ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Bioactivity-Based Molecular Networking for the Discovery of Drug Leads in Natural Product Bioassay-Guided Fractionation

  • Louis-Félix Nothias
    Louis-Félix Nothias
    Collaborative Mass Spectrometry Innovation Center, University of California, San Diego, La Jolla, California 92093, United States
    Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
    Institut de Chimie des Substances Naturelles, CNRS, ICSN UPR 2301, Université Paris-Sud, 91198, Gif-sur-Yvette, France
  • Mélissa Nothias-Esposito
    Mélissa Nothias-Esposito
    Institut de Chimie des Substances Naturelles, CNRS, ICSN UPR 2301, Université Paris-Sud, 91198, Gif-sur-Yvette, France
    Laboratoire de Chimie des Produits Naturels, CNRS, UMR SPE 6134, University of Corsica, 20250, Corte, France
  • Ricardo da Silva
    Ricardo da Silva
    Collaborative Mass Spectrometry Innovation Center, University of California, San Diego, La Jolla, California 92093, United States
    Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
  • Mingxun Wang
    Mingxun Wang
    Collaborative Mass Spectrometry Innovation Center, University of California, San Diego, La Jolla, California 92093, United States
    Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
    More by Mingxun Wang
  • Ivan Protsyuk
    Ivan Protsyuk
    European Molecular Biology Laboratory, EMBL, Heidelberg, Germany
    More by Ivan Protsyuk
  • Zheng Zhang
    Zheng Zhang
    Collaborative Mass Spectrometry Innovation Center, University of California, San Diego, La Jolla, California 92093, United States
    Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
    More by Zheng Zhang
  • Abi Sarvepalli
    Abi Sarvepalli
    Collaborative Mass Spectrometry Innovation Center, University of California, San Diego, La Jolla, California 92093, United States
    Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
    More by Abi Sarvepalli
  • Pieter Leyssen
    Pieter Leyssen
    Laboratory for Virology and Experimental Chemotherapy, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
    More by Pieter Leyssen
  • David Touboul
    David Touboul
    Institut de Chimie des Substances Naturelles, CNRS, ICSN UPR 2301, Université Paris-Sud, 91198, Gif-sur-Yvette, France
    More by David Touboul
  • Jean Costa
    Jean Costa
    Laboratoire de Chimie des Produits Naturels, CNRS, UMR SPE 6134, University of Corsica, 20250, Corte, France
    More by Jean Costa
  • Julien Paolini
    Julien Paolini
    Laboratoire de Chimie des Produits Naturels, CNRS, UMR SPE 6134, University of Corsica, 20250, Corte, France
    More by Julien Paolini
  • Theodore Alexandrov
    Theodore Alexandrov
    Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
    European Molecular Biology Laboratory, EMBL, Heidelberg, Germany
  • Marc Litaudon
    Marc Litaudon
    Institut de Chimie des Substances Naturelles, CNRS, ICSN UPR 2301, Université Paris-Sud, 91198, Gif-sur-Yvette, France
    More by Marc Litaudon
  • , and 
  • Pieter C. Dorrestein*
    Pieter C. Dorrestein
    Collaborative Mass Spectrometry Innovation Center, University of California, San Diego, La Jolla, California 92093, United States
    Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
    *Tel: 858-534-6607. Fax: 858-822-0041. E-mail: [email protected]
Cite this: J. Nat. Prod. 2018, 81, 4, 758–767
Publication Date (Web):March 2, 2018
https://doi.org/10.1021/acs.jnatprod.7b00737

Copyright © 2018 American Chemical Society and American Society of Pharmacognosy. This publication is licensed under these Terms of Use.

  • Open Access
  • Editors Choice

Article Views

34325

Altmetric

-

Citations

223
LEARN ABOUT THESE METRICS
PDF (2 MB)
Supporting Info (1)»

Abstract

It is a common problem in natural product therapeutic lead discovery programs that despite good bioassay results in the initial extract, the active compound(s) may not be isolated during subsequent bioassay-guided purification. Herein, we present the concept of bioactive molecular networking to find candidate active molecules directly from fractionated bioactive extracts. By employing tandem mass spectrometry, it is possible to accelerate the dereplication of molecules using molecular networking prior to subsequent isolation of the compounds, and it is also possible to expose potentially bioactive molecules using bioactivity score prediction. Indeed, bioactivity score prediction can be calculated with the relative abundance of a molecule in fractions and the bioactivity level of each fraction. For that reason, we have developed a bioinformatic workflow able to map bioactivity score in molecular networks and applied it for discovery of antiviral compounds from a previously investigated extract of Euphorbia dendroides where the bioactive candidate molecules were not discovered following a classical bioassay-guided fractionation procedure. It can be expected that this approach will be implemented as a systematic strategy, not only in current and future bioactive lead discovery from natural extract collections but also for the reinvestigation of the untapped reservoir of bioactive analogues in previous bioassay-guided fractionation efforts.

Nature has inspired the discovery of numerous therapeutics from organisms such as microbes, plants, and insects. (1) The discovery of new bioactive natural products as leads for therapeutic development can be inspired by ethnopharmacological knowledge or achieved by screening a collection of extracts for bioactivity, (1−3) using in vitro, in cellulo, and even in vivo assays. (4) When a natural extract is found to be bioactive, a bioassay-guided fractionation is usually carried out and is generally comprised of the following steps: (i) extraction of metabolites from the biomass using solvents, (ii) fractionation of the resulting extract by chromatography, (iii) bioassay screening of each fraction, (iv) isolation of the molecule(s) from bioactive fractions, and (v) identification of the isolated molecules and evaluation of their bioactivity. (1,5,6) Although the bioassay-guided fractionation method seems to have been in use by chemists, pharmacologists, and toxicologists since the early 1900s, (7) it was formally conceptualized after the 1950s (7,8) and is still used today for the discovery of therapeutic leads by researchers in academia, government, and industrial laboratories worldwide.
Loss of activity or failure in isolating the bioactive compounds during the bioassay-guided fractionation workflow is a very common and costly pitfall in natural products isolation attempts. Generally, the unsuccessful outcome of these efforts are simply not published or are finally reported as investigations aiming at characterizing the chemical components. Some of the reasons for these pitfalls are (1) the bioactive compounds were degraded during the purification process, (2) the bioactive compounds were present in too low concentrations to be efficiently isolated, and (3) the bioactivity was due to synergistic effects between multiple compounds. It is therefore important to detect candidate bioactive molecules early in the purification scheme in order to rationalize the isolation procedure applied toward these substances.
In addition, the application of bioassay-guided fractionation procedures in the last decades has resulted in the repeated isolation of molecules already described. To avoid the isolation of those known molecules, researchers have long used a preliminary structural assessment step called “dereplication”. Dereplication aims at detecting known and bioactive compounds in natural product extracts and ideally prior to the start of in-depth investigation. In practice, dereplication is often performed when the molecule is at least partially, if not fully, purified. (9,10) Dereplication is generally achieved by first separating the molecular constituents using chromatography and then by looking at their spectral signatures obtained from mass spectrometry, (11−13) nuclear magnetic resonance, (14) or UV–vis spectroscopy, and then searching for compounds having identical properties (such as the molecular formula or core chromophores) in natural product databases (13) or in dedicated open source cheminformatics tools. (15) Some of the most commonly used natural product dereplication databases are “MarineLit”, (16) “Antibase”, (17) and the “Dictionary of Natural Products”. (18) The use of untargeted tandem mass spectrometry to dereplicate known natural products has gained popularity, thanks to the introduction of a public spectral library and new bioinformatic tools. (13,19−22) The recent introduction of the Global Natural Product Social molecular networking (GNPS) Web-platform (http://gnps.ucsd.edu) enables the automatic spectral mining of large experiments with up to thousands of samples in a few hours. (22) In addition to the annotation of the molecules with reference MS/MS spectra publicly available on GNPS, it is also possible to propagate an annotation to an unknown molecule using the “analogues search mode” and MS/MS molecular networking, which expand and accelerate dereplication capabilities to similar structures. (22−25) Annotation can then be propagated using differences in molecular formulas of features. For example, a difference of 14 Da between two precursor ions would suggest a putative CH2 increment, a difference of 16 Da on oxygenation, while a difference of 34 Da in the substitution of proton by a chlorine atom. Careful interpretation of the mass defects and the fragmentation patterns observed may even enable an investigator to decipher the part of the molecule that is modified. For this reason, GNPS and molecular networking have been used to prioritize biomass in in-depth investigations based on the observation of known and unknown analogues or of unique clusters of MS/MS spectra referred to as “molecular families”. (22,24−27) However, because molecular networking on GNPS was designed for MS/MS spectral comparisons, this approach alone does not consider the relative abundance of the molecules between samples, which is crucial for downstream statistical analysis of data.
Bioactivity screening and LC-MS (i.e., without MS/MS acquisition) have been employed in order to (i) prioritize biomass selection (28) and (ii) speed up the isolation process for the discovery of bioactive molecules. (29−31) These studies used statistical approaches to estimate a bioactivity score, defined as the probability of a molecule as being bioactive. For each molecule, a bioactivity score can be calculated using its relative abundance between samples and the quantitative result of a bioassay for those same samples. (28) Multivariate statistical models can be used to identify bioactive compounds from LC-MS data. (29) Especially, partial least squares (PLS) regression has been shown to be an effective method to detect the association between the spectral data of a molecule and the result of a bioassay. (29) However, although the above-mentioned approaches can provide the molecular formula of the predicted bioactive moieties, they are unable to provide the high-throughput annotation that GNPS and molecular networking offer. Recently, molecular networking was introduced for the prioritization of bioactive natural extracts in large collections (26,32,33) and for the annotation of bioactive fractions. (34−36)
In the present work, this gap is bridged by providing a workflow procedure, named “bioactive molecular networking”, which integrates MS/MS molecular networking and bioactivity scoring to assist in bioassay-guided fractionation. By highlighting molecular families and putative bioactive candidate molecules, prior to undertaking a time-consuming isolation step, the use of bioactivity scoring and molecular networking can accelerate natural-products-based drug discovery. (24) Herein, we demonstrate the utility of bioactive molecular networking by reinvestigating the data obtained in our previous study. (37) In this previous study, the chromatographic bioactive fractions from Euphorbia dendroides L. (Euphorbiaceae) latex, a Mediterranean tree spurge, were investigated to elucidate the components responsible for the potent and selective inhibition of the initial extract against chikungunya virus (CHIKV) replication. Despite a phytochemical effort that led to the isolation and the identification of nearly 20 molecules from the most bioactive fractions, no compound with selective and significant inhibition activity against CHIKV replication was found. By reinvestigating E. dendroides samples using bioactive molecular networking, it was possible to better capture the untapped nature of molecules associated with the bioactivity. The findings were validated by conducting a mass spectrometry targeted purification, and it was demonstrated that the new diterpene esters isolated in trace amounts (isolation yield from the extract ranging from 0.04% to 0.28%) were indeed active against the CHIKV replication in a cell-based bioassay. The workflow we have developed relies on a combination of open bioinformatic tools, including MZmine2 (38) and Optimus workflow (39) (using OpenMS (40)), and the GNPS Web-platform. The approach can be readily adopted by researchers in the field of natural products drug discovery and also adapted to metabolomics and chemical ecology applications with other quantitative variables instead of the bioactivity level.

Results and Discussion

ARTICLE SECTIONS
Jump To

Development of the Workflow Procedure

In the context of a bioassay-guided fractionation study, the employment of the bioactive molecular networking workflow procedure (Figure 1) required first the performance of an untargeted LC-MS/MS analysis and the evaluation of the bioactivity level for each chromatographic fraction. The bioactivity molecular networking consisted of three steps (I–III). The first step (I) was LC-MS/MS spectral data processing with the Optimus workflow, (41) based on OpenMS algorithms, (40) or with the MZmine2 toolbox. (38) This step allowed the detection and relative quantification of LC-MS/MS spectral features (ions) across the chromatographic fractions. The second step (II) consisted in the calculation of a bioactivity score using the Pearson correlation between feature intensity across samples and the bioactivity level associated with each sample. The needed script was prepared as a Jupyter notebook using R language. (42) Jupyter notebook (http://jupyter.org/) (43) is an open-source Web application that facilitates reproducibility and does not require advanced computational skills to be reemployed. The third and final step (III) was achieved by analyzing MS/MS data on the GNPS Web-platform (22) and visualizing the corresponding molecular networks in Cytoscape. (44) GNPS is a Web-platform that serves both as a data repository and a data analysis infrastructure with molecular networking and spectral library search capabilities. In recent years, this crowd-sourced platform has become an essential toolbox for both the natural products and metabolomics scientific communities. Indeed, public spectral libraries facilitate the dereplication of known molecules, and molecular networks allow annotation propagation to unknown related molecules. The objective of the last step of this workflow procedure was to annotate detected molecules using both spectral library annotations and the network topology, in particular those molecules with significant predicted bioactivity scores. For this purpose, the data curation relied on two complementary approaches. First a targeted approach, where prior knowledge can be used, such as chemotaxonomic information and the set of previously described bioactive molecules. Second, an untargeted approach can be undertaken by looking for consistent patterns of bioactive candidates in the networks, such as clusters with a high frequency of bioactive candidates, which could translate to the presence of a bioactive pharmacophore.

Figure 1

Figure 1. Bioactive natural products discovery pipelines. Workflow procedure (A) for the classical bioassay-guided fractionation approach and (B) by integrating bioactive molecular networking.

Evaluation of the Workflow Procedure

To evaluate the efficiency of bioactive molecular networking, an extract of Euphorbia dendroides latex was reinvestigated. This plant has documented ethnobotanical and ethnopharmacological uses to treat warts since the days of Ancient Rome. (37,45) Previous bioactivity screening of a Corsican specimen of E. dendroides showed that the latex extract displayed potent antiviral activity against CHIKV replication in a cell-based assay (Vero cells, green monkey kidney). (46,47) However, none of the compounds isolated during subsequent bioassay-guided fractionation of this E. dendroides extract showed selective antiviral activity against CHIKV. (37,48) Some of its fractions (F12, F13, and F17) exhibited a selective inhibition of CHIKV replication with an effective concentration (EC50) below 1.2 μg/mL (EC50 = 0.27, 0.17, and 1.13 μg/mL, respectively) and high selectivity indices of 41, 140, and 57, respectively. (EC50 is defined as the concentration that reduces the replication of the CHIKV by 50%, and the SI as the ratio EC50/CC50 where CC50 is the cytotoxic concentration of the compound to reduce natural growth of host cells by 50%.) Nineteen diterpenoid jatrophane esters (119), including four terracinolides (1215), were isolated from these bioactive fractions, but none of these molecules showed significant selective inhibition of CHIKV replication. (37) Thus, the nature of the compounds responsible for antiviral activity has not yet been elucidated. The assumption was made that the bioactive molecule(s) either occurred in trace amounts or were degraded, or that multiple molecules were required for activity (synergistic activity). To find the molecules with anti-CHIKV replication inhibition property, the extract and fractions were analyzed by LC-MS/MS and the presently described workflow was applied.
A crucial factor to predict a significant bioactivity score is to have multiple samples of known concentration that could have different, but related, molecular profiles with corresponding associated bioactivity levels. These could be chromatographic fractions of a single extract or multiple extracts from different but related sources. In this study, 18 fractions were obtained from a chromatographic separation of the extract of E. dendroides latex (F1–F18), and these fractions were subjected to LC-MS/MS and anti-CHIKV bioassays. Their mass spectrometric data, along with the results of their selective inhibition of CHIKV replication, were then processed with our procedure using the Optimus workflow, and bioactive molecular networks were generated in order to prioritize candidate molecules responsible for such bioactivity.
The bioactive molecular networks for the bioassay-guided fractionation of E. dendroides fractions are represented in Figures 2 and 3. As depicted in the legend (Figure 2A), the result of bioactivity scoring is visualized directly in the molecular network with the node size proportionally representing the molecule predicted bioactivity score. The bioactivity score was defined herein as the Pearson correlation coefficient (r) between the molecule relative abundance derived from the LC-MS peak (area under the curve) and the selectivity index (SI) value obtained from the evaluation of fraction antiviral activity. The largest nodes represent molecules with statistically significant bioactivity score [strong Pearson correlation value (r > 0.85) and a significance (FDR corrected, p value <0.03) after Bonferroni correction]. In addition, the relative abundance of detected molecule in each fraction can be visualized in each node with a pie chart diagram [colors correspond to the fraction bioactivity level]. In total, 8.4% (24/285) of molecules were predicted as having a statistically significant bioactivity score. These bioactive candidates represented 10.7% (3/28) of the nodes in MN1 and 8.2% (21/257) of the nodes in MN2.

Figure 2

Figure 2. Bioactive molecular networking of bioassay-guided fractionation of Euphorbia dendroides latex extract. (A) Legend of bioactive molecular networks. (2) Previously isolated molecules (119). (C) Bioactive molecular network 1 (MN1) and 2 (MN2) of E. dendroides latex extract and cluster annotations (I–V). See Figure 3 for a detailed view for the cluster V of molecular network 2 (MN2).

Figure 3

Figure 3. View of bioactive molecular networking results for the cluster V of molecular network 2 (MN2). The molecules 2022 with significant bioactivity scores (large nodes, see legend) were annotated as deoxyphorbol ester derivatives and isolated in the present study. Evaluation of the biological activity indicated that 21 and 22 are selective inhibitors of chikungunya virus replication in the submicromolar range. The deoxyphorbol ester 23 was also isolated and found to have a lower selective antiviral activity in comparison to compounds 2022.

A detailed examination of the molecular networks allowed the annotation of two main molecular families (Figure 2C). The first molecular family (MN1) was composed of the known diterpene esters (115), including jatrophane esters (111) belonging to the 14-oxojatropha-6(17),11E-diene type and terracinolides (1215). These molecules did not show strong anti-CHIKV activity in a previous study (49) and were readily annotated (square node in the molecular networks) because their spectral data were available in the GNPS public spectral library. We also observed that the aggregation of reference compounds in clusters I–IV was based on two main structural features: first, the number of esters such as hexa-esterified jatrophane derivatives (cluster I) versus penta- and tetra-esterified jatrophane derivatives (clusters III) or the presence of specific esters such as nicotinoyl esters (cluster IV) and the presence of a lactone for the terracinolides (cluster II).
In addition, it was possible to expand the annotation of MN1 to unknown related molecules using the “analogues search function” available on GNPS. Compounds that were annotated as analogues are represented with a circular colored node, with the color being representative of diterpene-type matching. Interestingly, it was observed that analogues were mostly found in the same clusters as the reference matching spectra. Reference compounds belonging to each cluster of MN1 (I–IV) were previously evaluated against CHIKV replication, (37,48) and none of them showed inhibition activity. For the above reasons, it was assumed that the analogues present in clusters I–V were not the most promising bioactive candidates, and subsequent efforts were focused on MN2, for which no candidate was previously isolated.
The molecular network 2 contained three spectral features with significant bioactivity score at m/z 591.326 (20), 589.311 (21), and 563.296 (23) and at the retention times 1626 s, 1520 s, and 1291 s, respectively. Still, no spectral annotation could be retrieved from public spectral libraries on GNPS, including using analogue searching. An available in silico annotation tool for molecular networking was used. (50) The results indicated heterogeneous candidate structures, including many unlikely candidates from a chemotaxonomic standpoint, which were not considered further. Examination of spectra showed that the ion at m/z 591.326 was a sodium adduct corresponding to a molecular formula of C34H48O7 (m/zcalc 591.3298, [M + Na]+, Δm/z = 3.0 ppm). This observation explained the result of the in silico annotation tool, which considers all ions to be protonated adducts. (50) A search for molecules with the same molecular formula was carried out in the Dictionary of Natural Products (18) and indicated a diterpene diester isolated from Euphorbia prolifera (51) named Euphorbia factor Pr4 [12-O-(2,4-decadienoyl)-13-O-(2-methylpropanoyl)-4-deoxyphorbol]. The examination of the MS/MS fragmentation pattern of this diterpenoid (Figure S3, Supporting Information) showed two neutral losses of 88 Da [M – 88 + Na]+ and 168 Da [M – 168 + Na]+, indicating that the detected molecules possessed a C4H7O acyl (potentially an isobutyryl or a butyryl) and a C10H17O acyl moiety (potentially a decadienyl). Moreover, the observations of characteristic diterpene backbone fragment ions at m/z 313, 295, and 285 were supportive of this molecule being indeed of the phorboid diterpene ester, of either deoxyphorbol or ingenol type. (47)
The annotation of these diagnostic bioactive Euphorbiaceae diterpenoids (52−54) was of significance, as some phorboid derivatives are well-known inhibitors of human immunodeficiency virus replication, (46,55) and recently also against CHIKV, (56,57) due to their protein kinase C (PKC) modulatory ability. Thus, based on (i) the significant bioactivity score in MN2 for the nodes at m/z 591.326, 589.311, and 563.296 (compounds 2022, with respectively retention times at 1630, 1523, and 1289 s, an r value of 0.91, 0.87, and 0.90, and p values of 5 × 10–6, 4.5 × 10–5, and 7.3 × 10–6) and (ii) the molecular network-based annotation indicating that they were likely phorboid diterpene esters, it was decided to perform a targeted isolation of these putative bioactive molecules. Inspection of the pie-chart diagram showed that the concentration of compounds 2022 was higher in F13, and this fraction was hence selected for targeted isolation. In addition, it was proposed to isolate compound 23 (m/z 589.31, with a retention time 1609 s), because it was likely a positional isomer of compound 21 with low predicted bioactivity score (r ≃ 0 and p value 0.99), and it was thus valuable to test the approach.
The residual sample from the previous bioassay-guided fractionation of F13 (sub-F13) was fractionated by preparative HPLC using the UV trace as a proxy to the LC-MS/MS analysis. The targeted compounds 2023 were purified using preparative HPLC and were then identified by 1D- and 2D-NMR data analysis (Tables 1 and 2). As suggested by molecular networking analysis (Figure 3), these four new compounds were indeed 4β-deoxyphorbol esters (2023) (4-dPEs). The absolute configuration of each stereocenter was assumed based on prior studies on diterpenes of Euphorbia species (X-ray diffraction and total synthesis). (54,58) Following their identification, the reference MS/MS spectra of compound 2023 were uploaded to the GNPS library and an analogue search was performed on molecular network MN2. Figure 3 showed that MN2 was essentially composed of deoxyphorbol ester analogues (nodes colored in green). The four isolated 4-dPEs (2023) were evaluated for antiviral activity against CHIKV replication (Table S26, Supporting Information), and compounds 21 and 22 were found to be the most potent and selective CHIKV replication inhibitors with EC50 values of 0.40 ± 0.02 μM and 0.60 ± 0.06 μM, and SI = 34 and 41, respectively. The low SI values for compounds 20 and 23 indicated that they are associated with high host-cell cytotoxicity (SI = 6 and 4, respectively). These four 4β-deoxyphorbol esters possess the same isobutyrate group at C-13, but differ in the nature of the C-12 acyl moiety. Compound 20 has a 2Z,4E-decadienoyl group at position C-12, while compound 22 has a 2Z,4E-octadienyl group. The two compounds 21 and 23 are indeed isobaric compounds with a 12-acyl substituent of deca-2Z,4E,6E-trienoyl and deca-2Z,4E,7Z-trienoyl, respectively. While being closely related to compounds 2022, compound 23 had a lower selectivity index against chikungunya virus replication (EC50 = 12.6 ± 8.4 μM, SI = 4), in agreement with the prediction of the bioactivity scoring. This result was consistent with previously described structure–activity relationships for phorbol esters, (59) showing that the nature of the acyl chain residue modulates the antiviral activity. It was remarkable to observe that the bioactive molecules 20 and 22 had also isobaric counterparts at m/z 591.33 and 563.296 with low bioactivity scores predicted. These isobaric counterparts had almost identical MS/MS spectra but showed different retention times (1707, 1607, and 1406 s). They were annotated as positional isomers, or epimers, of compounds 20, 21, and 22, as commonly found in the Euphorbiaceae. (54,60,61) In the context of bioactivity score prediction, it was observed that despite the isobaric counterparts being abundant (9.2E7, 3.0E8, and 1.2E8 vs 6.5E7, 1.9E8, and 6.7E7 for compounds 2022, respectively, in the latex extract), they did not have a significant bioactivity score.
Table 1. 1H NMR Spectroscopic Data for Compounds 2022 (300 MHz) and 23 (500 MHz) in CDCl3 at 300 K (δH in ppm, J in Hz)
position 20 21 22 23
1 7.54 br t (1.7) 7.54 br t (1.7) 7.54 br t (1.7) 7.54 br t (1.7)
4 2.44 td (9.5, 4.5) 2.44 td (9.5, 4.5) 2.44 td (9.5, 4.5) 2.46 td (9.5, 4.5)
2.82 dd (18.0, 10.0) 2.82 dd (17.7 9.6) 2.82 dd (18.0, 10.0) 2.82 dd (18.0, 10.0)
2.12 dd (18.0, 10.0) 2.12 dd (17.7, 8.1) 2.12 dd (18.0, 10.0) 2.13 dd (18.0, 10.0)
7 5.52 d (5.4) 5.52 d (5.4) 5.52 d (5.4) 5.52 d (5.4)
8 2.35 t (5.4) 2.35 t (5.4) 2.35 t (5.4) 2.35 t (5.4)
10 3.23 m 3.23 m 3.23 m 3.24 m
11 1.56 m 1.56 m 1.56 m 1.58 m
12 5.43 d (9.8) 5.44 d (9.6) 5.43 d (9.8) 5.43 d (9.8)
14 1.01 d (5.4) 1.01 d (5.4) 1.01 d (5.4) 1.01 d (5.4)
16 1.18 s 1.18 s 1.18 s 1.21 s
17 1.18 s 1.18 s 1.18 s 1.20 s
18 0.91 d (6.4) 0.91 d (6.4) 0.91 d (6.4) 0.90 d (6.4)
19 1.70 dd (2.4, 1.2) 1.70 dd (2.4, 1.2) 1.70 dd (2.4, 1.2) 1.70 dd (2.4, 1.2)
20 4.01 b rs 4.01 dd (19.5, 13.3) 4.01 br s 4.00 br s
OH-9 5.81 br s 5.81 br s 5.81 br s 5.85 br s
OH-20 5.27 br s 3.46 br s 5.27 br s 5.28 br s
OR-14        
1′ 5.52 d (11.3) 5.56 d (11.1) 5.52 d (11.3) 5.53 d (11.3)
2′ 6.56 t (11.3) 6.59 t (11.1) 6.56 t (11.3) 6.57 t (11.3)
3′ 7.29 dd (15.6, 11.5) 7.35 dd (15.1, 11.1) 7.29 dd (15.6, 11.5) 7.31 dd (15.6, 11.5)
4′ 6.07 ddd (15.6, 7.1, 6.8) 6.46 dd (14.8, 10.8) 6.07 ddd (15.6, 7.1, 6.8) 6.04 ddd (15.6, 7.1, 6.8)
5′ 2.15 dd (13.6, 7.1) 6.20 dd (14.8, 10.8) 2.16 dd (14.9, 7.1) 2.92 m
6′ 1.41 m 5.92 ddd (14.8, 7.1, 6.8) 1.45 dd (14.9, 7.4) 5.33 dd (11.2, 5.7)
7′ 1.27 m 2.11 dd (14.6, 6.8) 0.90 t (7.4) 5.46 dd (11.2, 8.0)
8′ 1.28 m 1.42 dd (14.6, 7.5)   2.02 m
9′ 0.87 t (6.9) 0.90 t (7.5)   0.94 t (6.9)
OiBu-13        
2″ 2.57 q (7.0) 2.57 q (7.0) 2.57 q (7.0) 2.57 q (7.0)
Me-3″ 1.18 d (7.0) 1.18 d (7.0) 1.18 d (7.0) 1.18 d (7.0)
Me-4″ 1.15 d (7.0) 1.15 d (7.0) 1.15 d (7.0) 1.15 d (7.0)
Table 2. 13C NMR Spectroscopic Data for Compounds 2022 (75 MHz) and 23 (125 MHz) in CDCl3 at 300 K (δC in ppm, J in Hz)
position 20 21 22 23
1 160.1 160.1 160.1 160.1
2 136.5 136.5 136.5 136.5
3 210.1 210.1 210.1 210.1
4 44.4 44.4 44.4 44.4
5 29.8 29.8 29.8 29.8
6 142.1 142.1 142.1 142.1
7 126.7 126.7 126.7 126.7
8 42.2 42.2 42.2 42.2
9 77.9 77.9 77.9 77.9
10 54.4 54.4 54.4 54.4
11 42.7 42.7 42.7 42.7
12 76.2 76.2 76.2 76.2
13 65.1 65.1 65.1 65.1
14 35.8 35.8 35.8 35.8
15 26.1 26.1 26.1 26.1
16 23.9 23.9 23.9 23.9
17 16.9 16.9 16.9 16.9
18 15.2 15.2 15.2 15.2
19 10.4 10.4 10.4 10.4
20 67.7 67.7 67.7 67.7
OR-12 166.1 166.1 166.1 166.2
1′ 115 113.4 115 115.0
2′ 146.3 143.5 146.3 146.3
3′ 127 128.1 127 127.0
4′ 146.6 140.4 146.6 144.0
5′ 33.2 124.2 35.4 31.1
6′ 28.6 138.6 22.1 124.7
7′ 31.6 32.8 13.8 134.1
8′ 22.7 19.7   20.6
9′ 14.2 11.3   14.2
OiBu-13        
1″ 179.7 179.7 179.7 179.7
2″ 34.4 34.4 34.4 34.4
Me-3″ 18.8 18.8 18.8 18.8
Me-4″ 18.7 18.7 18.7 18.6
Bioactive molecular networks have permitted the detection of bioactive molecules from an antiviral fraction of E. dendroides latex, for which bioactive constituents were unknown despite the carrying out of a previous bioassay-guided fractionation procedure. (49) The present work showed that bioactive molecular networking can accelerate dereplication and a rationalized isolation procedure in bioassay-based drug discovery. It has been shown that, prior to any time-consuming isolation procedure, bioactive molecular networking is able to (i) narrow down the number of bioactive candidates by 10;, (ii) speed up spectral annotation with MS/MS molecular networking, and (iii) discriminate even isomers as a result of LC-MS feature detection tools. The workflow procedure can be readily implemented and adapted for any bioassay-guided fractionation with LC-MS/MS data associated. The approach can be easily reproduced since it relies on open tools (Optimus or MZmine2), the GNPS Web-platform, and a Jupyter notebook. Yet, like any other statistical approach, the accuracy and utility of a bioactive molecular network depends on (i) the reproducibility of the bioassay procedure and (ii) the number of samples included in the data set. Furthermore, the annotation capability of MS/MS spectra depends on public MS/MS spectral libraries, which are expanding rapidly as a result of contributions from the scientific community.
Herein is presented the concept of bioactive molecular networking, and it can be adopted as a systematic strategy for the annotation of bioactive molecules in a complex plant extract. It was applied to the discovery of antiviral diterpenoids in a E. dendroides latex extract, an extract on which a classical bioassay-guided effort was previously unsuccessful. From bioactive molecular networking, two bioactive compounds (21 and 22) were isolated. Compounds 21 and 22 were found to be active against CHIKV replication at submicromolar concentrations. Chikungunya virus is an emerging virus that is causing massive outbreaks (1 million estimated cases in South America and in the Caribbean region in 2014) (62) and associated with high morbidity and for which no antiviral chemotherapy is available. The present results demonstrate that bioactive molecular networking can speed up the process of drug-lead discovery by revealing bioactive candidates and facilitating their dereplication and/or annotation at the very first step of any bioassay-guided purification procedure. For this reason, we expect that bioactive molecular networking can be a cornerstone concept/methodology for the discovery of bioactive molecules from natural product extracts.
To facilitate its acceptance by various communities, the bioactive molecular networking workflow is freely available (https://github.com/DorresteinLaboratory/Bioactive_Molecular_Networks) and can be readily applied or adapted without the need for advanced computational skills, as it relies on popular LC-MS feature detection (MZmine2 or Optimus), (38,39) accessible bioinformatics tools (Jupyter notebook), (63) and the crowd-sourced GNPS Web-platform (http://gnps.ucsd.edu). (22) Moreover, the workflow will directly benefit from the development of new modules and bioinformatics tools, in particular those for improved LC-MS feature detection (38,40) or spectral (64) and in silico annotation. (65−67)
Bioactive molecular networking has the retroactive potential to reinvestigate successful bioassay-guided fractionation or those where investigators failed to find the active components, as long as corresponding MS/MS data were acquired or can still be generated. Currently, while 352 studies mentioned “bioassay-guided” and “MS/MS” for the year 2016, (68) none have deposited MS/MS data in public repositories such as MetaboLights (http://www.ebi.ac.uk/metabolights/) (69) or GNPS-MassIVE (http://massive.ucsd.edu). Therefore, as the scientific community pushes toward transparency (70) and as mandated by many funding agencies, the availability of all MS/MS data in public repositories will increase (similar to genomic efforts decades ago) and will enable both the detection of a presently untapped reservoir of bioactive analogues and the optimization of bioactivity scoring.
Finally, since bioactive molecular networking is agnostic to the nature of the quantitative variable employed (here the value of the bioassay results), any other quantitative outcome parameters can be employed instead. Thus, the workflow described herein can be adapted for applications outside of natural products research. Among the potential use of the current workflow, it could be employed in microbial ecology to annotate compounds impacted by an environmental variable (such as the pH), or perhaps it could be used in exposomics to annotate biomarkers associated with a level of exposure to a chemical contaminant.

Experimental Section

ARTICLE SECTIONS
Jump To

General Experimental Procedures

Optical rotations ([α]D) were measured with the sodium D line monochromatic light source in EtOH at 24 °C. The instrument used was an MCP 300 Anton Paar polarimeter. A PerkinElmer Spectrum BX FT-IR system was used to record IR spectra. UV spectra were measured in a 1 cm quartz tank using a Varian Cary 100 scan spectrophotometer. The 1D (1H and 13C) and 2D (COSY, HSQC, HMBC, and ROESY) NMR spectra were obtained in CDCl3 for compounds 2022 on a Bruker Avance 300 MHz instrument, and for compound 23 on a 500 MHz instrument, using a 1.7 mm microprobe. HPLC separation was performed on analytical C18 columns (Kromasil, 250 × 4.6 mm i.d., 5 μm, Thermo Scientific) and on semipreparative C18 columns for fractionation. A Waters autopurification system equipped with a binary pump (Waters 2525), a UV–vis diode array detector (190–600 nm, Waters 2996), and a PL-ELS 1000 ELSD Polymer Laboratory detector was used. Preparative HPLC separation was performed on a semipreparative C18 column (Kromasil, 250 × 10 mm; i.d. 5 μm). A Dionex autopurification system equipped with a binary pump (P580), a UV–vis array detector (200–600 nm, Dionex UVD340U), and a PL-ELS 1000 ELSD Polymer Laboratory detector was used. A hybrid linear ion trap/Orbitrap mass spectrometer (LTQ-XL Orbitrap, ThermoFisher Scientific, Les Ulis, France) was used for LC-MS/MS analysis. An ESI source operating in positive ionization mode was used. Mass spectra were acquired between m/z 150 and m/z 1000. In the full-scan mode, full width at half-maximum mass resolution of the Orbitrap mass analyzer was fixed at 30 000 for mass spectra and at 15 000 for tandem mass spectra. The data-dependent MSn mode was used to monitor the one to three most intense ions with an exclusion duration of 40 s after eight repetitions. Instrumental parameters were set as follows: source voltage 5 kV, lens 1 voltage −15 V, capillary temperature 275 °C, gate lens voltage −35 V, capillary voltage 25 V, tube lens voltage 65 V. The CID parameters were set as follow: CE at 30% of the maximum and an activation time of 30 ms. HPLC was performed with an HPLC Ultimate 3000 system (Dionex, Voisins-le-Bretonneux, France) consisting of a degasser, a quaternary pump, an autosampler, a column oven, and a photodiode array detector. Separation was achieved using an octadecyl silica gel column (Sunfire, 150 × 2.1 mm × 3.5 μm; Waters, Guyancourt, France), equipped with a guard column. The column oven temperature was set at 25 °C. Elution was conducted with a mobile phase consisting of water + 0.1% formic acid (A) and CH3CN + 0.1% formic acid (B), following the gradient 5% to 95% B in 40 min, then maintaining 100% B for 10 min at a flow rate of 250 μL/min. To enable the semiquantification of the detected ions, the samples were prepared at a concentration of 2.5 mg/mL in MeOH, and the injection volume was fixed at 10 μL. The LC-MSn analysis of the CH3CN latex extract, the fractions of E. dendroides, and the reference MS/MS spectra were deposited on GNPS (http://gnps.ucsd.edu), under the reference number MSV000079385.

