ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

N-Prenylation of Tryptophan by an Aromatic Prenyltransferase from the Cyanobactin Biosynthetic Pathway

  • Luca Dalponte
    Luca Dalponte
    Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, U.K.
    Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Aberdeen AB25 2ZD, U.K.
    More by Luca Dalponte
  • Anirudra Parajuli
    Anirudra Parajuli
    Department of Microbiology, University of Helsinki, Viikki Biocenter 1, Viikinkaari 9, 00014 Helsinki, Finland
  • Ellen Younger
    Ellen Younger
    Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, U.K.
    Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Aberdeen AB25 2ZD, U.K.
    More by Ellen Younger
  • Antti Mattila
    Antti Mattila
    Department of Microbiology, University of Helsinki, Viikki Biocenter 1, Viikinkaari 9, 00014 Helsinki, Finland
    More by Antti Mattila
  • Jouni Jokela
    Jouni Jokela
    Department of Microbiology, University of Helsinki, Viikki Biocenter 1, Viikinkaari 9, 00014 Helsinki, Finland
    More by Jouni Jokela
  • Matti Wahlsten
    Matti Wahlsten
    Department of Microbiology, University of Helsinki, Viikki Biocenter 1, Viikinkaari 9, 00014 Helsinki, Finland
    More by Matti Wahlsten
  • Niina Leikoski
    Niina Leikoski
    Department of Microbiology, University of Helsinki, Viikki Biocenter 1, Viikinkaari 9, 00014 Helsinki, Finland
    More by Niina Leikoski
  • Kaarina Sivonen
    Kaarina Sivonen
    Department of Microbiology, University of Helsinki, Viikki Biocenter 1, Viikinkaari 9, 00014 Helsinki, Finland
    More by Kaarina Sivonen
  • Scott A. Jarmusch
    Scott A. Jarmusch
    Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, U.K.
  • Wael E. Houssen*
    Wael E. Houssen
    Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, U.K.
    Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Aberdeen AB25 2ZD, U.K.
    Pharmacognosy Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
    *E-mail: [email protected]
    More by Wael E. Houssen
  • , and 
  • David P. Fewer*
    David P. Fewer
    Department of Microbiology, University of Helsinki, Viikki Biocenter 1, Viikinkaari 9, 00014 Helsinki, Finland
    *E-mail: [email protected]
    More by David P. Fewer
Cite this: Biochemistry 2018, 57, 50, 6860–6867
Publication Date (Web):November 19, 2018
https://doi.org/10.1021/acs.biochem.8b00879
Copyright © 2018 American Chemical Society

    Article Views

    1641

    Altmetric

    -

    Citations

    25
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Aromatic prenylation is an important step in the biosynthesis of many natural products and leads to an astonishing diversity of chemical structures. Cyanobactin pathways frequently encode aromatic prenyltransferases that catalyze the prenylation of these macrocyclic and linear peptides. Here we characterized the anacyclamide (acy) biosynthetic gene cluster from Anabaena sp. UHCC-0232. Partial reconstitution of the anacyclamide pathway, heterologous expression, and in vitro biochemical characterization demonstrate that the AcyF enzyme, encoded in the acy biosynthetic gene cluster, is a Trp N-prenyltransferase. Bioinformatic analysis suggests the monophyletic origin and rapid diversification of cyanobactin prenyltransferase enzymes and the multiple origins of N-1 Trp prenylation in prenylated natural products. The AcyF enzyme displayed high flexibility toward a range of Trp-containing substrates and represents an interesting new tool for biocatalytic applications.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.biochem.8b00879.

    • Supplementary Tables S1–S6 and Figures S1–S15 (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 25 publications.

    1. Yuchen Zhang, Keisuke Hamada, Masayuki Satake, Toru Sengoku, Yuki Goto, Hiroaki Suga. Switching Prenyl Donor Specificities of Cyanobactin Prenyltransferases. Journal of the American Chemical Society 2023, 145 (44) , 23893-23898. https://doi.org/10.1021/jacs.3c07373
    2. Yiwu Zheng, Ying Cong, Eric W. Schmidt, Satish K. Nair. Catalysts for the Enzymatic Lipidation of Peptides. Accounts of Chemical Research 2022, 55 (9) , 1313-1323. https://doi.org/10.1021/acs.accounts.2c00108
    3. PalfeyBruce A.Associate Professor, Biological Chemistry & Associate Director, Program in Chemical BiologySwitzerRebecca L.Assistant Professor of ChemistryRumin Zhang, VP, Head of Biochemistry, Volastra Therapeutics, Lauren Parr, PhD Candidate, Department of Chemistry, University of Iowa. Kinetics of Enzyme Catalysis. 2022https://doi.org/10.1021/acsinfocus.7e5015
    4. Chin-Soon Phan, Kenichi Matsuda, Nandani Balloo, Kei Fujita, Toshiyuki Wakimoto, Tatsufumi Okino. Argicyclamides A–C Unveil Enzymatic Basis for Guanidine Bis-prenylation. Journal of the American Chemical Society 2021, 143 (27) , 10083-10087. https://doi.org/10.1021/jacs.1c05732
    5. Antti Mattila, Rose-Marie Andsten, Mikael Jumppanen, Michele Assante, Jouni Jokela, Matti Wahlsten, Kornelia M. Mikula, Cihad Sigindere, Daniel H. Kwak, Muriel Gugger, Harri Koskela, Kaarina Sivonen, Xinyu Liu, Jari Yli-Kauhaluoma, Hideo Iwaï, David P. Fewer. Biosynthesis of the Bis-Prenylated Alkaloids Muscoride A and B. ACS Chemical Biology 2019, 14 (12) , 2683-2690. https://doi.org/10.1021/acschembio.9b00620
    6. Yuchen Zhang, Yuki Goto, Hiroaki Suga. Modulating the Acceptor Preference of His‐C‐Geranyltransferase LimF. Israel Journal of Chemistry 2024, https://doi.org/10.1002/ijch.202300182
    7. Azusa Miyata, Sohei Ito, Daisuke Fujinami. Structure Prediction and Genome Mining‐Aided Discovery of the Bacterial C‐Terminal Tryptophan Prenyltransferase PalQ. Advanced Science 2024, 11 (6) https://doi.org/10.1002/advs.202307372
    8. Xiaodan Ouyang, Paul M. D'Agostino, Matti Wahlsten, Endrews Delbaje, Jouni Jokela, Perttu Permi, Greta Gaiani, Antti Poso, Piia Bartos, Tobias A. M. Gulder, Hannu Koistinen, David P. Fewer. Direct pathway cloning and expression of the radiosumin biosynthetic gene cluster. Organic & Biomolecular Chemistry 2023, 21 (23) , 4893-4908. https://doi.org/10.1039/D3OB00385J
    9. Yuxin Fu, Yanli Xu, Fleur Ruijne, Oscar P Kuipers. Engineering lanthipeptides by introducing a large variety of RiPP modifications to obtain new-to-nature bioactive peptides. FEMS Microbiology Reviews 2023, 47 (3) https://doi.org/10.1093/femsre/fuad017
    10. Alessandro Colombano, Luca Dalponte, Sergio Dall'Angelo, Claudia Clemente, Mohannad Idress, Ahmad Ghazal, Wael E. Houssen. Chemoenzymatic Late‐Stage Modifications Enable Downstream Click‐Mediated Fluorescent Tagging of Peptides. Angewandte Chemie International Edition 2023, 62 (16) https://doi.org/10.1002/anie.202215979
    11. Alessandro Colombano, Luca Dalponte, Sergio Dall'Angelo, Claudia Clemente, Mohannad Idress, Ahmad Ghazal, Wael E. Houssen. Chemoenzymatic Late‐Stage Modifications Enable Downstream Click‐Mediated Fluorescent Tagging of Peptides. Angewandte Chemie 2023, 135 (16) https://doi.org/10.1002/ange.202215979
    12. Yuchen Zhang, Yuki Goto, Hiroaki Suga. Discovery, biochemical characterization, and bioengineering of cyanobactin prenyltransferases. Trends in Biochemical Sciences 2023, 48 (4) , 360-374. https://doi.org/10.1016/j.tibs.2022.11.002
    13. Silja Mordhorst, Fleur Ruijne, Anna L. Vagstad, Oscar P. Kuipers, Jörn Piel. Emulating nonribosomal peptides with ribosomal biosynthetic strategies. RSC Chemical Biology 2023, 4 (1) , 7-36. https://doi.org/10.1039/D2CB00169A
    14. Claudia Clemente, Nicholas Johnson, Xiaodan Ouyang, Rafael V. Popin, Sergio Dall'Angelo, Matti Wahlsten, Jouni Jokela, Alessandro Colombano, Brunello Nardone, David P. Fewer, Wael E. Houssen. Biochemical characterization of a cyanobactin arginine- N -prenylase from the autumnalamide biosynthetic pathway. Chemical Communications 2022, 58 (86) , 12054-12057. https://doi.org/10.1039/D2CC01799G
    15. Yuchen Zhang, Keisuke Hamada, Dinh Thanh Nguyen, Sumika Inoue, Masayuki Satake, Shunsuke Kobayashi, Chikako Okada, Kazuhiro Ogata, Masahiro Okada, Toru Sengoku, Yuki Goto, Hiroaki Suga. LimF is a versatile prenyltransferase for histidine-C-geranylation on diverse non-natural substrates. Nature Catalysis 2022, 5 (8) , 682-693. https://doi.org/10.1038/s41929-022-00822-2
    16. Mugilarasi Purushothaman, Snigdha Sarkar, Maho Morita, Muriel Gugger, Eric W. Schmidt, Brandon I. Morinaka. Genome‐Mining‐Based Discovery of the Cyclic Peptide Tolypamide and TolF, a Ser/Thr Forward O ‐Prenyltransferase. Angewandte Chemie 2021, 133 (15) , 8541-8546. https://doi.org/10.1002/ange.202015975
    17. Mugilarasi Purushothaman, Snigdha Sarkar, Maho Morita, Muriel Gugger, Eric W. Schmidt, Brandon I. Morinaka. Genome‐Mining‐Based Discovery of the Cyclic Peptide Tolypamide and TolF, a Ser/Thr Forward O ‐Prenyltransferase. Angewandte Chemie International Edition 2021, 60 (15) , 8460-8465. https://doi.org/10.1002/anie.202015975
    18. Tung Le, Wilfred A. van der Donk. Mechanisms and Evolution of Diversity-Generating RiPP Biosynthesis. Trends in Chemistry 2021, 3 (4) , 266-278. https://doi.org/10.1016/j.trechm.2021.01.003
    19. Manuel Montalbán-López, Thomas A. Scott, Sangeetha Ramesh, Imran R. Rahman, Auke J. van Heel, Jakob H. Viel, Vahe Bandarian, Elke Dittmann, Olga Genilloud, Yuki Goto, María José Grande Burgos, Colin Hill, Seokhee Kim, Jesko Koehnke, John A. Latham, A. James Link, Beatriz Martínez, Satish K. Nair, Yvain Nicolet, Sylvie Rebuffat, Hans-Georg Sahl, Dipti Sareen, Eric W. Schmidt, Lutz Schmitt, Konstantin Severinov, Roderich D. Süssmuth, Andrew W. Truman, Huan Wang, Jing-Ke Weng, Gilles P. van Wezel, Qi Zhang, Jin Zhong, Jörn Piel, Douglas A. Mitchell, Oscar P. Kuipers, Wilfred A. van der Donk. New developments in RiPP discovery, enzymology and engineering. Natural Product Reports 2021, 38 (1) , 130-239. https://doi.org/10.1039/D0NP00027B
    20. Rui Liu, Hongchi Zhang, Weiqiang Wu, Hui Li, Zhipeng An, Feng Zhou. C7-Prenylation of Tryptophan-Containing Cyclic Dipeptides by 7-Dimethylallyl Tryptophan Synthase Significantly Increases the Anticancer and Antimicrobial Activities. Molecules 2020, 25 (16) , 3676. https://doi.org/10.3390/molecules25163676
    21. Takahiro Mori. Enzymatic studies on aromatic prenyltransferases. Journal of Natural Medicines 2020, 74 (3) , 501-512. https://doi.org/10.1007/s11418-020-01393-x
    22. Bryce P. Johnson, Erin M. Scull, Dustin A. Dimas, Tejaswi Bavineni, Chandrasekhar Bandari, Andrea L. Batchev, Eric D. Gardner, Susan L. Nimmo, Shanteri Singh. Acceptor substrate determines donor specificity of an aromatic prenyltransferase: expanding the biocatalytic potential of NphB. Applied Microbiology and Biotechnology 2020, 104 (10) , 4383-4395. https://doi.org/10.1007/s00253-020-10529-8
    23. David P. Fewer, Mikko Metsä‐Ketelä. A pharmaceutical model for the molecular evolution of microbial natural products. The FEBS Journal 2020, 287 (7) , 1429-1449. https://doi.org/10.1111/febs.15129
    24. Camila M. Crnkovic, Jana Braesel, Aleksej Krunic, Alessandra S. Eustáquio, Jimmy Orjala. Scytodecamide from the Cultured Scytonema sp. UIC 10036 Expands the Chemical and Genetic Diversity of Cyanobactins. ChemBioChem 2020, 21 (6) , 845-852. https://doi.org/10.1002/cbic.201900511
    25. Wael E. Houssen. Peptide Cyclization Catalyzed by Cyanobactin Macrocyclases. 2019, 193-210. https://doi.org/10.1007/978-1-4939-9546-2_11

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect