Skip to main content

Advertisement

Log in

COVID-19 Vaccine–Associated Myocarditis Considerations for Competitive Athletes

  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Abstract

Purpose of review

To review the epidemiology of COVID-19 vaccine–associated myocarditis (VAM), evaluation of athletes with suspected VAM, and safe return to play for athletes with confirmed VAM.

Recent findings

VAM is a rare complication of COVID-19 vaccination, with pretest probability highest in those who experience chest pain within several days after messenger RNA vaccine administration. While data from young athletes with VAM are lacking, the initial evaluation for those with high pre-test probability of VAM includes ECG, echocardiography, and troponin testing. Those with abnormal testing warrant cardiac magnetic resonance imaging to confirm the diagnosis of VAM. Athletes with confirmed VAM should be restricted from exercise until resolution of symptoms and cardiac inflammation and confirmation of normal cardiac function and electrical stability.

Summary

Suspicion for VAM in athletes should be guided by clinical presentation and pretest probability. Evaluation and management of VAM are similar to that of viral myocarditis. Further longitudinal studies are needed to define the clinical course of VAM in athletic populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: •  Of importance

  1. Mevorach D, Anis E, Cedar N, Bromberg M, Haas EJ, Nadir E, et al. Myocarditis after BNT162b2 mRNA vaccine against Covid-19 in Israel. N Eng J Med. 2021;385(23):2140–9.

    Article  CAS  Google Scholar 

  2. Witberg G, Barda N, Hoss S, Richter I, Wiessman M, Aviv Y, et al. Myocarditis after Covid-19 vaccination in a large health care organization. N Eng J Med. 2021;385(23):2132–9.

    Article  CAS  Google Scholar 

  3. Kuntz J, Crane B, Weinmann S, Naleway AL. Myocarditis and pericarditis are rare following live viral vaccinations in adults. Vaccine. 2018;36(12):1524–7.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Nguyen LS, Cooper LT, Kerneis M, Funck-Brentano C, Silvain J, Brechot N, et al. Systematic analysis of drug-associated myocarditis reported in the World Health Organization pharmacovigilance database. Nat Commun. 2022;13(1).

  5. Halsell JSRJ, Atwood JE, Gardner P, Shope R, Poland GA, Gray GC, Ostroff S, Eckart RE, Hospenthal DR, Gibson RL, Grabenstein JD, Arness MK, Tornberg DN. Myopericarditis following smallpox vaccination among vaccinia-naive US military personnel. JAMA. 2003;289(24):3283.

    Article  PubMed  Google Scholar 

  6. Oster ME, Shay DK, Su JR, Gee J, Creech CB, Broder KR, et al. Myocarditis cases reported after mRNA-Based COVID-19 vaccination in the US from December 2020 to August 2021. JAMA. 2022;327(4):331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wong H-L, Hu M, Zhou CK, Lloyd PC, Amend KL, Beachler DC, et al. Risk of myocarditis and pericarditis after the COVID-19 mRNA vaccination in the USA: a cohort study in claims databases. Lancet. 2022;399(10342):2191–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Naveed Z, Li J, Wilton J, Spencer M, Naus M, Velásquez García HA, et al. Comparative risk of myocarditis/pericarditis following second doses of BNT162b2 and mRNA-1273 coronavirus vaccines. J Am Coll Cardiol. 2022;80(20):1900–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Patone M, Mei XW, Handunnetthi L, Dixon S, Zaccardi F, Shankar-Hari M, et al. Risks of myocarditis, pericarditis, and cardiac arrhythmias associated with COVID-19 vaccination or SARS-CoV-2 infection. Nat Med. 2022;28(2):410–22.

    Article  CAS  PubMed  Google Scholar 

  10. Chaudhary N, Weissman D, Whitehead KA. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat Rev Drug Discov. 2021;20(11):817–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Heymans S, Cooper LT. Myocarditis after COVID-19 mRNA vaccination: clinical observations and potential mechanisms. Nat Rev Cardiol. 2022;19(2):75–7.

    Article  CAS  PubMed  Google Scholar 

  12. Karikó K, Buckstein M, Ni H, Weissman D. Suppression of RNA recognition by toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity. 2005;23(2):165–75.

