Skip to main content

Advertisement

Log in

Multi-view ensemble learning: an optimal feature set partitioning for high-dimensional data classification

  • Regular Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

Multi-view ensemble learning has the potential to address issues related to the high dimensionality of data. It attempts to utilize all the relevant only discarding the irrelevant features. The view of a dataset is the sub-table of the training data with respect to a subset of the feature set. The problem of discarding the irrelevant features and obtaining subsets of the relevant features is useful for dimension reduction and dealing with the problem of having fewer training examples than even the reduced set of relevant features. A feature set partitioning resulting in the blocks of relevant features may not yield multiple-view-based classifiers with good classification performance. In this work the optimal feature set partition approach has been proposed. Further, the ensemble learning from views aims to maximize the performance of the classifier. The experiments study the performance of random feature set partitioning, attribute bagging, view generation using attribute clustering, view construction using genetic algorithm and OFSP proposed method. The blocks of relevant feature subsets are used to construct the multi-view classifier ensemble using K-nearest neighbor, Naïve Bayesian and support vector machine algorithm applied to sixteen high-dimensional data sets from UCI machine learning repository. The performance parameters considered for comparison are classification accuracy, disagreement among the classifiers, execution time and percentage reduction of attributes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kumar V, Minz S (2013) Mood classification of lyrics using SentiWordNet. In: ICCCI-2013, India, IEEE Xplore, pp 1–5

  2. Ando RK, Zhang T (2007) Two-view feature generation model for semi-supervised learning. In: ICML

  3. Xu C, Tao D, Xu C (2013) A survey on multi-view learning. Learning (cs.LG)

  4. Kakade SM, Foster DP (2007) Multi-view regression via canonical correlation analysis. In: COLT

  5. Yu S, Krishnapuram B, Rosales R, Steck H, Rao RB (2007) Bayesian co-training. In: NIPS

  6. Kudo M, Sklansky J (1997) A comparative evaluation of medium and large-scale feature selectors for pattern classifiers. In: Proceeding of the 1st international workshop on statistical techniques in pattern recognition. Czech Republic, Prague, pp 91–96

  7. Bluma AL, Langley P (1997) Selection of relevant features and examples in machine learning. In: Greiner R, Subramanian D (eds) Artificial intelligence on relevance, artificial intelligence, vol 97, pp 245–271

  8. Kumar V, Minz S (2014) Multi-view ensemble learning for poem data classification using SentiWordNet. In: 2nd international conference on advanced computing, networking, and informatics (ICACNI-2014), Smart Innovation, Systems and Technologies, vol 27. Springer, Berlin, pp 57–66

  9. Minz S, Kumar V (2014) Reinforced multi-view ensemble learning for high dimensional data classification. In: International conference on communication and computing (ICC-2014), Elsevier

  10. Brefeld GC, Scheffe T (2005) Multi-view discriminative sequential learning. In: Machine learning, ECML 2005, pp 60–71

  11. Ben-Bassat M (1982) Pattern recognition and reduction of dimensionality. In: Krishnaiah PR, Kanal LN (eds) Handbook of statistics-II. North Holland, pp 773–791

  12. Almuallim H, Dietterich TG (1994) Learning boolean concepts in the presence of many irrelevant features. Artif Intell 69(1–2):279–305

    Article  MathSciNet  MATH  Google Scholar 

  13. Devijver PA, Kittler J (1982) Pattern recognition: a statistical approach. Prentice Hall, London

    MATH  Google Scholar 

  14. Hall MA (2000) Correlation-based feature selection for discrete and numeric class machine learning. In: Proceedings of the 17th international conference on machine learning, pp 359–366

  15. Ho TK (1998) Nearest neighbors in random subspaces. In: Proceeding of the second international workshop on statistical techniques in pattern recognition. Sydney, Australia, pp 640–648

  16. Bay S (1999) Nearest neighbor classification from multiple feature subsets. Intell Data Anal 3(3):191–209

    Article  Google Scholar 

  17. Bryll R, Gutierrez-Osunaa R, Quek F (2003) Attribute bagging: improving the accuracy of classifier ensembles by using random feature subsets. Pattern Recognit 36:1291–1302

    Article  MATH  Google Scholar 

  18. Wu QX, Bell D, McGinnity M (2005) Multi-knowledge for decision-making. Knowl Inf Syst 7:246–266

    Article  Google Scholar 

  19. Hu QH, Yu DR, Wang MY (2005) Constructing rough decision forests. In: Slezak D et al (eds) RSFDGrC 2005, LNAI 3642. Springer, Berlin, pp 147–156

  20. Bao Y, Ishii N (2002) Combining multiple K-nearest neighbor classifiers for text classification by reducts. In: Proceedings of 5th international conference on discovery science, LNCS 2534. Springer, Berlin, pp 340–347

