Overview

Fig. S1 presents an overview of the literature review, data compilation, statistical analyses and main results.

Supplementary Methods

Literature search

We conducted a systematic search of the scientific and gray literature to identify quantitative and qualitative evidence of the impacts of fisheries co-management practices worldwide (Fig. S1). Co-management studies published prior to January 2010 were identified using (i) journal search tools (Web of Science, EBSCO, JSTOR); (ii) Governmental and Non-Governmental Organizations websites (fisheries management agencies, WorldFish/ICLARM, FAO, IUCN, IMCS, World Bank, etc.); (iii) academic databases (Digital Library of the Commons, UW WorldCat); (iv) list of references from most relevant documents; and (v) personal knowledge and direct communication with the authors of studies and/or managers.

In order to identify peer-reviewed studies (e.g., using ISI Web of Knowledge) we performed a search with no restriction on publication year, using the following search term combinations: [("community-based" OR "co-management" OR "self-governance") AND (fisheries)]. We used the 'Refine Results' option in order to identify areas of interest and discard out-of-scope documents. This resulted in 389 references. We examined each of these references to assess their potential for meeting the selection criteria for inclusion in the review.

Considerable amounts of co-management documentation on data collection, analysis and results exist outside of the peer-reviewed literature. To incorporate information from workshops, conference proceedings, technical reports, theses, we performed a hierarchical search of study cases by co-management systems/regions/fisheries and by species and finally by Principal Investigators and by species. By including analysis of gray literature and unpublished documents, our literature search method reduces selection bias resulting from a possible over-representation of only positive co-management success analyses in peerreviewed literature. Manuscripts in different languages (i.e., English, Spanish, French, and Portuguese) were also assessed and processed.

Initial screening in the literature review involved the description of a co-management regime and its consequent evaluation considering biological, social, and economic indicators (Fig. S1). We included all co-management regimes within the spectrum of arrangements, based on the level of involvement and mode of communication between government and fishers (i.e., from consultative to self-governance). The study cases were classified by co-management type (consultative, cooperative, and delegated)¹ and phase (pre-implementation, implementation, and post-implementation). Although we recognize our definition of co-management may be too broad, we also used well established co-management organizations and/or institutions with decision power in local fisheries management as compulsory criteria to classify a fishery as co-managed. Further, considering that fisheries management systems in almost all developed countries involve some form of user involvement through participation of stakeholders on the decision making bodies (e.g., through consultative committees), those cases where the importance of the legal and political systems dominates the co-management aspects of the fisheries were not included in our analyses.

For each identified co-managed fishery, manuscripts were assessed in detail in order to extract information on co-management attributes and measures of performance. When possible, we verified data and analyses by directly contacting PI or fisheries managers. The number of study cases (i.e., fisheries) including relevant information was 218 (Table S1). However, in order to eliminate data gaps, an additional bibliographic search for each fishery was performed (Fig. S1). The final search for these 218 case studies encompassed 1,168 documents, where 461 referred to general co-management theory and 707 to individual or multiple study cases. From those references, 306 were peer-reviewed and 401 considered gray literature.

Data extraction and variable coding

In order to understand co-management dynamics, complex fishery social-ecological systems (SESs) need to be decomposed into groups and sub-groups of variables that can be analyzed, tracked, and objectively compared². Following the rationale of Institutional Analysis and Design^{3,4} (IAD), a series of explanatory variables describing interdisciplinary attributes of fisheries co-management and measures of their performance were identified. This framework provided an appropriate basis for identifying relevant co-management attributes, their outcomes, and formulating hypotheses concerning the relationships among them. These variables were classified in 5 different sub-groups^{1,2}: (i) resource system; (ii) resource unit; (iii) governance system; (iv) users system; and (v) outcomes. A large and extensive list of

explanatory co-management attributes has been used in previous studies of common pool resources⁵⁻⁷ and fisheries co-management^{8,9}. These variables reflect the need to provide alternative indicators to describe a vast range of different fishery types, ecosystems, fishing sectors, management institutions, and social, economic and political settings. We selected a smaller subset of variables to: (i) minimize the problem of missing data; (ii) ensure variables were applicable to most study cases; (iii) minimize variables that can only be assessed subjectively; and (iv) reduce attributes that display high collinearity. We used 9 study case key identifiers or grouping variables related to the resource system, 19 variables describing fisheries co-management attributes and 8 outcomes or measures of social, economic and ecological performance (Table S2).

Co-management attributes and outcomes were defined on a binary scale denoting presence or absence (1-0). Even though this dichotomous coding schema may be not realistic, including values that exhaust all possibilities (e.g., low, medium, high degree of cohesion) or quantifying these factors in an ordinal scale was impossible for all selected study cases, due to: i) the qualitative character of most studies; or ii) the mutually exclusive nature of the selected variables. Thus, most attributes reported by the published studies were considered to be positively related to the successful fisheries. Simplicity, both related to the number of variables included in the analysis and the binary structure of the data was needed to identify the most important causal mechanisms and/or attributes and take general conclusions from the available information.

A compounded success score was built by adding each of the 8 individual outcomes and used as a proxy for co-management performance (i.e., 0 means total failure and 8 total success). This success score was used as the response variable in all subsequent statistical analyses (Fig. S1). Although these performance indicators do not cover all aspects of the fishery's functioning, they represent its social, ecological, and economic performance.

Since correlation may or not may imply causality, this condition was assessed and verified during the variable coding through several criteria^{10,11}: (i) strength of association through statistical methods (a causal attribute must be correlated with co-management success and have explanatory power); (ii) consistency (a causal attribute must be associated with success in various conditions); (iii) plausibility of causal explanation; (iv) coherence (a causal explanation should be consistent with the current body of knowledge of both co-management theory and the specific fisheries); (v) temporality (a causal factor has to precede measures of success; most studies present qualitative, and quantitative in less extent, baseline evidence for this criteria).

To minimize bias in extracting and processing the information and to overcome inconsistencies in variable coding, two independent readers (NLG and OD) analyzed key references for each study. A random sample of 25% of the study cases was also re-coded as a reliability test, revealing no systematic bias. Those cases not providing a thorough description of the co-management process were eliminated, together with those presenting contradictory or lack of information on the selected variables (n = 68). Since co-management effects evolve over time, we excluded regimes at the pre-implementation stage (n = 20). The final screening reduced our dataset to 130 fisheries in 44 countries, a comprehensive and representative set of community-based co-management fisheries from different countries, degrees of human development, ecosystems, fishing sectors and types of resources (and not a complete global census of co-managed fisheries). For these fisheries, our data came from 4.06 documents on average (s.d. 1.73) (Table S1).

We recognize that individual fisheries may have idiosyncratic features (e.g. cultural, political, or economic factors) that may affect their success. Here, we expanded beyond these contextual characteristics in order to consider the characteristics of the co-management systems, by controlling for Human Development Index¹², Governance Index¹³, Corruption Perceptions Index¹⁴, continent, fishing sector, and type of resource (Table S2) and to determine whether a non-randomized co-management regime causes a particular outcome. Although it is nearly impossible to select case studies completely at random from all co-managed fisheries, our study comprises the most comprehensive sample of fisheries co-management assembled to date, including a full range of social, ecological, cultural and political settings.

We addressed potential biases in selecting the study cases and in coding all variables: (i) several search methods and databases were used in locating and selecting relevant documents; (ii) published and unpublished documents from very different sources (ISI journals, technical reports, conference proceedings, books chapters), various languages (English, Spanish, and French), a variety of disciplines (fisheries, ecology, social and environmental sciences, policy, etc.), and institutions (academia, management agencies, NGOs, etc.) were analyzed; (iii) two independent reviewers extracted the information needed for variable coding and checked for inconsistencies; (iv) external review was considered in some cases *via* email to Principal Investigator or fisheries managers; and (v) missing data categories were assigned in those cases were coding variables where inconsistent or causality uncertain.

Statistical analyses

The final data set was analyzed using R^{15} . Correlation matrices of selected attributes and performance indicators (outcomes) were constructed to detect attribute redundancies (Table S3), as well as their frequency distributions to paint a picture of attributes and outcomes most often present in fisheries co-management systems across all fisheries (Fig. S2) and by categories of grouping variables (Fig. S3).

An orthogonal, multifactorial design was not possible due to absence of some treatments within factors (e.g., industrial fisheries are absent in inland ecosystems). Thus, we used one-way analyses of covariance (ANCOVAs) to test for differences in success score between ecosystems, fishing sectors and resource types, using the number of management attributes as the covariate. When significant differences were detected, multiple comparisons were conducted through a Fisher least significant difference (LSD) test ($\alpha = 0.05$). Relationships between success scores and number of attributes, both aggregated and by group (i.e., governmental attributes and users attributes), were also examined through linear models and ANCOVAs. A Bartlett test was performed prior to all analyses in order to test the assumption of homogeneity of variances among treatments. When data were heteroscedastic, the necessary transformations were carried out. Homogeneity of slopes (parallelism test) of dependent variable – covariate relationship was also tested. Results are presented in Table S4.

Decision trees were used to identify key social, ecological, and economic attributes of co-management and to determine the way in which these variables would influence outcomes. Decision trees produce a hierarchical map of binary choices showing which attributes best partition the data according to the success score. Previous analyses^{8,9,16,17} used mostly logistic regressions, generalized linear models or neural networks, but decision trees offer substantial advantages over these methods when analyzing complex social-ecological datasets and in particular when modeling nonlinear data containing multiple interacting variables¹⁸⁻²¹: (1) flexibility to handle a broad range of explanatory variables (e.g., categorical, interval, and continuous) and to deal with high dimensionality (large number of explanatory variables with relatively small data sets); (2) ability to deal with missing values in the explanatory variables; (3) invariance under monotonic transformations of the explanatory variables; and (4) easy and robust construction and visualization. Here, we fit regression trees for the whole set of co-management attributes (Fig. 3a) and also to government and users' attributes independently, in order to explore the degree to which each group separately explained co-management success (Fig. S4). In constructing the regression trees, the following steps were implemented:

(1) Growing the tree, splitting criteria and missing data. The regression tree algorithm in $rpart^{22}$ package in R builds trees by iteratively partitioning the dataset into a

nested series of mutually exclusive groups according to a "splitting rule" (e.g., are there protected areas within the co-management regime of a particular fishery present or absent?) and a "goodness of split criterion" (i.e., by maximizing groups homogeneity or minimizing their impurity with respect to co-management success). Missing data of co-management attributes (mean percentage of missing data per variable \pm s.d. = 4.5 \pm 0.6; <10% of the total database) were treated by multiple imputation and by using surrogates as proxy variables for the main splitting variable. Comparisons of trees for both methods showed that surrogates splits performed slightly better in terms of predictive accuracy (% deviance explained) than multiple imputation, corroborating prior regression tree simulation analysis by Feelders²³.

(2) **Pruning and selecting the tree.** After generating a large tree, lower branches were pruned to produce an optimal tree, balancing complexity (i.e., number of terminal nodes) with prediction accuracy. For description and visualization purposes a single tree was selected by running a set of 50 10-fold cross-validations in order to assess the degree of variation in the size of the best tree, and to ensure the chosen tree was not $atypical^{21}$. We then selected the tree size from each cross-validation of the series according to the $1-SE^{24}$ rule to avoid over-fitting of the data (Fig. S5). The final tree also coincided with the most frequently occurring (modal) size from the distribution of optimal tree sizes (6 leaves; Table S5; Fig. 3a). Residuals analyses were performed for all trees (Q-Q plots, residuals vs. predicted).

Under certain conditions, and in particular when dealing with missing values, regression trees can be unstable to small changes in the data with significant differences in the variables used in the splits and the overall tree shape. To overcome this problem, we used random forests (package *randomForest*²⁵), an extension of the regression tree method based on the generation and averaging of an ensemble of trees^{18,24}. Random forest models cope well with high dimensional data sets and multiclass problems and, more importantly, also provide insights into the structure of the data under study by quantifying the confidence in regression and by indicating the importance of each variable for the regression task²⁵. Considering that high correlation among explanatory variables can lead to bias in computing variable importance^{26,27}, we checked for multicollinearity by using the variance inflation factor²⁸. In random forests, rather than using all explanatory variables or attributes and all study cases to make a single tree, we created a forest of many trees, each one based on a random (bootstrapped) selection of co-management attributes and fisheries in the following manner:

(1) Growing and assessing the performance of the random forest. From the complete data set, a bootstrap sample (without replacement) was taken in order to grow each tree with the following modifications²⁹: at each node, the best split was chosen among a randomly selected subset of explanatory variables (*mtry*). The tree was grown to a pre-specify

number of nodes (*nodesize*) and not pruned back. These steps were repeated until a sufficiently large number of trees (*ntree*) were grown.

(2) **Tuning parameters**. We tested the sensitivity of the random forest performance to different values of *mtry*, with little changes over a wide range of values (Fig. S6a). To be consistent with the model selection backward step-wise procedure described later, we chose *mtry*=2. In addition, the number of trees was chosen to be sufficiently large so that the mean square error has stabilized. In our case, 5,000 trees were sufficient (Fig. S6b), although we chose *ntree*=10,000 since computational time was not an issue. Lastly, we tested the sensitivity of the random forest to different values of *nodesize*, which determines the tree depth or minimum size of nodes below which no split will be attempted. Since no considerable changes in performance were observed, we used the default value of 5 (Fig. S6c).

(3) **Co-management attributes importance.** We used the unnormalized decrease in accuracy (i.e., increase in mean square error) as a measure of variable importance^{29,30} (Fig. 3b). For model selection purposes and to exclude noisy explanatory variables we used a backward step-wise procedure³¹. Variable importances were not re-calculated in order to avoid over-fitting³² and the model with the smallest number of attributes whose error rate was within 1 standard deviation of the minimum error rate of all forests was selected³³ (similar rational to the 1-SE rule used in tree pruning).

(4) **Effect of grouping variables**. In order to assess the effect of grouping variables in co-management success, we used three different exploratory approaches: (i) we included all grouping (i.e., contextual) and explanatory variables (i.e., co-management attributes) within the random forest and we followed the above mentioned procedure (Fig. S7); (ii) we split the dataset in categories for the most influential grouping variables (i.e., HDI, ecosystem, fishing sector and targeted resource) and we assessed attributes' importance for each category (Fig 3b); and (iii) we assessed the effect of deleting a particular category from the dataset by using the following algorithm³⁰: (a) we ran the random forest model for the dataset omitting each category one at a time (e.g., omitting artisanal fisheries); we computed the Kendall's coefficient of concordance (W) of the variables rankings for the dataset as a whole and for the dataset subdivided in categories for each grouping variables. This provided an overall synthetic indication on how much the variables importance rankings are modified by the effect of the grouping variables (Table S6).

Supplementary Results

Out of our 130 study cases, 20% did not use any type of data, 20% used only qualitative methods (e.g., in-depth or semi-structured interviews, Venn diagrams), 15% of the studies used both qualitative information and fishery-dependent data (e.g., CPUE) and 11% used both fishery-dependent and -independent data (e.g. abundance surveys). Only 7% of the study cases used a combination of interviews, fishery-dependent and -independent data in assessing co-management failure or success, while a further 6% used before-after, control-impact, or complete before-after-control-impact (BACI) approach in assessing co-management regimes. Thus, most assessments were treated as perceived trends in the condition of fishery resources but no long-term databases were analyzed to test specific hypotheses.

Most cases (71%) came from countries with high and very high Human Development Index (HDI). Case studies were split between Asia (26%), Europe (21%), Africa (15%), South America (14%), North America and the Caribbean (17%), and Oceania (7%). Coastal ecosystems were the most represented (61%), followed by inland (26%) and offshore (13%). The majority (69%) were artisanal fisheries, while relatively few were industrial (25%) or exploited by both industrial and artisanal fisheries (sequential; 5%). 45% of the fisheries analyzed were multi-specific, 32% targeted on benthic resources and 12% and 11% corresponded to demersal and pelagic/mammal species respectively.

The most frequently reported co-management attributes were local government support, scientific advice (both > 90% of fisheries), minimum size restrictions and community cohesion (both >70% of fisheries) (Fig. S2). The least observed attributes were influence of users in local markets (28%), restocking practices (19%) and Territorial Use Rights for Fisheries (TURFs: 18%).

In terms of performance indicators, community empowerment was by far the most frequently reported outcome (85% of the fisheries), highlighting the importance of these systems in creating social capital. Increase in stock abundance (38%) and in unit prices (30%) were the least frequent reported outcomes. According to the judgment of co-management study authors, 69% of the study cases were classified as successful in achieving the co-management objectives and 31% as failure. However, only 7% (n = 9) of the fisheries showed success on all the 8 social, economic, and ecological performance indicators (Fig. S2).

Supplementary references

- 1. Pomeroy, R. S. A Process for Community-Based Co-Management (AFSSRN News, ICLARM Contribution N° 1448, 1998).
- 2. Ostrom, E. A general framework for analyzing sustainability of social-ecological systems. *Science* **325**, 419–422 (2009).
- 3. Pido, M. D., Pomeroy, R. S., Carlos, M. B. & Garces, L. R. A Handbook for Rapid Appraisal of Fisheries Management Systems (ICLARM Education Series 16, 1996).
- 4. Ostrom, E. Understanding Institutional Diversity (Princeton Univ. Press, 2005).
- 5. Ostrom, E. *Governing the Commons: the Evolution of Institutions for Collective Action* (Cambridge Univ. Press, 1990).
- 6. Agrawal, A. Common property institutions and sustainable governance of resources. *World Dev.* **29**, 1649–1672 (2001).
- Pagdee, A., Kim, Y-S. & Daugherty, P.J. What makes community forest management successful: a meta-study from community forests throughout the world. *Soc. Nat. Res.* 19, 33–52 (2006).
- 8. MRAG, *Interdisciplinary Multivariate Analysis for Adaptive Co-Management* (Final Technical Report, Fisheries Management Science Programme, 2002).
- 9. Maliao, R. J., Pomeroy, R. S. & Turingan, R. G. Performance of community-based coastal resource management (CBCRM) programs in the Philippines: a meta-analysis. *Mar. Pol.* **33**, 818–825 (2009).
- Bradford-Hill, A. The environment and disease: association or causation? *Proc. R. Soc. Med.* 58, 295–300 (1965).
- 11. Chetty, R.K. *et al.* A systematic approach to preclinical and clinical safety biomarker qualification incorporating Bradford Hill's principles of causality association. *Clin. Pharmacol. Ther.* **88**, 260-262 (2010).
- 12. United Nations Development Programme (UNDP). *The Human Development Index* (UNDP 2009).
- Kaufman, D., Kraay, A. & Mastruzzi, M. Governance matters VIII: aggregate and individual governance indicators 1996–2008 (World Bank Policy Research Working Paper No. 4978, World Bank, Washington, 2009).
- Corruption Perceptions Index. Transparency International. http://www.transparency.org/policy_research/surveys_indices/cpi/2009/cpi_2009_table. Retrieved 2009-12-10.
- 15. R Development Core Team, Version 2.11.0 (R Foundation for Statistical Computing, Vienna, www.R-project.org, 2010).
- 16. World Bank. Voices from the Village: a Comparative Study of Coastal Management in the Pacific Islands (Final Report. World Bank, Washington, 2000).

- 17. Pitcher, T. J. & Preikshot, D. B. Rapfish: A rapid appraisal technique to evaluate the sustainability status of fisheries. *Fish. Res.* **49**, 255–270 (2001).
- 18. Hastie, T., Tibshirani, R. & Friedman J. *The Elements of Statistical Learning* (Springer, 2001).
- 19. Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S. (Springer, 2002).
- 20. Olden, J. D., Lawler. J. J. & Poff, N. L. Machine learning methods without tears: a primer for ecologists. *Q. Rev. Biol.* 83, 171–193 (2008).
- 21. De'ath, G. & Fabricius, K. E. Classification and regression trees: a powerful yet simple technique for ecological data analysis. *Ecology* **81**, 3178–3192 (2000).
- 22. Therneau, T. M. & Atkinson, E. J. An Introduction to Recursive Partitioning Using the *Rpart Routines* (Mayo Clinic, Rochester, 2002).
- 23. Feelders, A. Handling missing data in trees: surrogate splits or statistical imputation? *LNCS* **1704**, 329–334 (1999).
- 24. Liaw, A. & Wiener, M. Classification and regression by random forest. R News 2 (3), 18–22 (2002).
- 25. Breiman, L., Friedman, J. H., Olshen, R. A. & Stone, C. J. *Classification and Regression Trees* (Chapman & Hall, 1984).
- 26. Strobl, C., Boulesteix, A.-L., Zeileis, A. & Hothorn, T., Bias in random forest variable importance measures: illustrations, sources and a solution. *BMC Bioinformatics* **8**, 25 (2007).
- 27. Nicodemus, K. K., Malley, J. D., Strobl, C. & Ziegler, A. The behaviour of random forest permutation based variable importance measures under predictor correlation. *BMC Bioinformatics* **11**, 110 (2010).
- Davis, C. E., Hyde, J. E., Bangdiwala, S. I. & Nelson, J. J. in *Modern Statistical Methods in Chronic Disease Epidemiology* (eds Moolgavkar, S. H. & Prentice, R. L.) 140–147 (Wiley, 1986).
- 29. Breiman, L. Random forests. *Mach. Learn.* **45**, 5–32 (2001).
- 30. Zuccolotto, P. Evaluating the impact of a grouping variable on job satisfaction drivers. *Stat Methods Appl.* **19**, 287–305 (2010)
- 31. Díaz-Uriarte, R. & Alvarez de Andrés, S. Gene selection and classification of microarray data using random forest. *BMC Bioinformatics* **7**, 3 (2006).
- Svetnik, V., Liaw, A., Tong, C. & Wang, T. Application of Breiman's random forest to modeling structure-activity relationships of pharmaceutical molecules. *LNCS* 3077, 334–343 (2004).
- 33. Genuer, R., Poggi, J. M. & Tuleau-Malot, C. Variable selection using random forests. *Pattern Recogn. Lett.* **31**, 2225-2236 (2010).

- 34. Donda, S. J. Theoretical advancement and institutional analysis of fisheries comanagement in Malawi - experiences from lakes Malombe and Chiuta. Ph.D. thesis, Aalborg University (2000).
- 35. Njaya, F. J. Challenges of co-management on shared fishery ecosystems- Case of Lake Chiuta. *CSA Occ. Paper* **9** (2005).
- 36. Njaya, F. J., Donda, S. J. & Hara, M. M. Fisheries co-management in Malawi: Lake Chiuta re-visit case study. *Library of the Commons* (2006).
- Hara, M. M. & Jul-Larsen, E. in Management, Co-management or No Management? Major Dilemmas in Southern African Freshwater Fisheries. 2. Case Studies (eds. Jul-Larsen, E. et al.) 179–200 (FAO Fish. Tech. Pap. No 426/2, 2003).
- 38. Hara, M. M., Donda, S. J. & Njaya, F. Evaluation of lake Malombe co-management programme. Draft. *Digital Library of the Commons* (1999).
- 39. Matiya, G., Wakabayashi, Y., Ngongola, D. & Takenouchi, N. A logit analysis of socioeconomic factors influencing people to become fisherman around lake Malombe in Malawi. *J. Appl. Sci. Res.* **1**, 18–23 (2005).
- 40. Njaya, F. Review of management measures for lake Chilwa Malawi. United Nations University Fisheries Training Programme, *Final Report* (2001).
- 41. Njaya, F. J. Governance of Lake Chilwa common pool resources: evolution and conflicts. *Develop. Southern Afr.* **26**, 663–676 (2009).
- 42. Njaya, F. J. Co-management programmes in Malawi: a comparative case study for Lakes Malombe, Chilwa and Chiuta. Paper presented at Ninth Biennial Conference of the International Institute of Fisheries Economics and Trade, Victoria Falls, Zimbabwe, 17-21 June 2002.
- 43. Lopes, S. Fisheries (co)management in Mozambique: the situation, constraints and challenges. Paper presented at the ESA Fish Workshop, Dar es Salaam, Tanzania, 17 March 2006.
- 44. Amade, A. C. A. Fisheries co-management in Inhassoro: a license limitation programme. United Nations University Fisheries Training Programme, Final Projects, 33 pp. (1999).
- 45. Kristiansen, A. & Poiosse, E. Cogestion des pêcheries a la senne côtière au Mozambique, *NAGA ICLARM Quart*. (1996).
- 46. Lopes, S. & Gervasio, H. Co-management of artisanal fisheries in Mozambique: a case study of the Kwirikwidge fishing community in Angoche District, Nampula Province. Paper presented at the International Workshop on Fisheries Co-Management, Penang, Malaysia, 28 August 1999.
- 47. Sverdrup-Jensen, S. & Raakjaer Nielsen, J. Co-management in small-scale fisheries: a synthesis of Southern and West African experiences. Paper presented at IASCP Conference, Vancouver, Canada, 14 June 1998.

- 48. Chuenpagdee, R. & Jentoft, S. Step zero for fisheries co-management: what precedes implementation? *Mar. Pol.* **31**, 657–688 (2007).
- 49. Machena, C. & Kwaramba, R. in *African Inland Fisheries, Aquaculture and the Environment* (ed. Rename, K.) 245–254 (Oxford, 1997).
- 50. Nyikahadzoi, K. & Songore, N. Introducing co-management arrangements in Lake Kariba inshore fishery: progress, opportunities and constraints. Paper presented at the International Workshop on Fisheries Co-Management, Penang, Malaysia, 28 August 1999.
- Kolding, J., Musando, B. & Songore, N. in Management, Co-management or No Management? Major Dilemmas in Southern African Freshwater Fisheries. 2. Case Studies (eds. Jul-Larsen, E. et al.) 67–99 (FAO Fish. Tech. Pap. No 426/2, 2003).
- 52. Malasha, I. Taking Advantage of Co-management: The Institutional Landscape in the Zambian Inshore Fishery of Lake Kariba. Paper presented at the International Workshop on Fisheries Co-Management, Penang, Malaysia, 28 August 1999.
- 53. Malasha, I. Fisheries co-management: the Zambian experience. *The WorldFish Center Work. Paper No* 37456 (2007).
- 54. Musumali, M. M., Heck, S., Husken, S. M. C. & Wishart, M. Fisheries in Zambia: an undervalued contributor to poverty reduction. *The WorldFish Center Pol. Brief* 1913 (2009).
- 55. Njie, M. & Mikkola, H. A fisheries co-management case study from the Gambia. *Naga ICLARM Quart.* **24** (2001).
- 56. Campredon, P. & Cuq, F. Artisanal fishing and coastal conservation in West Africa. J. *Coast. Cons.* **7**, 91–100 (2001).
- 57. Tobey, J., Castro, K., Lee, V., Drammeh, O., Ibrahima, M. D., Crawford, B. & Vaidyanathan, T. An overview of marine fisheries in the Gambia and preliminary governance baseline. Coastal Resources Center, University of Rhode Island, pp. 26 (2009).
- 58. Njie, M. & Mikkola, H. in *Africa's Inland Fisheries The Management Challenge* (eds. Gehep, K. & Sarch, M-T.) 228–239 (Fountain, Kampala, Uganda, 2002).
- Njifonjou, O., Satia, B. P. & Angaman, K. Fisheries co-management and poverty alleviation in the context of the sustainable livelihoods approach: a case study in the fishing communities of Aby lagoon in Côte d'Ivoire, *Intl. J. Sust. Develop. World Ecol.* 13, 448 (2006).
- 60. Kponhasia, G. & Konan, A. The traditional management of artisanal fisheries in Côte d'Ivoire: The case of Aby Lagoon. Paper presented at Regional workshop on fisheries co-management, Mangoshi, Malawi, 20 March 1997.
- 61. Konan, A. Co-management in Aby lagoon (Côte d'Ivoire): Preliminary results, Fisheries Co-Management Project ICLARM-IFM-NARS (1999).

- 62. Kibwage, J., Onyango, P. O. & Bakamwesigwa, H. Local Institutions for sustaining wetland resources and community livelihoods in the Lake Victoria basin, *Afr. J. Environ. Sci. Tech.* **2**, 97 (2008).
- 63. Onyango, P. O. & Jentoft, S. Embedding co-management: community-based fisheries resource management regime in Lake Victoria, Tanzania, *The WorldFish Center Work*. *Paper No 37456* (2007).
- Geheb, K., Kevin, C., Medard, M., Kyangwa, M., Lwenya, C. & Onyango, P. in Africa's Inland Fisheries - The Management Challenge (eds. Gehep, K. & Sarch, M-T.) 142–173 (Fountain, Kampala, Uganda, 2002).
- Harris, J. M., Branch, G. M., Clark, B. M., & Sibiya, S. C. in *Fisheries Management: Progress Towards Sustainability* (eds. McClanahan, T. T. & Castilla, J. C.) 166–185 (Blackwell Press, 2007).
- Napier, V., Branch, G. M. & Harris, J. M. Evaluating conditions for successful comanagement of subsistence fisheries in KwaZulu-Natal, South Africa. *Environ. Cons.* 32, 165 (2005).
- 67. Hauck, M. & Sowman, M. Coastal and fisheries co-management in South Africa: an overview and analysis. *Mar. Pol.* **25**, 173–185 (2005).
- 68. Kyle, R. in *Waves of Change: Coastal and Fisheries Co-management in South Africa* (eds. Hauck, M. & Sowman, M.) 123–145 (University of Cape Town Press, 2003).
- 69. Kyle, R. Gillnetting in nature reserves: a case study from the Kosi Lakes, South Africa. *Biol. Cons.* **88**, 183–192 (1999).
- Isaacs, M. A social coastal fisheries policy for South Africa? Subsistence fisheries comanagement for sustainable livelihoods and poverty alleviation, *PLAAs Pol. Brief No 24* (2006).
- 71. Branch, G. M. Developing subsistence fisheries in South Africa: marrying human needs and biological sustainability. *S. Afr. J. Mar. Sci.* **24**: 401–522 (2002).
- Sowman, M., Hauck M. & Branch, G. M. in *Waves of Change: Coastal and Fisheries Co-management in South Africa* (eds. Hauck, M. & Sowman, M. 299–340 (University of Cape Town Press, 2003).
- 73. Anchor Environmental, *Olifants Estuary Situation Assessment* (University of Cape Town, 2008) 88 pp.
- Carvalho, A. R., Williams, S., January, M. & Sowman, M. Reliability of communitybased data monitoring in the Olifants River estuary (South Africa). *Fish. Res.* 96, 119– 128 (2009).
- 75. Sowman, M. in *Waves of Change: Coastal and Fisheries Co-management in South Africa*, (eds. Hauck, M. & Sowman, M.) 269–298 (University of Cape Town Press, 2003).
- 76. Hutton, T., Raakjær Nielsen, J. & Mayekiso, M. Government-industry co-management arrangements within the South African deep-sea hake fisher. Paper presented at the

International Workshop on Fisheries Co-Management, Penang, Malaysia, 28 August 1999.

- 77. Hutton, T. in *Waves of Change: Coastal and Fisheries Co-management in South Africa*, (eds. Hauck, M. & Sowman, M.) 199–226 (University of Cape Town Press, 2003).
- 78. Raakjær Nielsen, J. & Hara, M. Transformation of South African industrial fisheries, *Mar. Pol.* **30**, 43–50 (2006).
- 79. Baran, E. & Tous, P. Artisanal fishing, sustainable development and co-management of resources: Analysis of a successful project in West Africa (IUCN, Gland, Switzerland and Cambridge, UK, 2000), 42 pp.
- 80. Tous, P. Le Projet de Développement Durable de la Pêche Artisanale dans le Rio Grande de Buba, Guinée Bissau: Un exemple de cogestion des ressources halieutiques au niveau local (The World Bank/WBI's CBNRM Initiative, 1998; http://srdis.ciesin.org/cases/guineabissau-001-fr.html).
- 81. Rojat, D. Cogestion de la pêche crevettière à Madagascar, in *Economie de l'environnement et des ressources naturelles No 66/67*, 111–118 (2005).
- 82. Rojat, D., Rajaosafara, S. & Chaboud, C. Co-management of the shrimp fishery in Madagascar. Paper presented at IIFET, Tokyo, Japan, 2004.
- 83. Poverty Environment Net, "Shrimp Fisheries in Madagascar", (povertyenvironment.net/files/CASE%20Madagascar%20shrimps.pdf).
- 84. Alioune, S. Y. & Catanzano, J. Auto régulation des pêches artisanales Sénégalaises étude de cas su r l'exemple des pêcheries de Kayar. *Case-study for the World Bank/SIFAR/IDDRA*, Appendix 5 (2003).
- 85. Lenselink, N. M. Participation in artisanal fisheries management for improved livelihoods in West Africa. A synthesis of interviews and cases from Mauritania, Senegal, Guinea and Ghana. *FAO Fish. Tech. Paper. No. 432* (2004).
- Oluoch, S. J. & Obura, D. in *Ten Years after Bleaching Facing the Consequences of Climate Change in the Indian Ocean* (eds. Tamelander, D.O. & Linden, J.) 335–343 (CORDIO Status Report, 2008).
- McClanahan, T. R., Glaesel, H., Rubens, H. & Kiambo, R. The effects of traditional fisheries management on fisheries yields and the coral-reef ecosystems of southern Kenya. *Environ. Cons.* 24, 105–120 (1997).
- 88. Cinner, J. E. Toward institutions for community-based management of inshore marine resources in the Western Indian Ocean. *Mar. Pol.* **33**, 489–496 (2009).
- Agbayani, R. & Babol, A. Institutional arrangements in the fisheries co-management on Malalison Island, Culasi, Antigue: a process documentation research methodology. Fisheries Co-management Research *Project Work. Paper No. 16* (1997).
- Agbayani, R. F., Baticados, D. B. & Siar, S. B. Community fishery resources management on Malalison Island, Philippines: R & D framework, interventions, and policy implications. *Coast. Manage.* 28, 19–27 (2000).

- 91. Baticados, D. B. & Agbayani, R. F. Co-management in marine fisheries in Malalison Island, central Philippines. *Int. J. Sustain. Dev. World Ecol.* **7**, 343–355 (2000).
- Katon, B., Pomeroy, R. & Salamanca, A. The marine conservation project for San Salvador: a case study of fisheries co-management in the Philippines. Fisheries Comanagement Research Project Work. *Paper No. 23* (1997).
- 93. Katon, B. M., Pomeroy, R. & Garces, L. R. Fisheries management of San Salvador Island, Philippines: a shared responsibility. *Soc. Nat. Res.* **12**, 777-795 (1999).
- Kuperan, K., Mustapha, N., Pomeroy, R. & Genio, E. Measuring transaction costs of fisheries co-management: a case study in San Salvador Island, Philippines. Fisheries Comanagement Research *Project Work. Paper No.* 38 (1998).
- 95. Pomeroy, R. S. & Pido, M. D. Initiatives towards fisheries co-management in the Philippines: the case of San Miguel Bay. *Mar. Pol.* **19**, 213–226 (1995).
- 96. Sunderlin, W. D. & Gorospe, M. L. G. Fishers' organizations and modes of comanagement: the case of San Miguel Bay, Philippines. *Hum. Org.* **56**, 333–343 (1997).
- 97. Ahmed, M., Kuperan, K. & Valmonte-Santos, R. A. in *Collective Action and Property Rights in Fisheries Management* (eds. Meinzen-Dick, R. S. & Di Gregorio, M.) 11 (7) (International Food Policy Research Institute, 2004).
- Baticados, D. B., Agbayani, R. F. & Gentoral, F. E. Fishing cooperatives in Capiz, central Philippines: their importance in managing fishery resources. *Fish. Res.* 34, 137– 149 (1998).
- 99. Baticados, D. B. Fishing cooperatives' participation in managing nearshore resources: the case in Capiz, central Philippines. *Fish. Res.* **67**, 81–91 (2004).
- 100. Espectato, L.N. Co-managing shared waters: a coastal governance experience of Western Visayas Region, Philippines. The WorldFish Center, Working Paper 37462, pp. 10 (2007).
- 101. Hind, E. J., Hiponia, M. C. & Gray, T. S. From community-based to centralized national management-A wrong turning for the governance of the marine protected area in Apo Island, Philippines? *Mar. Pol.* 34, 54–62 (2010).
- 102. White, A., Deguit, E. & Jatulan, W. Integrated coastal management in Philippine local governance: evolution and benefits. *Coast. Manage*. **34**, 287–302 (2006)
- 103. Katon, B. M., Pomeroy, R. S. & Garces, L. R. Rehabilitating the mangrove resources of Cogtong Bay, Philippines: a co-management perspective. *Coast. Manage.* 28, 29–37 (2000).
- 104. Katon, B. M., Pomeroy, R. S., Ring, M. & L. Garces. Mangrove rehabilitation and coastal resource management project of Mabini-Candijay: a case study of fisheries comanagement arrangements in Cogtong Bay, Philippines. (ICLARM Fisheries Comanagement Project WP No. 33, Manila Philippines, 1998).
- 105. Maliao, R. J. & Poloha, A. E. Evaluating the impacts of mangrove rehabilitation in Cogtong Bay, Philippines. *Environ. Manage*. **41**, 414–424 (2008).

- 106. Webb, E. L. Maliao, R. J. & Siar, S. V. Using local user perceptions to evaluate outcomes of protected area management in the Sagay Marine Reserve, Philippines. *Environ. Cons.* **32**, 138–148 (2004).
- 107. Maliao, R. J., Pomeroy, R. S. & Turingan, R. G. Performance of community-based coastal resource management (CBCRM) Programs in the Philippines: a meta-analysis. *Mar. Pol.* 33, 818–825 (2009).
- Pomeroy, R. S. & Ahmed, M. Fisheries and coastal resources co-management in Asia: selected results from a regional research project. WorldFish Center Studies and Reviews 30, pp. 240 (2006).
- 109. Mushed-e-Jahan, K., Abdullah, N. M. R. & Kuperan Viswanathan, K. Welfare impacts of fisheries co-management system at Oxbow lakes in Bangladesh. (ICLARM, 11900 Penang, Malaysia, Report, 2000).
- Nathan, D. & Apu, N. A. Case study of the Oxbow lakes small-scale fishermen's project (OLSSFP) Bangladesh- 1990-1997 (IFAD Innovation Mainstreaming Initiative Project, 2004).
- 111. Middendorp, A. J., Hasan, M. R. & Apu, N. A. Community fisheries management of freshwater lakes in Bangladesh, *NAGA ICLARM Quart.* 5 pp. (1996).
- 112. Ahmed, M. S. Assessment of fishing practices on the exploitation of the Titas floodplain in Brahmanbaria, Bangladesh. *Turk. J. Fish. Aquat. Sci.* **8**, 329–334 (2008).
- 113. Mustafa, M. G. Fishery resources trends and community-based management approaches adopted in the river Titas in Bangladesh. *Intl. J. River Basin Manag.* **7**, 135–145 (2009).
- 114. Murshed-e-Jahana, K., Salayob, N. D. & Kanagaratnamc, U. Managing fisheries conflicts through communication planning: experience from inland fisheries of Bangladesh. *Fish. Res.* **99**, 112–122 (2009).
- 115. Thompson, P. M., Sultana, P. M., Islam, M. N., Kabir, M. M., Hossain, M. M. & Kabi, M. S. An assessment of co-management arrangements developed by the Community Based Fisheries Management Project in Bangladesh. Paper presented at the International Workshop on Fisheries Co-Management, Penang, Malaysia, 28 August 1999.
- 116. Thompson, P. M., Sultana, P. & Islam, N. Lessons from community based management of floodplain fisheries in Bangladesh. *J. Environ. Manag.* **69**, 307–321 (2003).
- 117. Mustafa, M. G. in *Community Based Fisheries Management Phase* (ed. Dickson, M.) 27 pp. (The WorldFish Center, Bangladesh, 2007).
- Thompson, P. M., Sultana, P. & Islam, N. Cooperation, conflicts and sustainability in community managed fisheries in Bangladesh. Digital Library of the Commons, 14 pp. (2008).
- Rab, M. A. River fisheries management in Bangladesh: drawing lessons from community based fisheries management (CBFM) experiences. *Ocean. Coast. Manage.* 52, 533–538 (2009).

- 120. Jahan, K. M., Mustapha, N. & Kuperan, K. Transaction costs and resource rent of fisheries co-management at Oxbow Lake (Baors) in Bangladesh. Paper presented at the Third World Fisheries Congress, Beijing, P.R China, 3 November 2000.
- 121. Jahan, K. M. Mustapha, N. & Kuperan, K. Welfare impacts of fisheries co-management system at Oxbow Lakes in Bangladesh. Paper presented at Tenth Biennial Conference of the IIFET, Corvallis, Oregon, 2001.
- 122. Sultana, P. & Abeyasekera, S. Effectiveness of participatory planning for community management of fisheries in Bangladesh. *J. Environ. Manage.* **86**, 201–213 (2008).
- 123. Craig, J. F. Halls, A. S. Barr, J. J. F. & Bean, C. W. The Bangladesh floodplain fisheries. *Fish. Res.* 66, 271–286 (2004).
- 124. Mustafa, M. G. & Brooks, A. C. Status of fisheries resource and management approach in the open beels of Bangladesh: a comparative case study. *Asian Fish. Sci.* 21, 189–203 (2008).
- 125. Sultana, S. & Thompson, P. M. Community based fisheries management and fisher livelihoods: Bangladesh case studies. *Hum. Ecol.* **35**, 527–54 (2007).
- 126. Islam, G. M. N., Dickson, M. W. & Tai, S.Y. Livelihood impacts of community-based management: experience from floodplain fisheries in Bangladesh. Digital Library of the Commons, pp. 24 (2008).
- 127. WorldFish Center, Case studies of selected CBFM waterbodies in Bangladesh, Working paper, WorldFish Center, Bangladesh and South Asia office, Dhaka (2006).
- 128. Islam, G. M. N. & Dickson, M. W. Livelihood impacts of community based fisheries management project, phase 2 (CBFM-2), Working Paper, WorldFish Center, Bangladesh and South Asia office, Dhaka (2006).
- Uchida, H. & Watanobe, M. in *Case Studies in Fisheries Self-governance* (eds. Townsend, R., Shotton, R. & Uchida, H.) 163–174 (FAO Fish. Tech. Pap. No 504, FAO Rome, 2008).
- 130. Makino, M. & Matsuda, H. Co-management in Japanese coastal fisheries: institutional features and transaction costs. *Mar. Pol.* **29**, 441–450 (2005).
- 131. Lim, C.P., Matsuda, Y. & Shigemi, Y. Co-management in marine fisheries: the Japanese experience. *Coast. Manage.* **23**, 195–221 (1995).
- Uchida, H. & Makino, M. in *Case Studies in Fisheries Self-governance* (eds. Townsend, R., Shotton, R. & Uchida, H.) 221–229 (FAO Fish. Tech. Pap. No 504, FAO Rome, 2008).
- Uchida, H. & Baba, O. in *Case Studies in Fisheries Self-governance* (eds. Townsend, R., Shotton, R. & Uchida, H.) 175–189 (FAO Fish. Tech. Pap. No 504, FAO Rome, 2008).
- 134. Uchida, H. & Wilen J. E. in Proceedings of the Twelfth Biennial Conference of the International Institute of Fisheries Economics and Trade (eds. Matsuda, Y. & Yamamoto, T.) (Corvallis, Oregon, 2005).

- 135. Cancino, J. P. Uchida, H. & Wilen, J. E. TURFs and ITQs: collective vs. decentralized decision making. *Mar. Res. Econ.* **22**, 391–406 (2007).
- 136. Watanabe, K., Sugiyama, H., Sugishita, S., Suzuki, N. & Sakuramoto, K. Estimating and monitoring the stock size of sandfish *Arctoscopus japonicas* in the northern Sea of Japan and monitoring sandfish stock size. *Fish. Sci.* **71**, 776–783 (2005).
- 137. Suenaga, S. in *Case Studies in Fisheries Self-governance* (eds. Townsend, R., Shotton, R. & Uchida, H.) 191–200 (FAO Fish. Tech. Pap. No 504, FAO Rome, 2008).
- Takahashi, S., McCay, B. J. & Baba, O. The good, the bad, or the ugly? Advantage and challenges of Japanese coastal fisheries management. *Bull. Mar. Sci.* 78, 575–591 (2006).
- Ruddle, K. & Segi, S. The management of inshore marine recreational fishing in Japan. *Coast. Manage.* 34, 87–110 (2006).
- 140. Tomiyama, M., Komatsu T. & Makino, M. in *Case Studies in Fisheries Self-governance* (eds. Townsend, R., Shotton, R. & Uchida, H.) 201–210 (FAO Fish. Tech. Pap. No 504, FAO Rome, 2008).
- Tomiyama, M., Lesage C-M. & Komatsu, T. Practice of sandeel fisheries management in Ise Bay toward responsible and sustainable fisheries. *Glob. Environ. Res.* 9, 139–149 (2005).
- 142. Makino, M. in *Case Studies in Fisheries Self-governance* (eds. Townsend, R., Shotton, R. & Uchida, H.) 211–220 (FAO Fish. Tech. Pap. No 504, FAO Rome, 2008).
- 143. Yamasaki, A. Establishment of preserved area for snow crab *Chionoecetes opilio* and consequent recovery of the crab resources. *Fish. Sci.* **68**, 1699–1702 (2002).
- 144. Yamasaki, A. & Kuwahara, A. in Proceedings of the International Symposium on King and Tanner Crabs (University of Alaska Sea Grant, AK-SG-90-4, Fairbanks 1989), pp. 575–586.
- 145. Baird, I. & Flaherty, M. Mekong river fish conservation zones in Southern Laos: assessing effectiveness using local ecological knowledge. *Environ. Manage.* 36, 439– 454 (2005).
- 146. Baird, I. G. Integrating community-based fisheries co-management and protected areas management in Lao P.D.R.: opportunities for advancement and obstacles to implementation. (Evaluating Eden Series. Discussion Paper No. 14, IIED, London, U.K., 2000).
- 147. Baird, I. G. Integrating fisheries with protected areas management in Laos, in Conservation and Sustainable Use of Agricultural Biodiversity: a Sourcebook (International Potato Center – Users' Perspectives with Agricultural Research and Development, Laguna, Philippines, 2004).
- 148. Baird, I. G. 1999. The co-management of Mekong River inland aquatic resources in southern Lao PDR. Paper presented at the International Workshop on Fisheries Co-Management ICLARM, Penang, Malaysia, 23-28 August 1999.

- 149. Thomson, K. Management anarchy in complex commons: a study of Cochin Lagoon fisheries in Kerala, India. Paper presented at the IASC Conference, Cheltenham, England, 18 July 2008.
- 150. Lobe, K., Berkes, F. The padu system of community-based fisheries management: change and local institutional innovation in south India, *Mar. Pol.* **28**, 271–281 (2004).
- 151. Immanuel, S. V., Pillai, V. N., Vivekanandan, E., Kurup, K. N. & Srinath, M. in Assessment, Management and Future Directions for Coastal Fisheries in Asian Countries (eds. Luna, C. Lachica Aliño, L. Munro, P. Christensen, V. Pauly, D.) 439– 478 (WorldFish Center Conference Proceedings 67, 2003).
- 152. Thomson, K. & Gray, T. From community-based to co-management: improvement or deterioration in fisheries governance in the Cherai Poyil fishery in the Cochin Estuary, Kerala, India? *Mar. Pol.* 33, 537–543 (2009).
- 153. Thomson, K. The role of public-private cooperation in the management of estuarine fisheries: learning from the Kerala model of co-management. Paper presented at the 11th biennial conference of the International Association for the Study of Common Property, Bali, Indonesia, 23 June 2006.
- 154. Srinivasan, J. T. State regulation versus co-management: evidence from the Cochin estuarine fisheries in India. *Environ. Develop. Econ.* **10**, 97–117 (2005).
- 155. Novaczek, I., Hartes, I. H. T., Sopacua, J. & Tatuhey, M. D. D. An institutional analysis of Sasi Laut, in Malaku, Indonesia. The World Fish Center, Working paper 39 (2001).
- 156. Susilowati, I. The prospect of co-management in managing open water resources with special reference to Indonesia: a lesson learned. The WorldFish Center, Working Paper 37463 (2007).
- 157. Macfadyen, G. Cacaud, P. & Kuemlangan, B. Policy and legislative frameworks for comanagement. Paper presented at Workshop on Mainstreaming Fisheries Comanagement, Cambodia, 12 August 2005.
- 158. Nickerson, D. J. Ed., Community-based Fisheries Management in Phang-nga Bay, Thailand in *Proceedings of the National Workshop on Community-based Fisheries Management* (Phuket, Thailand, 1998).
- 159. Nickerson-Tietze, D. J. Community-based management for sustainable fisheries resources in Phang-nga Bay, Thailand. *Coast. Manage.* **28**, 65–74 (2000).
- 160. Tokrisna, R. Boonchuwong, P. & Janekarnkij, P. A review on fisheries and coastal community-based management regime in Thailand, ICLARM (www.comanagement.org/download/pongpat.pdf) (1997).
- 161. Johannes, R.E. Government-supported, village-based management of marine resources in Vanuatu. *Ocean Coast. Manage.* **40**, 165–186 (1998).
- 162. World Bank. Voices from the Village. A comparative study of coastal resource management in the Pacific Islands (Final Report, Vol. 2, The World Bank, Washington, D.C., 2000).

- 163. Johannes, R. E. The renaissance of community based marine resource management in Oceania. *Annu. Rev. Ecol. Syst.* **33**, 317–340 (2002).
- 164. Brent Hall, G., Moore, A. Knight, P. & Hankey, N. The extraction and utilization of local and scientific geospatial knowledge within the Bluff oyster fishery, New Zealand. *J. Environ. Manage.* **90**, 2055–2070 (2009).
- 165. Knight, P. Ownership and belonging in the Bluff oyster fishery. Ph.D. thesis, University of Otago (2003).
- 166. Wen Yang, Y., Frazer, A. & Rees E. Self-governance within a QMS framework: the evolution of self-governance in the New Zealand Bluff oyster fishery. *Mar. Pol.* 34, 261–267 (2010).
- 167. Mincher, R. in *Case Studies in Fisheries Self-governance* (eds. Townsend, R., Shotton, R. & Uchida, H.) 307–322 (FAO Fish. Tech. Pap. No 504, FAO Rome, 2008).
- 168. Arbuckle, M. W. Fisheries management under ITQs: Innovations in New Zealand's Southern Scallop fishery. Paper presented at Tenth Biennial Conference of the International Institute of Fisheries Economics and Trade, Corvallis, Oregon, 2001.
- 169. Harte, M. in *Case Studies in Fisheries Self-governance* (eds. Townsend, R., Shotton, R. & Uchida, H.) 323–334 (FAO Fish. Tech. Pap. No 504, FAO Rome, 2008).
- Zacharin, W., Dixon, C. & Smallridge, M. in *Case Studies in Fisheries Self-governance* (eds. Townsend, R., Shotton, R. & Uchida, H.) 245–258 (FAO Fish. Tech. Pap. No 504, FAO Rome, 2008).
- 171. Dixon, C. D., Roberts, S. D. & Hooper, G. E. Spencer gulf prawn (*Melicertus latisulcatus*) fishery. Fishery Assessment Report to PIRSA, SARDI Aquatic Sciences RD03/0079–4 (2006).
- 172. Carrick, N. A. & Ostendorf, B. Development of a spatial Decision Support System (DSS) for the Spencer Gulf penaeid prawn fishery, South Australia, *Environ. Modell. Softw.* 22, 137–148 (2007).
- 173. Carter, J. & Hill, G. Indigenous community-based fisheries in Australia. J. Environ. Manage. 85, 866–875 (2007).
- 174. Fisheries Research and Development Corporation. *Co-management: managing Australia's fisheries through partnership and delegation* (National working group on the fisheries co-management initiative — Project no. 2006/068, Australia, 2006).
- 175. Mulrennan, M. E. Indigenous participation in fisheries management in Torres Strait, Northern Australia. MIGS Workshop, Concordia University, 1 February 2002.
- 176. Putnis, A., Josif, P. & Woodward, E. Healthy Country, Healthy People: Supporting Indigenous Engagement in the Sustainable Management of Northern Territory Land and Seas. A Strategic Framework (CSIRO: Darwin, 229 pages, 2007).
- 177. Kangas, M., Sporer, E., O'Donoghue, S. & Hood, S. in *Case Studies in Fisheries Self-governance* (eds. Townsend, R., Shotton, R. & Uchida, H.) 231–244 (FAO Fish. Tech. Pap. No 504, FAO Rome, 2008).

- 178. Dichmont, C. M., Loneragan, N. R., Brewer, D.T. & Poiner, I. R. in *Case Studies in Fisheries Self-governance* (eds. Townsend, R., Shotton, R. & Uchida, H.) 207–230 (FAO Fish. Tech. Pap. No 504, FAO Rome, 2008).
- 179. Kearney, R. E. Co-management: the resolution of conflict between commercial and recreational fishers in Victoria, Australia. *Ocean Coast. Manage.* **45**, 201–214 (2002).
- Thwaites, A. & Andersen, C. in *Case Studies in Fisheries Self-governance* (eds. Townsend, R., Shotton, R. & Uchida, H.) 259–268 (FAO Fish. Tech. Pap. No 504, FAO Rome, 2008).
- 181. Department of the Environment and Heritage. Assessment of the ecological sustainability of management arrangements for the Queensland Finfish (Stout Whiting) Trawl Fishery, Queensland, Australia, 2004.
- 182. Fisheries Research and Development Corporation, Co-management: Managing Australia's fisheries through partnership and delegation (Report of the Fisheries Research and Development Corporation's national working group on the fisheries comanagement initiative, Project No. 2006/068, 2008).
- 183. Carter, J. & Hill, G. Indigenous community-based fisheries in Australia. J. Environ. Manage. 85, 866–875 (2007).
- 184. Australian Government. Commonwealth Fisheries Harvest Strategy Policy Guidelines. Australian Government Department of Agriculture, Fisheries and Forestry (Australia, 2007).
- 185. Prince, J. D. Managing data poor fisheries: solutions around the world. Proceedings of Managing Data-Poor Fisheries Workshop (Berkeley, 2009).
- 186. Fisheries Victoria, 2005. Fisheries (abalone) bill 2005. Fisheries Victoria, East Melbourne, Australia. 241 pp.
- 187. Ryan, T. E. & Kloser, R. J. Industry based acoustic surveys of Tasmanian West coast blue grenadier during the 2008 spawning season. Final Report to AFMA. Project 2008/808. (2009).
- 188. Australia Government. Southern and eastern scalefish and shark fisher, Great Australian Bight Trawl Sector 2009. Management Arrangements (Australia, 2009.
- 189. Australia Government. The Australian Fisheries Management Authority. URL: http://www.afma.gov.au/default.htm
- 190. James, M. in *Case Studies in Fisheries Self-governance* (eds. Townsend, R., Shotton, R. & Uchida, H.) 397–406 (FAO Fish. Tech. Pap. No 504, FAO Rome, 2008).
- 191. Muse, B. Management of the British Columbia geoduck fishery (Alaska Commercial Fisheries Entry Commission, Juneau, AK, 1998).
- 192. Peacock, F. G. & Eagles, M. in *Case Studies in Fisheries Self-governance* (eds. Townsend, R., Shotton, R. & Uchida, H.) 89–100 (FAO Fish. Tech. Pap. No 504, FAO Rome, 2008).

- 193. Loucks, L. Patterns of fisheries institutional failure and success: experience from the Southern Gulf of St. Lawrence snow crab fishery, in Nova Scotia, Canada. *Mar. Pol.* 31, 320–326 (2007).
- 194. Loucks, L. The evolution of the Area 19 snow crab co-management agreement: understanding the inter-relationship between transaction costs, credible commitment and collective action. Ph.D. thesis, Simon Fraser University (2005).
- 195. Hébert, M., Wade, E., Biron, M., DeGrâce, P., Sonier, R. & Moriyasu, M. Évaluation de stock de crabe des neiges, *Chionoecetes opilio*, dans le sud du golfe du Saint-Laurent (zones 12, 19, E et F) en 2008. *Doc. de Rech.* 2009/053 (2009).
- 196. Charles, A., Bull, A., Hearney, J. & Milley, C. in *Case Studies in Fisheries Self-governance* (eds. Townsend, R., Shotton, R. & Uchida, H.) 274–301 (FAO Fish. Tech. Pap. No 504, FAO Rome, 2008).
- 197. Charles, A. Fisheries management in Atlantic Canada. *Ocean Coast. Manage.* **35**, 101–119 (1997).
- 198. Davis, D., Whalen, J. & Neis, B. From orders to borders: toward a sustainable comanaged lobster fishery in Bonavista Bay, Newfoundland. *Hum. Ecol.* **34**, 851–867 (2006).
- 199. Campbell, A. & Harbo, R.M. in *Biology of Echinodermata* (eds. Yanagisawa et al.) 191–199 (Balkema, 1997).
- 200. Featherstone, M. & Rogers, J. in *Case Studies in Fisheries Self-governance* (eds. Townsend, R., Shotton, R. & Uchida, H.) 383–396 (FAO Fish. Tech. Pap. No 504, FAO Rome, 2008).
- 201. Muse, B. Management of the British Columbia sea urchin fisheries (Alaska Commercial Fisheries Entry Commission, Juneau, AK, 1998).
- 202. Stevens, G., Robert, G. & Burke, L. in *Case Studies in Fisheries Self-governance* (eds. Townsend, R., Shotton, R. & Uchida, H.) 111–124 (FAO Fish. Tech. Pap. No 504, FAO Rome, 2008).
- 203. Barrow, J., Jefferson, G. E., Eagles, M. D. & Stevens, G. J. in *Case Studies on the Allocation of Transferable Quota Rights in Fisheries* (ed. Shotton, R.) 32–57 (FAO Fish. Tech. Pap. No 411, FAO Rome, 2001).
- 204. Baskaran, R. & Anderson, J. L. Atlantic sea scallop management: an alternative rightsbased cooperative approach to resource sustainability. *Mar. Pol.* **29**, 357–369 (2005).
- 205. Sporer, C. in *Case Studies on the Allocation of Transferable Quota Rights in Fisheries* (ed. Shotton, R.) 407–414 (FAO Fish. Tech. Pap. No 411, FAO Rome, 2001).
- 206. Blewett, E. Status report on co-managed fisheries in British Columbia. URL: http://www.bcseafoodalliance.com/BCSA/BCSA_BLEWETT.html (2002)
- 207. Coxa, S. P. & Kronlund, A. R. Practical stakeholder-driven harvest policies for groundfish fisheries in British Columbia, Canada. *Fish. Res.* **94**, 224–237 (2008).

- Pinkerton, E. & John, L. Creating local management legitimacy. *Mar. Pol.* 32, 680–691 (2008).
- 209. Dunlop, R. Area F Intertidal clam fishery community management board: emerging community-based management in Nuu-chah-nulth Ha'houlthee on the West Coast of Vancouver Island. *Bull. Aquac. Assoc. Can.* 100, 30–6 (2000).
- Kearney, J. in Atlantic Fisheries and Coastal Communities: Fisheries Decision-Making Case Studies (eds. Lamson, C. & Hanson, A. J.) 165–203 (Halifax: Dalhousie Ocean Studies Programme, 1984).
- 211. Kearney, J., Berkes, F., Charles, A., Pinkerton, E. & Wiber, M. The role of participatory governance and community-based management in integrated coastal and ocean management in Canada. *Coast. Manage.* **35**, 79–104 (2007).
- 212. Fisheries Resource Conservation Council. *Fishing Into the Future: The Herring Fishery in Eastern Canada* (A report to the Minister of Fisheries and Oceans, Minister of Public Works and Government Services Canada, 2009). 34 pp.
- 213. Lane, D. E. & Stephenson, R. L. Fisheries co-management: organization, process, and decision support. *J. Northw. Atl. Fish. Sci.* 23, 251–265 (1998).
- 214. Stephenson, R. L., Lane, D. E. Aldous, D. & Nowak R. Management of the 4WX Atlantic herring (*Clupea harengus*) fishery: an evaluation of recent events. *Can. J. Fish. Aquat. Sci.* 50, 2742–2757 (1993).
- 215. Stephenson, R. L., Rodman, K., Aldous, D. G. & Lane, D. E. An in-season approach to management under uncertainty: the case of the SW Nova Scotia herring fishery. *ICES J. Mar. Sci.* 56, 1005–1013 (1999).
- 216. Peacock, F. G. & Annand, C. in *Case Studies in Fisheries Self-governance* (eds. Townsend, R., Shotton, R. & Uchida, H.) 101–110 (FAO Fish. Tech. Pap. No 504, FAO Rome, 2008).
- 217. Berneshawi, S. Resource management and the Mi'kmaq Nation. *Can. J. Native Stud.* **XVII**, 115–148 (1997).
- 218. Fox, G. Mediating resource management in the Mi'kmaq fisheries Canada. *Development* 49, 119–124 (2006).
- 219. Fisheries and Oceans. Capacity building in fisheries. Atlantic Integrated Commercial Fisheries Initiative (AICFI) An Application Guide for Mi'kmaq & Maliseet First Nations. Minister of Public Works and Government Services, Canada, 43 pp
- 220. Milley, C. & Charles, A. Mi'kmaq Fisheries in Atlantic Canada: Traditions, Legal Decisions and Community Management. Invited Paper presented at the 2001 Conference: People and the Sea: Maritime Research in the Social Sciences: An Agenda for the 21st Century. University of Amsterdam and Netherlands Institute for the Social Sciences, Amsterdam, 2001.
- 221. Wiber, M. & Milley, C. After Marshall: implementation of aboriginal fishing rights in Atlantic Canada. *J. Legal Pluralism* **55**, 163–186 (2007).

- 222. Wiber, M., Berkes, F., Charles, A. & Kearney, J. Participatory research supporting community-based fishery management. *Mar. Pol.* **28**, 459–468 (2004).
- 223. Adams, M., Frostz, K. J. & Harwood, L. A. Alaska and Inuvialuit Beluga Whale Committee (AIBWC) - an initiative in "at home management". *Arctic* **46**, 134–137 (1993).
- 224. Harwood, L. A. & Smith, T. G. Whales of the Inuvialuit settlement region in Canada's Western Arctic: An overview and outlook. *Arctic* **55**, 77–93 (2002).
- 225. Harwood, L. A., Norton, P., Day, B. & Hall, P. A. The harvest of beluga whales in Canada's Western Arctic: hunter-based monitoring of the size and composition of the catch. *Arctic* **55**, 10–20 (2002).
- 226. Fast, H., Chiperzak, D. B., Cott, K. J. & Elliott, G. M. in *Breaking ice. Renewable Resource and Ocean Management in the Canadian North* (eds. Berkes, F., Huebert, R., Fast, H., Manseau, M. & Diduck, A.) 95–117 (University of Calgary Press, 2005).
- 227. Fernandez-Gimenez, M. E., Huntington, H. P. & Frost, K. J. Integration or co-optation? Traditional knowledge and science in the Alaska Beluga Whale Committee. *Environ. Conserv.* 33, 306–315 (2006).
- 228. Acheson, J. M., Stockwell, T. & Wilson, J. Evolution of the Maine lobster comanagement law. *Maine Pol. Rev.* 52–62 (2000).
- 229. Acheson, J. & Taylor, L. The anatomy of the Maine lobster co-management law. *Soc. Nat. Res.* **14**, 425–441 (2001).
- 230. Wilson, J. Yan, L. & Wilson, C. The precursors of governance in the Maine lobster fishery. *Proc. Nat. Acad. Sci. U.S.A.* **104**, 15212–15217 (2007).
- 231. Maurin, P. & Peck, S. The West Hawaii Fisheries Council case study. University of Hawaii, Sea Grant College Program (2008).
- Tissot, B., Walsh, W. J. & Hixon, M. A. Hawaiian Islands marine ecosystem case study: ecosystem- and community-based management in Hawaii. *Coast. Manage.* 37, 255–273 (2009).
- 233. Tissot, B. N., Walsh, W. & Hallacher, L. E. Evaluating the effectiveness of a marine reserve network in Hawai'i to increase the productivity of an aquarium fishery. *Pacific Sci.* 58, 175–188 (2004).
- 234. Ebbin, S. A. Enhanced fit through institutional interplay in the Pacific Northwest salmon co-management regime. *Mar. Pol.* **26**, 253–259 (2002).
- 235. Ebbin, S. A. The anatomy of conflict and the politics of identity in two cooperative salmon management regimes. *Pol. Sci.* **37**, 71–87 (2004).
- Ebbin, S.A. Institutional and ethical dimensions of resilience in fishing systems: perspectives from co-managed fisheries in the Pacific Northwest. *Mar. Pol.* 33, 264–270 (2009).

- 237. Carranza, A., Defeo, O. & Beck, M. Diversity, conservation status and threats for native oysters (Ostreidae) in the Atlantic and Caribbean coasts of South America. *Aquat. Conserv. Mar. Freshw. Ecosys.* 19, 344–353 (2009).
- 238. Medeiros, D. Poverty alleviation and biodiversity conservation in rural Brazil: a case study of the Cananéia oyster producers cooperative. M.Sc. thesis, University of Manitoba (2006).
- 239. Medeiros, D. Lessons from the Equator Initiative: Cananéia Oyster Producers' Cooperative, Brazil. URL: http://www.umanitoba.ca/institutes/ natural_resources/nri_cbrm_projects_eiprojects.html (2004)
- 240. Glaser, M. & Da Silva, R. Prospects for the co-management of mangrove ecosystems of the North Brazilian coast. *Nat. Resour. Forum* **28**, 224–233 (2004).
- 241. Glaser, M. & Diele K. Asymmetric outcomes: assessing central aspects of the biological, economic and social sustainability of a mangrove crab fishery, *Ucides cordatus* (Ocypodidae), in North Brazil. *Ecol. Econ.* **49**, 361–373 (2004).
- 242. Alves, R. Nishida, A. K. & Hernández, M. I. M. Environmental perception of gatherers of the crab 'caranguejo-uçá' (*Ucides cordatus*, Decapoda, Brachyura) affecting their collection attitudes. *J. Ethnobiol. Ethnomed.* **1**:10 (2005).
- 243. Silvano, R. A. M., Ramires, M. & Zuanon, J. Effects of fisheries management on fish communities in the floodplain lakes of a Brazilian Amazonian Reserve. *Ecol. Freshw. Fish* 18, 156–166 (2009).
- 244. Maccord, P. F. L., Silvano, R. A. M., Ramires, M. S., Clauzet, M. & Begossi, A. Dynamics of artisanal fisheries in two Brazilian Amazonian reserves: implications to comanagement *Hydrobiologia* **583**, 365–376 (2007).
- 245. Gutberlet, J., Seixas, C., Glinfskoi Thé, A. P. & Carolsfeld, J. Resource conflicts: challenges to fisheries management at the São Francisco River, Brazil. *Hum. Ecol.* 35, 623–638 (2007).
- 246. Seixas C. S. *et al.* in *Current Trends in Human Ecology* (eds. Lopes, P. & Begossi, A.) 156–182 (Cambridge, 2009).
- 247. da Silva, P. P. From common property to co-management: lessons from Brazil's first maritime extractive reserve. *Mar. Pol.* **28**, 419–428 (2004).
- Moura, R. L. *et al.* Challenges and prospects of fisheries co-management under a marine extractive reserve framework in Northeastern Brazil. *Coast. Manage.* 37, 617–632 (2009).
- 249. Seixas C. S. & Berkes, F. in *Navigating Socioecological Systems* (eds. Berkes, F., Colding, J. & Folke, C.) 271–298 (Cambridge Univ. Press, Cambridge, 2003).
- 250. Seixas, C. & Troutt, E. Socio-economic and ecological feedbacks in lagoon fisheries: management principles for a co-evolutionary setting. *Interciencia* **29**, 362–368 (2004).

- 251. Defeo, O. & Castilla, J. C. More than one bag for the world fishery crisis and keys for co-management successes in selected artisanal Latin American shellfisheries. *Rev. Fish Biol. Fish.* 15, 265–283 (2005).
- 252. Castilla, J. C. & Pino, C. The small-scale fishery of the red sea urchin, *Loxechinus albus*, in Chile and the Management and Exploitation Area of Caleta El Quisco. *Out of the Shell* **5**, 5–8 (1996).
- 253. Moreno, C. A. *et al.* in *Fisheries Management: Progress Towards Sustainability* (eds. McClanahan, T. & Castilla, J. C.) 43–67 (Blackwell, 2007).
- 254. Pino, C. & Castilla, J. C. The key-hole limpets (*Fisurella* spp.) in the Chilean artisanal fishery. *Out of the Shell* **5**, 8–10 (1995).
- Castilla, J. C. & Fernández, M. Small-scale benthic fisheries in Chile: on comanagement and sustainable use of benthic invertebrates. *Ecol. Applic.* 8, S124–S132 (1998).
- 256. Castilla, J. C. & Defeo, O. Latin American benthic shellfisheries: emphasis on comanagement and experimental practices. *Rev. Fish Biol. Fish.* **11**, 1–30 (2001).
- 257. Castilla J. C. *et al.* Artisanal "Caletas" as units of production and co-managers of benthic invertebrates in Chile. *Can. Spec. Publ. Fish. Aquat. Sci.* **125**, 407–413 (1998).
- 258. Castilla, J. C. Gelcich, S. & Defeo, O. in *Fisheries Management: Progress Towards Sustainability* (eds. McClanahan, T. & Castilla, J. C.) 25–42 (Blackwell, 2007).
- 259. Gelcich, S., Edwards-Jones, G. & Kaiser, M. J.Heterogeneity in fishers' harvesting decisions under a marine territorial user rights policy. *Ecol. Econ.* **61**, 246–254 (2007).
- Gelcich, S., Edwards-Jones, G., Kaiser, M. & Watson, E. Using discourses for policy evaluation: the case of marine common property rights in Chile. *Soc. Nat. Resources* 18, 377–391 (2005).
- 261. Gelcich, S., Edwards-Jones, G. & Kaiser, M. Importance of attitudinal differences among artisanal fishers with respect to co-management and conservation of benthic resources. *Conserv. Biol.* **19**, 865–875 (2005).
- 262. González, J. *et al.* The Chilean TURF system: how is it performing in the case of the loco fishery? *Bull. Mar. Sci.* **78**, 499–527 (2006).
- 263. Schumann, S. Co-management and "consciousness": fishers' assimilation of management principles in Chile. *Mar. Pol.* **31**, 101–111 (2007).
- Fernández, M. & Castilla, J. C. The Chilean artisanal stone crab (*Homalaspis plana*): catch trends in open access zones and the effect of management areas in Central Chile. *J. Shellf. Res.* 16, 371–377 (1997).
- 265. Fernández, M. & Castilla, J. C. Recruitment of *Homalaspis plana* in intertidal habitats of Central Chile and the implications for the current use of Management and Marine Protected Areas. *Mar. Ecol. Prog. Ser.* 208, 157–170 (2000).

- 266. Castilla, J. C., Campo M. A. & Bustamante, R. H. Recovery of *Durvillaea antarctica* (Durvilleales) inside and outside Las Cruces marine reserve, Chile. *Ecol. Applic.* 17, 1511–1522 (2007).
- 267. Gelcich, S., Edwards-Jones, G., Kaiser, M. J. & Castilla J. C. Co-management policy can reduce resilience in traditionally managed marine ecosystems. *Ecosystems* 9, 951– 966 (2006).
- 268. Defeo, O., Castilla, J. C. & Castrejón, M. Pesquerías artesanales de invertebrados en América Latina: paradigmas emergentes de manejo y gobernanza. Foro Iberoam. Rec. Mar. Acuic. II: 89–117 (2009).
- 269. Baine, M. *et al.* Coastal and marine resource management in the Galapagos Islands and the Archipelago of San Andres: issues, problems and opportunities. *Ocean Coast. Manage.* 50, 148–173 (2007).
- 270. Castrejón, M. El sistema de co-manejo pesquero de la Reserva Marina de Galápagos: tendencias, retos y perspectivas de cambio (Fundación Charles Darwin, Galápagos, Tech. Rep. 2008).
- 271. Heylings, P. & Bravo, M. Evaluating governance: a process for understanding how comanagement is functioning, and why, in the Galapagos Marine Reserve. *Ocean Coast. Manage.* 50, 174–208 (2007).
- 272. MacFarland, C. & Cifuentes, M. in *Human Population, Biodiversity and Protected Areas: Science and Policy Issues* (ed. Dompka, V.) 135–188 (American Association for the Advancement of Science, 1996).
- 273. Murillo, J. C. & Reyes, H. Evaluación de la pesquería 2007 de pepino de mar *Isostichopus fuscus* en la Reserva Marina de Galápagos (Tech. Rep. Parque Nacional Galápagos, 2008).
- 274. Toral M. V. et al. in Evaluación de las pesquerías en la Reserva Marina de Galápagos, informe compendio 2005 (ed. Hearn, A.) 6–45 (Fundación Charles Darwin, Galápagos, 2006).
- 275. Hearn, A. *et al.* Evaluación de la pesquería de langosta espinosa (*Panulirus penicillatus* y *P. gracilis*) en la Reserva Marina de Galápagos 2004 (Tech. Rep. Fundación Charles Darwin, Galápagos, 2004).
- 276. Moreno, J., Peñaherrera, C. & Hearn, A. Evaluación de la pesquería de langosta espinosa (*Panulirus penicillatus y P. gracilis*) en la Reserva Marina de Galápagos (Tech. Rep. Fundación Charles Darwin, Galápagos, 2006).
- Davos C. A. *et al.* Zoning of marine protected areas: conflicts and cooperation options in the Galapagos and San Andres archipelagos. *Ocean Coast. Manage.* 50, 223–252 (2007).
- 278. Carr, D. L. Resource management and fertility in Mexico's Sian Ka'an Biosphere Reserve: campos, cash, and contraception in the lobster-fishing village of Punta Allen. *Popul. Environ.* 29, 83–101 (2008).

- 279. Sosa-Cordero, E. Liceaga-Correa, M. A. & Seijo, J. C. in *Case Studies in Fisheries Self-governance* (eds. Townsend, R., Shotton, R. & Uchida, H.) 149–162 (FAO Fish. Tech. Pap. No 504, FAO Rome, 2008).
- 280. Sierra Rodríguez, P., Muciño Díaz, M., Gutiérrez González, J. L., Turrubiates Morales, J. R. in Sustentabilidad y Pesca Responsable en México, Evaluación y Manejo 3–38 (Instituto Nacional de la Pesca, México, 2006).
- 281. Vega Velásquez, A. in *Sustentabilidad y Pesca Responsable en México. Evaluación y Manejo* 155–210 (Instituto Nacional de la Pesca, México, 2006).
- 282. Warner, G. Participatory management, popular knowledge, and community empowerment: the case of sea urchin harvesting in the Vieux-Fort area of St. Lucia. *Hum. Ecol.* **25**, 29–46 (1997).
- 283. Smith, A. H., Berkes, F. Solutions to the 'tragedy of the commons': sea-urchin management in St. Lucia, West Indies. *Environ. Conserv.* **18**, 131–136 (1991).
- 284. McConney, P., Pomeroy, R. & Mahon, R. Coastal resources co-management in the Caribbean (Tech. Rep. Caribbean Conservation Association, 2008).
- McDaniel, J. Communal fisheries management in the Peruvian Amazon. *Hum. Organ.* 56, 147–152 (1997).
- 286. Defeo, O. Experimental management of an exploited sandy beach bivalve population. *Rev. Chil. Hist. Nat.* **69**, 605–614 (1996).
- Defeo, O. Testing hypotheses on recruitment, growth and mortality in exploited bivalves: an experimental perspective. *Can. Spec. Publ. Fish. Aquat. Sci.* 125, 257–264 (1998).
- 288. Orensanz, J. M., Parma, A. M., Ciocco, N. & Cinti, A. in *Fisheries Management: Progress Towards Sustainability* (eds. McClanahan, T. & Castilla, J. C.) 68–87 (Blackwell, 2007).
- 289. Ciocco N. F. *et al.* in *Scallops: Biology, Ecology and Aquaculture* (ed. Shumway, S.) 1251–1292 (Elsevier, 2005).
- Mahon, R., Almerigi, S., McConney, P., Parker, C. & Brewster, L. Participatory methodology used for sea urchin co-management in Barbados. *Ocean Coast. Manage*. 46, 1–15 (2003).
- 291. McConney, P., Mahon, R. & Pomeroy, R. in Adaptive Co-management. Collaboration, Learning and Multi-level Governance (eds. Armitage, D., Berkes, F. & Doubleday, N.) 105–124 (UBC Press, 2007).
- McConney, P., Mahon, R. & Pomeroy, R. Belize case study: fisheries advisory board in the context of integrated coastal management (Caribbean Conservation Association Tech. Rep., 2003).
- 293. Raakjær Nielsen, J. & Vedsmand, T. User participation and institutional change in fisheries management: a viable alternative to the failures of 'top-down' driven control? *Ocean Coast. Manage.* 42, 19–37 (1999).

- 294. Raakjær Nielsen, J. & Olesen, C. in *Case Studies in Fisheries Self-governance* (eds. Townsend, R., Shotton, R. & Uchida, H.) 31–40 (FAO Fish. Tech. Pap. No 504, FAO Rome, 2008).
- 295. Sipponen, M. The development of the Finnish inland fisheries system. *Fish. Manag. Ecol.* **8**, 383–391(2001).
- 296. Sipponen, M. & Grévobal, D. Social, economic and cultural perspectives of European inland fisheries: review of the EIFAC symposium on fisheries and society. *Fisheries Manag. Ecol.* 8, 283–293 (2001).
- 297. Alban, F. & Boncoeur, J. in *Case Studies in Fisheries Self-governance* (eds. Townsend, R., Shotton, R. & Uchida, H.) 41–52 (FAO Fish. Tech. Pap. No 504, FAO Rome, 2008).
- 298. Imeson, R. J. & van den Bergh, J. C. J. M. Policy failure and stakeholder dissatisfaction in complex ecosystem management: the case of the Dutch Wadden Sea shellfishery. *Ecol. Econ.* 56, 488–507 (2006).
- 299. van Hoof L. *et al.* Sharing responsibilities in fisheries management Part 2 Annex: case studies (Report 7.05.05 LEI, The Hague, 2005). [unpublished or access by title].
- 300. Hersoug, B. & Rånes, S. A. What is good for the fishermen, is good for the nation: comanagement in the Norwegian fishing industry in the 1990s. Ocean Coast. Manage. 35, 157–172 (1997).
- 301. Holm, P., Hersoug, B. & Arne Rånes, S. Revisiting Lofoten: co-managing fish stocks or fishing space? *Hum. Organ.* **59**, 353–364 (2000).
- 302. Jentoft, S. & Kristoffersen, T. Fishermen's co-management: the case of the Lofoten fishery. *Hum. Organ.* **48**, 355–365 (1989).
- 303. Ulfsdatter Søreng, S. Moral discourse in fisheries co-management: A case study of the Senja fishery, northern Norway. *Ocean Coast. Manage*. **49**, 147–163 (2006).
- 304. Vetemaa, M., Vaino, V., Saat, T. & Kuldin, S. Co-operative fisheries management of the cross border Lake Peipsi-Pihkva. *Fisheries Manag. Ecol.* **8**, 443–451 (2001).
- 305. Noble, T. Co-operating in fisheries management: trials and tribulations. *Mar. Pol.* 27, 433–439 (2003).
- 306. Anderson, J. (2008) in *Case Studies in Fisheries Self-governance* (eds. Townsend, R., Shotton, R. & Uchida, H.) 53–65 (FAO Fish. Tech. Pap. No 504, FAO Rome, 2008).
- 307. Dominguez-Torreiro, M., Freijeiro Alvarez, A. B. & Iglesias-Malvido, C. Comanagement proposals and their efficiency implications in fisheries management: the case of the Grand Sole fleet. *Mar. Pol.* 28, 213–219 (2004).
- 308. Frangoudes, K., Marugán-Pintos, B. & Pascual-Fernández, J. J. From open access to cogovernance and conservation: the case of women shellfish collectors in Galicia (Spain). *Mar. Pol.* 32, 223–232 (2008).
- 309. Freire, J. & García-Allut, A. Integration of fishers' ecological knowledge in fisheries biology and management. A proposal for the case of the artisanal coastal fisheries of Galicia (NW Spain). Int. Council Explor. Sea, C.M. 1999/S:07 (1999).

- 310. Meltzoff, S. K. Marisquadoras of the shellfish revolution: the rise of women in comanagement on Illa de Arousa, Galicia. *J. Polit. Ecol.* **2**, 20–38 (1995).
- 311. Freire J. *et al.* Management strategies for sustainable invertebrate fisheries in coastal ecosystems of Galicia (NW Spain). *Aquat. Ecol.* **36**, 41–50 (2002).
- 312. Molares, J. & Freire, J. Development and perspectives for community-based management of the goose barnacle (*Pollicipes pollicipes*) fisheries in Galicia (NW Spain). *Fish. Res.* **65**, 485–492 (2003).
- 313. Garza Gil, M. D. & Varela Lafuente, V. V. in *Case Studies in Fisheries Self-governance* (eds. Townsend, R., Shotton, R. & Uchida, H.) 67–75 (FAO Fish. Tech. Pap. No 504, FAO Rome, 2008).
- 314. Fernández-Rueda, P. & García Flores, L. Octopus vulgaris (Mollusca: Cephalopoda) fishery management assessment in Asturias (north-west Spain). Fish. Res. 83, 351–354 (2007).
- 315. Eggert, H. & Ulmestrand, M. in *Case Studies in Fisheries Self-governance* (eds. Townsend, R., Shotton, R. & Uchida, H.) 21–30 (FAO Fish. Tech. Pap. No 504, FAO Rome, 2008).
- 316. Űnal, V., Glücüsoy, H. & Franquesa, R. A comparative study of success and failure of fishery cooperatives in the Aegean, Turkey. *J. Appl. Ichthyol.* **25**, 394–400 (2009).
- 317. Űnal, V., Yercan, M., Glücüsoy, H. & Goncuoglu, H. A better understanding of fishery cooperatives in the Aegean, Turkey. *J. Anim. Veter. Adv.* **8**, 1361–1366 (2009).
- Hatcher, A. C. Producers' organizations and devolved fisheries management in the United Kingdom: collective and individual quota systems. *Mar. Pol.* 21, 519–533 (1997).
- 319. Butler J. R. A. *et al.* The Moray Firth Seal Management Plan: an adaptive framework for balancing the conservation of seals, salmon, fisheries and wildlife tourism in the UK. *Aquat. Conserv. Mar. Freshw. Ecosyst.* 18, 1025–1038 (2008).
- 320. Woodhatch, L. & Crean, K. The gentleman's agreements: a fisheries management case study from the Southwest of England. *Mar. Pol.* **23**, 25–35 (1999).
- 321. Del Valle, I., Astorkiza, I. & Astorkiza, K. Is the current regulation of the VIII Division European anchovy optimal? *Environ. Resour. Econ.* **19**, 53–72 (2001).

Supplementary Table S1. Summary information of total study cases (n = 218) of fisheries co-management systems identified from the literature review. Highlighted in grey are the definitive cases included in the final model (n = 130) with their most relevant supporting references. Continent: AF= Africa, AS= Asia, OC= Oceania, NAC= North America and the Caribbean, SA= South America, EU= Europe; Human Development Index, HDI: LO= low, ME= medium, HI= high, VG= very high; Fishing Sector: Art= artisanal, Ind= industrial, Seq= sequential; Co-management phase: PreImplem= pre-implementation, Implem= implementation, PostImplem = post-implementation.

Case	Continent	Country	HDI	Region	Resource	System	Fishing sector	Co-management phase	References
1	AF	Malawi	LO	Chiuta	MultiSpp	Inland	Seq	PostImplem	S34-S36
2	AF	Malawi	LO	Malombe	MultiSpp	Inland	Seq	Implem	S37-S39
3	AF	Malawi	LO	Chilwa	MultiSpp	Inland	Art	Implem	S40-S42
4	AF	Mozambique	LO	Angoche	Demersal	Coastal	Seq	Implem	
5	AF	Mozambique	LO	Inhassoro	MultiSpp	Coastal	Art	PostImplem	S43-S45
6	AF	Mozambique	LO	Kwirikwidge	MultiSpp	Coastal	Art	PostImplem	S46-S48
7	AF	Zimbabwe	LO	Kariba	MultiSpp	Inland	Art	Implem	S49-S51
8	AF	Zambia	LO	Kariba	MultiSpp	Inland	Art	Implem	S52-S54
9	AF	Zambia	LO	Bangweulu	MultiSpp	Inland	Art	Implem	
10	AF	The Gambia	LO		MultiSpp	Coastal	Seq	Implem	S55-S57
11	AF	The Gambia	LO		Demersal	Inland	Art	Implem	S58
12	AF	Cote D'Ivoire	LO	Aby	MultiSpp	Coastal	Art	Implem	S59-S61
13	AF	Tanzania	ME	Tanga	MultiSpp	Coastal	Art	PreImplem	
14	AF	Tanzania	ME	Victoria	MultiSpp	Inland	Art	Implem	S62-S64
15	AF	Kenya	ME	Victoria	MultiSpp	Inland	Art	Implem	
16	AF	Uganda	ME	Victoria	MultiSpp	Inland	Art	PreImplem	
17	AF	South Africa	ME	Sokhulu	Benthic	Coastal	Art	Implem	S65-S67
18	AF	South Africa	ME	Kosi	MultiSpp	Coastal	Art	Implem	S68-S70
19	AF	South Africa	ME	St Lucia	MultiSpp	Coastal	Art	PostImplem	S67,S71-S72
20	AF	South Africa	ME	Olifants	MultiSpp	Inland	Art	Implem	S73-S75
21	AF	South Africa	ME		Demersal	Offshore	Ind	Implem	S76-S78
22	AF	South Africa	ME	Arniston	MultiSpp	Coastal	Art		
23	AF	Guinea-Bissau	LO	Rio Grande	MultiSpp	Coastal	Art	Implem	S79-S80
24	AF	Madagascar	ME		Benthic	Coastal	Seq	Implem	S81-S83
25	AF	Senegal	LO	Kayar	Demersal	Coastal	Art	Implem	S84-S85
26	AF	Benin	LO	Nokoue	MultiSpp	Inland	Art		
27	AF	Nigeria	ME	Chad	MultiSpp	Inland	Art		
28	AF	Kenya	ME		MultiSpp	Coastal	Art	Implem	
29	AF	Kenya	ME	Diani-Chale	MultiSpp	Coastal	Art	Implem	S86-S88
30	AF	Kenya	ME	Kolongo	MultiSpp	Coastal	Art		
31	AF	Cameroon	ME		MultiSpp	Coastal	Art		

32	AS	Philippines	ME	Malalison Is	Benthic	Coastal	Art	PostImplem	S89-S91
33	AS	Philippines	ME	San Salvador	MultiSpp	Coastal	Art	PostImplem	S92-S94
34	AS	Philippines	ME	San Miguel Bay	MultiSpp	Coastal	Art	PostImplem	S95-S97
35	AS	Philippines	ME	Capiz	MultiSpp	Coastal	Art	PostImplem	S98-S100
36	AS	Philippines	ME	Ulugan Bay	MultiSpp	Coastal	Art		
37	AS	Philippines	ME	San Vicente	MultiSpp	Coastal	Art		
38	AS	Philippines	ME	Ilog Bay	MultiSpp	Coastal	Art	PostImplem	S101-S102
39	AS	Philippines	ME	Cogton Bay	MultiSpp	Coastal	Art	PostImplem	S103-S105
40	AS	Philippines	ME	Sagay	MultiSpp	Coastal	Art	PostImplem	S106-S108
41	AS	Bangladesh	ME		MultiSpp	Inland	Art	Implem	S109-S111
42	AS	Bangladesh	ME	Titas River	MultiSpp	Inland	Art	Implem	S112-S114
43	AS	Bangladesh	ME	Kali Nodi	MultiSpp	Inland	Art	Implem	S115-S117
44	AS	Bangladesh	ME	Moisherkandi	MultiSpp	Inland	Art	Implem	S103,S105,S116
45	AS	Bangladesh	ME	Dhaleswari	MultiSpp	Inland	Art	Implem	S118-S128
46	AS	Bangladesh	ME	Jari Jamuna	MultiSpp	Inland	Art	Implem	S118-S128
47	AS	Bangladesh	ME	Tetulia	MultiSpp	Inland	Art	Implem	S118-S128
48	AS	Bangladesh	ME	Ashurar	MultiSpp	Inland	Art	Implem	S118-S128
49	AS	Bangladesh	ME	Hamil	MultiSpp	Inland	Art	Implem	S125-S128
50	AS	Bangladesh	ME	Ubdakhali	MultiSpp	Inland	Art	Implem	S125-S127
51	AS	Bangladesh	ME	Rajdhola	MultiSpp	Inland	Art	Implem	S126-S127
52	AS	Bangladesh	ME	Digshi	MultiSpp	Inland	Art	Implem	S118-S128
53	AS	Bangladesh	ME	Goakhola	MultiSpp	Inland	Art	Implem	S123-S126
54	AS	Bangladesh	ME	Arial Kha	MultiSpp	Inland	Art	Implem	S122-S128
55	AS	Bangladesh	ME	Dum Nadi	MultiSpp	Inland	Art	Implem	S122-S128
56	AS	Bangladesh	ME	Ruhia Baisa	MultiSpp	Inland	Art	Implem	S122-S128
57	AS	Bangladesh	ME	Krishno	MultiSpp	Inland	Art	Implem	S122-S128
58	AS	Japan	VH	Nishi	Pelagic	Offshore	Ind	PostImplem	S129-S132
59	AS	Japan	VH	Suruga Bay	Demersal	Coastal	Ind	PostImplem	S134-S136
60	AS	Japan	VH	Akita	Pelagic	Coast/Off	Ind	PostImplem	S137-S140
61	AS	Japan	VH	Ise Bay	Pelagic	Coastal	Ind	PostImplem	S141-S142
62	AS	Japan	VH	Fukushima	Demersal	Coastal	Ind	PostImplem	
63	AS	Japan	VH	Kyoto	Benthic	Offshore	Ind	PostImplem	S143-S144
64	AS	Japan	VH	Shiretoko	MultiSpp	Coastal	Seq	PostImplem	
65	AS	Japan	VH	Ibaraki	Benthic	Coastal	Art	PostImplem	
66	AS	Cambodia	ME	Tblong Kla	MultiSpp	Inland	Art	PreImplem	
67	AS	Cambodia	ME	Tonle Sap	MultiSpp	Inland	Art	PreImplem	
68	AS	Lao PDR	ME	Khong	MultiSpp	Inland	Art	PostImplem	S145-S147
69	AS	Vietnam	ME	Thac Ba	MultiSpp	Inland	Art		
70	AS	Vietnam	ME	Tien Hai	MultiSpp	Coastal	Art		
71	AS	Vietnam	ME	Khanh Hoa	MultiSpp	Coastal	Art		
72	AS	Vietnam	ME	Daklak	MultiSpp	Inland	Art	PreImplem	
73	AS	India	ME	Cochin	Demersal	Coastal	Art	PostImplem	S149-S151
74	AS	India	ME	Cochin	MultiSpp	Coastal	Art	PostImplem	S152-S154
75	AS	Indonesia	ME	Semarang	MultiSpp	Inland	Art	PostImplem	
76	AS	Indonesia	ME	N. Sulawesi	MultiSpp	Coastal	Art	PreImplem	
					11			1	

77	AS	Indonesia	ME	Maluku	MultiSpp	Coastal	Art	PostImplem	S155-S157
78	AS	Korea	VH		MultiSpp	Coastal	Art	PostImplem	
79	AS	Sri Lanka	ME	Negombo	Demersal	Coastal	Art		
80	AS	Sri Lanka	ME	Egodauyana	MultiSpp	Coastal	Art	PostImplem	
81	AS	Sri Lanka	ME	Chilaw	Demersal	Coastal	Art	PostImplem	
82	AS	Sri Lanka	ME	NW province	MultiSpp	Inland	Art	Implem	
83	AS	Thailand	ME	Phang-nga	MultiSpp	Coastal	Art	PostImplem	S158-S160
84	AS	Thailand	ME	Bang Saphan	MultiSpp	Coastal	Art	Implem	
85	AS	Malasya	HI	Langkawi	MultiSpp	Coastal	Art	PreImplem	
86	AS	Sri Lanka	ME	Victoria	MultiSpp	Inland	Art		
87	AS	Taiwan	VH		MultiSpp	Coastal	Ind	PreImplem	
88	OC	Vanuatu	ME		MultiSpp	Coastal	Art	PostImplem	S161-S163
89	OC	Salomon Is	ME		MultiSpp	Coastal	Art	PreImplem	
90	OC	Fiji	ME		MultiSpp	Coastal	Seq	PostImplem	
91	OC	Samoa	ME		MultiSpp	Coastal	Art	PostImplem	
92	OC	Samoa	ME		Pelagic	Offshore	Ind	Implem	
93	OC	Cook Is	ME		MultiSpp	Coastal	Seq	Implem	
94	OC	New Zealand	VH	Bluff	Benthic	Coastal	Ind	Implem	S164-S166
95	OC	New Zealand	VH	N-M Sound	Benthic	Coastal	Ind	PostImplem	S167-S169
96	OC	New Zealand	VH		Benthic	Offshore	Ind	PreImplem	
97	OC	New Zealand	VH		Benthic	Coastal	Ind	PreImplem	
98	OC	Australia	VH	Spencer Gulf	Demersal	Coastal	Ind	Implem	S170-S174
99	OC	Australia	VH	N. Territory	Benthic	Coastal	Art		S175-S176
100	OC	Australia	VH	Exmouth Gulf	Demersal	Coastal	Ind	Implem	S177-S179
101	OC	Australia	VH	Queensland	Demersal	Offshore	Ind	Implem	S180-S183
102	OC	Australia	VH	Victoria	Benthic	Coastal	Ind	Implem	S184-S186
103	OC	Australia	VH	Sub-Antarctic	Demersal	Offshore	Ind	Implem	
104	OC	Australia	VH	SE Australia	Demersal	Offshore	Ind	Implem	S187-S189
105	OC	Australia	VH	SE Australia	Demersal	Coastal	Ind	PreImplem	
106	NAC	Canada	VH	British Columbia	Benthic	Coastal	Ind	PostImplem	S190-S191
107	NAC	Canada	VH	Nova Scotia 19	Benthic	Coastal	Ind	PostImplem	S192-S195
108	NAC	Canada	VH	Nova Scotia 22	Benthic	Coastal	Ind	PostImplem	S192-S195
109	NAC	Canada	VH	Newfoundland	Benthic	Coastal	Ind	PostImplem	S196-S198
110	NAC	Canada	VH	Vancouver Is	Pelagic	Coastal	Art	PreImplem	
111	NAC	Canada	VH	Fraser River	Pelagic	Coastal	Seq	PreImplem	
112	NAC	Canada	VH	Nova Scotia	Benthic	Coastal	Ind	PreImplem	
113	NAC	Canada	VH	British Columbia	Benthic	Coastal	Ind	Implem	S199-S201
114	NAC	Canada	VH	Georges Bank	Benthic	Offshore	Ind	Implem	S202-S204
115	NAC	Canada	VH	Nova Scotia	Demersal	Offshore	Ind	Implem	
116	NAC	Canada	VH	British Columbia	Demersal	Offshore	Ind	Implem	S205-S207
117	NAC	Canada	VH	Kyuquot	Benthic	Coastal	Art	PostImplem	S208-S209
118	NAC	Canada	VH	Scotia-Fundy	Pelagic	Coast/Off	Seq	PostImplem	S210-S215
119	NAC	Canada	VH	Scotia-Fundy	Demersal	Coastal	Art	PostImplem	S196, S216
				•				•	

121	NAC	Canada	VH	NE Canada	Pelagic	Coastal	Art	PostImplem	S196, S223-S227
122	NAC	Canada	VH	Beaufort Sea	Mammal	Coastal	Art	PostImplem	
122	NAC	USA	VH	Maine	Benthic	Coastal	Ind	PostImplem	S228-S230
123	NAC	USA	VH	West Hawaii	Benthic	Coastal	Art	Implem	S228-S230
124	NAC	USA	VH	Pacific NW	Pelagic			PostImplem	
125	NAC	USA	VH	Pacific NW	Pelagic	Coastal Coastal	Seq Seq	Implem	S234-S236
127	NAC	USA	VH	Chignik-Alaska	Pelagic	Coastal	Seq	PreImplem	
128	NAC	USA	VH	Cook- Alaska	Mammal	Coastal	Art	PostImplem	
129	SA	Brazil	HI	Santa Catarina	Benthic	Inland	Art	Implem	S237-S239
130	SA	Brazil	HI	Patos Lagoon	MultiSpp	Coastal	Seq	PreImplem	
131	SA	Brazil	HI	NorthEast	MultiSpp	Inland	Art	PreImplem	
132	SA	Brazil	HI	Amazon Atlantic	MultiSpp	Coastal	Art	PreImplem	
133	SA	Brazil	HI	Arraial do Cabo	MultiSpp	Coastal	Art	PreImplem	
134	SA	Brazil	HI	Caete Estuary	Benthic	Coastal	Art	PreImplem	
135	SA	Brazil	HI	Patos Lagoon	MultiSpp	Coastal	Art	PreImplem	
136	SA	Brazil	HI	Para	Benthic	Inland	Art	Implem	S240-S242
130	SA	Brazil	HI	Patos Lagoon	MultiSpp	Coastal	Seq	PreImplem	5210 5212
138	SA	Brazil	HI	Mamiraua	MultiSpp	Inland	Art	Implem	S243-S244
139	SA	Brazil	н	Mamiraua	MultiSpp	Inland	Art	Implem	S243-S244
140	SA	Brazil	HI	Santarem	MultiSpp	Inland	Art	PreImplem	52+5-52++
140	SA	Brazil	HI	Santarem	MultiSpp	Inland	Art	PreImplem	
141	SA	Brazil	HI	San Francisco	MultiSpp	Inland	Art	PostImplem	S245-S246
142	SA	Brazil	HI	Arraial do Cabo	MultiSpp	Coastal	Art	PostImplem	S245-S246
144	SA	Brazil	HI	Corumbao	MultiSpp	Coastal	Art	PostImplem	S246, S248
144	SA	Brazil	HI	Ibiraquera	MultiSpp	Coastal	Art	PostImplem	S249-S250
	SA	Chile	HI	Ibiraquera	Benthic			-	
146						Coastal	Art	PostImplem	\$251-\$253
147	SA	Chile	HI		Benthic	Coastal	Art	PostImplem	\$254-\$255
148	SA	Chile	HI		Benthic	Coastal	Art	PostImplem	S255, S256-S263
149	SA	Chile	HI		Benthic	Coastal	Art	PostImplem	\$255, \$264-\$265
150	SA	Chile	HI	~ .	Benthic	Coastal	Art	PostImplem	S266-S267
151	SA	Ecuador	HI	Galapagos	Benthic	Coastal	Art	PostImplem	S268-S274
152	SA	Ecuador	HI	Galapagos	Benthic	Coastal	Art	PostImplem	\$268, 275-\$277
153	SA	Colombia	HI	San Andres	MultiSpp	Coastal	Art	PreImplem	
154	NAC	Mexico	HI	Punta Allen	Benthic	Coastal	Art	PostImplem	S251, S278- S279
155	NAC	Mexico	HI	Baja California	Benthic	Coastal	Art	PostImplem	S280
156	NAC	Mexico	HI	Baja California	Benthic	Coastal	Art	PostImplem	S281
157	NAC	Barbados	HI		Benthic	Coastal	Art	PreImplem	
158	NAC	Belize	ME	Laughing Bird	Benthic	Coastal	Art	PreImplem	
159	NAC	Grenada	HI	Gouyave	Benthic	Coastal	Art	PreImplem	
160	NAC	Grenada	HI	Gouyave	Benthic	Coastal	Art	PreImplem	
161	NAC	St Lucia	HI	Vieux-Fort	Benthic	Coastal	Art	PostImplem	S282-S284
162	SA	Peru	HI	Chino, Tahuayo	Pelagic	Inland	Art	PostImplem	S285
163	SA	Uruguay	HI	Barra del Chuy	Benthic	Coastal	Art	PostImplem	S251, S286-S287
164	SA	Argentina	HI	San Jose Gulf	Benthic	Coastal	Art	Implem	S288-S289
104	521	In Solution	111	Sur voic Gun	Dentine	Coustar	7.111	Impient	5200 5207

165	NAC	D 1 1			M 1/C	$C \rightarrow 1$	A (T 1	6200 6201
165	NAC	Barbados	HI	6	MultiSpp	Coastal	Art	Implem	S290-S291
166	NAC	Grenada	HI	Gouyave	Pelagic	Coastal	Art	PreImplem	5202
167	NAC	Belize	ME	D 1	Pelagic	Coastal	Art	Implem	S292
168	EU	Denmark	VH	Denmark	MultiSpp	Coastal	Ind	PreImplem	2202
169	EU	Denmark	VH	N. Jutland	Pelagic	Offshore	Ind	PostImplem	S293
170	EU	Denmark	VH	Kattegat	MultiSpp	Coastal	Ind	PostImplem	S293-S294
171	EU	Denmark	VH	Denmark	MultiSpp	Coast/Off	Ind		
172	EU	Denmark	VH	Denmark	MultiSpp	Offshore	Ind		
173	EU	Denmark	VH	Greenland	Pelagic	Coastal	Art	Implem	
174	EU	Europe	VH		MultiSpp	Coast/Off	Ind		
175	EU	Europe	VH		MultiSpp	Coast/Off	Ind		
176	EU	Europe	VH		MultiSpp	Coast/Off	Seq		
177	EU	Europe	VH		MultiSpp	Coast/Off	Seq		
178	EU	Europe	VH		MultiSpp	Coast/Off	Ind		
179	EU	Finland	VH	Findland	MultiSpp	Inland	Seq	PostImplem	S295-S296
180	EU	France	VH	Bay of Brest	Benthic	Coastal	Art	PostImplem	S297
181	EU	France	VH	Mediterranean	MultiSpp	Coastal	Art	PreImplem	
182	EU	Iceland	VH	Iceland	MultiSpp	Offshore	Ind		
183	EU	Ireland	VH	Dingle Bay	MultiSpp	Coastal	Ind		
184	EU	Netherlands	VH	Netherlands	MultiSpp	Coast/Off	Ind	PreImplem	
185	EU	Netherlands	VH	Wadden Sea	Benthic	Coastal	Ind	Implem	S298
186	EU	Netherlands	VH	North Sea	MultiSpp	Coastal	Ind	PostImplem	S299
187	EU	Netherlands	VH	Wadden Sea	Benthic	Coastal	Art	PostImplem	S299
188	EU	Netherlands	VH	Lake IJsselmeer	MultiSpp	Inland	Ind		
189	EU	Norway	VH	Norway	MultiSpp	Coastal	Art	PostImplem	S300
190	EU	Norway	VH	Lofoten	Pelagic	Coastal	Ind	PostImplem	S299, S301-S302
191	EU	Norway	VH	Sami	Demersal	Coastal	Art	Implem	
192	EU	Norway	VH	Senja	Demersal	Coastal	Art	PostImplem	S303
193	EU	Russia	HI	Peipsi-Pihkva	MultiSpp	Inland	Art	PostImplem	S304
194	EU	Multiple	HI	Bering Strait	Mammal	Coastal	Art	Implem	
195	EU	Multiple	HI	Bering Strait	Mammal	Coastal	Art	PostImplem	
196	EU	UK	VH	Orkney-Shetland	Benthic	Coastal	Art	PostImplem	S305
197	EU	UK	VH	Shetland	MultiSpp	Offshore	Ind	PostImplem	S306
198	EU	Spain	VH	NW Atlantic	Demersal	Offshore	Ind	PostImplem	S307
199	EU	Spain	VH	Galicia	Benthic	Coastal	Art	PostImplem	S308-S310
200	EU	Spain	VH	Mediterranean	MultiSpp	Coastal	Art	PreImplem	
201	EU	Spain	VH	Galicia	Benthic	Coastal	Art	PostImplem	\$311-312
202	EU	Spain	VH	Andalucia	MultiSpp	Coastal	Art	Implem	
202	EU	Spain	VH	Celtic Sea	Demersal	Offshore	Ind	PostImplem	S313
203	EU	Spain	VH	Spain	MultiSpp	Coast/Off	Ind	PreImplem	5010
204	EU	Spain	VH	Asturias	Benthic	Coastal	Art	Implem	S314
	EU	Spain	VH	Cadiz	Benthic	Coastal	Art	Implem	S299
206	LU	Span	V11	Caulz	Dentific	Coastai	Alt	mplem	5277
206 207	EU	Sweden	VH	Sweden	Demersal	Coast/Off	Seq	PreImplem	

209	EU	Sweden	VH	Baltic coast	Demersal	Coastal	Art	PreImplem	
210	EU	Turkey	HI	Aegean	MultiSpp	Coastal	Art	Implem	S316-S317
211	EU	UK	VH	IV-VII ICES	MultiSpp	Coast/Off	Ind	PostImplem	S318
212	EU	UK	VH	UK	MultiSpp	Coastal	Art	PreImplem	
213	EU	UK	VH	UK	Mammal	Coastal	Art	PostImplem	S319
214	EU	UK	VH	South Devon	Benthic	Coastal	Art	PostImplem	S320
215	EU	UK	VH	UK	Pelagic	Offshore	Ind	PostImplem	S299
216	EU	UK	VH	Shetland	Benthic	Coastal	Art	Implem	S299
217	EU	Multiple	VH	Spain-France	Pelagic	Offshore	Ind	Implem	S321
218	EU	Italy	VH	Torre Guaceto	MultiSpp	Coastal	Art	PreImplem	

Supplementary Table S2. Coding scheme describing all grouping variables, co-management attributes and outcomes, and their potential direct and indirect effects. Group: CO= co-management; RS= resource system; RU= resource unit; GS= government system; U= users system; O= co-management outcomes.

Group	Code	Name	Description	Potential Direct/Indirect Effects
со	ТуреСо	Type of Co- management	Consultative (consultation mechanisms and dialogue); Cooperative (cooperation in decision making); Delegated (delegated responsibility to users)	
со	Phase	Phase of Co- management	Pre-Implementation, Implementation, and Post-Implementation	
со	Tframe	Time frame	Period of time the co-management regime has been in place	
RS	HDI	Human Development Index ¹²	Compounded index of "human development" (life expectancy, literacy rate, GDP)	
RS	Gov	Governance Index ¹³	Average of four governance indicators: governmental effectiveness; regulatory quality; rule of law; control of corruption.	
RS	PCI	Corruption Perceptions Index ¹⁴	Measure of the perceived level of public-sector corruption	
RS	ResType	Resource Type	Single-species (Benthic, Demersal, Pelagic, Mammals), Multi-species	
RS	System	System	Inland (lakes, rivers, beels), Coastal (open water, bays, estuaries, costal lagoons), Offshore	
RS	Sector	Fishing Sector	Artisanal, Industrial, Sequential (both)	
RS	Def	Defined boundaries	Clearly defined geographic boundaries (e.g., lakes, coastal lagoons, fjords).	Facilitates protection against outsiders, restricts fishermen dynamics, improves users communication, decreases monitoring effort and costs, increases ecological knowledge. Well-defined boundaries favor the implementation of self-policing strategies and a voluntary cooperative action to avoid infringement of rules.
RU	Sed	Sedentary / Low mobility resource	Comprises sessile, sedentary and reduced mobility adult stages species with limited behavioral responses to stimuli.	Facilitates targeting rights and responsibilities and local and spatially-explicit management, easier access in well- defined areas and easier monitoring and enforcement.
GS	Law	Co- management in law (National)	Co-management is supported by laws and decrees in the National Constitution.	Gives users and their institutions the legal right to participate in the co-management process through management plans, enforcement of rules, etc.

Group	Code	Name	Description	Potential Direct/Indirect Effects
GS	LocSup	Central government support (Local)	Local government encourages, supports, and participates in the co- management process.	Facilitates the process of implementation of co- management at the local level.
GS	LongTerm	Long term management policy	Refers to sustainability in time and stability of management plans and/or management institutions.	Implementation of a long-term policy in a co- management context generates a great incentive to fishers to adhere to and get involved with enforcing regulations, thus reducing the probability of occurrence of free-riders, illegal fishing, and short-term, profit- maximizing behaviors.
GS	SciAdv	Scientific advice	Implies scientific advice and participation of Universities, NGOs or governmental institutions in the implementation of the co-management system.	Scientific knowledge and advice on the ecology and resilience of targeted stocks play important roles in guiding co-management policies and governance development processes. Quality and quantity of information is improved through cooperation and information flow.
GS	MCS	Monitoring, Control & Surveillance	Fishery control, monitoring and surveillance by co-management authorities/institutions.	Favors reliable information flow from fishers to policy makers, lowering monitoring, enforcement and transaction costs, and providing continuous fine-grained signals about resource status (adaptive co- management).
GS	GQ	Global catch quotas	Resources are managed through assignment of global catch quotas (e.g. TACs).	Reinforces co-management if allocated together with other management tools in a context of management redundancy. Requires legislation and enforcement of legal frameworks, and cooperation of fisher-communities, which need to be adapted to countries and idiosyncrasies.
GS	IQ	Individual or community quotas	Resources are managed through individual, transferable or not, or community fishing quotas designed and implemented within the co- management regime.	Creates incentives to self-management, self-enforcement and community empowerment.
GS	TURF	TURF	Formal Territorial Users Rights of Fishing.	Generates a sense of exclusive use and ownership among fishers, who perceive they are receiving the equivalent of a "land grant" which has the form of a highly productive aquatic area.
GS	Spat	Spatially- explicit management	Separate areas of management and/or spatially-explicit tools (e.g., rotational harvest strategies).	Enhances the probability of co-management success, particularly in spatially-structured stocks with low mobility, where the spatial distribution patterns of abundance are heterogeneous, and the spatial dynamics of the fishing process follows closely spatial variations in abundance at the scale of small sub-areas.
GS	MinSize	Minimum sizes	Minimum size regulations, through mesh sizes, traps, hooks, etc.	Reduces fishing mortality of undesired individual sizes and increases survival of spawning stocks. Particularly useful under co-management regimes when implemented with the active participation of fishers, promoting compliance with regulations.

Group	Code	Name	Description	Potential Direct/Indirect Effects
GS	PA	Protected Areas	Formal no-take areas, marine reserves and/or protected areas with a considerable degree of fishermen/communities involvement (community-based reserves)	Enhances fisheries management and conservation of biodiversity, particularly in multi-species or on sedentary stocks, or for which broader ecological impacts of fishing are an issue. Successful use of protected areas in a co- management context required in this study a case-by- case understanding of the spatial structure of impacted fisheries, ecosystems and human communities.
GS	Restock	Seeding or restocking	Includes low-cost stock enhancement activities such as extensive culture, natural restocking or transplanting	Enhances stock productivity and population replenishment
U	Cohes	Social cohesion	Social cohesion including unity, trust, harmony, communication and cooperation given by common interests among users (e.g., effective participation of most community members in meetings). Generally related with community homogeneity	Enhances user's cooperation, conflict resolution, collaboration with external partners, ability to exclude outsiders, and willingness to report rules breaking. Increases awareness and promotes co-management sustainability
U	Lead	Leadership	Key influential users with entrepreneurial skills, highly motivated, respected as local leaders, and directly involved in management decisions.	Promotes local self-organization, influences enforcement and rules compliance, alleviates attitudes towards destructive practices and helps conflict resolution. Improves communication, teamwork and systems thinking skills
U	SelfEnf	Self- enforcement	User's ability and effectiveness in enforcing management regulations (e.g., clear and effective system of penalties imposed by strong operational rules specified, enforced and controlled by local fishers).	Encourages compliance on regulations resulting from management measures imposed in each co-managed site by the communities themselves, in agreement with the fishery management authorities, in order to sustain catch levels over time.
U	Trad	Tradition in self- organization	History and tradition in self- organization and self-governance. Traditional social hierarchies and local institutions (e.g. native, religious, etc.)	
U	LocMarket	Influence in local market	Users have influence in fish trading, rules and price control mechanisms.	Co-management alters the power relations of different players, promoting shorter marketing chains and mitigating deleterious middlemen effects on economic returns perceived by fishers.
0	Status	Fishery Status	Denotes under-exploited, fully- exploited and over-exploited fisheries.	The health of the fishery is improved after the implementation of the co-management regime (before- after analysis) or when compared with control (open access) sites (control-impact analysis).
0	IncAbun	Increase in Abundance	Increase in stock abundance as a result of co-management practices.	Abundance increases as a result of the implementation of co-management (before-after analysis) or when compared with open access areas (control-impact analysis).
0	IncCPUE	Increase in CPUE	Increase in Catch Per Unit Effort as a result of co-management practices.	CPUE increases as a result of the implementation of co- management (before-after analysis) or when compared with open access areas (control-impact analysis).

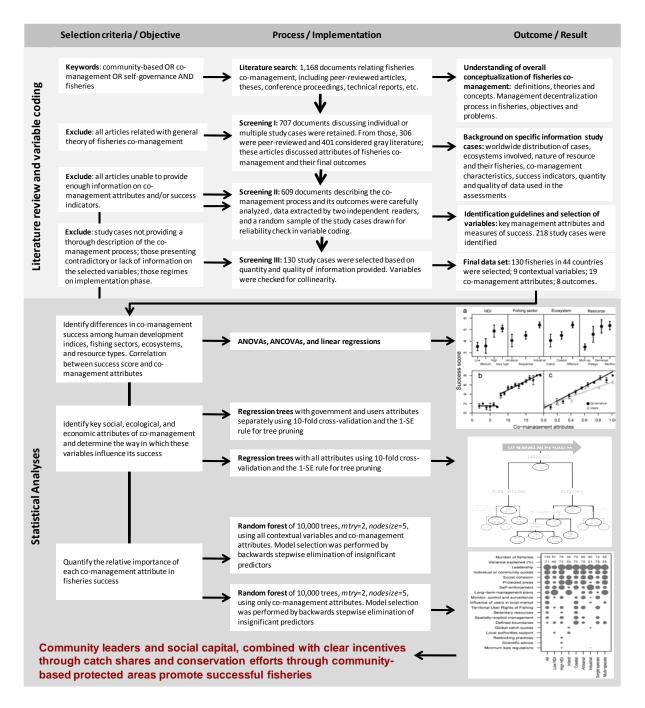
Group	Code	Name	Description	Potential Direct/Indirect Effects				
0	IncPrices	Increase in Unit Prices	Increase in unit prices as a result of co-management practices, including improvement in final product quality, marketing strategies and excluding market externalities.	Higher unit prices are used here as indicator of success only in cases when reflect shorter marketing chains that pass along a larger fraction of value to fishers, as a result of increasing product quality (e.g., individual size and condition), etc. Higher prices could also reflect increased scarcity due to resource overfishing or higher exposure to world markets. Thus, a clear distinction was made in this study to include higher prices as attribute of success by carefully reading each individual case.				
0	SustSustainable catchesSustainable catches regarding stock productivity in the long-term.		5 5	Evidence of sustainable catches in the long-term as a result of the implementation of co-management.				
0	Empow	Community Increase in spiritual, political, social, and/or economic strength of communities.		Co-management enhances community unity, improves community cohesion, fishermen communication, information sharing, and influenced economic trade.				
0	IncWelf	Increase in Social Welfare	Increase in community welfare, including incomes and social equity.	Co-management has positive effects in the economic welfare of fishers when compared with previous unregulated schemes (before-after analysis) or with areas without co-management (control-impact) that threaten livelihoods, reduce economic welfare and the nutritional status of fishers.				
0	Add-onDirect and indirect species andConservConservationBenefitsco-management practices.		habitat conservation benefits through	Co-managed systems afford benefits for biodiversity conservation. Perceptions and environmental awareness of fishers engaged with the co-managed policy is changed, with evidence of fishers themselves becoming environmental stewards.				

Supplementary Table S3. Correlation matrices for (a) co-management attributes and (b) outcomes or performance indicators across the 130 case studies. Bold values indicate correlation coefficients r > 0.50. Colors denote magnitude of the correlation coefficients according to traffic-light shades from red (negative) to green (positive). Values of variance inflation factor (VIF) > 5 are considered evidence of collinearity. Variable codes are explained in Table S1.

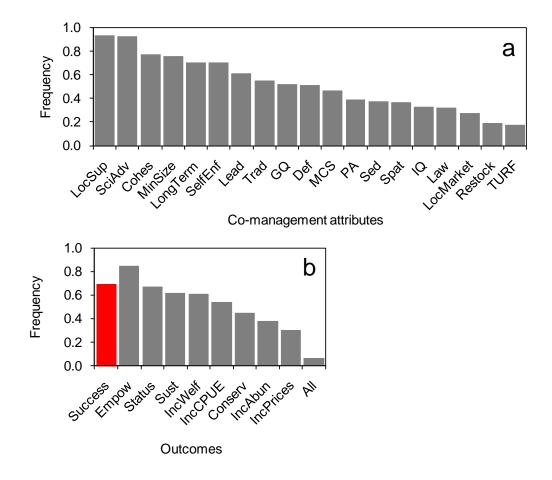
а	Def	Sed	Law	LocSup	LongTerm	n SciAdv	MCS	GQ	IQ	TURF	Spat	MinS	PA	Restock	Cohes	Lead	SelfEnf	Trad	LocMarket
Sed	0.0																		
Law	-0.1	0.2																	
LocSup	0.1	0.1	0.1																
LongTerm	0.1	0.1	0.2	0.2															
SciAdv	-0.1	0.1	0.1	-0.1	0.1														
MCS	0.0	0.3	0.1	0.1	0.2	0.3													
GQ	-0.2	0.2	0.0	0.2	0.1	0.2	0.3		_										
IQ	-0.1	0.2	0.1	0.2	0.2	0.2	0.4	0.5											
TURF	0.2	0.3	0.3	0.1	0.2	0.1	0.2	0.0	0.3										
Spat	0.2	0.3	0.2	0.1	0.2	0.1	0.2	0.0	0.3	0.4									
MinS	0.0	0.2	0.2	0.3	0.1	0.1	0.2	0.2	0.1	-0.1	0.0								
PA	0.1	0.2	0.1	0.1	0.1	0.2	0.3	0.0	0.1	0.2	0.3	0.0		_					
Restock	0.2	0.2	0.2	0.1	0.1	0.1	0.0	-0.1	0.1	0.2	0.2	0.1	0.1						
Cohes	0.0	0.0	0.0	0.0	0.5	0.2	0.2	-0.1	0.2	0.1	0.2	0.1	0.2	0.1		_			
Lead	0.1	0.2	0.1	0.3	0.5	0.1	0.4	0.1	0.4	0.2	0.1	0.2	0.3	0.1	0.6		_		
SelfEnf	0.1	0.0	0.1	0.4	0.5	0.0	0.3	0.1	0.4	0.2	0.2	0.2	0.1	0.2	0.6	0.5			
Trad	0.0	0.0	0.0	0.1	0.0	-0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.0	-0.2	0.1	0.1	0.1		
LocMarket	-0.1	0.3	0.2	0.2	0.2	0.1	0.3	0.2	0.4	0.2	0.2	0.2	0.1	0.1	0.2	0.4	0.3	0.1	
VIF	1.5	1.8	1.5	1.1	2.6	1.6	1.5	1.8	2.0	1.9	2.2	1.2	1.5	1.3	2.8	2.6	2.1	1.4	1.5
b	Status	Inc	Inc	Inc	Sust	Empow	Inc												

b	Status	Inc	Inc	Inc	Sust	Empow	Inc
	/	Abund	CPUE	Price			Welf
	_						
IncAbund	0.4						
IncCPUE	0.5	0.5					
IncPrices	0.2	0.0	0.2				
Sust	0.7	0.4	0.5	0.2			
Empow	0.3	0.2	0.3	0.1	0.4		
IncWelf	0.6	0.2	0.4	0.2	0.5	0.4	
Conserv	0.1	0.3	0.2	0.1	0.2	0.3	0.3

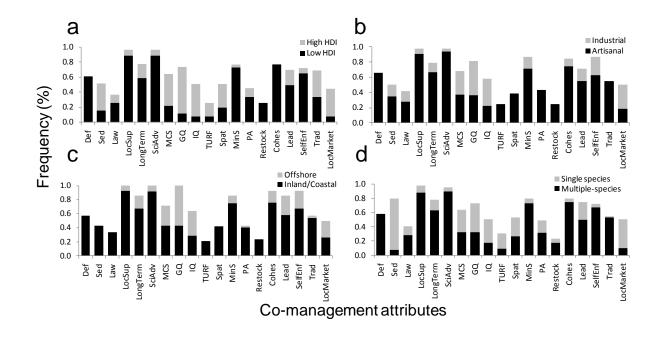
Supplementary Table S4. Summary of ANCOVA results and multiple comparisons (Fisher LSD test: P < 0.05) performed to test whether the co-management success score differed among socio-economic conditions and ecological settings. * P < 0.05, ** P < 0.01.

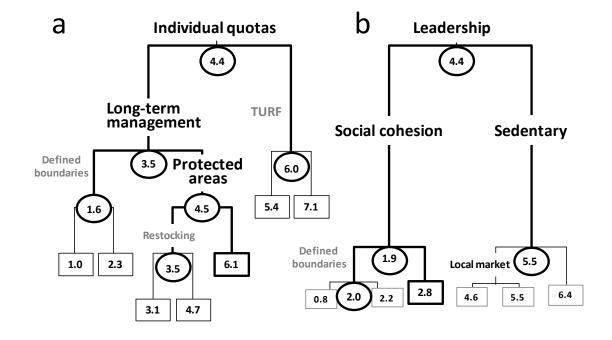

Main factorF ratio		Multiple comparisons						
Covariate: number of m	nanagement a	ttributes (see Figure 2a)						
HDI	4.82 *	Low = Med < High = Very High						
Fishing sector	7.16 **	Artisanal < Industrial						
Ecosystem	5.39 **	Coastal < Inland < Offshore						
Resource type	2.26 *	Multispecies < Pelagic < Demersal = Benthic						
Covariate: relative management attributes (Treatments: GS & U: see Figure 2c)								
Attribute system	8.87 **	Governance attributes > Users attributes						

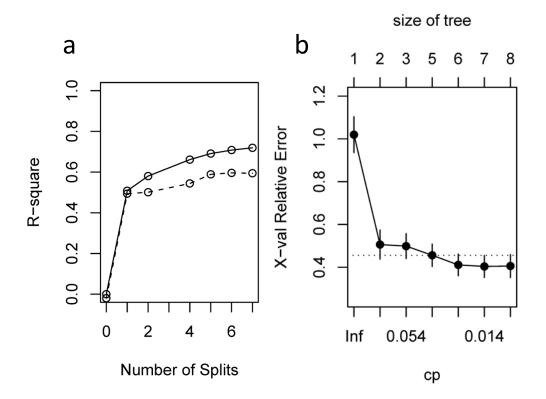
Supplementary Table S5. Results of regression tree for co-management success (see Fig. 3a). Nodes in green correspond to the optimal (pruned) tree and their horizontal positions determine node levels.

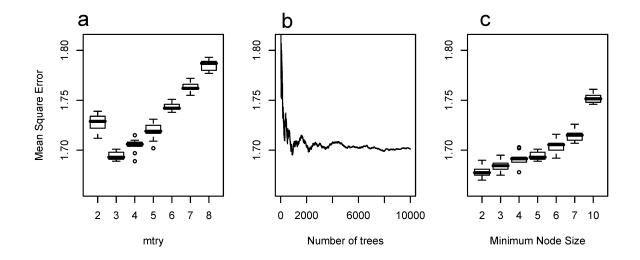

N	Node/leaf			Splitting	Splitting	Study	Deviance	Mean	Mean	
					variable	criteria	cases (n)	S	quare Error	Success
1	1				Root		130	734	5.65	4.40
	2				Leadership	No	40	77	1.93	1.92
		4			Social cohesion	No	31	44	1.41	1.52
			8		Spatial management	No	19	17	0.89	1.00
			9		Spatial management	Yes	12	14	1.19	2.36
		5			Social cohesion	Yes	9	12	1.28	3.22
	3				Leadership	Yes	90	280	3.16	5.54
		6			Sedentary resource	No	52	170	3.23	4.86
			10		Individual quotas	No	33	130	3.91	4.31
				14	Protected areas	No	21	77	1.71	3.56
				15	Protected areas	Yes	12	21	1.11	5.59
			11		Individual quotas	Yes	19	11	0.55	5.94
		7			Sedentary resource	Yes	38	63	1.66	6.42
			12		TURF	No	21	36	3.67	6.00
			13		TURF	Yes	17	19	1.74	6.94
	Op 5 Dev	tal tim /ia	tree nal t nce	ree exp	ce lained	206 227				
			tree nal t			72 69				

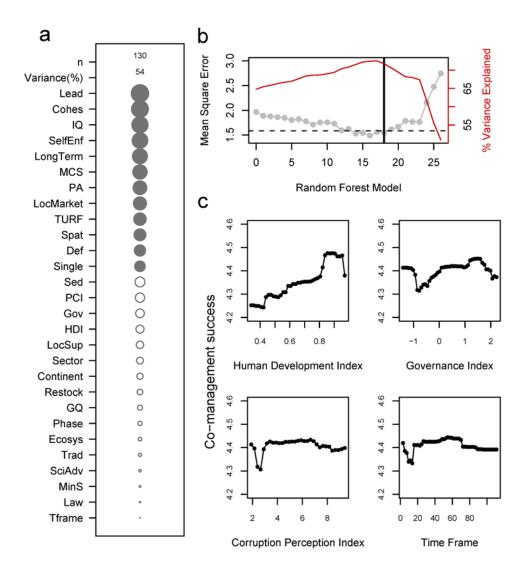
Supplementary Table S6. Comparisons of Kendall's concordance indices (*W*) for those categories used in the sub-groups random forest models (in green) and for additional categories not included in the analysis due to smaller differences in their indices (in red; $W \ge 0.9$); *W* ranges from 0 (no agreement) to 1 (complete agreement).


Groups	Fishing Sector	HDIa	Ecosystem	Fishing target	All	Resource type	HDIb	Continent	All
Categories	Artisanal Industrial	Low High	Coastal Inland	Single Multiple		Benthic Demersal Pelagic Multiple	Low Medium High Very High	Asia Africa Europe Oceania North Ameri South Ameri	
Variables			19				19		
Groups	2	2	2	3	8	4	4	5	13
Kendall W	0.82	0.75	0.79	0.85	0.75	0.90	0.91	0.95	0.89
χ^2_{18}	29.6	28.1	28.5	30.6	107.0	64.2	65.1	86.1	210.0
Р	0.041	0.051	0.049	0.031	< 0.001	< 0.001	<0.001	<0.001	< 0.001


Supplementary Figure S1. Flowchart depicting the literature review process, and the statistical analysis, their objectives, process/implementation, and outcomes.


Supplementary Figure S2. Frequency of: (a) co-management attributes; and (b) performance indicators present in the study cases analyzed (n = 130). A frequency of 1.0 indicates that 100% of the final set of co-management studies reported information on a respective metric. Red bar indicates proportion of fisheries achieving all social, economic and ecological co-management objectives (i.e., success score = 8) according to study authors' judgment. Variable codes are explained in Table S2.


Supplementary Figure S3. Frequencies of co-management attributes occurrence for different categories of fisheries based on statistical differences in co-management success (AN OVAs; see Table S4). Frequencies are overlapped to highlight increases in frequency from less successful to more successful categories. (a) High Human Development Index > low Human Development Index; (b) industrial > artisanal; (c) offshore > inland/coastal; (d) benthic/demersal>pelagic > multi-species. Variable codes are explained in Table S2.


Supplementary Figure S4. Regression tree analyses of co-management success for (a) binary government system (GS) attributes, with 4 leaves and 68% of the variance explained; and (b) binary user system attributes (U) with 3 leaves and 64% of the variance explained. Optimal trees were selected using the modal tree size from 50 cross-validations and the 1-SE rule. Branches from the smaller, optimal tree are shown in bold. Averaged (predicted) co-management success is indicated at each node. Squares denote terminal nodes/leaves. Vertical depth of each split is proportional to the variation explained by each attribute or explanatory variable (note leadership explained >60% of the total deviance). Splitting criteria was absence or presence of attributes and fisheries with higher success score are at the right of each branch point.

Supplementary Figure S5. Pruning regression tree of co-management success for the 19 fisheries co-management attributes. (a) Plot of the (1-apparent error; solid line) and (1-relative error; dotted line) showing that the first split offers the most information (biggest improvement in R²); (b) Plot of average relative errors for 50 10-fold cross validations versus regression tree size. A tree of 6 leaves (5 nodes) with a complexity parameter (cp) of 0.018 is selected under the 1-SE rule (dotted line).

Supplementary Figure S6. Parameter tuning for random forest using the whole comanagement data set (n = 130) and all the 19 co-management attributes. Boxplot of 50 10fold cross-validation mean square errors (MSE) at (a) various numbers of a subset of randomly selected explanatory variables (*mtry*). The plot suggests that *mtry* is optimal near 3 and that performance is similar for values ranging from 2 to 4; and (b) plot of the effect of number of trees (*ntree*) on the reduction of MSE; and (c) various minimum node sizes. Horizontal lines inside the boxes are the median MSE.

Figure S7. Random forest for the whole dataset including all grouping variables (*n*=9) and co-management attributes (*n*=19). (a) Relative variable importance was measured in terms of decrease in predictive accuracy and is proportional to the size of the bubble. Filled bubbles represent those variables selected with the backwards elimination procedure. Number of study cases and variance explained by the random forest model is also indicated. Variables' descriptions are given in Table S2. (b) Nested random models used in variable selection for the whole data set. Model 0 refers to the full model (26 variables). The horizontal dotted line denotes 1 standard deviation of the minimum mean square error (MSE) model used to select the best model. Vertical line shows the chosen model; (c) Partial dependence plots (i.e., marginal functional relationship between predictor and response variable, after averaging out the effects of all other predictors' effects on the response variable) for all continuous grouping variables.