Plant Material

The latex of Euphorbia dendroides was collected by L.-F.N. in August 2012 on 20 specimens at Ficaghjola Beach (Piana) in the western region of Corsica. Botanical identification was performed by L.-F.N., and a voucher specimen (LF-026) was deposited at the Herbarium of the University of Corsica (Laboratoire de Chimie des Produits Naturels, Corte).

Extraction and Isolation

The latex extract of E. dendroides (4.5 g) was subjected to a bioassay-guided fractionation protocol as described in a previous publication, (37) suggesting that F13 (1600 mg) contains phorboid diterpenes with significant bioactivity score predictions. The previous bioassay-guided isolation procedure on fraction F13 (EC50 = 0.17 μg/mL, SI = 140) allowed the isolation of euphodendroidin E (804 mg, with an isolation yield of 17% from the extract) and of the subfraction sub-F13 (486 mg). This subfraction was analyzed by LC-MS/MS, and ions of interest were annotated and compounds present purified by preparative HPLC (Kromasil C18, isocratic H2O–CH3CN/MeOH (5/5) + 0.1% formic acid, 8:92 in 40 min) using the UV–vis detector as a reference between chromatographic gradients. This purification procedure afforded four new compounds, compound 20 (12.8 mg), 21 (5.0 mg), 22 (5.1 mg), and compound 23 (1.8 mg), with isolation yields from the extract of 0.28%, 0.11%, 0.11%, and 0.04%, respectively.

12β-O-[Deca-2Z,4E-dienoyl]-13α-isobutyryl-4β-deoxyphorbol (20):

amorphous powder; [α]25D −2 (c 1, EtOH); UV (EtOH) λmax (log ε) 262 (4.32), 207 (4.08) nm; IR νmax 2925, 1706, 1634, 1164, 1131, 1082, 780 cm–1; 1H (300 MHz) and 13C (75 MHz) NMR data, see Tables 1 and 2; HRESIMS m/z 591.3272 [M + Na]+ (calcd for C34H48O7Na, 591.3298) deposited in the GNPS spectral library, https://gnps.ucsd.edu/ProteoSAFe/gnpslibraryspectrum.jsp?SpectrumID=CCMSLIB00000840337#%7B%7D.

12β-O-[Deca-2Z,4E,6E-trienoyl]-13α-isobutyryl-4β-deoxyphorbol (21):

amorphous powder; [α]25D +5 (c 1, EtOH); UV (EtOH) λmax (log ε) 301 (4.04), 262 (4.10), 208 (4.10) nm; for 1H (300 MHz) and 13C NMR data, see Tables 1 and 2; HRESIMS m/z 589.3127 [M + Na]+ (calcd for C34H46O7Na, 589.3141); deposited in the GNPS spectral library, https://gnps.ucsd.edu/ProteoSAFe/gnpslibraryspectrum.jsp?SpectrumID=CCMSLIB00000840338#%7B%7D.

12β-O-[Octa-2Z,4E-dienoyl]-13α-isobutyryl-4β-deoxyphorbol (22):

amorphous powder; [α]25D −1 (c 1, EtOH); UV (EtOH) λmax (log ε) 262 (4.10), 207 (3.90) nm; for 1H (300 MHz) and 13C NMR data, see Tables 1 and 2; HRESIMS m/z 563.3010 [M + Na]+ (calcd for C32H44O7Na, 563.2985); deposited in the GNPS spectral library, https://gnps.ucsd.edu/ProteoSAFe/gnpslibraryspectrum.jsp?SpectrumID=CCMSLIB00000840336#%7B%7D.

12β-O-[Deca-2Z,4E,7Z-trienoyl]-13α-isobutyryl-4β-deoxyphorbol (23):

amorphous powder; [α]25D +3 (c 1, EtOH); UV (EtOH) λmax (log ε) 261 (3.79), 206 (3.76) nm; for 1H and 13C NMR data, see Tables 1 and 2; HRESIMS m/z 589.3167 [M + Na]+ (calcd for C34H46O7Na, 589.3141); deposited in the GNPS spectral library, https://gnps.ucsd.edu/ProteoSAFe/gnpslibraryspectrum.jsp?SpectrumID=CCMSLIB00000840339#%7B%7D.

Spectral Feature Detection

This step was performed with the Optimus workflow for feature detection, integration, filtering, and visualization (https://github.com/MolecularCartography), (39) based on using OpenMS algorithms. (40) The Optimus workflow was executed with the KNIME Analytics Platform version 3.2.1 on macOS 10.12. The workflow must be run with the option “Presence of MS/MS”. The .MGF file generated by the Optimus workflow (version 1.2.0) that contains MS/MS spectra (spectral_data_MS2.mgf) for each feature was uploaded on GNPS, and a Data Analysis was performed as described below. The CSV table generated by Optimus (feature_quantification_matrix.csv) was used for both the calculation of the bioactivity score and the visualization of the relative abundance into the molecular networks. More details on parameters used for Optimus and OpenMS are provided in the Supporting Information. Note that alternatively the popular MZmine2 toolbox (release 2.30) can be used for the LC-MS feature detection step. The Dorrestein laboratory implemented the needed features in MZmine2. (38,71) See the release of MZmine 2.28 in July 2017 and the corresponding online documentation on GitHub (https://github.com/DorresteinLaboratory/Bioactive_Molecular_Networks). MZmine2 can now output similar files to those outputted by the Optimus workflow thanks to the option named “filter MS/MS for GNPS” and “Reset the peak number ID” in the peak list rows filter module and the MGF export module “Export for GNPS”. The CSV table with relative quantitative information is exported using the CSV export module. Note that an offline multisoftware workflow procedure was recently developed for the integration of MZmine2 and molecular networking. (72) While the use of this workflow is theoretically compatible with the present bioactivity molecular networking workflow procedure, it has not been tested.

Molecular Networking

Tandem mass spectrometry molecular networks were created using the GNPS platform (http://gnps.ucsd.edu). (22) Data were first converted to the.mzML format with MS-Convert. (73) The spectral information (MGF file) was generated by Optimus and uploaded on GNPS. This file was used to generate an MS/MS molecular network using the GNPS Data Analysis workflow, with the MS-Cluster deactivated. The precursor ion mass tolerance was set to 0.01 Da and to a product ion tolerance of 0.0075 Da (allowing a maximum error of 25 ppm at m/z 300 and 12 ppm at m/z 600). The fragment ions below 10 counts were removed from the MS/MS spectra. MNs networks were generated using 12 minimum matched peaks and a cosine score of 0.7. Data were open and visualized using Cytoscape 3.4.0 software. (44) A force-directed layout modulated by cosine score factor was used for data visualizations. Data of LC-MS/MS analysis were deposited in the MassIVE Public GNPS data set (http://massive.ucsd.edu, MSV000079856). The molecular networking job on GNPS can be found at http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=169c80d3192d4c29a6399729cdc8c9a4 and with analogue search http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=ce2a564dbd704c0595494e04798b0233. The corresponding Cytoscape file is available as Supporting Information. The annotated MS/MS spectra were deposited in the GNPS spectral library under references CCMSLIB00000840337, CCMSLIB00000840338, CCMSLIB00000840336, and CCMSLIB00000840339 for compounds 2023, respectively.

Prediction of Bioactivity Score Significance and Mapping onto the Molecular Networks

An R-based Jupyter notebook, (43) called Bioactive Molecular Networks, was created and is available on GitHub, https://github.com/DorresteinLaboratory/Bioactive_Molecular_Networks, along with a step-by-step tutorial and the representative input/output files needed. The table of spectral features’ intensity (CSV format) obtained with Optimus workflow was used in the analysis. Note that to enable LC-MS-based semiquantitation, and thus a reliable prediction of the bioactivity score, each sample has to be analyzed at a known concentration. If the concentration differs between samples, a normalization has to be applied prior to using the workflow. The bioactive molecular networks Jupyter notebook is composed of three steps: scaling samples by normalizing the intensity to the TIC, (74) calculating the Pearson correlation score (r) and its significance (r_pval) between each feature and the bioactivity value, as well as the multiple hypothesis testing correction (the Bonferroni correction), and outputting the node attribute table. This table is conveniently formatted for import into the Cytoscape software to map back the bioactivity score onto the corresponding MS/MS molecular network. For the visualization of bioactive molecular networks in Cytoscape, the Select function in Cytoscape was used to filter nodes based on their r and the FDR corrected p value. The style of these nodes is then bypassed with a larger node size. In the current study, only molecules having a bioactivity score above r > 0.85 and p value of <0.03 were represented as having a large node in the bioactive molecular networks.

Virus-Cell-Based Antialphavirus Assay

The protocol used was described in a previous publication. (49)

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jnatprod.7b00737.

  • Results of bioassays against CHIKV replication and 1D and 2D NMR spectra (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

ARTICLE SECTIONS
Jump To

  • Corresponding Author
    • Pieter C. Dorrestein - Collaborative Mass Spectrometry Innovation Center, University of California, San Diego, La Jolla, California 92093, United StatesSkaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United StatesOrcidhttp://orcid.org/0000-0002-3003-1030 Email: [email protected]
  • Authors
    • Louis-Félix Nothias - Collaborative Mass Spectrometry Innovation Center, University of California, San Diego, La Jolla, California 92093, United StatesSkaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United StatesInstitut de Chimie des Substances Naturelles, CNRS, ICSN UPR 2301, Université Paris-Sud, 91198, Gif-sur-Yvette, FranceOrcidhttp://orcid.org/0000-0001-6711-6719
    • Mélissa Nothias-Esposito - Institut de Chimie des Substances Naturelles, CNRS, ICSN UPR 2301, Université Paris-Sud, 91198, Gif-sur-Yvette, FranceLaboratoire de Chimie des Produits Naturels, CNRS, UMR SPE 6134, University of Corsica, 20250, Corte, France
    • Ricardo da Silva - Collaborative Mass Spectrometry Innovation Center, University of California, San Diego, La Jolla, California 92093, United StatesSkaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
    • Mingxun Wang - Collaborative Mass Spectrometry Innovation Center, University of California, San Diego, La Jolla, California 92093, United StatesSkaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
    • Ivan Protsyuk - European Molecular Biology Laboratory, EMBL, Heidelberg, Germany
    • Zheng Zhang - Collaborative Mass Spectrometry Innovation Center, University of California, San Diego, La Jolla, California 92093, United StatesSkaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
    • Abi Sarvepalli - Collaborative Mass Spectrometry Innovation Center, University of California, San Diego, La Jolla, California 92093, United StatesSkaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
    • Pieter Leyssen - Laboratory for Virology and Experimental Chemotherapy, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
    • David Touboul - Institut de Chimie des Substances Naturelles, CNRS, ICSN UPR 2301, Université Paris-Sud, 91198, Gif-sur-Yvette, FranceOrcidhttp://orcid.org/0000-0003-2751-774X
    • Jean Costa - Laboratoire de Chimie des Produits Naturels, CNRS, UMR SPE 6134, University of Corsica, 20250, Corte, France
    • Julien Paolini - Laboratoire de Chimie des Produits Naturels, CNRS, UMR SPE 6134, University of Corsica, 20250, Corte, FranceOrcidhttp://orcid.org/0000-0002-3109-1430
    • Theodore Alexandrov - Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United StatesEuropean Molecular Biology Laboratory, EMBL, Heidelberg, Germany
    • Marc Litaudon - Institut de Chimie des Substances Naturelles, CNRS, ICSN UPR 2301, Université Paris-Sud, 91198, Gif-sur-Yvette, FranceOrcidhttp://orcid.org/0000-0002-0877-8234
  • Notes
    The authors declare the following competing financial interest(s): P. C. Dorrenstein is an advisor for Sirenas, a company that employs molecular networking for the discovery of bioactive natural products from marine resources. The work in that company does not overlap with the work presented in this paper.

    Reference MS/MS spectra of isolated compounds were deposited in the GNPS public spectral library (CCMSLIB00000840316 to CCMSLIB00000840340). LC-MS data have been deposited in the MassIVE repository http://gnps.ucsd.edu under accession number MSV000079856. The MS/MS molecular networks can be consulted at http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=ce2a564dbd704c0595494e04798b0233. The corresponding Cytoscape file of the molecular networks and the code for bioactive molecular network Jupyter notebook are available at https://github.com/DorresteinLaboratory/Bioactive_Molecular_Networks.

Acknowledgments

ARTICLE SECTIONS
Jump To

The authors would like to thank J.-F. Gallard (CNRS) for help with the NMR acquisition and I. Schmitz-Afonso (CNRS) for the LC-MS/MS analysis. We thank the NIH for supporting this work under NIH-UCSD Center for Computational Mass Spectrometry P41 GM103484 and the NIH grant on reuse of metabolomics data R03 CA211211. This work was also supported by an “Investissement d’Avenir” grant managed by Agence Nationale de la Recherche (CEBA, ANR-10-LABX-25-01). D.T. was supported by the Agence Nationale de la Recherche (Grant ANR-16-CE29-0002-01 CAP-SFC-MS). This project benefited from European Commission funding (Horizon 2020 Research and Innovation Program) from the Marie Skłodowska-Curie Action MSCA-IF-2016, 3D-Plant2Cells, No. 704786 (to L.F.N), and from the grant agreement No. 634402 (to T.A. and I.P).

References

ARTICLE SECTIONS
Jump To

This article references 74 other publications.

