
REVIEW

Carbon monoxide: impact on remethylation/transsulfuration
metabolism and its pathophysiologic implications

Takako Hishiki & Takehiro Yamamoto &

Takayuki Morikawa & Akiko Kubo &

Mayumi Kajimura & Makoto Suematsu

Received: 30 December 2011 /Revised: 27 January 2012 /Accepted: 31 January 2012 /Published online: 14 February 2012
# The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract Carbon monoxide (CO) is a gaseous product gen-
erated by heme oxygenase (HO), which oxidatively
degrades heme. While the stress-inducible HO-1 has well
been recognized as an anti-oxidative defense mechanism
under stress conditions, recent studies suggest that cancer
cells utilize the reaction for their survival. HO-2, the consti-
tutive isozyme, also plays protective roles as a tonic regu-
lator for neurovascular function. Although protective roles
of the enzyme reaction and CO have extensively been
studied, little information is available on the molecular
mechanisms by which the gas exerts its biological actions.
Recent studies using metabolomics revealed that CO inhib-
its cystathionine β-synthase (CBS), which generates H2S,
another gaseous mediator. The CO-dependent CBS inhibi-
tion may impact on the remethylation cycle and related
metabolic pathways including the methionine salvage path-
way and polyamine synthesis. This review focuses on the
gas-responsive regulation of metabolic systems, particularly
the remethylation and transsulfuration pathways, and their
putative implications for cancer and ischemic diseases.
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Heme oxygenase (HO) degrades protoheme-IX by cleaving
its α-methene bridge into free divalent iron (Fe2+),

biliverdin-IXα, and carbon monoxide (CO) [1–4]. The re-
action uses nicotinamide adenine dinucleotide phosphate
(NADPH)-cytochrome P450 reductase as an electron donor
system [5, 6] and O2 as the acceptor [7]. In humans, nearly
80% of the bilirubin in bile derives from hemoglobin heme.
Cytochromes P450 constitute another major source of heme
that undergoes the HO-dependent degradation. Products of
the HO reaction were regarded as potentially toxic wastes
destined only for excretion. However, this changed when
evidence emerged for physiologic roles of bilirubin-IXα, a
potent anti-oxidant generated through biliverdin reductase
[8–11].

The HO/CO system serves as a neurovascular regulator,
as CO has a modest ability to activate soluble guanylate
cyclase [12], a receptor of NO [13, 14]. However, a variety
of biological responses specifically triggered by CO have
attracted attention and led to a series of macromolecular
receptors for CO that do not respond to NO. This article
focuses on the interaction between the HO/CO system and
cystathionine β-synthase (CBS), which is a rate-limiting
enzyme regulating methionine metabolism and transsulfura-
tion pathway that serves as an H2S-generating system
[15–19].

Identification of cystathionine β-synthase
as a CO-regulated protein by metabolomics

The transcriptional activator CooA in the photosynthetic
bacteria Rhodospirillum rubrum is the first example of a
heme protein in which CO plays a physiological role [20].
Only the CO-bound form of CooA binds to its target DNA
and acts as a transcriptional activator [20–22]. In mammals,
the heme protein neuronal PAS domain protein 2 (NPAS2)
was reported to be a specific CO sensor [23, 24]. NPAS2
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was identified as a member of the basic-helix-loop-helix
(bHLH) family of transcription factors expressed in the
forebrain. The resonance Raman spectra indicated that CO
coordinated to the heme iron histidine on the proximal side,
whereas NO did not bind to the heme group [25]. CO has
been proposed to regulate the formation of a complex be-
tween NPAS2 and BMAL1, another bHLH transcription
factor, that regulates the circadian rhythms [23].

Many heme enzymes including cytochromes P450 were
once considered putative CO-sensitive signal transducers
[26–28]. However, the ferrous heme of these enzymes has
been found to be sensitive to both CO and NO, ruling them
out as CO-specific sensors. On the other hand, CBS, the
“pseudo-cytochrome P450”, was found to be a strong can-
didate for a CO-specific sensor. In vitro studies using re-
combinant CBS reported that CO, but not NO, acted as a
competitive inhibitor of CBS [27, 29] with the Ki value of
several micromolar, much smaller than that for NO
(200 μM). CO inhibits recombinant rat CBS by stabilizing
the 6-coordinated structure of the heme. By comparison, NO
binds to heme, but stabilizes the 5-coordinated structure.
CBS was first identified as H450 where the addition of
CO to its reduced form produced a new spectral species that
resembled that of the reduced CO complex of a denatured
form of cytochrome P450 [30]. Among heme proteins, CBS
is unique in that it catalyzes a pyridoxal phosphate (PLP)-
dependent reaction [31]. The prosthetic heme of this enzyme
is coordinated to histidine and cysteine as axial ligands in
human and rodents. Although the crystallographic structure
of CO-ligated forms has yet to be determined, perturbation
of the heme environment by CO, but not by NO, is believed
to be communicated to the active site with concomitant
inhibition of enzyme activity. Low Ki for CO suggests that
CBS acts as a CO-specific sensor under physiological
conditions.

Gases have the ability to bind to metal-centered prosthet-
ic groups of many proteins. It is likely that gas messengers
alter the activity of enzymes with metal-centered prosthetic
groups. To test this possibility, we applied metabolome
analyses using capillary electrophoresis assisted by mass
spectrometry (CE–MS) to search for a candidate enzyme
responding to CO in vivo [29]. In these studies, differential
metabolomics display suggested that CO upregulates metab-
olites in the remethylation cycle and downregulates those in
the transsulfuration pathway (Fig. 1). In vivo pulse-chase
analysis of 15N-methionine in livers of control mice and
hemin-treated mice in which HO-1 is induced revealed
accumulation of 15N-homocysteine and suppression of
15N-cystathionine under the CO-overproducing conditions,
suggesting that metabolic flux through CBS is suppressed
by CO. The ability of CO to limit CBS activity as a regulator
of the transsulfuration pathway may have diverse impacts
on biological systems. As seen in Fig. 2, the HO/CO system

stands between the tricarboxylic acid (TCA) cycle and me-
thionine/thiol metabolism. In the following sections, we will
discuss pathophysiological consequences brought about by
altered metabolic flux in the transsulfuration pathway by the
HO/CO system.

CO-sensitive CBS and methionine metabolism in cancer

A growing body of evidence suggests that HO-1 may play a
role in tumor induction and can potently increase the growth
and spread of tumors. HO-1 expression is often increased in
tumor tissues and is further elevated in response to radio-,
chemo-, or photodynamic therapy [32]. At present, whether
inhibition or induction of HO-1 aggravates development of
cancer remains controversial, and prognosis in experiments
using cancer cell lines highly depends on the particular cell
lines that are analyzed. For instance, in recent studies using
HepG2 cells [33], overexpression of wild-type HO-1, but
not that of mutant HO-1, decreased the migration of the
cancer cells. They have shown that HO-1 plays an important
role in hepatocellular carcinoma progression through
p38MAPK activation both in vivo and in vitro conditions.
On the other hand, HO-1/CO system serves as an anti-
apoptotic signal followed by activation of Ras–Raf–ERK
system that triggers nrf2 to upregulate the enzyme [34].
Recently, Otterbein et al. [35] showed that HO-1/CO path-
way participates in the DNA-repair process. Naïve Hmox-
null mice exhibit excessive tissue levels of γ-histone H2A
(γ-H2AX), a marker of ongoing and chronic DNA damage.
In addition, administration of genotoxic stressors in HO-1-
deficient fibroblasts resulted in no γ-H2AX foci formation
or phosphorylation of γ-H2AX. In this model, HO-1 induc-
tion or CO treatment induced homologous recombination-
mediated DNA repair through the activation of the DNA
repair kinases, ataxia telangiectasia-mutated (ATM) and
ataxia-telangiectasia rad3-related (ATR), while lack of HO-
1 resulted in the inhibition of phosphorylation of ATM and
ATR. Direct molecular target(s) that allow CO binding
remains unclear in this study.

