Maryland; University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; National Institutes of Health, Bethesda, Maryland; Cleveland Clinic Foundation, Cleveland, Ohio; and University of Utah, Salt Lake City, Utah.
Christopher H. Schmid, PhD
From Tufts Medical Center, Boston, Massachusetts; Johns Hopkins University, Baltimore, Maryland; University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; National Institutes of Health, Bethesda, Maryland; Cleveland Clinic Foundation, Cleveland, Ohio; and University of Utah, Salt Lake City, Utah.
Yaping (Lucy) Zhang, MS
From Tufts Medical Center, Boston, Massachusetts; Johns Hopkins University, Baltimore, Maryland; University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; National Institutes of Health, Bethesda, Maryland; Cleveland Clinic Foundation, Cleveland, Ohio; and University of Utah, Salt Lake City, Utah.
Alejandro F. Castro III, MPH
From Tufts Medical Center, Boston, Massachusetts; Johns Hopkins University, Baltimore, Maryland; University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; National Institutes of Health, Bethesda, Maryland; Cleveland Clinic Foundation, Cleveland, Ohio; and University of Utah, Salt Lake City, Utah.
Harold I. Feldman, MD, MSCE
From Tufts Medical Center, Boston, Massachusetts; Johns Hopkins University, Baltimore, Maryland; University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; National Institutes of Health, Bethesda, Maryland; Cleveland Clinic Foundation, Cleveland, Ohio; and University of Utah, Salt Lake City, Utah.
John W. Kusek, PhD
From Tufts Medical Center, Boston, Massachusetts; Johns Hopkins University, Baltimore, Maryland; University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; National Institutes of Health, Bethesda, Maryland; Cleveland Clinic Foundation, Cleveland, Ohio; and University of Utah, Salt Lake City, Utah.
Paul Eggers, PhD
From Tufts Medical Center, Boston, Massachusetts; Johns Hopkins University, Baltimore, Maryland; University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; National Institutes of Health, Bethesda, Maryland; Cleveland Clinic Foundation, Cleveland, Ohio; and University of Utah, Salt Lake City, Utah.
Frederick Van Lente, PhD
From Tufts Medical Center, Boston, Massachusetts; Johns Hopkins University, Baltimore, Maryland; University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; National Institutes of Health, Bethesda, Maryland; Cleveland Clinic Foundation, Cleveland, Ohio; and University of Utah, Salt Lake City, Utah.
Tom Greene, PhD
From Tufts Medical Center, Boston, Massachusetts; Johns Hopkins University, Baltimore, Maryland; University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; National Institutes of Health, Bethesda, Maryland; Cleveland Clinic Foundation, Cleveland, Ohio; and University of Utah, Salt Lake City, Utah.
Josef Coresh, MD, PhD, MHS
From Tufts Medical Center, Boston, Massachusetts; Johns Hopkins University, Baltimore, Maryland; University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; National Institutes of Health, Bethesda, Maryland; Cleveland Clinic Foundation, Cleveland, Ohio; and University of Utah, Salt Lake City, Utah.
for the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration)
From Tufts Medical Center, Boston, Massachusetts; Johns Hopkins University, Baltimore, Maryland; University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; National Institutes of Health, Bethesda, Maryland; Cleveland Clinic Foundation, Cleveland, Ohio; and University of Utah, Salt Lake City, Utah.
Acknowledgment: The authors thank Aghogho Okparavero, MBBS, MPH, for his assistance in communications and manuscript preparation.
Grant Support: By grants UO1 DK 053869, UO1 DK 067651, and UO1 DK 35073 as part of a cooperative agreement with the National Institute of Diabetes and Digestive and Kidney Diseases.
Disclosures: Stock ownership or options (other than mutual funds): J.W. Kusek (Pfizer, Eli Lilly, DeCode Genetics).
Reproducible Research Statement: Study protocol: Available from Dr. Levey (address below). Statistical code and data set: Not available.
Corresponding Author: Andrew S. Levey, MD, Division of Nephrology, Tufts Medical Center, 800 Washington Street, Box 391, Boston, MA 02111.
Current Author Addresses: Drs. Levey and Stevens and Ms. Zhang: Division of Nephrology, Tufts Medical Center, 800 Washington Street, Box 391, Boston, MA 02111.
Dr. Schmid: The Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, 800 Washington Street, Box 063, Boston, MA 02111.
Mr. Castro and Dr. Coresh: Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 2024 East Monument Street, Suite 2-600, Baltimore, MD 21205.
Dr. Feldman: Clinical Epidemiology Unit, University of Pennsylvania School of Medicine, 923 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104.
Drs. Kusek and Eggers: Kidney and Urology Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 6707 Democracy Boulevard, Bethesda, MD 20817.
Dr. Van Lente: Department of Clinical Pathology, Cleveland Clinic Foundation, 9500 Euclid Avenue, Mail Code L11, Cleveland, OH 44195.
Dr. Greene: Division of Clinical Epidemiology, 30 North 1900 East, Room AC221, Salt Lake City, UT 84132.
Author Contributions: Conception and design: A.S. Levey, L.A. Stevens, C.H. Schmid, H.I. Feldman, F. Van Lente, T. Greene, J. Coresh.
Analysis and interpretation of the data: A.S. Levey, L.A. Stevens, C.H. Schmid, H.I. Feldman, P. Eggers, F. Van Lente, T. Greene, J. Coresh.
Drafting of the article: A.S. Levey, C.H. Schmid, F. Van Lente, J. Coresh.
Critical revision of the article for important intellectual content: A.S. Levey, L.A. Stevens, C.H. Schmid, H.I. Feldman, J.W. Kusek, P. Eggers, T. Greene, J. Coresh.
Final approval of the article: A.S. Levey, L.A. Stevens, C.H. Schmid, Y. Zhang, H.I. Feldman, J.W. Kusek, T. Greene, J. Coresh.
Provision of study materials or patients: A.S. Levey.
Statistical expertise: C.H. Schmid, Y. Zhang, T. Greene, J. Coresh.
Obtaining of funding: A.S. Levey, J.W. Kusek, P. Eggers, J. Coresh.
Administrative, technical, or logistic support: A.S. Levey, L.A. Stevens, Y. Zhang, P. Eggers.
Collection and assembly of data: A.S. Levey, L.A. Stevens, Y. Zhang, F. Van Lente.
* For a list of other CKD-EPI staff and collaborators, see the Appendix.

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. For an editable text file, please select Medlars format which will download as a .txt file. Simply select your manager software from the list below and click Download.

For more information or tips please see 'Downloading to a citation manager' in the Help menu.

Format





Download article citation data for:
Andrew S. Levey, Lesley A. Stevens, Christopher H. Schmid, et al; for the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) . A New Equation to Estimate Glomerular Filtration Rate. Ann Intern Med.2009;150:604-612. [Epub 5 May 2009]. doi:10.7326/0003-4819-150-9-200905050-00006

View Options

Get Access

Login Options:
Purchase

You will be redirected to acponline.org to sign-in to Annals to complete your purchase.

Create your Free Account

You will be redirected to acponline.org to create an account that will provide access to Annals.

View options

PDF/ePub

View PDF/ePub

Related in ACP Journals

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media