  21. Cunningham P, Carney J (2000) Diversity versus quality in classification ensembles based on feature selection. In: de Mntaras RL, Plaza E (eds) Proceedings of ECML 2000, 11th European conference on machine learning, Barcelona, Spain, LNCS 1810. Springer, Berlin, pp 109–116

  22. Zenobi G, Cunningham P (2001) Using diversity in preparing ensembles of classifiers based on different feature subsets to minimize generalization error. In: Proceedings of the European conference on machine learning

  23. Rokach L, Maimon O, Arad O (2005) Improving supervised learning by sample decomposition. Int J Comput Intell Appl 5(1):37–54

    Article  Google Scholar 

  24. Rodriguez JJ (2006) Rotation forest: a new classifier ensemble method. IEEE Trans Pattern Anal Mach Intell 20(10):1619–1630

    Article  Google Scholar 

  25. Rokach L (2010) Pattern classification using ensemble learning. In: Series in machine perception and artificial intelligence, vol 75. World Scientific, Singapore

  26. Kusiak A (2000) Decomposition in data mining: an industrial case study. IEEE Trans Electron Packag Manuf 23(4):345–353

    Article  Google Scholar 

  27. Gama J (2000) A linear-bayes classifier. In: Monard C (ed) Advances on artificial intelligence—SBIA 2000. LNAI 1952. Springer, Berlin, pp 269–279

  28. Breiman L (1996) Bagging predictor. Mach Learn 24:123–140

    MathSciNet  MATH  Google Scholar 

  29. Ho TH (1998) The random subspace method for constructing decision forest. IEEE Trans Pattern Anal Mach Intell 20(8):832–844

    Article  Google Scholar 

  30. Sun S, Jin F, Tu W (2011) View construction for multi-view semi-supervised learning. In: Advances in neural networks-ISNN 2011, pp 595–601

  31. Di W, Crawford M (2012) View generation for multi-view maximum disagreement based active learning for hyperspectral image classification. IEEE Trans Geosci Remote Sens 50(5)

  32. Tumer K, Ghosh J (1996) Error correlation and error reduction in ensemble classifiers. Connect Sci 8(3–4):385–404

    Article  Google Scholar 

  33. Liao Y, Moody J (2000) Constructing heterogeneous committees via input feature grouping. In: Solla SA, Leen TK, Muller K-R (eds) Advances in neural information processing systems, vol 12. MIT Press, Cambridge

  34. Rokach L (2008) Mining manufacturing data using genetic algorithm-based feature set decomposition. Int J Intell Syst Technol Appl 4(1):57–78

    Google Scholar 

  35. Kohavi R, John GH (1997) Wrappers for feature subset selection. Artif Intell 97(1–2):273–324

    Article  MATH  Google Scholar 

  36. Kumar V, Minz S (2014) Feature selection: a literature review. Smart Comput Rev 4(3):211–229

    Article  Google Scholar 

  37. Liu H, Motoda H (1998) Feature selection for knowledge discovery and data mining. Kluwer, London

    Book  MATH  Google Scholar 

  38. Tao D, Tang X, Li X, Wu X (2006) Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval. IEEE Trans Pattern Anal Mach Intell 28(7):1088–1099

    Article  Google Scholar 

  39. De Sa V, Gallagher P, Lewis J, Malave V (2010) Multi-view kernel construction. Mach Learn 76:47–71

    MathSciNet  Google Scholar 

  40. Szendmak S, Shawe-Taylor J (2007) Synthesis of maximum margin and multi-view learning using unlabeled data. Neurocomputing 70:1254–1264

    Article  Google Scholar 

  41. Rosenberg D, Sindhwani V, Bartlett P, Nuyogi P (2009) Multi-view point cloud kernels for semi-supervised learning. IEEE Signal Process Mag 145:145–150

    Article  Google Scholar 

  42. Xu Z, Sun S (2010) An algorithm on multi-view adaboost. Lect Note Comput Sci 6443:332–402

    Google Scholar 

  43. Dasgupta S, Littman ML, McCallum D, Mitchell T, Nigam K, Slattery S (2002) Pac gereralization bounds for co-training. Adv Neural Inf Process Syst 1:375–382

    Google Scholar 

  44. Ho TK (1998) The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Mach Intell 20(8):832–844

    Article  Google Scholar 

  45. Tsymbal A, Pechenizkiy M, Cunningham P (2005) Diversity in search strategies for ensemble feature selection. Inf Fusion 6(1):83–98

    Article  Google Scholar 

  46. Gunter S, Bunke H (2004) Feature selection algorithms for the generation of multiple classifier systems. Pattern Recognit Lett 25(11):1323–1336

    Article  Google Scholar 

  47. Di W, Crawford MM (2012) View generation for multiview maximum disagreement based active learning for hyperspectral image classification. IEEE Trans Geosci Remote Sens 99:1–13

    Google Scholar 

  48. Rokach L (2008) Genetic algorithm-based feature set partitioning for classification problems. Pattern Recognit 41(5):1676–1700

    Article  MATH  Google Scholar 

  49. Muslea I, Minton S, Knoblock CA (2002) Adaptive view validation: a first step towards automatic view detection. In: Machine learning-international workshop then conference. Citeseer, pp 443–450

  50. Christoudias CM, Urtasun R, Darrell T (2008) Multi-view learning in the presence of view disagreement. In: Proceedings of the 24th conference on uncertainty in artificial intelligence

  51. Christoudias CM, Urtasun R, Kapoorz A, Darrell T (2009) Co-training with noisy perceptual observations. In: Computer vision and pattern recognition, 2009. CVPR, 2009, IEEE conference on, pp 2844–2851. IEEE

  52. Liu C, Yuen PC (2011) A boosted co-training algorithm for human action recognition. IEEE Trans Circuits Syst Video Technol 21(9):1203–1213

    Article  Google Scholar 

  53. Brown G, Wyatt J, Harris R, Yao X (2005) Diversity creation methods: a survey and categorisation. Inf Fusion 6(1):5–20

    Article  Google Scholar 

  54. Margineantu D, Dietterich T (1997) Pruning adaptive boosting. In: Proceedings of fourteenth international conference machine learning, pp 211–218

  55. Kuncheva L, Whitaker C (2003) Measures of diversity in classifier ensembles and their relationship with ensemble accuracy. Mach Learn, pp 181–207

  56. Sun S, Jin F (2011) Robust co-training. Int J Pattern Recognit Artif Intell 25:1113–1126

    Article  MathSciNet  Google Scholar 

  57. Xu Z, Sun S (2010) An algorithm on multi-view adaboost. Lect Note Comput Sci 6443:355–362

    Article  Google Scholar 

  58. Opitz D, Shavlik J (1996) Generating accurate and diverse members of a neural-network ensemble. In: Touretzky DS, Mozer MC, Hasselmo ME (eds) Adv Neural Inf Process Syst, vol 8. The MIT Press, Cambridge, pp 535–541

    Google Scholar 

  59. Buntine W (1990) A theory of learning classification rules. Doctoral Dissertation, School of Computing Science University of Technology. Sydney, Australia

  60. Wolpert DH (1992) Stacked generalization. Neural Netw 5:241–259

  61. Chan PK, Stolfo SJ (1993) Toward parallel and distributed learning by meta-learning. In: AAAI Workshop in knowledge discovery in databases, pp 227–240

  62. Chan PK, Stolfo SJ (1997) On the accuracy of meta-learning for scalable data mining. J Intell Inf Syst 8:5–28

    Article  Google Scholar 

  63. http://archive.ics.uci.edu/ml/

  64. http://datam.i2r.a-star.edu.sg/datasets/krbd/index.html

  65. http://www.nipsfsc.ecs.soton.ac.uk/datasets/

  66. http://www.37steps.com/prtools/

  67. Hodges JL, Lehmann EL (1962) Rank method for combination of independents experiment analysis of variance. Ann Math Stat 33:482–497

    Article  MathSciNet  MATH  Google Scholar 

  68. Garcia S, Herrera F (2008) An extension of statistical comparison of classifiers over multiple datasets for all pair wise comparisons. Mach Learn Res 09:2677–2694

    MATH  Google Scholar 

  69. Steelv RGD (1959) A multiple comparison sign test: treatments versus control. J Am Stat Assoc 54:767–714

  70. Doksum K (1967) Robust procedures for some linear models with one observation per cell. Ann Math Stat 38:878–883

    Article  MathSciNet  MATH  Google Scholar 

  71. Abramowitz M (1974) Handbook of mathematical functions. In: With formulas, graphs, and mathematical tables. Dover Publication, NY

  72. Derrac J, Garcia S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithm. Swarm Evol Comput 1:3–18

    Article  Google Scholar 

  73. Dunn OJ (1961) Multiple comparisons among means. J Am Stat Assoc 56:52–64

    Article  MathSciNet  MATH  Google Scholar 

  74. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    MathSciNet  MATH  Google Scholar 

  75. Holland BS, Copenhaver MD (1987) An improved sequentially rejective Bonferroni test procedure. Biometrics 43:417–423

    Article  MathSciNet  MATH  Google Scholar 

  76. Finner H (1993) On a monotonicity problem in step-down multiple test procedures. J Am Stat Assoc 88:920–923

    Article  MathSciNet  MATH  Google Scholar 

  77. Garcia S, Fernandez A, Luengo J, Herrera F (2010) Advanced non-parametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf Sci 18:2044–2064

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vipin Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Minz, S. Multi-view ensemble learning: an optimal feature set partitioning for high-dimensional data classification. Knowl Inf Syst 49, 1–59 (2016). https://doi.org/10.1007/s10115-015-0875-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-015-0875-y

Keywords

Navigation