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Over the past decade, oxidative stress was shown to be a key factor for various diseases.*e term “antioxidant” also rapidly gained
attention worldwide, viewed as beneficial in disease prevention. Resveratrol (RSV), a natural polyphenol, is a plant antitoxin
formed in response to harmful environmental factors such as infection and injury. *is antitoxin is found in grapes, strawberries,
peanuts, or herbal medicines and exhibits many pharmacological effects involved in antitumor, anti-inflammatory, antiaging, and
antioxidation stress mechanisms. Recently, numerous in vitro and in vivo experiments have shown that RSV harbors antioxidative
stress properties and can be used as an antioxidant. Here, we review the free radical scavenging ability, antioxidant properties,
signaling pathways, expression and regulation of antioxidant enzymes, and oxidative stress-related diseases associated with RSV.

1. Introduction

Oxidative stress refers to an imbalance between the anti-
oxidant defense system and the production of free radicals,
leading to increased reactive oxygen species (ROS) and
tissue damage. Possible consequences of oxidative damage
result in diabetes mellitus [1], coronary heart disease [2],
rheumatoid arthritis [3], and aging. Recently, a new article
published in Cell uncovered that ROS accumulation in
Drosophila melanogaster and mice with severe sleep dep-
rivation caused oxidative stress, ultimately leading to death.
However, this phenomenon is reversed by the administra-
tion of antioxidant compounds or by the targeted expression
of antioxidant enzymes [4]. Even though it is unclear how
the oxidative stress response triggers the disease, searching
for a substance with antioxidant properties should be of
focus to prevent the occurrence of diseases.

More recently, plant polyphenols have attracted the
attention of many scholars. Plant polyphenols have been
shown as beneficial to health by possessing antioxidant stress
properties [5, 6]. In particular, resveratrol (RSV) has
attracted a great deal of attention since it is a potential

antioxidant that can be used in various applications. Nu-
merous in vivo and in vitro experiments have shown that
RSV exerts antitumor, anti-inflammatory, anticancer, an-
tioxidant stress, and antiaging effects [7, 8]. *e antioxidant
effects of RSV were first discovered when treating cardio-
vascular diseases [9].

Presently, RSV has been shown to relieve cardiovascular,
aging, and neurological diseases. However, RSV and its
influence on diseases have not yet been systematically
reviewed.*erefore, in this review article, we summarize the
properties of RSV, signal pathways, and diseases related to
oxidative stress to provide ideas for disease prevention.

2. Background

RSV is a secondary metabolite extracted from plant roots
that contain multiple natural biological activities [10, 11].
Most RSV derives from the diet, such as grape products (red
wine) [12], peanuts, and mulberries. *e content of RSV is
the greatest in grape wines, then chocolates, followed by
peanuts, strawberries, and herbal medicines [13]. Even
though RSV is abundant in fresh grape juice, it is susceptible
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to degradation from heat exposure and processing. RSV
exists in two forms including cis-resveratrol and trans-
resveratrol (Figure 1). Under certain conditions, such as UV
irradiation or low pH, the two isomers may convert into one
another [14]. Generally, trans-resveratrol is more stable than
cis-resveratrol.

Many studies have shown that RSV has both direct and
indirect effects. RSV has been proved to be an effective
antioxidant for scavenging free radicals, including super-
oxide radical (O2-), hydroxyl radical (OH-), hydrogen per-
oxide (H2O2), nitric oxide (NO), and nitrogen dioxide
(NO2) [15–18]. Based on its chemical structure, such as
hydroxyl group on the ring and conjugated double bond
system, RSV was proved to be an antioxidant. Wang et al.
reported that replacing the hydrogen in three hydroxyl
groups with CH3 or removing the hydroxyl group leads to
reduced antioxidant activity, indicating that 4′ hydroxyl
activity is essential [19, 20]. Another study analyzing the
structure of RSV confirmed this observation [21]. *e ex-
istence of a conjugated double bond can make the electron
more delocalized [22]. Hydrogen atom transfer (HAT) and
sequential proton loss electron transfer (SPLET) are the
main mechanisms of RSV scavenging free radicals [23].
Based on crystal structure and ab initio calculation exper-
iment, it was found that dynamic flip-flop motion could lead
to the alternate formation of hydroxyl groups and break
hydrogen bonds on adjacent phenolic oxygen, which can
transfer up to three hydrogen atoms. *e results indicated
that the free radical scavenging activity of RSV was based on
HAT [24]. *e electrons are transferred to the free radicals
by the HAT process to form phenoxy radicals, which can
delocalize unpaired electrons on the whole molecule. *e
unpaired electrons of resveratrol radical are located at the
position of 3, and 5 hydroxyl groups near position 4 were
more stable, resulting in the formation of RSV quinone
structure. After tautomerism rearrangement and intracel-
lular nucleophilic attack on intermediate quinone, a dihy-
drofuran dimer was produced [25]. Leonard et al. used the
ESR spin trap technique to measure hydroxyl radicals
generated by the Fenton reaction as well as superoxide
radicals produced by the xanthine/xanthine oxidase system
to find that RSV reduced DMPO/OH- and DMPO/O2- in a
concentration-dependent manner, proving that it has the
ability to scavenge OH-/O2- [26]. Compared with butylated
hydroxytoluene (BHT), butylated hydroxyanisole (BHA),
tocopherol, and trolox, RSV has the activity of scavenging
H2O2 in vitro, but its effect is lower than that of the standard
[27]. Scavenging NO free radical is through a non-free
radical mechanism and has a higher scavenging efficiency
compared with catechin [17]. Combining with metal ions
can exert its chelating activity and prevent an excessive
generation of hydroxyl radicals and further oxidation [22].
Other studies showed that RSV scavenges free radicals using
endogenous antioxidant enzymes [19, 28]. Among them,
NADPH oxidase (O2-), xanthine oxidase (O2- and H2O2),
mitochondrial respiratory chain enzyme (O2-), and endo-
thelial functional nitric oxide synthase (eNOS) (NO) can
cause ROS production [29]. Endogenous antioxidant en-
zymes, as an antioxidant defense system, can effectively

remove ROS and reduce the production of mitochondrial
superoxide [30].

Currently, the fast absorption and low bioavailability of
RSV are some disadvantages of using it in the clinic. In
clinical trials, 25mg of RSV showed a 70% absorption rate in
1 hour, with peak plasma metabolite levels reaching 2 μM.
However, the bioavailability of RSV was only 1% [31]. *is
occurs since absorbed RSV easily combines with glucuronic
acid or sulfate in the intestines or liver [32]. *erefore, the
bioavailability of RSV needs to be improved in the future.

3. Antioxidative Stress Effects
Associated with RSV

3.1. RSV and Free Radicals. Under normal conditions, an-
tioxidant enzymes, such as catalase, superoxide dismutase,
and glutathione-S-transferase, remove ROS produced dur-
ing mitochondrial oxidative respiration. ROS are divided
into free radicals (O2- and OH-) and non-free radicals
(H2O2) [33]. However, when there is stimulation by harmful
factors, such as ultraviolet radiation and chemical reagents,
defense systems are damaged and contribute to excessive
ROS accumulation, leading to an imbalance in oxidative
stress [34]. In H2O2 and O2- free radical activity scavenging
experiments, the scavenging efficiency of 30 μg/mL of RSV
reaches 19.5% and 71.8% for H2O2 and O2-, respectively,
indicating that RSV had a strong efficiency for free radical
scavenging [27]. Palsamy et al. reported streptozotocin-
(STZ-) induced oxidative stress in diabetic rats where O2-

and OH- levels in the kidney were relatively high and sig-
nificantly reduced after RSV administration, indicating that
RSV effectively scavenged free radicals [35]. As reported in
another paper, neurotoxin 1-methyl-4-phenyl-1.2.3.6-tet-
rahydropyridine (MPTP) induces oxidative stress in Dro-
sophila melanogaster, leading to an accumulation of H2O2.
However, when different concentrations of MPTP and RSV
were administered together, H2O2 content significantly
decreased, implying that it contains free radical scavenging
properties [36]. Hence, it is important to eliminate excessive
free radicals to balance oxidative stress levels and to reduce
oxidative damage.

