Comptes Rendus
Living fluids/Fluides vivants
Aggregation of red blood cells: From rouleaux to clot formation
[Agrégation des globules rouges : De la formation des rouleaux à celle des caillots]
Comptes Rendus. Physique, Volume 14 (2013) no. 6, pp. 459-469.

Il est bien connu que les globules rouges forment des agrégats, connus sous le nom de rouleaux. Il est souvent admis que ce phénomène dʼagrégation est réversible, mais lʼélucidation précise des mécanismes à lʼœuvre dans le processus conduisant à la liaison entre globules rouges est loin dʼêtre achevée. Il existe dans la littérature au moins deux modèles distincts, lʼun est basé sur la formation de ponts moléculaires, lʼautre sur la notion de déplétion. Nous passons en revue les résultats expérimentaux récents à lʼéchelle cellulaire et analysons le modèle théorique basé sur la notion de déplétion. Nous discuterons lʼinfluence de la forme cellulaire sur la force de liaison. Un autre mécanisme dʼagrégation jouant un rôle important in vivo est celui associé à lʼactivation plaquettaire. Ceci peut conduire à la formation de caillots sanguins, processus vital lorsquʼil sʼagit de cicatrisation de blessures, mais qui peut être également fatal, constituant une cause majeure de décès, lorsquʼil sʼagit de thrombose.

Red blood cells are known to form aggregates in the form of rouleaux. This aggregation process is believed to be reversible, but there is still no full understanding on the adhesion mechanism. There are at least two competing models, based either on bridging or on depletion. We review recent experimental results on the single cell level and theoretical analyses of the depletion model and of the influence of the cell shape on the adhesion strength. Another important aggregation mechanism is caused by activation of platelets. This leads to clot formation which is life-saving in the case of wound healing, but also a major cause of death in the case of a thrombus induced stroke. We review historical and recent results on the participation of red blood cells in clot formation.

Publié le :
DOI : 10.1016/j.crhy.2013.04.004
Keywords: Red blood cells, Depletion, Aggregation
Mot clés : Globules rouges, Dépletion, Agrégation
Christian Wagner 1 ; Patrick Steffen 1 ; Saša Svetina 2, 3

1 Experimentalphysik, Universität des Saarlandes, Postfach 151150, 66041 Saarbrücken, Germany
2 Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
3 Jožef Stefan Institute, Ljubljana, Slovenia
@article{CRPHYS_2013__14_6_459_0,
     author = {Christian Wagner and Patrick Steffen and Sa\v{s}a Svetina},
     title = {Aggregation of red blood cells: {From} rouleaux to clot formation},
     journal = {Comptes Rendus. Physique},
     pages = {459--469},
     publisher = {Elsevier},
     volume = {14},
     number = {6},
     year = {2013},
     doi = {10.1016/j.crhy.2013.04.004},
     language = {en},
}
TY  - JOUR
AU  - Christian Wagner
AU  - Patrick Steffen
AU  - Saša Svetina
TI  - Aggregation of red blood cells: From rouleaux to clot formation
JO  - Comptes Rendus. Physique
PY  - 2013
SP  - 459
EP  - 469
VL  - 14
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crhy.2013.04.004
LA  - en
ID  - CRPHYS_2013__14_6_459_0
ER  - 
%0 Journal Article
%A Christian Wagner
%A Patrick Steffen
%A Saša Svetina
%T Aggregation of red blood cells: From rouleaux to clot formation
%J Comptes Rendus. Physique
%D 2013
%P 459-469
%V 14
%N 6
%I Elsevier
%R 10.1016/j.crhy.2013.04.004
%G en
%F CRPHYS_2013__14_6_459_0
Christian Wagner; Patrick Steffen; Saša Svetina. Aggregation of red blood cells: From rouleaux to clot formation. Comptes Rendus. Physique, Volume 14 (2013) no. 6, pp. 459-469. doi : 10.1016/j.crhy.2013.04.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.04.004/

[1] R. Hebbel; O. Yamada; C.F. Moldow; H. Jacob; J.G. White; J.W. Eaton Abnormal adherence of sickle erythrocytes to cultured vascular endothelium, J. Clin. Invest., Volume 65 (1980), pp. 154-160

[2] J. Shelby; J. White; K. Ganesan; P. Rathod; D. Chiu A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes, Proc. Natl. Acad. Sci. USA, Volume 100 (2003), pp. 14618-14622

[3] G. Barabino; M. Platt; D. Kaul Sickle cell biomechanics, Annu. Rev. Biomed. Eng., Volume 12 (2010), pp. 345-367

[4] O. Baskurt; B. Neu; H. Meiselman Red Blood Cell Aggregation, CRC Press, Taylor and Francis Group, 2012

[5] S. Chien; L. Jan Ultrastructural basis of the mechanism of rouleaux formation, Microvasc. Res., Volume 5 (1973), pp. 155-166

[6] S. Chien; L. Sung Physicochemical basis and clinical implications of red cell aggregation, Clin. Hemorheol., Volume 7 (1987), pp. 71-91

[7] R. Fahraeus The suspension stability of the blood, Physiol. Rev., Volume 9 (1929), pp. 241-274

[8] M.W. Rampling Rouleaux formation – its causes, estimation and consequences, Turk. J. Med. Sci., Volume 14 (1990), pp. 447-453

[9] H. Schmid-Schönbein; R. Wells; R. Schildkraut Microscopy and viscometry of blood flowing under uniform shear rate, J. Appl. Physiol., Volume 26 (1969), pp. 674-678

[10] G. Danker; T. Biben; T. Podgorski; C. Verdier; C. Misbah Dynamics and rheology of a dilute suspension of vesicles: Higher-order theory, Phys. Rev. E, Volume 76 (2007), p. 041905

[11] M. Carr; Y. Hauge Enhancement of red blood cell washout from blood clots by alteration of gel pore size and red cell flexibility, Am. J. Physiol., Heart Circ. Physiol., Volume 259 (1990), p. H1527

[12] W. Duke The relation of blood platelets to hemorrhagic disease, JAMA, Volume 55 (1910), pp. 1185-1192

[13] D. Andrews; P. Low Role of red blood cells in thrombosis, Curr. Opin. Hematol., Volume 6 (1999), p. 76

[14] M.D. Horne; A. Cullinane; P. Merryman; E. Hoddeson The effect of red blood cells on thrombin generation, Br. J. Haematol., Volume 133 (2006), p. 403

[15] L. Kaestner; W. Tabellion; P. Lipp; I. Bernhardt Prostaglandin E 2 activates channel-mediated calcium entry in human erythrocytes: an indication for a blood clot formation supporting process, Thromb. Haemost., Volume 92 (2004), pp. 1269-1272

[16] D. Nguyen Phosphatidylserine exposure in red blood cells: A suggestion for the active role of red blood cells in blood clot formation, Saarland University, 2010 (Ph.D. thesis)

[17] P. Steffen; A. Jung; D. Nguyen; T. Müller; I. Bernhardt; L. Kaestner; C. Wagner Stimulation of human red blood cells leads to Ca2+-mediated intercellular adhesion, Cell Calcium, Volume 50 (2011) no. 1, pp. 54-61

[18] K. Brummel; S. Butenas; K. Mann An integrated study of fibrinogen during blood coagulation, J. Biol. Chem., Volume 274 (1999), pp. 22862-22870

[19] A. Pribush; D. Zilberman-Kravits; N. Meyerstein The mechanism of the dextran-induced red blood cell aggregation, Eur. Biophys. J., Volume 36 (2007), pp. 85-94

[20] Z. Marton; G. Kesmarky; J. Vekasi; A. Cser; R. Russai; B. Horvath; K. Toth Red blood cell aggregation measurements in whole blood and in fibrinogen solutions by different methods, Clin. Hemorheol. Microcirc., Volume 24 (2001), pp. 75-83

[21] D. Brooks Mechanism of red cell aggregation (D. Platt, ed.), Blood Cells, Rheology and Aging, Springer-Verlag, 1988

[22] D. Brooks The effect of neutral polymers on the electrokinetic potential of cells and other charged particles: IV. Electrostatic effects in dextran-mediated cellular interactions, J. Colloid Interface Sci., Volume 43 (1973), pp. 714-726

[23] S. Chien; R.J. Dellenback; S. Usami; D.A. Burton; P.F. Gustavson; V. Magazinovic Blood volume, hemodynamic and metabolic changes in hemorrhagic shock in normal and splenectomized dogs, Am. J. Physiol., Volume 225 (1973), pp. 866-879

[24] P. Snabre; P. Mills Effect of dextran polymer on glycocalyx structure and cell electrophoretic mobility, Colloid Polym. Sci., Volume 263 (1985), pp. 494-500

[25] S. Chien Biophysical behavior of red cells in suspensions, The Red Blood Cell, Academic Press, 1975

[26] S. Asakura; F. Oosawa Interactions between particles suspended in solutions of macromolecules, J. Polym. Sci., Volume 33 (1958), pp. 183-192

[27] P.-G. de Gennes Scaling Concepts in Polymer Physics, Cornell University Press, 1979

[28] Y.N. Ohshima; H. Sakagami; K. Okumoto; A. Tokoyoda; T. Igarashi; K.B. Shintaku; S. Toride; H. Sekino; K. Kabuto; I. Nishio Direct measurement of infinitesimal depletion force in a colloid–polymer mixture by laser radiation pressure, Phys. Rev. Lett., Volume 78 (1997), pp. 3963-3966

[29] D. Brooks; R. Greig; J. Jansen Mechanisms of erythrocyte aggregation, Erythrocyte Mechanics and Blood Flow, A.R. Liss, New York, 1980, pp. 119-140

[30] D. Lominadze; W.L. Dean Involvement of fibrinogen specific binding in erythrocyte aggregation, FEBS Lett., Volume 517 (2002), pp. 41-44

[31] J. Janzen; D. Brooks Do plasma proteins adsorb to red cells?, Clin. Hemorheol., Volume 9 (1989), pp. 695-714

[32] J. Janzen; D. Brooks A critical reevaluation of the nonspecific adsorption of plasma proteins and dextrans to erythrocytes and the role of these in rouleaux formation (M. Bender, ed.), Interfacial Phenomena in Biological Systems, Marcel Dekker, New York, 1991, pp. 193-250

[33] J. Armstrong; R. Wenby; H. Meiselman; T. Fisher The hydrodynamic radii of macromolecules and their effect on red blood cell aggregation, Biophys. J., Volume 87 (2004), pp. 4259-4270

[34] H. Bäumler; E. Donath; A. Krabi; W. Knippel; A. Budde; H. Kiesewetter Electrophoresis of human red blood cells and platelets: evidence for depletion of dextran, Biorheology, Volume 33 (1996), pp. 333-351

[35] B. Neu; H. Meiselman Depletion mediated red blood cell aggregation in polymer solutions, Biophys. J., Volume 83 (2002), pp. 2482-2490

[36] K. Buxbaum; E. Evans; D. Brooks Quantitation of surface affinities of red blood cells in dextran solutions and plasma, Biochemistry, Volume 21 (1982), pp. 3235-3239

[37] P. Steffen; C. Verdier; C. Wagner Quantification of depletion induced adhesion of red blood cells, Phys. Rev. Lett., Volume 110 (2013), p. 018102

[38] J. Friedrichs; J. Helenius; D.J. Muller Quantifying cellular adhesion to extracellular matrix components by single-cell force spectroscopy, Nat. Protoc., Volume 5 (2010), pp. 1353-1361

[39] W. Helfrich Elastic properties of lipid bilayers: Theory and possible experiments, Z. Naturforsch. C, Volume 28 (1973), pp. 693-703

[40] W. Helfrich Blocked lipid exchange in bilayers and its possible influence on the shape of vesicles, Z. Naturforsch. C, Volume 29 (1974), pp. 510-515

[41] E. Evans Minimum energy analysis of membrane deformation applied to pipet aspiration and surface adhesion of red blood cells, Biophys. J., Volume 30 (1980), pp. 265-284

[42] S. Svetina; M. Brumen; B. Žekš Lipid bilayer elasticity and the bilayer couple interpretation of red cell shape transformations and lysis, Stud. Biophys., Volume 110 (1985), pp. 177-184

[43] L. Miao; U. Seifert; M. Wortis; H.G. Döbereiner Budding transitions of fluid-bilayer vesicles: The effect of area-difference elasticity, Phys. Rev. E, Volume 49 (1994), pp. 5389-5407

[44] W.C. Hwang; R.E. Waugh Energy of dissociation of lipid bilayer from the membrane skeleton of red blood cells, Biophys. J., Volume 72 (1997), pp. 2669-2678

[45] U. Seifert Configurations of fluid membranes and vesicles, Adv. Phys., Volume 46 (1997), pp. 13-137

[46] S. Svetina Vesicle budding and the origin of cellular life, Chem. Phys. Chem., Volume 10 (2009), pp. 2769-2776

[47] H. Lim; M. Wortis; R. Mukhopadhyay Stomatocyte–discocyte–echinocyte sequence of the human red blood cell: Evidence for the bilayer-couple hypothesis from membrane mechanics, Proc. Natl. Acad. Sci. USA, Volume 99 (2002), pp. 16766-16769

[48] U. Seifert; R. Lipowsky Adhesion of vesicles, Phys. Rev. A, Volume 42 (1990), pp. 4768-4771

[49] J. Derganc; B. Božič; S. Svetina; B. Žekš Equilibrium shapes of erythrocytes in rouleau formation, Biophys. J., Volume 84 (2003), pp. 1486-1492

[50] M. Deserno; M.M. Mueller; J. Guven Contact lines for fluid surface adhesion, Phys. Rev. E, Volume 76 (2007), pp. 011605-011615

[51] A. Agrawal Mechanics of membrane–membrane adhesion, Math. Mech. Solids, Volume 16 (2011), pp. 872-886

[52] R. Skalak; P. Zarda; K. Jan; S. Chien Mechanics of rouleau formation, Biophys. J., Volume 35 (1981), pp. 771-781

[53] P. Ziherl; S. Svetina Flat and sigmoidally curved contact zones in vesicle–vesicle adhesion, Proc. Natl. Acad. Sci. USA, Volume 104 (2007), pp. 761-765

[54] T. Kirschkamp; H. Schmid-Schönbein; A. Weinberger; R. Smeets Effects of fibrinogen and a2-macroglobulin and their apheretic elimination on general blood rheology and rheological characteristics of red blood cell aggregates, Therap. Apher. Dial., Volume 12 (2008), pp. 360-367

[55] S. Svetina; P. Ziherl Morphology of small aggregates of red blood cells, Bioelectrochemistry, Volume 73 (2008), pp. 84-91

[56] R. Mukhopadhyay; H.G. Lim; M. Wortis Echinocyte shapes: Bending, stretching, and shear determine spicule shape and spacing, Biophys. J., Volume 82 (2002), pp. 1756-1772

[57] D. Kuzman; S. Svetina; R.E. Waugh; B. Žekš Elastic properties of the red blood cell membrane that determine echinocyte deformability, Eur. Biophys. J., Volume 33 (2004), pp. 1-15

[58] N. Mackman Triggers, targets and treatments for thrombosis, Nature, Volume 451 (2008), pp. 914-918

[59] S. Chung; O. Bae; K. Lim; J. Noh; M. Lee; Y. Jung; J. Chung Lysophosphatidic acid induces thrombogenic activity through phosphatidylserine exposure and procoagulant microvesicle generation in human erythrocytes, Arterioscler. Thromb. Vasc. Biol., Volume 27 (2007), pp. 414-421

[60] P. Christophersen; P. Bennekou Evidence for a voltage-gated, non selective cation channel in the human red cell membrane, Biochim. Biophys. Acta, Volume 1065 (1991), pp. 103-106

[61] L. Kaestner; C. Bollensdorff; I. Bernhardt Non-selective voltage-activated cation channel in the human red blood cell membrane, Biochim. Biophys. Acta, Volume 1417 (1999), pp. 9-15

[62] L. Kaestner; I. Bernhardt Ion channels in the human red blood cell membrane: their further investigation and physiological relevance, Bioelectrochemistry, Volume 55 (2002), pp. 71-74

[63] L. Kaestner; W. Tabellion; E. Weiss; I. Bernhardt; P. Lipp Calcium imaging of individual erythrocytes: Problems and approaches, Cell Calcium, Volume 39 (2006), pp. 13-19

[64] G. Gardos The function of calcium in the potassium permeability of human erythrocytes, Biochim. Biophys. Acta, Volume 30 (1958), pp. 653-654

[65] Q. Li; V. Jungmann; A. Kiyatkin; P. Low Prostaglandin E 2 stimulates a Ca2+-dependent K + channel in human erythrocytes and alters cell volume and filterability, J. Biol. Chem., Volume 271 (1996), pp. 18651-18656

[66] P. Lang; S. Kaiser; S. Myssina; T. Wieder; F. Lang; S. Huber Role of Ca2+-activated K + channels in human erythrocyte apoptosis, Am. J. Physiol. Cell Physiol., Volume 285 (2003), pp. 1553-1560

[67] F. Basse; J.G. Stout; P.J. Sims; T. Wiedmer Isolation of an erythrocyte membrane protein that mediates Ca2+-dependent transbilayer movement of phospholipid, J. Biol. Chem., Volume 271 (1996), pp. 17205-17210

[68] P. Williamson; A. Kulick; A. Zachowski; R. Schlegel; P. Devaux Ca2+ induces transbilayer redistribution of all major phospholipids in human erythrocytes, Biochemistry, Volume 31 (1992), pp. 6355-6360

[69] P. Williamson; E. Bevers; E. Smeets; P. Comfurius; R. Schlegel; R. Zwaal Continuous analysis of the mechanism of activated transbilayer lipid movement in platelets, Biochemistry, Volume 34 (1995), pp. 10448-10455

[70] L. Woon; J. Holland; E. Kable; B. Roufogalis Ca2+ sensitivity of phospholipid scrambling in human red cell ghosts, Cell Calcium, Volume 25 (1999), pp. 313-320

[71] D. Dekkers; P. Comfurious; E. Bevers; R. Zwaal Comparison between Ca2+-induced scrambling of various fluorescently labelled lipid analogues in red blood cells, Biochem. J., Volume 362 (2002), pp. 741-747

[72] C. Closse; J. Dachary-Prigent; M. Boisseau Phosphatidylserine related adhesion of human erythrocytes to vascular endothelium, Br. J. Haematol., Volume 107 (1999), pp. 300-302

[73] A. Manodori; G. Barabino; B. Lubin; F. Kuypers Adherence of phosphatidylserine-exposing erythrocytes to endothelial matrix thrombospondin, Blood, Volume 95 (2000), pp. 1293-1300

[74] V. Luvira; S. Chamnanchamnunt; V. Thanachartwet; W. Phumratanaprapin; A. Viriyavejakul Cerebral venous sinus thrombosis in severe malaria, Southeast Asian J. Trop. Med. Public Health, Volume 40 (2009), pp. 893-897

[75] A. Eldor; E. Rachmilewitz The hypercoagulable state in thalassemia, Blood, Volume 99 (2002), pp. 36-43

[76] A. Taher; Z. Otrock; M. Cappellini Thalassemia and hypercoagulability, Blood Rev., Volume 22 (2008), pp. 283-292

[77] E. Tullius; P. Williamson; R. Schlegel Effects of transbilayer phospholipid distribution on erythrocyte fusion, Biosci. Rep., Volume 9 (1989), pp. 623-633

[78] R. Zwaal; A. Schroit Pathophysiologic implications of membrane phospholipid asymmetry in blood cells, Blood, Volume 89 (1997), pp. 1121-1132

[79] R. Zwaal; P. Comfurius; E. Bevers Surface exposure of phosphatidylserine in pathological cells, Cell. Mol. Life Sci., Volume 62 (2005), pp. 971-988

[80] Y. Tanaka; A. Schroit Insertion of fluorescent phosphatidylserine into the plasma membrane of red blood cells – recognition by autologous macrophages, J. Biol. Chem., Volume 258 (1983), pp. 1335-1343

[81] A. Schroit; J. Madsen; Y. Tanaka In vivo recognition and clearance of red blood cells containing phosphatidylserine in their plasma membranes, J. Biol. Chem., Volume 260 (1985), pp. 5131-5138

[82] U. Messmer; J. Pfeilschifter New insights into the mechanism for clearance of apoptotic cells, BioEssays, Volume 22 (2000), pp. 878-881

[83] L. Kaestner; P. Steffen; D. Nguyen; J. Wang; L. Wagner-Britz; A. Jung; C. Wagner; I. Bernhardt Lysophosphatidic acid induced red blood cell aggregation in vitro, Bioelectrochemistry, Volume 87 (2012), pp. 89-95

[84] T. Eichholtz; K. Jalink; I. Fahrenfort; W. Moolenaar The bioactive phospholipid lysophosphatidic acid is released from activated platelets, Biochem. J., Volume 291 (1993), pp. 677-680

[85] P. Snabre; M. Bitbol; P. Mills Cell disaggregation behavior in shear flow, Biophys. J., Volume 51 (1987), pp. 795-807

[86] A. Hellem; C. Borchgrevink; S. Ames The role of red cells in haemostasis: the relation between haematocrit, bleeding time and platelet adhesiveness, Br. J. Haematol., Volume 7 (1961), pp. 42-50

[87] M. Livio; E. Gotti; D. Marchesi; G. Mecca; G. Remuzzi; G. de Gaetano Uraemic bleeding: role of anaemia and beneficial effect of red cell transfusions, Lancet, Volume 320 (1982), pp. 1013-1015

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Living fluids

Chaouqi Misbah; Christian Wagner

C. R. Phys (2013)


Microconfined flow behavior of red blood cells in vitro

Stefano Guido; Giovanna Tomaiuolo

C. R. Phys (2009)


Modeling of the effects of IL-17 and TNF-α on endothelial cells and thrombus growth

Anass Bouchnita; Pierre Miossec; Alen Tosenberger; ...

C. R. Biol (2017)