    Article  PubMed  Google Scholar 

  13. Bozkurt B, Kamat I, Hotez PJ. Myocarditis with COVID-19 mRNA vaccines. Circulation. 2021;144(6):471–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yonker LM, Swank Z, Bartsch YC, Burns MD, Kane A, Boribong BP, et al. Circulating spike protein detected in post–COVID-19 mRNA vaccine myocarditis. Circulation. 2023;147(11):867–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ammirati E, Lupi L, Palazzini M, Hendren NS, Grodin JL, Cannistraci CV, et al. Prevalence, characteristics, and outcomes of COVID-19–associated acute myocarditis. Circulation. 2022;145(15):1123–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Martinez MW, Tucker AM, Bloom OJ, Green G, Difiori JP, Solomon G, et al. Prevalence of inflammatory heart disease among professional athletes with prior COVID-19 infection who received systematic return-to-play cardiac screening. JAMA Cardiol. 2021;6(7):745.

    Article  PubMed  Google Scholar 

  17. Moulson N, Petek BJ, Drezner JA, Harmon KG, Kliethermes SA, Patel MR, et al. SARS-CoV-2 cardiac involvement in young competitive athletes. Circulation. 2021;144(4):256–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Petek BJ, Moulson N, Drezner JA, Harmon KG, Kliethermes SA, Churchill TW, et al. Cardiovascular outcomes in collegiate athletes after SARS-CoV-2 infection: 1-year follow-up from the outcomes registry for cardiac conditions in Athletes. Circulation. 2022;145(22):1690–2.

    Article  CAS  PubMed  Google Scholar 

  19. Daniels CJ, Rajpal S, Greenshields JT, Rosenthal GL, Chung EH, Terrin M, et al. Prevalence of clinical and subclinical myocarditis in competitive athletes with recent SARS-CoV-2 infection. JAMA Cardiol. 2021;6(9):1078.

    Article  PubMed  PubMed Central  Google Scholar 

  20. • Gluckman TJ, Bhave NM, Allen LA, Chung EH, Spatz ES, Ammirati E, et al. 2022 ACC expert consensus decision pathway on cardiovascular sequelae of COVID-19 in adults: myocarditis and other myocardial involvement, post-acute sequelae of SARS-CoV-2 infection, and return to play. J Am Coll Cardiol. 2022;79(17):1717–56. This concensus document summarizes the current understanding and evaluation of COVID-19 myocarditis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fichera A. Claims baselessly link COVID vaccines to athlete deaths: Associated Press; January 9, 2023 [January 9, 2023]. Available from: https://apnews.com/article/fact-check-covid-vaccines-athlete-deaths-1500-989195878254.

  22. Kim JH, Martinez MW, Ackerman MJ. Social media and sports cardiology: potential pitfalls and the importance of informed communication. Circulation. 2023;147(19):1419–21.

    Article  PubMed  Google Scholar 

  23. Kracalik I, Oster ME, Broder KR, Cortese MM, Glover M, Shields K, et al. Outcomes at least 90 days since onset of myocarditis after mRNA COVID-19 vaccination in adolescents and young adults in the USA: a follow-up surveillance study. Lancet Child Adolesc Health. 2022;6(11):788–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Truong DT, Dionne A, Muniz JC, McHugh KE, Portman MA, Lambert LM, et al. Clinically suspected myocarditis temporally related to COVID-19 vaccination in adolescents and young adults: suspected myocarditis after COVID-19 vaccination. Circulation. 2022;145(5):345–56.

    Article  CAS  PubMed  Google Scholar 

  25. Husby A, Gulseth HL, Hovi P, Hansen JV, Pihlström N, Gunnes N, et al. Clinical outcomes of myocarditis after SARS-CoV-2 mRNA vaccination in four Nordic countries: population based cohort study. BMJ Medicine. 2023;2(1):e000373.

    Article  PubMed  PubMed Central  Google Scholar 

  26. • Lai FTT, Chan EWW, Huang L, Cheung CL, Chui CSL, Li X, et al. Prognosis of myocarditis developing after mRNA COVID-19 vaccination compared with viral myocarditis. J Am Coll Cardiol. 2022;80(24):2255–65. This study compared outcomes of COVID-19 viral myocarditis and VAM and found increased increased mortality with infection-related myocarditis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Eng J Med. 2021;384(5):403–16.

    Article  CAS  Google Scholar 

  28. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Eng J Med. 2020;383(27):2603–15.

