ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

HFIP-Mediated Multicomponent Reactions: Synthesis of Pyrazole-Linked Thiazole Derivatives

Cite this: J. Org. Chem. 2024, 89, 7, 4423–4437
Publication Date (Web):March 14, 2024
https://doi.org/10.1021/acs.joc.3c02567
Copyright © 2024 American Chemical Society

    Article Views

    832

    Altmetric

    -

    Citations

    -
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    The development of one-pot, atom, and step-economic new methods avoiding metal, harsh reaction conditions, and toxic reagents for the synthesis of medicinally important hybrid molecules bearing more than one bioactive moieties is currently one of the hot topics in organic synthesis. Herein, we report a green and efficient room temperature multicomponent reaction for the synthesis of novel pyrazole-linked thiazoles involving a one-pot C–C, C–N, and C–S bond-forming process from the reaction of aryl glyoxal, aryl thioamide, and pyrazolones in 1,1,1,3,3,3-hexafluoroisopropanol, a hydrogen bond donating reaction medium. A set of diverse hybrid molecules bearing thiazole and pyrazole moieties were prepared in good to excellent yields by using this method. This methodology can also be extended to prepare thiazole-linked barbiturates as well as imidazole-linked pyrazoles. All the products were fully characterized by spectroscopic techniques. The notable features of this protocol are room temperature, metal as well as additive-free reaction conditions, use of recyclable solvent, water as the byproduct, wide substrate scope, operational simplicity, easy purification, applicability for gram-scale synthesis, high atom economy, and the presence of two bioactive pyrazole and thiazole moieties in the products.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.joc.3c02567.

    • 1H and 13C{1H} NMR spectra of all compounds; crystallographic description of compound 5b; recycling and reusability of HFIP; and characterization data (1H NMR and 13C{1H} NMR) for the synthesis of all products and XRD data (PDF)

    Accession Codes

    CCDC 2246446 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing [email protected], or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article has not yet been cited by other publications.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect