Supplementary Information

Aptamer-based kinetically-controlled DNA reactions coupled with

metal-organic framework nanoprobes for sensitive detection of

SARS-CoV-2 spike protein

Yan Liu,^a Yuanlin Zhou,^a Wanting Xu,^a Jiarong Li,^b Shuning Wang,^c Xiaojia Shen,^a Xiaobin Wen^a

and Li Liu^{a,*}

^a Department of Pediatrics, Chengdu Second People's Hospital, Chengdu 610021, Sichuan,

China

^b College of Clinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China
^c School of Life Sciences, Shanghai University, Shanghai 200444, China

^{*} Corresponding author. E-mail: excellent2120@163.com.

DNA probe	Sequence (from 5' to 3')				
AP	CTTGATCAGGATAAGTTCAAGGCGGGTTCCTAGACTTGTACTCAGCCT				
	CTGTTGCAACTGTA				
BHQ-AP	CTTGATCAGGAT(BHQ)AAGTTCAAGGCGGGTTCCTAGACTTGTACTCA				
	GCCTCTGTTGCAACTGTA				
Random DNA	CTTGATCAGGATAAGTTCAGTGGAAGTTGGACGGGATTGCCTGTTGCA				
	ACTGTA				
SP	CTTATCCTGATCAAGCTCACAG				
Biotin-SP	CTTATCCTGATCAAGCTCACAG-biotin				
FAM-SP	FAM-CTTATCCTGATCAAGCTCACAG				
FAM-SP-biotin	FAM-CTTATCCTGATCAAGCTCACAG-biotin				
ТР	TACAGTTGCTTTCTTATCCTGATCA				
rTP	TTGCTGCTGCTTGACACATTAATGC				
F-DNA	FAM-CTTGATCAGGATAAG				

Table S1 Sequences of DNA probes used in this work

Fig. S1 Fluorescence responses obtained after incubating 50 μ L of UiO-66-NH₂ with 50 μ L of different concentrations of F-DNA.

Fig. S2 Fluorescence responses of F-DNA@MOF after incubation with AP/SP or SP in the absence and presence of Exo III.

Fig. S3 Optimization of the reaction time for aptamer-based kinetically-controlled DNA displacement.

Fig. S4 Optimization of the reaction time for Exo III-fuelled DNA reaction.

Method	Mechanism	Materials	Assay time	Linear range	LOD	Real sample	Ref
Mxene-based fluorescent method	Target-induced direct signal change	Mxene	30 min	100 fg mL ⁻¹ to 1 ng mL ⁻¹	38.9 fg mL ⁻¹	Clinical swab samples	[S1]
Fluorescent method based on allosteric aptasensor-initiated target cycling and transcription amplification	Target-regulated strand competition	/	180 min	5.07 ng mL ⁻¹ to 76.05 ng mL ⁻¹	5.07 ng mL ⁻¹	Artificial serum sample	[S2]
Near-infrared fluorescent method based on covalent DNA anchors	Target-induced direct signal change	Carbon nanotube	30 min	Not provided	38 ng mL ⁻¹	Artificial saliva sample	[\$3]
Electrochemical method based on triangular prism DNA nanostructures and dumbbell hybridization chain reaction	Target-regulated strand competition	Triangular DNA prism	135 min	1 pg mL ⁻¹ to 1 ng mL ⁻¹	38 fg mL ⁻¹	Clinical swab samples	[S4]
Electrochemical method based on aptamer-binding induced multiple hairpin assembly signal amplification	Target-regulated strand competition	/	75 min	50 fg mL ⁻¹ to 50 ng mL ⁻¹	9.79 fg mL ⁻¹	Artificial swab sample	[\$5]
Aptamer-based method based on	Target-induced	Gold	40 min	507 pg mL ⁻¹	66 pg	SARS-CoV-2	[S6]

Table S2 Comparison of currently available aptamer-based methods for the detection of SARS-CoV-2 spike protein.

electrochemical impedance spectroscopy	direct signal change	nanoparticle		to 1.27 μg	mL⁻¹	pseudovirus	
				mL⁻¹			
Fluorescent method based on	Target-regulated			$10 \text{fg} \text{m}^{-1} \text{tg}$	7 9 fa	Artificial saliva	Thic
kinetically-controlled DNA reactions and	kinetically-controlled	MOF	110 min		7.0 Ig	and serum	11115
MOF nanoprobes	DNA displacement			10 ng mL ⁻¹	mL⁻¹	sample	work

References

S1. Y. Luo, X. Jiang, R. Zhang, C. Shen, M. Li, Z. Zhao, M. Lv, S. Sun, X. Sun and B. Ying. *Small*, 2023, **19**, 2301146.

S2. D. Song, D. Yuan, X. Tan, L. Li, H. He, L. Zhao, G. Yang, S. Pan, H. Dai, X. Song and Y. Zhao. Sens. Actuators B Chem., 2022, 371, 132526.

S3. J. T. Metternich, J. A. C. Wartmann, L. Sistemich, R. Nibler, S. Herbertz and S. Kruss. J. Am. Chem. Soc., 2023, 145, 14776-14783.

S4. Y. Jiang, X. Chen, N. Feng and P. Miao. Anal. Chem., 2022, 94, 14755-14760.

S5. J. Xue, Y. Li, J. Liu, Z. Zhang, R. Yu, Y. Huang, C. Li, A. Chen and J. Qiu. *Talanta*, 2022, **248**, 123605.

S6. J. C. Abrego-Martinez, M. Jafari, S. Chergui, C. Pavel, D. Che and M. Siaj. Biosens. Bioelectron., 2022, 195, 113595.

Sample –	Detecte	ed	Standard	Recovery (%)
	Concentration	RSD (%)	concentration	Necovery (70)
1	103.6 fg mL ⁻¹	3.71	100 fg mL ⁻¹	103.6
2	97.6 pg mL ⁻¹	4.26	100 pg mL ⁻¹	97.6
3	1047 pg mL ⁻¹	4.08	1000 pg mL ⁻¹	104.7

Table S3 Comparison of SARS-CoV-2 spike protein concentrations detected in salivasamples by the method and the standard given concentrations.

Sample -	Detecte	ed	Standard	Recovery (%)
	Concentration	RSD (%)	concentration	Necovery (70)
1	101.7 fg mL ⁻¹	4.96	100 fg mL ⁻¹	101.7
2	105.3 pg mL ⁻¹	2.82	100 pg mL ⁻¹	105.3
3	1069 pg mL ⁻¹	4.82	1000 pg mL ⁻¹	106.9

Table S4 Comparison of SARS-CoV-2 spike protein concentrations detected in serumsamples by the method and the standard given concentrations.