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Abstract 

 
 Economists generally view environmental enforcement as a tool to secure compliance 

with regulations. This paper demonstrates that credible enforcement significantly increases 

statutory over-compliance with regulations as well. We find that many plants with discharges 

typically below legally permitted levels reduce discharges further when regulators issue fines, 

even on other plants. Also, non-compliant plants often respond to sanctions by reducing 

discharges well beyond reductions required by law. Thus, increased enforcement generates 

substantial discharge reductions above and beyond those expected from simply deterring 

violations. 

 

JEL Classifications: K42; Q58; Q53 

Keywords: Over-compliance; Fines; Compliance; Enforcement; Regulation; Pollution Policy 
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1. Introduction 

 
Regulatory punishment for pollution violations is a mainstay of nearly every 

industrialized nation’s environmental policy. Economists generally view such enforcement as a 

tool to secure compliance. This paper empirically demonstrates that enforcement can 

significantly increase the degree of statutory over-compliance with environmental regulations as 

well. We show that this effect can be economically rational given discharge randomness or 

discharge jointness. 

Previous research has demonstrated high levels of statutory compliance with Clean Water 

Act regulations. For example, McClelland and Horowitz [22] found that aggregated biochemical 

oxygen demand (BOD) discharges from pulp and paper plants were approximately 50 percent of 

allowable levels. Shimshack and Ward [28] reported that roughly 98 percent of plants were in 

compliance with total suspended solids (TSS) and BOD regulations during an average month. 

Given these significant compliance rates, one might expect small overall reductions in discharges 

from increased enforcement efforts. Under conventional economic wisdom, only violating plants 

have incentives to respond to an increased probability of fines and then only by reducing 

discharges to just the legal threshold.  

However, we demonstrate that this conventional wisdom is inaccurate. Even in an 

industry where compliance is generally high, an increase in enforcement through fines can cause 

a significant reduction in discharges. Enforcement not only induces non-compliant plants to 

become compliant, it provokes many typically over-compliant plants to reduce discharges even 

further below their permitted levels. One implication of our results is that analyzing only the 

effect of enforcement on the compliance decision, as in much of the previous literature, 

substantially underestimates the impact of enforcement on environmental quality. Another 
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implication is that at least some degree of over-compliance is driven by traditional economic 

incentives, rather than by altruistic corporate social responsibility. While we make no attempt to 

explain the persistent low average level of discharges, we do find evidence that significant 

variation around this central tendency can be explained by variation in enforcement efforts. 

Our analysis begins with a conceptual framework that motivates the subsequent 

investigations. Plants with stochastic discharges face an uncertain and potentially changing 

regulatory environment. Plants learn about this environment by observing the regulator’s recent 

enforcement history. When a plant observes a sanction on itself or on other plants within its state, 

it updates its beliefs about the regulator’s overall credibility and stringency. The plant bases its 

target discharge levels, in part, on these updated beliefs.   

Next, the paper investigates the empirical relationship between enforcement and 

discharges. We use a panel of plant-level water pollutant discharges and sanction data from the 

EPA’s Permit Compliance System. The sample spanning 1990-2004 is the most modern in the 

literature. First, we test the overall strength of the enforcement response using linear regressions. 

In periods of high regulatory stringency, average discharges fall significantly. Second, using 

quantile regressions, we demonstrate that most of this response is by plants that statistically over-

comply, i.e. plants that usually discharge well below legally required levels. In periods of 

increased regulatory stringency, the entire statistical distribution of discharges, not just the upper 

tail, shifts downwards. In other words, plants with discharges below legally permitted levels 

reduce discharges further when regulators issue fines on other facilities. 

After demonstrating that enforcement significantly increases over-compliance, we 

explore two mechanisms for the link between enforcement and over-compliance: discharge 

randomness and discharge jointness. Plants with stochastic discharges or multiple pollutants may 
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have economic incentives to reduce contaminants in periods of high enforcement, even if they 

are typically discharging well below legally permitted levels. We find that increased regulatory 

stringency induces plants to go further beyond compliance when they face higher risks from 

violation due to stochastic discharges. Hence, randomness does play a role in the degree of over-

compliance attributable to enforcement. We also find that a pollutant’s response to enforcement 

is influenced by the risks from violation on a different pollutant discharged in the same 

production process. Hence, jointness also plays a role in determining the degree or extent of 

over-compliance. 

2. Context 

2.1 Literature 

Enforcement 

 
The empirical literature on enforcement emphasizes the direct role of coercive 

enforcement in reducing violations of standards. Studies by Magat and Viscusi [21] and Laplante 

and Rilstone [20] investigated the impact of inspections and the threat of inspections, 

respectively, on water pollution compliance rates and discharges. Gray and Deily [15] investigate 

non-monetary enforcement actions on compliance rates in the steel industry. Nadeau [23] 

considered the impact of enforcement activities on the duration of air pollution non-compliance. 

Stafford [30] showed that an increase in the maximum possible penalty decreased violations for 

hazardous waste polluters. Earnhart [13] investigated the impact of inspections, enforcement 

actions, and their threats on the discharges of Kansas wastewater treatment facilities. The above 

papers represent important contributions to the empirical enforcement literature. However, none 

of those papers highlight the effect of enforcement on the degree of over-compliance.  

Over-Compliance 

The empirical literature on over-compliance emphasizes mechanisms that indirectly 



 

 

5

 

reduce discharges below statutory levels. Most relevant for this study is the discharge 

randomness mechanism. For example, plants may hedge to provide a margin of safety against 

violations due to stochastic discharges. When stochastic shocks are particularly large, a plant 

may reduce its average discharges in an effort to stay compliant. Brannlund and Lofgren [9] took 

such impacts into account in estimating the shadow price of pollution, and rejected a zero 

marginal value. Bandyopadhyay & Horowitz [5] demonstrated that plants with greater discharge 

volatility had lower average discharges, which suggests that discharge levels alone may not fully 

capture plant behavior. Therefore, they used the implied probability of violation to measure plant 

behavior. They studied the effects of polluter and community characteristics on the probability of 

violation, but did not examine enforcement. 

The bulk of the over-compliance literature focuses on explaining persistent over-

compliance. Theoretical models by Arora and Gangopadhyay [4], Kirchoff [17], and Cavaliere 

[11] all showed that consumer preferences for environmental quality can generate over-

compliance as a market outcome. Arora and Cason [2,3] found empirical support for this theory; 

larger firms with greater public contact were more likely to participate in the EPA’s 33/50 

program. Arora and Cason [1] and Becker [8] used census data to show that demographic 

composition affected Toxics Release Inventory self-reported emissions and air pollution 

abatement expenditures, respectively. Similarly, Earnhart [14] demonstrated that community 

characteristics like unemployment, political factors, community size, and demographics 

impacted the environmental performance of Kansas wastewater treatment facilities. Perhaps the 

most economically intuitive explanation for voluntary over-compliance would be very low 

marginal variable costs of abatement, possibly due to “lumpy” abatement investments. For 

example, in a putty-clay investment scenario, the plant might over-invest in a fixed technology 
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for fear of future reductions in pollution standards. McClelland and Horowitz [22] statistically 

rejected this hypothesis of a negligible shadow value for discharges.  

The preceding explanations may well explain part of persistent over-compliance. 

However, these mechanisms move too slowly to explain much of the important short-run 

variation in observed over-compliance. In contrast, this short-run variation is the focus of our 

study, and we document that significant variation in the degree of over-compliance is attributable 

to variation in enforcement stringency. Further, the broader literature interprets over-compliance 

as discharges below permitted levels due to factors beyond regulation. Our interpretation might 

be thought of as statistical over-compliance, in the sense that there is some underlying risk of 

violation and sanction motivating reductions beyond what is required by law. 

2.2 Background 

 

Water pollutants for the U.S. pulp and paper industry are the focus of our analysis. We 

choose the pulp and paper industry because it is the largest discharger of conventional pollutants 

into U.S. waterways, releasing over 16 million cubic meters of wastewater daily. In our sample, 

water pollution permitting, inspection, and enforcement activities are conducted by state-level 

regulatory authorities under the auspices of the National Pollution Discharge Elimination System 

(NPDES). Monthly self-monitoring reports are the primary source of compliance information. 

On-site regulator inspections are intended to ensure the accuracy of these self-reports. 

Inspections also identify maintenance issues, serve as a source of information for future 

permitting, and provide an avenue to gather evidence to support enforcement actions. Inspections 

vary in purpose, but sampling inspections are the most significant. Sampling inspections consist 

of equipment examination, performance auditing, and regulator sampling of discharges.  
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Enforcement actions range from levying fines to making warning telephone calls. The 

full deterrent effect of sanctions may be greater than the nominal monetary cost, which is often 

significant by itself. Fine events may be signals of a broad willingness to be tough on non-

compliance. Increased regulatory threats may include enhanced penalties, some of which may be 

severe. Of course, very few such severe sanctions would be observed if the threat of them is 

credible.  

We take the standard view of the regulated plant as a rational decision-maker that 

undertakes abatement effort to the point where the marginal cost of such effort equals the 

corresponding marginal benefit. Plants face an uncertain regulatory environment, so their 

assessments of the threat of a fine for non-compliance are updated based upon experience. 

Following Sah’s [25] work on social osmosis in crime, we assume that an important credible 

source of information about the probability of a fine is the enforcement history of the regulator. 

Since there are likely to be shocks to the regulatory system, including changes from local 

political and economic conditions, the most informative data about current conditions is from the 

recent past. Recent sanctions by a regulator, on any plant, affect the regulator’s overall 

credibility and thus impact each plant’s perceived threat of a fine.1 Consequently, recent fines 

may influence discharges of both sanctioned plants and other plants in the same state. See 

Shimshack and Ward [28] for an empirical demonstration of this latter regulator reputation 

effect, also known in the law and policy literature as general deterrence. 

Treatment 

 Pulp and paper plants can meet mandated NPDES pollution limitations by modifying 

production processes or treating effluents. Historically, most abatement was from external end-

of-pipe treatment. More recently, external treatment options have been coupled with modern 
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production practices that mitigate effluent production. In the pulp and paper industry, wastewater 

treatment typically follows three steps: screening, primary clarification, and secondary biological 

treatment. Typically, wastewater first passes through bar screens that remove large solids. 

Second, gravity sedimentation or dissolved air floatation removes most suspended solids. Third, 

wastewater from the primary clarifiers is fed to facilities that use microorganisms to remove the 

effluents’ organic molecules. The most common of these secondary treatment technologies is the 

activated sludge process. 

 Pulp and paper treatment often produces discharges that are volatile from the plant’s 

perspective. Efficiency for common secondary biological treatment processes, for example, is 

highly sensitive to the number and composition of microorganisms, temperature, acidity, light, 

nutrient concentrations, substrate (organic matter) concentrations, dissolved oxygen levels, and 

sludge age [31]. Further, many primary clarifiers and secondary treatment basins are located 

outside and are therefore sensitive to weather and climatic conditions.  

 Environmental control in the industry also involves pollution jointness. For example, 

secondary biological treatment inherently removes both oxygen demanding substances and 

solids. Further, discharge reductions increasingly occur via process modifications. In pulping, 

changes for improved environmental performance include alternative raw materials, modern 

debarking and chip preparation, mechanical raw material transport, liquor spill control, and 

thermo-chemical changes [29]. In papermaking, the major environmental improvement has been 

wastewater recycling. These process modifications jointly reduce effluents as a whole. 

3. Data 

3.1 Our Sample 

 

The EPA’s Permit Compliance System (PCS) serves as our specific data source. 

Established in conjunction with the Clean Water Act and its amendments, the PCS tracks 
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monthly plant-level self-reported discharges, permitted effluent limitations, inspections, and 

enforcement actions. Our sample includes the most modern data currently available in the public 

version of the PCS. We consider 251 “major” pulp, paper, and paperboard mills in 28 sample 

states over 14 years. Specifically, we track plant’s discharges, limits, and enforcement activity 

for the 168 months between 1990-1996 and 1998-2004.2 The EPA identifies plants as major if 

they have a flow of one million gallons or more per day or pose a significant impact to water 

quality. We only consider major plants because these facilities are required to report their own 

discharges levels for operating pipes each month. We consider all states with two or more major 

pulp, paper, or paperboard mills. 

The dataset contains the relevant information for the conventional water pollutants 

biochemical oxygen demand (BOD) and total suspended solids (TSS). We choose these 

contaminants because nearly all pulp and paper mills produce wastewater with significant 

amounts of these discharges. While there are several measures of effluent discharges and limits, 

we examine average monthly quantities. All 251 plants report TSS quantities and a subset of 242 

plants also report BOD quanitities. For the purposes of analysis, we scale discharges to obtain 

ratios of actual to permitted discharges, which can be thought of as discharges as a percent of the 

standard. Since some plants may have multiple outfalls, our final plant-level unit of observation 

is the maximum discharge ratio for each pollutant across all outfalls.3 

In addition to discharges, the dataset contains information on administrative fines and 

inspections. Fines are monetary charges imposed by the state agency, rather than a court, for a 

violation. We consider fines coded as effluent violations in the PCS. This excludes sanctions for 

other types of violations such as paperwork errors, reporting errors, or poor equipment 

maintenance. To isolate fines at least partially attributable to BOD and TSS, we choose those 
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effluent sanctions preceded by one or more BOD or TSS violations in the previous year. We 

consider all inspections in which the regulator conducts effluent sampling. 

