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ABSTRACT
Real-world data sets are crucial to develop and test signal pro-
cessing and machine learning algorithms to solve energy-related
problems. Their scope and data resolution is, however, often limited
to the means required to fulfill the experimenters’ objectives and
moreover governed by personal experience, budgetary and time
constraints, and the availability of equipment. As a result, numer-
ous differences between data sets can be observed, e.g., regarding
their sampling rates, the number of sensors deployed, their ampli-
tude resolutions, storage formats, or the availability and extent of
ground-truth annotations. This heterogeneity poses a significant
problem for researchers intending to comparatively use data sets
because of the required data conversion, re-sampling, and adapta-
tion steps. In short, there is a lack of widely agreed best practices
for designing, deploying, and operating electrical data collection
systems. We address this limitation by dissecting the collection
methodologies used in existing data sets. By offering recommen-
dations for data collection, data storage, and data provision, we
intend to foster the creation of data sets with increased usability
and comparability, and thus a greater benefit to the community.
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1 INTRODUCTION
Since the concept of Non-Intrusive Load Monitoring (NILM) has
been presented in [11], the analysis of electrical consumption data
has received a strong research interest. In order to accelerate these
research activities even more, several groups have collected and
publicly released data sets. Newly designed algorithms to extract
knowledge from energy data are often evaluated using these data.
This strengthens their practical applicability and relevance. These
data sets are invariably comprised of electrical consumption data.
However, many differences can be observed in virtually all other
aspects. Among many other facets, differences include the geo-
graphic areas in which data have been collected, the duration of the
recorded data, and the file format used for storing them. This data
set heterogeneity is a severe impediment to the development of
energy analytics algorithms. Currently, extensive adaptation efforts
(like the NILMTK data set converters [6]) are required to enable
algorithms to work with particular data sets, if at all possible. At
the same time, relying on a single data set causes issues like overfit-
ting and the lack of generalization. We consequently argue that a
methodological and widely agreed procedure for the collection and
provision of data sets is crucial. The primary objectives of such a
methodology are twofold: (1) Cater for data set interoperability, i.e.,
the possibility to seamlessly change the underlying data set when
evaluating algorithms. (2) Enable data set comparability, i.e., the
possibility to interpret algorithm performance measures without
complex and error-prone conversion and adaptation steps. A uni-
fied data set collection methodology facilitates the benchmarking
of energy analytics algorithms and accelerates their development.
In an attempt to define the cornerstones of such a methodology, we
summarize observations from existing data sets and analysis algo-
rithms and derive recommendations for data collection. Moreover,
we highlight several imminent open research challenges that would
lead to wider applicability of data sets. This way, we guide future
data set collection campaigns in making their data widely usable
and comparable, and thus increase their benefit to the community.

2 PROPERTIES OF EXISTING DATA SETS
Algorithms to analyze electrical consumption are inherently data-
centric. Therefore, a vast amount of consumption data is necessary
for their comprehensive performance evaluation. A range of data
sets have been collected over the past years. The large majority of
publications on the analysis of electrical consumption data, how-
ever, relies on only one or at most a few data sets. One reason for
this is the heterogeneity, in some aspects even the incompatibility,
of existing data sets. This obstacle expresses itself in several ways.
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Table 1: Impact of the data sampling rate on the correspond-
ing file size for 10 minutes of data (based on [16]).

Sampling Rate Raw Size HDF5 Size Size Reduction
250Hz 2.0MB 0.8MB 60.09 %
4 kHz 32.1MB 12.3MB 61.66 %
16 kHz 128.2MB 48.8MB 61.93 %
50 kHz 401.0MB 156.3MB 61.01 %

2.1 Measured Electrical Quantities
As demonstrated in a recent study [22], existing data sets differ
significantly in the measurements they provide. Some data sets
(e.g., [4, 5, 7, 17, 19]) contain separate traces for electrical voltages
and currents. This not only allows for the computation of power
(being the product of the two), but also to determine further AC
power components [28]. In contrast, other data sets (e.g., [20, 25])
only report apparent electrical power. Implicitly, algorithms that
require phase shift information cannot be evaluated using data
of the latter type. Some data collection campaigns do not explic-
itly specify whether they have collected active or apparent power,
but merely report whatever data the employed (mostly plug-level)
sensors provide, which complicates their correct interpretation.

Suggestion 1: The provision of voltage and current measure-
ments allows for a greater extent of analyses as well as facilitating
the computation of real and reactive power consumption. We
thus propose to capture and report raw voltage and current data
instead of computed quantities (e.g., power) whenever possible.
Existing energy data sets can be divided into two groups [29]:

macroscopic data sets with data reporting rates around 1Hz and
microscopic data sets with rates of several kHz and beyond [3].
The rates at which microscopic data sets are captured vary be-
tween virtually all collection campaigns, from 250 kHz [17] to
100 kHz [24], 44.1 kHz [12], 30 kHz [10], 16.5 kHz [15], 16 kHz [14],
and 12 kHz [2]. A commonality across all data sets, however, is
the fact that waveform detail is retained and allows for analysis in
both the time and the frequency domains. In contrast, macroscopic
data sets usually report root-mean-square (RMS) values of their
monitored modalities once per second (e.g., [7, 25]) or even less
often (once per minute in [19]). While microscopic data sets can be
converted to their macroscopic representations, currently available
data sets are rarely offered in both representations.

Suggestion 2: The collection of microscopic data should al-
ways be favored over macroscopic data collection and, when
recorded, always be reported.
Suggestion 3: In order to enable the usage of both microscopic
and macroscopic data, either a down-sampled version of the data
set (e.g., one sample per second, being the rate used by a large
number of algorithms already) or at least an executable tool to
facilitate this conversion should be provided along with the data.
High sampling rates implicitly result in a high volume of data be-

ing retrieved and thus necessitate increased efforts for data storage
and management. Experiments presented in [16] show the impact
of sampling frequency on the file size of a data set. We summarize
a small selection of the findings in Table 1. This demonstrates the

need for compression techniques and advanced file formats, which
we discuss in Section 2.4.

Suggestion 4: It is preferable to capture data using sampling
rates on at least the order of tens of kHz such that microscopic
waveform analysis becomes possible.
Another observation addresses irregularities in data reporting

rates. This is, e.g., the case for tracebase [25], where rates vary be-
tween approximately 1/4Hz and 4Hz. Similarly, inaccurate system
or sampling clocks may lead to gradual drifts between long-term
recordings. Particularly in distributed and decoupled systems, an
accurate time synchronization between all sensing devices is re-
quired, yet not always easy to accomplish. This diversity of data
collection rates complicates the development of energy analytics
algorithms, which are often tailored to consume data captured at a
given (constant) sampling rate.

Suggestion 5: Conduct a manual cross-check before releasing
a data set and propose (leveraging the expert knowledge available
to the data set collector) how to deal with gaps and irregularities
in the data, e.g., by suggesting interpolation methods.
In some data sets, considerable changes to the voltage signals

can be observed (i.e., standard deviations of up to 30V in [10, 14]),
despite the general expectation of the voltage to be comparably
constant. In part, this can be attributed to their operation in varying
locations within the electrical distribution grid. To another extent,
however, sensor accuracy may also depend on the environmental
conditions and the accuracy class of the device. Some data sets
specify (e.g., COOLL [24]) calibration factors for each contained
trace to this end, in order to compensate for such deviations.

Suggestion 6: Whenever possible, the employed transducers
should be characterized empirically by using a reference power
supply and load to determine their linearity. Measurements with-
out any load should also be made, to quantify transducer noise.

2.2 Sensor Placement and Campaign Duration
Despite the fact that energy data set collection campaigns were
conducted with rather similar aims, we can observe significant
differences in the way they were conducted. Virtually all published
data sets are heterogeneous with regard to the duration of their
collection campaign. For instance, while AMPds2 [19] features
several years of data, ECO [7] covers eight months, and REDD
[15] only spans about one month. The PLAID data set [10] only
captures a few seconds of each appliance’s initial current demand.
Thus, the large majority of existing data sets cannot fully capture
particularities of all seasons because they span less than one year.

Suggestion 7: In order to capture gradual changes in appliance
usage patterns and human behavior (e.g., due to seasonal changes
or equipment degradation), we suggest to collect data over time
intervals of at least one year. Exceptions apply to campaigns
investigating specific phenomena, if a shorter duration suffices
to capture all relevant features in the required detail.
The placement of sensing devices is equally diverse between

data sets. Some data sets are based on capturing the aggregate load
of a complete building (also known as single-point sensing), e.g., [2].
More fine-grained instrumentation deployments exist, e.g., to mon-
itor individual circuits (e.g., [19]) or even each load separately (like
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in [4]). Besides the diversity of how many sensing devices are de-
ployed, and where in the electrical circuit they are being used, a
second issue exists. The inconsistent deployment of submetering
devices, i.e., monitoring only a few appliances or circuits leads to
situations where only partial data is available. Even meticulously
planned deployments of sensing infrastructure to collect data for
each appliance can be rendered inaccurate when power strips with
multiple attached appliances are attached to wall outlets. Similarly,
in order to correctly track mobile appliances (such as vacuum clean-
ers), their connection points must be constantly kept up-to-date.

Suggestion 8: Data sets should contain both the aggregate elec-
trical quantities of the monitored environment and data from
the appliances attached to the same circuit(s). We acknowledge
that the partial instrumentation of buildings with sensing infras-
tructure can be inevitable due to physical limitations or privacy
policies. We strongly recommend the application of auxiliary
sensing equipment in such corner cases to infer information
about the operation of appliances whose electrical consumption
is not monitored directly.

2.3 Metadata Annotations
Besides the monitored electrical quantities, supplementary features
are often logged as part of measurement campaigns and used to
validate algorithms, e.g., user activities [1, 2, 7].

Suggestion 9: During data collection, the type tags or stickers
of all monitored appliances should be photographed (like in [24])
as well as relevant documentation stored in a digital manner.
In cases where this is not possible, at least an indication of the
appliance’s nominal power consumption should be provided.
Suggestion 10: For some application areas, the existence of
labeled events (such as present in [2]) is essential to train al-
gorithms. Therefore, we suggest to log activities and events
during the campaign in some sort of diary, video footage, or
other adequate forms that allow for the annotation of traces
with event/activity information (like in [1, 23]). In case an appli-
ance has been removed or replaced, this should also be logged.
Suggestion 11: The geographic and ambient features during
the collection (e.g., in [12]), as well as user demographics and
properties of the building(s) under consideration should be logged.
Different proposals for the provision of metadata have been

made. One example, NILM metadata [13], is a metadata schema for
representing appliances, meters, buildings, data sets, prior knowl-
edge about appliances and appliance models. An alternative format,
following a similar objective, is EMD-DF [21].

Suggestion 12: Metadata should be annotated and formatted
in a machine-readable way in order to facilitate simple process-
ing. This is particularly true for event annotations, which repre-
sent an important input data for many NILM algorithms.
Ambient information recorded during the collection of electrical

data may also serve as a foundation for the explanation of observed
phenomena (e.g., to determine the relation between air conditioning
use and outside temperature). Other sensing modalities include
brightness, ambient noise, motion, statistics related to weather, and
building occupancy [7, 8].When annotated properly, thesemetadata
annotations simultaneously foster the collection of region-specific

features. Such features are particularly interesting for comparative
case studies, e.g., to identify electricity usage and wastage across
different geographic areas.

Suggestion 13: The collection of ambient features as well as
aspects that are characteristic for the collection site(s) should be
logged and provided as metadata.

2.4 File Formats
Current data sets come in a variety of file formats. Comma-separated
values (CSV) are widely used to store macroscopic data (cf. Sec-
tion 2.1). However, more sophisticated formats (HDF5 in [17], FLAC
in [12], WAVE in [21], or Matroska media containers in [27]), and
in parts also non-relational databases, have established themselves
for microscopic data. Converging on a file format for energy data
sets still involves a series of trade-offs: Supported computing frame-
works, inclusion of metadata, error correction, and chunking [18].
The Hierarchical Data Format 5 (HDF5) [9] has emerged as a viable
candidate. It supports metadata annotations, efficient data storage,
data transformations, and libraries for most scientific computing
frameworks. NILMTK-DF is a data format tailored to the needs of
NILMTK and internally relies on HDF5 with a custom metadata
structure [6]. However, the fact that NILMTK-DF has not found
wide acceptance in the scientific community is underpinned by the
observation that no data set is provided in this format currently.

Suggestion 14: Data set creators should make an informed
decision on the format using which they release a data set, in
order to maximize its compatibility with NILM tools and energy
analytics algorithms.
With regard to file sizes, data compression plays an important

role. As researchers find in [26], macroscopic smart meter data
can be compressed with average compression rates between 75 %
and 95 %. This claim is supported for microscopic data by the two
rightmost columns in Table 1, which show the savings achiev-
able through the use of HDF5 compression [18]. Data compression
should thus be considered when deciding on a data set file format,
in order to also reduce its download time.

2.5 Access and Use of Data Sets
In principle, two strategies exist in order to make a data set publicly
available: self hosting or third-party hosting. Self-hosting solutions
tend to represent a threat to the long-term availability of data sets
due to local infrastructure and personnel fluctuations. Prominent
examples of energy data sets (e.g., SMARTENERGY.KOM [1]) suffer
from this issue. This is particularly problematic because contribu-
tions evaluated on these data sets can no longer be validated once
the data has become unavailable.

Suggestion 15: Consider the use of public hosting services1 to
ensure long-time availability of a data set.
Two final crucial aspects to consider when publishing a data set

are licensing and user privacy protection, both of which have an
impact on usage limitations. Only very few data sets clearly state
the conditions under which data may be used and distributed, such
as the Pecan Street Dataport data set2.
1E.g., Harvard Dataverse (dataverse.harvard.edu) or IEEE DataPort (ieee-dataport.org)
2Available at dataport.pecanstreet.org
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Suggestion 16: Data should be provided with a license that is
as permissive as possible. Data set collectors must take all neces-
sary precautions to protect the privacy of the users concerned.

2.6 Re-Releasing Existing Data Sets
While our aforementioned propositions mainly apply to new data
collection campaigns, we have derived these recommendations
from the currently available data sets. They carry an important
value, as they have been used for the evaluation of many energy
analytics papers. Many of our suggestions, however, can be applied
to existing data sets as well.

Suggestion 17: The creators of existing data sets should con-
sider a re-release of their data that take our previously expressed
suggestions into account, where applicable.

3 CONCLUSIONS
We have elaborated on a number of issues that directly impact the
usefulness of electricity consumption data sets with respect to the
development and testing of signal processing and machine learning
algorithms. Due to the constant rise of smart metering, the number
of available data sets have significantly increased in the last years,
which is important to evaluate algorithms on a broad basis and to
reduce the risk of overfitting. Many data sets turn out to be signifi-
cantly heterogeneous in aspects like the measured quantities, their
sampling rates, the coverage of metered data, and their campaign
durations. Existing tools (such as NILMTK [6]) provide data set
converters to allow algorithm validation with different data sets.
However, if an algorithm requires a certain measurand that is not
part of the data set or cannot be deduced from it, the data set cannot
be used for the algorithm’s evaluation. Based on our analysis of
more than a dozen data sets, we brought forward 17 suggestions.
We expect these suggestions to be a basis for the planning of future
measurement campaigns and, in consequence, the release of new
data sets. In addition, existing data sets can benefit by a conversion
according to the provided guidelines in order to achieve a wider
use in the development of better energy analytics algorithms.
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