    Article  CAS  Google Scholar 

  29. Gargano JW WM, Hadler SC, Langley G, Su JR, Oster ME, Broder KR, Gee J, Weintraub E, Shimabukuro T. Use of mRNA COVID-19 vaccine after reports of myocarditis among vaccine recipients: update from the Advisory Committee on Immunization Practices. United States: MMWR Morb Mortal Wkly Rep; 2021.

  30. Montgomery J, Ryan M, Engler R, Hoffman D, McClenathan B, Collins L, et al. Myocarditis following immunization with mRNA COVID-19 vaccines in members of the US military. JAMA Cardiol. 2021;6(10):1202.

    Article  PubMed  Google Scholar 

  31. Heidecker B, Dagan N, Balicer R, Eriksson U, Rosano G, Coats A, et al. Myocarditis following COVID-19 vaccine: incidence, presentation, diagnosis, pathophysiology, therapy, and outcomes put into perspective. A clinical consensus document supported by the Heart Failure Association of the European Society of Cardiolo. Eur J Heart Fail. 2022;24(11):2000–18.

  32. Sharma S, Drezner JA, Baggish A, Papadakis M, Wilson MG, Prutkin JM, et al. International recommendations for electrocardiographic interpretation in athletes. J Am Coll Cardiol. 2017;69(8):1057–75.

    Article  PubMed  Google Scholar 

  33. Marshall L, Lee KK, Stewart SD, Wild A, Fujisawa T, Ferry AV, et al. Effect of exercise intensity and duration on cardiac troponin release. Circulation. 2020;141(1):83–5.

    Article  PubMed  Google Scholar 

  34. Aldana-Bitar J, Ramirez NR, Jaffe AS, Manubolu VS, Verghese D, Hussein L, et al. Serial changes in troponin I in COVID-19 vaccine-associated myocarditis. Cardiol Res. 2022;13(4):250–4.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Dionne A, Sperotto F, Chamberlain S, Baker AL, Powell AJ, Prakash A, et al. Association of myocarditis with BNT162b2 messenger RNA COVID-19 vaccine in a case series of children. JAMA Cardiol. 2021;6(12):1446.

    Article  PubMed  Google Scholar 

  36. Ammirati E, Frigerio M, Adler ED, Basso C, Birnie DH, Brambatti M, et al. Management of acute myocarditis and chronic inflammatory cardiomyopathy. Circ Heart Fail. 2020;13(11).

  37. Ferreira VM, Schulz-Menger J, Holmvang G, Kramer CM, Carbone I, Sechtem U, et al. Cardiovascular magnetic resonance in nonischemic myocardial inflammation. J Am Coll Cardiol. 2018;72(24):3158–76.

    Article  PubMed  Google Scholar 

  38. Pan JA, Lee YJ, Salerno M. Diagnostic performance of extracellular volume, Native T1, and T2 mapping versus lake louise criteria by cardiac magnetic resonance for detection of acute myocarditis. Circ Cardiovasc Imaging. 2018;11(7).

  39. Maron BJ, Udelson JE, Bonow RO, Nishimura RA, Ackerman MJ, Estes NAM, et al. Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: Task Force 3: hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy and other cardiomyopathies, and myocarditis. Circulation. 2015;132(22):e273–80.

    Article  PubMed  Google Scholar 

  40. Phelan D, Kim JH, Chung EH. A game plan for the resumption of sport and exercise after coronavirus disease 2019 (COVID-19) infection. JAMA Cardiol. 2020;5(10):1085.

    Article  PubMed  Google Scholar 

  41. Ross R, Irvin L, Severin R, Ellis B. Return-to-play considerations after COVID-19 infection in elite athletes. J Athl Train. 2021;56(10):1061–3.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Dr. Kim is supported by the National Institute of Health (1R01HL162712).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan H. Kim MD, MSc.

Ethics declarations

Conflict of Interest

Jason V. Tso declares that he has no conflict of interest. Jonathan H. Kim declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tso, J.V., Kim, J.H. COVID-19 Vaccine–Associated Myocarditis Considerations for Competitive Athletes. Curr Treat Options Cardio Med 25, 573–585 (2023). https://doi.org/10.1007/s11936-023-01009-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11936-023-01009-z

Keywords

Navigation