Through multiple mechanisms, cancer cells forming tu-
mor might generate considerable amounts of CO through
HO. Recent studies using renal cell carcinoma cells showed
roles of mutant fumarate hydratase (FH, Fig. 2) in their
development. FH is an enzyme of the TCA cycle that
catalyzes the hydration of fumarate to malate. The germline
mutation of FH leads to the accumulation of fumarate and
the upstream TCA intermediates in the cells [36]. However,
no mechanism has been provided to explain the ability of
the cell survival without cycling all the TCA intermediates
of this metabolic hub. Frezza et al. [36] used genetically
modified kidney mouse cells where Fh1 was deleted, and
conducted a metabolic simulation in silico to predict and
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validate a linear metabolic pathway starting from glutami-
nolysis and ending with HO-dependent heme degradation
and bilirubin formation. This pathway, which involves the
biosynthesis and degradation of heme, enables Fh1-deficient
cells to use the metabolites of TCA cycle and permits partial
mitochondrial NADH production necessary to maintain
ATP. They confirmed that targeting this pathway would
render Fh1-deficient cells non-viable, while sparing wild-
type Fh1-expressing cells. Considering the presence of var-
ious mutant TCA enzymes among different types of cancer
cells, targeting an aberrant branching pathway might con-
tribute to suppression of the cancer growth and develop-
ment. At the same time, drawing off TCA intermediates to
heme synthesis and degradation serves as a stratagem for
survival of certain types of cancer cells.

Upregulation of HO might benefit survival and de-
velopment through multiple pathways. First, activated

heme degradation to provide bilirubin serves as a potent
anti-oxidant that actually accounts for the protective
mechanism for human neuroblastoma cells that became
resistant to GSH-depleting reagents [37, 38]. Second,
CO-dependent inhibition of CBS in cancer cell lines
triggers upregulation of remethylation metabolites [e.g.,
methionine (Met), S-adenosylmethionine (SAM), S-
adenosylhomocysteine (SAH) in Fig. 2]; changes in
these metabolites determine cellular contents of poly-
amines that regulate cancer metastasis, and regulate
protein methylation and epigenetics [39–41]. On the
other hand, CBS inhibition by CO acutely downregu-
lates transsulfuration metabolites which is followed by
recovery of cysteine and GSH, presumably because of
compensatory upregulation of xCT (cystine transporter)
that salvages cystine as a precursor to generate these
anti-oxidants. Ishimoto et al. have recently reported a

Fig. 1 Differential metabolomics reveals that CO upregulates metab-
olites in remethylation cycle and downregulates those in transsulfura-
tion pathway. Metabolomic comparison of sulfur-containing amino
acids and their derivatives between the heme-overloaded and vehicle-
treated livers of mice. Differences in hepatic contents of the metabo-
lites between the control and hemin-treated mice. H12 treatment with
hemin at 12 h prior to sampling the liver. Note decreases in trans-
sulfuration metabolites. In vivo pulse-chase analysis indicating con-
version rates of 15N-methionine into 15N-homocysteine (Hcy) and 15N-

cystathionine in livers between the groups (dotted square). The
amounts of the downstream metabolites were measured at 30 min after
the methionine administration. The data in the dotted square were
normalized by total amounts of metabolites in remethylation cycle
(15N-methionine + 15N-SAM + 15N-SAH + 15N-Hcy0ΣRM) at
30 min. ND not detected. Data indicate mean ± SE of six to eight
separate experiments for each group. *P<0.05, compared to the
vehicle-treated group. Adapted by permission from Wiley: Shintani
et al. Hepatology, 49: 141–150, 2009 [29]
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role for variant CD44, a receptor for hyaluronic acid, in
stabilizing xCT in the cell membrane that helps GSH
accumulation for the cell survival [42]. Upregulation of
GSH in tumor also occurs under in vivo conditions
(Fig. 3) [43].

As mentioned above, CO acutely causes a decrease in the
GSH amount through its inhibitory action on CBS, as
depicted in Fig. 1. However, CO is known to shift glucose
utilization toward pentose phosphate pathway, thereby pro-
viding high NADPH to recycle GSSG to its reduced form
GSH [44], while molecular mechanism underlying this met-
abolic shift remains to be solved. Increases in remethylation
metabolites by stress-inducible CO might regulate histone
methylation to confirm cancer cell survival [39]. In human
U937 monoblastic leukemia cells, knocking down CBS
diminishes the responsiveness to CO or HO-1 induction.
These results suggest that CO-sensitive CBS system con-
trols protein methylation which is implicated in epigenetic
regulation.

Recent studies by Katoh et al. [45] revealed a novel role
of methionine adenosyl transferase (MAT) located in nuclei.
They performed proteomics analysis of MafK, revealing its
interaction with MATIIα, a MAT isozyme. MATIIα was
localized in nuclei and found to form a dense network with
chromatin-related proteins including Swi/Snf and NuRD
complexes. MATIIα was recruited to the Maf recognition
element (MARE) at the HO-1 gene. When MATIIα was
knocked down in a murine hepatoma cell line, expression of
HO-1 was repressed at both basal and induced levels. The
catalytic activity of MATIIα, as well as its interacting fac-
tors such as MATIIβ, BAF53a, CHD4, and PARP1, was
required for HO-1 repression. MATII thus serves as a tran-
scriptional corepressor of MafK by interacting with chro-
matin regulators and supplying SAM for methyltransferases.
Nuclear translocation of enzymatically intact MATII causes
HO-1 repression, while its mutant expression or loss of
MATII causes significant induction of HO-1 through im-
paired histone methylation at HO-1 locus. Implication of

Fig. 2 Possible metabolic pathways modulated by a CO-sensitive
CBS inhibition. Not only does CBS inhibition by CO alter remethyla-
tion cycle (blue arrows) and transsulfuration pathway (pink arrows)
but it may also modulate methionine salvage pathway and polyamine
metabolism. Dotted arrows and a line indicate activation and inhibition

of corresponding enzymes by metabolites, respectively. ALAS amino-
levulinic acid synthase, FH fumarate hydratase, CSE cystathionine γ-
lyase, MAT methionine adenosyl transferase, αKG α-ketoglutarate,
ALA aminolevulinic acid, PBG porphobilinogen, Hcy homocysteine,
SAM S-adenosylmethionine, SAH S-adenosylhomocysteine
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this novel mechanism for regulation of cancer growth and
development should deserve further studies.

CO-dependent H2S inhibition: roles in pathophysiology

Recent studies revealed that bacteria normally producing
H2S acquire antibiotic resistance through mechanisms mit-
igating oxidative stress imposed by antibiotics [46]. Consid-
ering that H2S has the ability to neutralize electrophilic
compounds, it is not unreasonable to hypothesize that the
gas has the ability to detoxify anti-cancer reagents, some of
which are converted to electrophiles in the body. In other
words, selective delivery of such compounds might amelio-
rate toxicity of anti-cancer reagents against the host tissues.
Recent studies provided evidence that H2S-donating
reagents have the potential to suppress cancer development

[47]. Therefore, it is likely that upregulation of HO/CO
system might facilitate tumor growth in part by suppressing
CBS-derived H2S.

CO-sensitive CBS/H2S system plays crucial roles in ho-
meostasis of organ functions. Several lines of evidence
support the concept that CBS acts as an in vivo CO sensor.
In the mouse liver, the low-end value of endogenous CO is
approximately 5 pmol CO/mg tissue [48], suggesting that
tissue concentration of CO is in the micromolar range.
Murine hepatocytes express both CO-producing HO-2 [49]
and H2S-producing CBS. In addition, HO-1 is induced in
both hepatocytes and Kupffer cells under stress or disease
conditions [50]. The close proximity of the enzyme distri-
butions taken together with measured CO concentrations,
and the kinetics of CBS activity suggests that the enzyme is
acting as a CO sensor [51]. Shintani et al. [29] demonstrated
that an increase in hepatic CO content causes global

Fig. 3 Glutathione and UDP-HexNAc as marker metabolites enriched
in colon cancer metastasis. a Light-microscopic photograph of intra-
splenically injected HCT116 colon cancer cell xenografts in the liver of
NOG mice. Scale bar: 500 μm. b A green fluorescence image of the
same specimen shown in (a). c–f Representative imaging mass spec-
trometry showing spatial distribution of apparent UDP-HexNAc

concentration (UDP-HexNAcapp), the reduced type of glutathione
(GSHapp), oxidized glutathione (GSSGapp), and (GSHapp)/(GSSGapp)
ratio in the same microscopic field plotted as a heat map, respectively.
Adapted by permission from Springer: Kubo et al. Anal Bioanal Chem,
400: 1895–1904, 2011 [43]
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Fig. 4 Immunohistochemical
localization of HO-2 and CBS
in the neurovascular unit
of neonatal mouse cerebellar
cortex. Neurons and endothelial
cells express HO-2 (a, b), the
constitutive CO-producing
enzyme, whereas glial cells
express CBS (e–h), an H2S
producing enzyme. Note that
HO-2-positive cells along
vessel wall are endothelial in
(b), not pericytic, since nuclei
of NG2 (pericytic marker)
positive cells, stained with
TO-PRO-3 (a nucleic acid
stain), are completely devoid of
CD31 (endothelial marker)
labeling in (c). The arteriolar
wall is surrounded by NG2-
positive pericytes in (d), key
contractile cells within the neu-
rovascular unit. i Schematic
depiction of the localization
of HO-2 and CBS in the neu-
rovascular unit. GFAP glial
fibrillary acidic protein, an
established marker of glial
cells; ml molecular layer; Pl
Purkinje cell layer; gl granular
layer; e endothelium; p
pericyte. Adapted by permis-
sion from National Academy
of Sciences, USA: Morikawa et
al. PNAS, 109: 1293–1298,
2012 [68]
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decrease in transsulfuration metabolites such as cystathio-
nine, cysteine, and hypotaurine, as shown in Fig. 1. Admin-
istration of a stress-inducible level of CO (as 20 μmol/kg of
CO-releasing molecule) caused a decrease in hepatic H2S
content to stimulate HCO3

−-dependent biliary choleresis.
Such a CO-sensitive metabolic adaptation might play a
regulatory role in biliary excretion that facilitates the solu-
bility of xenobiotic metabolites under disease conditions or
detoxification processes [29, 52–55].

Hypoxia alters CO-sensitive CBS/H2S pathway to trigger
acute adaptive responses for maintaining homeostasis. Al-
though the brain is the most susceptible organ to O2 depri-
vation, it can increase blood flow in response to hypoxia by
several mechanisms. They include potassium [56], adeno-
sine [57, 58], hydrogen ions [59], lactate, and prostaglandin
E2 [60]. These adaptive responses are critical for delivery of

O2 and cellular transport of glucose in brain tissue. Readers
are referred to an excellent review by Attwell et al. [61] for
more comprehensive account on this subject. Here we focus
on a gas-mediated cascade that plays a key role in regulating
blood flow and energy metabolism. Brain generates large
amounts of CO mainly from constitutive HO-2 reactions
[62]. CO is known to regulate neuronal transmission [9,
63]; however, physiologic roles of CO in the central nervous
system have not been fully understood. In the peripheral
nervous systems, HO-2 is an O2 sensor in the carotid body,
an organ responsible for sensing O2 levels in arterial blood
[64, 65]. Because HO-2 requires molecular O2 for its activ-
ity, it has been proposed that stimulation of carotid body
action by hypoxia may reflect in part reduced formation of
CO [66]. A recent study reported that H2S mediates carotid
body stimulation by hypoxia and hypoxia-evoked H2S

Fig. 5 Impaired ability of HO-2-null mice to maintain ATP levels on
exposure to 10% O2 for 1 min. a Alterations in AMP (AMPwhole), ADP
(ADPwhole), ATP (ATPwhole), and energy charge (ECwhole) in the whole
brain. *P<0.05, compared to WT normoxia. †P<0.05, compared to
HO-2 null normoxia. b Representative imaging mass spectrometry
showing spatial distribution of apparent ATP concentration (ATPapp)
and energy charge (ECreg). Note the basal increase in ATP in HO-2-

null mice. Bottom panels—H&E staining after imaging mass spec-
trometry. cx cortex, hp hippocampus. c Quantitative analysis of region-
al ATP concentration and energy charge in WT and HO-2-null mice.
*P<0.05, compared to WT normoxia. †P<0.05, compared to HO-2-
null normoxia. Adapted by permission from National Academy of
Sciences, USA: Morikawa et al. PNAS, 109: 1293–1298, 2012 [68]
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generation in the carotid body requires interaction of CSE
and HO-2, which generates CO [67] [see Prabhaker NR and
Semenza GL, this volume]. In the central nervous system,
Morikawa et al. [68] recently demonstrated that HO-2 can
function as an O2 sensor in the brain and an O2–CO–H2S
cascade rapidly mediates hypoxia-induced cerebral vasodi-
lation. In this cascade, hypoxia elicits vasodilation via the
coordinate actions of CO generated by HO-2 and H2S
generated by CBS, similar to that proposed in the carotid
body. Pericytes, major contractile cells that control the di-
ameter of microvessels [61, 69], are surrounded by CO- and
H2S-producing cells (Fig. 4). By actually measuring tissue
CO content, these authors showed that HO-2 synthesizes a
fair amount of CO under normoxia and hypoxia reduces CO
production. Since CO tonically inhibits CBS, hypoxia
releases the tonic inhibition leading to increased levels of
H2S derived from the enzyme that mediate the vasodilation
[70] of small arterioles. Such hypoxia-induced vasodilation
of arterioles does not occur in CBS-null mice while remain-
ing intact in CSE-null mice [68].

Physiologic consequences of HO-2 loss are intriguing.
Namely, basal ATP content in the brain is increased by the
deletion of HO-2, suggesting that CO mildly suppresses
ATP production during normoxia. Once the tonic inhibition
is relieved by hypoxia, it gives way to the rise in dynamic
strength of compensatory ATP maintenance. In HO-2-null
mice, neurovascular units lacking such a tonic inhibitory
system are unable to compensate ATP levels upon hypoxia
(Fig. 5). Such a notion is consistent with previous studies
indicating that pharmacological inhibition of HO increases
the basal O2 consumption in the liver [71] and that an
increase in endogenous CO by the enzyme induction inhib-
its cellular respiration through its inhibitory effects on cyto-
chrome c oxidase [72]. Although the study provides
evidence for a novel protective mechanism of neurovascular
units against hypoxia that is operated by multiple gases,
further investigation is required to reveal functional links
between neuronal and microvascular coupling through mul-
tiple gases and gas-responsive metabolic systems.

Conclusion

Stress-inducible and constitutive CO plays physiologic roles
for maintaining homeostasis of cell and organ function. CO
binding to CBS impacts remethylation and transsulfuration
pathways, leading to regulation of protein methylation in-
volving epigenetic modification and downregulation of
H2S, and resultant alterations in cell functions in vivo,
respectively. Identification of methylated molecular targets
and/or macromolecules responsible for direct H2S binding is
needed to establish a concept that gases such as O2, CO, and

H2S constitute an important class of messengers that regu-
late metabolic systems through multiple mechanisms.
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