 All discharge and violation data in the PCS, and thus in the empirical analysis, is self-

reported. Intentional misreporting is punishable by large criminal sanctions, including jail time. 

These criminal penalties are borne directly by employees, unlike the effluent sanctions we study. 

Consequently, there are strong incentives for truthful reporting. Further, a USEPA Center for 

Environmental Information and Statistics [32] independent analysis has confirmed the accuracy 

of PCS data. Laplante and Rilstone [20] suggested a test for the accuracy of self-reported data 

based on the difference in reported discharges when an inspector is present or absent. In a 

regression of discharges on inspections and plant-level fixed effects, we fail to reject the null 

hypothesis of accurate self-reporting for both BOD and TSS. 

3.2 Summary Statistics 

 
Table 1 displays descriptive statistics about actual discharges and fines. Notably, Table 1 

indicates very substantial levels of over-compliance. On average, aggregate BOD discharges are 

less than 40 percent of permitted levels. TSS discharges are about 30 percent of permitted levels. 

Histograms displaying discharge ratios for a typical month are presented in Figure 1 and Figure 

2. In an average month, approximately 1 percent of plants are in violation. Several plants 

violated more than once. In total, 123 plants violated in one or more months for at least one 

pollutant during our sample period.  Of these, 53 plants recorded violations for both BOD and 

TSS. Over the entire sample, there were 439 BOD plant/month violations and 226 TSS 

plant/month violations. Overall, 62% of plant/month violations were BOD alone, 26% were TSS 

alone, and 12% were both BOD and TSS. Violations declined over time, although non-

monotonically. The maximum number of violations for both BOD and TSS occurred in 1990 and 
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the minimum number of violations occurred in 2004. Violations were also not distributed evenly 

across space, as both the total number of violations and violations per plant were considerably 

higher for a subset of states. 

The bottom portion of Table 1 presents descriptive statistics for administrative fines. 

There were 39 fines associated with BOD or TSS quantity violations, and these fines averaged 

about $32,700. Note that these fines should be interpreted relative to the gain in plant-level 

profits obtained by exceeding a given pollution standard in a given month, not relative to the 

overall operating revenue of a plant.  Fines modestly declined over time. The maximum number 

of fines in a given sample year was 6, in both 1992 and 1993. The minimum number of fines in a 

given sample year was 0, in both 1998 and 2004. As noted in Table 1, thirteen states levied fines 

during our sample period. These thirteen states had mean violations per plant between 2 and 4 

times higher (TSS, BOD respectively) than the 15 states that did not levy fines. While we do not 

know precisely what violation triggered a fine, it seems that fines tended to over-represent 

violations for both pollutants simultaneously. Eight of our 39 fines were preceded solely by one 

or more BOD violations in the previous year and 10 of 39 fines were preceded solely by one or 

more TSS violations in the previous year. 

Note that fines primarily enter our empirical specification though a regulator reputation 

variable that indicates the presence of a fine on another plant within the same state. Because one 

fine affects all other plants in the state, a significant fraction (8.8 percent) of observations have 

positive reputation effect fine variables.  

 The data also display significant volatility. The standard deviations of discharge ratios are 

0.30 and 0.28 for BOD and TSS. Plants with typically low discharges account for a large fraction 

of violations. About one-half of total BOD violations are by plants with median BOD discharge 
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ratios below 50 percent and about sixth-tenths of total TSS violations are by plants with median 

TSS discharge ratios below 50 percent.  

4.  Demonstrating Enforcement-Induced Changes in Discharges 

 

 In this section, we use panel-data techniques to analyze plants’ discharge responses to 

changes in regulatory enforcement. Following our conceptual framework, a key determinant in 

this exploration is the regulator’s recent enforcement history, a proxy for the likelihood, at any 

given time, of the regulator issuing a fine for a violation. First, we explore the impact of this 

regulator reputation effect on mean levels of discharges. Second, we explore the impact of the 

reputation effect across all ranges of the discharge distribution, from those plants that typically 

violate to those that greatly over-comply.  

4.1 Variables 

The dependent variable in each of our analyses is the ratio of actual discharges to the 

legally permitted level (discharges as a percent of the standard). The key explanatory variable, 

following [28], is a 0-1 dummy variable that indicates the existence of a fine on another plant j in 

plant i’s state in any of the 12 months prior to t.4 This measure proxies for plant beliefs, and thus 

we refer to the variable as the regulator reputation effect. The ideal measure of regulator 

reputation would be plants’ perceptions of regulatory stringency. However, perceptions are 

unobserved and unobservable.5 Fines are generally quite rare, so the very existence of a recent 

fine may lead a plant to conclude rationally that the threat of fines is higher than average, given a 

non-static regulatory environment. We later show that using the dummy approach in estimation 

is consistent with a two-state model of threat.6  

We also consider the impact of regulator actions on the sanctioned plant. Thus, we 

include a 0-1 dummy variable indicating whether that particular plant was fined in the previous 
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year. This idiosyncratic deterrence effect might reflect increasing sanctions for plants with an 

offense history. Additionally, inspections may affect discharges at the plant-level. So, we include 

the number of sampling inspections in the previous year as an explanatory variable.  

Plant production varies seasonally, thus we include quarterly dummy variables. 

Technological change may be an issue given our long data series. Thus we include annual 

dummies to account for broad trends in abatement technology. Further, for all linear regressions, 

we include plant-specific linear time trends to account for possible variation in adoption of 

technology across plants. 

Finally, we exploit the panel structure of the data by including fixed effects. For all linear 

regressions, we use plant-level fixed effects. Thus, we obtain identification only from within-

group variation. Plant-level fixed effects allow us to capture systematic differences due to factors 

such as different SIC codes, production capacity, and geographic conditions. Further, a natural 

concern in plant-level analyses is that regulators may target some plants for stricter enforcement 

based on their overall environmental performance. Without fixed effects, this targeting might 

produce a positive correlation between enforcement and discharges simply from cross-plant 

differences in overall enforcement.  

4.2 Linear Regressions 

Does enforcement activity reduce the overall discharge ratio on average? Our goal here is 

to establish the basic relationship between the perceived probability of sanction and pollution 

discharges. Thus, we run fixed-effects linear regressions of discharge ratios on regulator 

reputation enforcement variables for BOD and TSS.7 In addition, we included all the exogenous 

variables discussed above as controls. Results are presented in Table 2. Computed standard 

errors are heteroskedastic-consistent. T-statistics appear in parentheses. 
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Results in Table 2 indicate that the estimated impact of a fine on another plant in the 

same state on the discharge ratios is negative and strongly significant for both BOD and TSS.8 

The average discharge ratio declines 0.024 in the year following a fine. Given the overall mean 

discharge ratios, this translates (on average) into an approximately 6 percent reduction in 

aggregate discharges for BOD and an approximately 8 percent aggregate reduction for TSS.  

Idiosyncratic, individual fine deterrence effects are also statistically significant, but less 

economically significant than the reputation effects which simultaneously impact many plants. 

Seasonality appears to play a strong role in discharges, as all estimated related coefficients are 

large and significant. We also find that average discharges for both BOD and TSS trend 

downward over time. 

4.3 Conditional Quantile Regressions 

 
Do fines reduce discharges by plants statistically over-complying? Our goal here is to 

establish that the predicted fine-induced discharge response applies to over-compliers. The linear 

regression above demonstrated that average discharges respond to the increased regulatory threat 

associated with enforcement actions. However, this aggregate result might be driven solely by 

significant violators responding to the threat of sanctions. We therefore use Koenker and 

Bassett’s [18] conditional quantile regressions to examine the discharge response at various 

levels of compliance. Standard errors are estimated following [19,24]. 

In our context, the role of the quantile regression is to decompose the mean response 

revealed by the linear regression into changes across the state-wide probability distribution of 

discharge levels. Conditional quantile regressions allow us to estimate different fine slope 

coefficients for different discharge quantiles. For example, a regression on the 50th percentile 

estimates the effect of the fine reputation effect on the sample median. Since the sample median 
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of discharges is well into the over-compliance region, a significant predicted fine response for 

the 50th percentile would indicate that even plants in that statistically over-comply typically 

reduce discharges after a fine. In addition to the median regression, we also ran the 25th, 75th, and 

90th percentile regressions. Here, higher quantiles correspond to higher discharges. We do not 

examine more extreme quantiles such as the 95th percentile because quantile regressions are 

generally unstable at the extreme tails of distributions, due to reductions in sampling variation 

[10].  

In the quantile regression analyses, we include state-level fixed effects and state-level 

linear time trends to identify what happens to the overall discharge distribution within a state. 

We do not include plant-level fixed effects because such plant-level fixed effects in quantile 

regressions would yield coefficients that indicate a typical plant’s fine responses across the 

distribution of departures from the individual’s usual discharge level. So, a 90th percentile 

coefficient would be the fine response when plants are emitting a particularly large amount 

relative to their idiosyncratic typical levels. Our purpose, however, is to investigate if the 

pollution distribution shifts for plants operating below their discharge standard. In a linear 

regression context, the overall mean discharge response does not depend on which specific plants 

adjust. In contrast, the overall change in the shape of the state-level discharge distribution 

reflected in the quantile regression approach does. 

Quantile regression results for BOD and TSS are presented in Tables 3 and 4, 

respectively. We find strong evidence that plants reduce discharges after an increase in the 

predicted probability of a sanction for violation across the entire range of the discharges 

distribution. For both pollutants, enforcement significantly reduces discharges reductions at 

every estimated quantile.9 Recall that even the 90th percentile is in the over-compliance region, as 
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this percentile represents a discharge ratio of about 0.75 for BOD and 0.62 for TSS. The 

important lesson from these quantile regressions is that the entire discharge distribution 

significantly shifts in response to the reputation effect. 

Moreover, we find that the response at the highest quantiles tends to be larger than at the 

lowest. For both BOD and TSS, fines responses at the 25th and 90th percentiles are economically 

different from one another. For example, the TSS results in Table 4 indicate that the fine 

response at the 90th discharge percentile is more than 2.5 times greater than the fine response at 

the 25th discharge percentile. BOD results in Table 3 indicate that the fine response at the 90th 

percentile is approximately 6/10 greater than the fine response at the 25th percentile. Some, but 

not all, differences are statistically significant as well (e.g. TSS 25th vs. 90th, TSS 50th vs. 90th). 

These results are intuitive; plants closer to violating their standard may respond to a greater 

extent.  

The results establish that a fine induces a significant over-compliance response across all 

quantiles of the discharge distribution, including the lowest. Given this broad-based response, 

two questions naturally arise: Why would plants which statistically over-comply reduce 

discharges in response to an increased threat of sanction for a violation? Why would plants that 

sometimes violate reduce discharges in all periods, rather than simply reducing violations to the 

standard threshold? Section 5 explores these issues in more depth; we test the extent to which 

discharge randomness and jointness in pollution production can resolve these puzzles. However, 

we first explore the sensitivity of our key empirical regularity. 

4.4 Sensitivity Analysis 

Statistical Plausibility 

 
Are the statistical findings reasonable? An alternative and non-parametric analysis is a 

simple comparison of means event study. Here, we compare statewide discharges in the year 
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before and the year after a fine in that state, omitting the fined plant itself to ensure a fair 

comparison. We find that BOD discharges drop 5.2 percent and TSS discharges drop 9.6 percent. 

These results are comfortably close to those of the regression analysis, which is the preferred 

method because it accounts for covariates. 

Perhaps one might still be concerned that the results are a consequence of some spurious 

correlation between the timing of fines and some general economic or political condition, not 

accounted for in our regression models. If that were the case, we might expect discharges in 

other states to react at the same time to the true cause. Thus, we perform a counterfactual 

experiment which randomly shuffled the fine reputation variable at time t across the pool of all 

plants. We found negligibly small average linear regression coefficients and t-statistics.10 

Sensitivity to Assumptions 

Our results are robust to alternative specifications for our key fine reputation effect.  One 

natural alternative to our fine dummy approach is a fines per violation measure, where 

“violation” indicates the presence of a plant/month violation for BOD, TSS, or both. Results are 

economically and statistically similar to presented results. We also considered the possibility that 

unfined violations contribute to the regulator reputation effect by including the number of 

unfined violations per plant as an explanatory variable. Results for the original fine variables are 

extremely similar. Finally, we tried a linearly diminishing function for the fine variable, rather 

than a dummy. Results are again economically similar to those presented, and a specification test 

favors the dummy approach. 

Our results are also robust to an alternative approach to plant-specific technological 

change.  Our analysis used plant-specific linear time trends, as well as overall year dummies. An 
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alternative approach of including an auto-regressive term lagged one year, used by Magat and 

Viscusi [21], yields very similar results. 

5. Mechanisms for Enforcement-Induced Changes in Over-Compliance 

 
 Can the empirical results documented in the explorations of Section 4 be explained by 

economic mechanisms? In a simple deterministic one-pollutant model of the firm, over-

complying plants would have no reason to react further to enforcement, since they face no threat 

of sanction. However, plants with stochastic discharges may face some possibility of a fine from 

accidental discharges over the legal standard [6,7,12]. Many factors such as equipment failures, 

human error, or poor maintenance may cause realized discharges to differ from target, or 

intended, discharges during any particular time.11 Moreover, a plant compliant in one pollutant 

may face some possibility of a fine for violations of a different, but jointly-produced, pollutant. 

Either of these mechanisms, or both, could in principle explain the reaction of statistically over-

compliant plants to changes in enforcement. 

 Basic economic logic implies that the marginal expected fine should help explain 

discharges, since plants balance the marginal benefits of discharging with the marginal costs of 

the expected sanction from violating. There are potentially two uncertain elements to sanctions 

and thus the marginal expected fine. First, as discussed above, discharges are volatile and may be 

partially random, even from the plant’s perspective. Thus, even if the plant’s target discharges z 

for a given pollutant are below the legal limit, there may be a positive expected penalty F(z), 

which accounts for volatility in actual discharges around z. Another uncertain element of 

sanctions is the whether a given violation will be fined. Empirically, many violations are not 

sanctioned, so a fine occurs with some probability P. In our conceptual framework, a key 

assumption is that the plant’s assessment of P depends on recent enforcement actions. Taking the 
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these two components together, the marginal expected fine is P × F′(z). Changes in the perceived 

probability of sanction influence discharges of a risk-neutral plant through this term. So, one 

reasonable and intuitive way to account for regulator reputation is to include the marginal 

expected fine for each jointly-produced pollutant in the linear discharges regression rather than a 

dummy for the presence of a fine.12  

We also assume a simple two-state threat perception model, with the default setting of 

low threat because fines are so uncommon. Suppose P  can take only take two values: loP  and 

hiP . The plant believes the threat is high in periods after a fine in the state, which we code with 

the regulator reputation dummy variable R  . Note that the marginal expected penalty terms can 

then be written in the form ( )lo hi loP F P P RF′ ′+ − . In our regression, we exploit this simple 

technique by including both F ′  and RF ′  as regression explanatory variables. Then loP  and hiP  

need not be pre-specified, as they will be implicitly absorbed into the regression coefficients to 

be estimated. The baseline marginal expected penalty is thus accounted for by including F ′  in 

the discharge regression. The interaction with the reputation dummy RF ′ allows for increased 

importance of the expected fine when the threat of such a fine is higher. This interaction term is 

the key explanatory variable of interest. 

Randomness 
 

To the extent that randomness explains the over-compliance response, we would expect 

plants facing a higher risk from random violation to respond more strongly to an increased 

probability of sanctions. In particular, this impact should be transmitted through the marginal 

expected fine. In this section, we explore to what extent randomness can empirically rationalize 

the post-fine discharge responses documented in Section 4. As discussed above, we do so by 

interacting the reputation dummy R with the marginal expected fine. In sum, we replace R in 
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each discharge regression with F ′and RF ′ for that same pollutant. We then test whether the 

over-compliance response is better explained through this randomness mechanism than under the 

original exploratory regressions. 

To construct the marginal expected sanction measures, we must first have an empirical 

measure of the stochastic shocks to discharges. These shocks are the difference between intended 

discharges and actual discharges.  Of course, determining the marginal expected penalty requires 

integration over an estimate of the statistical distribution of discharges, since any fine would 

depend on the realized level of random discharges. Our premise is that a reasonable estimate of 

random shocks is the empirical density of regression residuals.  

One might simply assume a fixed distribution for the random shocks about their expected 

value, using observed residuals to identify parameters of the assumed distribution. For example, 

one might assume a Gaussian distribution of random shocks and set the variance parameter equal 

to the mean squared regression residuals. However, this approach would be problematic in our 

context. The shape and scale of regression residuals differ considerably from plant to plant. 

Visual inspections of histograms generated from the residuals of regressions similar to those 

reported in Table 2 indicate some residual densities are highly skewed to the right and some are 

symmetric. Fitting a simple parametric density to such diverse densities is particularly 

unsatisfactory because the upper tail of these distributions is critical for correctly assessing the 

probability of violation due to randomness. 

We therefore turn to non-parametric density estimation to estimate plant-specific 

distributions of random shocks. This approach better captures the variability in the distribution of 

random shocks across plants. One standard density estimation technique is kernel estimation, 

which, intuitively speaking, smoothes out a histogram. We apply an adaptive-bandwidth kernel 
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density estimator, which allows the degree of smoothing to vary somewhat across the 

distribution; see [26] for a more complete discussion. We adopt the adaptive kernel, as opposed 

to a kernel estimator with a fixed bandwidth, because we are particularly interested in the upper 

tail of the distribution where data can be sparse. In our analysis, the optimal bandwidth is fit 

locally by a cross-validation criterion; estimates are generated using the implementation by Van 

Kerm [33].  

Given density estimates, we can construct our empirical measure of the marginal 

economic risk from random violation, F′.13 To operationalize this measure, we must specify the 

fine as a function of the extent of violation. Since this function is unknown, we present results 

for two specifications. The first is a flat fine for any violation, independent of the extent. The 

second is a penalty linear in the extent of violation. Applying these specifications to our 

conditional density estimate for discharges, we numerically calculate the derivative of the 

expected fine, F′. The marginal expected penalty for a fixed fine is trivially proportional to the 

density of discharges at the standard. If fines are linear in the extent of violation, with discharges 

measured on a ratio scale, the marginal expected is proportional to the probability of a violation. 

Different error or fine structures would lead to different calculations.   

Table 5 presents the results of our randomness exploration regressions. We find strong 

evidence that BOD randomness plays an important role in enforcement-induced changes in over-

compliance for that pollutant. Coefficients on the interaction between the fine reputation effect 

and the marginal expected sanction (R F′) are statistically significant for both penalty 

specifications. This indicates that, in periods when regulators are perceived as more willing to 

impose fines, the BOD over-compliance response is greater when plants have higher marginal 

expected sanctions due to BOD randomness.14    
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Can BOD randomness alone rationalize the enforcement-induced over-compliance 

response for this pollutant?  One check is a specification test of the randomness model (Table 5) 

against the previous uninteracted model (Table 2) that used only a non-interacted reputation term 

(R). Performing non-nested P-tests, for both BOD fine specifications, we can reject the 

uninteracted model against the randomness model. For BOD, randomness does appear sufficient 

to explain the enforcement-induced over-compliance response.  

In contrast to BOD, we find no systematic evidence that TSS randomness plays an 

important role in enforcement-induced changes in over-compliance for that pollutant. 

Coefficients on the interaction between the fine reputation effect and the marginal expected 

sanction (R F′) are not statistically significant for both penalty specifications. In periods when 

regulators are perceived as more willing to impose fines, the TSS over-compliance response is 

not enhanced when plants have higher marginal expected sanctions due to TSS randomness. 

Further, the specification tests for the TSS randomness model yield ambiguous results. 

For the linear penalty specification, a P-test fails to reject the uninteracted model (Table 2) 

against the randomness model (Table 5). For the flat fine penalty specification, a P-test does 

reject the uninteracted model against the alternative randomness model. For TSS, randomness 

does not appear to systematically explain the enforcement-induced over-compliance response. 

Thus, it seems that enforcement is affecting TSS discharges through some mechanism beyond 

randomness alone. 

Jointness 

 
Another possible explanation for enhanced over-compliance is jointness in pollution 

production and abatement. As discussed in the background section, BOD and TSS discharges are 

(at least partially) jointly determined. Wastewater treatment technologies treat both BOD and 
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TSS simultaneously, and modern production practices to improve environmental performance 

reduce many pollutants at once. To the extent that a high penalty risk for one pollutant induces a 

plant to undertake environmental improvements, those actions may reduce the other, jointly 

determined, pollutant. 

We extend the regressions of the previous section to account for jointness, as well as 

randomness, by including cross-pollutant risk, as derived in the appendix. To do so, we augment 

the analysis presented in Table 5 to include the other pollutant’s marginal expected penalty F′ 

and the interaction of the reputation effect with the other pollutant’s marginal expected penalty R 

F′. Thus, for example, BOD regressions include the BOD marginal expected penalty F′B, the 

BOD interaction F′B R, the TSS marginal expected penalty F′T, and the TSS interaction F′T R. 

TSS regressions are symmetric. Simultaneous estimation of the BOD and TSS equations through 

a SUR regression would yield no efficiency gain, since the covariates in each equation are 

identical. 

Results of the simultaneous jointness/randomness exploration are presented in Table 6. 

Note especially rows 1 and 2. Here, we find strong evidence that BOD randomness plays an 

important role in enforcement-induced changes in over-compliance for both BOD and TSS 

discharges. Coefficients on the interaction of the fine reputation effect and the BOD marginal 

expected sanction (R F′B) (Table 6, Row 1) are statistically significant for both specifications for 

both pollutants. This indicates that, in periods when regulators are perceived as more willing to 

impose fines, both BOD and TSS statistical over-compliance responses are greater when plants 

have higher marginal expected sanctions due to BOD randomness. In contrast, we find no 

statistically significant evidence that TSS randomness plays an important role in enforcement-

induced changes in over-compliance for either BOD or TSS discharges. Coefficients on the 
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interaction of the fine reputation effect and the TSS marginal expected sanction (R F′T) (Table 6, 

Row 2) are not statistically significant for both specifications for both pollutants. 

Results suggest that enhanced over-compliance in TSS after a fine may be at least 

partially a side-effect of efforts to avoid violations in BOD discharges, which are jointly 

determined with TSS. This implication is plausible for four reasons. First, as discussed, 

empirically observed jointness is consistent with the economic logic for jointly-produced 

multiple pollutants. Second, the randomness regressions and P-tests previously discussed 

suggested that something beyond randomness alone was driving TSS enforcement-induced 

changes in over-compliance. Third, BOD violations occur about twice as frequently as TSS 

violations, and so represent the predominant concern for violations. Fourth, the volatility of BOD 

discharges is generally much higher than TSS, so that randomness is may be a more fundamental 

concern in the case of BOD. 

Can randomness and jointness rationalize the enforcement-induced over-compliance 

responses for both pollutants observed in Section 4?  To check, we run specification tests of the 

randomness and jointness model (Table 6) against the previous model (Table 2) that used only a 

non-interacted reputation term (R). P-tests for both fine specifications for both BOD and TSS 

reject the uninteracted model against the randomness and jointness model. For both discharge 

types, randomness and jointness do appear sufficient to explain the observed enforcement-

induced over-compliance response.  

6. Discussion and Conclusions 

 
The main contribution of this paper is explicitly linking the enforcement and over-

compliance literatures. We empirically demonstrate that many statistically over-complying plants 

reduce discharges when regulators issue fines, even fines on other plants. Aggregate BOD and 
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TSS discharges within a state fall approximately 7 percent in the year following a sanction 

within that state. Most of this reduction is due to enhanced over-compliance, rather than simply a 

reduction in violations.  

These empirical results can be rationalized by economic theory. We find economically 

and statistically significant evidence that discharge randomness and jointness in pollution 

production play important roles in the degree of over-compliance. In particular, a simultaneous 

analysis of these factors indicates that the risk of accidental violation due to BOD randomness is 

the predominant mechanism of the enforcement-induced changes in over-compliance for both 

BOD and the jointly determined pollutant TSS.  

Significant policy implications follow from our analysis. First, variation in the degree of 

over-compliance is driven by traditional economic incentives, rather than altruistic corporate 

social responsibility. Second, randomness and jointness results indicate that BOD reductions 

have important implications for other pollutant levels. These implications should perhaps be 

considered in permitting and enforcement. Third, and most notably, enforcement generates 

substantial discharge reductions above and beyond those expected from simply deterring 

violations. Ignoring the impact of sanctions on over-compliance considerably understates fines’ 

effect on environmental discharges. If standards are not overly tight, enforcement-induced 

changes in over-compliance may also translate into larger welfare gains than anticipated. 

Consequently, a substantial improvement in environmental quality might be achieved from a 

relatively small additional investment in traditional adversarial enforcement. Given this result, it 

is perhaps an interesting institutional research question why fines are not imposed more 

regularly. 
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Footnotes 

 
1 One could formally model this learning process in a Bayesian framework. However, for our 

purposes, the practical value of such a model is low, since the basic lesson that plants update 

their beliefs in response to new information is quite straightforward. We refer the interested 

reader to Sah [25] for a formal treatment. 

2 Our comprehensive sample is constructed from a pre-existing 1990-1996 dataset and a newly 

obtained 1998-2004 dataset. When the more recent subsample was obtained, information for 

1997 was no longer present in the publicly available version of the PCS. 

3 In any given month, the vast majority of plants emit a measured pollutant from a single outfall. 

Further, the composition of discharges across outfalls remains relatively constant over time. 

Thus, it is unlikely that this convenient aggregation biases our results. 

4 We define this variable over one year because the literature indicates that this reputation 

signaling effect declines quite rapidly after 12 months. 
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5 One can view our measure as a proxy for true perceptions. If this is imperfect, it will bias 

coefficients towards zero. So, use of a proxy should not spuriously cause affirmative results. 

6 One potential weakness is that the dummy variable approach does not account for the number 

of violations. An alternative measure that does so, in principle, would be the ratio of fines to 

violations over the past year. However, as compliance is generally quite high in our dataset, this 

ratio most often takes the same 0-1 values as the dummy and has a sample mean within 15% of 

the dummy. Moreover, constructing a ratio requires dropping data in the case of no recent 

violations. We use fine existence for the results and explore alternatives in the sensitivity section.  

7 We also ran specifications with logged dependent variables. Logs have the advantage of 

preventing negative predicted discharges. However, as a practical matter, the current 

specifications predict very few negative discharges. The logged specifications yielded 

statistically similar results, but the key coefficient magnitudes were larger in absolute value. We 

ultimately chose the current specification to be conservative and because many detrended and 

seasonally corrected plant discharge distributions do not appear log-linear.  

8 We construct the reputation effect variable using fines on both BOD and TSS, since plants 

would extract signals about overall regulator stringency from sanctions on both.  Thus, we have a 

single proxy for an increased probability of sanctions on both pollutants.   

9 It may initially seem puzzling that the ‘fine 1-12 months on self’ and inspections coefficients 

are frequently positive in the quantile regressions. However, these results are consistent with the 

absence of plant-level fixed effects. Without plant-level fixed effects, if regulators target plants 

for stricter enforcement based on their overall environmental performance, these control variable 

coefficients may be positive. Helland [16] finds evidence for such plant-specific targeting. 
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  Nonetheless, as a robustness check, we ran regressions that omitted the own fine variable and 

regressions that included the fined plant in the reputation effect. In all regression analyses, results 

are economically similar to those presented in the tables.  

10
 While the spurious correlation test presents evidence that omitted national shocks are not 

driving the results, an additional concern may be omitted state-level shocks. Fines occur when 

discharges are particularly high, and suppose particularly high discharges for one plant reflect 

omitted state-level common shocks (like weather) that induce particularly high discharges for all 

plants within the state. Therefore, one might naturally expect discharges to be less high in the 

next period anyway; this is the standard “regression towards the mean” effect [12]. However, this 

comparison is not what our fixed effects analysis investigates. Our analysis reveals a fine-

induced decrease in discharges relative to the plant’s conditional average discharges, not relative 

to the fined period’s discharges. Consequently, an omitted state-level common shock could only 

produce our results if the common shock was accompanied by strong and persistent negative 

serial correlation. We find no systematic evidence of negative serial correlation in either the 

short- or the long-term. 

11 If the plant is uncertain about future operating and market conditions, it will also be uncertain 

about what discharge levels will be desirable in the near future. Since abatement steps such as 

preventive maintenance or operator training may require lead-time, both accidental discharge 

variation and uncertain near-future operating conditions are important sources of randomness 

from the plant’s perspective. 

12 A formal demonstration that this intuitive specification can be rationalized if profits are 

quadratic in discharges is available through JEEM’s online archive supplementary material, 

which can be accessed at http://www.aere.org/journal/index.html.  
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13  Some care must be paid in the construction of the distributions underlying our measure of 

empirical risk from random violation. We do not want a function of the residual for plant i’s 

observation in period t to be included as an explanatory variable in a subsequent regression for 

that residual. Therefore, the constructed density of random shocks for each observation is based 

upon plant i’s regression residuals for all of that plant’s periods not equal to t. 

14 It is possible that econometric volatility overstates volatility from the plants’ perspective. Thus, 

we experimented with adjusting the density of the econometric residuals by scale factors of ¾ 

and ½. This reduces our estimate of the risk of random violation. In both cases, the impact of 

randomness captured by the interaction R F′ remains significant for both the flat and linear BOD 

fine specifications. 
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Table 1. Summary Statistics  
 

        
  DISCHARGES   
        

Pollutant Mean 
discharge 

ratio 

25% 
Quantile 

50%  
Quantile 

75%    
Quantile 

90%    
Quantile 

Violations  Violators

        
BOD .384 .168 .334 .545 .751 439 101 
TSS .307 .130 .248 .428 .621 226 75 

        
  FINES   
        
  Total 

Fines 
States 

levying 
fines 

Median 
fine 

Std. dev. 
of fines 

  

        
  39 13 $9,000 $97,061   
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Table 2. Plant-Level Linear Regression Results 

 
Variable Description BOD Regression 

Coefficients 

TSS Regression 

Coefficients 

   
Fine 1-12 months ago on another plant -0.0235* 

(-4.72) 
-0.0240* 
(-5.98) 

Fine 1-12 months ago on self  -0.0573* 
(-2.14) 

-0.0905* 
(-2.41) 

Inspections 1-12 months ago 0.0011 
(0.39) 

0.0025 
(0.82) 

Season2 Dummy -0.0447* 
(-8.08) 

-0.0442* 
(-9.14) 

Season3 Dummy -0.0585* 
(-6.51) 

-0.0631* 
(-7.66) 

Season4 Dummy -0.0441* 
(-3.40) 

-0.0469* 
(-3.85) 

Year Dummies 13 Year Dummies 13 Year Dummies 
Fixed Effects 241 Plant-Level FE’s 250 Plant-Level FE’s 
Linear Time Trends 241Plant-Specific TT’s 250 Plant-Specific TT’s 
   
 

a The dependent variables are the ratios of actual to permitted discharges for this plant/month combination for the 
listed pollutant.  
b A superscript * indicates statistical significance at the 5% level. 
c The BOD plant-level analysis consists of 30,895 observations from 242 plants over the 168 sample months. 
d The TSS plant-level analysis consists of 32,995 observations from 251 plants over the 168  sample months. 
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Table 3. BOD Quantile Regression Results 

 
Variable Description 25% Quantile 50% Quantile 75% Quantile 90% Quantile 

     
Fine 1-12 months ago on another 
      Plant 

-0.0263* 
(-5.60) 

-0.0234* 
(-3.49) 

-0.0386* 
(-4.67) 

-0.0411* 
(-4.02) 

Fine 1-12 months ago on self 
 

0.0466* 
(4.24) 

0.0782* 
(4.93) 

0.0612* 
(3.14) 

0.0290 
(1.23) 

Inspections 1-12 months ago  
      (in state) 

0.0021* 
(3.62) 

0.0017* 
(2.09) 

0.0015 
(1.54) 

-0.0001 
(-0.10) 

Season2 Dummy -0.0311* 
(-6.00) 

-0.0401* 
(-5.41) 

-0.0561* 
(-6.24) 

-0.0469* 
(-4.31) 

Season3 Dummy -0.0420* 
(-4.76) 

-0.0430* 
(-3.41) 

-0.0604* 
(-3.92) 

-0.0265 
(-1.40) 

Season4 Dummy -0.0272* 
(-2.13) 

-0.0224 
(-1.23) 

-0.0387 
(-1.74) 

0.0022 
(0.08) 

Year Dummies 13 Year Dummies 13 Year Dummies 13 Year Dummies 13 Year Dummies
Fixed Effects 27 State FE’s 27 State FE’s 27 State FE’s 27 State FE’s 
Linear Time Trends 27 State-Specific 

Time Trends 
27 State-Specific 

Time Trends 
27 State-Specific 

Time Trends 
27 State-Specific 

Time Trends 
     
 

a The dependent variables are the ratios of actual to permitted discharges for this plant/month combination for the 
listed pollutant.  
b  A superscript * indicates statistical significance at the 5% level. 
c The BOD plant-level analysis consists of 30,895 observations from 242 plants in 28 states over the 168 sample months. 
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Table 4. TSS Quantile Regression Results 

 
Variable Description 25% Quantile 50% Quantile 75% Quantile 90% Quantile 

     
Fine 1-12 months ago on another 
     Plant 

-0.0218* 
(-5.54) 

-0.0353* 
(-6.86) 

-0.0533* 
(-7.83) 

-0.0574* 
(-4.96) 

Fine 1-12 months ago on self 
 

0.1162* 
(12.7) 

0.1815* 
(15.1) 

0.2245* 
(14.3) 

0.1519* 
(5.77) 

Inspections 1-12 months ago  
     (in state) 

0.0005 
(1.03) 

0.0014* 
(2.24) 

0.0026* 
(3.17) 

0.0031* 
(2.21) 

Season2 Dummy -0.0181* 
(-4.19) 

-0.0339* 
(-5.95) 

-0.0531* 
(-7.06) 

-0.0636* 
(-4.95) 

Season3 Dummy -0.0202* 
(-2.75) 

-0.0478* 
(-4.94) 

-0.0756* 
(-5.94) 

-0.0944* 
(-4.35) 

Season4 Dummy -0.0086 
(-0.81) 

-0.0362* 
(-2.59) 

-0.0575* 
(-3.14) 

-0.0675* 
(-2.17) 

Year Dummies 13 Year Dummies 13 Year Dummies 13 Year Dummies 13 Year Dummies
Fixed Effects 27 State FE’s 27 State FE’s 27 State FE’s 27 State FE’s 
Linear Time Trends 27 State-Specific 

Time Trends 
27 State-Specific 

Time Trends 
27 State-Specific 

Time Trends 
27 State-Specific 

Time Trends 
     
 

a The dependent variables are the ratios of actual to permitted discharges for this plant/month combination for the 
listed pollutant.  
b  A superscript * indicates statistical significance at the 5% level. 
c The TSS plant-level analysis consists of 32,995 observations from 251 plants in 28 states over the 168 sample months. 
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Table 5. Randomness Exploration Regressions 

 
Variable Description BOD Regressions TSS Regressions 

 Flat 

Fine 

Penalty 

 

Linear Penalty 

Function 

 

Flat 

Fine 

Penalty 

 

Linear 

Penalty 

Function 

 

     
Fine – Marginal Expected Penalty  (R F′) -6.912* 

(-3.08) 
-1.899* 
(-5.27) 

-2.727 
(-1.01) 

-0.9136 
(-1.81) 

Marginal Expected Penalty (F′)  -10.321* 
(-4.30) 

-.9743* 
(-7.94) 

-14.571* 
(-2.46) 

0.2303 
(0.75) 

Fine 1-12 months ago on self -0.0662* 
(-2.52) 

-0.0745* 
(-2.77) 

-0.1123* 
(-3.02) 

-0.0823* 
(-2.16) 

Inspections 1-12 months ago 0.0020 
(0.74) 

0.0026 
(0.97) 

0.0039 
(1.22) 

0.0030 
(1.02) 

Season2 Dummy -0.0512* 
(-9.37) 

-0.0496* 
(-9.05) 

-0.0496* 
(-9.31) 

-0.0435* 
(-8.62) 

Season3 Dummy -0.0669* 
(-7.26) 

-0.0648* 
(-7.19) 

-0.0710* 
(-8.80) 

-0.0621* 
(-7.01) 

Season4 Dummy -0.0504* 
(-3.86) 

-0.0489* 
(-3.77) 

-0.0534* 
(-4.64) 

-0.0461* 
(-3.62) 

Year Dummies 13 Year Dummies 13 Year Dummies 
Plant-Level Fixed Effects 241 Plant-Level Fixed Effects 250 Plant-Level Fixed Effects 
Plant-Specific Linear Time Trends 241 Plant-Specific Time Trends 250 Plant-Specific Time Trends
       
 

a The dependent variables are the ratios of actual to permitted discharges for this plant/month combination for the 
listed pollutant.  
b  A superscript * indicates statistical significance at the 5% level. 
c The BOD plant-level analysis consists of 30,895 observations from 242 plants over the 168 sample months. 
d The TSS plant-level analysis consists of 32,995 observations from 251 plants over the 168  sample months. 
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Table 6. Jointness & Randomness Exploration Regressions 

 
Variable Description BOD Regressions TSS Regressions 

 Flat 

Fine 

Penalty 

 

Linear Penalty 

Function 

 

Flat 

Fine 

Penalty 

 

Linear 

Penalty 

Function 

 

     
BOD Fine – Marginal Expected Penalty  (R F′) -6.940* 

(-3.02) 
-2.038* 
(-5.29) 

-4.921* 
(-5.14) 

-0.9700* 
(-4.92) 

TSS Fine – Marginal Expected Penalty  (R F′) -0.4371 
(-0.24) 

0.6554 
(1.54) 

-2.294 
(-0.80) 

-0.1860 
(-0.29) 

BOD Marginal Expected Penalty (F′) -9.793* 
(-4.25) 

-0.9834* 
(-4.95) 

-5.130* 
(-2.27) 

-0.1535 
(-1.60) 

TSS Marginal Expected Penalty (F′) -3.545* 
(-2.83) 

0.1858* 
(2.06) 

-14.438 
(-2.36) 

0.4543 
(1.17) 

Fine 1-12 months ago on self -0.0714* 
(-2.70) 

-0.0672* 
(-2.50) 

-0.1201* 
(-3.00) 

-0.0836* 
(-2.02) 

Inspections 1-12 months ago 0.0026 
(0.94) 

0.0031 
(1.11) 

0.0039 
(1.18) 

0.0032 
(1.01) 

Seasonality Dummies 3 Season Dummies 3 Season Dummies 
Year Dummies 13 Year Dummies 13 Year Dummies 
Plant-Level Fixed Effects 241 Plant-Level Fixed Effects 250 Plant-Level Fixed Effects 
Plant-Specific Linear Time Trends         241 Plant-Specific Trends       250 Plant-Specific Trends 
       
 

a The dependent variables are the ratios of actual to permitted discharges for this plant/month combination for the 
listed pollutant.  
b  A superscript * indicates statistical significance at the 5% level. 
c All plant-level analyses consist of the 30,600 observations with both BOD and TSS . 

 
 



 

 
 
                                    Figure 1.                                             Figure 2. 
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Figures 1 and 2 display substantial over-compliance with permitted standards for both BOD and TSS. The ratio of actual to permitted 
discharges nearly always lies in the compliance region (less than 1), and the majority of plants emit less than 50 percent of allowable levels. 
While the histograms represent discharge ratios for a single month of the sample, other sample months demonstrate similar over-compliance. 

 

 