3.2. RSV and Lipid Peroxidation. When oxidative stress
occurs, excessive ROS levels attack polyunsaturated fatty
acids on cell membranes, resulting in liposome peroxidation
and lipid peroxides [37]. Malondialdehyde (MDA), a major
product of lipid peroxidation, is also an important indicator
of measuring the degree of cell damage. Manna et al. pre-
treated U-937 cells with 5 μM of RSV for 4 h and then in-
cubated cells with different concentrations of tumor necrosis
factor (TNF) for 1 h. Results showed that TNF-induced lipid
peroxidation in U-937 cells but RSV and TNF cotreatment
completely inhibited lipid peroxidation [38]. Another study
found that RSV inhibited lipid peroxidation more effectively
than the antioxidant vitamins C and E, which was attributed
to its high lipophilicity and hydrophilicity [39–41]. Palsamy
et al. investigated levels of lipid peroxidation in healthy rats
treated with RSV, rats with STZ-induced diabetes, and
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diabetic rats treated with RSV. Data revealed no significant
differences in the RSV group and that MDA content in the
diabetic group increased but then significantly decreased
after the administration of RSV and eventually reached
normal levels. *is indicated that RSV inhibited lipid per-
oxidation induced by STZ [35]. *ese findings indicate that
RSV has inhibitory properties on lipid peroxide formation.

3.3. RSV and Antioxidant Enzymes. *e antioxidant system
is mainly composed of antioxidant enzymes and nonenzy-
matic compounds [42]. Antioxidant enzymes include su-
peroxide dismutase (SOD), catalase (CAT), and glutathione
peroxidase (GPx). SOD and CAT are key scavengers for O2-

and H2O2 and are the first defense system in cells [43].
Superoxide dismutase (SOD) converts O2- to hydrogen
peroxide and then CATor GPx degrades it into oxygen and
water. When 35% ethanol was administered to mice for 6
weeks, MDA production was increased in the liver, and
SOD, CAT, GPx, and other enzymatic activities were re-
duced. However, when 5 g/kg of RSV was added daily during
ethanol treatment, MDA synthesis was inhibited and anti-
oxidant enzymatic activity improved [44]. Chen et al. used
C57BL/6J mice to confirm that RSV alleviated ethanol-in-
duced oxidative stress and found that it enhanced SOD
activity in HepG2 cells but did not affect CAT and GPx
activities [45]. Nonenzymatic compounds mainly include
glutathione (GSH), which directly scavenges free radicals or
acts as a cofactor for glutathione-S-transferase. *e ability to
resist oxidative stress weakens if GSH content decreases
[46, 47]. Liu et al. explored apoptosis of human umbilical
vein endothelial cells (HUVECs) induced by hydrogen
peroxide. RSV administration increased HUVEC activity
and SOD significantly increased GSH content [48]. RSV
significantly improves the activity of certain antioxidant

enzymes and reduces damage caused by oxidative stress.
*us, RSV should be used in research revolving around the
treatment of various diseases.

4. Antioxidant Stress Mechanisms of RSV

All organisms contain a complex antioxidant system,
making it difficult to identify the exact molecular mecha-
nisms behind RSV and its antioxidant mechanisms [49].
Findings indicate that RSV exerts its antioxidant stress
characteristics mainly through several signal pathways and
also activates antioxidant enzymes in these pathways. Table 1
summarizes the application of RSV antioxidant properties in
the treatment of diseases. We will now highlight the im-
portant signal pathways associated with RSV.

4.1. Nrf2 Signaling Pathway. Nuclear factor-erythroid 2-
related factor 2 (Nrf2) is a transcription factor that regulates
the expression levels of antioxidant genes and protects cells
from oxidative stress damage. *e antioxidant effects linked
to this pathway are linked to the activation of genes con-
taining antioxidant response elements (ARE) [68]. Kelch-
like ECH-associated protein l (KEAP1) is a regulatory
protein that controls the activity of Nrf2. In the absence of
external stimulation, Nrf2 is in the cytoplasm and binds to
inactivated KEAP1. When ROS accumulates, there are
conformational changes in KEAP1, making it disassociate
from Nrf2 and translocate into the nucleus [69]. Muscu-
loaponeurotic fibrosarcoma (Maf) protein forms a hetero-
dimer with Nrf2 and then combines with ARE to enhance
the expression of downstream phase II antioxidant genes,
producing antioxidant enzymes [70]. *e function of pro-
teins produced by the activation of the Nrf2/ARE pathway is
mainly to remove ROS as well as exogenous/endogenous
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Figure 1: *e structure of resveratrol. (a) Chemical formula. (b) 3D structure diagram.
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harmful substances. Studies have demonstrated that RSV
activates Nrf2 through cell signal pathways such as PI3K/
AKT and AMPK. Iwasaki et al. found that RSV mitigates
T-cell apoptosis induced by H2O2. RSV results in phos-
phorylation of Ser9 glycogen synthase kinase 3β (GSK3β) by
activating AMP-activated protein kinase (AMPK) and in-
duces the expression of Nrf2/ARE-dependent antioxidant
genes, such as heme oxygenase-1 (HO-1) [71]. RSV also
protects against PC12 cell death induced by H2O2, mainly
through the activation of ERK and Akt, causing Nrf2 nuclear
translocation and upregulation of HO-1 expression [72].
Another study revealed that cigarette smoke induces oxi-
dative stress in alveolar epithelial cells, where RSV protects
cells from damage through the activation of Nrf2, upre-
gulation of glutamate-cysteine ligase (GCL) expression, and
induction of GSH [73]. At the same time, studies have shown
that Nrf2 plays a crucial role in the oxidative stress response
to atherosclerosis [74], ischemia-reperfusion injury [75], and
hypertension [76]. Even though there is work revealing that
RSV activates Nrf2 and induces the expression of down-
stream antioxidant enzyme genes, these interactions are
complex and warrant further investigation.

4.2. NF-lB Signaling Pathway. NF-lB is a nuclear tran-
scription factor that binds to the lB site of the kappa light
chain gene of B cells [77]. It is mainly involved in regulating
the expression of genes during inflammation and apoptosis.
Currently, various diseases, such as diabetes and cancer, are
associated with dysregulation of NF-lB expression [78, 79].
Activation of the NF-lB pathway is mainly regulated by ROS
[78], which has been verified in mice with type 2 diabetes.
Activated NF-lB promotes the expression of proin-
flammatory cytokines, such as cyclooxygenase-2 (COX-2)
and tumor necrosis factor-α (TNF-α) [80, 81]. RSV inhibits
TNF and H2O2-induced NF-lB activation in a dose- and
time-dependent manner, all of which were confirmed in
different cell lines, including U937, Jurkat, and L4 cells [38].
Soufi et al. investigated STZ-induced diabetic male Wistar
rats and administered 5mg/kg of RSV daily for 4 weeks to
determine antioxidative stress properties. Results revealed
that RSV increased SOD activity, decreased the GSSH/GSH
ratio, and significantly reduced retinal NF-lB activity and
the apoptosis rate compared to diabetic control rats [82].
*erefore, effective regulation of NF-lB activity is essential
and studies behind the effects of RSV on this pathway are
worthy of future work.

4.3. SIRT1 Signaling Pathway. Identification and analysis
from in vivo and in vitro studies have confirmed that
sirtuins play a significant role in many cellular functions. A
total of seven sirtuins have been identified in mammals.
SIRT1 is involved in cell function regulation and depends
on NAD+ to regulate the deacetylation of different proteins,
such as histones, p53, and FOXO [83–85]. Studies have
shown that these seven sirtuins are involved in antioxidant
stress and metabolic processes [86, 87], where DNA
damage repair and protective effects of cell stress damage
are mediated by SIRT1, SIRT2, and SIRT6 [87]. Some

studies illustrated that RSV does not directly activate SIRT1
but inhibits cAMP to make phosphodiesterase nonde-
gradable, leading to AMPK activation, an increase in NAD+

levels, and SIRT1 activation [88]. Ungvari et al. reported the
effects of RSV on hyperglycemia-induced mitochondrial
oxidative stress in human coronary artery endothelial cells
(CAECs). *is work revealed that mtROS production and
hydrogen peroxide levels were significantly reduced and
MnSOD expression levels, GSH content, and SIRT1 activity
were increased. Furthermore, the overexpression of SIRT1
diminished mtROS production and increased MnSOD
expression. *is effect was weakened after SIRT1 knockout
[89]. Another work investigated the protective effects of
RSV on Tilapia under low temperature stress. Findings
revealed that mRNA expression levels of sirtuin homologs
(sirt1, sirt2, sirt3, sirt5a, and sirt6) increased and catalase
(cat), uncoupling protein 2 (ucp2) and superoxide dis-
mutase (sod1, sod2, and sod3) levels were also increased
[90]. SIRT1 primarily responds to oxidative stress by
regulating FOXO transcription factors (such as FOXO1,
FOXO3a, and FOXO4) and PGC-1a regulators, which form
transcription complexes to enhance the expression of
antioxidant enzymes and to scavenge ROS [91]. Further-
more, there may be an overlap or interaction between the
activities of SIRT1 and NF-lB [92]. Regulation of SIRT1
signaling involves FOXO and PGC-1a, but the interaction
between SIRT1, NF-lB, and Nrf2 signaling pathways has
not been clearly identified (Figure 2). *us, this aspect still
needs further work in order to provide optimal solutions
for disease treatment.

5. RSV and Oxidative Stress-Related Diseases

5.1. Neurodegenerative Diseases. *e most common neu-
rodegenerative diseases include Alzheimer’s disease (AD)
and Parkinson’s disease (PD). By 2016, a total of 43.8 million
people were diagnosed with dementia where 60% were
caused by AD and 6 million were suffering from PD [93, 94].
According to statistics from Ray Dorsey and Nichols, 6.4
million and 3.2 million people passed away from dementia
(including AD) and PD, respectively, in 2016 [94, 95]. Both
AD and PD not only cause significant damage to health but
also impact the social economy. Presently, there are both
pharmacological and nonpharmacological treatments
available for these diseases, but there is currently no cure
[96]. Additionally, AD and PD are associated with oxidative
damage and inflammation, so much research is concentrated
on the therapeutic potential of antioxidants, such as RSV
[97].

Oxidative stress is the most critical factor in the path-
ogenesis of AD. ROS accumulation leads to a decrease of
antioxidant defense capacity and mitochondrial dysfunc-
tion, which ultimately causes neuronal damage. *e neu-
roprotective effects of RSV have been proven in several AD
models and are associated with increased SIRT1 activity
[98–100]. RSV increases mRNA expression levels of CAT,
SOD1, GST zeta 1, and SIRT1 as shown in lymphoblastic cell
lines (LCLs) isolated from AD patients [101]. Learning and
memory in rats with vascular dementia were explored by
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Zhang et al., who found that SOD protein expression levels
increased and MDA content decreased [102].

Mitochondrial dysfunction and oxidative stress are also
causative factors in PD.*e accumulation of oxidative stress
caused by ROS can lead to neuronal death. Lindner et al.
prepared RSV-loaded polysorbate80 (PS80) nanoparticles to
observe the neuroprotective effects in PD mice. Results
supported that the nanoparticle RVT reduced lipid perox-
idation [103]. However, thus far, there are no clinical trials
being performed investigating its safety. *erefore, efforts
need to be made to fully understand the efficacy and safety of
RSV for the treatment of AD and PD.

5.2. Aging. Aging is a programmed biological process
caused by the interaction of genetic factors and adverse
environmental factors. It is accompanied by changes such
as increased inflammation, increased ROS, and mito-
chondrial function damage, as well as related chronic
diseases. Among these, oxidative stress is one of the main
causes of aging. RSV has been illustrated to extend lifespan
in different animal models [104]. In vitro experiments
showed that SIRT1 is associated with aging. In the H2O2-
induced oxidative stress aging model, SIRT1 mRNA ex-
pression levels decreased and increased in a dose-depen-
dent manner after RSV administration. In addition, the
aging marker β-galactosidase also decreased [105]. Studies
have also shown that RSV effects depend on the expression
of antioxidant genes. Using RNAi technology to knock out
SOD1 in Drosophila melanogaster, 200 μM of RSV in-
creased the lifespan of female Sod1 RNAi flies to 9% under
a standard diet [106]. Others believe that AMPK is the

culprit of aging, since AMPK may activate FOXO and Nrf2
and inhibit NF-lB [107]. Afzal et al. found that various
stress responses were induced in PREP cells, ROS levels
decreased, and antioxidant capacity increased, indicating
that RSV has potential in protecting cells from injury stress
and also has potential in prolonging the lifespan. Fur-
thermore, HP1c, a marker of cell senescence, was signifi-
cantly downregulated in treated cells [108]. Altogether, the
antiaging properties of RSV are being thoroughly studied.
Even though its clinical safety and efficacy have not yet
been proven, RSV shows bright prospects in terms of
antiaging strategies.

6. Conclusion

Over the past decade, the term “antioxidation” has be-
come a hot topic on the Internet. Presently, the cosmetics
and health care industries sell products using the term
“antioxidant” in their ingredients. A polyphenol com-
pound with natural activity, RSV shows the most po-
tential and is a valuable commodity, as validated in
various animal models. *e antioxidant stress properties
associated with RSV have been described in numerous
animals and cell experiments [36, 80]. *is article
summarized the antioxidative stress properties of RSV,
providing evidence that it can be used as a food additive
that prevents disease and maintains health. Studies have
shown that the basal diet supplemented with 400 mg/kg
RSV can significantly improve feed utilization and
growth performance of broilers [109]. *e supplemen-
tation of 300 mg/kg and 600mg/kg of RSV in the basic
diet can significantly improve the activity of lactate

Figure 2: *e signaling pathway of resveratrol to exert antioxidant properties.
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dehydrogenase, GPx activity, and its mRNA level, reduce
MDA content, and improve the total antioxidant capacity
of finishing pigs [110]. 25 mg of RSV from Vitis vinifera,
taken as a standard dietary supplement for 12 weeks, was
found to improve the quality of life associated with
menopause in healthy women [111]. However, the low
bioavailability of RSV is a property that needs to be
further improved. Currently, many studies have con-
firmed that RSV nanoparticles have a greater ability to
scavenge active free radicals (DPPH and ABTS+) and
higher bioavailability and can further promote intestinal
absorption. Li et al. synthesized a series of pyridoxine-
resveratrol hybrids, where 12a, 12g, and 12l have better
antioxidant activities and strong inhibitory effects on
MAO-B, providing treatment direction of PD [112]. Fan
et al. prepared RES-PPI nanoparticles to find that RSV
enhanced thermal stability and did not degrade. In ad-
dition, its ability to remove DPPH and ABTS was en-
hanced [113]. *is research broadens the application of
RSV, but there are many problems that need to be solved
before it can be used in the treatment of humans.

Abbreviation

RES: Resveratrol
ROS: Reactive oxygen species
ESR: Electron spin resonance
DMPO: 5,5-Dimethyl-1-pyrroline-N-oxide
H2O2: Hydrogen peroxide
SOD: Superoxide dismutase
CAT: Catalase
GPx: Glutathione peroxidase
MPTP: Methyl-4-phenyl-1.2.3.6-tetrahydropyridine
MDA: Malondialdehyde
TNF: Tumor necrosis factor
GSH: Glutathione
Nrf2: Nuclear factor-erythroid 2-related factor 2
ARE: Antioxidant response elements
KEAP1: Kelch-1ike ECH-associated protein l
AMPK: AMP-activated protein kinase
HO-1: Heme oxygenase-1
NF-lB: Nuclear factor-kappa B
SIRT1: Sirtuins
FOXO: Forkhead box
UCP2: Uncoupling protein 2
STZ: Streptozotocin nicotinamide.
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