Skip to main content

Advertisement

Log in

Attenuation of oxidative stress, inflammation and early markers of tumor promotion by caffeic acid in Fe-NTA exposed kidneys of Wistar rats

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Iron nitrilotriacetate (Fe-NTA), a chief environmental pollutant, is known for its extensive toxic manifestations on renal system. In the present study, caffeic acid, one of the most frequently occurring phenolic acids in fruits, grains, and dietary supplements was evaluated for its shielding effect against the Fe-NTA-induced oxidative, inflammatory, and pathological damage in kidney. Fe-NTA was administered (9 mg Fe/kg body weight) intraperitoneally to the Wistar male rats on 20th day while caffeic acid was administered orally (20 and 40 mg/kg body weight) before administration of Fe-NTA. The intraperitoneal administration of Fe-NTA-enhanced lipid peroxidation, xanthine oxidase, and hydrogen peroxide generation with reduction in renal glutathione content, antioxidant enzymes, viz., catalase, glutathione peroxidase, and glutathione reductase. A sharp elevation in the levels of myloperoxidase, blood urea nitrogen (BUN), and serum creatinine has also been observed. Tumor promotion markers viz., ornithine decarboxylase (ODC) and [3H] thymidine incorporation into renal DNA were also significantly increased. Treatment of rats orally with caffeic acid (20 and 40 mg/kg body weight) resulted in a significant decrease in xanthine oxidase (P < 0.001), lipid peroxidation (P < 0.001), γ-glutamyl transpeptidase (P < 0.01), and H2O2 (P < 0.01). There was significant recovery of renal glutathione content (P < 0.001) and antioxidant enzymes (P < 0.001). There was also a reversal in the enhancement of renal ODC activity, DNA synthesis, BUN, and serum creatinine (P < 0.001). All these changes were supported by histological observations. The results indicate that caffeic acid may be beneficial in ameliorating the Fe-NTA-induced oxidative damage and tumor promotion in the kidney of rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

Fe-NTA:

Ferric nitrilotriacetate

MPO:

Myloperoxidase

BUN:

Blood urea nitrogen

ROS:

Reactive oxygen species

GSH:

Reduced glutathione

GST:

Glutathione-S-transferase

DTNB-50:

Dithio-bis 2-nitrobenzoic acid

CDNB:

1-Chloro 2,4-dinitrobenzene

NO:

Nitric oxide

GR:

Glutathione reductase

GSSG:

Oxidized glutathione

NADPH:

Reduced nicotinamide adenine dinucleotide phosphate

EDTA:

Ethylenediamine tetra acetic acid

LDH:

Lactate dehydrogenase

References

  1. Irwing HM, Miles NH, Miles MG (1966) Analogues of nitrilotriacetic acid, and the stabilities of their proton and metal complexes. J Chem Soc A:1268–1275

    Google Scholar 

  2. Awai M, Narasaki M, Yamanoi Y, Seno S (1979) Induction of diabetes in animals by parenteral administration of ferric nitrilotriacetate. A model of experimental hemochromatosis. Am J Pathol 95:663–673

    PubMed  CAS  Google Scholar 

  3. Hamazaki S, Okada S, Ebina Y, Midorikawa O (1985) Acute renal failure and glycosuria induced by ferric nitrilotriacetate in rats. Toxicol Appl Pharmacol 77:267–274

    Article  PubMed  CAS  Google Scholar 

  4. Liu M, Okada S et al (1993) Radical promoting free iron level in serum of rats treated with other iron chelate complexes. Acta Med Okayama 45:401–408

    Google Scholar 

  5. Zhang D, Okada S et al (1995) An improved simple colorimetric method for the quantization of non-bound iron in serum. Biochem Mol Biol Int 35:635–641

    PubMed  CAS  Google Scholar 

  6. Jacobs A (1980) In: Jacobs A, Worwood M (eds) Iron in biochemistry and medicine, II. Academic Press, New York, pp 427–459

    Google Scholar 

  7. Chen L, Wang Y et al (2001) Molecular mechanisms by which iron induces nitric oxide synthesis in cultured proximal tubule cells. Exp Nephrol 9(3):198–204

    Article  PubMed  CAS  Google Scholar 

  8. Toyokuni S (2002) Iron and carcinogenesis: from Fenton reaction to target genes. Redox Rep 7(4):189–197

    Article  PubMed  CAS  Google Scholar 

  9. Toyokuni S (1996) Iron-induced carcinogenesis: the role of redox regulation. Free Radic Biol Med 20:553–566

    Article  PubMed  CAS  Google Scholar 

  10. Liochev SI, Fridovich I (2002) The Haber–Weiss cycle-70 years later: an alternative view. Redox Rep 7:55–57

    Article  PubMed  CAS  Google Scholar 

  11. Gupta A, Sharma S, Kaur I et al (2009) Renoprotective effects of sesamol in ferric nitrilotriacetate (Fe-NTA)-induced oxidative renal injury in rats. Basic Clin Pharmacol Toxicol 104:316–321

    Article  PubMed  CAS  Google Scholar 

  12. Iqbal M, Okazaki Y, Okada S (2009) Curcumin attenuates oxidative damage in animals treated with a renal carcinogen, ferric nitrilotriacetate (Fe-NTA): implications for cancer prevention. Mol Cell Biochem 324:157–164

    Article  PubMed  CAS  Google Scholar 

  13. Rafter JJ (2002) Scientific basis of biomarkers and benefits of functional foods for reduction of disease risk: cancer. Br J Nutr 88:219–224

    Article  Google Scholar 

  14. Sarkar A, Bhaduri A (2001) Black tea is a powerful chemopreventor of reactive oxygen and nitrogen species: comparison with its individual catechin constituents and green tea. Biochem Biophys Res Commun 284:173–178

    Article  PubMed  CAS  Google Scholar 

  15. Mattila P, Kumpulainen J (2002) Determination of free and total phenolic acids in plant-derived foods by HPLC with diode-array detection. J Agric Food Chem 50:3660–3667

    Article  PubMed  CAS  Google Scholar 

  16. Shahidi F, Naczk M (1995) Food phenolics. Sources, chemistry, effects, applications. Technomic Publishing Company, Inc., Lancaster

    Google Scholar 

  17. Chan JH, Ho CT (1997) Antioxidant activities of caffeic acid and its related hydroxy cinnamic acid compounds. J Agric Food Chem 45:2374–2378

    Article  Google Scholar 

  18. Psotova J, Lasovsky J, Vicor J (2003) Metal chelating properties, electrochemical Scavenging and cytoprotective activities of six natural phenolics. Biomed Pap 147:147–153

    CAS  Google Scholar 

  19. Chao CY, Mong MC, Chan KC, Yin MC (2010) Anti-glycative and anti-inflammatory effects of caffeic acid and ellagic acid in kidney of diabetic mice. Mol Nutr Food Res 54:388–395

    Article  PubMed  CAS  Google Scholar 

  20. Gulcin I (2006) Antioxidant activity of caffeic acid. Toxicology 217:213–220

    Article  PubMed  Google Scholar 

  21. Jung UJ, Lee MK, Park YB, Jeon SM et al (2006) Antihyperglycemic and antioxidant properties of caffeic acid in db/db mice. J Pharmacol Exp Ther 318:476–483

    Article  PubMed  CAS  Google Scholar 

  22. Athar M, Iqbal M (1998) Ferric nitrilotriacetate promotes N-diethyl nitrosoamine-induced renal tumorigenesis in rat: implications for the involvement of oxidative stress. Carcinogenesis 19:1133–1139

    Article  PubMed  CAS  Google Scholar 

  23. Wright JR, Colby HD, Miles PR (1981) Cytosolic factors which affect microsomal lipid peroxidation in lung and liver. Arch Biochem Biophys 206:296–304

    Article  PubMed  CAS  Google Scholar 

  24. Jollow DJ, Mitchell JR, Zampaglione N, Gillette JR (1974) Bromobenzene induced liver necrosis: protective role of glutathione and evidence for 3,4-bromobezene oxide as the hepatotoxic metabolite. Pharmacology 11:151

    Article  PubMed  CAS  Google Scholar 

  25. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione-S-transferases: the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    PubMed  CAS  Google Scholar 

  26. Carlberg I, Mannervik B (1975) Glutathione level in rat brain. J Biol Chem 250:4480–4575

    Google Scholar 

  27. Stripe F, Della Corte E (1969) The regulation of rat liver xanthine oxidase. J Biol Chem 244:3855–3863

    Google Scholar 

  28. Pick A, Keisari Y (1981) Superoxide anion and H2O2 production by chemically elicited peritoneal macrophages—induction by multiple non-phagocytic stimulus. Cell Immunol 59:301–308

    Article  PubMed  CAS  Google Scholar 

  29. Claiborne A (1985) Catalase activity. In: Greenwald RA (ed) CRC handbook of methods in oxygen radical research. CRC Press, Boca Raton, pp 283–284

    Google Scholar 

  30. Mohandas M, Marshall JJ, Duggin GG, Horvath JS, Tiller D (1984) Differential distribution of glutathione and glutathione related enzymes in rabbit kidney. Cancer Res 44:5086–5091

    PubMed  CAS  Google Scholar 

  31. Kornberg A (1955) Lactic dehydrogenase of muscle. In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol I. Academic Press, New York, pp 441–443

    Chapter  Google Scholar 

  32. Orlowski M, Meister A (1973) γ-Glutamyl cyclotransferase distribution, isozymic forms and specificity. J Biol Chem 248:2836–2844

    PubMed  CAS  Google Scholar 

  33. Benson AM, Hunkalar MJ, Talalay P (1980) Increase of NADPH, quinone reductase activity by dietary antioxidant: possible role in protection against carcinogenesis and toxicity. Proc Natl Acad Sci USA 77:5116–5220

    Google Scholar 

  34. Kanter MW (1975) Clinical chemistry. The Bobber Merill Company Inc, New York

    Google Scholar 

  35. Hare RS (1950) Endogenous creatinine in serum and urine. Proc Soc Exp Biol Med 74:148–151

    PubMed  CAS  Google Scholar 

  36. Bradley PP, Priebat DA, Christensen RD, Rothstein G (1982) Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J Invest Dermatol 78:206–209

    Article  PubMed  CAS  Google Scholar 

  37. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem 126:131–138

    Article  PubMed  CAS  Google Scholar 

  38. Stevens MJ, Obrosova I, Cao X, Van Huysen C, Greene DA (2000) Effects of DL-alpha-lipoic acid on peripheral nerve conduction, blood flow, energy metabolism, and oxidative stress in experimental diabetic neuropathy. Diabetes 49:1006–1015

    Article  PubMed  CAS  Google Scholar 

  39. O’Brien TG, Simsiman RC, Boutwell RK (1975) Induction of the polyamine biosynthetic enzymes in mouse epidermis by tumor promoting agents. Cancer Res 35:1662–1670

    PubMed  Google Scholar 

  40. Athar M, Raza H, Bickers D, Mukhtar H (1990) Inhibition of benzoyl peroxide-mediated tumor promotion in 7,12-dimethylbenz(a)anthracene-initiated skin of sencar mice by antioxidants, nordihydroguaretic acid and diallyl sulphide. J Invest Dermatol 94:162–165

    Article  PubMed  CAS  Google Scholar 

  41. Smart RC, Huang MT, Conney AA (1986) Sn 1,2, diacylglycerols mimic the effects of TPA in vivo by inducing biochemical changes associated with tumor promotion in mouse epidermis. Carcinogenesis 7:1865–1870

    Article  PubMed  CAS  Google Scholar 

  42. Giles KW, Myers A (1965) An improved diphenylamine method for the estimation of deoxyribonucleic acid. Nature 206:63

    Article  Google Scholar 

  43. Lowry OH, Rosebrough NJ, Farr A, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  44. Wu Z, Qiu L (2001) Effect of nitric oxide on iron-mediated cytotoxicity in primary cultured renal proximal tubules. Cell Biochem Funct 19(4):237–247

    Article  PubMed  CAS  Google Scholar 

  45. Kadkhodaee MaG (2004) The role of nitric oxide in iron-induced rat renal injury. Hum Exp Toxicol 23:533–536

    Article  PubMed  CAS  Google Scholar 

  46. Umemura TY, Sai K, Takagi A, Hasegawa R, Kurakawa Y (1990) Oxidative DNA damage, lipid peroxidation and induced in rat kidney after ferric nitrilotriacetate administration. Cancer Lett 54:95–100

    Article  PubMed  CAS  Google Scholar 

  47. Taso B, Curthoys NP (1980) The absolute asymmetry of orientation of gamma-glutamyl transpeptidase and amino-peptidase on the external surface of the rat renal brush order membrane. J Biol Chem 255:7708–7711

    Google Scholar 

  48. Guder WG, Ross BD (1984) Enzyme distribution along the nephron. Kidney Int 26:101–111

    Article  PubMed  CAS  Google Scholar 

  49. Aruoma OI, Halliwell B, Gajewski E, Dizdaroglu M (1989) Damage to the bases in DNA induction by hydrogen peroxide and ferric ion chelates. J Biol Chem 264:20509–20512

    PubMed  CAS  Google Scholar 

  50. El-Maraghy SA, Sherine MR, El-Sawalhi MM (2009) Hepatoprotective potential of crocin and curcumin against iron overload-induced biochemical alterations in rat. Afr J Biochem Res 5:215–221

    Google Scholar 

  51. Iqbal M, Okazaki Y, Okada S (2007) Probucol modulates iron nitrilotriacetate (Fe-NTA)-dependent renal carcinogenesis and hyperproliferative response: diminution of oxidative stress. Mol Cell Biochem 304:61–69

    Article  PubMed  CAS  Google Scholar 

  52. Okada S, Midorikawa O (1982) Induction of rat renal adenocarcinoma by ferric nitrilotriacetate. Jpn Arch Intern Med 29:485–491

    CAS  Google Scholar 

  53. Mizuno R, Kawabata T, Sutoh Y et al (2006) Oxidative renal tubular injuries induced by aminocarboxylate-type iron (III) coordination compounds as candidate renal carcinogens. Biometals 19:675–683

    Article  PubMed  CAS  Google Scholar 

  54. Jahangir T, Sultana S (2006) Modulatory effects of Pluchea lanceolata against chemically induced oxidative damage, hyperproliferation and two-stage renal carcinogenesis in Wistar rats. Mol Cell Biochem 291:175–185

    Article  PubMed  CAS  Google Scholar 

  55. Khan N, Sharma S, Sultana S (2004) Attenuation of potassium bromate induced nephrotoxicity by coumarin (1,2-benzopyrone) in Wistar rats: chemoprevention against free radical-mediated renal oxidative stress and tumor promotion response. Redox Rep 9(1):19–28

    Article  PubMed  CAS  Google Scholar 

  56. Weinberg ED (1992) Iron depletion defense against intracellular infections and neoplasia. Life Sci 50:1289–1297

    Article  PubMed  CAS  Google Scholar 

  57. Sehirli O, Sener G (2010) Protective effect erdosteine against naphthalene-induced oxidative stress in rats. Marmara Pharm J 14:67–73

    Google Scholar 

  58. Federico A, Morgillo F, Tuccillo C, Ciardiello F, Loguercio C (2007) Chronic inflammation and oxidative stress in human carcinogenesis. Int J Cancer 121:2381–2386

    Article  PubMed  CAS  Google Scholar 

  59. Noiri E, Peresleni T, Miller F, Goligorsky MS (1996) In vivo targeting of inducible NO synthase with oligodeoxynucleotides protects rat kidney against ischemia. J Clin Invest 97:2377–2383

    Article  PubMed  CAS  Google Scholar 

  60. Koppenol WH, Moreno JJ, Pryor WA, Ischiropoulos H, Beckman JS (1992) Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem Res Toxicol 5:834–842

    Article  PubMed  CAS  Google Scholar 

  61. Kaur G, Athar M, Alam MS (2009) Dietary supplementation of silymarin protects against chemically induced nephrotoxicity, inflammation and renal tumor promotion response. Investig New Drugs 28:703–713

    Article  Google Scholar 

  62. Auvinen M, Paasinen A, Andersson LC, Holtta E (1992) Ornithine decarboxylase activity is critical for cell transformation. Nature 360:355–358

    Article  PubMed  CAS  Google Scholar 

  63. O’Brien TG, Megosh LC, Gilliard G, Soler AP (1997) Ornithine decarboxylase overexpression is a sufficient condition for tumor promotion in mouse skin. Cancer Res 57:2630–2637

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Centre of Council for Research in Unani Medicine (CCRUM), Department of AYUSH, Ministry of Health and Family Welfare, Govt. of India, for providing the funds to carry out this study.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarwat Sultana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

U. Rehman, M., Sultana, S. Attenuation of oxidative stress, inflammation and early markers of tumor promotion by caffeic acid in Fe-NTA exposed kidneys of Wistar rats. Mol Cell Biochem 357, 115–124 (2011). https://doi.org/10.1007/s11010-011-0881-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-0881-7

Keywords

Navigation