PCBs: structure-function relationships and mechanism of action

Environ Health Perspect. 1985 May:60:47-56. doi: 10.1289/ehp.856047.

Abstract

Numerous reports have illustrated the versatility of polychlorinated biphenyls (PCBs) and related halogenated aromatics as inducers of drug-metabolizing enzymes and the activity of individual compounds are remarkably dependent on structure. The most active PCB congeners, 3,4,4',5-tetra-, 3,3',4,4'-tetra-, 3,3',4,4',5-penta- and 3,3',4,4',5,5'-hexachlorobiphenyl, are substituted at both para and at two or more meta positions. The four coplanar PCBs resembled 3-methylcholanthrene (3-MC) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) in their mode of induction of the hepatic drug-metabolizing enzymes. These compounds induced rat hepatic microsomal benzo(a)pyrene hydroxylase (aryl hydrocarbon hydroxylase, AHH) and cytochromes P-450a, P-450c and P-450d. 3,4,4',5-Tetrachlorobiphenyl, the least active coplanar PCB, also induced dimethylaminoantipyrine N-demethylase and cytochromes P-450b+e and resembled Aroclor 1254 as an inducer of the mixed-function oxidase system. Like Aroclor 1254, all the mono-ortho- and at least eight di-ortho-chloro analogs of the coplanar PCBs exhibited a "mixed-type" induction pattern and induced microsomal AHH, dimethylaminoantipyrine NM-demethylase and cytochromes P-450a-P-450e. Quantitative structure-activity relationships (QSARs) within this series of PCBs were determined by comparing their AHH induction potencies (EC50) in rat hepatoma H-4-II-E cells and their binding affinities (ED50) for the 2,3,7,8-TCDD cytosolic receptor protein. The results showed that there was an excellent correlation between AHH induction potencies and receptor binding avidities of these compounds and the order of activity was coplanar PCBs (3,3',4,4' -tetra-, 3,3',4,4',5-penta- and 3,3',4,4',5,5'-hexachlorobiphenyls) greater than 3,4,4',5-tetrachlorobiphenyl approximately mono-ortho coplanar PCBs greater than di-ortho coplanar PCBs. It was also apparent that the relative toxicities of this group of PCBs paralleled their biological potencies. The coplanar and mono-ortho coplanar PCBs also exhibit differential effects in the inbred C57BL/6J and DBA/2J mice. These compounds induce AHH and cause thymic atrophy in the former "responsive" mice whereas at comparable or higher doses none of these effects are observed in the nonresponsive DBD/2J mice. Since the responsiveness of these two mice strains is due to the presence of the Ah receptor protein in the C57BL/6J mice and its relatively low concentration in the DBA/2J mice, the results for the PCB cogeners support the proposed receptor-mediated mechanism of action.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Aryl Hydrocarbon Hydroxylases / biosynthesis
  • Cytochrome P-450 Enzyme System / biosynthesis
  • Enzyme Induction / drug effects
  • Ligands
  • Mice
  • Mice, Inbred C57BL
  • Mice, Inbred DBA
  • Molecular Conformation
  • Polychlorinated Biphenyls / toxicity*
  • Rats
  • Receptors, Aryl Hydrocarbon
  • Receptors, Drug / metabolism
  • Species Specificity
  • Structure-Activity Relationship

Substances

  • Ligands
  • Receptors, Aryl Hydrocarbon
  • Receptors, Drug
  • Cytochrome P-450 Enzyme System
  • Polychlorinated Biphenyls
  • Aryl Hydrocarbon Hydroxylases