  1. 1
    Newman, D. J.; Cragg, G. M. J. Nat. Prod. 2012, 75, 311335,  DOI: 10.1021/np200906s
  2. 2
    Kingston, D. G. I. J. Nat. Prod. 2010, 74, 496511,  DOI: 10.1021/np100550t
  3. 3
    Fabricant, D. S.; Farnsworth, N. R. Environ. Health Perspect. 2001, 109, 6975,  DOI: 10.2307/3434847
  4. 4
    Potterat, O.; Hamburger, M. Nat. Prod. Rep. 2013, 30, 546564,  DOI: 10.1039/c3np20094a
  5. 5
    Colegate, S. M.; Molyneux, R. J. Bioactive Natural Products Detection, Isolation, and Structural Determination; CRC Press: Boca Raton, FL, 1993.
  6. 6
    Bucar, F.; Wube, A.; Schmid, M. Nat. Prod. Rep. 2013, 30, 525545,  DOI: 10.1039/c3np20106f
  7. 7
    Weller, M. G. Sensors 2012, 12, 91819209,  DOI: 10.3390/s120709181
  8. 8
    Schneider, H. G.; Tener, G. M.; Strong, F. M. Arch. Biochem. Biophys. 1952, 37, 147157,  DOI: 10.1016/0003-9861(52)90173-2
  9. 9
    Wolfender, J.-L.; Marti, G.; Thomas, A.; Bertrand, S. J. Chromatogr. A 2015, 1382, 136164,  DOI: 10.1016/j.chroma.2014.10.091
  10. 10
    Gaudêncio, S. P.; Pereira, F. Nat. Prod. Rep. 2015, 32, 779810,  DOI: 10.1039/C4NP00134F
  11. 11
    Henke, M. T.; Kelleher, N. L. Nat. Prod. Rep. 2016, 33, 942950,  DOI: 10.1039/C6NP00024J
  12. 12
    Covington, B. C.; McLean, J. A.; Bachmann, B. O. Nat. Prod. Rep. 2017, 34, 624,  DOI: 10.1039/C6NP00048G
  13. 13
    Kind, T.; Fiehn, O. Phytochem. Lett. 2017, 21, 313319,  DOI: 10.1016/j.phytol.2016.11.006
  14. 14
    Williams, R. B.; O’Neil-Johnson, M.; Williams, A. J.; Wheeler, P.; Pol, R.; Moser, A. Org. Biomol. Chem. 2015, 13, 99579962,  DOI: 10.1039/C5OB01713K
  15. 15
    Zani, C. L.; Carroll, A. R. J. Nat. Prod. 2017, 80, 17581766,  DOI: 10.1021/acs.jnatprod.6b01093
  16. 16
    Munro, M.; Blunt, J. W. MarineLit http://pubs.rsc.org/marinlit/ (accessed 2016).
  17. 17
    Laatsch, H. AntiBase, a Database for Rapid Dereplication and Structure Determination of Microbial Natural Products; Wiley-VCH, 2010.
  18. 18
    Buckingham, J. Dictionary of Natural Products, Supplement 4; CRC Press: Boca Raton, FL, 1997.
  19. 19
    Horai, H.; Arita, M.; Kanaya, S.; Nihei, Y.; Ikeda, T.; Suwa, K.; Ojima, Y.; Tanaka, K.; Tanaka, S.; Aoshima, K.; Oda, Y.; Kakazu, Y.; Kusano, M.; Tohge, T.; Matsuda, F.; Sawada, Y.; Hirai, M. Y.; Nakanishi, H.; Ikeda, K.; Akimoto, N.; Maoka, T.; Takahashi, H.; Ara, T.; Sakurai, N.; Suzuki, H.; Shibata, D.; Neumann, S.; Iida, T.; Tanaka, K.; Funatsu, K.; Matsuura, F.; Soga, T.; Taguchi, R.; Saito, K.; Nishioka, T. J. Mass Spectrom. 2010, 45, 703714,  DOI: 10.1002/jms.1777
  20. 20
    Smith, C. A.; O’Maille, G.; Want, E. J.; Qin, C.; Trauger, S. A.; Brandon, T. R.; Custodio, D. E.; Abagyan, R.; Siuzdak, G. Ther. Drug Monit. 2005, 27, 747751,  DOI: 10.1097/01.ftd.0000179845.53213.39
  21. 21
    Gowda, H.; Ivanisevic, J.; Johnson, C. H.; Kurczy, M. E.; Benton, H. P.; Rinehart, D.; Nguyen, T.; Ray, J.; Kuehl, J.; Arevalo, B.; Westenskow, P. D.; Wang, J.; Arkin, A. P.; Deutschbauer, A. M.; Patti, G. J.; Siuzdak, G. Anal. Chem. 2014, 86, 69316939,  DOI: 10.1021/ac500734c
  22. 22
    Wang, M.; Carver, J. J.; Phelan, V. V.; Sanchez, L. M.; Garg, N.; Peng, Y.; Nguyen, D. D.; Watrous, J.; Kapono, C. A.; Luzzatto-Knaan, T.; Porto, C.; Bouslimani, A.; Melnik, A. V.; Meehan, M. J.; Liu, W.-T.; Crüsemann, M.; Boudreau, P. D.; Esquenazi, E.; Sandoval-Calderón, M.; Kersten, R. D.; Pace, L. A.; Quinn, R. A.; Duncan, K. R.; Hsu, C.-C.; Floros, D. J.; Gavilan, R. G.; Kleigrewe, K.; Northen, T.; Dutton, R. J.; Parrot, D.; Carlson, E. E.; Aigle, B.; Michelsen, C. F.; Jelsbak, L.; Sohlenkamp, C.; Pevzner, P.; Edlund, A.; McLean, J.; Piel, J.; Murphy, B. T.; Gerwick, L.; Liaw, C.-C.; Yang, Y.-L.; Humpf, H.-U.; Maansson, M.; Keyzers, R. A.; Sims, A. C.; Johnson, A. R.; Sidebottom, A. M.; Sedio, B. E.; Klitgaard, A.; Larson, C. B.; Boya P, C. A.; Torres-Mendoza, D.; Gonzalez, D. J.; Silva, D. B.; Marques, L. M.; Demarque, D. P.; Pociute, E.; O’Neill, E. C.; Briand, E.; Helfrich, E. J. N.; Granatosky, E. A.; Glukhov, E.; Ryffel, F.; Houson, H.; Mohimani, H.; Kharbush, J. J.; Zeng, Y.; Vorholt, J. A.; Kurita, K. L.; Charusanti, P.; McPhail, K. L.; Nielsen, K. F.; Vuong, L.; Elfeki, M.; Traxler, M. F.; Engene, N.; Koyama, N.; Vining, O. B.; Baric, R.; Silva, R. R.; Mascuch, S. J.; Tomasi, S.; Jenkins, S.; Macherla, V.; Hoffman, T.; Agarwal, V.; Williams, P. G.; Dai, J.; Neupane, R.; Gurr, J.; Rodríguez, A. M. C.; Lamsa, A.; Zhang, C.; Dorrestein, K.; Duggan, B. M.; Almaliti, J.; Allard, P.-M.; Phapale, P.; Nothias, L.-F.; Alexandrov, T.; Litaudon, M.; Wolfender, J.-L.; Kyle, J. E.; Metz, T. O.; Peryea, T.; Nguyen, D.-T.; VanLeer, D.; Shinn, P.; Jadhav, A.; Müller, R.; Waters, K. M.; Shi, W.; Liu, X.; Zhang, L.; Knight, R.; Jensen, P. R.; Palsson, B. Ø.; Pogliano, K.; Linington, R. G.; Gutiérrez, M.; Lopes, N. P.; Gerwick, W. H.; Moore, B. S.; Dorrestein, P. C.; Bandeira, N. Nat. Biotechnol. 2016, 34, 828837,  DOI: 10.1038/nbt.3597
  23. 23
    Watrous, J.; Roach, P.; Alexandrov, T.; Heath, B. S.; Yang, J. Y.; Kersten, R. D.; van der Voort, M.; Pogliano, K.; Gross, H.; Raaijmakers, J. M.; Moore, B. S.; Laskin, J.; Bandeira, N.; Dorrestein, P. C. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, E1743E1752,  DOI: 10.1073/pnas.1203689109
  24. 24
    Quinn, R. A.; Nothias, L.-F.; Vining, O.; Meehan, M.; Esquenazi, E.; Dorrestein, P. C. Trends Pharmacol. Sci. 2017, 38, 143154,  DOI: 10.1016/j.tips.2016.10.011
  25. 25
    Yang, J. Y.; Sanchez, L. M.; Rath, C. M.; Liu, X.; Boudreau, P. D.; Bruns, N.; Glukhov, E.; Wodtke, A.; de Felicio, R.; Fenner, A.; Wong, W. R.; Linington, R. G.; Zhang, L.; Debonsi, H. M.; Gerwick, W. H.; Dorrestein, P. C. J. Nat. Prod. 2013, 76, 16861699,  DOI: 10.1021/np400413s
  26. 26
    Winnikoff, J. R.; Glukhov, E.; Watrous, J.; Dorrestein, P. C.; Gerwick, W. H. J. Antibiot. 2014, 67, 105112,  DOI: 10.1038/ja.2013.120
  27. 27
    Nguyen, D. D.; Wu, C.-H.; Moree, W. J.; Lamsa, A.; Medema, M. H.; Zhao, X.; Gavilan, R. G.; Aparicio, M.; Atencio, L.; Jackson, C.; Ballesteros, J.; Sanchez, J.; Watrous, J. D.; Phelan, V. V.; van de Wiel, C.; Kersten, R. D.; Mehnaz, S.; De Mot, R.; Shank, E. A.; Charusanti, P.; Nagarajan, H.; Duggan, B. M.; Moore, B. S.; Bandeira, N.; Palsson, B. Ø.; Pogliano, K.; Gutiérrez, M.; Dorrestein, P. C. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, E2611E2620,  DOI: 10.1073/pnas.1303471110
  28. 28
    Kurita, K. L.; Glassey, E.; Linington, R. G. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 1199912004,  DOI: 10.1073/pnas.1507743112
  29. 29
    Kellogg, J. J.; Todd, D. A.; Egan, J. M.; Raja, H. A.; Oberlies, N. H.; Kvalheim, O. M.; Cech, N. B. J. Nat. Prod. 2016, 79, 376386,  DOI: 10.1021/acs.jnatprod.5b01014
  30. 30
    Bertrand, S.; Azzollini, A.; Nievergelt, A.; Boccard, J.; Rudaz, S.; Cuendet, M.; Wolfender, J.-L. Molecules 2016, 21, 259,  DOI: 10.3390/molecules21030259
  31. 31
    Aligiannis, N.; Halabalaki, M.; Chaita, E.; Kouloura, E.; Argyropoulou, A.; Benaki, D.; Kalpoutzakis, E.; Angelis, A.; Stathopoulou, K.; Antoniou, S.; Sani, M.; Krauth, V.; Werz, O.; Schütz, B.; Schäfer, H.; Spraul, M.; Mikros, E.; Skaltsounis, L. A. ChemistrySelect 2016, 1, 25312535,  DOI: 10.1002/slct.201600744
  32. 32
    Olivon, F.; Allard, P.-M.; Koval, A.; Righi, D.; Genta-Jouve, G.; Neyts, J.; Apel, C.; Pannecouque, C.; Nothias, L.-F.; Cachet, X.; Marcourt, L.; Roussi, F.; Katanaev, V. L.; Touboul, D.; Wolfender, J.-L.; Litaudon, M. ACS Chem. Biol. 2017, 12, 26442651,  DOI: 10.1021/acschembio.7b00413
  33. 33
    Brito, Â.; Gaifem, J.; Ramos, V.; Glukhov, E.; Dorrestein, P. C.; Gerwick, W. H.; Vasconcelos, V. M.; Mendes, M. V.; Tamagnini, P. Algal Res. 2015, 9, 218226,  DOI: 10.1016/j.algal.2015.03.016
  34. 34
    Naman, C. B.; Rattan, R.; Nikoulina, S. E.; Lee, J.; Miller, B. W.; Moss, N. A.; Armstrong, L.; Boudreau, P. D.; Debonsi, H. M.; Valeriote, F. A.; Dorrestein, P. C.; Gerwick, W. H. J. Nat. Prod. 2017, 80, 625633,  DOI: 10.1021/acs.jnatprod.6b00907
  35. 35
    Esposito, M.; Nothias, L.-F.; Retailleau, P.; Costa, J.; Roussi, F.; Neyts, J.; Leyssen, P.; Touboul, D.; Litaudon, M.; Paolini, J. J. Nat. Prod. 2017, 80, 20512059,  DOI: 10.1021/acs.jnatprod.7b00233
  36. 36
    Nothias, L.-F.; Boutet-Mercey, S.; Cachet, X.; De La Torre, E.; Laboureur, L.; Gallard, J.-F.; Retailleau, P.; Brunelle, A.; Dorrestein, P. C.; Costa, J.; Bedoya, L. M.; Roussi, F.; Leyssen, P.; Alcami, J.; Paolini, J.; Litaudon, M.; Touboul, D. J. Nat. Prod. 2017, 80, 26202629,  DOI: 10.1021/acs.jnatprod.7b00113
  37. 37
    Esposito, M.; Nothias, L.-F.; Nedev, H.; Gallard, J.-F.; Leyssen, P.; Retailleau, P.; Costa, J.; Roussi, F.; Iorga, B. I.; Paolini, J.; Litaudon, M. J. Nat. Prod. 2016, 79, 28732882,  DOI: 10.1021/acs.jnatprod.6b00644
  38. 38
    Pluskal, T.; Castillo, S.; Villar-Briones, A.; Orešič, M. BMC Bioinf. 2010, 11, 395,  DOI: 10.1186/1471-2105-11-395
  39. 39
    Protsyuk, I.; Melnik, A. M.; Nothias, L.-F.; Rappez, L.; Phapale, P.; Aksenov, A. A.; Bouslimani, A.; Ryazanov, S.; Dorrestein, P. C.; Alexandrov, T. Nat. Protoc. 2018, 13, 134154,  DOI: 10.1038/nprot.2017.122
  40. 40
    Röst, H. L.; Sachsenberg, T.; Aiche, S.; Bielow, C.; Weisser, H.; Aicheler, F.; Andreotti, S.; Ehrlich, H.-C.; Gutenbrunner, P.; Kenar, E.; Liang, X.; Nahnsen, S.; Nilse, L.; Pfeuffer, J.; Rosenberger, G.; Rurik, M.; Schmitt, U.; Veit, J.; Walzer, M.; Wojnar, D.; Wolski, W. E.; Schilling, O.; Choudhary, J. S.; Malmström, L.; Aebersold, R.; Reinert, K.; Kohlbacher, O. Nat. Methods 2016, 13, 741748,  DOI: 10.1038/nmeth.3959
  41. 41
    Optimus https://github.com/MolecularCartography/Optimus (accessed May 24, 2017).
  42. 42
    Ihaka, R.; Gentleman, R. J. Comput. Graph. Stat. 1996, 5, 299314,  DOI: 10.1080/10618600.1996.10474713
  43. 43
    Perez, F. Project Jupyter, 2015 http://jupyter.org/about.html.
  44. 44
    Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N. S.; Wang, J. T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Genome Res. 2003, 13, 24982504,  DOI: 10.1101/gr.1239303
  45. 45
    Appendino, G.; Szallasi, A. Life Sci. 1997, 60, 681696,  DOI: 10.1016/S0024-3205(96)00567-X
  46. 46
    Nothias-Scaglia, L.-F.; Dumontet, V.; Neyts, J.; Roussi, F.; Costa, J.; Leyssen, P.; Litaudon, M.; Paolini, J. Fitoterapia 2015, 105, 202209,  DOI: 10.1016/j.fitote.2015.06.021
  47. 47
    Nothias-Scaglia, L.-F.; Schmitz-Afonso, I.; Renucci, F.; Roussi, F.; Touboul, D.; Costa, J.; Litaudon, M.; Paolini, J. J. Chromatogr. A 2015, 1422, 128139,  DOI: 10.1016/j.chroma.2015.09.092
  48. 48
    Esposito, M.; Nim, S.; Nothias, L.-F.; Gallard, J.-F.; Rawal, M. K.; Costa, J.; Roussi, F.; Prasad, R.; Di Pietro, A.; Paolini, J.; Litaudon, M. J. Nat. Prod. 2017, 80, 479487,  DOI: 10.1021/acs.jnatprod.6b00990
  49. 49
    Esposito, M.; Nothias, L.-F.; Nedev, H.; Gallard, J.-F.; Leyssen, P.; Retailleau, P.; Costa, J.; Roussi, F.; Iorga, B. I.; Paolini, J.; Litaudon, M. J. Nat. Prod. . 2016. 79 2873 DOI: 10.1021/acs.jnatprod.6b00644
  50. 50
    Allard, P.-M.; Péresse, T.; Bisson, J.; Gindro, K.; Marcourt, L.; Pham, V. C.; Roussi, F.; Litaudon, M.; Wolfender, J.-L. Anal. Chem. 2016, 88, 33173323,  DOI: 10.1021/acs.analchem.5b04804
  51. 51
    Wu, D.; Sorg, B.; Hecker, E. Phytother. Res. 1994, 8, 9599,  DOI: 10.1002/ptr.2650080209
  52. 52
    Evans, F. J.; Kinghorn, A. D. J. Chromatogr. A 1973, 87, 443448,  DOI: 10.1016/S0021-9673(01)91746-7
  53. 53
    Evans, F. J.; Kinghorn, A. D. Bot. J. Linn. Soc. 1977, 74, 2335,  DOI: 10.1111/j.1095-8339.1977.tb01163.x
  54. 54
    Appendino, G. Prog. Chem. Org. Nat. Prod. 2016, 102, 190,  DOI: 10.1007/978-3-319-33172-0_1
  55. 55
    Gulakowski, R. J.; McMahon, J. B.; Buckheit, R. W., Jr.; Gustafson, K. R.; Boyd, M. R. Antiviral Res. 1997, 33, 8797,  DOI: 10.1016/S0166-3542(96)01004-2
  56. 56
    Abdelnabi, R.; Staveness, D.; Near, K. E.; Wender, P. A.; Delang, L.; Neyts, J.; Leyssen, P. Biochem. Pharmacol. 2016, 120, 1521,  DOI: 10.1016/j.bcp.2016.09.020
  57. 57
    Abdelnabi, R.; Amrun, S. N.; Ng, L. F. P.; Leyssen, P.; Neyts, J.; Delang, L. Antiviral Res. 2017, 139, 7987,  DOI: 10.1016/j.antiviral.2016.12.020
  58. 58
    Vasas, A.; Hohmann, J. Chem. Rev. 2014, 114, 85798612,  DOI: 10.1021/cr400541j
  59. 59
    Nothias-Scaglia, L.-F.; Pannecouque, C.; Renucci, F.; Delang, L.; Neyts, J.; Roussi, F.; Costa, J.; Leyssen, P.; Litaudon, M.; Paolini, J. J. Nat. Prod. 2015, 78, 12771283,  DOI: 10.1021/acs.jnatprod.5b00073
  60. 60
    Shi, Q.-W.; Su, X.-H.; Kiyota, H. Chem. Rev. 2008, 108, 42954327,  DOI: 10.1021/cr078350s
  61. 61
    Vasas, A.; Rédei, D.; Csupor, D.; Molnár, J.; Hohmann, J. Eur. J. Org. Chem. 2012, 2012, 51155130,  DOI: 10.1002/ejoc.201200733
  62. 62
    Powers, A. Res. Rep. Trop. Med. 2015, 6, 1119
  63. 63
    Project Jupyter website, 2018, http://jupyter.org/install.
  64. 64
    Scheubert, K.; Hufsky, F.; Petras, D.; Wang, M.; Nothias, L.-F.; Dührkop, K.; Bandeira, N.; Dorrestein, P. C.; Böcker, S. Nat. Commun. 2017, 8, 1494,  DOI: 10.1038/s41467-017-01318-5
  65. 65
    Gerlich, M.; Neumann, S. J. Mass Spectrom. 2013, 48, 291298,  DOI: 10.1002/jms.3123
  66. 66
    Hufsky, F.; Scheubert, K.; Böcker, S. Nat. Prod. Rep. 2014, 31, 807,  DOI: 10.1039/c3np70101h
  67. 67
    Dührkop, K.; Shen, H.; Meusel, M.; Rousu, J.; Böcker, S. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 1258012585,  DOI: 10.1073/pnas.1509788112
  68. 68
    “bioassay-guided” MS/MS - Google Scholar https://scholar.google.com/scholar?q=%22bioassay-guided%22+MS%2FMS&hl=en&as_sdt=0%2C5&as_ylo=2016&as_yhi=2016 (accessed May 31, 2017).
  69. 69
    Haug, K.; Salek, R. M.; Conesa, P.; Hastings, J.; de Matos, P.; Rijnbeek, M.; Mahendraker, T.; Williams, M.; Neumann, S.; Rocca-Serra, P.; Maguire, E.; González-Beltrán, A.; Sansone, S.-A.; Griffin, J. L.; Steinbeck, C. Nucleic Acids Res. 2013, 41, D781D786,  DOI: 10.1093/nar/gks1004
  70. 70
    Spicer, R. A.; Steinbeck, C. Metabolomics 2018, 14, 16,  DOI: 10.1007/s11306-017-1309-5
  71. 71
    Katajamaa, M.; Miettinen, J.; Oresic, M. Bioinformatics 2006, 22, 634636,  DOI: 10.1093/bioinformatics/btk039
  72. 72
    Olivon, F.; Grelier, G.; Roussi, F.; Litaudon, M.; Touboul, D. Anal. Chem. 2017, 89, 78367840,  DOI: 10.1021/acs.analchem.7b01563
  73. 73
    Chambers, M. C.; Maclean, B.; Burke, R.; Amodei, D.; Ruderman, D. L.; Neumann, S.; Gatto, L.; Fischer, B.; Pratt, B.; Egertson, J.; Hoff, K.; Kessner, D.; Tasman, N.; Shulman, N.; Frewen, B.; Baker, T. A.; Brusniak, M.-Y.; Paulse, C.; Creasy, D.; Flashner, L.; Kani, K.; Moulding, C.; Seymour, S. L.; Nuwaysir, L. M.; Lefebvre, B.; Kuhlmann, F.; Roark, J.; Rainer, P.; Detlev, S.; Hemenway, T.; Huhmer, A.; Langridge, J.; Connolly, B.; Chadick, T.; Holly, K.; Eckels, J.; Deutsch, E. W.; Moritz, R. L.; Katz, J. E.; Agus, D. B.; MacCoss, M.; Tabb, D. L.; Mallick, P. Nat. Biotechnol. 2012, 30, 918920,  DOI: 10.1038/nbt.2377
  74. 74
    van den Berg, R. A.; Hoefsloot, H. C. J.; Westerhuis, J. A.; Smilde, A. K.; van der Werf, M. J. BMC Genomics 2006, 7, 142,  DOI: 10.1186/1471-2164-7-142

Cited By

ARTICLE SECTIONS
Jump To

This article is cited by 223 publications.

  1. Charles Tardif, Caroline Rouger, Julie Miranda, Omar S. Ahmed, Florence Richard-Forget, Vessela Atanasova, Pierre Waffo-Teguo. Targeting of Antifungal Metabolites from Grapevine Byproducts by UPLC–HRMS/MS Approaches Using Bioactivity-Based Molecular Networking. Journal of Agricultural and Food Chemistry 2024, Article ASAP.
  2. Kevin Mildau, Henry Ehlers, Ian Oesterle, Manuel Pristner, Benedikt Warth, Maria Doppler, Christoph Bueschl, Jürgen Zanghellini, Justin J. J. van der Hooft. Tailored Mass Spectral Data Exploration Using the SpecXplore Interactive Dashboard. Analytical Chemistry 2024, 96 (15) , 5798-5806. https://doi.org/10.1021/acs.analchem.3c04444
  3. Shuyuan Mo, Yaxin Zhang, Rui Jiang, Hanxiao Zeng, Zhihong Huang, Jie Yin, Sitian Zhang, Jun Yao, Jianping Wang, Zhengxi Hu, Yonghui Zhang. Dipeniroqueforins A–B and Peniroqueforin D: Eremophilane-Type Sesquiterpenoid Derivatives with Cytotoxic Activity from Penicillium roqueforti. The Journal of Organic Chemistry 2024, 89 (2) , 1209-1219. https://doi.org/10.1021/acs.joc.3c02360
  4. Guowei Cai, Xinxin Hu, Ran Zhang, JuXian Wang, Xiaomei Fang, Xu Pang, Jinglin Bai, Tao Zhang, Tao Zhang, Hui Lv, Xuefu You, Wenni He, Liyan Yu. Subplenones A–J: Dimeric Xanthones with Antibacterial Activity from the Endophytic Fungus Subplenodomus sp. CPCC 401465. Journal of Natural Products 2023, 86 (11) , 2474-2486. https://doi.org/10.1021/acs.jnatprod.3c00628
  5. Xin Dong, Jingshuai Wu, Hongli Jia, Shan Cen, Wei Cheng, Wenhan Lin. Targeted Isolation of Dolabellane Diterpenoids from the Soft Coral Clavularia viridis Using Molecular Networking. ACS Omega 2023, 8 (23) , 21254-21264. https://doi.org/10.1021/acsomega.3c02429
  6. Warren S. Vidar, Tim U. H. Baumeister, Lindsay K. Caesar, Joshua J. Kellogg, Daniel A. Todd, Roger G. Linington, Olav M. Kvalheim, Nadja B. Cech. Interaction Metabolomics to Discover Synergists in Natural Product Mixtures. Journal of Natural Products 2023, 86 (4) , 655-671. https://doi.org/10.1021/acs.jnatprod.2c00518
  7. De-Gao Wang, Chao-Yi Wang, Jia-Qi Hu, Jing-Jing Wang, Wen-Chao Liu, Wen-Juan Zhang, Xin-Ran Du, Han Wang, Le-Le Zhu, Hai-Yan Sui, Yue-Zhong Li, Changsheng Wu. Constructing a Myxobacterial Natural Product Database to Facilitate NMR-Based Metabolomics Bioprospecting of Myxobacteria. Analytical Chemistry 2023, 95 (12) , 5256-5266. https://doi.org/10.1021/acs.analchem.2c05145
  8. Swati Baskiyar, Chang Ren, Kabre L. Heck, Audrey M. Hall, Muhammad Gulfam, Sadaira Packer, Cheryl D. Seals, Angela I. Calderón. Bioactive Natural Products Identification Using Automation of Molecular Networking Software. Journal of Chemical Information and Modeling 2022, 62 (24) , 6378-6385. https://doi.org/10.1021/acs.jcim.2c00307
  9. Tanja Hell, Adriano Rutz, Lara Dürr, Maciej Dobrzyński, Jakob K. Reinhardt, Timo Lehner, Morris Keller, Anika John, Mahabir Gupta, Olivier Pertz, Matthias Hamburger, Jean-Luc Wolfender, Eliane Garo. Combining Activity Profiling with Advanced Annotation to Accelerate the Discovery of Natural Products Targeting Oncogenic Signaling in Melanoma. Journal of Natural Products 2022, 85 (6) , 1540-1554. https://doi.org/10.1021/acs.jnatprod.2c00146
  10. Te Li, Chuchu Xi, Yiyi Yu, Ning Wang, Xiao Wang, Arihiro Iwasaki, Fang Fang, Lijian Ding, Shuang Li, Weiyan Zhang, Ye Yuan, Tingting Wang, Xiaojun Yan, Shan He, Zhengyu Cao, C. Benjamin Naman. Targeted Discovery of Amantamide B, an Ion Channel Modulating Nonapeptide from a South China Sea Oscillatoria Cyanobacterium. Journal of Natural Products 2022, 85 (3) , 493-500. https://doi.org/10.1021/acs.jnatprod.1c00983
  11. Sanghoon Lee, Jeffrey A. van Santen, Nima Farzaneh, Dennis Y. Liu, Cameron R. Pye, Tim U. H. Baumeister, Weng Ruh Wong, Roger G. Linington. NP Analyst: An Open Online Platform for Compound Activity Mapping. ACS Central Science 2022, 8 (2) , 223-234. https://doi.org/10.1021/acscentsci.1c01108
  12. George S. Hanna, Yeun-Mun Choo, Ryan Harbit, Heather Paeth, Sarah Wilde, James Mackle, Jacopo-Umberto Verga, Bethany J. Wolf, Olivier P. Thomas, Peter Croot, James Cray, Courtney Thomas, Ling-Zhi Li, Gary Hardiman, Jin-Feng Hu, Xiaojuan Wang, Dharmeshkumar Patel, Raymond F. Schinazi, Barry R. O’Keefe, Mark T. Hamann. Contemporary Approaches to the Discovery and Development of Broad-Spectrum Natural Product Prototypes for the Control of Coronaviruses. Journal of Natural Products 2021, 84 (11) , 3001-3007. https://doi.org/10.1021/acs.jnatprod.1c00625
  13. Gustavo de Albuquerque Cavalcanti, Ricardo Moreira Borges, Gabriel Reis Alves Carneiro, Monica Costa Padilha, Henrique Marcelo Gualberto Pereira. Variable Data Independent Acquisition and Data Mining Exploring Feature-Based Molecular Networking Analysis for Untargeted Screening of Synthetic Cannabinoids in Oral Fluid. Journal of the American Society for Mass Spectrometry 2021, 32 (9) , 2417-2424. https://doi.org/10.1021/jasms.1c00124
  14. Changling Hu, Yao Tang, Hunter D. Snooks, Shengmin Sang. Novel Steroidal Saponins in Oat Identified by Molecular Networking Analysis and Their Levels in Commercial Oat Products. Journal of Agricultural and Food Chemistry 2021, 69 (25) , 7084-7092. https://doi.org/10.1021/acs.jafc.1c02728
  15. Riley D. Kirk, Haiyin He, Paul G. Wahome, ShiBiao Wu, Guy T. Carter, Matthew J. Bertin. New Micropeptins with Anti-Neuroinflammatory Activity Isolated from a Cyanobacterial Bloom. ACS Omega 2021, 6 (23) , 15472-15478. https://doi.org/10.1021/acsomega.1c02025
  16. Hongyan Ma, Huiyun Liang, Shengxin Cai, Barry R. O’Keefe, Susan L. Mooberry, Robert H. Cichewicz. An Integrated Strategy for the Detection, Dereplication, and Identification of DNA-Binding Biomolecules from Complex Natural Product Mixtures. Journal of Natural Products 2021, 84 (3) , 750-761. https://doi.org/10.1021/acs.jnatprod.0c00946
  17. Mitja M. Zdouc, Marianna Iorio, Sonia I. Maffioli, Max Crüsemann, Stefano Donadio, Margherita Sosio. Planomonospora: A Metabolomics Perspective on an Underexplored Actinobacteria Genus. Journal of Natural Products 2021, 84 (2) , 204-219. https://doi.org/10.1021/acs.jnatprod.0c00807
  18. Huong T. Pham, Kwang Ho Lee, Eunah Jeong, Sunmin Woo, Jinsuh Yu, Woo-Young Kim, Young Woon Lim, Ki Hyun Kim, Kyo Bin Kang. Species Prioritization Based on Spectral Dissimilarity: A Case Study of Polyporoid Fungal Species. Journal of Natural Products 2021, 84 (2) , 298-309. https://doi.org/10.1021/acs.jnatprod.0c00977
  19. Marcus Ludwig, Corey D. Broeckling, Pieter C. Dorrestein, Kai Dührkop, Emma L. Schymanski, Sebastian Böcker, Louis-Félix Nothias. Studying Charge Migration Fragmentation of Sodiated Precursor Ions in Collision-Induced Dissociation at the Library Scale. Journal of the American Society for Mass Spectrometry 2021, 32 (1) , 180-186. https://doi.org/10.1021/jasms.0c00240
  20. Hao-Fen Xie, Ya-Shuai Kong, Ru-Ze Li, Louis-Félix Nothias, Alexey V. Melnik, Hong Zhang, Lu-Lu Liu, Ting-Ting An, Rui Liu, Zi Yang, Jia-Ping Ke, Peng Zhang, Guan-Hu Bao, Zhong-Wen Xie, Da-Xiang Li, Xiao-Chun Wan, Qian-Ying Dai, Liang Zhang, Ming Zhao, Mao-Qiang An, Yan-Hua Long, Tie-Jun Ling. Feature-Based Molecular Networking Analysis of the Metabolites Produced by In Vitro Solid-State Fermentation Reveals Pathways for the Bioconversion of Epigallocatechin Gallate. Journal of Agricultural and Food Chemistry 2020, 68 (30) , 7995-8007. https://doi.org/10.1021/acs.jafc.0c02983
  21. José Rivera-Chávez, Celia Bustos-Brito, Enrique Aguilar-Ramírez, Diego Martínez-Otero, Luis D. Rosales-Vázquez, Alejandro Dorazco-González, Patricia Cano-Sánchez. Hydroxy-neo-Clerodanes and 5,10-seco-neo-Clerodanes from Salvia decora. Journal of Natural Products 2020, 83 (7) , 2212-2220. https://doi.org/10.1021/acs.jnatprod.0c00313
  22. Simon Sieber, Simone M. Grendelmeier, Lonnie A. Harris, Douglas A. Mitchell, Karl Gademann. Microviridin 1777: A Toxic Chymotrypsin Inhibitor Discovered by a Metabologenomic Approach. Journal of Natural Products 2020, 83 (2) , 438-446. https://doi.org/10.1021/acs.jnatprod.9b00986
  23. Alexander E. Fox Ramos, Coralie Pavesi, Marc Litaudon, Vincent Dumontet, Erwan Poupon, Pierre Champy, Grégory Genta-Jouve, Mehdi A. Beniddir. CANPA: Computer-Assisted Natural Products Anticipation. Analytical Chemistry 2019, 91 (17) , 11247-11252. https://doi.org/10.1021/acs.analchem.9b02216
  24. Alan Cesar Pilon, Haiwei Gu, Daniel Raftery, Vanderlan da Silva Bolzani, Norberto Peporine Lopes, Ian Castro-Gamboa, Fausto Carnevale Neto. Mass Spectral Similarity Networking and Gas-Phase Fragmentation Reactions in the Structural Analysis of Flavonoid Glycoconjugates. Analytical Chemistry 2019, 91 (16) , 10413-10423. https://doi.org/10.1021/acs.analchem.8b05479
  25. Sunmin Woo, Kyo Bin Kang, Jinwoong Kim, Sang Hyun Sung. Molecular Networking Reveals the Chemical Diversity of Selaginellin Derivatives, Natural Phosphodiesterase-4 Inhibitors from Selaginella tamariscina. Journal of Natural Products 2019, 82 (7) , 1820-1830. https://doi.org/10.1021/acs.jnatprod.9b00049
  26. Mélissa Nothias-Esposito, Louis Felix Nothias, Ricardo R. Da Silva, Pascal Retailleau, Zheng Zhang, Pieter Leyssen, Fanny Roussi, David Touboul, Julien Paolini, Pieter C. Dorrestein, Marc Litaudon. Investigation of Premyrsinane and Myrsinane Esters in Euphorbia cupanii and Euphobia pithyusa with MS2LDA and Combinatorial Molecular Network Annotation Propagation. Journal of Natural Products 2019, 82 (6) , 1459-1470. https://doi.org/10.1021/acs.jnatprod.8b00916
  27. José Rivera-Chávez, Jade Zacatenco-Abarca, Jesús Morales-Jiménez, Blanca Martínez-Aviña, Simón Hernández-Ortega, Enrique Aguilar-Ramírez. Cuautepestalorin, a 7,8-Dihydrochromene–Oxoisochromane Adduct Bearing a Hexacyclic Scaffold from Pestalotiopsis sp. IQ-011. Organic Letters 2019, 21 (10) , 3558-3562. https://doi.org/10.1021/acs.orglett.9b00962
  28. Jun Sang Yu, Hyewon Seo, Gi Beom Kim, Jin Hong, Hye Hyun Yoo. MS-Based Molecular Networking of Designer Drugs as an Approach for the Detection of Unknown Derivatives for Forensic and Doping Applications: A Case of NBOMe Derivatives. Analytical Chemistry 2019, 91 (9) , 5483-5488. https://doi.org/10.1021/acs.analchem.9b00294
  29. Xue-Mei Hou, Yue-Ying Li, Yun-Wei Shi, Yao-Wei Fang, Rong Chao, Yu-Cheng Gu, Chang-Yun Wang, Chang-Lun Shao. Integrating Molecular Networking and 1H NMR To Target the Isolation of Chrysogeamides from a Library of Marine-Derived Penicillium Fungi. The Journal of Organic Chemistry 2019, 84 (3) , 1228-1237. https://doi.org/10.1021/acs.joc.8b02614
  30. Kyo Bin Kang, Eun Jin Park, Ricardo R. da Silva, Hyun Woo Kim, Pieter C. Dorrestein, Sang Hyun Sung. Targeted Isolation of Neuroprotective Dicoumaroyl Neolignans and Lignans from Sageretia theezans Using in Silico Molecular Network Annotation Propagation-Based Dereplication. Journal of Natural Products 2018, 81 (8) , 1819-1828. https://doi.org/10.1021/acs.jnatprod.8b00292
  31. Raphael Reher, Markus Kuschak, Nina Heycke, Suvi Annala, Stefan Kehraus, Hao-Fu Dai, Christa E. Müller, Evi Kostenis, Gabriele M. König, Max Crüsemann. Applying Molecular Networking for the Detection of Natural Sources and Analogues of the Selective Gq Protein Inhibitor FR900359. Journal of Natural Products 2018, 81 (7) , 1628-1635. https://doi.org/10.1021/acs.jnatprod.8b00222
  32. Alison H. Hughes, Katherine R. Duncan. Eliciting specialized metabolites from marine microalgae using abiotic stress. Applied Phycology 2024, 5 (1) , 1-11. https://doi.org/10.1080/26388081.2023.2280928
  33. Qiang Lyu, Rou-An Chen, Hsiao-Li Chuang, Hsin-Bai Zou, Lihong Liu, Li-Kang Sung, Po-Yu Liu, Hsin-Yi Wu, Hsin-Yuan Chang, Wan-Ju Cheng, Wei-Kai Wu, Ming-Shiang Wu, Cheng-Chih Hsu. Bifidobacterium alleviate metabolic disorders via converting methionine to 5’-methylthioadenosine. Gut Microbes 2024, 16 (1) https://doi.org/10.1080/19490976.2023.2300847
  34. Rafael Vieira, Kally Alves de Sousa, Ian Castro-Gamboa. LUMIOS – Label using machine in organic samples – A software for dereplication, molecular docking, and combined machine and deep learning. Expert Systems with Applications 2024, 248 , 123447. https://doi.org/10.1016/j.eswa.2024.123447
  35. Shu-Hui Dong, Zhi-Kang Duan, Ming Bai, Xiao-Xiao Huang, Shao-Jiang Song. Advanced technologies targeting isolation and characterization of natural products. TrAC Trends in Analytical Chemistry 2024, 175 , 117711. https://doi.org/10.1016/j.trac.2024.117711
  36. Nor Nadirah Abdullah, Adlin Afzan, Nur Hana Jelas, Mohd Ridzuan Mohd Abd Razak, Nurulfazlina Edayah Rasol, Syahrul Imran Abu Bakar, Nur Vicky Bihud, Lam Kok Wai, Murizal Zainol, Fasihuddin Badruddin Ahmad, Geoffrey A. Cordell, Nor Hadiani Ismail. Styryllactones in the leaves of Goniothalamus lanceolatus Miq., molecular networking and their anti-dengue activity In vitro and In silico. Phytochemistry Letters 2024, 60 , 134-142. https://doi.org/10.1016/j.phytol.2024.01.012
  37. Adlin Afzan, June Lee Chelyn, Zainah Adam, Norhayati Mustafa Khalid, Rathi Devi Nair Gunasegavan, Mohd Fairulnizal Md Noh, Mohd Isa Wasiman. Mirror, mirror on the wall, which phytochemicals in Clinacanthus nutans inhibits advanced glycation end products of them all?. Fitoterapia 2024, , 105958. https://doi.org/10.1016/j.fitote.2024.105958
  38. Wenfei Bai, Qinghe Zhu, Jun Wang, Limin Jiang, Donghua Guo, Chunqiu Li, Xiaoxu Xing, Dongbo Sun. Licorice extract inhibits porcine epidemic diarrhea virus in vitro and in vivo. Journal of General Virology 2024, 105 (3) https://doi.org/10.1099/jgv.0.001964
  39. David Villanueva-Bermejo, María de las Nieves Siles-Sánchez, Diego Martín Hernández, Mónica Rodríguez García-Risco, Laura Jaime, Susana Santoyo, Tiziana Fornari. Theoretical framework to evaluate antioxidant synergistic effects from the coextraction of marjoram, rosemary and parsley. Food Chemistry 2024, 437 , 137919. https://doi.org/10.1016/j.foodchem.2023.137919
  40. Jerica Sabotič, Engin Bayram, David Ezra, Susana P. Gaudêncio, Berat Z. Haznedaroğlu, Nika Janež, Leila Ktari, Anna Luganini, Manolis Mandalakis, Ivo Safarik, Dina Simes, Evita Strode, Anna Toruńska-Sitarz, Despoina Varamogianni-Mamatsi, Giovanna Cristina Varese, Marlen I. Vasquez. A guide to the use of bioassays in exploration of natural resources. Biotechnology Advances 2024, 71 , 108307. https://doi.org/10.1016/j.biotechadv.2024.108307
  41. Thomas Gicquel, Romain Pelletier, Alexis Bourdais, Pierre-Jean Ferron, Isabelle Morel, Pierre-Marie Allard, Brendan Le Daré. Interest of molecular networking in fundamental, clinical and forensic toxicology: A state-of-the-art review. TrAC Trends in Analytical Chemistry 2024, 172 , 117547. https://doi.org/10.1016/j.trac.2024.117547
  42. Armando Alcázar Magaña, Ashish Vaswani, Kevin S. Brown, Yuan Jiang, Md Nure Alam, Maya Caruso, Parnian Lak, Paul Cheong, Nora E. Gray, Joseph F. Quinn, Amala Soumyanath, Jan F. Stevens, Claudia S. Maier. Integrating High-Resolution Mass Spectral Data, Bioassays and Computational Models to Annotate Bioactives in Botanical Extracts: Case Study Analysis of C. asiatica Extract Associates Dicaffeoylquinic Acids with Protection against Amyloid-β Toxicity. Molecules 2024, 29 (4) , 838. https://doi.org/10.3390/molecules29040838
  43. Andreas Wasilewicz, Denisa Bojkova, Mehdi A. Beniddir, Jindrich Cinatl, Holger F. Rabenau, Ulrike Grienke, Judith M. Rollinger, Benjamin Kirchweger. Molecular networking unveils anti-SARS-CoV-2 constituents from traditionally used remedies. Journal of Ethnopharmacology 2024, 319 , 117206. https://doi.org/10.1016/j.jep.2023.117206
  44. Aline Camargo Jesus de Souza Wuillda, Fernanda das Neves Costa, Rafael Garrett, Mauro dos Santos de Carvalho, Ricardo Moreira Borges. High‐speed countercurrent chromatography with offline detection by electrospray mass spectrometry and nuclear magnetic resonance detection as a tool to resolve complex mixtures: A practical approach using Coffea arabica leaf extract. Phytochemical Analysis 2024, 35 (1) , 40-52. https://doi.org/10.1002/pca.3271
  45. Giovanni Andrea Vitale, Christian Geibel, Vidit Minda, Mingxun Wang, Allegra T. Aron, Daniel Petras. Connecting metabolome and phenotype: recent advances in functional metabolomics tools for the identification of bioactive natural products. Natural Product Reports 2024, 18 https://doi.org/10.1039/D3NP00050H
  46. Jonathan R. Chekan, Lisa S. Mydy, Michael A. Pasquale, Roland D. Kersten. Plant peptides – redefining an area of ribosomally synthesized and post-translationally modified peptides. Natural Product Reports 2024, 30 https://doi.org/10.1039/D3NP00042G
  47. Babra Moyo, Nikita Tawanda Tavengwa, Ian Dubery, Ntakadzeni Edwin Madala. Exploration of chemical interactions between Viscum combreticola Engl. and its hosts through a metabolic profiling approach and molecular networking. Journal of Plant Interactions 2023, 18 (1) https://doi.org/10.1080/17429145.2023.2266511
  48. Ifeoma C. Ezenyi, Jersley D. Chirawurah, Nekpen Erhunse, Prakhar Agrawal, Dinkar Sahal, John O. Igoli. Marmesin isolated from Celtis durandii Engl. root bioactive fraction inhibits β-hematin formation and contributes to antiplasmodial activity. Journal of Ethnopharmacology 2023, 317 , 116804. https://doi.org/10.1016/j.jep.2023.116804
  49. Hyun Woo Kim, Chen Zhang, Raphael Reher, Mingxun Wang, Kelsey L. Alexander, Louis-Félix Nothias, Yoo Kyong Han, Hyeji Shin, Ki Yong Lee, Kyu Hyeong Lee, Myeong Ji Kim, Pieter C. Dorrestein, William H. Gerwick, Garrison W. Cottrell. DeepSAT: Learning Molecular Structures from Nuclear Magnetic Resonance Data. Journal of Cheminformatics 2023, 15 (1) https://doi.org/10.1186/s13321-023-00738-4
  50. Nimrod Krupnik, Alvaro Israel, David Meiri. Seasonal variation in the metabolome expression of Jania rubens (Rhodophyta) reveals eicosapentaenoic acid as a potential anticancer metabolite. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-42497-0
  51. Babra Moyo, Nikita T. Tavengwa, Ntakadzeni E. Madala. Application of the UHPLC-q-TOF-MS and molecular networking in revealing chemo-taxonomical markers of Viscum combreticola Engl. and Viscum album L.. Biochemical Systematics and Ecology 2023, 111 , 104720. https://doi.org/10.1016/j.bse.2023.104720
  52. Chen Huo, Quynh Nhu Nguyen, Akida Alishir, Moon-Jin Ra, Sang-Mi Jung, Jeong-Nam Yu, Hui-Jeong Gwon, Ki Sung Kang, Ki Hyun Kim. Global Natural Products Social (GNPS)-Based Molecular-Networking-Guided Isolation of Phenolic Compounds from Ginkgo biloba Fruits and the Identification of Estrogenic Phenolic Glycosides. Plants 2023, 12 (23) , 3970. https://doi.org/10.3390/plants12233970
  53. Israel Souza Ribeiro, Igor Pereira Ribeiro Muniz, Maria Poliana Leite Galantini, Caroline Vieira Gonçalves, Paulo Henrique Bispo Lima, Emely Soares Silva, Nathalia Rosa Silva, Francine Cristina Silva Rosa, Luciano Pereira Rosa, Dirceu Joaquim Costa, Juliano Geraldo Amaral, Robson Amaro Augusto da Silva. Characterization of Brazilian green propolis as a photosensitizer for LED light-induced antimicrobial photodynamic therapy (aPDT) against methicillin-resistant Staphylococcus aureus (MRSA) and Vancomycin-intermediate Staphylococcus aureus (VISA). Photochemical & Photobiological Sciences 2023, 22 (12) , 2877-2890. https://doi.org/10.1007/s43630-023-00495-1
  54. Monica Thukral, Andrew E Allen, Daniel Petras. Progress and challenges in exploring aquatic microbial communities using non-targeted metabolomics. The ISME Journal 2023, 17 (12) , 2147-2159. https://doi.org/10.1038/s41396-023-01532-8
  55. Margaret A. Redick, Milo E. Cummings, George F. Neuhaus, Lila M. Ardor Bellucci, Andrew R. Thurber, Kerry L. McPhail. Integration of untargeted metabolomics and microbial community analyses to characterize distinct deep-sea methane seeps. Frontiers in Marine Science 2023, 10 https://doi.org/10.3389/fmars.2023.1197338
  56. Darren C. Holland, Anthony R. Carroll. Marine indole alkaloid diversity and bioactivity. What do we know and what are we missing?. Natural Product Reports 2023, 40 (10) , 1595-1607. https://doi.org/10.1039/D2NP00085G
  57. Léia da C. Mendes, Thais B. Vieira Dantas, Richele P. Severino, Larissa Ramos G. da Silva, Dulce H. F. de Souza, Quezia B. Cass, Suelem D. Ramalho, Paulo C. Vieira, Guilherme E. de Souza, Rafael V. C. Guido, Marie-Kathrin Urschel, Christian Kersten, Lorena R. F. de Sousa. Using molecular networking and docking to explore arginase inhibitors among Drimys brasiliensis chemical constituents. Medicinal Chemistry Research 2023, 32 (10) , 2208-2218. https://doi.org/10.1007/s00044-023-03123-w
  58. Qiqi Wang, Tao Chen, Mencuo La, Zhibo Song, Mengze Gao, Tingqin Yang, Yulin Li, Liangliang He, Denglang Zou. Activity labelled molecular networking fuels the antioxidation active molecules profile of Ginger. Food Chemistry 2023, 424 , 136343. https://doi.org/10.1016/j.foodchem.2023.136343
  59. Esaïe Tchetan, Sergio Ortiz, Kristelle Hughes, Pascal Abiodoun Olounladé, Patrick Laurent, Erick Virgile Bertrand Azando, Marie-France Herent, Sylvie Mawule Hounzangbe-Adote, Marcel Romuald Benjamin Houinato, Fernand Ahokanou Gbaguidi, Joëlle Quetin-Leclercq. HPLC-LTQ orbitrap mass spectrometry-based molecular networking for identifying anthelmintic molecules in Morinda lucida Benth. South African Journal of Botany 2023, 161 , 53-65. https://doi.org/10.1016/j.sajb.2023.08.002
  60. Sandhya R. Krishnan, Adrianna Skiba, Simon Vlad Luca, Laurence Marcourt, Jean-Luc Wolfender, Krystyna Skalicka-Woźniak, Jürg Gertsch. Bioactivity-guided isolation of trypanocidal coumarins and dihydro-pyranochromones from selected Apiaceae plant species. Phytochemistry 2023, 213 , 113770. https://doi.org/10.1016/j.phytochem.2023.113770
  61. Babra Moyo, Yolanda Novokoza, Nikita Tawanda Tavengwa, Nikolai Kuhnert, Kevin Lobb, Ntakadzeni Edwin Madala. Rationalising the retro‐Diels‐Alder fragmentation pattern of viscutins using electrospray interface‐tandem mass spectrometry coupled to theoretical modelling. Rapid Communications in Mass Spectrometry 2023, 37 (15) https://doi.org/10.1002/rcm.9592
  62. Denise M. Selegato, Ana C. Zanatta, Alan C. Pilon, Juvenal H. Veloso, Ian Castro-Gamboa. Application of feature-based molecular networking and MassQL for the MS/MS fragmentation study of depsipeptides. Frontiers in Molecular Biosciences 2023, 10 https://doi.org/10.3389/fmolb.2023.1238475
  63. Andreas Wasilewicz, Julia Zwirchmayr, Benjamin Kirchweger, Denisa Bojkova, Jindrich Cinatl, Holger F. Rabenau, Judith M. Rollinger, Mehdi A. Beniddir, Ulrike Grienke. Discovery of anti-SARS-CoV-2 secondary metabolites from the heartwood of Pterocarpus santalinus using multi-informative molecular networking. Frontiers in Molecular Biosciences 2023, 10 https://doi.org/10.3389/fmolb.2023.1202394
  64. Juan Hu, Zi-Xuan Wang, Pei-Meng Li, Pei-Yuan Qian, Ling-Li Liu. Structural identification of pyridinopyrone compounds with anti-neuroinflammatory activity from streptomyces sulphureus DSM 40104. Frontiers in Microbiology 2023, 14 https://doi.org/10.3389/fmicb.2023.1205118
  65. Daniel J. Watson, Lubbe Wiesner, Tlhalefo Matimela, Denzil Beukes, Paul R. Meyers. Tandem LC-MS Identification of Antitubercular Compounds in Zones of Growth Inhibition Produced by South African Filamentous Actinobacteria. Molecules 2023, 28 (11) , 4276. https://doi.org/10.3390/molecules28114276
  66. Zhen Zhao, Jin-Fa Du, Qiao-Lei Wang, Fang-Ning Qiu, Xu-Yan Chen, Feng-Jie Liu, Ping Li, Yan Jiang, Hui-Jun Li. An integrated strategy combining network toxicology and feature-based molecular networking for exploring hepatotoxic constituents and mechanism of Epimedii Folium-induced hepatotoxicity in vitro. Food and Chemical Toxicology 2023, 176 , 113785. https://doi.org/10.1016/j.fct.2023.113785
  67. Naydja Moralles Maimone, Mario Cezar Pozza Junior, Lucianne Ferreira Paes de Oliveira, Dorian Rojas-Villalta, Simone Possedente de Lira, Leticia Barrientos, Kattia Núñez-Montero. Metabologenomics analysis of Pseudomonas sp. So3.2b, an Antarctic strain with bioactivity against Rhizoctonia solani. Frontiers in Microbiology 2023, 14 https://doi.org/10.3389/fmicb.2023.1187321
  68. Mahreen Mukhtar, Muhammad Saleem, Mamona Nazir, Naheed Riaz, Nusrat Shafiq, Hammad Saleem, Saba Tauseef, Saima Khan, Muhammad Ehsan Mazhar, Rasool Bakhsh Tareen, Mian Habib ur Rahman Mahmood, Muhammad Imran Tousif, Suvash Chandra Ojha. Identification of pyrrolizidine alkaloids and flavonoid glycosides through HR-LCMS/MS analysis, biological screening, DFT and molecular docking studies on Heliotropium dasycarpum Ledeb.. Arabian Journal of Chemistry 2023, 16 (5) , 104655. https://doi.org/10.1016/j.arabjc.2023.104655
  69. Susana P. Gaudêncio, Engin Bayram, Lada Lukić Bilela, Mercedes Cueto, Ana R. Díaz-Marrero, Berat Z. Haznedaroglu, Carlos Jimenez, Manolis Mandalakis, Florbela Pereira, Fernando Reyes, Deniz Tasdemir. Advanced Methods for Natural Products Discovery: Bioactivity Screening, Dereplication, Metabolomics Profiling, Genomic Sequencing, Databases and Informatic Tools, and Structure Elucidation. Marine Drugs 2023, 21 (5) , 308. https://doi.org/10.3390/md21050308
  70. Juan Pablo Quintal Martínez, Maira Rubi Segura Campos. Cnidoscolus Aconitifolius (Mill.) I.M. Johnst.: A Food Proposal Against Thromboembolic Diseases. Food Reviews International 2023, 39 (3) , 1377-1410. https://doi.org/10.1080/87559129.2021.1934002
  71. Ke Du, Chuanjia Zhai, Xuejiao Li, Hongchuan Gang, Xiaoyan Gao. Feature-Based Molecular Networking Facilitates the Comprehensive Identification of Differential Metabolites in Diabetic Cognitive Dysfunction Rats. Metabolites 2023, 13 (4) , 538. https://doi.org/10.3390/metabo13040538
  72. Yusuke Hioki, Tatsuya Sato, Toyoki Iwao, Junya Ikuma, Atsushi Kawamura, Takayuki Ohyoshi, Yuta Tsunematsu, Masaki Kita. Discovery of New Cytotoxic Aplaminone Derivatives from the Sea Hare Aplysia kurodai and Elucidation of Their Accumulation from Local Sea Algae through the Food Chain. European Journal of Organic Chemistry 2023, 26 (12) https://doi.org/10.1002/ejoc.202300084
  73. Zheling Feng, Jiali Chen, Cheng Chen, Lu Feng, Rui Wang, Jianzhong Zhu, Ruohan Lou, Jia Liu, Yang Ye, Ligen Lin. Bioactivity‐based molecular networking‐guided identification of guttiferone J from Garcinia cambogia as an anti‐obesity candidate. British Journal of Pharmacology 2023, 180 (5) , 589-608. https://doi.org/10.1111/bph.15979
  74. Audrey M. Hall, Swati Baskiyar, Kabre L. Heck, Michelle D. Hayden, Chang Ren, Chris Nguyen, Cheryl D. Seals, Emefa Monu, Angela I. Calderón. Investigation of the chemical composition of antibacterial Psidium guajava extract and partitions against foodborne pathogens. Food Chemistry 2023, 403 , 134400. https://doi.org/10.1016/j.foodchem.2022.134400
  75. Jing Li, Hoang Khai Trinh, Seyed Mahyar Mirmajlessi, Geert Haesaert, Ramize Xhaferi, Ilse Delaere, Monica Höfte, Katrijn Raymaekers, Bruno P.A. Cammue, Wim Jonckheere, Thomas Van Leeuwen, Lien De Smet, Tina Kyndt, Nathalie Bernaert, Christof Van Poucke, Bart Van Droogenbroeck, Emmy Pequeur, Karel De Schamphelaere, Gert Callebaut, Timoty De Cleyn, Lin Xu, Aldana Ramirez, Thijs Van Gerrewey, Danny Geelen. Biopesticide and plant growth-promoting activity in maize distillers' dried grains with solubles. Industrial Crops and Products 2023, 193 , 116175. https://doi.org/10.1016/j.indcrop.2022.116175
  76. Ahmed F. Essa, Seham S. El‐Hawary, Tahia M. Kubacy, Ezz El‐Din A. M. El‐Khrisy, Ahmed H. El‐Desoky, Abdelsamed I. Elshamy, Inas Y. Younis. Integration of LC/MS, NMR and Molecular Docking for Profiling of Bioactive Diterpenes from Euphorbia mauritanica L. with in Vitro Anti‐SARS‐CoV‐2 Activity. Chemistry & Biodiversity 2023, 20 (2) https://doi.org/10.1002/cbdv.202200918
  77. Amelia Palermo. Metabolomics- and systems-biology-guided discovery of metabolite lead compounds and druggable targets. Drug Discovery Today 2023, 28 (2) , 103460. https://doi.org/10.1016/j.drudis.2022.103460
  78. Jae Sang Han, Jun Gu Kim, Thi Phuong Linh Le, Yong Beom Cho, Dongho Lee, Jin Tae Hong, Mi Kyeong Lee, Bang Yeon Hwang. Targeted isolation of sesquiterpene lactone dimers from Aucklandia lappa guided by LC-HRMS/MS-based molecular networking. Phytochemistry 2023, 206 , 113557. https://doi.org/10.1016/j.phytochem.2022.113557
  79. Sebastian Walesch, Joy Birkelbach, Gwenaëlle Jézéquel, F P Jake Haeckl, Julian D Hegemann, Thomas Hesterkamp, Anna K H Hirsch, Peter Hammann, Rolf Müller. Fighting antibiotic resistance—strategies and (pre)clinical developments to find new antibacterials. EMBO reports 2023, 24 (1) https://doi.org/10.15252/embr.202256033
  80. Jia Liu, Guobao Chen, Junhui Yang, Leilei Sheng, Xuexiao Tang, Xiao Zhang, Haibing Hua. Deciphering the chemical composition of Ganoderma lucidum from different geographical origins by mass spectrometry molecular networking coupled with multivariate analysis. Biomedical Chromatography 2023, 37 (1) https://doi.org/10.1002/bmc.5506
  81. Ricardo Moreira Borges, Fernanda das Neves Costa, Fernanda O. Chagas, Andrew Magno Teixeira, Jaewon Yoon, Márcio Barczyszyn Weiss, Camila Manoel Crnkovic, Alan Cesar Pilon, Bruno C. Garrido, Luz Adriana Betancur, Abel M. Forero, Leonardo Castellanos, Freddy A. Ramos, Mônica T. Pupo, Stefan Kuhn. Data Fusion‐based Discovery (DAFdiscovery) pipeline to aid compound annotation and bioactive compound discovery across diverse spectral data. Phytochemical Analysis 2023, 34 (1) , 48-55. https://doi.org/10.1002/pca.3178
  82. Faheem Ahmad, Hera Nadeem. Mass Spectroscopy as an Analytical Tool to Harness the Production of Secondary Plant Metabolites: The Way Forward for Drug Discovery. 2023, 77-103. https://doi.org/10.1007/978-1-0716-2716-7_5
  83. Sheikh Rezzak Ali, Shuby Kumari, Satyendra K. Prasad, Rupali S. Prasad, Saurabh K. Sinha, Anshul Shakya. Drug Development Projects Guided by Ethnobotany and Ethnopharmacology Studies. 2023, 3-21. https://doi.org/10.1007/978-3-031-35205-8_1
  84. Zhixu Chen, Jincai Wang, Jiaming Yuan, Zhen Wang, Zhengchao Tu, Jacques Crommen, Wenhui Luo, Jialiang Guo, Tingting Zhang, Zhengjin Jiang. Rapid screening of neuraminidase inhibitors using an at-line nanofractionation platform involving parallel oseltamivir-sensitive/resistant neuraminidase bioassays. Journal of Chromatography A 2023, 1687 , 463693. https://doi.org/10.1016/j.chroma.2022.463693
  85. Esaïe Tchetan, Sergio Ortiz, Pascal Abiodoun Olounladé, Kristelle Hughes, Patrick Laurent, Erick Virgile Bertrand Azando, Sylvie Mawule Hounzangbe-Adote, Fernand Ahokanou Gbaguidi, Joëlle Quetin-Leclercq. Fractionation Coupled to Molecular Networking: Towards Identification of Anthelmintic Molecules in Terminalia leiocarpa (DC.) Baill. Molecules 2023, 28 (1) , 76. https://doi.org/10.3390/molecules28010076
  86. Guo-Fei Qin, Xiao Zhang, Feng Zhu, Zong-Qing Huo, Qing-Qiang Yao, Qun Feng, Zhong Liu, Gui-Min Zhang, Jing-Chun Yao, Hong-Bao Liang. MS/MS-Based Molecular Networking: An Efficient Approach for Natural Products Dereplication. Molecules 2023, 28 (1) , 157. https://doi.org/10.3390/molecules28010157
  87. Mahesh S. Majik, Umesh B. Gawas, Rajesh M. Pednekar. Tandem mass spectrometry for Structural characterization of marine natural products with selective exemplary case studies. 2023, 421-441. https://doi.org/10.1016/B978-0-323-91294-5.00012-9
  88. Paulo Wender P. Gomes, Talita Carla de Tralia Medeiros, Naydja Moralles Maimone, Tiago F. Leão, Luiz Alberto Beraldo de Moraes, Anelize Bauermeister. Microbial Metabolites Annotation by Mass Spectrometry-Based Metabolomics. 2023, 225-248. https://doi.org/10.1007/978-3-031-41741-2_9
  89. Edith M. Antunes, Denzil R. Beukes, Eduardo J.E. Caro-Diaz, Nemer E. Narchi, Lik Tong Tan, William H. Gerwick. Medicines from the sea. 2023, 103-148. https://doi.org/10.1016/B978-0-323-95227-9.00009-9
  90. Vinodh J. Sahayasheela, Manendra B. Lankadasari, Vipin Mohan Dan, Syed G. Dastager, Ganesh N. Pandian, Hiroshi Sugiyama. Artificial intelligence in microbial natural product drug discovery: current and emerging role. Natural Product Reports 2022, 39 (12) , 2215-2230. https://doi.org/10.1039/D2NP00035K
  91. Mariyappan Vaithiyalingam, Chinnaperumal Kamaraj, Ramasamy Mohankumar, Sabarathinam Sarvesh, Paramasivam Deepak. Bio-active compound isolated from Aegle marmelos fruit pulp and semi-synthetic modifications: a Biological potential. Biomass Conversion and Biorefinery 2022, 12 https://doi.org/10.1007/s13399-022-03538-2
  92. Mengli Wang, Xiangyu Zhang, Yaojuan Chu, Zhuolun Li, Lihua Zuo, Jian Kang, Guoliang Cheng, Zhi Sun, Xiaojian Zhang, Shuzhang Du. Discovery of quality markers for Mailuoshutong Pill based on “spider web” mode of “Content-Pharmacokinetics-Pharmacology” network. Arabian Journal of Chemistry 2022, 15 (12) , 104296. https://doi.org/10.1016/j.arabjc.2022.104296
  93. Qinglei Wang, Rong Wang, Cheng Zheng, Linlin Zhang, Hong Meng, Yi Zhang, Linke Ma, Bilian Chen, Juanjuan Wang. Anticonvulsant Activity of Bombyx batryticatus and Analysis of Bioactive Extracts Based on UHPLC-Q-TOF MS/MS and Molecular Networking. Molecules 2022, 27 (23) , 8315. https://doi.org/10.3390/molecules27238315
  94. Miguel Peña-Espinoza, Yeambell Romero-Uzqueda, Angela H. Valente, Matthew de Roode, Henrik T. Simonsen, Stig M. Thamsborg, Andrew R. Williams, Rodrigo López-Muñoz. Anti-protozoal activity and metabolomic analyses of Cichorium intybus L. against Trypanosoma cruzi. International Journal for Parasitology: Drugs and Drug Resistance 2022, 20 , 43-53. https://doi.org/10.1016/j.ijpddr.2022.08.002
  95. Zha-jun Zhan, Shen Li, Wang Chu, Sheng Yin. Euphorbia diterpenoids: isolation, structure, bioactivity, biosynthesis, and synthesis (2013–2021). Natural Product Reports 2022, 39 (11) , 2132-2174. https://doi.org/10.1039/D2NP00047D
  96. Luis-Manuel Quiros-Guerrero, Louis-Félix Nothias, Arnaud Gaudry, Laurence Marcourt, Pierre-Marie Allard, Adriano Rutz, Bruno David, Emerson Ferreira Queiroz, Jean-Luc Wolfender. Inventa: A computational tool to discover structural novelty in natural extracts libraries. Frontiers in Molecular Biosciences 2022, 9 https://doi.org/10.3389/fmolb.2022.1028334
  97. Juanjuan GAO, Mengling ZHAO, Shujun SHAN, Yongyi LI, Jun LUO, Yi LI. Rapid identification of stigmastane-type steroid saponins from Vernonia amygdalina leaf based on α-glucosidase inhibiting activity and molecular networking. Chinese Journal of Natural Medicines 2022, 20 (11) , 846-853. https://doi.org/10.1016/S1875-5364(22)60235-8
  98. Yichao Ge, Yihan Ma, Meilu Zhao, Jihua Wei, Xiaodan Wu, Zunjing Zhang, Han Yang, Houxing Lei, Bin Wu. Exploring gabosine and chlorogentisyl alcohol derivatives from a marine-derived fungus as EcGUS inhibitors with informatic assisted approaches. European Journal of Medicinal Chemistry 2022, 242 , 114699. https://doi.org/10.1016/j.ejmech.2022.114699
  99. Guillaume Hamion, Willy Aucher, Charles Tardif, Julie Miranda, Caroline Rouger, Christine Imbert, Marion Girardot. Valorization of Invasive Plant Extracts against the Bispecies Biofilm Staphylococcus aureus–Candida albicans by a Bioguided Molecular Networking Screening. Antibiotics 2022, 11 (11) , 1595. https://doi.org/10.3390/antibiotics11111595
  100. Huan Zhao, Lei Sun, ChuiHao Kong, WenLi Mei, HaoFu Dai, FengQing Xu, ShengZhuo Huang. Phytochemical and pharmacological review of diterpenoids from the genus Euphorbia Linn (2012–2021). Journal of Ethnopharmacology 2022, 298 , 115574. https://doi.org/10.1016/j.jep.2022.115574
Load more citations
  • Abstract

    Figure 1

    Figure 1. Bioactive natural products discovery pipelines. Workflow procedure (A) for the classical bioassay-guided fractionation approach and (B) by integrating bioactive molecular networking.

    Figure 2

    Figure 2. Bioactive molecular networking of bioassay-guided fractionation of Euphorbia dendroides latex extract. (A) Legend of bioactive molecular networks. (2) Previously isolated molecules (119). (C) Bioactive molecular network 1 (MN1) and 2 (MN2) of E. dendroides latex extract and cluster annotations (I–V). See Figure 3 for a detailed view for the cluster V of molecular network 2 (MN2).

    Figure 3

    Figure 3. View of bioactive molecular networking results for the cluster V of molecular network 2 (MN2). The molecules 2022 with significant bioactivity scores (large nodes, see legend) were annotated as deoxyphorbol ester derivatives and isolated in the present study. Evaluation of the biological activity indicated that 21 and 22 are selective inhibitors of chikungunya virus replication in the submicromolar range. The deoxyphorbol ester 23 was also isolated and found to have a lower selective antiviral activity in comparison to compounds 2022.

  • References

    ARTICLE SECTIONS
    Jump To

    This article references 74 other publications.

    1. 1
      Newman, D. J.; Cragg, G. M. J. Nat. Prod. 2012, 75, 311335,  DOI: 10.1021/np200906s
    2. 2
      Kingston, D. G. I. J. Nat. Prod. 2010, 74, 496511,  DOI: 10.1021/np100550t
    3. 3
      Fabricant, D. S.; Farnsworth, N. R. Environ. Health Perspect. 2001, 109, 6975,  DOI: 10.2307/3434847
    4. 4
      Potterat, O.; Hamburger, M. Nat. Prod. Rep. 2013, 30, 546564,  DOI: 10.1039/c3np20094a
    5. 5
      Colegate, S. M.; Molyneux, R. J. Bioactive Natural Products Detection, Isolation, and Structural Determination; CRC Press: Boca Raton, FL, 1993.
    6. 6
      Bucar, F.; Wube, A.; Schmid, M. Nat. Prod. Rep. 2013, 30, 525545,  DOI: 10.1039/c3np20106f
    7. 7
      Weller, M. G. Sensors 2012, 12, 91819209,  DOI: 10.3390/s120709181
    8. 8
      Schneider, H. G.; Tener, G. M.; Strong, F. M. Arch. Biochem. Biophys. 1952, 37, 147157,  DOI: 10.1016/0003-9861(52)90173-2
    9. 9
      Wolfender, J.-L.; Marti, G.; Thomas, A.; Bertrand, S. J. Chromatogr. A 2015, 1382, 136164,  DOI: 10.1016/j.chroma.2014.10.091
    10. 10
      Gaudêncio, S. P.; Pereira, F. Nat. Prod. Rep. 2015, 32, 779810,  DOI: 10.1039/C4NP00134F
    11. 11
      Henke, M. T.; Kelleher, N. L. Nat. Prod. Rep. 2016, 33, 942950,  DOI: 10.1039/C6NP00024J
    12. 12
      Covington, B. C.; McLean, J. A.; Bachmann, B. O. Nat. Prod. Rep. 2017, 34, 624,  DOI: 10.1039/C6NP00048G
    13. 13
      Kind, T.; Fiehn, O. Phytochem. Lett. 2017, 21, 313319,  DOI: 10.1016/j.phytol.2016.11.006
    14. 14
      Williams, R. B.; O’Neil-Johnson, M.; Williams, A. J.; Wheeler, P.; Pol, R.; Moser, A. Org. Biomol. Chem. 2015, 13, 99579962,  DOI: 10.1039/C5OB01713K
    15. 15
      Zani, C. L.; Carroll, A. R. J. Nat. Prod. 2017, 80, 17581766,  DOI: 10.1021/acs.jnatprod.6b01093
    16. 16
      Munro, M.; Blunt, J. W. MarineLit http://pubs.rsc.org/marinlit/ (accessed 2016).
    17. 17
      Laatsch, H. AntiBase, a Database for Rapid Dereplication and Structure Determination of Microbial Natural Products; Wiley-VCH, 2010.
    18. 18
      Buckingham, J. Dictionary of Natural Products, Supplement 4; CRC Press: Boca Raton, FL, 1997.
    19. 19
      Horai, H.; Arita, M.; Kanaya, S.; Nihei, Y.; Ikeda, T.; Suwa, K.; Ojima, Y.; Tanaka, K.; Tanaka, S.; Aoshima, K.; Oda, Y.; Kakazu, Y.; Kusano, M.; Tohge, T.; Matsuda, F.; Sawada, Y.; Hirai, M. Y.; Nakanishi, H.; Ikeda, K.; Akimoto, N.; Maoka, T.; Takahashi, H.; Ara, T.; Sakurai, N.; Suzuki, H.; Shibata, D.; Neumann, S.; Iida, T.; Tanaka, K.; Funatsu, K.; Matsuura, F.; Soga, T.; Taguchi, R.; Saito, K.; Nishioka, T. J. Mass Spectrom. 2010, 45, 703714,  DOI: 10.1002/jms.1777
    20. 20
      Smith, C. A.; O’Maille, G.; Want, E. J.; Qin, C.; Trauger, S. A.; Brandon, T. R.; Custodio, D. E.; Abagyan, R.; Siuzdak, G. Ther. Drug Monit. 2005, 27, 747751,  DOI: 10.1097/01.ftd.0000179845.53213.39
    21. 21
      Gowda, H.; Ivanisevic, J.; Johnson, C. H.; Kurczy, M. E.; Benton, H. P.; Rinehart, D.; Nguyen, T.; Ray, J.; Kuehl, J.; Arevalo, B.; Westenskow, P. D.; Wang, J.; Arkin, A. P.; Deutschbauer, A. M.; Patti, G. J.; Siuzdak, G. Anal. Chem. 2014, 86, 69316939,  DOI: 10.1021/ac500734c
    22. 22
      Wang, M.; Carver, J. J.; Phelan, V. V.; Sanchez, L. M.; Garg, N.; Peng, Y.; Nguyen, D. D.; Watrous, J.; Kapono, C. A.; Luzzatto-Knaan, T.; Porto, C.; Bouslimani, A.; Melnik, A. V.; Meehan, M. J.; Liu, W.-T.; Crüsemann, M.; Boudreau, P. D.; Esquenazi, E.; Sandoval-Calderón, M.; Kersten, R. D.; Pace, L. A.; Quinn, R. A.; Duncan, K. R.; Hsu, C.-C.; Floros, D. J.; Gavilan, R. G.; Kleigrewe, K.; Northen, T.; Dutton, R. J.; Parrot, D.; Carlson, E. E.; Aigle, B.; Michelsen, C. F.; Jelsbak, L.; Sohlenkamp, C.; Pevzner, P.; Edlund, A.; McLean, J.; Piel, J.; Murphy, B. T.; Gerwick, L.; Liaw, C.-C.; Yang, Y.-L.; Humpf, H.-U.; Maansson, M.; Keyzers, R. A.; Sims, A. C.; Johnson, A. R.; Sidebottom, A. M.; Sedio, B. E.; Klitgaard, A.; Larson, C. B.; Boya P, C. A.; Torres-Mendoza, D.; Gonzalez, D. J.; Silva, D. B.; Marques, L. M.; Demarque, D. P.; Pociute, E.; O’Neill, E. C.; Briand, E.; Helfrich, E. J. N.; Granatosky, E. A.; Glukhov, E.; Ryffel, F.; Houson, H.; Mohimani, H.; Kharbush, J. J.; Zeng, Y.; Vorholt, J. A.; Kurita, K. L.; Charusanti, P.; McPhail, K. L.; Nielsen, K. F.; Vuong, L.; Elfeki, M.; Traxler, M. F.; Engene, N.; Koyama, N.; Vining, O. B.; Baric, R.; Silva, R. R.; Mascuch, S. J.; Tomasi, S.; Jenkins, S.; Macherla, V.; Hoffman, T.; Agarwal, V.; Williams, P. G.; Dai, J.; Neupane, R.; Gurr, J.; Rodríguez, A. M. C.; Lamsa, A.; Zhang, C.; Dorrestein, K.; Duggan, B. M.; Almaliti, J.; Allard, P.-M.; Phapale, P.; Nothias, L.-F.; Alexandrov, T.; Litaudon, M.; Wolfender, J.-L.; Kyle, J. E.; Metz, T. O.; Peryea, T.; Nguyen, D.-T.; VanLeer, D.; Shinn, P.; Jadhav, A.; Müller, R.; Waters, K. M.; Shi, W.; Liu, X.; Zhang, L.; Knight, R.; Jensen, P. R.; Palsson, B. Ø.; Pogliano, K.; Linington, R. G.; Gutiérrez, M.; Lopes, N. P.; Gerwick, W. H.; Moore, B. S.; Dorrestein, P. C.; Bandeira, N. Nat. Biotechnol. 2016, 34, 828837,  DOI: 10.1038/nbt.3597
    23. 23
      Watrous, J.; Roach, P.; Alexandrov, T.; Heath, B. S.; Yang, J. Y.; Kersten, R. D.; van der Voort, M.; Pogliano, K.; Gross, H.; Raaijmakers, J. M.; Moore, B. S.; Laskin, J.; Bandeira, N.; Dorrestein, P. C. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, E1743E1752,  DOI: 10.1073/pnas.1203689109
    24. 24
      Quinn, R. A.; Nothias, L.-F.; Vining, O.; Meehan, M.; Esquenazi, E.; Dorrestein, P. C. Trends Pharmacol. Sci. 2017, 38, 143154,  DOI: 10.1016/j.tips.2016.10.011
    25. 25
      Yang, J. Y.; Sanchez, L. M.; Rath, C. M.; Liu, X.; Boudreau, P. D.; Bruns, N.; Glukhov, E.; Wodtke, A.; de Felicio, R.; Fenner, A.; Wong, W. R.; Linington, R. G.; Zhang, L.; Debonsi, H. M.; Gerwick, W. H.; Dorrestein, P. C. J. Nat. Prod. 2013, 76, 16861699,  DOI: 10.1021/np400413s
    26. 26
      Winnikoff, J. R.; Glukhov, E.; Watrous, J.; Dorrestein, P. C.; Gerwick, W. H. J. Antibiot. 2014, 67, 105112,  DOI: 10.1038/ja.2013.120
    27. 27
      Nguyen, D. D.; Wu, C.-H.; Moree, W. J.; Lamsa, A.; Medema, M. H.; Zhao, X.; Gavilan, R. G.; Aparicio, M.; Atencio, L.; Jackson, C.; Ballesteros, J.; Sanchez, J.; Watrous, J. D.; Phelan, V. V.; van de Wiel, C.; Kersten, R. D.; Mehnaz, S.; De Mot, R.; Shank, E. A.; Charusanti, P.; Nagarajan, H.; Duggan, B. M.; Moore, B. S.; Bandeira, N.; Palsson, B. Ø.; Pogliano, K.; Gutiérrez, M.; Dorrestein, P. C. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, E2611E2620,  DOI: 10.1073/pnas.1303471110
    28. 28
      Kurita, K. L.; Glassey, E.; Linington, R. G. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 1199912004,  DOI: 10.1073/pnas.1507743112
    29. 29
      Kellogg, J. J.; Todd, D. A.; Egan, J. M.; Raja, H. A.; Oberlies, N. H.; Kvalheim, O. M.; Cech, N. B. J. Nat. Prod. 2016, 79, 376386,  DOI: 10.1021/acs.jnatprod.5b01014
    30. 30
      Bertrand, S.; Azzollini, A.; Nievergelt, A.; Boccard, J.; Rudaz, S.; Cuendet, M.; Wolfender, J.-L. Molecules 2016, 21, 259,  DOI: 10.3390/molecules21030259
    31. 31
      Aligiannis, N.; Halabalaki, M.; Chaita, E.; Kouloura, E.; Argyropoulou, A.; Benaki, D.; Kalpoutzakis, E.; Angelis, A.; Stathopoulou, K.; Antoniou, S.; Sani, M.; Krauth, V.; Werz, O.; Schütz, B.; Schäfer, H.; Spraul, M.; Mikros, E.; Skaltsounis, L. A. ChemistrySelect 2016, 1, 25312535,  DOI: 10.1002/slct.201600744
    32. 32
      Olivon, F.; Allard, P.-M.; Koval, A.; Righi, D.; Genta-Jouve, G.; Neyts, J.; Apel, C.; Pannecouque, C.; Nothias, L.-F.; Cachet, X.; Marcourt, L.; Roussi, F.; Katanaev, V. L.; Touboul, D.; Wolfender, J.-L.; Litaudon, M. ACS Chem. Biol. 2017, 12, 26442651,  DOI: 10.1021/acschembio.7b00413
    33. 33
      Brito, Â.; Gaifem, J.; Ramos, V.; Glukhov, E.; Dorrestein, P. C.; Gerwick, W. H.; Vasconcelos, V. M.; Mendes, M. V.; Tamagnini, P. Algal Res. 2015, 9, 218226,  DOI: 10.1016/j.algal.2015.03.016
    34. 34
      Naman, C. B.; Rattan, R.; Nikoulina, S. E.; Lee, J.; Miller, B. W.; Moss, N. A.; Armstrong, L.; Boudreau, P. D.; Debonsi, H. M.; Valeriote, F. A.; Dorrestein, P. C.; Gerwick, W. H. J. Nat. Prod. 2017, 80, 625633,  DOI: 10.1021/acs.jnatprod.6b00907
    35. 35
      Esposito, M.; Nothias, L.-F.; Retailleau, P.; Costa, J.; Roussi, F.; Neyts, J.; Leyssen, P.; Touboul, D.; Litaudon, M.; Paolini, J. J. Nat. Prod. 2017, 80, 20512059,  DOI: 10.1021/acs.jnatprod.7b00233
    36. 36
      Nothias, L.-F.; Boutet-Mercey, S.; Cachet, X.; De La Torre, E.; Laboureur, L.; Gallard, J.-F.; Retailleau, P.; Brunelle, A.; Dorrestein, P. C.; Costa, J.; Bedoya, L. M.; Roussi, F.; Leyssen, P.; Alcami, J.; Paolini, J.; Litaudon, M.; Touboul, D. J. Nat. Prod. 2017, 80, 26202629,  DOI: 10.1021/acs.jnatprod.7b00113
    37. 37
      Esposito, M.; Nothias, L.-F.; Nedev, H.; Gallard, J.-F.; Leyssen, P.; Retailleau, P.; Costa, J.; Roussi, F.; Iorga, B. I.; Paolini, J.; Litaudon, M. J. Nat. Prod. 2016, 79, 28732882,  DOI: 10.1021/acs.jnatprod.6b00644
    38. 38
      Pluskal, T.; Castillo, S.; Villar-Briones, A.; Orešič, M. BMC Bioinf. 2010, 11, 395,  DOI: 10.1186/1471-2105-11-395
    39. 39
      Protsyuk, I.; Melnik, A. M.; Nothias, L.-F.; Rappez, L.; Phapale, P.; Aksenov, A. A.; Bouslimani, A.; Ryazanov, S.; Dorrestein, P. C.; Alexandrov, T. Nat. Protoc. 2018, 13, 134154,  DOI: 10.1038/nprot.2017.122
    40. 40
      Röst, H. L.; Sachsenberg, T.; Aiche, S.; Bielow, C.; Weisser, H.; Aicheler, F.; Andreotti, S.; Ehrlich, H.-C.; Gutenbrunner, P.; Kenar, E.; Liang, X.; Nahnsen, S.; Nilse, L.; Pfeuffer, J.; Rosenberger, G.; Rurik, M.; Schmitt, U.; Veit, J.; Walzer, M.; Wojnar, D.; Wolski, W. E.; Schilling, O.; Choudhary, J. S.; Malmström, L.; Aebersold, R.; Reinert, K.; Kohlbacher, O. Nat. Methods 2016, 13, 741748,  DOI: 10.1038/nmeth.3959
    41. 41
      Optimus https://github.com/MolecularCartography/Optimus (accessed May 24, 2017).
    42. 42
      Ihaka, R.; Gentleman, R. J. Comput. Graph. Stat. 1996, 5, 299314,  DOI: 10.1080/10618600.1996.10474713
    43. 43
      Perez, F. Project Jupyter, 2015 http://jupyter.org/about.html.
    44. 44
      Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N. S.; Wang, J. T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Genome Res. 2003, 13, 24982504,  DOI: 10.1101/gr.1239303
    45. 45
      Appendino, G.; Szallasi, A. Life Sci. 1997, 60, 681696,  DOI: 10.1016/S0024-3205(96)00567-X
    46. 46
      Nothias-Scaglia, L.-F.; Dumontet, V.; Neyts, J.; Roussi, F.; Costa, J.; Leyssen, P.; Litaudon, M.; Paolini, J. Fitoterapia 2015, 105, 202209,  DOI: 10.1016/j.fitote.2015.06.021
    47. 47
      Nothias-Scaglia, L.-F.; Schmitz-Afonso, I.; Renucci, F.; Roussi, F.; Touboul, D.; Costa, J.; Litaudon, M.; Paolini, J. J. Chromatogr. A 2015, 1422, 128139,  DOI: 10.1016/j.chroma.2015.09.092
    48. 48
      Esposito, M.; Nim, S.; Nothias, L.-F.; Gallard, J.-F.; Rawal, M. K.; Costa, J.; Roussi, F.; Prasad, R.; Di Pietro, A.; Paolini, J.; Litaudon, M. J. Nat. Prod. 2017, 80, 479487,  DOI: 10.1021/acs.jnatprod.6b00990
    49. 49
      Esposito, M.; Nothias, L.-F.; Nedev, H.; Gallard, J.-F.; Leyssen, P.; Retailleau, P.; Costa, J.; Roussi, F.; Iorga, B. I.; Paolini, J.; Litaudon, M. J. Nat. Prod. . 2016. 79 2873 DOI: 10.1021/acs.jnatprod.6b00644
    50. 50
      Allard, P.-M.; Péresse, T.; Bisson, J.; Gindro, K.; Marcourt, L.; Pham, V. C.; Roussi, F.; Litaudon, M.; Wolfender, J.-L. Anal. Chem. 2016, 88, 33173323,  DOI: 10.1021/acs.analchem.5b04804
    51. 51
      Wu, D.; Sorg, B.; Hecker, E. Phytother. Res. 1994, 8, 9599,  DOI: 10.1002/ptr.2650080209
    52. 52
      Evans, F. J.; Kinghorn, A. D. J. Chromatogr. A 1973, 87, 443448,  DOI: 10.1016/S0021-9673(01)91746-7
    53. 53
      Evans, F. J.; Kinghorn, A. D. Bot. J. Linn. Soc. 1977, 74, 2335,  DOI: 10.1111/j.1095-8339.1977.tb01163.x
    54. 54
      Appendino, G. Prog. Chem. Org. Nat. Prod. 2016, 102, 190,  DOI: 10.1007/978-3-319-33172-0_1
    55. 55
      Gulakowski, R. J.; McMahon, J. B.; Buckheit, R. W., Jr.; Gustafson, K. R.; Boyd, M. R. Antiviral Res. 1997, 33, 8797,  DOI: 10.1016/S0166-3542(96)01004-2
    56. 56
      Abdelnabi, R.; Staveness, D.; Near, K. E.; Wender, P. A.; Delang, L.; Neyts, J.; Leyssen, P. Biochem. Pharmacol. 2016, 120, 1521,  DOI: 10.1016/j.bcp.2016.09.020
    57. 57
      Abdelnabi, R.; Amrun, S. N.; Ng, L. F. P.; Leyssen, P.; Neyts, J.; Delang, L. Antiviral Res. 2017, 139, 7987,  DOI: 10.1016/j.antiviral.2016.12.020
    58. 58
      Vasas, A.; Hohmann, J. Chem. Rev. 2014, 114, 85798612,  DOI: 10.1021/cr400541j
    59. 59
      Nothias-Scaglia, L.-F.; Pannecouque, C.; Renucci, F.; Delang, L.; Neyts, J.; Roussi, F.; Costa, J.; Leyssen, P.; Litaudon, M.; Paolini, J. J. Nat. Prod. 2015, 78, 12771283,  DOI: 10.1021/acs.jnatprod.5b00073
    60. 60
      Shi, Q.-W.; Su, X.-H.; Kiyota, H. Chem. Rev. 2008, 108, 42954327,  DOI: 10.1021/cr078350s
    61. 61
      Vasas, A.; Rédei, D.; Csupor, D.; Molnár, J.; Hohmann, J. Eur. J. Org. Chem. 2012, 2012, 51155130,  DOI: 10.1002/ejoc.201200733
    62. 62
      Powers, A. Res. Rep. Trop. Med. 2015, 6, 1119
    63. 63
      Project Jupyter website, 2018, http://jupyter.org/install.
    64. 64
      Scheubert, K.; Hufsky, F.; Petras, D.; Wang, M.; Nothias, L.-F.; Dührkop, K.; Bandeira, N.; Dorrestein, P. C.; Böcker, S. Nat. Commun. 2017, 8, 1494,  DOI: 10.1038/s41467-017-01318-5
    65. 65
      Gerlich, M.; Neumann, S. J. Mass Spectrom. 2013, 48, 291298,  DOI: 10.1002/jms.3123
    66. 66
      Hufsky, F.; Scheubert, K.; Böcker, S. Nat. Prod. Rep. 2014, 31, 807,  DOI: 10.1039/c3np70101h
    67. 67
      Dührkop, K.; Shen, H.; Meusel, M.; Rousu, J.; Böcker, S. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 1258012585,  DOI: 10.1073/pnas.1509788112
    68. 68
      “bioassay-guided” MS/MS - Google Scholar https://scholar.google.com/scholar?q=%22bioassay-guided%22+MS%2FMS&hl=en&as_sdt=0%2C5&as_ylo=2016&as_yhi=2016 (accessed May 31, 2017).
    69. 69
      Haug, K.; Salek, R. M.; Conesa, P.; Hastings, J.; de Matos, P.; Rijnbeek, M.; Mahendraker, T.; Williams, M.; Neumann, S.; Rocca-Serra, P.; Maguire, E.; González-Beltrán, A.; Sansone, S.-A.; Griffin, J. L.; Steinbeck, C. Nucleic Acids Res. 2013, 41, D781D786,  DOI: 10.1093/nar/gks1004
    70. 70
      Spicer, R. A.; Steinbeck, C. Metabolomics 2018, 14, 16,  DOI: 10.1007/s11306-017-1309-5
    71. 71
      Katajamaa, M.; Miettinen, J.; Oresic, M. Bioinformatics 2006, 22, 634636,  DOI: 10.1093/bioinformatics/btk039
    72. 72
      Olivon, F.; Grelier, G.; Roussi, F.; Litaudon, M.; Touboul, D. Anal. Chem. 2017, 89, 78367840,  DOI: 10.1021/acs.analchem.7b01563
    73. 73
      Chambers, M. C.; Maclean, B.; Burke, R.; Amodei, D.; Ruderman, D. L.; Neumann, S.; Gatto, L.; Fischer, B.; Pratt, B.; Egertson, J.; Hoff, K.; Kessner, D.; Tasman, N.; Shulman, N.; Frewen, B.; Baker, T. A.; Brusniak, M.-Y.; Paulse, C.; Creasy, D.; Flashner, L.; Kani, K.; Moulding, C.; Seymour, S. L.; Nuwaysir, L. M.; Lefebvre, B.; Kuhlmann, F.; Roark, J.; Rainer, P.; Detlev, S.; Hemenway, T.; Huhmer, A.; Langridge, J.; Connolly, B.; Chadick, T.; Holly, K.; Eckels, J.; Deutsch, E. W.; Moritz, R. L.; Katz, J. E.; Agus, D. B.; MacCoss, M.; Tabb, D. L.; Mallick, P. Nat. Biotechnol. 2012, 30, 918920,  DOI: 10.1038/nbt.2377
    74. 74
      van den Berg, R. A.; Hoefsloot, H. C. J.; Westerhuis, J. A.; Smilde, A. K.; van der Werf, M. J. BMC Genomics 2006, 7, 142,  DOI: 10.1186/1471-2164-7-142
  • Supporting Information

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jnatprod.7b00737.

    • Results of bioassays against CHIKV replication and 1D and 2D NMR spectra (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect