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Scenarios showing future greenhouse gas emissions are
needed to estimate climate impacts and the mitigation
e�orts required for climate stabilization. Recently, the Shared
Socioeconomic Pathways (SSPs) have been introduced to
describe alternative social, economic and technical narratives,
spanning a wide range of plausible futures in terms of
challenges to mitigation and adaptation1. Thus far the key
drivers of the uncertainty in emissions projections have not
been robustly disentangled. Here we assess the sensitivities
of future CO2 emissions to key drivers characterizing the SSPs.
Weuse six state-of-the-art integratedassessmentmodelswith
di�erent structural characteristics, and study the impact of
five families of parameters, related to population, income,
energye�ciency, fossil fuel availability, and low-carbonenergy
technology development. A recently developed sensitivity
analysis algorithm2 allows us to parsimoniously compute both
the direct and interaction e�ects of each of these drivers
on cumulative emissions. The study reveals that the SSP
assumptions about energy intensity and economic growth are
the most important determinants of future CO2 emissions
from energy combustion, both with and without a climate
policy. Interaction terms between parameters are shown to be
important determinants of the total sensitivities.

Counterfactual or baseline scenarios of future greenhouse gas
emissions play a crucial role in the scientific analysis of climate
change, but they also increasingly matter in the political debate.
Long-termprojections of socioeconomic and emission scenarios are
needed to be able to assess future climate change, and its physical
and economic impacts. Emission reduction policies, including
several of the Nationally Determined Contributions (NDCs), are
expressed as reductions relative to emissions projections. Moreover,
baseline emissions are one of the most important drivers of
mitigation costs3–5: the higher the expectations of future emissions
in the absence of climate policy, the greater the mitigation effort for
a given climate target, which translates into higher policy costs and
technological transformation requirements.

Although long-term emissions projections are needed for
decision-making, there is large uncertainty in their estimates.
Several emission scenarios have been generated by the integrated

assessment model (IAM) research community over the years.
These include the Intergovernmental Panel on Climate Change
(IPCC) Special Report on Emission Scenarios6 and the new Shared
Socioeconomic development Pathways (SSPs)7–11.

Scenarios generated by several models allow one to quantify both
parametric and model uncertainty, which have been identified as
a major source of uncertainty. Moreover, diagnostics of IAM is a
relatively nascent field that is growing in importance to help validate
models. Hence, it is useful to disentangle the key drivers of the
uncertainty in emissions projections because that understanding
can help design hedging strategies.

Building baseline scenarios is a daunting task that requires
projecting forward multiple factors driving emissions and
accounting for the large uncertainties characterizing them. To
date the research community has relied on multi-scenario and
multi-model comparisons to help quantifying the uncertainties
surrounding future emissions. As no single model projection nor
individual scenario will probably be exactly true, it is extremely
useful to gauge the relative importance of drivers of these scenarios
and allocate research efforts to strategically minimize uncertainties.
In such an exercise, it is worth also to design additional scenarios
that are not necessarily self-consistent with the original narratives,
but still may bring important insights into surprises and risks we
might want to hedge against. However, so far limited attention
has been given to the understanding of the sensitivity of projected
emissions to the underlying drivers that together define a specific
narrative. The aim of this paper is to fill this gap by systematically
decomposing the individual and combined influence of each driver
on greenhouse gas emissions in a multi-model perspective.

IAMs have been subjected to sensitivity analyses in the past.
However, most of these analyses have focused on either a small
set of models, or on individual sensitivities12–18 (see Supplementary
Information for a literature review). Individual sensitivities are
computed by varying just one factor at a time. However, this allows
for the computation of only the individual effects of a particular
factor change, disregarding interactions among factors. A more
refinedmethodology is employed here to also capture nonlinearities
and interactions across factors at limited computational cost. Thus,
this paper goes beyond the existing literature on three main issues:
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Supplementary Text

Contribution to the existing literature

This paper goes beyond the literature on three main issues: the use of SSP
scenarios, the multi-model ensemble, and the algorithm used for the sensi-
tivity analysis. We review the existing literature on these so far separate
topics in what follows.

Several emission scenarios have been generated by the research commu-
nity over the years. The IPCC Special Report on Emission Scenarios [1]
described scenarios (SRES) which have been used since the third IPCC as-
sessment report. SRES provided four qualitative stories (families A1, A2,
B1, B2) spanning different socio-economic and technical assumptions. Six
scenario groups were drawn from the four families. Altogether 40 SRES
scenarios were developed by six modeling teams. SRES have been very in-
fluential, accumulating almost 3000 citations (according to Google Scholar).
However, by now the SRES (published in 2000) are outdated. A new set of
future scenario narratives has been recently developed to be used as baseline
scenarios. These scenarios, called Shared Socio-economic development Path-
ways SSPs [2, 3, 4, 5] describe five future evolutions of the world spanning
different challenges to mitigation and adaptation. A set of 6 process-based1

models have interpreted and implemented the SSPs storylines, generating
new long-term projections of GHG emissions scenarios [6, 7, 8, 9, 10]. The
SSP narratives are summarized in Table S2. We limit this study to the
first 3 SSPs, which would be located on the main diagonal of a space with
increasing mitigation and adaptation challenges as dimensions. The other
two available SSPs (i.e. SSP4 and SSP5) would instead be placed off of this
diagonal.

Regarding existing studies exploring the sensitivities of future emissions
with IAMs, these focused on either a small set of models, or on individual
sensitivities. [11] assessed the sensitivity of the social cost of carbon and
GHG emissions to 8 exogenous inputs in the DICE model, a simple and
one of the most popular IAMs. [12] explored the uncertainty of baseline
emissions as the result of the uncertainty of several inputs conditionally to
the SRES scenarios, using the TIMER energy model. [13] provide a recent
4-model exploration of economic and fossil fuel drivers of emissions, focusing
on direct OFAT effects. [14] is one of the closest contribution, assessing the
role of population, total factor productivity, and climate sensitivity with 6

1As opposed to stylized, reduced-form approaches of another class of IAMs, often used
for cost-benefit analyses.
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IAMs. They also focus on direct OFAT impacts alone, and on a subset of
drivers.

Some studies have employed rigorous Global Sensitivity Methods. [15]
and [16] provide a large-scale model diagnostic evaluation that explicitly ac-
counts for the parametric interactions and dependencies between coupled
climate and economic components. They use the DICE IAM. [17] is the first
global sensitivity study featuring multiple (3) models. Their contribution is
focused on the costs or performance of five low carbon technologies. [18],
using the IMACLIM-R IAM, propose a different ’backwards’ approach in-
volving an a-priori identification of drivers, a modelling exercise to transform
these drivers into a large set of scenarios, and an a-posteriori selection of a
few SSPs using statistical cluster-finding algorithms.

The approach underlying this analysis is similar but unrelated to meth-
ods of Index Decomposition Analysis (IDA), like Logarithmic Mean Divisia
index (LMDI) [19]. An extensive literature review on the application of IDA
to energy-related CO2 emissions is offered in [20]. Through IDA, it is possi-
ble to quantify drivers of change in CO2 emissions for a certain sector and
country, given past data on related quantities. LMDI can be used also on
"future" data, e.g. to identify drivers of future emissions reductions, using a
dataset of scenarios implemented by an ensemble of IAMs [21]. In our case,
since we have access to the data generating process, the perspective is re-
versed. Models are run for specific sensitivity scenarios, optimized to clearly
reveal the role of drivers we consider. Moreover, the LMDI expansion is ex-
act when the decomposition is applied to models like Kaya, which implicitly
assume an additive or multiplicative structure. The present decomposition
is, instead, model-independent and exact also when the input-output map-
ping is not multilinear. It is also important to observe that a factor in our
analysis is a group of model inputs, that refers to several variables that vary
simultaneously (and this is one additional technical difficulty of our analysis
compared to previous works).

Methodology

In this analysis, we are dealing with M models, where each model, in prin-
ciple, has its own input space and input-output mapping. Then, we write
y = hm(x), y : Xm 7→ Ym, where Xm ⊆ Rnm , and Ym ⊆ Rqm are the
model input space and model output spaces, and nm and qm the number of
model inputs and model outputs of model m, respectively. To illustrate the
method, let us focus on a single model output y ∈ R, e.g. global cumulative
fossil fuels and industry CO2 emissions in the period 2010-2050, which is
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computed by all models and for all values of x ∈ Xm,m = 1, 2, ...,M .
To find a common ground, we identify a scenario space, i.e. a space

with setups implementable across the different IAMs in a consistent way.
We describe such scenario space by discrete vectors z = [z1, z2, . . . , zn] ∈
{0, 1}n. Each component zi is a factor, or scenario feature, which is model-
independent, and can either be at its nominal value (i.e. 0) or deviate to
an alternative value (i.e. 1). Here, the factors are POP, GDPPC, END, FF
and LC. Nominal levels correspond to SSP2 assumptions, while alternative
levels correspond to either SSP1 or SSP3 assumptions. Then, a map is
needed to translate these common scenarios to implementable model inputs
combinations. We denote this function through tm(·) : {0, 1}N 7→ χm for
each model. That is x = tm(z). Hence, we can associate each scenario z
with a model response ym = hm(tm(z)) = gm(z).

When moving from the nominal scenario z0 = [0, . . . , 0] to its alternative
counterpart z1 = [1, . . . , 1], we observe a finite change in the output ∆y =
gm(z1)−gm(z0). To understand the contributions of the i-th scenario feature
zi to this change, we exploit the link between Placket-Burmann design of
experiments and finite change expansion [22, 23]. Dropping the model index
m for brevity, we have:

∆y = g(z1)− g(z0) =
n∑

i=1

∆ig +
n∑

i<j

∆i,jg + · · ·+ ∆1,2,...,ng (1)

where:

• ∆ig = g([z01 , z
0
2 , . . . , z

0
i−1, z

1
i , z

0
i+1, . . . , z

0
n])−g(z0) is the observed change

in output due to the individual change in the i-th scenario input;

• ∆i,jg = g([z01 , z
0
2 , . . . , z

0
i−1, z

1
i , z

0
i+1, . . . , z

0
j−1, z

1
j , z

0
j+1, . . . , z

0
n]) −∆ig −

∆jg − g(z0) is the change in output due to the simultaneous change
in scenario inputs i and j net of the sum of the individual effects of i
and j;

• and likewise for higher order terms such as ∆i,j,kg.

This expansion is strictly related to Efron and Stein’s functional ANOVA
expansion of a multivariate mapping [24].

One then summarizes the individual, interaction and total effect of each
model input in the following sensitivity indices:

• φ1l = ∆lg and its normalized version Φ1
l =

φIl
∆y

will be referred to as

the individual effect of input l;
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• φTi =
∑n

k=1

∑
i∈i1,i2,...,ik;i1<...<ik

∆i1,...,ikg and its normalized version

Φi =
φTi
∆y

will be referred to as the total effect of input i, including all

the finite changes terms involving that input;

• φIi = φTl −φ1l will be referred to as the interaction effect of input i, and
will be equal to the sum of all contributions to ∆y involving a change
in model input i.

The number of interacting terms determining the total effect is exponen-
tial in the number of inputs (equal to 2n − 1, in principle). Nonetheless, a
shortcut exists to evaluate the total effects with a number of evaluations of
y (and thus runs of a model) linear in the number of inputs. This depends
on the fact that total effects can be also calculated as [22, 23]:

φTi = g(z1)− g([z11 , z
1
2 , . . . , z

1
i−1, z

0
i , z

1
i+1, . . . , z

1
n]) (2)

Then, it is possible to compute all φ1i , φ
T
i and φIi at 2n+1 model evaluations.

This design motivates the table of runs of each model (see Table S4).
Individual and total indices are useful in sensitivity analysis, because we

can answer questions such as:

1. What is the direction of change associated with the individual varia-
tions in the zi’s?

2. Is the presence of interactions relevant?

3. Do alternative IAMs respond to the same changes in the same way?

4. What is the factor that drives the changes the most?

Coming back to the comparison with LMDI, we note that, while both
approaches aim to specify the relationship between the output (CO2 emis-
sions) and the key model drivers, the chosen method turns out to be more
suitable for the present evaluation.

Climate policy

In the CPRICE scenarios, a global carbon price equal to 30 US$2005/tCO2eq
in 2040, starting in 2020 and increasing at 5%/yr is applied. Figure S5 il-
lustrates the resulting temporal evolution until 2050, and compares it with
the range of average carbon prices between 2025 and 2030 compatible with
NDC and AR5 2C scenarios, as reported in [25]. Figure S6 compares the
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corresponding emissions profiles. The adopted climate policy can be con-
sidered as consistent with the climate stringency of NDC in the short-term,
and with a possible continuation of a similar level of stringency in the long-
run. However, this is likely not enough to keep global warming in the 2C
threshold by the end of the century. The difference in emissions with SSP2
is shown in Figure S7.

Elasticities

To account for the different magnitude of the factor changes, we performed a
further analysis utilizing elasticities as sensitivity measures. Such elasticities
provide an indication of the response of the model to a unitary variation in
a factor, assuming a constant slope in the response (a restricting but much
used assumption). The composite nature of the factors we consider does
not allow a straightforward definition of unit changes in those factors and,
consequently, an evaluation of their relative unitary effects on emissions. As
usual, we focus on percentage changes in global cumulative CO2 emissions
from fossil fuels and industry, when passing from SSP2 to either SSP1 or
SSP3. Then, for each factor, we normalize by the percentage change in a
correlated scalar variable: for POP we choose global population, for GDPPC
global GDP per capita, for END global final energy per unit of GDP, and
for FF and LC global emissions per unit of GDP. Change is considered both
when moving either a single factor or all the other factors together, as already
done for the calculation of individual and total effects. We just focus on
absolute quantities. These ratios, or elasticities, are shown for the year 2050
and the BASE policy in Figure S13. Population remains a marginal driver.
Resource and technological assumptions have in general a greater impact
on emissions per unit of carbon intensity increased (for FF) or reduced (for
LC). GDPPC seems less impacting in SSP1 per unit of GDP per capita. A
different exercise would be needed to further elaborate on this topic.

Robustness to different time horizons and climate policies

Figure S10 and S12 provide a different perspective on the changes in sensi-
tivity measures when considering different time horizons or climate policies,
extending Table 1 and the tornado Figures S9 and S11. The left-hand side of
each subplot illustrates the average movement across models of the sensitiv-
ities. When moving from BASE to CPRICE (Figure S10), emissions reduce,
and the magnitude of total effects of drivers tend to shrink. In SSP3 we find
some exceptions, as GDPPC and LC become marginally more important
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in magnitude. When moving to a more challenging world, a climate policy
seems to stress the importance of reduced wealth and low-carbon availability
in determining future emissions.

When considering the second half of the century (Figure S12), the effect
on emissions is amplified across all factors. The change which is more visible
and consistent across models and SSPs is an increse in the interaction effects
of GDPPC. Over time, the inter-dependence of economic growth assumptions
with all the other assumptions in affecting emissions becomes greater. This
translates into a greater total effect of GDPPC in SSP3 (i.e. interactions
amplify the total effect), and a relatively lower total effect in SSP1 (i.e.
interactions dampen the total effect), with the same opposite dynamics we
discussed in the main text for the short-term. On average, also the total
effect of END grows relatively more than FF, LC and POP, with the main
findings of paper relative to the period 2010-2050 being reinforced as we look
further into the future.
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Supplementary Figures
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Figure S1: Logic underlying the scenario design for the sensitivity analy-
sis [23]. Left: a given factor zl (e.g. GDPPC) among the n considered (i.e.
the 5 factors) is moved from a reference level of scenario z0 (i.e. SSP2) to
an alternative level of scenario z1 (i.e. SSP1 or SSP3). The difference in
outputs (e.g. cumulative emissions) yields the individual effect φ1l of factor
l on the output. Right: all factors but zl are moved to the alternative level
from the reference level. With a change in sign, the difference in outputs
yields the total effect φTl . The difference between total and individual
effects are the interactions.
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Figure S2: CO2 emissions from Fossil Fuels and Industry with potential
drivers as quantified by the 5 SSP marker models and reported in the
SSP online database. First row: yearly CO2 FFI emissions throughout the
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SSP1, SSP2 and SSP3 scenarios, as implemented in this exercise.
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Figure S4: CO2 emissions from Fossil Fuels and Industry difference be-
tween BASE SSP2 and either SSP1 or SSP3 scenarios, as implemented in
this exercise. With solid colored lines: results from the 6 models. Black
line: 0 difference with SSP2. In dark grey: min-max range for the SSPDB.
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Figure S5: Global carbon price over time applied in the CPRICE scenar-
ios of this study, in comparison with that of AR5 2C and NDC scenarios of
[25].
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Figure S6: CO2 emissions from Fossil Fuels and Industry over time, com-
paring BASE SSP2 and CPRICE SSP2 reference scenarios in this study
with AR5 2C and NDC scenarios of [25].
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Figure S7: Difference in CO2 emissions from Fossil Fuels and Industry be-
tween CPRICE SSP2 and either SSP1 or SSP3 scenarios, as implemented
in this exercise. With solid colored lines: results from the 6 models. Black
line: 0 difference with SSP2.
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Figure S9: Generalized tornado plot of cumulative CO2 Fossil Fuels and
Industry emissions (2010-2050) change from SSP2 to either SSP1 (left)
or SSP3 (right) under CPRICE, for each of the 6 IAMs. TOTAL refers
to total emission changes, and the rows below show emission changes for
each of the five factors. Individual effects are reported with transparent
thicker bars, total effects with solid thinner bars and interaction effects
with striped bars.
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or SSP3 (right) under BASE, for each of the 6 IAMs. TOTAL refers to
total emission changes, and the rows below show emission changes for
each of the five factors. Individual effects are reported with transparent
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Figure S13: Normalized sensitivities. Percentage change of cumulative
CO2 Fossil Fuels and Industry emissions divided by percentage change
of population (POP), GDP per capita (GDPPC), final energy per unit
of GDP (END), and emissions per unit of GDP (FF, LC). These ratios
provide normalized results on the magnitude of the drivers in parenthesis,
and bring some evidence on the elasticities of the factors in parethensis.
All quantities are evaluated in 2050 at the global level under the BASE
scenario, considering both individual and total effects, in absolute terms.
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Table S2: SSP narratives description, from [10].
# Narrative
SSP1 Sustainability - Taking the Green Road (Low challenges to mitigation

and adaptation) The world shifts gradually, but pervasively, toward
a more sustainable path, emphasizing more inclusive development
that respects perceived environmental boundaries. Management of the
global commons slowly improves, educational and health investments
accelerate the demographic transition, and the emphasis on economic
growth shifts toward a broader emphasis on human well-being. Driven
by an increasing commitment to achieving development goals, in-
equality is reduced both across and within countries. Consumption is
oriented toward low material growth and lower resource and energy
intensity.

SSP2 Middle of the Road (Medium challenges to mitigation and adaptation)
- The world follows a path in which social, economic, and technological
trends do not shift markedly from historical patterns. Development
and income growth proceeds unevenly, with some countries mak-
ing relatively good progress while others fall short of expectations.
Global and national institutions work toward but make slow progress
in achieving sustainable development goals. Environmental systems
experience degradation, although there are some improvements and
overall the intensity of resource and energy use declines. Global pop-
ulation growth is moderate and levels off in the second half of the
century. Income inequality persists or improves only slowly and chal-
lenges to reducing vulnerability to societal and environmental changes
remain.

SSP3 Regional Rivalry - A Rocky Road (High challenges to mitigation and
adaptation) A resurgent nationalism, concerns about competitiveness
and security, and regional conflicts push countries to increasingly fo-
cus on domestic or, at most, regional issues. Policies shift over time
to become increasingly oriented toward national and regional security
issues. Countries focus on achieving energy and food security goals
within their own regions at the expense of broader-based development.
Investments in education and technological development decline. Eco-
nomic development is slow, consumption is material-intensive, and
inequalities persist or worsen over time. Population growth is low in
industrialized and high in developing countries. A low international
priority for addressing environmental concerns leads to strong environ-
mental degradation in some regions.
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Remark for MESSAGE-GLOBIOM in Table S3. In all scenario
variants explored in this global sensitivity analysis, the GLOBIOM land-use
representation from SSP2 has been used. As a result, only SSP2 BASE
is consistent with the SSP implementation of MESSAGE-GLOBIOM while
SSP1 and SSP3 are by design deviating from the official SSP implementations
as documented in [7] and [10]. While the internal consistency of the SSPs is
affected by this approach, a systematic comparison of these scenarios with
the original SSP implementation show that impacts on overall fossil fuel
use in baseline scenarios is very modest and also the resulting changes in
fossil fuel and industrial CO2 emissions, the primary variable of interest
in this study, are small (some 2% by 2100). By contrast quite significant
impacts on biomass use are observed for two reasons, (i) the traditional
biomass potential is factored into the cheapest category and when pairing
this with higher/lower traditional biomass demand the remaining biomass
for commercial applications change, and (ii) in particular in the long run the
demographic effect and the resulting difference in pressure on land are quite
significant in the SSPs.
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Table S4: Names and details of the scenarios needed for the decomposition
analysis and implemented by modellers. Each number under an input column
refers to the SSP base scenario from which the setup for that input is taken.

# Scenario Name POP GDPPC END FF LC

1 SSP2_BASE 2 2 2 2 2
2 SSP2_POP1 1 2 2 2 2
3 SSP2_GDPPC1 2 1 2 2 2
4 SSP2_END1 2 2 1 2 2
5 SSP2_FF1 2 2 2 1 2
6 SSP2_LC1 2 2 2 2 1

7 SSP2_POP3 3 2 2 2 2
8 SSP2_GDPPC3 2 3 2 2 2
9 SSP2_END3 2 2 3 2 2
10 SSP2_FF3 2 2 2 3 2
11 SSP2_LC3 2 2 2 2 3

12 SSP1_BASE 1 1 1 1 1
13 SSP1_POP2 2 1 1 1 1
14 SSP1_GDPPC2 1 2 1 1 1
15 SSP1_END2 1 1 2 1 1
16 SSP1_FF2 1 1 1 2 1
17 SSP1_LC2 1 1 1 1 2

18 SSP3_BASE 3 3 3 3 3
19 SSP3_POP2 2 3 3 3 3
20 SSP3_GDPPC2 3 2 3 3 3
21 SSP3_END2 3 3 2 3 3
22 SSP3_FF2 3 3 3 2 3
23 SSP3_LC2 3 3 3 3 2
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