Advertisement

The global impacts of food production

Food is produced and processed by millions of farmers and intermediaries globally, with substantial associated environmental costs. Given the heterogeneity of producers, what is the best way to reduce food's environmental impacts? Poore and Nemecek consolidated data on the multiple environmental impacts of ∼38,000 farms producing 40 different agricultural goods around the world in a meta-analysis comparing various types of food production systems. The environmental cost of producing the same goods can be highly variable. However, this heterogeneity creates opportunities to target the small numbers of producers that have the most impact.
Science, this issue p. 987

Abstract

Food’s environmental impacts are created by millions of diverse producers. To identify solutions that are effective under this heterogeneity, we consolidated data covering five environmental indicators; 38,700 farms; and 1600 processors, packaging types, and retailers. Impact can vary 50-fold among producers of the same product, creating substantial mitigation opportunities. However, mitigation is complicated by trade-offs, multiple ways for producers to achieve low impacts, and interactions throughout the supply chain. Producers have limits on how far they can reduce impacts. Most strikingly, impacts of the lowest-impact animal products typically exceed those of vegetable substitutes, providing new evidence for the importance of dietary change. Cumulatively, our findings support an approach where producers monitor their own impacts, flexibly meet environmental targets by choosing from multiple practices, and communicate their impacts to consumers.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

Summary

Materials and Methods
Supplementary Text
Figs. S1 to S14
Tables S1 to S17
References (41151)
Data S1 and S2

Resources

File (aaq0216-poore-sm-revision1.pdf)
File (aaq0216-poore-sm.pdf)
File (aaq0216_datas1.xls)
File (aaq0216_datas2.xls)

References and Notes

1
H. C. J. Godfray, J. R. Beddington, I. R. Crute, L. Haddad, D. Lawrence, J. F. Muir, J. Pretty, S. Robinson, S. M. Thomas, C. Toulmin, Food security: The challenge of feeding 9 billion people. Science 327, 812–818 (2010).
2
J. A. Foley, N. Ramankutty, K. A. Brauman, E. S. Cassidy, J. S. Gerber, M. Johnston, N. D. Mueller, C. O’Connell, D. K. Ray, P. C. West, C. Balzer, E. M. Bennett, S. R. Carpenter, J. Hill, C. Monfreda, S. Polasky, J. Rockström, J. Sheehan, S. Siebert, D. Tilman, D. P. M. Zaks, Solutions for a cultivated planet. Nature 478, 337–342 (2011).
3
FAO, “The state of food and agriculture” (FAO, 2014).
5
FAO, “The second report on the state of the world’s plant genetic resources for food and agriculture” (FAO, 2010).
6
K. M. Carlson, J. S. Gerber, N. D. Mueller, M. Herrero, G. K. MacDonald, K. A. Brauman, P. Havlik, C. S. O’Connell, J. A. Johnson, S. Saatchi, P. C. West, Greenhouse gas emissions intensity of global croplands. Nat. Clim. Change 7, 63–68 (2016).
7
P. C. West, J. S. Gerber, P. M. Engstrom, N. D. Mueller, K. A. Brauman, K. M. Carlson, E. S. Cassidy, M. Johnston, G. K. MacDonald, D. K. Ray, S. Siebert, Leverage points for improving global food security and the environment. Science 345, 325–328 (2014).
8
P. J. Gerber, H. Steinfeld, B. Henderson, A. Mottet, C. Opio, J. Dijkman, A. Falcucci, G. Tempio, “Tackling climate change through livestock: A global assessment of emissions and mitigation opportunities” (FAO, 2013).
9
European Commission, “Recommendation 2013/179/EU on the use of common methods to measure and communicate the life cycle environmental performance of products and organisations” (European Commission, 2013).
10
S. Hellweg, L. Milà i Canals, Emerging approaches, challenges and opportunities in life cycle assessment. Science 344, 1109–1113 (2014).
11
K. Paustian, Bridging the data gap: Engaging developing country farmers in greenhouse gas accounting. Environ. Res. Lett. 8, 021001 (2013).
12
S. Clune, E. Crossin, K. Verghese, Systematic review of greenhouse gas emissions for different fresh food categories. J. Clean. Prod. 140, 766–783 (2017).
13
D. Tilman, M. Clark, Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).
14
M. Clark, D. Tilman, Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environ. Res. Lett. 12, 064016 (2017).
15
M. de Vries, I. J. M. de Boer, Comparing environmental impacts for livestock products: A review of life cycle assessments. Livest. Sci. 128, 1–11 (2010).
16
D. Nijdam, T. Rood, H. Westhoek, The price of protein: Review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes. Food Policy 37, 760–770 (2012).
17
See the supplementary materials.
18
W. Steffen, K. Richardson, J. Rockström, S. E. Cornell, I. Fetzer, E. M. Bennett, R. Biggs, S. R. Carpenter, W. de Vries, C. A. de Wit, C. Folke, D. Gerten, J. Heinke, G. M. Mace, L. M. Persson, V. Ramanathan, B. Reyers, S. Sörlin, Planetary boundaries: Guiding human development on a changing planet. Science 347, 1259855 (2015).
19
A. F. Bouwman, D. P. Van Vuuren, R. G. Derwent, M. Posch, A global analysis of acidification and eutrophication of terrestrial ecosystems. Water Air Soil Pollut. 141, 349–382 (2002).
20
E. Röös, C. Sundberg, P. Tidåker, I. Strid, P.-A. Hansson, Can carbon footprint serve as an indicator of the environmental impact of meat production? Ecol. Indic. 24, 573–581 (2013).
21
E. Beza, J. V. Silva, L. Kooistra, P. Reidsma, Review of yield gap explaining factors and opportunities for alternative data collection approaches. Eur. J. Agron. 82, 206–222 (2017).
22
Z. Cui, L. Wu, Y. L. Ye, W. Q. Ma, X. P. Chen, F. S. Zhang, Trade-offs between high yields and greenhouse gas emissions in irrigation wheat cropland in China. Biogeosciences 11, 2287–2294 (2014).
23
J. K. Ladha, A. N. Rao, A. K. Raman, A. T. Padre, A. Dobermann, M. Gathala, V. Kumar, Y. Saharawat, S. Sharma, H. P. Piepho, M. M. Alam, R. Liak, R. Rajendran, C. K. Reddy, R. Parsad, P. C. Sharma, S. S. Singh, A. Saha, S. Noor, Agronomic improvements can make future cereal systems in South Asia far more productive and result in a lower environmental footprint. Global Change Biol. 22, 1054–1074 (2016).
24
Z. Cui, H. Zhang, X. Chen, C. Zhang, W. Ma, C. Huang, W. Zhang, G. Mi, Y. Miao, X. Li, Q. Gao, J. Yang, Z. Wang, Y. Ye, S. Guo, J. Lu, J. Huang, S. Lv, Y. Sun, Y. Liu, X. Peng, J. Ren, S. Li, X. Deng, X. Shi, Q. Zhang, Z. Yang, L. Tang, C. Wei, L. Jia, J. Zhang, M. He, Y. Tong, Q. Tang, X. Zhong, Z. Liu, N. Cao, C. Kou, H. Ying, Y. Yin, X. Jiao, Q. Zhang, M. Fan, R. Jiang, F. Zhang, Z. Dou, Pursuing sustainable productivity with millions of smallholder farmers. Nature 555, 363–366 (2018).
25
P. Smith, M. Bustamante, H. Ahammad, H. Clark, H. Dong, E. A. Elsiddig, H. Haberl, R. Harper, J. House, M. Jafari, O. Masera, C. Mbow, N. H. Ravindranath, C. W. Rice, C. Robledo Abad, A. Romanovskaya, F. Sperling, F. N. Tubiello, G. Berndes, S. Bolwig, H. Böttcher, R. Bright, F. Cherubini, H. Chum, E. Corbera, F. Creutzig, M. Delucchi, A. Faaij, J. Fargione, G. Hänsel, G. Heath, M. Herrero, R. Houghton, H. Jacobs, A. K. Jain, E. Kato, O. Lucon, D. Pauly, R. Plevin, A. Popp, J. R. Porter, B. Poulter, S. Rose, A. de Siqueira Pinto, S. Sohi, B. Stocker, A. Strømman, S. Suh, J. van Minnen, T. Krug, G. Nabuurs, M. Molodovskaya, in Climate Change 2014: Mitigation of Climate Change (Cambridge Univ. Press, 2015), pp. 811–922.
26
E. Song, B. L. Nelson, J. Staum, Shapley effects for global sensitivity analysis: Theory and computation. SIAM/ASA J. Uncertain. Quantif. 4, 1060–1083 (2016).
27
Q. Yu, W. Wu, L. You, T. Zhu, J. van Vliet, P. H. Verburg, Z. Liu, Z. Li, P. Yang, Q. Zhou, H. Tang, Assessing the harvested area gap in China. Agric. Syst. 153, 212–220 (2017).
28
R. N. German, C. E. Thompson, T. G. Benton, Relationships among multiple aspects of agriculture’s environmental impact and productivity: A meta-analysis to guide sustainable agriculture. Biol. Rev. Cambridge Philos. Soc. 92, 716–738 (2017).
29
R. Lal, Digging deeper: A holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems. Global Chang. Biol. 10.1111/gcb.14054 (2018). 10.1111/gcb.14054
30
P. Smith, D. Martino, Z. Cai, D. Gwary, H. Janzen, P. Kumar, B. McCarl, S. Ogle, F. O’Mara, C. Rice, Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture. Agric. Ecosyst. Environ. 118, 6–28 (2007).
31
K. B. Waldman, J. M. Kerr, Limitations of certification and supply chain standards for environmental protection in commodity crop production. Annu. Rev. Resour. Econ. 6, 429–449 (2014).
33
D. C. Nepstad, W. Boyd, C. M. Stickler, T. Bezerra, A. A. Azevedo, Responding to climate change and the global land crisis: REDD+, market transformation and low-emissions rural development. Philos. Trans. R. Soc. London Ser. B 368, 20120167 (2013).
34
A. Mottet, C. de Haan, A. Falcucci, G. Tempio, C. Opio, P. Gerber, Livestock: On our plates or eating at our table? A new analysis of the feed/food debate. Global Food Sec. 14, 1–8 (2017).
35
M. Springmann, D. Mason-D’Croz, S. Robinson, K. Wiebe, H. C. J. Godfray, M. Rayner, P. Scarborough, Mitigation potential and global health impacts from emissions pricing of food commodities. Nat. Clim. Change 7, 69–74 (2016).
36
K. Denef, K. Paustian, S. Archibeque, S. Biggar, D. Pape, “Report of greenhouse gas accounting tools for agriculture and forestry sectors” (Interim report to U.S. Department of Agriculture under contract no. GS­23F­8182H, ICF International, 2012).
37
GSM Association (GSMA), “Creating scalable, engaging mobile solutions for agriculture” (GSMA, 2017).
38
Organisation for Economic Co-operation and Development (OECD), “Agriculture policy monitoring and evaluation 2017” (OECD, 2017).
39
K. Segerson, Voluntary approaches to environmental protection and resource management. Annu. Rev. Resour. Economics 5, 161–180 (2013).
40
European Parliament and Council, “Establishing a common organization of the markets in agricultural products” [Regulation (EU) 1308/2013, European Union, 2013].
41
J. Pryshlakivsky, C. Searcy, Fifteen years of ISO 14040: A review. J. Clean. Prod. 57, 115–123 (2013).
42
T. C. Ponsioen, H. M. G. van der Werf, Five propositions to harmonize environmental footprints of food and beverages. J. Clean. Prod. 153, 457–464 (2017).
43
Intergovernmental Panel on Climate Change (IPCC), Climate Change 2013: The Physical Science Basis (Cambridge Univ. Press, 2013).
44
CML, “CML2 Baseline Method 2000” (CML, 2001).
45
A. M. Boulay, J. Bare, L. Benini, M. Berger, M. J. Lathuillière, A. Manzardo, M. Margni, M. Motoshita, M. Núñez, A. V. Pastor, B. Ridoutt, T. Oki, S. Worbe, S. Pfister, The WULCA consensus characterization model for water scarcity footprints: Assessing impacts of water consumption based on available water remaining (AWARE). Int. J. Life Cycle Assess. 23, 368–378 (2018).
46
IPCC, Climate Change 2007: Mitigation of Climate Change (Cambridge Univ. Press, 2007).
47
GADM Database of Global Administrative Areas (v. 2.7), www.gadm.org/.
48
FAO, “Harmonized World Soil Database (version 1.2)” (FAO, 2012).
49
N. H. Batjes, “World soil property estimates for broad-scale modelling (WISE30sec)” (ISRIC report 2015/01, World Soil Information, 2015).
50
L. Scherer, S. Pfister, Modelling spatially explicit impacts from phosphorus emissions in agriculture. Int. J. Life Cycle Assess. 20, 785–795 (2015).
51
J. Danielson, D. Gesch, An enhanced global elevation model generalized from multiple higher resolution source datasets. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XXXVII, 1857–1864 (2008).
52
R. J. Hijmans, S. E. Cameron, J. L. Parra, P. G. Jones, A. Jarvis, Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
53
R. J. Zomer, A. Trabucco, O. van Straaten, D. A. Bossio, “Carbon, land and water: A global analysis of the hydrologic dimensions of climate change mitigation through afforestation/reforestation” (Research report 101, International Water Management Institute, 2006).
54
R. Hiederer, F. Ramos, C. Capitani, R. Koeble, V. Blujdea, O. Gomez, D. Mulligan, L. Marelli, “Biofuels: A new methodology to estimate GHG emissions from global land use change” (European Commission Joint Research Centre, 2010).
55
S. Pfister, P. Bayer, A. Koehler, S. Hellweg, Environmental impacts of water use in global crop production: Hotspots and trade-offs with land use. Environ. Sci. Technol. 45, 5761–5768 (2011).
56
F. T. Portmann, S. Siebert, P. Döll, MIRCA2000—global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling. Global Biogeochem. Cycles 24, GB1011 (2010).
57
A. K. Chapagain, A. Y. Hoekstra, The blue, green and grey water footprint of rice from production and consumption perspectives. Ecol. Econ. 70, 749–758 (2011).
58
T. Nemecek, X. Bengoa, V. Rossi, S. Humbert, J. Lansche, P. Mouron, E. Riedener, “World Food LCA Database: Methodological guidelines for the life cycle inventory of agricultural products” (Quantis and Agroscope, version 3.0, 2015).
59
FAO, AQUASTAT Database; www.fao.org/nr/water/aquastat/main/index.stm [accessed 12 August 2016].
60
R. G. Allen, L. S. Pereira, D. Raes, M. Smith, “Crop evapotranspiration: Guidelines for computing crop requirements” (FAO irrigation and drainage paper 56, FAO, 1998).
61
S. Siebert, F. T. Portmann, P. Doll, Global patterns of cropland use intensity. Remote Sens. 2, 1625–1643 (2010).
62
N. Ramankutty, A. T. Evan, C. Monfreda, J. Foley, Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochem. Cycles 22, GB1003 (2008).
63
J. Webb, S. G. Sommer, T. Kupper, K. Groenestein, N. J. Hutchings, B. Eurich-Menden, L. Rodhe, T. H. Misselbrook, B. Amon, in Agroecology and Strategies for Climate Change, vol. 8 of Sustainable Agriculture Reviews, E. Lichtfouse, Ed. (Springer, 2012), pp. 67–107.
64
J. Sintermann, A. Neftel, C. Ammann, C. Häni, A. Hensen, B. Loubet, C. R. Flechard, Are ammonia emissions from field-applied slurry substantially over-estimated in European emission inventories? Biogeosciences 9, 1611–1632 (2012).
65
V. Colomb, S. Ait Amar, C. Basset Mens, A. Gac, G. Gaillard, P. Koch, J. Mousset, T. Salou, A. Tailleur, H. M. G. van der Werf, AGRIBALYSE®, the French LCI Database for agricultural products: high quality data for producers and environmental labelling. Oilseeds Fats Crops Lipids 22, D104 (2015).
66
American Society of Agricultural Engineers (ASAE), “Manure production and characteristics” (ASAE, 2005).
67
European Environment Agency (EEA), “EMEP/EEA air pollutant emission inventory guidebook 2013: Technical guidance to prepare national emission inventories” (Technical report 12/2013, EEA, 2013).
68
T. V. Vellinga, H. Blonk, M. Marinussen, W. J. van Zeist, I. J. M. de Boer, D. Starmans, “Methodology used in FeedPrint: A tool quantifying greenhouse gas emissions of feed production and utilization” (Report 674, Wageningen UR Livestock Research, 2013).
70
R. Köble, “The Global Nitrous Oxide Calculator (GNOC) online tool manual, version 1.2.4” (European Union, 2014); http://gnoc.jrc.ec.europa.eu/.
71
IPCC 2006, 2006 IPCC Guidelines for National Greenhouse Gas Inventories, H. S. Eggleston, L. Buendia, K. Miwa, T. Ngara, K. Tanabe, Eds. (Institute for Global Environmental Strategies, 2006).
72
H. Kowata, H. Moriyama, K. Hayashi, H. Kato, in Proceedings of the 6th International Conference on LCA in the Agri-Food Sector: Towards a Sustainable Management of the Food Chain, Zurich, Switzerland, 12 to 14 November 2008 (Agroscope Reckenholz-Tänikon Research Station ART, 2009), pp. 49–57.
73
M. M. Mekonnen, A. Y. Hoekstra, “The green, blue and grey water footprint of farm animals and animal products” (Value of Water Research Report Series no. 48, UNESCO-IHE Institute for Water Education, 2010).
74
United Nations Development Programme (UNDP), “Human development report 2014” (UNDP, 2014).
75
M. Hauschild, J. Potting, “Spatial differentiation in Life Cycle impact assessment: The EDIP2003 methodology” (Environmental News no. 80, Danish Ministry of the Environment, 2005).
76
M. Goedkoop, R. Heijungs, M. Huijbregts, A. De Schryver, J. Struijs, R. van Zelm, “ReCiPe 2008: A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and endpoint level” (Ministry of Housing, Spatial Planning and Environment, 2009).
77
European Commission Joint Research Centre, EDGAR v4.2 (2011); http://edgar.jrc.ec.europa.eu/overview.php?v=42.
78
FAO, “Yield and nutritional value of the commercially more important fish species” (FAO, 1989).
79
International Dairy Federation (IDF), “A common carbon footprint approach for dairy: The IDF guide to standard lifecycle assessment methodology for the dairy sector,” Bull. Int. Dairy Fed. (no. 445) (2010).
80
C. Opio, P. Gerber, A. Mottet, A. Falcucci, G. Tempio, M. MacLeod, T. Vellinga, B. Henderson, H. Steinfeld, “Greenhouse gas emissions from ruminant supply chains: A global life cycle assessment” (FAO, 2013).
81
T. Nemecek, F. Hayer, E. Bonnin, B. Carrouée, A. Schneider, C. Vivier, Designing eco-efficient crop rotations using life cycle assessment of crop combinations. Eur. J. Agron. 65, 40–51 (2015).
82
FAO, “Tree crops: Guidelines for estimating area data” (FAO, 2011).
83
B. P. Weidema, C. Bauer, R. Hischier, C. Mutel, T. Nemecek, J. Reinhard, C. O. Vadenbo, G. Wernet, “Overview and methodology: Data quality guideline for the ecoinvent database version 3” (ecoinvent report 1, ecoinvent Centre, 2013).
84
E. Stehfest, L. Bouwman, N2O and NO emission from agricultural fields and soils under natural vegetation: Summarizing available measurement data and modeling of global annual emissions. Nutr. Cycl. Agroecosyst. 74, 207–228 (2006).
85
EEA, “EMEP/EEA air pollutant emission inventory guidebook 2016: Technical guidance to prepare national emission inventories” (Report 21/2016, EEA, 2016).
86
F. J. de Ruijter, J. F. M. Huijsmans, B. Rutgers, Ammonia volatilization from crop residues and frozen green manure crops. Atmos. Environ. 44, 3362–3368 (2010).
87
S. K. Akagi, R. J. Yokelson, C. Wiedinmyer, M. J. Alvarado, J. S. Reid, T. Karl, J. D. Crounse, P. O. Wennberg, Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos. Chem. Phys. 11, 4039–4072 (2011).
88
F. N. Tubiello, R. Biancalani, M. Salvatore, S. Rossi, G. Conchedda, A worldwide assessment of greenhouse gas emissions from drained organic soils. Sustainability 8, 371 (2016).
89
E. M. W. Smeets, L. F. Bouwman, E. Stehfest, D. P. van Vuuren, A. Posthuma, Contribution of N2O to the greenhouse gas balance of first-generation biofuels. Global Change Biol. 15, 1–23 (2009).
90
J. Shan, X. Yan, Effects of crop residue returning on nitrous oxide emissions in agricultural soils. Atmos. Environ. 71, 170–175 (2013).
91
H. Chen, X. Li, F. Hu, W. Shi, Soil nitrous oxide emissions following crop residue addition: A meta-analysis. Global Change Biol. 19, 2956–2964 (2013).
92
C. Nevison, Review of the IPCC methodology for estimating nitrous oxide emissions associated with agricultural leaching and runoff. Chemosphere Global Change Sci. 2, 493–500 (2000).
93
G. Van Drecht, A. F. Bouwman, J. M. Knoop, A. H. W. Beusen, C. R. Meinardi, Global modeling of the fate of nitrogen from point and nonpoint sources in soils, groundwater, and surface water. Global Biogeochem. Cycles 17, 1115 (2003).
94
I. G. Burns, An equation to predict the leaching of surface-applied nitrate. J. Agric. Sci. 85, 443–454 (1975).
95
S. M. Thomas, S. F. Ledgard, G. S. Francis, Improving estimates of nitrate leaching for quantifying New Zealand’s indirect nitrous oxide emissions. Nutr. Cycl. Agroecosyst. 73, 213–226 (2005).
96
J. Liu, L. You, M. Amini, M. Obersteiner, M. Herrero, A. J. B. Zehnder, H. Yang, A high-resolution assessment on global nitrogen flows in cropland. Proc. Natl. Acad. Sci. U.S.A. 107, 8035–8040 (2010).
97
E. Papatryphon, J. Petit, H. M. G. Van Der Werf, K. J. Sadasivam, K. Claver, Nutrient-balance modeling as a tool for environmental management in aquaculture: The case of trout farming in France. Environ. Manage. 35, 161–174 (2005).
98
IPCC, “2013 supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands” (IPCC, 2014).
99
U. Dämmgen, “Calculations of emission from German agriculture: National Emission Inventory Report (NIR) 2009 for 2007” (Johann Heinrich von Thünen-Institut, 2009).
100
A. Gross, C. E. Boyd, C. W. Wood, Nitrogen transformations and balance in channel catfish ponds. Aquac. Eng. 24, 1–14 (2000).
101
G. L. Schroeder, Carbon and nitrogen budgets in manured fish ponds on Israel’s coastal plain. Aquaculture 62, 259–279 (1987).
102
J. C. Fry, in Detritus and Microbial Ecology in Aquaculture, D. J. W. Moriarty, R. S. V. Pullin, Eds. (International Center for Living Aquatic Resources Management, 1987), pp. 83–122.
103
W. Lewis Jr., ., Global primary production of lakes: 19th Baldi Memorial Lecture. Inland Waters 1, 1–28 (2011).
104
G. L. Schroeder, Autotrophic and heterotrophic production of micro-organisms in intensely-manured fish ponds, and related fish yields. Aquaculture 14, 303–325 (1978).
105
X. Wang, K. Andresen, A. Handå, B. Jensen, K. I. Reitan, Y. Olsen, Chemical composition and release rate of waste discharge from an Atlantic salmon farm with an evaluation of IMTA feasibility. Aquac. Environ. Interact. 4, 147–162 (2013).
106
R. D. Fallon, S. Harrits, R. S. Hanson, T. D. Brock, The role of methane in internal carbon cycling in Lake Mendota during summer stratification. Limnol. Oceanogr. 25, 357–360 (1980).
107
K. M. Kuivila, J. W. Murray, A. H. Devol, M. E. Lidstrom, C. E. Reimers, Methane cycling in the sediments of Lake Washington. Limnol. Oceanogr. 33, 571–581 (1988).
108
O. J. Hall, L. G. Anderson, O. Holby, S. Kollberg, M.-O. Samuelsson, Chemical flux and mass balances in a marine fish cage farm. I. Carbon. Mar. Ecol. Prog. Ser. 61, 61–73 (1990).
109
D. M. Alongi, A. D. McKinnon, R. Brinkman, L. A. Trott, M. C. Undu, Muawanah, Rachmansyah, The fate of organic matter derived from small-scale fish cage aquaculture in coastal waters of Sulawesi and Sumatra, Indonesia. Aquaculture 295, 60–75 (2009).
110
D. Bastviken, L. J. Tranvik, J. A. Downing, P. M. Crill, A. Enrich-Prast, Freshwater methane emissions offset the continental carbon sink. Science 331, 50 (2011).
111
A. M. Detweiler, B. M. Bebout, A. E. Frisbee, C. A. Kelley, J. P. Chanton, L. E. Prufert-Bebout, Characterization of methane flux from photosynthetic oxidation ponds in a wastewater treatment plant. Water Sci. Technol. 70, 980–989 (2014).
112
D. Bastviken, J. J. Cole, M. L. Pace, M. C. Van de Bogert, Fates of methane from different lake habitats: Connecting whole-lake budgets and CH4 emissions. J. Geophys. Res. 113, G02024 (2008).
113
Environmental Protection Agency (EPA), “Inventory of U.S. greenhouse gas emissions and sinks: 1990–2014” (EPA, 2016).
114
M. Holmer, D. Wildish, B. Hargrave, “Organic enrichment from marine finfish aquaculture and effects on sediment biogeochemical processes,” in Handbook of Environmental Chemistry, vol. 5M, Environmental Effects of Marine Finfish Aquaculture, B. T. Hargrave, Ed. (Springer, 2005), pp. 181–206.
115
K. I. Suhr, C. O. Letelier-Gordo, I. Lund, Anaerobic digestion of solid waste in RAS: Effect of reactor type on the biochemical acidogenic potential (BAP) and assessment of the biochemical methane potential (BMP) by a batch assay. Aquac. Eng. 65, 65–71 (2015).
116
Blonk Consultants, Direct Land Use Change Assessment Tool, version 2013.1 (2013).
117
Joint Research Centre (JRC), Support to Renewable Energy Directive (2010); https://esdac.jrc.ec.europa.eu/content/support-renewable-energy-directive.
118
The British Standards Institution, “Publicly available specification (PAS 2050: 2011)” (British Standards Institution, 2011).
119
S. Rossi, F. N. Tubiello, P. Prosperi, M. Salvatore, H. Jacobs, R. Biancalani, J. I. House, L. Boschetti, FAOSTAT estimates of greenhouse gas emissions from biomass and peat fires. Clim. Change 135, 699–711 (2016).
120
N. Hosonuma, M. Herold, V. De Sy, R. S. De Fries, M. Brockhaus, L. Verchot, A. Angelsen, E. Romijn, An assessment of deforestation and forest degradation drivers in developing countries. Environ. Res. Lett. 7, 044009 (2012).
121
M. C. C. Hansen, P. V. Potapov, R. Moore, M. Hancher, S. A. Turubanova, A. Tyukavina, D. Thau, S. V. Stehman, S. J. Goetz, T. R. Loveland, A. Kommareddy, A. Egorov, L. Chini, C. O. Justice, J. R. G. Townshend, High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).
122
ecoinvent, “Background data for transport” (ecoinvent Centre, 2013); www.ecoinvent.org/files/transport_default_20130722.xls.
123
L. Fulton, P. Cazzola, F. Cuenot, IEA Mobility Model (MoMo) and its use in the ETP 2008. Energy Policy 37, 3758–3768 (2009).
124
United Nations Conference on Trade and Development (UNCTAD), “Review of maritime transport 2015” (UNCTAD, 2015).
125
International Civil Aviation Organization, Civil Aviation Statistics of the World; www.icao.int/sustainability/Pages/Statistics.aspx.
126
S. J. James, C. James, The food cold-chain and climate change. Food Res. Int. 43, 1944–1956 (2010).
127
G. Wernet, C. Bauer, B. Steubing, J. Reinhard, E. Moreno-Ruiz, B. Weidema, The ecoinvent database version 3 (part I): Overview and methodology. Int. J. Life Cycle Assess. 21, 1218–1230 (2016).
128
FAO, “Global food losses and food waste—extent, causes and prevention” (FAO, 2011).
129
FAO, “Food balance sheets: A handbook” (FAO, 2001).
130
J. Gustavsson, C. Cederberg, U. Sonesson, A. Emanuelsson, “The methodology of the FAO study: ‘Global food losses and food waste—extent, causes and prevention’ - FAO, 2011” [Swedish Institute for Food and Biotechnology (SIK) report 857, SIK, 2013].
131
FAO, AQUASTAT; www.fao.org/nr/water/aquastat/data/query/index.html [accessed 14 October 2015].
132
S. Siebert, J. Burke, J. M. Faures, K. Frenken, J. Hoogeveen, P. Döll, F. T. Portmann, Groundwater use for irrigation – a global inventory. Hydrol. Earth Syst. Sci. 14, 1863–1880 (2010).
133
Research Institute of Organic Agriculture (FiBL) and International Federation of Organic Agriculture Movements (IFOAM), in The World of Organic Agriculture: Statistics and Emerging Trends 2014, H. Willer, J. Lernoud, Eds. (FiBL and IFOAM, 2014).
134
International Institute for Applied Systems Analysis/FAO, “Global Agro-Ecological Zones (GAEZ v3.0) user’s guide” (FAO and IIASA, 2012).
135
FAO, FishStatJ - software for fishery statistical time series; www.fao.org/fishery/statistics/software/fishstatj.
136
FAO, “Global livestock environmental assessment model: Reference documentation v2.0” (FAO, 2016).
137
National Development and Reform Commission of China, “National data compilation of revenue and cost of agricultural products 2013” (China Statistics Press, 2013).
138
E. C. Ellis, K. Klein Goldewijk, S. Siebert, D. Lightman, N. Ramankutty, Anthropogenic transformation of the biomes, 1700 to 2000. Glob. Ecol. Biogeogr. 19, 589–606 (2010).
139
M. Herrero, P. Havlík, H. Valin, A. Notenbaert, M. C. Rufino, P. K. Thornton, M. Blümmel, F. Weiss, D. Grace, M. Obersteiner, Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc. Natl. Acad. Sci. U.S.A. 110, 20888–20893 (2013).
140
R. A. Houghton, J. I. House, J. Pongratz, G. R. van der Werf, R. S. DeFries, M. C. Hansen, C. Le Quéré, N. Ramankutty, Carbon emissions from land use and land-cover change. Biogeosciences 9, 5125–5142 (2012).
141
P. Friedlingstein, R. M. Andrew, J. Rogelj, G. P. Peters, J. G. Canadell, R. Knutti, G. Luderer, M. R. Raupach, M. Schaeffer, D. P. van Vuuren, C. Le Quéré, Persistent growth of CO2 emissions and implications for reaching climate targets. Nat. Geosci. 7, 709–715 (2014).
142
G. Pujol, B. Iooss, A. Janon, K. Boumhaout, S. Da Veiga, T. Delage, J. Fruth, L. Gilquin, J. Guillaume, L. Le Gratiet, P. Lemaitre, B. L. Nelson, F. Monari, R. Oomen, B. Ramos, O. Roustant, E. Song, J. Staum, T. Touati, F. Weber, sensitivity (R package version 1.15.0, 2017).
143
E. H. Haddad, J. S. Tanzman, What do vegetarians in the United States eat? Am. J. Clin. Nutr. 78 (suppl.), 626S–632S (2003).
144
M. Springmann, H. C. J. Godfray, M. Rayner, P. Scarborough, Analysis and valuation of the health and climate change cobenefits of dietary change. Proc. Natl. Acad. Sci. U.S.A. 113, 4146–4151 (2016).
145
H. Darby, K. Hills, E. Cummings, R. Madden, “Assessing the value of oilseed meals for soil fertility and weed suppression” (University of Vermont Extension, 2010).
146
K. Schmidinger, E. Stehfest, Including CO2 implications of land occupation in LCAs—method and example for livestock products. Int. J. Life Cycle Assess. 17, 962–972 (2012).
147
European Commission Joint Research Centre, EDGAR v4.2 FT2010 (2013); http://edgar.jrc.ec.europa.eu/overview.php?v=42FT2010.
148
R. W. R. Parker, J. L. Blanchard, C. Gardner, B. S. Green, K. Hartmann, P. H. Tyedmers, R. A. Watson, Fuel use and greenhouse gas emissions of world fisheries. Nat. Clim. Change 8, 333–337 (2018).
149
D. Cordell, A. Rosemarin, J. J. Schröder, A. L. Smit, Towards global phosphorus security: A systems framework for phosphorus recovery and reuse options. Chemosphere 84, 747–758 (2011).
150
T. Coelli, A. Henningsen, frontier: Stochastic Frontier Analysis (R package version 1.1-2, 2017).
151
K. M. Strassmann, F. Joos, G. Fischer, Simulating effects of land use changes on carbon fluxes: Past contributions to atmospheric CO2 increases and future commitments due to losses of terrestrial sink capacity. Tellus Ser. B 60, 583–603 (2008).

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 360 | Issue 6392
1 June 2018

Submission history

Received: 5 October 2017
Accepted: 17 April 2018
Published in print: 1 June 2018

Permissions

Request permissions for this article.

Acknowledgments

We thank the many researchers who provided us with additional data, acknowledged in data S1. We are grateful to R. Grenyer, P. Smith, E. J. Milner-Gulland, C. Godfray, G. Gaillard, L. de Baan, Y. Malhi, D. Thomas, K. Javanaud, and K. Afemikhe for comments on the manuscript and Tyana for illustrations. Funding: This work was unfunded. Author contributions: J.P. conducted the analysis and wrote the manuscript. J.P. and T.N. contributed to the study design and data interpretation and reviewed the manuscript. Competing interests: The authors declare no competing interests. Data and materials availability: A Microsoft Excel file allowing full replication of this analysis, containing all original and recalculated data, has been deposited in the Oxford University Research Archive (doi.org/10.5287/bodleian:0z9MYbMyZ).

Authors

Affiliations

Department of Zoology, University of Oxford, New Radcliffe House, Oxford OX2 6GG, UK.
School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, UK.
Agroscope, Agroecology and Environment Research Division, LCA Research Group, CH-8046 Zürich, Switzerland.

Notes

*
Corresponding author. Email: [email protected]

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Food matters: Dietary shifts increase the feasibility of 1.5°C pathways in line with the Paris Agreement, Science Advances, 10, 13, (2024)./doi/10.1126/sciadv.adj3832
    Abstract
  2. Mixed diets can meet nutrient requirements with lower carbon footprints, Science Advances, 10, 15, (2024)./doi/10.1126/sciadv.adh1077
    Abstract
  3. Edible mushrooms: Functional foods or functional ingredients? A focus on Pleurotus spp., AIMS Agriculture and Food, 8, 2, (391-439), (2023).https://doi.org/10.3934/agrfood.2023022
    Crossref
  4. The Dietary Carbon Footprint of Portuguese Adults: Defining and Assessing Mitigation Scenarios for Greenhouse Gas Emissions, Sustainability, 15, 6, (5278), (2023).https://doi.org/10.3390/su15065278
    Crossref
  5. Exploring the Global Scientific Literature on Food Waste and Loss, Sustainability, 15, 6, (4757), (2023).https://doi.org/10.3390/su15064757
    Crossref
  6. Environmental Assessment of Local Food Policies through a Territorial Life Cycle Approach, Sustainability, 15, 6, (4740), (2023).https://doi.org/10.3390/su15064740
    Crossref
  7. Greenshell Mussel Products: A Comprehensive Review of Sustainability, Traditional Use, and Efficacy, Sustainability, 15, 5, (3912), (2023).https://doi.org/10.3390/su15053912
    Crossref
  8. How to Promote Healthier and More Sustainable Food Choices: The Case of Portugal, Sustainability, 15, 4, (3868), (2023).https://doi.org/10.3390/su15043868
    Crossref
  9. Towards a Win-Win Solution for Dietary Health and Carbon Reduction—Evidence from the Yangtze River Delta in China, Sustainability, 15, 4, (3530), (2023).https://doi.org/10.3390/su15043530
    Crossref
  10. Various Options for Mining and Metallurgical Waste in the Circular Economy: A Review, Sustainability, 15, 3, (2518), (2023).https://doi.org/10.3390/su15032518
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media